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ABSTRACT 
 

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in 

children.  When TBI occurs in children it often results in severe cognitive and behavioral 

deficits.  Post-injury, the pediatric brain may be sensitive to the effects of TBI while 

undergoing a number of age-dependent physiological and neurobiological changes. Due 

to the nature of the developing cortex, it is important to understand how a pediatric brain 

recovers from a severe TBI (sTBI) compared to an adult. Investigating major cortical and 

cellular changes after sTBI in a pediatric model can elucidate why pediatrics go on to 

suffer more neurological damage than an adult after head trauma. To model pediatric 

sTBI, I use controlled cortical impact (CCI) in juvenile mice (P22).  First, I show that by 

14 days after injury, animals begin to show recurrent, non-injury induced, electrographic 

seizures. Also, using whole-cell patch clamp, layer V pyramidal neurons in the peri-

injury area show no changes except single-cell excitatory and inhibitory synaptic bursts. 

These results demonstrate that CCI induces epileptiform activity and distinct synaptic 

bursting within 14 days of injury without altering the intrinsic properties of layer V 

pyramidal neurons. Second, I characterized changes to the cortical inhibitory network and 

how fast-spiking (FS) interneurons in the peri-injury region function after CCI. I found 

that there is no loss of interneurons in the injury zone, but a 70% loss of parvalbumin 

immunoreactivity (PV-IR).  FS neurons received less inhibitory input and greater 

excitatory input. Finally, I show that the cortical interneuron network is also affected in 

the contralateral motor cortex.  The contralateral motor cortex shows a loss of 

interneurons and loss of PV-IR. Contralateral FS neurons in the motor cortex synaptically 

showed greater excitatory input and less inhibitory input 14 days after injury.  In 
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summary, this work demonstrates that by 14 days after injury, the pediatric cortex 

develops epileptiform activity likely due to cortical inhibitory network dysfunction.  

These findings provide novel insight into how pediatric cortical networks function in the 

injured brain and suggest potential circuit level mechanisms that may contribute to 

neurological disorders as a result of TBI. 
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 CHAPTER 1  

INTRODUCTION 

Traumatic Brain Injury 

Traumatic brain injury is the result of an external mechanical force that causes 

damage to the brain.  The mechanical force can be the result of a rapid change in 

acceleration, blast waves, penetrating injury, or impact (Maas et al., 2008).  Classification 

of TBI is based on severity of the injury, anatomical features resulting from the injury, 

and how the injury was caused (Saatman et al., 2008). Although TBI affects all ages, it is 

most common in children where it remains a leading cause of death and disability.  

According to the National Center for Injury Prevention and Control (2009), in children 0 

- 14 years of age, TBI annually results in 435,000 trips to the emergency room and nearly 

2700 deaths. Symptoms of TBI largely depend upon which area of the brain was injured.  

Severe TBI will often result in a relentless headache, convulsions, nausea, aphasia, 

slurred speech, dysarthria, loss of coordination, weakness in limbs, restlessness, and/or 

agitation (Kim, 2002).  Frequently accompanying the primary damage to the brain is 

multiple secondary injury events.  These events can include damage to the blood-brain 

barrier, inflammation, excitotoxicity, influx of calcium and sodium ions into neurons, and 

mitochondrial dysfunction (Park et al., 2008).  An increase in intracranial pressure may 

arise from swelling or from a hemorrhage.  Brain death or herniation can occur when the 

pressure within the skull becomes too great (Werner and Engelhard, 2007).  Also, 

ischemia can result from a decrease in cerebral perfusion pressure (Ghajar, 2000). 

Researchers have constructed a various assortment of models such as fluid percussion 

injury, controlled cortical impact, blast models, and undercut models to better understand 
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the implications and consequences of TBI. 

Pediatric Traumatic Brain Injury 

Research on traumatic brain injury in the pediatric population has revealed that 

TBI can negatively effect on going brain development and maturation, leading to 

neurological changes that persist into adulthood (Anderson and Moore, 1995; Klonoff et 

al., 1993; Kochanek et al., 2012; Luerssen et al., 1988a). The outcome following a TBI 

event also seems to be age dependent as younger children (<7 years of age) will go on to 

have a worse outcome and take longer to recover compared with older children, 

adolescents, and adults (Anderson and Moore, 1995). For this reason, it is important to 

consider TBI as a neurological disorder that is age dependent and develops over time.  

Understanding the properties of the pediatric brain that alters its response to TBI may 

lead to better management and therapeutics to alleviate symptoms resulting from head 

injury. Since considerable brain maturation occurs during a child’s early years (0-7 

years), it is easy to understand why a child’s brain before 7 years old has the most 

devastating consequences and effects neurological maturation.  

 Due to several longitudinal studies of young people with brain injuries (Anderson 

and Moore, 1995; Ewing-Cobbs et al., 1989, 1999, 2003, 2006; Kochanek et al., 2012; 

Luerssen et al., 1988a), we now understand that a young brain is not as resilient to brain 

injury as was once thought.  Conventional thinking regarding TBI in young people was 

that the child’s brain was resilient to trauma due to it being highly “plastic” and other 

parts of the brain would take over for damaged areas.  

 Studies in juvenile animal models to better characterize changes in the developing 

brain after severe TBI have been limited. However, it has been shown that juvenile brain 
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injury can cause alterations to the underlying corpus callosum, hippocampus, synaptic 

reorganization, and deficits in spatial learning memory (Adelson et al., 2013; Casella et 

al., 2014; Jenkins et al., 2002). One study has shown that inhibitory neurons of the adult 

hippocampus show reduced inhibition and increased excitation after CCI (Hunt et al., 

2011). Our understanding of cortical inhibitory neurons after CCI has yet to be as 

thoroughly understood. In addition, evidence that a unilateral TBI can induce bilateral 

deficits, most TBI research has focused on the peri-injury zone, directly adjacent to the 

site of injury. There has been limited work addressing axonal sheering in the corpus 

callosum, and only one study that addresses motor cortex plasticity after CCI (Axelson et 

al., 2013). To address these gaps in understanding in these studies we investigated 

anatomical and functional cellular changes in the peri-injury and contralateral cortex after 

sTBI in “pediatric” animals.  It is important to understand how a pediatric brain responds 

to TBI differently than an adult to developing new preventative and treatment options. 

Epilepsy 

Epilepsy is defined as the risk of recurrent seizures which can vary in length and 

severity (Fisher et al., 2005).  It cannot be cured, but in 70% of cases seizures can be 

controlled by medication (Eadie, 2012).  Epilepsy goes back as far as the first medical 

records (2005).  The first recorded account of epilepsy was made by the Babylonians who 

believed that seizures were the result of an evil spirit invading the body.  This 

supernatural view was not challenged until the 17th century B.C. by Hippocrates (2005).  

Hippocrates postulated that epilepsy should be treated like any other natural disease, with 

diet and drugs before it becomes chronic.  He believed that once a disease becomes 

chronic it is ultimately incurable (Temkin, 1994).  Despite Hippocrates’ proposal that 
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heredity was a likely cause or his description of the physical characteristics and social 

stigma caused by it (Magiorkinis et al., 2010), it was still assumed that epilepsy was 

caused by evil spirits until the 17th century (2005).  It was not until the mid 1800s that the 

first antiepileptic drug, bromide, was developed (Perucca and Gilliam, 2012). Sixty-five 

million people worldwide are known to have epilepsy (Thurman et al., 2011).  The ways 

in which people develop the disease can be due to genetics or be a result of other 

conditions.  However, in most cases for patients diagnosed with epilepsy, the cause is 

unknown (Fisher et al., 2005). Epilepsy can happen in a variety of ways.  Genetic factors 

can be a cause of epilepsy because certain genes can affect the likelihood of susceptibility 

as well as the interaction of multiple genes (Pandolfo, 2011).  However, idiopathic 

generalized epilepsy is the most common type of genetically determined epilepsy, but 

how it is inherited is still unknown (2005).  The other prominent mode of the 

development of epilepsy is symptomatic.  Symptomatic epilepsies can occur as the result 

of brain tumors, cerebral anoxia, brain infections, birth trauma, cortical malformations, 

and head trauma (2005).  Compared to those that have not suffered seizures after a head 

injury, post-traumatic epilepsy (PTE) patients are known to have a shorter life expectancy 

(Corkin et al., 1984).  In addition to shorter life expectancies, those with PTE recover 

from injuries slower and have more cognitive and motor issues (Camfield and Camfield, 

2014). 

Post Traumatic Epilepsy 

Post-traumatic epilepsy is a possible outcome as a result of traumatic brain injury.  

A sufferer of a traumatic brain injury can experience post traumatic seizures as quickly as 

one week after initial insult (Pagni and Zenga, 2005).  PTE and symptomatic epilepsy 
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accounts for 5% and 20% of epilepsy cases respectively (Garga and Lowenstein, 2006).  

A large problem to those that suffer TBI is the unknown likelihood of developing PTE 

(Pitkänen et al., 2007).  Post traumatic seizures may occur after insult, but this does not 

mean that the patient will go on to develop post traumatic epilepsy (PTE).  PTE is 

characterized as a chronic condition, where post traumatic seizures might only occur once 

or twice in a patient (Frey, 2003a).  The likelihood of a person developing PTE is linked 

to the severity of the injury (Iudice and Murri, 2000).  Mild TBI increases the risk, 

compared to that of an uninjured group, of PTE by one and a half fold (Annegers et al., 

1998).  However, some estimates show that as many as half of severe TBI sufferers will 

develop PTE (Iudice and Murri, 2000).  A study done to understand the likelihood of the 

development of PTE in relation to severity showed that 2.1% of mild TBI sufferers will 

go on to develop PTE compared to 16.7% of severe TBI sufferers (Annegers et al., 1998; 

Pitkänen and McIntosh, 2006).   

 Currently, there is much to known about how cellular processes in the brain occur 

after trauma (Garga and Lowenstein, 2006; Mazarati, 2006).  Researchers have proposed 

several possible mechanisms that can lead to PTE, however, multiple mechanisms may 

be found in an individual with PTE (Agrawal et al., 2006).  Several of these proposed 

mechanisms can range from formation of new synapses and axons, cells undergoing 

apoptosis or necrosis, and altered gene expression (Herman, 2002).  A particular area that 

is believed to give rise to PTE is the hippocampus.  This is due to decreased connectivity 

between the parietal cortex and hippocampus (Mishra et al., 2014).  However, there is 

much to be discovered in regard to cortical plasticity after TBI. It has been shown that 

excitatory and inhibitory networks undergo remodeling after insult (Jin et al., 2011). This 



6 
 

  
 

  
  
  
  
 

reorganization of neural networks may make neurons hyperexcitable (Elaine Wyllie MD 

and Deepak K. Lachhwani, 2005).  Neurons that become hyperexcitable can create an 

epileptic focus that leads to seizures (Gill et al., 2013).  Furthermore, an increase in 

neuronal hyperexcitability in conjunction with a loss of inhibitory neurons can produce 

PTE (Elaine Wyllie MD and Deepak K. Lachhwani, 2005). 

Cortex 

The human cortex has six cortical layers and each layer is characterized by the 

distribution of neural cell types and connections to other layers and subcortical regions.  

Each layer is roughly 2-3mm thick in humans. Layer I is the shallowest layer of the 

cortex.  It is mostly free of neuronal cell bodies and is largely composed of branching 

apical dendrites of pyramidal neurons.  Layer I, the molecular layer, receives excitatory 

input from other areas of the cortex (Douglas and Martin, 2007), but it has also been 

shown that a large number of thalamocortical neurons converge there as well (Rubio-

Garrido et al., 2009).  Layer II and III, the external granular layer and external pyramidal 

layer respectively; consist of small to medium sized pyramidal neurons that output to 

layer V/VI.  However, the output to layer VI is weak despite layer V/VI being 

interconnected (Shipp, 2007).  Layer IV, the internal granular layer, serves to relay 

signals to layers II and III and also include some inhibitory granule cells.  Layer IV also 

directly outputs to layer VI, prominently in primary cortices.  This IV to VI circuit loop is 

reasoned to serve as a modulatory loop as it mainly terminates upon inhibitory neurons.  

However, areas of the brain like the motor cortex are agranular, lacking a layer IV 

(Shipp, 2007).  Layer V, the internal pyramidal layer, is comprised of pyramidal neurons 

that project to subcortical regions (Jones, 1998).  Layer V is the primary output layer of 
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the entire cortex and is densest in the motor region.  This layer outputs to a variety of 

regions such as the superior colliculus, brainstem oculomotor centers, cerebellum, 

striatum and the thalamus (Shipp, 2007).  Layer VI connects to the thalamus and is an 

outgoing component of a cortico-thalamo-cortical loop.   

Considering that layer V pyramidal neurons serve as the primary output for the 

brain, this led us to investigate if the pathogenesis of seizure generation after traumatic 

brain injury could uncover intracellular markers.  It has been shown that deep layer 

cortical neurons initiate spike and wave discharges in seizure models (Polack et al., 

2007).  Cortical layer V has been suggested as an important pathogenic synchronizing 

mechanism as well as a contributor to the initiation of epileptiform events (Hoffman et 

al., 1994).  Layer V neurons have shown spontaneous ictal-like epileptiform discharges 

after controlled cortical impact (CCI) (Yang et al., 2010).  Furthermore, acute injury 

models that have undercut layer V have shown to cause a decrease in synaptic inhibition 

and an increase in synaptic excitation as a result of reorganization of synaptic circuits (Jin 

et al., 2011).  

Cortical Development 

The development of the cortex begins as progenitor cells transfer inside-out along 

radial glia (Noctor et al., 2001).  The first pyramidal neurons migrate out of the 

ventricular and subventricular zones from the preplate.  The preplate will eventually 

become layer I and the subplate will form a middle layer, or cortical plate, that will go on 

to develop into layers V and VI.  Neurons that come later will migrate radially through 

the deep layers and become layers II to IV (Rakic, 1988).  Pyramidal neurons, the brain’s 

primary excitatory unit, begin to increase in soma size, apical dendrite length, and basal 
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dendrite length in rats between postnatal day 3 and 21 (Zhang, 2004).  GABAergic 

interneurons serve as the brain’s primary inhibitory units.  During development, GABA is 

primarily excitatory because the gradient of chloride is reversed in immature neurons, 

meaning the reversal potential is higher than the resting membrane potential of the cell 

(Ben-Ari et al., 2007; Li and Xu, 2008).  As a result of GABAergic interneurons 

maturing faster and the gamma-Aminobutyric acid (GABA) signaling mechanisms 

occurring earlier than glutamatergic transmission, GABA is the major excitatory 

neurotransmitter in the brain before the maturation of glutamatergic synapses (Rheims et 

al., 2009). 

 Neurons begin to extend their axons and dendrites to proper synaptic partners.  As 

the synapses are constructed and mature within neural circuits, they undergo continuous 

refinement and reformation.  The refinement and pruning period is dependent upon 

interactive mechanisms and patterned neuronal activity, and in rats occurs during the 

second and third postnatal week of rats (Katz, 1993; Mrzljak et al., 1990; Shatz, 1990) 

The pruning and refinement process of axons, dendrites, and synapses begins in late 

gestation and dramatically increases postnatally (Cowan et al., 1984). Although 

synaptogenesis differs across brain regions, the sensory and motor cortices experience the 

most refinement after birth, and regions that handle cognitive functions are done later 

(Levitt, 2003). 

Cortical Interneurons 

Interneurons serve as the primary source of inhibition in the cortex and release the 

inhibitory neurotransmitter GABA. They comprise about 20% of the total cortical neuron 

population (Markram et al., 2004a; Rudy et al., 2011), with the excitatory population 
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making up the remaining 80%.  GABAergic interneurons play a major role in controlling 

information flow in the cortex by targeting specific subcellular domains of the principle 

excitatory neurons and by altering the input and output of neurons (Bacci and Huguenard, 

2006).  Specifically, GABAergic interneurons to play important roles in controlling the 

timing of cortical pyramidal neuron firing (Bacci and Huguenard, 2006) , synchronizing 

network activity (Sohal et al., 2009), and the generation of cortical rhythms (Nakamura et 

al., 2015). Malfunction of these neurons has been implicated in a number of neurological 

diseases including epilepsy (Jin et al., 2011) to schizophrenia (Lewis et al., 2012), anxiety 

disorders and autism (Wöhr et al., 2015). 

 Cortical interneurons are a diverse group of neurons that have been classified 

based on anatomy, physiology, and gene expression.  In general, approximately 85% of 

cortical interneurons can be subdivided into three types based upon their expression of 

the calcium chelators parvalbumin (PV), somatostatin (SST), and the neuropeptide 

vasoactive intestinal polypeptide (VIP) (Hioki et al., 2013; Nathanson et al., 2009; Rudy 

et al., 2011; Xu et al., 2010).  Within the cortical layers these three groups of interneurons 

(PV, SST and VIP) are varied in distribution and have distinct functional roles (Markram 

et al., 2004a). At this time, the presence or absence of the said calcium chelators remains 

a leading method for distinguishing types of interneurons histologically.   VIP neurons 

are primarily found in upper layers, such as layers II and III. In layers II/III, PV and SST 

make up almost half of the interneuron population. As the layers descend into layers 4-6 

the VIP neurons decrease and the majority (~80%) of neurons are SST and PV positive. 

 PV neurons are the most abundant of the interneuron subtypes, making up about 

40-50% of all cortical interneurons (Markram et al., 2004a; Rudy et al., 2011).  PV 
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expression has been associated with the fast-spiking firing pattern since it was first 

published in the 1980s (Kawaguchi et al., 1987). There has since been a number of 

reports and laboratories that have confirmed this correlation between fast-spiking and PV 

expression (Cauli et al., 1997; Chow et al., 1999; Gibson et al., 1999; Kawaguchi and 

Kubota, 1997; Petilla Interneuron Nomenclature Group et al., 2008; Xu et al., 2010).  

There are two types of PV neurons, basket cells and chandelier cells. Basket cells 

typically make synapses at the soma and proximal dendrites of target neurons and usually 

have multipolar morphology. Chandelier cells typically target the axon initial segment of 

pyramidal neurons (Kawaguchi and Kubota, 1997; Petilla Interneuron Nomenclature 

Group et al., 2008). These FS neurons fire high-frequency spike trains with little to no 

spike frequency adaptation. When close to firing threshold, they fire abrupt episodes of 

non-adapting repetitive charges. They also have low input resistance, when mature, and 

the fastest membrane time constant of all interneurons, a feature that contributes to fast 

synaptic responses (Cauli et al., 1997; Connors and Gutnick, 1990; Gibson et al., 1999; 

Goldberg et al., 2008; Kawaguchi and Kubota, 1997; Markram et al., 2004a). PV cells 

mediate fast and powerful inhibition of target neurons and are involved in mediating 

feedforward inhibition of cortical circuits, including the thalamocortical input of sensory 

response. This is important for creating a tight temporal integration window of excitatory 

inputs and spike generation by pyramidal neurons (Cruikshank et al., 2007; Gabernet et 

al., 2005; Lawrence and McBain, 2003; Miller et al., 2001; Pinto et al., 2000, 2003; 

Pouille and Scanziani, 2001). They have also been shown to play an important role in 

gamma oscillations (Barberis et al., 2007; Nakamura et al., 2015; Traub et al., 2004). 

Their role in the cortex is vital, as they are likely the key contributors of maintaining 
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excitatory/inhibitory balance (Haider and McCormick, 2009; Hasenstaub et al., 2005). 

Summary 

Studies have shown that young children have a 42.5% chance of developing early 

post-traumatic seizures (EPTS) after TBI.  Which is almost double that of adult sufferers 

(Arndt et al., 2013).  Through our research, our goal is to understand what sensitizes the 

pediatric brain to have a worse outcome following TBI than an adult. Specifically we 

want to address why children have a greater risk of developing EPTS. This is 

accompanied by unique sensitivity of PV interneurons to sTBI that has not been reported 

in adult studies.  Also in contrast to adult studies, sTBI in juvenile animals does not raise 

global excitability but induces discrete changes to cortical inhibition and excitation.  

Future studies will need to examine how these changes are integrated at a functional 

network level and may be targeted to reduce the development of adverse outcomes 

following TBI.   

In chapter 2, we study changes in the synaptic and intrinsic properties of layer V 

pyramidal neurons.  We identify that there are no synaptic or intrinsic changes, but we do 

find that all animals developed epileptic activity within 2 weeks of a severe TBI.  This 

was indicated by presence of epileptic activity on in-vivo EEG as well as the presence of 

synaptic bursting in-vitro in over 80% of animals that suffered a severe TBI.   

In chapter 3, we characterize changes in the inhibitory cortical network in the 

peri-injury zone.  We find that sTBI induces select loss of parvalbumin (PV) expression 

in this area.  PV interneurons are predominantly of a fast-spiking (FS) phenotype.  

Functionally, it is shown that sTBI disrupts synaptic input onto fast-spiking interneurons 

as they receive less inhibition and stronger excitation following sTBI. 
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In chapter 4, we examine that sTBI induces changes to the contralateral motor 

cortex.  Specifically, we determined that sTBI induces a discrete loss of inhibitory 

interneurons in the pediatric contralateral motor cortex.  This work is supported by 

human studies which examine changes in contralateral motor cortex following TBI (De 

Beaumont et al., 2007, 2009) .  However, these changes may be unique to the pediatric 

brain as they are not observed in studies in adult animals (Jones et al., 2012; Nishibe et 

al., 2010).  To our knowledge, this is the first work that demonstrates specific loss of 

interneurons in the contralateral cortex with preferential loss of parvalbumin 

immunoreactivity. In associated fast-spiking interneurons, sTBI reduces inhibition while 

enhancing excitation.  Furthermore, sTBI alters the kinetic properties of both inhibitory 

and excitatory synaptic events. 

In chapter 5, we examine if the severity of impact plays a role in the observed 

changes to cortical function.  We used a model of repetitive mild traumatic brain injury to 

further identify changes to the pediatric brain after injury. We identify that there is no 

change in the synaptic and intrinsic properties of excitatory neurons, but morphological 

analysis shows cortical thinning and increased ventricle size occurs after repetitive mild 

injury in pediatric animals. 

Overall, this dissertation characterizes unique changes to the pediatric brain. 

Focusing more on how severe injury alters neuronal populations in the developing cortex, 

but also how a differing injury model reveals unique changes. This work suggests that 

pediatric injury is different from adult. To better treat the pediatric population a 

differential approach is required to ensure effective treatment. This is necessary to 

improve pediatric recovery and minimize neurological deficits long into adulthood. 



