
Modeling, Simulation and Analysis for Software-as-Service in Cloud

by

Wu Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2015 by the
Graduate Supervisory Committee:

Wei-Tek Tsai, Chair
Hessam Sarjoughian

Jieping Ye
Guoliang Xue

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

Software-as-a-Service (SaaS) has received significant attention in recent years as major

computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting

this new approach to develop software and systems. Cloud computing is a computing

infrastructure to enable rapid delivery of computing resources as a utility in a dy-

namic, scalable, and virtualized manner. Computer Simulations are widely utilized to

analyze the behaviors of software and test them before fully implementations. Simula-

tion can further benefit SaaS application in a cost-effective way taking the advantages

of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service

in Cloud. The researches cover the following topics: service modeling, policy specifica-

tion, code generation, dynamic simulation, timing, event and log analysis. Moreover,

the framework integrates current advantages of cloud: configurability, Multi-Tenancy,

scalability and recoverability.

The following chapters are provided in the architecture:

• Multi-Tenancy Simulation Software-as-a-Service.

• Policy Specification for MTA simulation environment.

• Model Driven PaaS Based SaaS modeling.

• Dynamic analysis and dynamic calibration for timing analysis.

• Event-driven Service-Oriented Simulation Framework.

• LTBD: A Triage Solution for SaaS.

i

This thesis would never been completed without the helps from my parents Jinke

Li and Xiangying Chen, my grandparents, my labmates, all my committee members

and all my friends at ASU computer science department.

I also cherished the time I spent at Arizona State University, it will be one of my

most important memories of my life.

Thank you all, my friends. I will embrace the world now.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 SIMSAAS: SIMULATION SOFTWARE-AS-A-SERVICE 4