13 
  

  
  
  
  
 

CHAPTER 2 

SPONTANEOUS SYNAPTIC BURST ACTIVITY IN JUVENILE RATS AFTER 

CONTROLLED CORTICAL IMPACT 

Following a traumatic brain injury 5-50% of patients will develop posttraumatic 

epilepsy.  Pediatric patients are particularly susceptible with the highest incidence of 

PTE.  Currently we cannot prevent the development of PTE and we have a limited 

understanding of the basic epileptogenic mechanisms that are initiated by TBI.   We 

hypothesize that early on following injury the cortex undergoes distinct cellular and 

synaptic reorganization that facilitates cortical excitability and promotes the development 

of seizures.  To induce traumatic brain injury, we performed controlled cortical impact 

(CCI) in juvenile rats (post-natal day 17).  Controlled cortical impact has been shown to 

induce the development of cellular and synaptic changes that are thought to promote 

increased cortical excitability.  In–vivo we performed EEG epidural recordings for 14 

days following CCI.  All animals initially displayed electrographic seizures that 

terminated within the first week and were presumed to be injury induced.  Following a 

quiescent period 40% (6 of 15) animals had the reemergence of recurrent electrographic 

seizures with average event duration of 15.5s.  These seizures were primarily “silent” 

with no overt behavioral seizure phenotype but demonstrated sustained changes in 

cortical excitability. To further study these changes, we performed in-vitro whole cell 

patch clamp recording on layer V pyramidal neurons in the peri-injury zone from CCI or 

sham (craniotomy only) animals.  Pyramidal neurons represent the major source of 

excitatory output from neocortical layer V, a lamina that has been implicated in both 

acute and chronic models of neocortical epileptogenesis. First we examined for changes 
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in intrinsic excitability and found no significant difference in input resistance, action 

potential threshold, firing rate or resting membrane potential.  Next, we examined for 

changes in excitatory synaptic function by recording spontaneous excitatory post-

synaptic currents (sEPSCs) and found enhanced excitatory activity suggested by a 

decrease in the inter-event interval of CCI versus control animals with no change in the 

amplitude of events.  This increased in excitatory activity was not accompanied by a 

change in inhibitory drive suggesting CCI alters the E-I balance.  Specifically, we 

observed no change in the amplitude or inter-event interval (IEI) of spontaneous 

inhibitory synaptic currents (sIPSCs).  In addition, both excitatory and inhibitory synaptic 

activity in CCI animals showed the development of distinct burst discharges that were not 

present in control animals.  The results suggest that CCI induces early “silent” seizures 

that are detectable on EEG and correlate with distinct changes to the synaptic excitability 

in the cortex.  The synaptic changes and development of burst discharges may play an 

important role in synchronizing the network and promoting the development of PTE. 
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Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability in children 

(Faul., et al, 2010) and often leads to the development of post-traumatic epilepsy (PTE) . 

PTE develops in up to 20% of children and depends on several factors including the 

severity of injury, age of the patient, and injury site (Appleton and Demellweek, 2002) .   

The underlying pathophysiology of PTE is poorly understood, but develops in the wake 

of injury and leads to spontaneous recurrent seizures.  Over the long term these post-

traumatic seizures (PTS) may cause secondary brain damage through mechanisms 

including increased metabolic requirements, hypoxia, increased intracranial pressure, 

and/or excessive release of neurotransmitters (Medelow and Crawford, 1997; Teasdale 

and Bannan, 1997 and Graham et al., 2006 for review).   Exacerbating the clinical 

management of PTE is that the seizures are often refractory to anti-epileptic drugs (Bauer 

and Burr, 2001) and are ineffective at reducing the risk of developing PTE (Adelson et 

al., 2003; Arango et al., 2012; Kochanek et al., 2012).  However,  evidence suggests that 

there may be a critical window following TBI for clinical intervention (Graber and 

Prince, 2004).  Development of new therapeutic strategies in children requires an 

improved understanding of the processes and timing of events that occur early after 

injury in the genesis stages of PTE.     

In humans, PTE develops slowly over months and even years.  The slow 

development of PTE provides a unique temporal window to study and identify the 

epileptic changes as they occur “on the road” to PTE.  We hypothesize that understanding  

the early changes that occur following TBI may help to define the critical period for  

intervention and potentially identify unique therapeutic targets.  The pediatric brain is in 
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the midst of neurodevelopment and is undergoing a host of age-dependent physiological 

changes including synaptogenesis, use-dependent pruning, enhanced glucose 

metabolism(Chugani et al., 1987), increased neurotrophic factors (Friedman et al., 1991), 

and increased excitatory amino acid receptors (Insel et al., 1990).  These changes may 

confer unique advantages and disadvantages to the outcome of a TBI event and shape the 

development of PTE.   

Injuries ranging from mild (concussion) to severe penetrating wounds and skull 

fractures may fall under the broad term of TBI.   The incidence of PTE is significantly 

higher following severe TBI which is effectively modeled in animals by controlled 

cortical impact (CCI).  CCI has been used extensively as a model of head injury 

(Lighthall et al., 1989; Liu et al., 2013; Mannix et al., 2011) and more recently as an 

effective means to model severe TBI (Cantu et al., 2014; Hunt et al., 2009)(Yang et al., 

2010). Following CCI, studies have shown significant cavitation and neuronal cell loss at 

the site of injury (Anderson et al., 2005a; Fox et al., 1998; Goodman et al., 1994; Hall et 

al., 2005a; Smith et al., 1995), hippocampal neurogenesis, and synaptogenesis in the 

hippocampus (Rola et al., 2006; Scheff et al., 2005).  Direct injury induced seizures have 

been reported to occur within the first 48 hours  following CCI (Nilsson et al., 1994) but 

the development of spontaneous recurrent post-traumatic seizures (PTS) occurs in 12.5 to 

36% of animals following a latent period of weeks to months (Statler et al., 2009)(Hunt et 

al., 2009).  In juvenile animals we have previously shown that CCI induces necrotic loss 

of cortex, damage to the underlying corpus callosum and hippocampus, synaptic 

reorganization (Card et al., 2005)(Jenkins et al., 2002) and deficits in spatial learning and 

memory (Adelson et al., 2013).  In this study, we examined the underlying mechanisms 
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that may contribute to cortical hyperexcitability and epileptogenesis in juvenile animals 

following CCI. 

Pyramidal (PYR) neurons are the major source of excitatory output from layer V, 

a lamina that has been implicated as the site of origin of interictal epileptiform discharge 

in both acute and chronic models of neocortical epileptogenesis (Hoffman et al., 1994; 

Prince and Tseng, 1993).  A recent preliminary report by Yang and colleagues has shown 

that CCI performed in juvenile rats rapidly induces spontaneous epileptiform activity and 

burst firing in layer V cortical pyramidal neurons (Yang et al., 2010).  Burst firing is 

known to increase the fidelity of synaptic information transfer (Izhikevich et al., 2003; 

Lisman, 1997) and may help to promote epilepsy by facilitating the propagation of local 

areas of hyperexcitability and synchrony.  In the present study we examined the 

underlying mechanisms that may contribute to the development of epileptiform activity 

in juvenile rats following CCI.  Utilizing electrophysiolgical approaches, we determine 

that CCI in juvenile rats induces the rapid development of in-vivo epileptiform activity 

and the preferential enhancement of in-vitro excitatory pre-synaptic burst discharges. 

These synaptic bursts occurred in the absence of significant changes in intrinsic 

excitability of layer V pyramidal neurons and may be driven by altered afferent cortical 

synaptic input.  Our findings suggest that juvenile animals undergo unique 

pathophysiological changes early after TBI that may be involved in the pathogenesis of 

PTE. 

Materials and Methods 

Protocols used for all experiments were approved by the University of Arizona 

Institutional Animal Care and Use Committee. 
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CCI Injury 

To experimentally model TBI, a controlled cortical impact (CCI) was performed 

on 29 post-natal day 17 (P17) Sprague-Dawley rats as previously described (Adelson et 

al., 2013) (Card et al., 2005) (Jenkins et al., 2002).  In brief, male Sprague Dawley rats 

were sedated with isoflurane and injected interperitoneal (IP) with a mixture of ketamine 

(50mg/kg) and xylazine (5mg/kg) at 0.01mL per 10g of rat weight.   Surgery site was 

shaved and animals were fixed into a stereotaxic frame.  A midline scalp incision was 

then performed to expose the skull and a 6-mm craniotomy over the right somatosensory 

region was performed.  The bone flap from the craniotomy was removed and placed in 

saline solution.  Precaution was taken during the craniotomy to avoid damaging the 

underlying dura and inducing significant bleeding.  A frontoparietal controlled cortical 

impact (CCI) (5mm tip, 4m/s, 2.0 mm depth) was performed using a pneumatic impactor 

(Amscien Instruments, Richmond, VA).    After the CCI, the bone flap that was removed 

during the craniotomy was placed over the injury site and secured with dental cement. 

During this time, electroencephalography (EEG) leads were mounted and also secured 

with dental cement. The skin was then sutured closed and the incision area swabbed with 

betadine.  Animal temperature was maintained with an electric heating pad and 

monitored post-surgery until ambulatory (< 3 hours).  Following the initial recovery, 

animals were returned to standard housing and monitored daily.  Animals that were to be 

connected to EEG were given 24 hours post-injury to recover prior to EEG monitoring.  

All other animals were allowed to recover until further experimentation began on post-

injury day (PID) 14. 

Seizure Monitoring with Electroencephalograpy (EEG) 
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Rats subjected to CCI or age-matched controls were implanted with epidural 

recording electrodes.  Experimental evidence indicates craniotomy may induce alterations 

to the cortex (Cole et al., 2011; Olesen, 1987).  As such, we considered the craniotomy a 

component of the injury process and used appropriate naïve age-matched control animals.  

Epidural recording electrodes were made from #0-80 x 1/8 inch stainless steel screws at 

the following stereotaxic co-ordinates:  AP: 2.0mm, Lateral: ± 3.0, Depth: 1mm; AP: -

4.0mm, Lateral: -3.0mm, Depth: 1mm; AP: -8.0mm, Lateral: +3.0, Depth: 1mm (Fig. 1).  

After recovery from surgery, animals were placed in acrylic cages where they could 

move freely and were connected through commutators to the recording system.  Animals 

were singly housed during this period.  EEG signals were recorded continuously for 13 

days post-injury using an Xltek 128 channel Neurolink IP amplifier (1.0Hz and 70Hz 

cutoffs, 512Hz sampling rate).  Two independent, blinded, and trained personnel 

analyzed the digital EEG files and their results were compared for consistency and 

averaged.  As previously described, epileptiform activity was defined by the presence of 

epileptiform discharges or seizure-like events (Ziyatdinova et al., 2011).  Epileptiform 

discharges (ED) were defined by rhythmic transients containing spikes and uniform sharp 

waves that lasted between 1 and 5 seconds.  High-amplitude rhythmic discharges that 

were clearly distinguishable from background and lasted for greater than 5 seconds have 

been considered seizures (Horita et al., 1991).  As simultaneous behavioral seizure 

activity was not monitored, this activity has been classified as seizure-like and most 

likely represents subclinical electrographic seizures.   

Preparation and maintenance of brain slices 

Coronal brain slices were prepared as previously described (Anderson et al., 
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2005b, 2010) from CCI or age-matched control animals. Slices were prepared from the 

somatosensory cortex beneath the injury site in CCI animals or from corresponding 

control cortex.  Male Sprague-Dawley rats aged 31-35 days (PID 14-19) were deeply 

anaesthetized with inhalation of isoflurane and decapitated. The brain was rapidly 

removed and and coronal slices (350um thick) of the somatosensory cortex taken using a 

vibratome (VT 1200; Leica, Nussloch, Germany).  Harvesting of slices was performed 

beneath the site of CCI or in corresponding control cortex.  The site of CCI was readily 

identifiable in slices as significant cavitation and tissue loss.  Initial harvesting was 

performed in an cold (4°C) carboxygenated (95% O2, 5% CO2) high sucrose solution 

containing the following (in mM): 234 sucrose, 11 glucose, 26 NaHCO3, 2.5 KCl, 1.25 

NaH2PO4H20, 10 MgS47H20, 0.5 CaCl22H20.  Slices were then incubated for 1h at 32°C 

in carboxygenated artificial CSF (aCSF) containing (in mM):  126 NaCl, 26 NaHCO3, 2.5 

KCl, 10 Glucose, 1.25 Na2H2PO4H20, 1 MgSO47H20, 2 CaCl2H20, pH 7.4 and then 

returned to room temperature before being moved to the recording chamber for whole-

cell patch clamp recording. 

Electrophysiological recording 

Slices prepared from CCI or control animals were submerged in flowing 

carboxygenated aCSF heated to 32°C.  Submerged slices were first visualized under 4x 

brightfield for identification of layer V cortex.  For slices from CCI rats, recordings were 

made in the peri-injury zone within 2 mm of the injury-induced cavitation.  Recordings 

from control slices were made in the recorded in the corresponding cortex.  Whole-cell 

recordings were obtained from regular spiking cortical pyramidal neurons using an 

upright microscope (Axioexaminer, Carl-Zeiss, Thornwood, NY, USA) fitted with 
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infrared differential interference contrast optics.  Regular spiking (RS) pyramidal neurons 

were distinguished based on their current-clamp firing behavior (Guatteo et al., 1994).  

The electrode capacitance and bridge circuit were appropriately adjusted. The series 

resistance (Rs) of neurons chosen for analysis was less than 20% of membrane input 

resistance and monitored for stability. Membrane potential was not corrected for a 

calculated 10 mV liquid junction potential.  A Multiclamp 700A patch-clamp amplifier 

(Axon Instruments, Union City, CA, USA) was used for both current and voltage-clamp 

mode.  Recordings were obtained at 32°C using borosilicate glass microelectrodes (tip 

resistance, 2.5-3.5 MΩ) filled with intracellular solution (in mM):  135 KGluconate, 4 

KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 Na TRIS for excitatory recording 

resulting in a calculated ECl- of -16 mV. For recording of inhibitory events, an 

intracellular solution containing the following was used (in mM): 70 KGluconate, 70 

KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 GTP. This internal solution has been 

used previously (Anderson et al., 2010)(Sun et al., 2006) and facilitates detection of 

inhibitory events.  The calculated ECl was approximately −16 mV, resulting in inward 

GABAA currents at a holding potential of −70 mV.  Inhibitory events were 

pharmacologically isolated by bath application of 2-Amino-5-phosphonopentanoic acid 

(d-APV; 50 µm) and 6,7-dinitroquinoxaline-2, 3-dione (DNQX, 20 µm) purchased from 

Ascent Scientific (Abcam Biochemicals, Cambridge, MA).   

Data Analysis 

Data was analyzed using pCLAMP (Axon Instruments), Prism (GraphPad) and 

MiniAnalysis (Synaptosoft) software and are presented as means ± s.e.m.  For detection 

of spontaneous synaptic events automated threshold detection was employed through 
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MiniAnalysis and detected events were subsequently manually verified.  Synaptic bursts 

events were detected based on previously published characteristics (Prince and Connors, 

1986; Prince and Tseng, 1993) and were defined by a minimum of 3 synaptic events 

occurring in 250 milliseconds that temporally summated.  Input resistance was calculated 

from the voltage response to the input of a current step (1s, 50mV).  Adaptation index 

was calculated as 100 × (1 – FLast/F2), where FLast corresponds to the firing rate of the last 

interspike interval and F2 the second interspike interval. Many of the pyramidal neurons 

had a high variability in the first interspike interval, so the second interspike interval was 

chosen for analysis. Intrinsic burst index was calculated as the inter-event interval 

between the first set of action potentials divided by the second.  Statistical significance 

was tested using an unpaired t test and differences were determined to be significant if P 

< 0.05. 

Results 

To model severe TBI in pediatric patients, we subjected 17-day-old rats to 

controlled cortical impact (CCI (n=13) and compared them to age-matched controls 

(n=9).  The CCI procedure results in a significant cavity in the cortex at the site of the 

injury and extensive necrosis (Adelson et al., 2013; Yang et al., 2010).  In the weeks and 

months that follow after CCI, up to 36% of adult animals will develop spontaneous 

behavioral seizures (Hunt et al., 2009) and over 85% have been shown to develop 

epileptiform activity (Statler et al., 2009).  In humans, PTE develops following a latent 

period that can last from months to years (Agrawal et al., 2006).  At the point in which 

seizures are clinically identifiable, the underlying neural activity and networks have 

undergone significant change.  We believe this activity begins early after the injury, and 
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leads to hyperexcitability and subclinical electrographic changes well in advance of PTE.  

To investigate the changes that occur in juvenile rats early after CCI, we examined for 

electrophysiological changes and mechanisms that may promote epileptogenesis. 

Epileptiform Activity is rapidly induced In-Vivo following Traumatic Brain Injury  

To monitor for the development of epileptiform activity, we performed 

electroencephalograpy (EEG) recordings of CCI animals (n=16) or age-matched controls 

(n=9).  Following recovery from the CCI surgery, EEG activity was continuously 

recorded for the first two weeks.  Epileptiform activity was detected post-recording based 

on previously published characteristics (Ziyatdinova et al., 2011) and as detailed in the 

methods.  Two trained personnel where blinded to the animal’s experimental condition 

and averages values taken from the independent grading of the EEG recordings.  Within 

the first 24 hours of recording, 87.5% of CCI animals developed epileptiform activity that 

was absent in control animals.  This epileptiform activity was considered to be injury-

induced and akin to “early” post-traumatic seizures.  Animals had a variable latent period 

(2-7 days) following this initial early stage, but all CCI animals subsequently developed 

recurrent epileptiform activity that was synchronized across all EEG leads (Fig. 1).  On 

average, 16.4±3 epileptiform events were detected over the post-latency recording period. 

In 7 of 16 CCI animals, prolonged seizure-like events were also detected.  The 

development of epileptiform activity within 14 days after CCI, and in advance of PTE, 

suggests the presence of on-going epileptogenic activity.  Post-injury day 14 was chosen 

for further in-vitro experimentation, as it was the earliest time point that all animals 

reliably displayed in-vivo epileptiform activity.     
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Figure 1. CCI induces epileptiform activity. Left: Schematic representation of rat brain 
indicating site of CCI injury (blue circle) and EEG recording electrodes (red circles). 
Middle and Right: Epidural EEG recordings from rats made 14 days after CCI. Middle 
panel is from a control animal without observable epileptiform activity and right panel 
from a CCI animal that displayed spontaneous epileptiform discharges. 
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Epileptiform synaptic bursting is induced in-vitro following TBI 

Epileptogenesis has been extensively studied in numerous animal models and is 

generally thought to occur as the result of disruption to intrinsic excitability, synaptic 

inhibition and/or synaptic excitation (Prince and Connors, 1986 for review).  To 

investigate the contribution of these mechanisms to CCI induced epileptiform activity, we 

examined for electrophysiological changes in cortical brain slices.  Epileptiform activity 

detected by EEG was widespread and synchronous within and across cortical 

hemispheres.  Pyramidal neurons in layer V are the major output pathway of the cortex 

and have been implicated in network synchronization (Telfeian and Connors, 1998).  As 

such, whole-cell patch clamp recordings of physiologically-identified layer V pyramidal 

neurons were made 14 days after CCI or in age-matched control.  All recordings were 

made in the peri-injury zone (i.e. within 2 mm of injury site) or corresponding control 

cortex.    

Intrinsic Excitability  

The intrinsic membrane properties of a neuron have been repeatedly shown to be 

altered in various models of epilepsy (Willmore, 1990; Yang et al., 2007).  Neurons that 

are predisposed or have pathological enhancements to intrinsic excitability may be 

spontaneous generators of epileptic activity.   To examine this possibility, we first 

recorded for changes in the intrinsic membrane properties from CCI and control 

pyramidal neurons.  Recording under current-clamp, we found no statistical difference 

between control and CCI resting membrane potential (-67.5 ±1.0 mV (control); -67.7±0.9 

mV (CCI), P<0.92) and input resistance (198.5 ±16.1 MΩ (control); 192.3 ±12.9 MΩ 

(CCI), P<0.76).  Next, we evaluated the firing-current (f-I) relationship in control and 
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CCI animals.  A series of current steps (-150pA to 300pa, 50pA steps, 1 second) were 

injected through the patch pipette and the membrane voltage response was recorded (Fig 

2A).  We examined for changes in the firing frequency and adaptation index but found no 

statistical difference (Fig 2B).  Finally, using a rheobase protocol (50 msec, 5 pA steps) 

we examined for changes in membrane excitability.  We found no statistical difference in 

rheobase current or action potential properties (threshold, amplitude, and half-width)(Fig 

3).  Overall, these results suggest that changes in the intrinsic membrane excitability of 

layer V pyramidal neurons do not significantly contribute to the early development of 

epileptiform activity following CCI. 
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Figure 2. Intrinsic excitability is not altered by CCI. A) Current Clamp recordings in 
response to intracellular current steps (-150pA to 250pA, 1s) in pyramidal neurons from 
control or CCI injured animals. Note the similarity in the intrinsic cellular response. B) 
Bar charts of average response values of various intrinsic membrane properties from 
(control n=14, CCI n=41). n=38)n=38).n=38).animals (n=41). 
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Figure 3. Action Potential Firing is not altered by CCI. A) Reprentative whole-cell 
current clamp recording in response to a series of 50msec injection (5pA steps). Bar 
charts of the average values for control or CCI. Rheobase was calculated as the minimum 
current which produced an action potential. Threshold was measured at the greatest 
change in calculated slope. B) Current clamp single action potential step (2nA, 0.5ms) 
was injected to measure action potential properties. 
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Spontaneous Synaptic Activity 

The generation of epileptiform activity and seizures is thought to occur through 

altered network activity and increased neuronal recruitment that may involve changes to 

synaptic properties and efficacy (Prince and Connors, 1986 for review). We tested this 

possibility by examining post-synaptic currents received by layer V pyramidal neurons.   

Excitation 

First, under voltage clamp (Vhold=-70mV) we examined for changes in 

spontaneous post-synaptic currents.  For these experiments pharmacological isolation of 

excitatory glutamatergic post-synaptic currents (ePSCs) was not possible as GABA 

antagonists are known to disinhibit the slice and promote epileptiform activity and 

thereby mask CCI induced changes.  To minimize the detection of inhibitory events, 

neurons were held near and positive of the reversal potential of chloride (Vhold = -70mV, 

calculated ECl
- = -16mV).  This allowed detection of only excitatory positive-directed 

(inward current) events in isolation from any small inhibitory outward events.  First, we 

examined for changes in the inter-event interval (i.e. frequency) of excitatory sPSCs and 

found no statistical difference between control (295.6 ± 42.9 ms) and CCI (243.2 ± 

26.7)(P=0.28)  Similarly we found no statistical difference between control and CCI in 

the amplitude of excitatory sPSCs (16.8 ± 1.2 pA (control) vs 17.4 ± 1.4 pA (CCI), 

charge transfer (69.5 ± 7.0 fC (control) vs 73.1 ± 5.4 fC (CCI)(P=0.70) or decay (3.6 ± 

0.2 ms (control) vs 3.5 ± 0.2 ms)(CCI)(P=0.77)(Fig 4).  The data suggest that CCI does 

not alter overall excitatory synaptic activity. 
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Figure 4. CCI fails to alter excitatory post-synaptic currents. A) Voltage clamp recordings 
of spontaneous post-synaptic current (sPSC) in control or CCI injured animals. B) 
Overylayed and amplitude scaled average sPSC recorded from either control (black) or 
CCI (red) animals. C & D) Average sPSC properties are plotted for control (n=13) or 
CCI (n=38). Vhold = -70mV. 
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Inhibition 

Second, to directly examine for changes in inhibition we recorded spontaneous 

inhibitory post-synaptic currents (sIPSCs) that were pharmacologically isolated by bath 

application of d-AP-V (50uM) and DNQX (20uM).  We also utilized a modified internal 

patch solution with an elevated chloride concentration.  This internal has been 

extensively used(Anderson et al., 2010)(Bacci and Huguenard, 2006) and increases the 

signal to noise and detection fidelity of inhibitory synaptic events.  Voltage clamp 

recordings were made at -70mV from CCI or control animals.  We found no significant 

change in amplitude (24.6 ± 2.4 pA (control) vs 24.9 ± 3.3 pA (CCI)( P=0.95) or inter-

event interval (385.1 ± 85.9 ms (control) vs 328.2 ± 50.4 ms (CCI)(P=0.55).    However 

in contrast to excitatory synaptic activity, a significant increase in the decay time of 

inhibitory sIPSCs was observed (5.2 ± 0.56 ms (control) vs 7.5 ± 0.70 ms 

(CCI))(P<0.03)(Fig 5).  A similar trend was observed in the charge transfer but it failed 

to reach statistical significance area (126.1 ± 17.6 fC (control); 185.1 ± 28.2 fC (CCI), 

P=0.15)(Figure 5B).  The net effect of these changes would be to increase the efficacy of 

inhibition following CCI by increasing the temporal window over which inhibition acts. 
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Figure 5. CCI increases inhibitory synaptic decay. A) Voltage clamp recordings of 
spontaneous inhibiotry post-synaptic current (sIPSC) in control or CCI injured animals. 
For inhibitory recording glutamate receptor antagonists (APV/DNQX or kynurenate) 
were applied. B) Overlayed and amplitude scaled average sIPSC recorded from either 
control (black) or CCI (red) animals. C & D) Average sIPSC properties for control (n=9) 
or CCI (n=16). Vhold = -70mV. * P<0.05. 
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Synaptic Burst Discharges 

Excitatory burst discharges are thought to increase synaptic efficacy by increasing 

the probability of inducing the post-synaptic cell to fire an action potential.  In our initial 

experiments, we examined the average sPSC properties and found that CCI had no 

impact on the average excitatory synaptic activity. However, during recording we 

observed distinct spontaneous synaptic burst discharges that resembled the epileptiform 

activity observed in-vivo.  Based on previous reports detection of synaptic bursts was 

determined by the presence of a minimum of three simultaneous sPSCs within 250 ms 

that did not return to baseline.  These detection parameters were highly sensitive and 

allowed for detection of a small number of synaptic bursts in control animals.  Overall, 

the presence of excitatory burst discharges were significantly greater following CCI as 

79.5% of recorded CCI neurons displayed synaptic bursting compared to 23.1% of 

control.  However, the average number of synaptic bursts detected in a CCI animal (avg. 

of 7.7 ± 2) during a single recording session were dramatically increased over control 

(avg. of 0.38 ± 0.2) (P<0.04). The average excitatory sPSC burst in CCI animals 

consisted of 5.9 ±1 synaptic events and lasted on average for 858.0 ± 240 milliseconds 

(Fig 6).  Bath application of 1um tetrodoxin (TTX) eliminated excitatory burst discharges 

(n=4).  On the inhibitory side, similar burst discharges were observed in 75% of CCI 

neurons compared with 22% in control.  However, the average number of sIPSC bursts in 

CCI (3.6 ± 1.1 neurons remained significantly increased over control (0.6 + 0.4).   The 

average inhibitory sIPSC burst in CCI animals consisted of 11.4 ± 2.6 synaptic events 

with duration of 431.0 ± 71 milliseconds (Fig 7).  Overall, following CCI, there was a 

significant increase in excitatory and inhibitory burst discharges.  In comparison, CCI 
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induced greater excitatory bursting than inhibitory bursting by both frequency of total 

neurons bursting, and average number of burst per neuron. This suggests CCI induced 

synaptic bursting may be preferentially increasing excitatory synaptic coupling.   
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Figure 6. Excitatory Synaptic Bursts are Induced by CCI. A) Voltage clamp recording of 
spontaneous excitatory burst discharge observed in a CCI animal with an epileptiform 
EEG. Note the burst is comprised of compound sPSC and resembles paroxysmal 
discharges observed in epileptic animals. B) Bar charts of average values of various burst 
properties (control = 13, CCI = 38). *P<0.05. 
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Figure 7. Inhibitory Synaptic Bursts are Induced by CCI. A) Voltage clamp recording of 
spontaneous inhibitory burst discharge observed in a CCI animal with an epileptiform 
EEG. For inhibitory recording glutamate receptor antagonists (APV/DNQX or 
kynurenate) were applied. Note the burst is comprised of compound sIPSC and resembles 
epileptiform discharges observed in epileptic animals. B) Bar charts of average values of 
various burst properties (control (n=9), CCI(n =16). 
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Discussion 

This study was undertaken to better understand the early changes to cortical 

excitability induced by traumatic brain injury and to gain insight into how they may 

facilitate the development of post-traumatic epilepsy (PTE).  Controlled cortical impact 

(CCI) in rodents has been effectively used to model traumatic brain injury 

(TBI)(Bolkvadze and Pitkänen, 2012; Cantu et al., 2014; Hunt et al., 2009).  However, 

these studies have primarily focused on CCI performed in adult animals. The outcome, 

incidence and clinical management of TBI in children differ significantly from adults.  In 

this study, we examined the development of epileptiform activity and the underlying 

pathophysiology that occurs in juvenile (PND 17) rats following CCI.   The results of this 

study suggest that within 14 days of CCI injury epileptiform activity is induced that can 

be detected in-vivo by EEG as synchronous discharges across multiple cortical regions.  

At a cellular and synaptic level this epileptiform activity was accompanied by a lack of 

change in intrinsic membrane properties but a 44% increase in the decay of inhibitory 

synaptic input onto layer V pyramidal neurons.  In addition, spontaneous epileptiform 

bursting was observed in both excitatory and inhibitory synaptic recordings. Synaptic 

bursting is thought to enhance synaptic coupling between neurons and may promote PTE 

through enhanced hyperexcitability and network synchrony.   

Development of Epileptiform Activity Following CCI in Juvenile Rats 

The hallmark of PTE is the development of spontaneous recurrent seizures.  In 

humans, these seizures develop after several months to years following the initial 

injury(Agrawal et al., 2006).  The progressive development of PTE suggests an evolving 

process that may begin early after injury.  To directly examine the development of  
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epileptiform activity early after injury we performed continuous EEG for the first 14 days 

post-injury.  Epileptiform activity and electrographic seizures were observed in 87.5% of 

animals within the first 24 hours after CCI.  These early seizures are thought to be injury 

induced and may be separate from the underlying epileptogenic processes that lead to 

PTE.  However, children are also more prone to developing early seizures and the 

prevalence and contribution of these early seizures to development of PTE in pediatric 

TBI remains to be determined.  Following a variable latent period all CCI animals 

proceeded to develop spontaneous recurrent epileptiform activity by 14 days post-injury.  

This activity was primarily characterized by high-amplitude rhythmic discharges that 

were routinely synchronized across all 4 cortical EEG leads.  This activity resembles 

epileptiform discharges and inter-ictal spiking that has been previously shown in other 

epileptic animal models (Hunt et al., 2013). This epileptiform activity and late seizures 

that develop after the first week of injury are positive predictors of PTE (Frey, 2003 for 

review).  Furthermore, the presence of similar inter-ictal EEG abnormalities are strong 

predictors of disease severity and outcome (Ramantani, 2013).  Further work recording 

EEG continuously for several months will be required to determine the prognostic value 

of the observed early epileptiform activity.  To our knowledge, no other study has 

examined the development of early EEG changes after injury during the time period as 

animals transition from these presumed injury induced seizures to the development of the 

first recurrent spontaneous epileptiform activity.  The study of PTE is  

 

 

complicated by the presence of multiple injury, repair and adaptive processed initiated by  
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the TBI – only a portion of which are presumed to be epileptogenic.  Examination of 

animals early after injury has a potential reductionist advantage while determining early 

pathophysiological changes that may define a critical window or targets for therapeutic 

intervention.  We have now validated that 14 days after injury is the earliest time point 

after CCI where animals reliably display in-vivo and in-vitro epileptiform activity.   

Epileptogenesis has been extensively studied in numerous animal models and may 

result from a variety of mechanisms.  While no common epileptogenic mechanism has 

been found a combination of disruption to intrinsic cellular properties, synaptic inhibition 

and/or synaptic excitation has been frequently reported(Prince and Connors, 1986 for 

review).  Recently, a preliminary report by Yang and colleagues has indicated the 

development of hyperexcitability and spontaneous epileptiform activity following CCI in 

juvenile animals(Yang et al., 2010).  We extend these findings here to examine the 

underlying mechanism and determine the impact of CCI on known intrinsic and synaptic 

changes that are thought to be epileptogenic.  Overall our results indicate that CCI fails to 

alter intrinsic membrane properties, neuronal firing or average excitatory synaptic 

activity while promoting burst discharges and enhanced inhibitory synaptic decay.  

Specifically, the intrinsic excitability of a neuron is determined in large part by its 

membrane properties and ion channels and enhanced intrinsic excitability may be 

epileptogenic.  However, following CCI in juvenile animals layer V pyramidal neurons 

displayed no change in intrinsic excitability.  This included resting membrane potential, 

input resistance, action potential threshold and rheobase.  Similarly, there was no change 

in the firing properties (frequency or accommodation), input-output relationship (f-I 

curve) or single action potential waveform.  Together these results suggest that alterations 
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to intrinsic excitability do not significantly contribute to the observed development of 

epileptiform activity following CCI. 

At a synaptic level, our results indicate that overall excitatory synaptic input onto 

layer V pyramidal neurons was not altered.  There was no change in the amplitude, inter-

event interval or kinetics of excitatory spontaneous post-synaptic currents.  Regulatory 

control over spontaneous synaptic activity is complex, but in general changes to 

amplitude and kinetics occur as a result of changes to the pre- or post-synaptic neuron 

including mechanisms such as quantal content or receptor subunit composition.  Altered 

inter-event interval is thought to reflect changes to the pre-synaptic neuron (e.g. 

probability of release).  The lack of change in sPSCs after CCI suggests that altered 

excitatory synaptic activity is not driving the development of epileptiform activity.  In 

examining inhibition in the cortex, we similarly found no change in the amplitude or 

inter-event interval of spontaneous inhibitory post-synaptic currents.  However, the decay 

of inhibitory responses was significantly increased following CCI.   Alterations to the 

time course of synaptic GABAergic events will have a profound effect on the excitability 

of individual neurons and networks by altering the temporal integration window, the time 

over which a GABAergic event may reduce a coincident excitatory event.  Our finding of 

an increase in sIPSC decay is consistent with increases observed in other models of 

epilepsy(Calcagnotto et al., 2005). The time course of inhibitory events is determined by 

both pre and post-synaptic factors including expression of synaptic GABA transporters, 

synchrony of GABA release and subunit composition(Overstreet and Westbrook, 2003; 

Keros and Hablitz, 2005; Barberis et al., 2007).  In general, an increase in synaptic decay 

is predicted to counteract the observed hyperexcitability but may also be impacted by 
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neural trauma induced changes in the chloride reversal potential(van den Pol et al., 1996).  

Altered intracellular chloride may also impact the kinetics of chloride dependent 

GABAergic inhibition(Houston et al., 2009) and would be in line with the observed CCI 

induced changes.  Determining the role of increased synaptic decay in promoting or 

resisting epileptic changes following CCI remains an open question.   

Development of synaptic bursting following CCI in juvenile rats 

The development of epilepsy is commonly associated with the synchronous 

discharge of cortical neurons.   Excitatory burst discharges are thought to increase 

synaptic coupling by increasing the probability of inducing the post-synaptic cell to fire 

an action potential.  In this study we have identified unique epileptiform burst discharges 

following CCI in the absence of changes to intrinsic membrane, firing properties or 

global changes in excitatory synaptic currents.  Taken together it suggests that layer V 

pyramidal neurons are not the initiator of the epileptiform discharges but are driven by 

afferent input.  As no changes were observed in excitatory synaptic IEI it suggests the 

synaptic bursting is not due to altered pre-synaptic probability of release.  As the bursts 

were sensitive to blockade with TTX it suggests they are being driven by action potential 

dependent afferent input.  How the bursts directly impact synaptic coupling and the 

output of layer V pyramidal neurons remains to be determined.  As synchronous 

spontaneous epileptiform activity was observed on EEG across cortical regions and 

hemispheres (Fig 1) it suggests network recruitment and widespread propagation of the 

epileptic activity.  Layer V pyramidal neurons receives input from all other cortical layers 

as well as from thalamus and are implicated in synchronization of cortical activity(Peters 

and Jones, 1984; Telfeian and Connors, 1998; Wise, 1975).  The increase in excitatory 
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burst discharges may therefore promote epileptiform activity by increasing the 

excitability of layer V pyramidal neurons that are perfectly placed to increase cortical 

output and network synchrony.  Determining if the epileptiform activity is specific to 

layer V pyramidal neurons, the location of the afferent driver of the epileptiform activity 

and the specific contribution of layer V changes to in-vivo epileptiform activity are areas 

of current investigation.    

In addition to excitatory bursting, distinct inhibitory bursting was similarly 

observed.   To isolate inhibitory synaptic currents we routinely blocked glutamatergic 

neurotransmission with bath application of APV and DNQX.   As inhibitory bursting 

persisted in the presence of glutamatergic blockade this suggests inhibitory bursting is not 

mediated by afferent glutamatergic input.  This appears is in contrast to our findings on 

excitatory bursting and may reflect intrinsic excitability changes and spontaneous burst 

discharges form inhibitory interneurons themselves.  Inhibitory interneurons in the cortex 

are a diverse group of neurons that have distinct anatomical, morphological and cellular 

properties(Markram et al., 2004a).  Based upon our results we cannot ascertain if changes 

to inhibition are confined to one class of interneuron and future work will be needed to 

determine its specific role in mediating CCI induced epileptiform activity and PTE. 

Pediatric Traumatic Brain Injury 

Traumatic brain injury that occurs in children differs from adults with a decreased 

mortality rate(Luerssen et al., 1988b), increased incidence of skull fractures and epidural 

hematomas (Sarkar et al., 2014) and greater deficits in cognitive and behavioral 

functioning(Anderson et al., 2005c; McKinlay et al., 2002).  In this study we have begun 

examining if the pathophysiology of TBI in children V pyramidal neurons.  The 
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development of epileptiform activity early after injury may be the first step “on the road” 

to PTE.  Understanding how TBI alters cortical excitability early after injury may help 

define therapeutic targets and a critical window of intervention.   
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CHAPTER 3 

SELECTIVE LOSS OF CORTICAL INHIBITORY FUNCTION 

Pediatric traumatic brain injury is a leading cause of death and disability in 

children and often results in permanent cognitive and behavioral deficits. Recent findings 

indicate that the pediatric brain is more sensitive to brain injury compared to adult. To as-

sess the pathogenesis of pediatric TBI, we focused on the cortical inhibitory network as it 

has been implicated in cortical remodeling after injury. The actions of inhibitory inter-

neurons are essential for maintaining and regulating cortical function and are imp-licated 

in the pathogenesis of TBI. In this study, using a severe model of TBI in a pediatric 

mouse (P22), controlled cortical impact (CCI), we have found that TBI selectively alters 

inhibition in the cortex.  Specifically, to understand how cortical inter-neurons are 

affected by TBI we utilized whole cell patch clamp and immunohistochemical app-

roaches in juvenile cre-dependent transgenic mice that express tdTomato in all inter-

neurons (VGAT-Cre; Ai9).  At an anatomical level, we found that near the injury site 

there was no change in the global interneurons population (Ai9) but a select loss of ex-

pression of the calcium binding protein parvalbumin (PV).  At a functional level, PV ex-

pressing neurons primarily have a fast-spiking (FS) electro-physiological phenotype.  In 

FS interneurons, TBI induced a decrease in the frequency of spontaneous inhibitory post-

synaptic currents (sIPSCs) while increasing the amplitude of spontaneous excitatory post-

synaptic currents (sEPSCs).  These results suggest that there is significant reorganization 

of the inhibitory cortical network in the pediatric brain after controlled cortical impact, 

resulting in greater excitatory drive and decreased inhibition onto FS neurons. 
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Introduction 

The pediatric population is the most “at risk” group for receiving a traumatic 

brain injury (TBI) with nearly 1 million annual emergency room visits in the United 

States (Pearson et al., 2012a). TBI remains the leading cause of death and disability in 

children and often leads to development of lifelong cognitive and behavioral deficits 

(Annegers et al., 1998; Barlow et al., 2000; Caveness et al., 1979). Traumatic brain injury 

(TBI) represents a continuum ranging from mild to severe, with probability of adverse 

outcome increasing with injury severity (Adelson, 1999). Emerging research suggests 

that the pediatric brain has unique physiology that may have a profound effect on 

response and recovery to TBI.  Pediatric TBI can have a negative impact on continued 

brain function and maturation that is unique from adult TBI (Anderson and Moore, 1995; 

Cook et al., 2014, 2014; Schmidt et al., 2012).  Examination of TBI in adult animals has 

implicated reduction in GABAergic synaptic inhibition a major contributing factor to 

epileptogenesis after brain injury (Jin et al., 2011; Kobayashi et al., 2003). In addition, 

TBI in adult animals has been shown to induce loss of expression of known markers for 

multiple subtypes of interneurons and enhanced cortical excitability (Cantu et al., 2014).  

However, we have previously found that in juvenile mice after controlled cortical impact 

(CCI), synaptic excitation and inhibition onto pyramidal neurons is largely unchanged 

(Goddeyne et al., 2015; Nichols et al., 2015). This suggests the pathophysiology of TBI 

in juvenile animals may be distinct from adults.   

 To better understand TBI induced changes to cortical inhibition, it is important to 

understand which GABAergic subtypes are most vulnerable in the pediatric cortex.  

Cortical interneurons are a diverse population of cells with unique intrinsic and synaptic 
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properties (Rudy et al., 2011).  Immunohistochemical markers have often been used to 

determine presence of interneuron subtypes, however, these approaches are unable to 

differentiate between a loss of immunoreactivity and loss of cell number (i.e. cell death).  

All GABAergic interneurons selectively express the vesicular GABA transporter 

(VGAT) (Wojcik et al., 2006).  In this study, we use transgenic mice that express an 

endogenous fluorophore (tdTomato) wherever VGAT is present. This allows us to 

directly examine for TBI induced interneuron loss and functional changes to cortical 

inhibition. As previously reported, (Brody et al., 2007; Hunt et al., 2009; Nichols et al., 

2015) severe TBI is effectively modeled using controlled cortical impact (CCI).  

Combined with whole-cell patch clamp and conventional immunohistochemical (IHC) 

approaches we quantified CCI induced changes to cortical interneurons.    While CCI did 

not induce general interneuron loss, a significant reduction in expression of parvalbumin 

(PV) positive interneurons was observed.  Parvalbumin positive interneurons are 

predominantly of a fast-spiking (FS) phenotype (Hu et al., 2014) and make up 40-50% of 

the inhibitory interneuron population (Rudy et al., 2011).  FS interneurons are known to 

target somatic and proximal dendrites and provide powerful inhibition and regulation of 

action potential timing and output (Kinney et al., 2006).  

Overall, the loss of PV in FS interneurons following CCI did not alter the intrinsic 

properties.  However, there was a marked decrease in synaptic inhibition accompanied by 

an increase in excitatory synaptic events.   These findings contrast with reports from adult 

animals (Cantu et al., 2014) and when taken along with our previous findings (Nichols et 

al., 2015)(Nichols et al.,  In Preparation) and recent human epidemiological reports 

(Anderson and Moore, 1995; Schmidt et al., 2012) suggest the response of the “pediatric” 
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brain to TBI is unique from adults and that age at injury is a critical factor determining 

the underlying pathophysiology.  

Materials and Methods 

CCI Injury 

Juvenile mice (PID 14) were subjected to a severe controlled cortical impact as 

previously described (Hunt et al., 2009; Nichols et al., 2015). Mice were anesthetized 

with isoflurane (2%) and placed in a stereotaxic frame. Animal temperature was 

maintained and monitored for the duration of the surgery and until ambulatory post-

surgery. The skull was exposed with a midline incision and a 5mm craniotomy was made 

lateral to the sagittal suture between bregma and lamda, over the right somatosensory 

region. Precaution was taken during the craniotomy not to disturb the underlying dura. A 

frontoparietal CCI (3mm diameter tip, 3.0 m/s, 2mm depth, 500ms duration) was 

performed using an electromagnetic cortical impactor (Hatteras Instruments, Cary, North 

Carolina).  After the impact, the removed bone flap was placed over the site of injury and 

sealed with dental cement. Control animals were naïve, as previous reports have found 

that a craniotomy can cause an inflammatory response (Cole et al., 2010; Olesen, 1987) 

Preparation of Brain Slices 

On PID 14–19, the rats were deeply anaesthetized with inhalation of isoflurane 

and decapitated. The brain was rapidly removed and coronal slices (350 µm thick) 

prepared on a vibratome (VT 1200; Leica, Nussloch, Germany) as previously described 

(Anderson et al., 2010; Nichols et al., 2015).  Slices were obtained from the 

somatosensory cortex that contained the injury site in CCI animals or from corresponding 

control cortex in sham animals. The site of CCI was readily identifiable in slices as 
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significant cavitation and tissue loss. Initial harvesting of brain slices was performed in 

an ice-cooled (4°C) carboxygenated (95% O2, 5% CO2) high sucrose solution containing 

the following (in mM): 234 sucrose, 11 glucose, 26 NaHCO3, 2.5 KCl, 1.25 

NaH2PO4H2O, 10 MgS47H2O, 0.5 CaCl22H2O. Slices were then incubated for 1 h at 32°C 

in carboxygenated artificial CSF (aCSF) containing (in mM): 126 NaCl, 26 NaHCO3, 2.5 

KCl, 10 Glucose, 1.25 Na2H2PO4H2O, 1 MgSO47H2O, 2 CaCl2H2O, pH 7.4. Slices were 

then returned to room temperature before being moved to the recording chamber for 

whole-cell patch-clamp recording. 

In Vitro Electrophysiological Recording 

Coronal slices were prepared from CCI or sham animals were submerged in 

flowing carboxygenated aCSF heated to 32°C. Submerged slices were first visualized 

under 4× brightfield for identification of layer V cortex. For slices from impacted mice, 

recordings were made in the peri-injury zone within 2 mm of the injury-induced 

cavitation. Recordings from control slices were made in the corresponding cortex to the 

peri-injury zone of CCI animals. Whole-cell recordings were obtained from fast-spiking 

interneurons using an upright microscope (Axioexaminer; Carl-Zeiss, Thornwood, NY, 

USA) fitted with infrared differential interference contrast optics. Regular spiking (RS) 

pyramidal neurons were distinguished based on their current-clamp firing behavior 

(Guatteo et al., 1994). The electrode capacitance and bridge circuit were appropriately 

adjusted. The series resistance (Rs) of neurons chosen for analysis was <20% of 

membrane input resistance and monitored for stability. Membrane potential was not 

corrected for a calculated 10 mV liquid junction potential. A Multiclamp 700 A patch-

clamp amplifier (Axon Instruments, Union City, CA, USA) was used for both current- 
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and voltage-clamp mode. Recordings were obtained at 32°C using borosilicate glass 

microelectrodes (tip resistance, 2.5–3.5 MΩ). For excitatory recordings, electrodes were 

filled with an intracellular solution containing (in mM): 135 KGluconate, 4 KCl, 2 NaCl, 

10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 Na TRIS. For recording of inhibitory events, an 

intracellular solution containing the following was used (in mM): 70 KGluconate, 70 

KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 GTP. This internal solution has been 

used previously (Anderson et al., 2010; Nichols et al., 2015) and shown to facilitate 

detection of inhibitory events. The calculated ECl was approximately −16 mV, resulting 

in inward GABAA currents at a holding potential of −70 mV. Inhibitory events were 

pharmacologically isolated by bath application of 2-Amino-5-phosphonopentanoic acid 

(d-APV; 50 µM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX, 20 µM).  

Immunohistochemistry 

At PID 14 mice underwent cardiac perfusion using 4% paraformaldehyde. Brains 

were extracted and place in 4% paraformaldehyde for post fixation for 24 hours before 

being sectioned.  Immunohistochemistry was performed using 60µm free floating 

vibratome sections of brains were collected in PBS, blocked with 5% normal serum in 

TBS with 0.1% Triton X-100, and incubated with primary antibodies in blocking solution 

overnight at 4°C. The following primary antibodies were used in our study: anti-NeuN 

(1:1000, Chemicon), anti-parvalbumin (1:1000, SWant), anti-somatostatin (1:1000, 

SWant), DAPI (1:2000, Roche).  After rinsing, sections were then incubated with Alexa 

conjugated secondary antibodies (Invitrogen) overnight at 4oC, rinsed 3 times in PBS, 

and mounted with Vectashield (Vector Labs). 