2.1 Introduction . 4

2.2 Simulation Architecture . 5

2.3 Simulation Multi-Tenancy Configuration . 7

2.3.1 T-Filter Configuration: The MTA Model for SimSaaS 9

2.3.2 Discussions . 15

2.4 SimSaaS Execution Runtime. 15

2.4.1 Simulation Runtime Infrastructure . 16

2.4.2 Real-Time Tenant Configuration . 17

2.4.3 Tenant Physical and Logical Addressing 19

2.4.4 Resource Isolation and Capability Control 21

2.5 Real-Time Analysis and Continuous Calibration 23

2.6 Example . 24

2.7 Related Work . 26

2.8 Conclusion . 27

3 Model-Driven Tenant Development for PaaS-Based SaaS 28

3.1 Introduction . 28

3.2 PaaS Support for SaaS Implementation . 29

3.3 Model-Driven SaaS In PaaS . 35

3.3.1 Modeling Language . 37

iii

CHAPTER Page

3.3.2 Modeling Customization with Extension Points 37

3.3.3 Modeling OIC/Grapevine Customization 39

3.3.4 Modeling Multi-Tenancy Architecture . 40

3.3.5 Scalability Management . 42

3.3.6 Modeling Cache Management . 42

3.3.7 Modeling Redundancy and Recovery . 43

3.4 Code Generation and Case Study . 43

3.5 Conclusion . 48

4 P4-SIMSAAS: POLICY SPECIFICATION FOR MULTI-TENDENCY

SIMULATION SOFTWARE-AS-A-SERVICE MODEL 50

4.1 Introduction . 50

4.2 Ontology Systems. 54

4.2.1 Ontology . 54

4.2.2 Relationships . 57

4.3 MTA Policy Specification . 60

4.4 Modeling and Simulation Process . 64

4.5 Case Study . 70

4.5.1 SOA Modeling . 70

4.5.2 Configuration and Policy Construction . 71

4.5.3 Deployment and Execution . 72

4.5.4 Monitoring and Policy Enforcement . 73

4.6 Conclusion . 74

5 TIMING SPECIFICATION ANDANALYSIS FOR SERVICE-ORIENTED

SIMULATION . 76

iv

CHAPTER Page

5.1 Introduction . 76

5.2 Related Work . 76

5.2.1 Service-Oriented Simulation Approaches 78

5.3 Specifying Timing in Service-Oriented Model . 79

5.3.1 Timing Specifications . 79

5.3.2 Consistency of Timing Constraints . 84

5.3.3 States in ACDATER . 86

5.4 Simulation Architecture . 87

5.5 Simulation Lifecycle. 88

5.6 Data Collection and Model Tuning . 89

5.7 Dynamic Simulation with Aid from Static Analysis 92

5.8 Case Study . 95

5.9 Conclusion . 99

6 EVENT-DRIVEN SERVICE-ORIENTED SIMULATION FRAMEWORK101

6.1 Introduction . 101

6.2 Simulation Framework . 103

6.2.1 Events and Their Attributes . 103

6.2.2 Framework Architecture . 104

6.2.3 Sample Simulation Flow . 106

6.3 PSML Event Specification . 108

6.4 Publishing and Sharing via Ontology System . 110

6.5 Static Analysis and Dynamic Tuning . 113

6.6 Case Study . 115

6.7 Conclusion . 120

v

CHAPTER Page

7 LTBD: A TRIAGE SOLUTION FOR SAAS . 121

7.1 Introduction . 121

7.2 RTRM Architecture/Tradditional Triage . 126

7.2.1 RTRM Architecture . 126

7.2.2 Traditional Triage . 129

7.3 Related Work . 131

7.4 Logging Solutions . 139

7.4.1 Modeling Logs . 140

7.4.2 Triage Single Workflow . 143

7.4.3 Macro Log Analysis of Workflows . 150

7.5 Experiment and Evaluation . 158

7.5.1 Experiment . 158

7.5.2 Performance for Real-Time Log-Search . 161

7.5.3 FIC Detection Rate . 164

7.5.4 Workflow Query Evaluation . 166

7.6 Conclusion . 167

8 CONCLUSION . 168

REFERENCES . 170

vi

LIST OF TABLES

Table Page

3.1 Tables Required for Tenant-Development . 38

3.2 PSML Modeling for SaaS . 39

3.3 Tenant Information Table (TIT) . 41

3.4 Tenant-Component Table (TCT) . 42

3.5 Component-Address Table (CAT) . 42

3.6 Scalability Management Table (SMT) . 43

3.7 Cache-Management Table (CMT) . 43

3.8 Redundancy & Recovery Management Table (RRMT) 44

4.1 Classes in the MTA Ontology . 55

4.2 Relationships and Properties in the MTA Ontology 56

4.3 Relationships and Properties in the MTA Ontology 57

4.4 Properties and Relationships in the Application Domain Ontology 57

4.5 Classes in the Building Control Application Domain Ontology 58

4.6 Properties and Relationships in the Building Control Ontology 60

4.7 Requirements for ABCDorm and XYXHome Control Simulation 71

4.8 Overview of Sample MTA Simulation Models . 72

4.9 Sample Policies for MTA Simulation Models . 75

6.1 Event Specification in PSML . 109

7.1 Comparision of Major Logging Solutions . 139