Image Acquisition and Data Analysis 
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Images were collected on a Leica SP5 and Zeiss 710 laser scanning confocal 

microscope using 10X or 20X objectives. Single fields were tiled together to generate 

high-resolution images of whole brain coronal sections. Images were corrected for 

brightness and contrast in Photoshop. For assessment of Parvalbumin neuron density, we 

defined a region of interest (ROI), 350um wide that expanded all cortical layers and was 

perpendicular to the white matter. The ROI was positioned 3.15mm lateral to midline on 

the contralateral hemisphere, positioned over the peri-injury site. The area immediately 

adjacent to the injury (peri-injury) was examined using ROIs which were extended across 

all cortical layers and 350um lateral from the edge of the injury.  Data obtained from 

ROIs from CCI animals were compared to corresponding areas in control animals.  To 

determine density, the area of cortex within the ROI from three separate coronal sections 

was measured and the number of Parvalbumin or Somatostatin labeled soma was 

manually assayed. For assessment of Ai9 and NeuN density, single channel images from 

three separate sections were imported into ImageJ, manually thresholded, and the 

watershed algorithm was applied. The analyze particle plugin was employed using a 

minimal particle size of 70 pixels2 for Ai9.  The number of labeled neurons and the size 

of Ai9+ soma were recorded. For PV and SST, somal size was manually measured in 

Photoshop.  Results were averaged from at least three independent mice from separate 

litters from control or CCI mice (Hunt et al., 2009; Nichols et al., 2015). 

Results 

Inhibitory Interneuron (Ai9) Cell Density was Unchanged after CCI 

To quantify CCI induced changes in total neuron and inhibitory neuron number in 

the cortex, we performed IHC staining using the neuron specific marker NeuN or 
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examination of the transgenic fluorescently labeled interneurons with tdTomato.  CCI 

was performed on juvenile VGAT-Cre;Ai9 mice at post-natal day 22.  Animals were 

sacrificed 14 days after CCI (post-injury day 14), coronal brain slices cut from control or 

CCI mice and confocal images taken.  As previously reported, CCI induced ablates motor 

and most of somatosensory region, as well as resulting in severe damage of the 

hippocampus (Fig. 1) (Hunt et al., 2009; Nichols et al., 2015). Previous reports have 

indicated that TBI may induce cortical thinning (i.e. atrophy) (Michael et al., 2015; Wilde 

et al., 2012).  However, following CCI we noted only a small decrease in the thickness of 

the cortex when comparing CCI (1093.83 ± 56.33 CCI) with control (1219.27 ± 21.98 

control) that failed to reach significance (P=0.13).  To examine for changes in the total 

neuronal population we next examined immunoreactivity of the pan-neuronal marker 

NeuN. CCI induced change in total number of NeuN positive cells (912.7 ± 69.47 

control, 706.7 ± 41.29 CCI) (p = 0.02). However, when adjusted for small changes in 

effective area by using cell density no significant difference was detected between CCI 

and control animals (232.1 ± 10.55 control, 221.3 ± 7.37 CCI)(P=0.15). This data suggest 

that outside of the direct injury zone CCI induces very little neuronal loss.   

Next, to isolate changes in the interneuron population we examined CCI induced 

changes to the endogenously labeled Ai9 positive population of neurons.  In contrast to 

the total neuronal population marked trend was observed following CCI whereby total 

Ai9 positive cells were reduced (160.90 ± 5.27 control, 112.67 ± 17.39 CCI)(P=0.057).  

However, Ai9 cell density was not significantly different (62.43 ± 3.25 control, 56.23± 

2.94 CCI) were reduced (P=0.23)(Fig. 1B).  The reduction of total Ai9 neurons without a 

commensurate change in Ai9 density may reflect the influence of the observed small 
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change in cortical thickness.  . These experiments confirmed that although the peri-injury 

zone is often a site from which seizure activity develops (Friedman et al., 2009), at PID 

14 in the pediatric brain there is no change in the total number of neurons.  However, the 

total interneuron population trended towards being reduced by 30% and cell density by 

10%. As VGAT is expressed in nearly all interneurons our use of a Vgat:Cre; Ai9 

transgenic mouse allowed us to directly examine for changes in the global interneuron 

population versus traditional immunoreactivity approaches.  However, the trend in the 

data suggested the possibility of a significant change in a subtype of cortical interneuron. 
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Figure 1. CCI Induces loss of cortical tissue. (A) Example figures of perfused control and 
CCI mice brains. (B) Serial images of 60um slices showing extent of injury and CCI at 
Bregma coordinates. 
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Figure 2. Ai9 cell density is unchanged in the peri-injury zone after CCI. (Top) NeuN 
(green) is qualitatively similar between control and CCI. (Bottom) Ai9 (red) distribution 
is not altered after CCI. NeuN and Ai9 show to be unchanged throughout injury zone. 
(n=3) (A) Quantitative analysis shows that Ai9 density is unchanged. (B) Total Ai9 cells 
are not changed between control and CCI. (C) NeuN cell density is not changed. (D) 
NeuN total cells are significantly down after injury. (n=3, P=0.04). (E) Cortical height, 
measured at the peri-injury region, is similar between control and CCI animals. (n=3).  
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Parvalbumin Expression is Reduced Following CCI 

 Cortical interneurons are a varied population of neurons with unique 

physiological roles (Gupta et al., 2000). No single classification system can uniquely 

identify the numerous subtypes but they can be effectively segregated based on the 

presence of unique calcium chelator proteins (Rudy et al., 2011).  In the cortex, the two 

principal interneuron subtypes are parvalbumin (PV) (40-50%) and somatostatin 

(SST)(~30%) (Markram et al., 2004b).  To directly examine for potential CCI induced 

changes in interneuron subtypes we examined for changes in expression of PV and SST 

in VGAT:Cre; Ai9 mice using standard immunohistochemical approaches.   Parvalbumin 

neurons have been implicated in a number of neurological diseases (Hu et al., 2014). 

Specifically, it has been shown that PV deficiency in the cortex can increase epileptic 

seizure susceptibility (Schwaller et al., 2004) and is reduced in the schizophrenic brain 

(Lewis et al., 2012). Intracellularly, PV plays a critical role in preventing synaptic 

facilitation and maintaining rhythmic firing in fast-spiking interneurons (Orduz et al., 

2013).  To examine for CCI induced changes in PV expression we again sacrificed 

animals 14 days after CCI and harvested coronal cortical slices for IHC processing.   

Examination of the peri-injury zone revealed a dramatic reduction in expression of PV.  

We found that CCI significantly reduced the overall number of PV cells (control 35.11 ± 

0.11 versus CCI 8.60 ± 1.09) (P<0.0001).  In addition, the density of PV positive neurons 

was reduced by over 71% (p<0.0001)(Fig. 2, A). Finally, we examined if CCI induced 

changes in PV expression were correlated with distance from the site of the injury.  We 

extended 100um bins radially from the site of injury for 1mm.  In comparison to control 
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values, the density of PV expressing neurons was significantly decreased by CCI across 

the entire range. Within the data collected from the CCI data, PV density was more 

reduced closer to the site of injury (Fig 3C).  This suggests that CCI induces both a focal 

and more generalized loss of PV expression.    
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Figure 3. Parvalbumin immunoreactivity is reduced after CCI. (Top) Peri-injury regions 
with parvalubumin (Green), Ai9 (tdTomato), and NeuN (Blue). (Bottom) 
Immunostaining of parvalbumin shows loss of expression after injury. (A) Quantification 
of parvalbumin density is significantly reduced after CCI. (n=3) ***p<0.0001, unpaired 
Student’s t-test. (B) Total cells with parvalbumin expression was analyzed in control and 
CCI, and quantitatively displays no significant differences. (n=3). (C) Distal analysis 
with 100um wide columns was used to analyze changes in parvalbumin expression in 
relation to injury. PV expression loss was greatest near the injury site (One-way Anova, 
*p<0.05).   Scale bar = 100um.  
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Somatostatin Expression is not Altered by CCI 

Second to PV, SST interneurons are the second most abundant subtype in the 

cortex.  (Markram et al., 2004b). Using a similar approach to that detailed for PV 

expression changes, we examined for changes in SST expression in the peri-injury after 

injury.  In contrast to PV, we found that CCI induced no statistically significant 

difference in SST cell number (control 44.89 ± 8.39 versus 33.00 ± 1.35) (P=0.23) or cell 

density (16.79 ± 14.56 control, 14.56 ± 1.57 CCI) when compared to control animals 

(P=0.60)(Fig. 3, A).  A regional analysis relative to the site of injury again was again 

performed and revealed no statistically significant difference in SST cell density relative 

to the injury site or in comparison with values for control animals (Fig 4, A-B).   Taken 

together, these results suggest that CCI does not induce overall loss of interneurons or 

SST expression but only selectively induces loss of PV expression in interneurons. 
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Figure 4. CCI does not alter the density of somatostatin neurons in the cortex after CCI. 
(Top) Control slice with co-labelling of Ai9 interneurons (red) and somatostatin 
interneurons (green). (Bottom) Immunostaining of somatostatin interneurons reveals no 
change in number after injury. (A) Quantification of somatostatin density in the peri-
injury region between control and CCI animals shows no change. (B) Quantification of 
somatostatin interneuron total cells is not different between control and CCI animals. 
Scale bar = 100um.  
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Fast-spiking Interneurons are not Altered Following CCI 

As another mechanism of identification, electrophysiological firing patterns 

effectively distinguish cortical interneuron subtypes (Kawaguchi and Kondo, 2002).  PV 

positive interneurons are predominantly fast-spiking (FS) (Galarreta and Hestrin, 1999).  

PV is thought to play a important role in the functional properties of FS interneurons 

including maintenance of spike timing (Kinney et al., 2006) and rhythmic firing (Orduz 

et al., 2013).  Consequently, the selective loss of PV expression in the peri-injury led us 

to investigate if CCI alters the intrinsic properties of fast-spiking interneurons. We per-

formed whole cell patch clamp experiments in the peri-injury zone of coronal brain slices 

taken from Vgat:Cre; Ai9 mice 14 days after CCI or in corresponding control cortex.  

Neurons were first visually identified through DIC bright field imaging and confirmed to 

be Ai9 positive.  Under current clamp, neurons were verified to have a FS firing pattern 

as previously described (Anderson et al., 2010; Hu et al., 2014)(Fig 4.A).  Intrinsic 

properties of FS interneurons from control and CCI mice were examined and found to be 

not statistically different.  This included resting membrane potential, input resistance and 

firing frequency (Fig 4. C-E).  In a subset of neurons (n=11) we intra-cellularly labelled 

neurons with biocytin for post hoc analysis.  These electro-physiologically identified FS 

neurons were confirmed to be Ai9 positive but as compared to a control neuron were all 

PV negative (Fig. 4, B).  The intrinsic properties of the CCI PV--FS interneurons did not 

differ from control PV+-FS interneurons.  These findings confirmed that the FS 

interneuron phenotype remains in the peri-injury zone and that the loss of PV expression 

has no significant effect on the intrinsic membrane properties tested.  
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Figure 5. Fast-spiking interneurons do not have altered intrinsic properties after CCI. (A) 
Firing patterns at a 250pA current step does not elicit different firing patterns between 
control and CCI. (B) Resting membrane potential of fast-spiking interneurons is similar 
among control and CCI animals. (C) Input resistance of fast-spiking interneurons is not 
changed after CCI. (D) Analysis of firing frequency shows that CCI does not differ from 
control. (E) Biocytin fills with immunostaining for parvalbumin show that fast-spiking 
interneurons, indicated by the Ai9, lose parvalbumin expression after CCI. 
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CCI Reduces Inhibitory sIPSC Frequency and Increases Synaptic Kinetics 

To examine for changes in synaptic inhibition we recorded spontaneous inhibitory 

post-synaptic currents (sIPSCs) onto layer V FS interneurons 14 days after CCI or from 

age-matched control animals.  sIPSCs were pharmacologically isolated by bath 

application of the glutamate receptor antagonist kynurenic acid (2mM). A modified 

internal solution (Ecl=-16mV) was also used as previously described (Anderson et al., 

2010) to increase detection of inhibitory synaptic events.  We found that CCI 

significantly reduced the frequency of sIPSCs over 54% from 4.34 ± 0.75 (n=10) to 1.96 

± 0.33 (n=15) (P=0.004). No significant change was observed in the amplitude or charge 

of sIPSCs.  However, the kinetics of the sIPSCs were significantly altered by CCI as both 

the rise (P=0.03) and decay (P=0.03) time were significantly increased.  This suggests 

that CCI primarily induces a loss of inhibition onto FS interneurons.   
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Figure 6. Spontaneous IPCSs are decreased after CCI, and synaptic rise and decay times 
are increased after injury. (A) Gap-free traces in voltage clamp, holding at -70mV, 
recording sIPSCs from fast-spiking interneurons. (B&C) sIPSCs of CCI animals did not 
show a change compared to control. (D) Frequency of sIPSC events was significantly 
reduced after injury. ** p=0.0035. (E) Overlaid normalized average sIPSC after injury 
demonstrates the increased rise and decay time. (F) sIPSC rise time is significantly 
increased after injury. * p=0.03. (G) sIPSC decay time is significantly increased after 
injury. * p=0.03. (control n=10, CCI n=15) 
 
  



85 
  

  
  
  
  
 

 
Excitatory sEPSC Amplitude and Charge Increase after CCI 

Finally, we examined for changes in excitatory input onto FS interneurons by 

recording spontaneous post-synaptic currents (sPSCs).  For these experiments, a 

physiological internal was used (ECl = -80mV) that allowed detection of inward 

glutamatergic events isolated from outward GABAergic synaptic events.  As previously 

reported (Nichols et al., 2015), excitatory activity was not pharmacologically isolated as 

blocking GABAergic activity may disinhibit the network and alter the ability to record 

CCI induced changes directly.  Whole cell recording of sPSCs in FS interneurons 

revealed a statistically significant increase in the amplitude (P=0.0009) and charge 

(P<0.0001) of excitatory sPSCS following CCI as compared to control recordings 

(n=13)(Fig. 6).  In contrast to inhibitory sPSCs, no change in the frequency of events, or 

decay and rise time were observed (Fig. 6).  This suggests that CCI induces an increase in 

the strength of excitation onto FS interneurons.   
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Figure 7. CCI results in increased synaptic excitatory input onto fast-spiking neurons. (A) 
Gap-free voltage clamp traces, holding at -70mV, from fast-spiking interneurons 
monitoring sEPSCs in control and CCI. (B-D) sEPSC frequency, decay, and rise time 
were not changed after injury. (E) Overlaid averaged sEPSCs demonstrate the dramatic 
change in amplitude after CCI. (F) Quantitatively sEPSC amplitude is significantly 
increased after injury. *** p=0.0009. (G) Charge transfer after injury significantly 
increased after injury. p<0.0001. (Control n=13, CCI n=12). 
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Discussion 

We analyzed for changes in cortical interneurons and intrinsic and synaptic 

physiology of genetically labeled cortical fast-spiking (FS) parvalbumin (PV) expressing 

GABAergic interneurons 14 days after in pediatric mice. Previous studies have assayed 

adult TBI and/or subcortical regions after injury (Cantu et al., 2014; Card et al., 2005; 

Hall et al., 2005a; Hunt et al., 2011), however ours is the first to analyze cortical 

inhibitory neurons in transgenic pediatric mice. In doing so, we were able to reveal by 14 

days after injury a loss of PV expression without a loss of interneurons and that these PV-

FS neurons had altered synaptic activity. We found that by 14 days after injury, pediatric 

mice showed no loss of interneurons, but a 75% reduction in PV expression.  When FS 

neurons were examined for electrophysiological properties after injury, they received a 

significant reduction in inhibition. Synaptic excitation onto FS neurons showed an 

increase in synaptic strength (i.e. amplitude and charge).  Despite FS neurons showing 

synaptic changes and PV expression, intrinsic properties remained unchanged after CCI. 

Our observations likely reflect that TBI leads to anatomical and neurophysiological 

network remodeling of the interneuron network in the peri-injury region after CCI. 

 Overall cortical density neurons (NeuN) and interneurons (Ai9) were not reduced 

by 14 days after injury.  This is in contrast to other TBI studies that have examined for 

interneuron loss in the hippocampus (Ding et al., 2011; Huusko et al., 2015; Lowenstein 

et al., 1992; Pavlov et al., 2011). However, to investigate interneuron subtype changes, 

we analyzed for PV and SST. Despite no reduction in SST density, we did find PV 

expression was significantly reduced. Loss of PV expression has been shown in humans 

after TBI (Buriticá et al., 2009) and animal models (Cabungcal et al., 2013a, 2013b). Our 
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select loss of PV differentiates from adults where more global changes in the inhibitory 

network have been observed by showing a loss of PV and SST (Cantu et al., 2014). 

However, this study focused more on adult CCI.  Our study provides a novel approach by 

using transgenic mice with fluorescent labeling of interneurons provides an advantage of 

being able to differentiate between expression loss and neuronal loss not detected in the 

previously mentioned studies.  

 It has been shown that PV neurons have an electrophysiological fast-spiking 

phonotype (Kawaguchi and Kubota, 1997; Kawaguchi et al., 1987).  To 

electrophysiologically characterize FS neurons after CCI, we performed whole-cell patch 

clamp 14 days after injury. We found that FS neurons did not show a change in intrinsic 

properties. Synaptically, we found that FS neurons received less frequent inhibition and a 

change in sIPSC kinetics (i.e. increased rise and decay time). These results have been 

seen in GABAergic dentate hilar cells after CCI in adult mice (Hunt et al., 2011). sEPSC 

onto FS neurons showed greater synaptic strength with increased amplitude and charge 

after CCI. Increased excitatory synaptic activity has been seen onto pyramidal neurons of 

the peri-injury region after CCI (Almeida-Suhett et al., 2015; Cantu et al., 2014). These 

results suggest that CCI induces increased excitability and decreased inhibition onto FS 

neurons.  

 The select vulnerability of PV-FS neurons after CCI and their contribution to the 

pathology of TBI remains speculative. However, previous injury models have implicated 

inhibitory FS neurons in contributing to post injury hyperexcitability (Jin et al., 2014; Ma 

and Prince, 2012). FS have unique physiological properties that may make them more 

sensitive to TBI.  First, FS spike fast and have unique NaKATPase, maybe unique 
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metabolic demands (Anderson et al., 2010; Cabungcal et al., 2013a).  FS have 

perineuronal nets that protect against oxidative stress when they are fully condensed 

during maturity (Cabungcal et al., 2013a; Morris and Henderson, 2000; Orlando and 

Raineteau, 2015).  However, in juvenile animals (P20) these nets are not fully mature and 

may sensitize PV interneurons.  In fact, overproduction of superoxides have been shown 

to NMDA dependently reduce PV immunoreactivity without inducing cell death 

(Behrens et al., 2007; Cabungcal et al., 2013a; Goldberg et al., 2003; Kinney et al., 2006; 

Powell et al., 2012; Zhang et al., 2012).  

The findings of this study suggest that PV-FS interneurons in juvenile animals are 

differentially affected and sensitive to traumatic brain injury. In contrast to the loss of 

both PV and SST interneurons observed previously in adult TBI, the selective loss of PV-

FS neurons observed in the juvenile mice that underwent CCI in the present study 

suggests that interneuron sensitivity to injury is developmentally regulated. PV-FS 

interneurons play a vital role in cortical function.  Disruption of PV-FS functioning may 

play an important role in the recovery and outcomes following TBI. Taken together the 

data suggest that sTBI may surprisingly disinhibit FS cortical interneurons.  At present, 

elucidating if PV expression loss and disinhibition are adaptive or maladaptive responses 

to injury remains to be determined.  Identifying novel pathophysiological mechanisms 

that may be targeted is of critical importance to developing targeted therapeutic 

approaches. 
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CHAPTER 4 

CONTROLLED CORTICAL IMPACT RESULTS IN SELECTIVE LOSS OF 

INHIBITION IN CONTRALATERAL MOTOR CORTEX 

Traumatic brain injury (TBI) affects over 1 in 5 children by 15 years of age and 

almost half a million emergency room visits each year.  Deficits that can result from TBI 

range from cognitive dysfunction, to physical and emotional impairments that adversely 

affect the everyday life of a child. Previous work from our laboratory has shown that near 

the site of injury TBI causes a preferential loss of cortical inhibition.  However, TBI 

patients often report symptoms related to dysfunction in brain areas contralateral to the 

site of injury.  The consequence of TBI on the contralateral cortex remains poorly 

understood and is the focus of this study.  Following unilateral TBI in juvenile mice, we 

examined the contralateral motor cortex for induced neuronal dysfunction.  TBI was 

induced by controlled cortical impact (CCI) and animals examined for changes in 

inhibitory and excitatory neuronal activity 14 days after injury.  First using transgenic 

mice (Vgat:Cre; Ai9) we determined that CCI induces a select loss of total interneurons 

in the motor cortex.  We found that not only were total interneurons reduced, but CCI 

induced a select loss of expression of the interneuron specific marker parvalbumin 

without altering somatostatin expression.  To assess the functional consequence of these 

changes we examined for alteration in excitatory and inhibitory synaptic activity onto 

onto layer 5 fast-spiking interneurons.  Layer 5 fast-spiking interneurons where chosen 

for there powerful inhibitory input onto cortical pyramidal neurons (Yoshimura and 

Callaway, 2005) and have specifically been identified as potential regulators of 

corticospinal output (Tanaka et al., 2011). Following CCI a marked decrease in inhibition 
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and increase in excitation onto fast-spiking neurons in the motor cortex was observed. 

These results suggest that TBI leads to anatomical and neurophysiological remodeling, 

distant from the direct site of injury, in the contralateral motor cortex. 

 

Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide 

(Pearson et al., 2012b).  It is recognized as a global health problem with significant 

negative social and economic implications (Maas et al., 2008; Menon et al., 2010).  

Children are the most at risk group for receiving a TBI and in the United States this 

results in over half a million injuries annually (Annegers et al., 1998; Barlow et al., 2000; 

Iudice and Murri, 2000; Kochanek et al., 2012). Recent evidence has shown that contrary 

to a popular belief, following a TBI younger children are more sensitive and have worse 

outcomes than adults (Adelson et al., 2003; Anderson and Moore, 1995; Schmidt et al., 

2012). TBI is a significant risk factor for a number of neurological diseases and ailments, 

including epilepsy (Arango et al., 2012) and cognitive complications (Cook et al., 2014; 

Hall et al., 2005b; Schmidt et al., 2012). In addition, TBI often leads to impairments in 

locomotion and other motor function (Axelson et al., 2013; Cao et al., 1994; Fox et al., 

1998; Fujimoto et al., 2004; Hamm et al., 1994). Even after a unilateral TBI, these motor 

impairments are often observed bilaterally suggesting the possibility of secondary injuries 

to the contralateral brain. A CCI injury in the frontoparietal brain region of the 

somatosensory cortex of the mouse cortex has been shown to have have axonal projecting 

fibers to the contralateral motor cortex (Oh, S.W., et al., 2014).  Recent work in our 

laboratory has revealed that inhibitory interneurons are particularly sensitive to TBI 
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(Nichols et al., In Preparation). We examined if the same inhibitory network remodeling 

seen near the injury was present in the contralateral motor cortex.  

Cortical interneurons are a heterogenous cell population with unique 

physiological, immunohistochemical, intrinsic and synaptic properties with distinct 

laminar distributions (Markram et al., 2004b). In this study we perform CCI in juvenile 

animals which cre-dependently express the fluorescent protein tdTomato in all inhibitory 

interneurons (Vgat:Cre; Ai9).  Following CCI there is a marked loss of inhibitory 

interneurons in the contralateral motor cortex.  Fast-spiking interneurons have been 

shown to be recruited during the execution of motor activity in awake animals, and the 

associated movement activity of fast-spiking neurons occurs at the same time or later 

than pyramidal neuron activity (Isomura et al., 2009).  Also, it has been shown that 

corticospinal neurons receive the majority of their inhibitory input from fast-spiking 

neurons and the layer 5 fast-spiking neurons might serve as a feedback or lateral 

inhibition mechanism for corticospinal neurons by increasing time and spatial resolution 

of motor executions (Tanaka et al., 2011).  Consequently, we targeted whole cell patch 

clamp recordings from layer V fast-spiking interneurons to determine functional changes 

to inhibitory and excitatory activity in the contralateral motor cortex.  Using this 

approach we show inhibitory synaptic transmission onto FS neurons is decreased after 

CCI.  

 

Materials and Methods 

CCI Injury 

Juvenile mice, post-natal date 22 (P22) were subjected to a severe controlled 
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cortical impact as previously described (Hunt et al., 2009; Nichols et al., 2015). Mice 

were anesthetized with isoflurane (2%) and placed in a stereotaxic frame. Animal 

temperature was maintained and monitored for the duration of the surgery and until 

ambulatory post-surgery. The skull was exposed with a midline incision and a 5mm 

craniotomy was made lateral to the sagittal suture between bregma and lamda, over the 

right somatosensory region. Precaution was taken during the craniotomy not to disturb 

the underlying dura. A frontoparietal CCI (3mm diameter tip, 3.0 m/s, 2mm depth, 500ms 

duration) was performed using an electromagnetic cortical impactor (Hatteras 

Instruments, Cary, North Carolina).  After the impact, the removed bone flap was placed 

over the site of injury and sealed with dental cement. 

 

Preparation of Brain Slices 

On post-injury date (PID) 14–19, the mice were deeply anaesthetized with 

inhalation of isoflurane and decapitated. The brain was rapidly removed and coronal 

slices (350 µm thick) prepared on a vibratome (VT 1200; Leica, Nussloch, Germany) as 

previously described (Anderson et al., 2010; Nichols et al., 2015).  Coronal slices were 

obtained from CCI animals within the region of CCI injury or in corresponding control 

cortex.  The site of CCI was readily identifiable in slices as significant cavitation and 

tissue loss.   Cortex contralateral to the injury site was then examined in CCI animals or 

in corresponding control regions.  Initial harvesting of brain slices was performed in an 

ice-cooled (4°C) carboxygenated (95% O2, 5% CO2) high sucrose solution containing the 

following (in mM): 234 sucrose, 11 glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4H2O, 

10 MgS47H2O, 0.5 CaCl22H2O. Slices were then incubated for 1 h at 32°C in 
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carboxygenated artificial CSF (aCSF) containing (in mM): 126 NaCl, 26 NaHCO3, 2.5 

KCl, 10 Glucose, 1.25 Na2H2PO4H2O, 1 MgSO47H2O, 2 CaCl2H2O, pH 7.4. Slices were 

then returned to room temperature before being moved to the recording chamber for 

whole-cell patch-clamp recording. 

In Vitro Electrophysiological Recording 

Coronal slices were prepared from CCI or sham animals and were submerged in 

flowing carboxygenated aCSF heated to 32°C. Submerged slices were first visualized 

under 4× brightfield for identification of layer V cortex. For slices from impacted mice, 

recordings were made in the peri-injury zone within 2 mm of the injury-induced 

cavitation. Recordings from control slices were made in the corresponding cortex to the 

peri-injury zone of CCI animals. Whole-cell recordings were obtained from fast-spiking 

interneurons using an upright microscope (Axioexaminer; Carl-Zeiss, Thornwood, NY, 

USA) fitted with infrared differential interference contrast optics. Fast-spiking neurons 

were distinguished based on their current-clamp firing behavior (Guatteo et al., 1994) and 

well as with the endogenous tdTomato fluorofluore in the Vgat:Cre Ai9 mouse. The 

electrode capacitance and bridge circuit were appropriately adjusted. The series 

resistance (Rs) of neurons chosen for analysis was <20% of membrane input resistance 

and monitored for stability. Membrane potential was not corrected for a calculated 10 mV 

liquid junction potential. A Multiclamp 700A patch-clamp amplifier (Axon Instruments, 

Union City, CA, USA) was used for both current- and voltage-clamp mode. Recordings 

were obtained at 32°C using borosilicate glass microelectrodes (tip resistance, 3–

4.5 MΩ). For excitatory recordings, electrodes were filled with an intracellular solution 

containing (in mM): 135 KGluconate, 4 KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 
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0.3 Na TRIS. For recording of inhibitory events, an intracellular solution containing the 

following was used (in mM): 70 KGluconate, 70 KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 

Mg ATP, 0.3 GTP. This internal solution has been used previously (Anderson et al., 

2010; Nichols et al., 2015) and shown to facilitate detection of inhibitory events. The 

calculated ECl was approximately −16 mV, resulting in inward GABAA currents at a 

holding potential of −70 mV. Inhibitory events were pharmacologically isolated by bath 

application of 2-Amino-5-phosphonopentanoic acid (d-APV; 50 µM) and 6,7-

dinitroquinoxaline-2,3-dione (DNQX, 20 µM).  

Image Acquisition and Analysis 

Images were collected on a Leica SP5 and Zeiss 710 laser scanning confocal 

microscope using 10X or 20X objectives. Single fields were tiled together to generate 

high-resolution images of whole brain coronal sections. Images were corrected for 

brightness and contrast in Photoshop. For assessment of Parvalbumin neuron density, we 

defined a region of interest (ROI), 350um wide that expanded all cortical layers and was 

perpendicular to the white matter. The ROI was positioned 465um lateral to midline on 

the contralateral hemisphere, positioned over secondary and primary motor cortex. To 

determine density, the area of cortex within the ROI from three separate coronal sections 

was measured and the number of Parvalbumin or Somatostatin labeled soma was 

manually assayed. For assessment of Ai9 and NeuN density, single channel images from 

three separate sections were imported into ImageJ, manually thresholded, and the 

watershed algorithm was applied. The analyze particle plugin was employed using a 

minimal particle size of 70 pixels2 for Ai9.  The number of labeled neurons and the size 

of Ai9+ soma were recorded. For PV and SST, somal size was manually measured in 
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Photoshop.  Results were averaged from at least three independent mice from separate 

litters per condition. 

Results 

Inhibitory Interneurons (Ai9) are Reduced in Contralateral Motor Cortex 

To examine for changes in the contralateral cortex following TBI we performed a 

frontoparietal CCI in the somatosensory cortex of juvenile mice (post-natal day 22). The 

transgenic mice used in this study express the fluorescent protein tdtomato (Ai9) cre-

dependently targeted to all inhibitory interneurons (Vgat:Cre; Ai9) (Wang et al., 2009; 

Wojcik et al., 2006). At 14 days after CCI, regions of interests (ROIs) of 350um width 

were radially overlaid images taken from control of CCI.  The ROI extending from 350 to 

700um from midline corresponded to the motor cortex, including both primary and 

secondary regions (Paxinos and Watson, 2007).  An analysis of the density of Ai9 

positive neurons within the contralateral motor cortex ROI revealed a significant 

reduction of 27% following CCI (i.e. 54.53 ± 2.94 cells/mm2 in CCI vs 74.52 ± 2.59 

cells/mm2 in control) (P=0.009). This loss of Ai9 cell density resulted in an overall loss 

of number of Ai9 positive neurons (CCI (359.1± 17.72) vs control (255.4 ± 9.05) (P< 

0.0001) and was accompanied by a reduction of soma size (CCI 87.75 ± 2.03 um2 vs 

control 147.0 ± 2.16 um2) (P<0.0001). In contrast, as previously reported for the 

ipsilateral cortex (Nichols et al., In Preparation) we observed no qualitative change in the 

density of neurons labelled with the pan-neuronal marker NeuN in the contralateral motor 

cortex.  Taken together with the loss of Ai9 cell density this suggests CCI disrupts the 

balance in number of excitatory and inhibitory neurons in the contralateral motor cortex.  

Finally, in some TBI models cortical atrophy has been reported that may account for 
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overall loss of neuron number (Goddeyne et al., 2015).  However in these experiments no 

significant change in cortical thickness was observed following CCI suggesting a true 

loss of the number of interneurons with the contralateral motor cortex (Fig 1C).  
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Figure 1. Control motor cortex experiences Ai9 loss after CCI. (A, Top) Control versus 
CCI image of contralateral motor cortex  with NeuN (Green) and Ai9 (tdTomato) 
showing that after CCI, Ai9 density is reduced. (A, Bottom) Monochrome image 
displaying only interneurons (Ai9) to highlight the loss of interneurons after injury. (B) 
Quantitative analysis showing that Ai9 cell density is significantly decreased after injury 
(**P=0.009). (C) Total Ai9 was significantly decreased after CCI. (**P<0.0001). (D) 
Interneurons in the motor cortex also showed a dramatic loss of soma size. 
(***P<0.0001). (E) Cortical thickness between control and CCI animals did not change. 
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Parvalbumin Expression in the Motor Cortex is Reduced After Injury 

To assess if a certain subpopulation of interneurons are decreased in the 

contralateral motor cortex after injury we examined immnohistochemical markers of 

cortical interneurons.  Parvalbumin (PV) positive interneurons comprise approximately 

50% of the interneuron cortical population (Rudy et al., 2011) and play a significant role 

in regulating cortical output (Mitchell and Silver, 2003) including of corticalspinal 

(motor) neurons (Tanaka et al., 2011).  Fourteen days after CCI there was a significant 

loss of PV expression in the contralateral motor cortex (Fig. 2, A).  Specifically, PV cell 

density was significantly reduced by 63% from control values (control 12.46 ± 0.41 vs 

CCI 4.66 ± 1.05) (P = 0.0016) (Fig. 2, B).  Looking at the total number of PV positive 

cells there was a significant difference following CCI (control 63.22 ± 1.78, CCI 14.93 ± 

4.70) (P=0.0003).  The loss of PV expression (63%) was far greater than overall Ai9 loss 

(27%) and highlights an advantage of the transgenic approach employed in this study in 

separating loss of immunoreactivity and cell death.  
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Figure 2. Parvalbumin expression is significantly lost after injury. (A, Top) Control 
animal with Ai9 (tdTomato) and parvalbumin (green) showing a significant loss of 
parvalbumin after injury. (A, Bottom) Monochrome image to highlight the dramatic loss 
of parvalbumin after CCI. (B) Quantification of parvalbumin cell density shows a 
significant loss after injury (P=0.0016). (C) Total parvalbumin positive neurons were 
significantly reduced after CCI. (P=0.0003). 
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Somatostatin Expression is not Altered after CCI 

Somatostatin (SST) interneurons have been shown to play an important role in 

regulating excitability in the dendrites of pyramidal neurons (Ma et al., 2006).  While to a 

lesser extent than PV neurons, SST neurons also play a role in maintaining inhibition to 

corticalspinal neurons (Tanaka et al., 2011). However in contrast to PV neurons, we 

found that SST cell density was not significantly changed in contralateral motor cortex 

after CCI (control 13.45 ± 1.72, CCI 12.73 ± 0.99)(P=0.73) (Fig. 3, A-B). Similarly, total 

SST neuron number was not significantly altered in SST neurons after CCI (control 71.78 

± 7.23 vs CCI 57.44 ± 4.59)(P=0.17). Taken together this suggests that 14 days after CCI 

there is a select loss of PV expression in the contralateral motor cortex. 
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Figure 3. Somatostatin expression is not changed after injury. (A, Top) Somatostain 
(green) and Ai9 (tdTomato) show equal distribution across the motor cortex in both 
control and CCI. (A, Bottom) Monochrome image to highlight the somatostatin 
distribution in control and CCI motor cortex. 
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Fast-Spiking Interneurons are not Altered Following CCI 

Parvalbumin positive cortical interneurons are predominantly of a fast-spiking 

(FS) phenotype (Hu et al., 2014).   Similar to most other cortical cell-types, the firing 

properties of fast-spiking interneurons are developmentally regulated but shown to be 

well established by time of our CCI (i.e. P22) (Doischer et al., 2008; Itami et al., 2007; 

Okaty et al., 2009). Mature fast-spiking cells are characterized by low input resistance, 

narrow action potentials, and the production of high-frequency spike trains with little to 

no spike-frequency adaptation. The loss of interneurons and PV expression in this study 

prompted us to first examine changes in the intrinsic properties of fast-spiking neurons of 

the contralateral motor cortex.  To examine FS interneurons directly we employed whole-

cell patch clamp electrophysiology combined with intracellular biocytin fill and post-hoc 

immunostaining for PV.  FS interneurons were recorded from control or CCI animals 14 

days after injury.  Biocytin filled fast spiking interneurons still maintained their 

endogenous Ai9-tdTomato expression. Biocytin fills confirmed that the recorded neurons 

were basket cells. (Fig. 4, B). FS electrophysiological phenotype was confirmed as 

previously described (Anderson et al., 2010; Miller et al., 2011). We found that fast-

spiking interneurons maintained their high frequency spiking phenotype in CCI animals 

(Fig 4. A). Injection of a 1 second depolarizing current step (0 to 300 pA) showed no 

significant change in firing properties of FS interneurons between control and CCI 

animals (Fig. 4, A,E). FS interneurons recorded in CCI animals also showed no change in 

resting membrane potential when compared to control (control -62.78 ± 1.99, CCI -66.72 

± 0.99) (Fig. 4, C).  Similarly, no significant change was observed in input resistance of 
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FS interneurons between control (238.7 ± 35.08 MΩ and CCI 187.6 ± 17.53) recordings 

(Fig. 4, D).  Therefore, despite the loss of PV expression CCI failed to alter the tested 

intrinsic membrane properties of FS interneurons. 
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Figure 4. Fast-spiking interneurons do not have altered intrinsic properties after CCI. (A) 
Fast-spiking interneurons do not have altered intrinsic properties after CCI. (A) Firing 
patterns at a 250pA current step does not elicit different firing patterns between control 
and CCI. (B) Biocytin (green) against Ai9 (tdTomato) show neurons patched were 
confirmed as fast-spiking basket cells. (C) Resting membrane potential of fast-spiking 
interneurons is similar among control and CCI animals. (D) Input resistance of fast-
spiking interneurons is not changed after CCI. (E) Analysis of firing frequency shows 
that CCI does not differ from control. 
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CCI Reduces Inhibitory sIPSC Inter-Event Interval and Increases Decay 

Fast-spiking interneurons are known to play a key role in regulating pyramidal 

neuron excitability.  As such, any changes on inhibition onto FS intereneurons may have 

a profound effect on network dynamics.  To examine for changes of synaptic inhibition 

onto fast-spiking interneurons, spontaneous inhibitory post-synaptic currents (sIPSCs) 

were pharmacologically isolated with 2mm kynurenic acid and electrophysiologically 

recorded (Fig. 5A).  For these recordings, FS interneurons were held at -70mV using a 

modified internal solution (Ecl=-16mV) that improves detection of inhibitory synaptic 

events (Anderson et al., 2010).  Following CCI, there was significant reduction in the 

average frequency of sIPSCs onto FS interneurons as evidenced by an almost a 2-fold 

increase in inter-event interval (control 294.0 ± 53.13 vs CCI 610.5 ± 98.14) (p=0.02) 

(Fig. 5, B).  This was accompanied by a significant increase in sIPSC charge (control 

57.34 ± 5.91, CCI 91.92 ± 8.62) and decay time (control 2.90 ± 0.22 vs CCI 4.98 ± 0.67) 

without an associated change in amplitude (control 17.28 ± 1.99, CCI 20.13 ± 1.45) (Fig. 

5, B). 
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Figure 5. Spontaneous IPCSs are decreased after CCI, and synaptic rise and decay times 
are increased after injury. (A) Gap-free traces in voltage clamp, holding at -70mV, 
recording sIPSCs from fast-spiking interneurons (B) Inter-event interval of sIPSC events 
was significantly reduced after injury. (* P=0.02).  (C) Amplitude was not different 
between control and CCI. (D) sIPSC charge was significantly increased after injury. (E) 
Overlaid normalized average sIPSC after injury demonstrates the increased decay time. 
(F) sIPSC decay time is significantly increased after injury. * p=0.03. (G) sIPSC rise time 
did not change after injury. (control n=8, CCI n=15) 
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CCI Increases sEPSC Inter-Event Interval and Decreases Synaptic Decay 

To better understand the balance of excitation and inhibition onto fast-spiking 

interneurons, we similarly examined for changes in spontaneous excitatory postsynaptic 

currents (sEPSCs).  For these recordings, FS interneurons were again held at -70mV 

using a physiological internal solution (ECl = -80).  This allows detection of isolated 

excitatory events without the need for pharmacological blockers that would alter and 

prevent testing of baseline network excitability (Anderson et al., 2010).  Recordings 

performed 14 days following CCI revealed a significant increase in average sEPSC inter-

event interval (control 220.0 ± 48.19 vs CCI 99.00 ± 12.61)(P=0.0062) without any 

change in sEPSC amplitude, charge, or rise time (Fig. 6, B-G).    In contrast to sIPSC, 

overall decay time of sEPSCs were significantly reduced (control 2.33 ± 0.20 vs CCI 

1.85 ± 0.09) (p = 0.02) (Fig 6, F).  These findings suggest that following CCI FS 

interneurons receive more frequent but weaker (reduced decay) excitatory input. 
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Figure 6. CCI results in increased synaptic excitatory input onto fast-spiking neurons. (A) 
Gap-free voltage clamp traces, holding at -70mV, from fast-spiking interneurons 
monitoring sEPSCs in control and CCI. (B) Inter-event interval is significantly reduced 
after CCI (**P=0.0062). (C-D) sEPSC amplitude and charge is not altered after CCI. (E) 
Overlaid averaged sEPSCs demonstrate the change in decay time after injury. (F) 
Quantitatively sEPSC decay is significantly reduced (*P=0.02) (G) Rise time after injury 
was not changed after CCI. (Control n=8, CCI n=14). 
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Discussion 

We combined whole-cell patch clamp electrophysiology with fluorescent 

immunohistochemistry in fluorescently labeled inhibitory interneurons to ask whether 

inhibition in the contralateral motor cortex is altered after controlled cortical impact 

(CCI). In this study, we found that 14 days after CCI in juvenile animals the total 

interneuron population and PV expression cell density was significantly decreased, but 

SST expression was unchanged. PV expressing neurons are known to have a unique FS 

phenotype which can be identified electrophysiologically (Kawaguchi and Kubota, 1997; 

Kawaguchi et al., 1987).  Using a combined electrophysiological and 

immunohistochemical approach we determined that CCI induced loss of PV expression 

that did not alter the intrinsic properties of FS interneurons.  However, when examining 

afferent synaptic input on FS interneurons, CCI increased the IEI while increasing the 

strength (i.e. increased charge and decay) of synaptic inhibition. Conversely, the IEI of 

synaptic excitation onto FS interneurons was increased following CCI with an overall 

decrease of synaptic strength (i.e. decreased decay time).  These findings suggest that in 

the contralateral motor cortex in contrast to SST interneurons, CCI selectively alters PV-

FS neurons.  Specifically, CCI alters the balance of synaptic excitation and inhibition 

(E/I) onto FS interneurons and is associated with an overall loss of the total number of 

interneurons. These observations argue that TBI leads to anatomical and 

neurophysiological remodeling of the otherwise morphologically intact contralateral 

motor cortex, which may play important roles in the pathophysiology of pediatric TBI. 

Despite evidence that suggests the deficits induced by TBI predict contralateral brain 

dysfunction, very few studies have undertaken a direct examination.  To our knowledge, 
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this is the first study to directly examine changes in inhibition of contralateral motor 

cortex of a “pediatric” brain.   

Loss of inhibitory interneurons has been previously reported following TBI.  

However, these studies have primarily focused on changes in the hippocampus (Ding et 

al., 2011; Lowenstein et al., 1992; Pavlov et al., 2011). Furthermore, the majority of 

studies have used immunohistochemical means to investigate changes in the interneuron 

population following TBI.  This approach may be limited to identification of changes in 

immunoreactivity over direct neuronal loss.  To overcome this limitation we employed a 

transgenic mouse approach whereby all inhibitory interneurons were endogenously 

labeled with the fluorescent protein tdTomato (Ai9).  This provided us the ability to 

better differentiate if CCI induced cell death or loss of immunoreactivity.  We found that 

in juvenile mice the total number and overall density of cortical interneurons (Ai9) in the 

contralateral motor cortex was significantly reduced at PID14 after CCI.  As the 

interneuron population is late to develop in mice (Levitt et al., 2004) this study 

specifically examined the outcome of CCI in juvenile animals impacted at P22.  We 

believe this time point is within the pediatric time window but ensured a significant 

degree of interneuron maturation was complete at the time of impact (Andersen, 2003). 

Cortical interneurons are a heterogeneous population of neurons comprised of 

numerous subtypes (Chow et al., 1999; Markram et al., 2004b; Rudy et al., 2011).  As 

with previous studies, we next examined for specific CCI induced changes to 

immunohistochemically defined populations of cortical interneurons.  Specifically, 

examination of PV and SST interneurons was choosen as they comprise ~80% of the total 

cortical interneuron population(Rudy et al., 2011) and are implicated in numerous 
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neurological diseases (Behrens and Sejnowski, 2009; Levitt et al., 2004; Ma and Prince, 

2012; Nakamura et al., 2015; Powell et al., 2012; Uhlhaas and Singer, 2010). The data 

revealed that while there was no change in SST expression, there was selective loss of PV 

expression in the contralateral motor cortex following CCI.  This finding is supported by 

humans studies indicating loss of PV expression after TBI (Buriticá et al., 2009). In 

animal models, it has also been shown that PV interneurons are more sensitive to insult in 

pediatric animals than adults (Cabungcal et al., 2013a, 2013b).  However, studies of TBI 

in adult animals have indicated loss of both SST and PV expression following CCI 

(Cantu et al., 2014).  Taken together, this suggests that in the contralateral motor cortex 

TBI induces both loss of the total number of cortical interneurons (i.e. Ai9 number and 

density) along with the targeted loss of PV expression. 

At an inhibitory synaptic level, our results indicate that the frequency of inhibition 

onto fast-spiking interneurons was reduced while the strength (i.e. increased charge and 

decay) was increased.  As changes to intrinsic membrane properties may alter the ability 

or properties of detected synaptic activity (e.g. input resistance) of note is that CCI and 

the induced PV expression loss failed to alter the intrinsic properties of FS interneurons. 