7.2 Data Size for One Hour of Simulated Transaction Logs 163

7.3 FIC Recovery Rate with Even Distribution . 166

vii

LIST OF FIGURES

Figure Page

2.1 Elements of SimSaaS Architecture. 5

2.2 SimSaaS Main Flow . 6

2.3 T-Space Implementation using TRIE . 11

2.4 A Sample Tenant Expression (TE) . 12

2.5 Simulation Runtime . 16

2.6 Resource Addressing Example . 20

2.7 Virtual Space for Simulation Execution . 21

2.8 Simulation Process . 23

2.9 Creating Device Control Simulation to Support Multi-tenancy. 25

3.1 PaaS Independent SaaS Application Development . 29

3.2 Code Based versus Model Driven Approach . 30

3.3 A PSML Action Describes a Video Control . 40

3.4 Mapping Process in Code Generation . 47

3.5 Two Tenants with Isolated Execution Instances . 48

3.6 Example Code Generation from PSML Model to Java Code 49

3.7 Two Tenants Deployed at GAE . 49

4.1 PaaS Independent SaaS Application Development . 51

4.2 MTA Simulation Architecture . 53

4.3 Sample MTA Ontology and Domain Ontology . 55

4.4 Sample Application Ontology in Building Control Domain 59

4.5 Cross Referencing among Ontologies . 59

4.6 Four-Step Cyclical SimSaaS Modeling and Simulation Process 65

4.7 Deployment OverView of Global, Regional and Local Policies 73

5.1 Timing Constraints . 82

viii

Figure Page

5.2 A Simple Account Update Process . 82

5.3 An If-Then-Else Process . 85

5.4 Two Active Services in One Process . 87

5.5 Simulation Environment . 88

5.6 Model-Driven Service-Oriented Simulation Process 90

5.7 Time Tracking SOA Architecture . 91

5.8 Time Data Collection for Workflow . 92

5.9 Data Collection and Model Tuning . 93

5.10 Dynamic Simulation with Aid from Static Analysis 94

5.11 Switch Flow Sample . 95

5.12 SumoBot Workflow . 97

5.13 Action, Event and Condition Time Trajectories . 99

5.14 Action, Event and Condition Time Trajectories . 100

6.1 Simulation Framework Architecture . 105

6.2 Sample Simulation Flow . 107

6.3 Sample Robot Domain Event Ontology . 111

6.4 Sample Event Generation Patterns Ontology . 112

6.5 Sample Event Graph . 113

6.6 Dynamic Tuning Process . 115

6.7 Simulation Case Study . 118

6.8 Sample Event Graph . 118

6.9 Sleep Time = 100 Milliseconds . 119

6.10 Sleep Time = 500 Milliseconds . 119

6.11 Sleep Time = 1,000 Milliseconds . 120

ix

Figure Page

7.1 SOA Structure for Cloud Services . 123

7.2 Sample Log Files in Cloud . 123

7.3 RTRM Architecture Design . 126

7.4 Log Architecture on a Cloud . 126

7.5 A Sample Workflow with Log Snippets . 132

7.6 Conventional Triage Method and Problems . 133

7.7 Log File Structure in Cloud . 135

7.8 Number Of Workflow Combinations With And Without Topology 146

7.9 Raw Log Files Stored on Log Server . 151

7.10 Index the Raw Log Files for Log Query . 152

7.11 A Splunk Sample Query Result Represented in a List 152

7.12 Overall Process for Log Triage . 158

7.13 Workflow Indexing: Mapper Phase . 159

7.14 Workflow Indexing: Reducer Phase . 159

7.15 An Example of Workflow Indexing . 160

7.16 A Sample Report Generated from Workflow Indexes 160

7.17 Decision Tree Example Based on Workflow Types . 161

7.18 Mapreduce to Calculate Workflow Indexes . 161

7.19 Experiment: Failed Interaction Call in a Purchase Transaction 162

7.20 Experiment: Empirical Completion for a FIC . 162

7.21 Experiment: Test Evaluation for The Triage Method 163

7.22 Workflow Failure Rate Based on Even Service Failure Rates 165

7.23 Comparison of Conventional and Proposed Workflow Query Time 167

x

Chapter 1

INTRODUCTION

Cloud computing has received significant attention recently as it is a new com-

puting infrastructure to enable rapid delivery of computing resources as a utility in a

dynamic, scalable, and virtualized manner. Public clouds are available from Amazon

Palankar et al. (2008a), Google Google (2014), Microsoft Microsoft (2014), Salesforce

Salesforce (2014). Private clouds, in which the cloud software is loaded locally, are

available from VMware VMWare (2014), Eucalyptus Eucalyptus (2014), Citrix Citrix

(2014), and thousands of vendors offer cloud solutions.