While no other studies have directly examined cortical inhibitory interneurons following 

CCI similar results have been observed in excitatory pyramidal neurons, in adult mice 

after CCI (Cantu et al., 2014) as well as in the hippocampus after mild TBI (Almeida-

Suhett et al., 2015). The increase in synaptic decay has also been shown in dentate hilar 

GABAergic neurons in adult mice after CCI (Hunt et al., 2011).  In juvenile animals, we 

have also previously shown an increase decay time from sIPSCs onto pyramidal neurons 

after CCI (Nichols et al., 2015). This increase in decay time could potentially be the 
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result of a compensatory response to increase the temporal integration window or 

maintain proper excitatory and inhibitory network function. In general, inhibitory decay 

kinetics play an important role in shunting excitatory events (Mitchell and Silver, 2003) 

that may help limit the development of hyperexcitability (Guerriero et al., 2015).  As FS 

interneurons are known to receive input from multiple types of cortical interneurons 

(Yoshimura and Callaway, 2005), the specific source and cell-type involved in the 

change in kinetics remains to be determined, but may include changes in synaptic 

connectivity or alteration of GABAergic subunits.  Given the faster kinetics of FS versus 

low-threshold spiking (i.e. SST positive) interneurons (Bacci and Huguenard, 2006) and 

loss of PV expression it is tempting to speculate of an alteration in the relative synaptic 

contributions from these two interneuron populations.  Another possibility is that the 

overall loss of synaptic inhibition might be the result of other interneurons subtypes 

untested in this study.  To account for this, mapping cortical connectivity and unitary 

functional assessment of individual subtypes will be required to confirm the cell-type 

specific actions of TBI.   

At an excitatory synaptic level, the number of spontaneous excitatory events was 

increased in the motor cortex contralateral to the site of injury. This has been seen in a 

previous adult CCI study that characterized contralateral sEPSCs from dentate hilar 

interneurons (Hunt et al., 2011) Increased excitation has previously been seen in 

pyramidal neurons in the peri-injury region after adult CCI (Cantu et al., 2014; Yang et 

al., 2010). Additionally, decay time of sEPSCs in FS neurons was significantly reduced. 

This contrasts an adult CCI study that found contralateral dentate hilar GABAergic 

neurons did not show a changed to sEPSC decay time (Hunt et al., 2011). However, we 
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have shown this in FS neurons recorded from the peri-injury region after pediatric CCI 

(Nichols et. al., In Preparation). Abnormal reorganization of brain circuits can also result 

in disturbed function and manifest as various neurological disorders (Kleschevnikov et 

al., 2004; Mello et al., 1993; Romcy-Pereira and Garcia-Cairasco, 2003; Routbort et al., 

1999)  It will be important to determine the mechanism and action of these changes in 

promoting or restricting the development of the pathophysiology and symptomology 

induced by TBI. 

 In conclusion, we found a loss of interneurons and PV expression in the 

contralateral motor cortex. Additionally, the frequency of excitation was increased and 

inhibition was decreased after CCI onto FS neurons in the same region.  The role of 

interneurons in TBI have been shown to be key in regulating network activity after injury 

(Cantu et al., 2014; Jin et al., 2014). Evidence suggests that when compared to the 

somatosensory cortex the motor cortex may be specifically sensitive to the effects of TBI 

(Pearce et al., 2015; Tremblay et al., 2011). In human longitudinal studies studying the 

motor cortex after injury, excitation normalizes while changes to inhibition are sustained 

for years after injury (De Beaumont et al., 2007, 2009; Tremblay et al., 2011). Little is 

known regarding cortical interneurons in the contralateral motor cortex after CCI, 

however, similar GABAergic dysfunction has been seen in dentate hilar neurons 

contralateral to injury (Hunt et al., 2011). Other studies have shown the motor cortex 

contralateral to injury undergo synaptic and morphological changes after insult (Axelson 

et al., 2013; Jones et al., 2012; Nudo, 2006). This may be due to corticalspinal tract 

rewiring to compensate for lost motor function, which has been shown in a focal TBI in 

mice (Ueno et al., 2012). Similar results have been seen in human ischemia studies. For 
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example, clinical studies of stroke patients showed that larger infarcts caused greater 

activation of the intact contralateral hemisphere (Cramer et al., 2006; Frost et al., 2003).  

In rodent ischemia models, dendritic growth and axonal sprouting within the contralateral 

motor cortex have been shown following unilateral ischemia (Biernaskie and Corbett, 

2001; Biernaskie et al., 2005; Chen et al., 2002). Despite these similar results, the cellular 

and molecular mechanisms that can account for the loss of interneurons and PV 

expression in the contralateral motor cortex after CCI needs to be studied further.  

Overall, our findings suggest that extended “injury” induced changes to the contralateral 

cortex may play an important, and as of yet understudied, role in the pathophysiology of 

TBI. 
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CHAPTER 5 

REPETITIVE MILD TRAUMTIC BRAIN INJURY INDUCES 

VENTRICULOMEGALY AND CORTICAL THINNING IN JUVENILE RATS 

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and 

remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 

nearly 75% of all TBI cases, yet its neuropathophysiology is still poorly understood. 

While even a single mTBI injury can lead to persistent deficits, repeat injuries increase 

the severity and duration of both acute symptoms and long-term deficits. In this study, to 

model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals 

(postnatal day 20) to repeat weight-drop impacts. Animals were anesthetized and 

subjected to sham injury or rmTBI once per day for 5 days. Magnetic resonance imaging 

(MRI) performed 14 days after injury revealed marked cortical atrophy and 

ventriculomegaly in rmTBI animals. Specifically, beneath the impact zone the thickness 

of the cortex was reduced by up to 46% and the area of the ventricles increased by up to 

970%. Immunostaining with the neuron-specific marker NeuN revealed an overall loss of 

neurons within the motor cortex but no change in neuronal density. Examination of 

intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant 

difference between sham-injured and rmTBI animals at rest or under convulsant 

challenge with the potassium channel blocker 4-aminopyridine. Overall, our findings 

indicate that the neuropathological changes reported after pediatric rmTBI can be 

effectively modeled by repeat weight drop in juvenile animals. Developing a better 

understanding of how rmTBI alters the pediatric brain may help improve patient care and 

direct “return to game” decision making in adolescents. 
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Introduction 

Traumatic brain injury (TBI) is a significant health concern that affects more than 

1.5 million Americans each year (Faul et al. 2010; Langlois et al. 2006; Rutland-Brown 

et al. 2006). At present, no single classification system has been developed that 

encompasses the host of clinical, pathological, behavioral, and cellular changes that occur 

as a result of TBI. In general, TBI is categorized into mild, moderate, and severe. Mild 

TBI (mTBI), including concussions, accounts for nearly 75% of all TBI cases (Cassidy et 

al. 2004; Elder and Cristian 2009; Langlois et al. 2005, 2006; Miniño et al. 2006). mTBI 

is often called an “invisible wound,” as it results in a minimal loss of consciousness (<30 

min) and minimal acute neuropathological findings (Carroll et al. 2004; Morey et al. 

2013; Smith et al. 2013). Consequently, mTBI is often difficult to detect and diagnose in 

the early acute stages after injury and may result in the incidence being underreported. 

After mTBI patients may experience cognitive and behavioral impairments including 

confusion, memory and attention deficits, and headaches (Barkhoudarian et al. 2011). 

These symptoms usually resolve completely within 2–3 wk after a single mTBI (Lovell et 

al. 2003; McCrea et al. 2003). However, especially with repeat injuries, these symptoms 

may persist for extended periods of time (Arciniegas et al. 2005; Halstead et al. 2010; 

Pellman et al. 2003). 

Repetitive mTBI (rmTBI) significantly increases symptom severity (Collins et al. 

2002), leads to longer-term cognitive and motor deficits (De Beaumont et al. 2007; 

Guskiewicz 2011; Omalu et al. 2010b), and increases the risk for developing dementia 

(Guskiewicz et al. 2005) and neurodegenerative disorders (Masel and DeWitt 2010; 

McKee et al. 2009, 2010; Plassman et al. 2000). Even a single mTBI event places 
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patients at a greater risk for further TBI events and the ensuing consequences of rmTBI 

(Barkhoudarian et al. 2011; MacGregor et al. 2011; Tremblay et al. 2013; Zemper 2003). 

In contrast to a single mTBI event, rmTBI induces significant long-term structural 

changes to the brain including brain atrophy and enlargement of the ventricles (Giza 

2006; Huh et al. 2007; Maxwell 2012; Smith et al. 2013; Wang et al. 2014). Currently no 

effective treatments are available to prevent the adverse complications associated with 

rmTBI. Development of new therapeutic strategies is contingent on an improved 

understanding of the underlying pathophysiological processes induced by rmTBI. 

Recent public and research attention has focused on understanding rmTBI that occurs in 

adult athletes and military personnel. However, recent reports indicate that children may 

be particularly susceptible and sensitive to the effects of TBI (Barlow et al. 2010; 

Eisenberg et al. 2013; Field et al. 2003; Guskiewicz et al. 2000; Kontos et al. 2013). In 

children, TBI remains a leading cause of death and disability (Faul et al. 2010), with 

>10% experiencing a mTBI by the age of 10 (Barlow et al. 2010; Bruns and Hauser 

2003). As with adults, the source of TBI varies greatly in children, but it may occur from 

a combination of events including accidents, abuse (shaken baby syndrome), or 

adolescent sport concussions. The pediatric brain is different from the adult brain owing 

to a host of ongoing neurodevelopmental processes including cortical hypertrophy, 

synaptogenesis, use-dependent pruning, enhanced glucose metabolism, increased 

neurotrophic factors, altered excitatory amino acid receptors, and myelination of axons 

(Adelson 1999; Chugani et al. 1987; Friedman et al. 1991; Giza 2006; Insel et al. 1990). 

These processes have often been thought to confer children with an advantage in coping 

with brain injury, but recent evidence suggests they may be particularly sensitive to the 



145 
 

  
  
  
  
 

effects of rmTBI (Eisenberg et al. 2013; Field et al. 2003). 

Several models of TBI have been developed (Angoa-Pérez et al. 2014; Cernak 

2005; Xiong et al. 2013), but many are intended to induce a more severe TBI and do not 

effectively model mTBI. In this study, we modified a recently published adult weight-

drop rmTBI model (Kane et al. 2012) for use in juvenile rats. This method of inducing 

rmTBI recapitulates the nature of the injury (closed head injury, unrestrained animal, 

linear and rotational acceleration forces) and was recently shown to produce several of 

the cognitive and behavioral outcomes associated with clinical mTBI (Kane et al. 2012; 

Meaney and Smith 2011; Viano et al. 2007). With the use of this method, in juvenile rats 

a single mTBI was sufficient to induce clinically relevant impairments to executive, 

motor, and balance functions (Mychasiuk et al. 2014). The durations of these 

impairments are variable, but they have been reported to persist for up to months after 

mTBI (McCrea et al. 2003; Petraglia et al. 2014). The purpose of this study was to 

examine the neuropathological and neurophysiological changes induced early after 

rmTBI in juvenile rats with magnetic resonance imaging (MRI), immunohistochemical, 

and electrophysiological approaches. The results validate the use of this repetitive 

weight-drop method to effectively model pediatric rmTBI. Similar to what has been 

reported in humans (Halstead et al. 2010; McCrea et al. 2003; Smith et al. 2013), rmTBI 

in juvenile rats induced marked cortical atrophy (i.e., decreased cortical thickness) and 

enlarged ventricles that were most pronounced beneath the impact site. Despite 

significant cortical atrophy, no intrinsic or synaptic electrophysiological changes were 

evident in layer II/III neurons recorded from rmTBI animals 14 days after injury. These 

findings are in contrast to the recent report from adult rodents (Kane et al. 2012) and after 
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single mTBI (Mychasiuk et al. 2014) and suggest that impact number, severity, and age 

are critical determinants of the pathophysiological changes following rmTBI. 

Materials and Methods 

Repetitive Mild Traumatic Brain Injury 

To experimentally model rmTBI we modified a recently developed model by 

Kane et al. (2012). This model replicates many of the clinical characteristics and 

mechanics of a mTBI injury including low impact force, low incidence of skull fracture 

and subdural hematoma, no immediate or early seizures, and no gross cavitation at the 

impact site. This model has been shown to effectively induce and model rmTBI in adult 

mice and was here modified to model pediatric rmTBI in juvenile rats. In brief, 20-day-

old (P20) male Sprague-Dawley rats were subjected to a single mTBI once per day for 5 

consecutive days (Fig. 1). Rats were lightly sedated via isoflurane inhalation and 

immediately placed ventral side down on a tightly stretched Kimwipe secured to a 

Plexiglas stage (Fig. 2A). The animal's head was then carefully centered under the 

vertical aluminum guide tube. As the animal's skull and skin remained completely intact, 

the animal's position was carefully adjusted using external anatomical landmarks (i.e., ear 

canals, eyes) so that impacts occurred between the bregma and lambda sutures. The 

impact weight (92 g, 9-mm diameter) was then positioned at the top of the aluminum tube 

so that the bottom of the weight was precisely 865 mm above the animal's head and was 

allowed to fall freely down the aluminum guide tube. The guide tube is threaded to allow 

for careful adjustment between animals to ensure accurate positioning of the guide tube 

and impact location (Fig. 2A). The force of the impact caused the animal to break 

through the stretched Kimwipe, rotate 180°, and land dorsally on the foam pad below. 
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The rat falls away from the impact weight, and no secondary impacts were observed. The 

animal's movement after impact is not mechanically constrained, allowing simulation of 

the rotational and linear acceleration and deceleration forces most often associated with 

this type of injury. The animal was then placed in a supine position and monitored for 

righting reflex time. Righting reflex was defined as the animal's ability to right itself from 

a supine to a prone position. Once righted and ambulatory the animal was placed back 

into its home cage and monitored daily. In the rmTBI animal group, this procedure was 

repeated once per day for a total of five impacts. Age-matched sham-injured animals 

were given anesthesia, underwent mock impacts, and were placed in a supine position to 

test righting reflex times. After the fifth sham injury or rmTBI, animals were again 

monitored daily but left for 14 days to recover before further experimentation. All 

“postinjury day” (PID) descriptions were calculated as days between last impact and day 

of death. 
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Figure 1. Experimental timeline. Overview of the timeline used to model repetitive mild 
traumatic brain injury (rmTBI). Arrowheads represent time of single impact repeated 
once daily for 5 days. Control animals were given anesthesia only. Postinjury day (PID) 
indicates number of days after the 5th rmTBI injury.  
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Figure 2. Experimental model of rmTBI. A: photograph of rmTBI device and impact 
weight. B, left: photographs of brains acutely prepared 14 days after sham injury or 
rmTBI (1 impact/day for 5 days) in juvenile (P20) rats. Red dashed circle indicates 
approximate site of impact. Right: photograph of coronal brain slices taken from 
respective sham-injured or rmTBI brains. Note the presence of enlarged ventricles and 
cortical thinning after rmTBI. C, top: scatterplot of impact force measurements taken 
across 20 trials (weight 92 g, drop height 865 mm). Bottom: line graph of average 
righting reflex time in sham-injured (n = 38) and rmTBI (n = 42) animals across the 5 
injury trial days. *P < 0.01. 
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Brain Fixation and Tissue Processing 
At 14 days after injury (PID 14) the animals were deeply anesthetized with 

isoflurane and perfused transcardially with cold 0.9% saline followed by a fixative 

containing 4% paraformaldehyde. The brains were then removed and fixed in 

paraformaldehyde overnight. The following day brains were cryoprotected in two stages: 

15% sucrose for 24 h followed by 30% sucrose for 24 h. Brains selected for MRI were 

then washed in PBS for 48 h. For immunofluorescence, 30-µm-thick sections were cut 

serially with a cryostat (Leica Biosystems) and stored at −20°C. Sections were then 

stained with the mature neuronal marker NeuN (Abcam, Cambridge, MA). In brief, the 

sections were first washed in PBS (2 × 15 min) before being permeabilized with 0.3% 

Triton X for 1 h (Abcam). Nonspecific binding was blocked with CAS-Block (Life 

Technologies). Finally, the sections were moved into the primary NeuN antibody diluted 

to 1:2,000 and incubated overnight on an orbital shaker at 4°C. The sections were then 

washed repeatedly in PBS and incubated with a Cy3 secondary antibody (1:1,000, 

Jackson Immunoresearch) in the dark at 4°C overnight. Images were taken of both 

control and rmTBI animals with an epifluorescent or confocal microscope. 

Magnetic Resonance Imaging 
 

MRI was performed on PID 14 brains that had been previously perfusion fixed. 

Imaging was performed on a Bruker Biospec 7.0-T small-animal MR scanner (Bruker 

Medizintechnik, Karlsruhe, Germany) with a 72-mm transmitter coil and a rat brain 

surface receiver coil. 3D RARE sequence was used to acquire coronal a T2-weighted 

image (TE: 60 ms, TR: 3,000 ms, RARE factor: 8, resolution: 0.1 mm × 0.1 mm × 0.1 
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mm, matrix: 192 × 192 × 192, FOV: 19.2 mm × 19.2 mm × 19.2 mm, total acquisition 

time: 3 h 50 min) covering the posterior cerebellum to the frontal lobe. MRI data were 

analyzed with ImageJ software. 

Electrophysiological Slice Preparation 
Coronal brain slices were made as described previously (Anderson et al. 2005, 

2010; Iremonger et al. 2006). In brief, male Sprague-Dawley rats aged 38–45 days (PID 

14–21) were deeply sedated via isoflurane inhalation and decapitated. Brains were 

quickly removed and placed in ice-cold (4°C) carboxygenated (95% O2-5% CO2) high-

sucrose solution composed of (in mM) 234 sucrose, 11 glucose, 26 NaHCO3, 2.5 KCl, 

1.25 NaH2PO4·H2O, 10 MgSO4·7H2O, 0.5 CaCl2·2H2O. The tissue was kept in this 

solution while 350-µm-thick coronal slices were taken with a vibratome (VT 1200; Leica, 

Nussloch, Germany). Brain slices were harvested from beneath the site of impact in 

rmTBI animals or from the corresponding area in sham-injured animals. Slices were 

incubated for 1 h in a water bath-warmed (32°C) container filled with carboxygenated 

artificial cerebrospinal fluid (aCSF) composed of (in mM) 126 NaCl, 26 NaHCO3, 2.5 

KCl, 10 glucose, 1.25 NaH2PO4·H2O, 1 MgSO4·7H2O, 2 CaCl2·2H2O, pH 7.4. After the 

1-h incubation, the slices were returned to room temperature before the tissue was moved 

to a recording chamber for whole cell patch-clamp recording. 

Whole-Cell Patch-Clamp Recording 

Coronal brain slices prepared from rmTBI and sham-injured animals were placed 

in the recording chamber and immersed in carboxygenated aCSF maintained at a 

temperature of 32°C. Initial visualization and identification of cortical layers was done 

under 4× brightfield magnification. Recordings were made from layer II/III neurons of 
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motor cortex within the impact zone for rmTBI animals or the corresponding region in 

sham-injured animals. An upright microscope (Axioexaminer, Carl Zeiss) equipped with 

infrared differential interference contrast optics was used to acquire whole cell patch-

clamp recordings from regular-spiking (RS) cortical pyramidal neurons. Current-clamp 

firing behavior was used to identify RS pyramidal neurons as previously described 

(Connors et al. 1982; Guatteo et al. 1994). Electrode capacitance and bridge circuit were 

appropriately adjusted. Neurons chosen for analysis had a stable membrane resistance 

(Rm) that was less than 20% of the input resistance (RI), a resting membrane potential less 

than −55 mV, and overshooting action potentials. All current- and voltage-clamp 

recordings were obtained with a Multiclamp 700A patch-clamp amplifier (Axon 

Instruments, Union City, CA). Borosilicate glass microelectrodes (tip resistance 2.5–3.5 

MΩ) were produced by a Sutter P-97 automated pipette puller (Sutter Instrument, 

Novato, CA) and used for patch-clamp recordings. For recording excitatory events, 

pipettes were filled with intracellular solution (in mM: 135 K gluconate, 4 KCl, 2 NaCl, 

10 HEPES, 4 EGTA, 4 MgATP, 0.3 Na Tris). For recording inhibitory events, pipettes 

were filled with intracellular solution (in mM: 70 K gluconate, 70 KCl, 2 NaCl, 10 

HEPES, 4 EGTA, 4 MgATP, 0.3 GTP) with a calculated reversal potential of Cl− (ECl
−) 

of −16 mV, resulting in inward GABAA currents at a holding potential (Vhold) of −70 mV. 

This internal solution has been previously demonstrated (Anderson et al. 2010; Sun et al. 

2006) to facilitate detection of inhibitory events. 

Data Analysis 
Data were analyzed with pCLAMP (Axon Instruments), Prism (GraphPad), 

ImageJ (National Institutes of Health), and Mini Analysis (Synaptosoft) software and are 
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presented as means ± SE. For immunohistochemical analysis of NeuN staining a region 

of interest (ROI) of the motor cortex was created with ImageJ software, and NeuN-

positive cells within the ROI were manually counted. Cell count and density values are 

presented as the average cell count for three serial sections from each animal normalized 

to the width or area of the ROI, respectively. Electrophysiologically recorded 

spontaneous synaptic events were detected as previously described with automated 

threshold detection and manual verification (Nichols et al. 2015). RI was calculated from 

the voltage response to the input of a current step (1 s, 50 mV). The adaptation index was 

calculated based on the ratio of the last interspike interval (FLast) divided by the second 

(F2) as per the equation 100 × (1 − FLast/F2). Pyramidal neurons often displayed a highly 

variable first interspike interval, and consequently F2 was chosen for analysis. Firing 

frequency was calculated as the number of action potentials induced by a 1-s, 250-pA 

current step. Rheobase current was determined as the minimum current step (50-ms 

duration) that produced an action potential. Action potential threshold was calculated as 

the voltage at the maximum slope of the rheobase voltage recording (Nichols et al. 2015). 

Statistical significance was determined with an unpaired t-test, one-way ANOVA, or 

Kolmogorov-Smirnov (K-S) test, and differences were determined to be significant if P < 

0.05. 

Results 

rmTBI is Effectively Modeled by Repetitive Weight Drop 

To model rmTBI in pediatric patients, we modified the weight-drop method 

recently published by Kane et al. (2012) for use with juvenile rats (Fig. 2A). Animals 

subjected to rmTBI demonstrated no gross morphological changes, identifiable surface 
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deformations, or tissue loss at the site of the impact (Fig. 2B). The rmTBI procedure 

resulted in no incidence of scalp lacerations, and no immediate or late seizures were 

observed. As previously reported, the incidence of skull fractures or intracranial bleeding 

was low, and any animals displaying either where removed from further study (Kane et 

al. 2012). At PID 14–21 rat brains were removed for further experimentation. Acute 

slices prepared from rmTBI brains revealed marked structural changes including cortical 

thinning and ventriculomegaly (Fig. 2B). To determine the reproducibility of the rmTBI 

method, we tested the consistency of the impact force across 20 trials. A force meter 

(Chatillon DFM-10, Ametek Instruments) was placed at the base of the guide tube, and 

the peak impact force was measured across 20 trials. We found the average impact force 

with a 92-g weight to be highly consistent across trials with an average force of 7.890 ± 

0.06 N and a maximum variation of <1 N (Fig. 2C, top). 

In humans, the duration of loss of consciousness (LOC) is an important criterion 

in assessing the severity of a brain injury. While brain injury may occur in the absence of 

LOC, it is generally accepted that “mild” TBIs induce LOC between a few seconds and 

<30 min (Carroll et al. 2004; Smith et al. 2013). Assessing LOC in rats is difficult, but it 

has been indirectly evaluated by measuring the righting reflex time as an indicator of 

neurological restoration (Kane et al. 2012; Zecharia et al. 2012). Righting reflex time was 

measured after each sham or rmTBI impact as the time for an animal to recover from the 

supine to the prone position. Compared with sham-injured animals the righting reflex 

time was significantly increased across all 5 days (Fig. 2C, bottom). However, this 

increase in righting reflex time was not exacerbated by repeat sham (day 1 86.92 ± 8.8 s 

vs. day 5 88.59 ± 6.9 s) or rmTBI (day 1 200.60 ± 18.2 s vs. day 5 199.30 ± 14.6 s) 
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injuries (P > 0.05 for both). Averaged across all five impact trials the righting reflex time 

remained significantly increased between in rmTBI (193.1 ± 6.7 s) vs. sham-injured 

(92.31 ± 4.0 s) animals. 
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Figure 3. Magnetic resonance imaging (MRI) reveals significant structural changes after 
rmTBI. Coronal T2-weighted MRI images were obtained with a 7-T MRI scanner from 
perfusion fixed brains 14 days after sham injury or rmTBI. Representative images from 
sham injury (Control, left) or rmTBI (right) are presented. Approximate anatomical 
position of images are referenced relative to bregma. Arrowheads and box represent 
regions where cortical depth and lateral ventricle area measurements were taken. Similar 
respective measurements were made across all sham injury and rmTBI images. In T2-
weighted images water and edema are bright, while gray and white matter appear darker. 
Note the significant cortical thinning and ventriculomegaly evident in rmTBI brains.  
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MRI of rmTBI reveals significant ventriculomegaly and cortical thinning. 

To better assess the anatomical and structural changes to the brain following rmTBI, we 

performed T2-weighted MRI. Brains were perfusion fixed on PID 14 and ex vivo MRI 

imaging performed on control (n = 4) or rmTBI (n = 3) brains (Fig. 3). MRI imaging was 

performed from the frontal cortex to posterior cerebellum. To determine changes in 

cortical thinning, we measured the depth of the motor, somatosensory, and insular cortex 

across three regions—one region outside (bregma +2.3) and two regions within (bregma 

−0.6 and −3.5) the direct impact zone (Fig. 4A). The rmTBI was delivered by a 9-mm 

impact rod that spanned the region between bregma and lambda sutures in the rat. As 

imaging was performed ex vivo, we utilized anatomical landmarks to approximate the 

image location relative to the impact zone and published stereotaxic coordinates (i.e., 

bregma +2.3 mm, −0.6 mm, or −3.5 mm, respectively) (Paxinos and Watson 2007). In 

this way, we assessed changes in cortical depth across brain regions in the anterior-

posterior as well as medial-lateral directions in both control and rmTBI animals. 

 Substantial cortical thinning was observed in the motor cortex in all three brain 

regions, with up to a 46% decrease in cortical depth within the impact zone (Fig. 4B). 

Similarly, the depth of the somatosensory cortex was significantly reduced by over 25%, 

but this reduction was restricted to directly within the impact zone (i.e., bregma −0.6 mm 

and bregma −3.5 mm). Measurement of the depth of the insular cortex revealed no 

significant difference across all three brain regions examined (P > 0.05). We next 

performed similar measurements on the area of the third and lateral ventricles. While no 

significant difference in the area of the third ventricle was observed (P > 0.05), the lateral 

ventricle area increased up to 970% after rmTBI (Fig. 5). Within the impact zone 
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(bregma −0.6 and −3.5), the lateral ventricle maximally increased from 1.37 ± 0.2 mm2 to 

13.30 ± 1.0 mm2 (P < 0.0001). Outside of the direct impact zone (bregma +2.3), the 

lateral ventricles were again significantly increased from 0.84 ± 0.1 mm2 to 4.40 ± 0.4 

mm2 (P < 0.0001). Collectively, the data reveal that rmTBI induces rapid and significant 

reduction in the depth of the cortex and ventriculomegaly that is most substantial at the 

site of impact. 

  



159 
 

  
  
  
  
 

 
Figure 4. rmTBI induces cortical thinning. A: schematic indicating site of TBI impact 
(gray filled circle) and relative MRI image locations (black dashed lines) where cortical 
depth was measured. Numerical values are approximate bregma coordinates. B: bar 
charts of average cortical depth measured in MRI images at the listed bregma 
coordinates. Measurements of motor (left), somatosensory (center), or insular (right) 
cortical depth were made for each stereotaxic position (i.e., +2.3 mm, −0.6 mm, and −3.5 
mm). Average values for sham injury and rmTBI are presented for each cortical region 
and location. No statistical difference was observed between sham injury and rmTBI for 
somatosensory cortex at +2.3 (P > 0.05) or for any insular cortex measurement (P > 
0.05). *P < 0.05, **P < 0.01.   
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rmTBI induces no change in neuronal density or gross tissue damage. 

To determine whether rmTBI altered the total number or density of neurons 

within the cortex, we performed immunohistochemical analysis with the neuron-specific 

marker NeuN (Fig. 6A). As the amount of rmTBI-induced cortical thinning was most 

pronounced in the motor cortex, we focused the analysis on this region. The decrease in 

cortical thickness resulted in an overall decrease in total NeuN-positive cells between 

sham-injured (476.1 ± 17) and rmTBI (296.1 ± 24) animals (P < 0.001). However, 

analysis of the density of neurons (i.e., total neurons/area) revealed no significant change 

between sham-injured and rmTBI animals (P = 0.21) (Fig. 6B). Therefore, the data 

suggest that rmTBI induces a significant reduction in the volume of the cortex, but the 

cortex that remains is of similar neuronal density as that in sham-injured animals. 
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Figure 5. rmTBI induces lateral ventriculomegaly: average ventricle area measured in 
MRI images from the 3rd ventricle (left) or lateral ventricle (right). Corresponding sham 
injury and rmTBI values are presented for regions in the anterior, middle, and posterior 
positions in the brain. Positions in the brain are identified relative to approximated 
stereotaxic coordinates from bregma (i.e., +2.3 mm, −0.6 mm, and −3.5 mm). No 
statistical difference was observed in the area of the 3rd ventricle between sham injury 
and rmTBI. *P < 0.05, **P < 0.01.   
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rmTBI does not significantly alter electrophysiological properties of layer II/III motor 

neurons. 

Structurally, this study has revealed that rmTBI induces a significant reduction in 

the depth of the cortex that is most widespread and profound within the region of the 

motor cortex. To determine whether these structural changes result in functional changes 

to the intrinsic and synaptic properties of neurons within the motor cortex we performed 

electrophysiological experiments. Specifically, we recorded from layer II/III motor cortex 

pyramidal neurons within the injury zone of rmTBI animals or from the corresponding 

area in age-matched sham-injured animals. 
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Figure 6. Effect of rmTBI on NeuN staining. A: representative epifluorescence and 
confocal images taken from sham injury (n = 8) or rmTBI (n = 6) stained with the 
neuron-specific marker NeuN (green). Scale bars, 1 mm. Images are at ×2.5, ×10, and 
×20 magnification. B: bar graphs of average neuronal number (top) and density (bottom) 
within the motor cortex. Cell counts were made of NeuN-positive cells within 
standardized regions of interest (yellow dashed boxes in A). Note the substantial 
reduction of NeuN-positive cells after rmTBI but absence of neuronal density changes. 
***P < 0.0001.   
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Intrinsic Excitability 

Intrinsic excitability refers to the propensity of a neuron to fire an action potential 

and is governed by the membrane properties, currents, and channels expressed by a 

neuron. Alterations to intrinsic excitability have been shown in numerous models of CNS 

disorders (Willmore 1990; Yang et al. 2007) and may contribute to the pathophysiology 

of rmTBI. To examine for changes in intrinsic excitability induced by rmTBI, we 

recorded under current clamp the response of sham-injured (n = 10) or rmTBI (n = 14) 

neurons to a series of hyperpolarizing and depolarizing steps (−100 pA to 350 pA, 50-pA 

steps). Analysis revealed no statistical difference in RI (P = 0.38), resting membrane 

potential (P = 0.77), or accommodation index (P = 0.82) between sham-injured and 

rmTBI neurons (Fig. 7). Using a rheobase protocol (50 ms, 5-pA steps), we performed a 

more detailed analysis of action potential properties but again found no statistical 

difference in rheobase current (P = 0.73), action potential threshold (P = 0.52), or 

amplitude (P = 0.31) (Fig. 8). 
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Figure 7. Intrinsic membrane properties are not altered by rmTBI. A: representative 
current-clamp recordings in response to intracellular current steps (−100 pA to 350 pA, 1 
s) in layer II/III pyramidal neurons from sham-injured (n = 10) or rmTBI (n = 14) 
animals. Note the similarity in the intrinsic cellular response. B: average intrinsic 
membrane properties. No significant difference was found for input resistance (P = 0.38) 
or resting membrane potential (P = 0.77). C: comparison of firing properties of a sham-
injured and an rmTBI animal. Left: plot of average firing frequency vs. current (f-I 
curve). Right: adaptation index [first interevent interval (IEIFirst) between action 
potentials/last interevent interval (IEILast)].   
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Figure 8. Action potential properties are not altered by rmTBI. A: representative whole 
cell current-clamp recording in response to a series of 50-ms injection (5-pA steps). B: 
average values for sham injury (n = 15) or rmTBI (n = 18). Rheobase was calculated as 
the minimum current that produced an action potential (AP). Threshold was measured at 
the greatest change in calculated slope. Amplitude was measured as the difference 
between threshold and the peak of the action potential. No statistically significant 
differences were found between control and rmTBI animals for rheobase (P = 0.73), 
action potential amplitude (P = 0.52), or threshold (P = 0.31).   
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Spontaneous Activity 
The frequency of activity and strength of synaptic connections between neurons 

are fundamental to the way the brain processes and relays information. To investigate 

whether rmTBI disrupts or alters cortical synaptic excitability we again recorded from 

layer II/III pyramidal neurons in the motor cortex of sham-injured or rmTBI animals. 

First, under voltage clamp (Vhold = −70 mV), we examined for rmTBI-induced changes to 

spontaneous excitatory postsynaptic currents (sEPSCs). To minimize detection of 

inhibitory events, neurons were held near and positive of the ECl
− (Vhold = −70 mV, 

calculated ECl
− = −80 mV) and only inward synaptic events were detected. 

Pharmacological isolation of glutamatergic events was avoided, as the resultant synaptic 

disinhibition may mask rmTBI-induced changes to network excitability. In neurons from 

rmTBI animals, there were no significant changes in the average interevent interval (P = 

0.77), amplitude (P = 0.94), decay time (P = 0.82), or charge transfer (0.34) of sEPSCs 

(Fig. 9). Next, we similarly examined for changes in spontaneous inhibitory postsynaptic 

currents (sIPSCs). Inhibitory events were pharmacologically isolated with bath 

application of the glutamate receptor antagonist kynurenate (2 mM). To enhance 

detection fidelity of inhibitory synaptic events, a modified high-intracellular Cl− internal 

solution was used as previously described (Anderson et al. 2010; Sun et al. 2006). Again, 

no significant change was observed in sIPSC properties including interevent interval (P = 

0.90), amplitude (P = 0.74), decay time (P = 0.33), and charge transfer (P = 0.46). 

Representative traces and summary of these results are shown in Fig. 10. 

Finally, the effects of rmTBI in humans are often subtle and may not be reflected 

in changes to baseline synaptic activity but only become evident during periods of high 
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activity or demand. The observed reduction of cortical depth and neuronal number in 

rmTBI animals relative to sham-injured animals may result in loss of peak network or 

synaptic activity. To test these possibilities we challenged pyramidal neurons from sham-

injured (n = 15) or rmTBI (n = 18) animals with the convulsant 4-aminopyridine (4-AP, 

100 µM). Bath application of 4-AP for 15 min induced a rapid decrease in interevent 

interval of sEPSCs recorded in neurons from both sham-injured (53.59 ± 5.6 ms) and 

rmTBI (81.21 ± 20.0 ms) animals (Fig. 11A). The amplitude of sEPSCs was similarly 

increased by 4-AP in neurons from both sham-injured (22.47 ± 0.6 pA) and rmTBI 

(22.40 ± 1.1 pA) animals (Fig. 11B). However, neither the interevent interval nor 

amplitude during application of 4-AP was statistically different between neurons 

recorded from sham-injured and rmTBI animals (P > 0.05). Overall, this suggests that 

despite a significant loss of the depth of the motor cortex in rmTBI animals, the injury 

fails to alter excitatory or inhibitory synaptic properties or the potential peak state of 

synaptic excitability. 
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Figure 9. Excitatory spontaneous synaptic activity is not altered by rmTBI. A: voltage-
clamp recordings of spontaneous excitatory postsynaptic currents (sEPSCs) in sham-
injured (n = 19) or rmTBI (n = 14) animals. B: overlay of sham-injured and rmTBI scaled 
average sEPSC. C: bar charts of average sEPSC interevent interval (IEI) and amplitude 
for sham injury and rmTBI. No significant difference was determined for IEI (P = 0.77) 
or amplitude (P = 0.94). D: average sEPSC kinetic properties. No significant difference 
was detected between sham injury and rmTBI for sEPSC decay time (P = 0.82) or charge 
transfer (P = 0.34). Holding potential (Vhold) = −70 mV.   
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Figure 10. Inhibitory spontaneous synaptic activity is not altered by rmTBI. A: voltage-
clamp recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) in sham-
injured (n = 15) or rmTBI (n = 18) animals. B: overlay of sham-injured and rmTBI scaled 
average sIPSC. C: average sIPSC IEI and amplitude for sham and rmTBI. No significant 
difference was determined for IEI (P = 0.90) or amplitude (P = 0.74). D: average sIPSC 
kinetic properties. No significant difference was detected between sham injury and 
rmTBI for sEPSC decay time (P = 0.33) or charge transfer (P = 0.46). Vhold = −70 mV.   
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Figure 11. rmTBI does not enhance the response to the convulsant 4-aminopyridine (4-
AP). A: voltage-clamp recordings of sEPSCs from sham-injured (n = 14) or rmTBI (n = 
12) animals during bath application of 4-AP (100 µM). B and C: bar chart and cumulative 
probability curves of sham injury, sham injury during 4-AP, and rmTBI during 4-AP for 
IEI (B) or amplitude (C). Bath application of 4-AP induced a significant decrease in IEI 
and amplitude of sEPSCs. However, the effects of 4-AP on sEPSC IEI and amplitude 
were not statistically different between sham injury and rmTBI. Vhold = −70 mV. *P < 
0.05, **P < 0.01.  
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Discussion 

In the pediatric population, TBI remains a significant health concern that is 

known to place patients at risk for adverse long-term cognitive and behavioral changes. 

TBI may vary in severity, but >75% of all TBI is classified as mild (Cassidy et al. 2004; 

Elder and Cristian 2009; Langlois et al. 2005; Miniño et al. 2006). In this study, we 

sought to determine how rmTBI affects the pediatric brain. To effectively model human 

rmTBI, we modified a recently developed method for inducing rmTBI in adult animals 

(Kane et al. 2012) for use in juveniles. This rmTBI weight-drop method produced highly 

consistent impact forces across trials. The impacts occurred in a nonrestrained animal and 

have been shown to effectively model the direct, acceleration, and deceleration forces 

determined to be important to human TBI (Gennarelli and Thibault 1982; Holbourn 1943; 

Kane et al. 2012; Ommaya et al. 1967; Panzer et al. 2014). After mTBI, animals 

exhibited a significant increase in righting reflex time that suggests a brief injury-induced 

period of sensory and/or motor dysfunction. In contrast to what has generally been 

reported after single mTBI (Mychasiuk et al. 2014) or rmTBI in adult animals (Kane et 

al. 2012), rmTBI in juvenile animals induced significant structural changes to the brain 

including cortical atrophy and ventriculomegaly. This is supported by recent evidence 

that indicates that children may be more prone to the effects of repeat concussions 

(Eisenberg et al. 2013; Field et al. 2003). Neuronal specific immunostaining revealed that 

the cortical atrophy was accompanied by a loss of total cortical neurons. However, this 

overall neuronal loss was not due to a specific reduction in cortical density. The cortical 

atrophy was most pronounced in the motor cortex, with up to a 46% decrease in cortical 
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thickness beneath the site of injury in rmTBI animals. At PID 14 the significant structural 

changes to the motor cortex were not accompanied by significant changes in the intrinsic 

or synaptic properties of layer II/III pyramidal neurons at rest or under convulsant 

challenge. Overall, our results indicate the effectiveness of this new weight-drop method 

for reliably inducing a clinically relevant rmTBI. The select changes induced by rmTBI 

in juvenile rats suggest a potentially unique pathophysiological response to TBI in 

children. 

Modeling Repetitive Mild Traumatic Brain Injury 

Recent attention by patients, families, researchers, and the media has highlighted 

the significant short- and long-term consequences of rmTBI (Creeley et al. 2004; Longhi 

et al. 2005; Shitaka et al. 2011). Critical to understanding the pathophysiological 

mechanisms that drive rmTBI has been the development of new, clinically relevant 

models. Effective modeling of rmTBI requires an induced injury that reflects the type of 

impact and forces known to occur in mTBI and that results in neuropathological and 

clinically relevant outcomes. mTBI is characterized as occurring in a closed skull with 

minimal skull fractures and minimal tissue loss after a single mTBI. The impact of the 

mTBI induces direct force to the skull that translates into acceleration, deceleration, and 

shearing forces in the brain that are thought to be important to the injury process 

(Duhaime et al. 2012). Several models of TBI exist, including controlled cortical impact 

and fluid percussion (Xiong et al. 2013), but these require a craniotomy and/or a fixed 

skull that inadequately models these forces. Limited data exist on the exact 

biomechanical forces that would be classified as “mild” or concussion inducing, but the 

most comprehensive data have been obtained from head impact telemetry devices placed 
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within athletes' helmets. An in-depth review of the combined telemetry impact studies 

revealed that concussion is correlated with g-forces above 100g (Beckwith et al. 2013). In 

our study, calculated impact forces were on average 26.8g and well within the “mild” 

range [i.e., g-force = (F = ma)/9.8 m/s2; F = 7.89 N, m = 30g (P20-25 rat)]. The method 

used in this study overcomes these limitations and effectively models both the 

biomechanical forces of the impact and has been shown to induce clinically relevant 

cognitive and behavioral changes (Gennarelli and Thibault 1982; Kane et al. 2012; 

Meaney and Smith 2011; Mychasiuk et al. 2014; Panzer et al. 2014). 

Repetitive mild traumatic brain injury induces significant neuropathology. 

A single mTBI often resolves quickly and has generally not been associated with 

any significant neuroimaging abnormalities (Belanger et al. 2007; Petchprapai and 

Winkelman 2007; Morey et al. 2013). As a result, mTBI is often referred to as an 

“invisible wound” and is difficult to diagnose. Whether a single mTBI induces long-term 

deficits is currently a source of significant debate (Carroll et al. 2004; Klein et al. 1996; 

Konrad et al. 2011; Vanderploeg et al. 2005; Vasterling et al. 2012; Yuh et al. 2014). It is 

clear, however, that when a patient receives multiple mTBIs within a short period of time 

it results in more severe symptoms, a longer recovery period, and increased risk for 

serious long-term consequences (Guskiewicz et al. 2000, 2003). In contrast to a single 

mTBI event, rmTBI patients show clear neuropathological findings including enlarged 

ventricles (ventriculomegaly) and cortical atrophy (Huh et al. 2007; Smith et al. 2013). 

These findings are supported by the results of this study, which indicate that after rmTBI 

the lateral ventricles may be increased up to 970% while the thickness of the cortex may 

be reduced by up to 46%. The interplay and timing of the enlarged ventricles and cortical 
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atrophy remain to be determined. However, the cortex appears to not be simply 

compressed by the enlarged ventricles, as no change in cortical neuronal density was 

observed. These changes were not observed after rmTBI in adult animals (Kane et al. 

2012), suggesting a potentially unique response to TBI in juvenile animals. While the 

impact force used in this study was “mild,” the neuropathological findings in rmTBI 

animals are more significant and may highlight the deleterious effects of receiving 

multiple mTBIs. 

In humans, rmTBI can induce a neurodegenerative disease termed chronic 

traumatic encephalopathy (CTE) (Gavett et al. 2011; Smith et al. 2013) that has been 

most commonly found in professional athletes (McKee et al. 2009; Omalu et al. 2010a, 

2010b) or soldiers exposed to blast or concussive injury (Goldstein et al. 2012). CTE can 

currently only be diagnosed on autopsy but results in degeneration of brain tissue (i.e., 

cortical atrophy) and ventriculomegaly similar to what was observed in this study. 

Additional characteristics of CTE include tau accumulation, cognitive impairments, 

memory loss, confusion, and depression (McKee et al. 2009, 2010; Miller 1966). Further 

work examining these characteristics will be required to determine whether the 

neuropathological outcome of rmTBI in this study is indicative of underlying CTE. 

Cortical excitability is not altered early after repetitive mild traumatic brain injury.  

  Structurally, this study revealed extensive thinning of the cortex that was most 

pronounced beneath the site of injury in the motor cortex. Immunohistochemical staining 

revealed that rmTBI reduced the total number of cortical neurons, but this was not 

accompanied by a decrease in neuronal density. The significant loss of motor cortex is 

supported by several studies that have indicated persistent motor dysfunction and 
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abnormalities in the motor cortex after mTBI (De Beaumont et al. 2011, 2012; Tremblay 

et al. 2014). In addition, many of the behavioral deficits associated with rmTBI such as 

balance, reaction time, and visual memory involve high levels of integration across 

cortical regions (Covassin et al. 2008; Khurana and Kaye 2012; Slobounov et al. 2007) 

that are thought to be governed by input and output from layer II/III cortex (Douglas and 

Martin 2004; Kamper et al. 2013). This agrees with a recent study that found mTBI 

induces specific dendritic degeneration and synaptic reduction in cortical layer II/III 

pyramidal neurons (Gao and Chen 2011). As such, in this study we began by examining 

for rmTBI-induced changes in the intrinsic and synaptic properties of layer II/III 

pyramidal neurons within the motor cortex. 

A neuron's intrinsic excitability determines the probability it will fire an action 

potential, and the output pattern of that firing has been shown to contribute to the 

pathophysiology of several other neurological disorders (Bush et al. 1999; Prince and 

Connors 1986; Prinz et al. 2013; van Zundert et al. 2012). However, at PID 14 we 

investigated several possible measures of intrinsic excitability and found no significant 

differences between our rmTBI and sham-injured groups. This finding is supported by 

recent work from our lab where even severe TBI in juvenile rats failed to alter the 

intrinsic properties of cortical pyramidal neurons (Nichols et al. 2015). At a synaptic 

level, again at PID 14 no significant changes were found in the strength, frequency, or 

kinetics of either excitatory or inhibitory synaptic neurotransmission following rmTBI. 

To our knowledge this is the first study to investigate detailed intracellular 

electrophysiological changes following rmTBI. 

In humans, the use of transcranial magnetic stimulation from 72 h to 2 mo after 
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mTBI has shown increases in intracortical inhibition (Miller et al. 2014). Young athletes 

who have sustained multiple concussions have also been reported to have abnormal 

intracortical inhibition (De Beaumont et al. 2007, 2011; Tremblay et al. 2011). While no 

change in inhibition onto pyramidal neurons was observed in this study, future 

examination of the impact of rmTBI directly on other cortical layers and inhibitory 

interneurons may reveal distinct changes. Given the significant neuropathological 

changes following rmTBI, it is surprising to find no accompanying electrophysiological 

changes. The lack of synaptic excitability changes observed after rmTBI in this study 

contrast with recent findings after severe TBI from our lab in juvenile rats (Nichols et al. 

2015) and from previous reports in adult animals (Cantu et al. 2014). As this study only 

examined animals at 14 days after injury it will be important to examine changes that 

may occur in the acute and more chronic time points after rmTBI. The data suggest that 

juvenile rats have a unique injury phenotype after rmTBI that may be in part due to high 

levels of plasticity in the juvenile brain (Akbik et al. 2013; Grutzendler et al. 2002; Li and 

Asante 2011; Selemon 2013), ongoing development (Kolb and Gibb 2011), and/or 

potential trauma-induced postnatal neurogenesis (Gregg et al. 2001; Kolb et al. 2007). 

The effects of mTBI may often be subtle and only evident when the cortex is 

challenged with a high-demand task (Abdel et al. 2009). With the clear loss of mature 

neurons and significant cortical atrophy, we hypothesized that rmTBI animals may have a 

reduced upper limit of synaptic activity that would be evident only when the cortex was 

put under “stress.” To test this, we examined the synaptic properties of sham-injured and 

rmTBI animals during application of 4-AP, a potassium channel blocker and known 

convulsant. 4-AP has been shown to increase synaptic excitability (Boudkkazi et al. 
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2011; Buckle and Haas 1982) and to affect cortical pyramidal neuron intrinsic excitability 

(Higgs and Spain 2011; Shu et al. 2007). As expected, both the frequency and amplitude 

of spontaneous excitatory activity were increased from control periods by bath 

application of 4-AP. However, the effects of 4-AP were not statistically different between 

sham-injured and rmTBI animals. Therefore, even when cortical excitability is 

pharmacologically increased, rmTBI animals remain equally responsive and able to 

enhance synaptic activity compared with sham-injured animals. However, in this study 

we only tested the response of a saturating dose of 4-AP that produces a near-maximal 

level of synaptic activity. The use of a dose-response protocol may reveal subtler changes 

in network excitability or 4-AP sensitivity after rmTBI. 

In conclusion, rmTBI has been associated with serious clinical consequences 

including chronic traumatic encephalopathy and an increased risk for the development of 

dementia and neurodegenerative diseases (McKee et al. 2009, 2010; Omalu et al. 2010a, 

2010b). In this study, we found that rmTBI can be effectively modeled in young animals 

with a modified weight-drop method. The impacts can be consistently delivered and 

replicate clinically relevant impact forces and structural changes including cortical 

atrophy and ventriculomegaly. This method of inducing mTBI has also recently been 

shown in juvenile (Mychasiuk et al. 2014) and adult (Kane et al. 2012) animals to induce 

clinically relevant changes to cognition and behavior. At present, the findings from this 

study suggest that the pathophysiology of rmTBI may be unique when occurring in 

pediatric patients. An improved understanding of how the pediatric brain responds to 

rmTBI may help identify novel therapeutic targets, influence pediatric treatment, and 
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improve “return to game” decision making in adolescents. 
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CHAPTER 6 

DISCUSSION 

Recent work in pediatric TBI has found that children are not as resilient as what 

was once thought. Several studies have shown that younger children have a worse long-

term outcome after TBI than a teenager or adult (Anderson and Moore, 1995; Anderson 

et al., 2005c; Luerssen et al., 1988a; Schmidt et al., 2012). This work set out to determine 

how the unique physiology of a child’s brain contributes to the pathophysiology of TBI.  

Using a clinically relevant model of severe TBI, controlled cortical impact (CCI), we 

examined anatomical and functional changes in the peri-injury area and the contralateral 

motor and somatosensory cortex.  Disruption to the balance of the number of excitatory 

and inhibitory neurons within the cortex has been implicated in the pathogenesis of 

numerous neurological disorders including epilepsy (Jin et al., 2006, 2011).  The methods 

and findings detailed in this dissertation provide novel insight into the effect of CCI on 

cortical neurons such as pyramidal and parvalbumin fast-spiking cell types. 

Our initial findings discovered that 14 days post-injury was an optimal time point 

at which injury induced seizures took place. This allowed us to investigate how 

secondary insults begin to take place in pediatrics. Using EEG, we found that injury 

induced seizures ceased by seven days after injury and unprovoked recurrent seizures 

began.  Further investigation into primary excitatory neurons, pyramidal cells, was 

performed using whole-cell patch clamp.  Our results indicate that pyramidal neurons 

were not changed intrinsically or synaptically. However, excitatory and inhibitory 

synaptic bursting was seen. 

No changes were found in the excitatory population in the peri-injury region. To 
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characterize interneurons in the peri-injury region, similarly to our investigation of the 

pyramidal neurons, we used a transgenic mouse (Vgat:cre Ai9). We used whole-cell 

patch clamp and fluorescent immunohistochemistry (IHC) to functionally and 

anatomically characterize how CCI alters a juvenile animal cortex. We found that the 

peri-injury region retained interneurons, but experienced a loss of parvalbumin 

expression. Functionally, inhibition onto fast-spiking (FS) neurons was reduced and 

excitation was increased. This result provided insight that can begin to explain why we 

recorded electrographic seizures in injured animals, but saw no severe change to 

pyramidal neurons. 

To understand if this phenomenon is seen in other cortical regions, we focused on 

the contralateral motor cortex, which has been shown to be differentially affected 

(Biernaskie et al., 2005; Frost et al., 2003; Nudo, 2006).  Using the same techniques and 

transgenic mouse to characterize the “uninjured” contralateral motor cortex we saw 

similar results. However, we found that the contralateral motor cortex experienced a loss 

of interneurons and showed functional changes similar to what was found in the peri-

injury region. When this data was compared to results, in the somatosensory region, 

contralateral to injury, it was clear that motor cortex was uniquely affected. This indicates 

that a focal injury, such as CCI, can affect other “uninjured” regions of the brain.  

Finally, we performed repetitive mild TBI (rmTBI) on pediatric animals and 

found similar results in pyramidal neurons that we saw with the CCI model. However, we 

found that rmTBI produces cortical thinning and ventricular myelopathy, which was not 

seen in the CCI.  Using IHC and a pan-neuronal marker, NeuN, we found that there were 

a reduced number of neurons in the cortex. Functional characterization of pyramidal 
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neurons after rmTBI resulted in no change of intrinsic or synaptic properties. These 

findings suggest that even using other models of TBI, pediatrics still show a unique 

outcome when compared to adults. 

The work of this dissertation is the first to report that the pediatric cortex 

undergoes unique remodeling not seen in an adult injury. Further investigation shows that 

a juvenile cortical inhibitory network is preferentially affected in multiple regions after 

injury. Understanding cellular functions in the cortex after brain injury may be important 

to elucidating altered network activity that can bring about neurological deficits 

commonly seen after TBI in pediatric patients. 

Development of Post-traumatic Epilepsy and Pyramidal neurons 

Using whole-cell patch clamp and EEG techniques in juvenile rats this study 

demonstrates: (a) all rats within fourteen days post CCI injury show epileptiform activity 

by EEG, (b) there were no changes to synaptic or intrinsic properties in layer V 

pyramidal neurons, (c) excitatory and inhibitory synaptic bursting is greater in CCI 

animals compared to control, and (d) there is greater excitatory synaptic bursting than 

inhibitory bursting, suggesting that a hyperexcitable network develops post injury.  

Previous studies have shown an increase in postsynaptic currents after injury, but not 

while examining for changes in cell properties (Yang et al., 2010).  Other CCI studies 

that have shown increased spontaneous events have not presented findings of synaptic 

bursts, either inhibitory or excitatory. 

 Neuronal firing usually occurs in a single action potential in isolation in response 

to discrete input of postsynaptic potentials that combine and cause the membrane 

potential to depolarize.  Neurons sometimes will have periods of rapid action potentials 
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as opposed to the single firing event. Neuronal bursting is often seen as necessary to 

increase the reliability of neuronal communication (Izhikevich et al., 2003). Homeostatic 

synaptic plasticity has been implicated in an increase of network excitability after 

traumatic brain injury resulting in network burst activity (Houweling et al., 2005). It has 

also been shown that bursting activity resulted from the upregulation of excitatory 

synapses between pyramidal neurons (Houweling et al., 2005). 

Electrical brain activity is normally non-synchronous and when an epileptic 

seizure occurs, several neurons begin firing unusually, excessively, and in synchrony.  

When an excitatory neuron fires, the resistance to continue to fire again or to continue 

firing is due to the effect of inhibitory neurons or the intrinsic properties of the neuron 

itself (Somjen, 2004). However, during epilepsy the resistance of the excitatory neuron to 

fire is decreased due to changes in ion channels or irregular activity of inhibitory neurons 

(Somjen, 2004). When several neurons begin to burst in synchrony, a functional 

heterogeneity of cortical regions for seizure generation can lead to seizures (Timofeev 

and Steriade, 2004). Previous studies have examined mechanisms responsible for post-

traumatic epileptogenesis in rodent models using techniques such as lateral fluid 

percussion (Thompson et al., 2005), CCI in mice (Cantu et al., 2014; Hunt et al., 2009, 

2011), and cortical undercutting (Jacobs et al., 2000; Yang et al., 2010).  To our 

knowledge, only one study has found bursting, but this was done during extracellular 

recordings after CCI injury (Yang et al., 2010).  Our findings provide evidence that 

excitatory intracellular bursting is more apparent in neurons in cases of TBI. 

Furthermore, we show the increase in bursting in conjunction with intrinsic and synaptic 

properties unchanged after TBI. This suggests that pyramidal neurons of layer V are 
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experiencing a change in input from other regions of the brain.  The surprisingly similar 

bursting patterns suggest the manner in which neurons are transmitting information is 

different following severe cortical injuries. 

 Epilepsy research has shown that epileptiform activity can result from a shift of 

balance of excitation and inhibition toward excitation (Dichter and Ayala, 1987; 

Galarreta and Hestrin, 1998; Nelson and Turrigiano, 1998; Tasker and Dudek, 1991).  

This has been shown by studies that have elicited experimental seizures by blocking 

inhibition (Matsumoto and Marsan, 1964; Prince, 1978; Steriade et al., 1998). Other 

favorable conditions to generate seizures would be to increase inhibition and decrease 

excitation (Timofeev and Steriade, 2004).  How this balance is altered during TBI to 

contribute to the development of PTE is still unclear. Our findings show that there is an 

increase in excitation after TBI, which is consistent with other TBI studies.  

  There are many possibilities that play a role in TBI pathology leading to PTE 

including increased inflammation (Johnson et al., 2013; Smith et al., 2013), white matter 

degeneration (Johnson et al., 2013), oxidative and nitrosative damage (Abdul-Muneer et 

al., 2013), and mitochondrial changes (Balan et al., 2013; Cheng et al., 2012).  Also, 

further work needs to be conducted to elucidate what region of the brain is driving this 

rapid enhancement of excitability in layer V neurons.  Axon sprouting and enhanced 

excitatory synaptic connectivity onto layer V pyramidal neurons has been shown in 

chronic models of posttraumatic epileptogenesis (Jin et al., 2006; Salin et al., 1995). By 

analyzing biocytin filled neurons in the affected regions could provide visual data to 

understand axonal and dendritic projections after injury. 

In conclusion, improvements in treatment and diagnosis of PTE are desperately 



206 
 

  
  
  
  
 

needed.  All children admitted to the hospital for TBI are given anticonvulsants.  

Providing anticonvulsants to a developing brain, when there may be no risk of PTE, 

could have undesirable developmental and cognitive ramifications. Here we have shown 

that, on a cellular level, those that suffer an injury are experiencing a bursting 

phenomenon.  This bursting phenomenon could lead to the area of the brain that may play 

a role in driving a hyperexcitable cortex.  By studying CCI 14 days post injury in juvenile 

rats, we are observing the period in which PTE is developing.  PTE could develop 

because of the modification of the cortical network during the brain’s healing process. 

Selective Inhibitory Functional changes in Peri-Injury Region 

Using a clinically relevant model of severe TBI (sTBI), controlled cortical impact 

(CCI), we examined for anatomical and functional changes to cortical inhibition in 

juvenile mice that endogenously expressed a fluorescent marker (tdTomato) in all 

interneurons (Vgat:cre Ai9).  At 14 days following CCI, we measured changes in 

immunoreactivity of calcium-binding proteins that delineate the two largest cortical 

interneuron populations, parvalbumin (PV) and somatostatin (SST). We found that PV 

expression was significantly down while SST was unaffected. Using whole-cell patch 

clamp we were able to characterize fast-spiking neurons intrinsically and synaptically 

after CCI. Intrinsic properties were not changed, but synaptic excitation was increased 

and synaptic inhibition was decreased onto a fast-spiking neuron. Previous studies have 

shown increased excitation and decreased inhibition onto pyramidal neurons (Cantu et 

al., 2014).  However, this work is the first to examine the cortical interneuron network in 

a pediatric model after CCI.  

Parvalbumin interneurons in relation to neurological diseases have been an 
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increasing topic of interest (Lewis et al., 2012; Ma and Prince, 2012; Schwaller et al., 

2004; Sohal et al., 2009). Parvalbumin interneurons have been implicated in diseases 

such as schizophrenia (Lewis et al., 2012; Sohal et al., 2009) and epilepsy (Jin et al., 

2014; Ma and Prince, 2012; Schwaller et al., 2004). Fast-spiking parvalbumin positive 

basket inhibitory neurons are increasingly implicated in both critical period and adult 

plasticity (Hensch, 2005; Letzkus et al., 2011). As they have been shown to act in 

response to network activity to modulate cortical response gain (Atallah et al., 2012; 

Wilson et al., 2012).  Modulation in gain control has been shown in in the juvenile cortex 

by sensory input reduction which leads to decreased excitatory firing rates (Kuhlman et 

al., 2013). This phenotype has been shown to increase seizure threshold (Schwaller et al., 

2004), alter short-term synaptic plasticity (Caillard et al., 2000), and cause deficits 

relevant to human autism core symptoms (Wöhr et al., 2015). 

We found that the overall density of cortical interneurons was not reduced PID 14 

after CCI in juvenile mice. However, CCI induced selective loss of PV expression in the 

cortex, with the greatest loss near the site of injury. Despite the loss of PV expression, 

fast-spiking interneurons did not have altered intrinsic properties. Changes to a neurons 

intrinsic excitability affects its probability to fire an action potential which will affect the 

output that has been implicated in a variety of other neurological disorders (Prinz et al., 

2013; van Zundert et al., 2012). 

Synaptically, inhibition onto fast-spiking interneurons received less inhibition 

after CCI and an increased rise and decay time of spontaneous synaptic events. This 

increase in kinetic rise and decay could be a compensatory mechanism to increase the 

temporal integration window in response to the decrease in spontaneous inhibitory 
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events. Excitatory strength onto fast-spiking interneurons was dramatically increased 

after CCI, measured by sEPSC amplitude and charge. We didn’t see a greater frequency 

of sEPSC events indicating that presynaptic pyramidal (PYR) neurons did not have a 

greater probability of release and thus are not more excitatory. This is similar to what is 

seen in adult mice after CCI (Cantu et al., 2014).  

This suggests that PV neurons are more sensitive after an injury such as CCI. We 

hypothesize that the GABAergic network, particularly PV positive neurons, is more 

susceptible to an environmental injury, especially immature PV interneurons, due to a 

variety of reasons. Including a lack of perineuronal nets that protect fast-spiking 

interneurons (Cabungcal et al., 2013a) and the effects of oxidative stress caused by 

NMDA disregulation in a developing cortex (Behrens and Sejnowski, 2009; Kinney et 

al., 2006). Our results, in conjunction with what has been shown looking at other 

neurological disorders, provide insight into the importance of PV immunoreactivity to 

GABAergic cell function. Critical experiments that lead to the molecular mechanism that 

might be responsible for the loss of PV immunoreactivity is an important next step in our 

work and are currently underway. 

Contralateral Motor Cortex Experiences Preferential Inhibitory Dysfunction 

We combined whole-cell patch clamp electrophysiology with fluorescent 

immunohistochemistry in fluorescently labeled inhibitory interneurons to ask how 

contralateral motor cortex inhibition is altered after controlled cortical impact.  Very little 

work has been done looking at contralateral effects of CCI in the pediatric brain. 

However, the results of excitatory and inhibitory synaptic transmission agrees with adult 

CCI investigating pyramidal synaptic function in the peri-injury region (Cantu et al., 
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2014; Hunt et al., 2009). We found that 14 days after injury the total interneuron 

population and PV expression cell density was decreased. When fast-spiking interneurons 

were examined for electrophysiological properties, they showed a decrease of presynaptic 

inhibition, increased charge, and longer decay times. Excitation onto fast-spiking 

interneurons showed an increase in sEPSCs with decreased decay times.  Despite the 

synaptic changes, the fast-spiking neurons showed no change to their intrinsic properties, 

suggesting that CCI effectively altered the E/I balance of the contralateral motor cortex. 

These observations argue that TBI elicits a process leading to anatomical and 

neurophysiological remodeling of the morphologically intact, uninjured contralateral 

motor cortex.  

 We found that the overall density of cortical interneurons was reduced at PID14 

after CCI in the contralateral motor cortex of juvenile mice. CCI induced a selective loss 

of PV expression in the uninjured motor cortex.  Using an endogenous fluorescent label, 

we were able to discriminate if there was actual cell loss or a change in 

immunoreactivity. The fast-spiking interneurons that were present in the motor cortex 

after injury showed no change in intrinsic properties. 

 Parvalbumin positive cortical interneurons are predominantly of a fast-spiking 

(FS) phenotype (Hu et al., 2014).   Similar to most other cortical cell-types, the firing 

properties of FS interneurons are developmentally regulated and shown to be well 

established by time of our CCI (i.e. P22) (Doischer et al., 2008; Itami et al., 2007; Okaty 

et al., 2009). Mature fast-spiking cells are characterized by low input resistance, narrow 

action potentials, and the production of high-frequency spike trains with little to no spike-

frequency adaptation. The loss of interneurons and PV expression in this study prompted 
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us to first examine changes in the intrinsic properties of FS neurons of the contralateral 

motor cortex. Intrinsically, the FS neurons did not show a change to resting membrane 

potential, input resistance, or firing frequency. Synaptically, fast-spiking interneurons 

received less inhibition and an increase in sIPSC decay time after CCI. This increase in 

decay time could potentially be the result of a compensatory response to increase the 

temporal integration window to maintain cortical health. The number of spontaneous 

excitatory events was increased in the uninjured motor cortex and was accompanied by a 

decreased decay time. The combination of the synaptic excitatory and inhibitory response 

might indicate that the inhibitory network of the contralateral motor cortex is working in 

overdrive in response to axonal glutamatergic over activation caused by the injury. 

 This evidence suggests that PV neurons are sensitive to cellular and molecular 

processes induced by CCI. The function of PV neurons, in the cortical network is 

important because previous work in PV fast-spiking inhibitory motor neurons shows that 

they can exhibit activity-dependent modifications of firing properties (Miller et al., 2011).  

The results of this work can be explained by inhibitory overexcitation in response to 

glutamatergic activation from cross hemisphere axonal projections. Regardless, these 

results provide new insight into the effect a unilateral severe TBI can have on uninjured 

cortical regions. However, it is important to understand that the injury is very complex 

and it is possiblty not a single mechanism, but likely a multitude of changes occurring in 

the brain simultaneously giving rising to the phenomenon seen here. 

Numerous compensatory mechanisms have been shown after TBI, including 

regenerative efforts. Regeneration-associated molecules such as proline-rich protein 1A, 

growth-associated protein 43, synapsin 1 and brain-derived growth factor (BDNF), are 
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increased following TBI in addition to growth-associated genes (Emery et al., 2000; 

Hulsebosch et al., 1998; Kobori et al., 2002; Li et al., 2004; Marklund et al., 2007). 

Increased sprouting of uninjured corticospinal tract originating from the contralateral to 

the injury and of contralateral hippocampal mossy fibers has also been seen after injury 

(Hånell et al., 2010; Lenzlinger et al., 2005; Scheff et al., 2005).  Corticospinal tract 

rewiring within the denervated cervical spinal cord has been shown to compensate for 

lost motor function following a focal TBI in mice (Ueno et al., 2012). Similar results 

have been seen in ischemia studies. For example, clinical studies of stroke patients 

showed that larger infarcts caused greater activation of the intact contralateral hemisphere 

(Cramer et al., 2006).  Similar results in rodent ischemia models have shown dendritic 

growth and axonal sprouting within the contralateral motor cortex following unilateral 

ischemia (Biernaskie and Corbett, 2001; Biernaskie et al., 2005; Chen et al., 2002). These 

factors may contribute to the altered motor cortex anatomy and function seen in our data. 

However, further investigation into molecular mechanisms responsible for the alteration 

in the motor cortex is needed.  

 

Understanding a Complex Network Change Pediatric TBI 

The experiments here provide novel insight into the unique nature regarding how 

the pediatric cortex responds to injury. However, understanding these changes on a 

network level is complex, as we did not see any changes in the intrinsic properties. 

Additionally, we did not see different excitatory and inhibitory synaptic transmission 

onto layer V pyramidal neurons, except for the bursting phenotype described.  However, 

in the same region, we saw that fast-spiking interneurons received less inhibition and 
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more excitation. This result would make a fast-spiking interneuron release more GABA 

onto its post-synaptic partner, which is known to be the somatic region of a pyramidal 

neuron. However, we did not see increased inhibitory post-synaptic currents when 

recording from pyramidal neurons.  

The complexity arises when understanding the inhibitory network. We did not 

record from somatostatin neurons, which are known to synapse onto the proximal 

dendrites of pyramidal neurons. Somatostatin neurons could be compensating for their 

activity however these additional experiments need to be performed. To understand the 

rise in inhibition onto fast-spiking neurons, multiple interneurons could be the culprit. 

Vasoactive intestinal polypeptide (VIP) neurons have been shown to disinhibit fast-

spiking neurons (Dávid et al., 2007; Pi et al., 2013). However, fast-spiking neurons are 

known to receive input from other fast-spiking neurons (Hioki et al., 2013). These 

examples are only a fraction of the potential network complexities that might be the 

mechanism causing our results. 

 To further characterize the network phenomenon seen in this work, circuit 

mapping of fast-spiking neurons can further explain their effect on the network. Specific 

neuron mapping using optogenetic mice (i.e. Somatostain-cre ChR2, VIP-cre ChR2, etc.) 

can reveal how certain neuronal subtypes are acting on fast-spiking neurons. On a smaller 

scale, synaptically connected paired recordings of a fast-spiking neuron to a fast-spiking 

neuron, a VIP neuron to a fast-spiking neuron, etc., could explain why a juvenile mouse 

inhibitory network is different from an adult. However, the complexity could be greater 

and require patch-clamping synaptically connected VIP, PV, and pyramidal neurons.  It 

has been suggested that VIP neurons control the activity of pyramidal cells within a 
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vertical column by multi-laminar disinhibition through somatic inputs to PV neurons 

(Hioki et al., 2013). Unfortunately, the complexity might not end there, as current 

research is still working to uncover how exactly the cortex is connected and how that 

connectivity functions in a network. 

 In summary, this dissertation provides evidence that pediatric sTBI is unique from 

adult sTBI. In contrast to adults, this select loss of PV appears specific to juvenile 

animals and suggests interneuron sensitivity is age and developmentally regulated. 

Disruption to PV-FS interneuron functioning may play an important role in the recovery 

and outcomes of patients following TBI. At present, elucidating if PV expression loss is 

an adaptive or maladaptive response to injury is of critical importance to understanding 

its role in the pathophysiology of TBI and developing new targeted therapeutic 

approaches. 
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APPENDIX B 

USE OF A CONFORMATIONAL SWITCHING APTAMER FOR RAPID AND 

SPECIFIC EX VIVO IDENTIFICATION OF CENTRAL NERVOUS SYSTEM 

LYMPHOMA IN A XENOGRAFT MODEL 
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APPENDIX C 

SULFORHODAMINE 101 SELECTIVELY LABELS HUMAN ASTROCYTOMA 

CELLS IN AN ANIMAL MODEL OF GLIOBLASTOMA 
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APPENDIX D 

LABEL-FREE MICROSCOPIC ASSESSMENT OF GLIOBLASTOMA BIOPSY 

SPECIMENS PRIOR TO BIOBANKING 
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