SaaS has become a new delivery model for cloud computing, and it has a four-level

maturity model Chong and Carraro (2006) depending on their customization, multi-

tenancy architecture (MTA), and scalability capabilities. Researchers have started to

investigate the simulated cloud, such as Cloudsim Calheiros et al. (2011). A simulated

cloud enables applications to run. Note that this paper will not address simulation of

a cloud, but provide a new model for simulation as a service. Different from simulated

cloud, this paper presents how a cloud can support simulations with unique features

such as configuration and MTA.

Simulation in a cloud can take advantage of various resources including physi-

cal resources such as processors, cache and logical resources such as in-memory data

stores, distributed file systems, and SaaS infrastructure in the cloud. In fact, simu-

lation software can be structured in a SaaS manner in which every resource/software

is treated as service, and thus SimSaaS (Simulation Software as a Service) Tsai et al.

(2011c). Traditional simulation often requires intensive software developments, but

SimSaaS can provide significant advantages as it can potentially provide configura-

1

tion, MTA, and scalability, and it can save notable time and effort in developing

simulation software based on the same software base. Furthermore, a cloud offers a

computing platform where an organization does not need to acquire its own servers

and infrastructure, and thus may save a lot of resources to support simulations.

On top of SaaS and simulation there are lots of goals: First, SaaS providers need

to evaluate the timing and events in a SaaS infrastructure, a timing specification Tsai

et al. (2009) and event infrastructureTsai et al. (2010b) need to be defined. Second,

as each tenant has its unique configuration, it is difficult to check all the issues at

the design time, and thus some constraints will be enforced at runtime by the policy

mechanism Tsai et al. (2011b). By offering timing, event and policy for SaaS, the

SaaS maintainers allow tenant to have a flexible way to maintain, trace, evaluate,

analyze and fine-tune the SaaS infrastructure.

Cloud computing often has three principal components, Software-as-a-Service

(SaaS)Chong and Carraro (2006), Platform-as-a-Service (PaaS), and Infrastructure-

as-a-Service (IaaS). SaaS runs on top of a PaaS that in turn uses IaaS. SaaS is a new

approach for delivering software, and it is characterized the capability to support cus-

tomization Sun et al. (2008), Multi-Tendency Architecture (MTA)Tsai et al. (2006c),

scalability and reliability Tsai et al. (2010a). For instance, saleforce.com provides a

CRM solution, and it offers a pre-built application that runs on top of Force.com.

Well-known SaaS systems include Salesforce.com, Rightnow Technologies, Workday,

SuccessFactors, and Corenttech.com. PaaS provides similar functions as a traditional

OS with databases and often runs on a massive number of processors with built-in

fault-tolerant computing and scalability mechanisms. For example, in GAE (Google

App Engine), each write operation will write three independent chunks to ensure

reliability, and more chunks if the user requires higher reliability. Furthermore, the

system provides scalability by allocating more resources when the workload increas-

2

es. Well-known PaaS systems include GAE, Amazons EC2, and Microsofts Azure

Microsoft (2014). Since the popularity of SaaS infrastructure and the complexity of

building the software for SaaS, modeling SaaS and generate code for PaaS based SaaS

is important and challeging Li et al. (2012b).

Log, used for saving the production behaviors in transaction processing system

in a cloud, is widely used to triage production failures. Log has posed challenges for

cloud as its large volume in data, unstructured formats and untraceable failures. Even

with trustworthy cloud platforms such as Amazon and Google, their services still ex-

perience constant downtime Status.aws.amazon.com (2015) Code.google.com (2015).

Service downtime on production become frequent, however urgent for enterprise s-

ince every minute of failures on production can result in huge loss. Programmers

normally put least priority at coding phase for logging, thus causing later on unstruc-

tured formats along with the heterogeneous deployment of the different components

in cloud. As log data accumulate in cloud at hundreds millions per hour on com-

mercial production sites, they roll fast and become complicate to manage. Lots of

existing frameworks from enterprise and open source try to address the logging issues

from different aspects. For example Splunk Splunk.com (2015), logstash Logstash.net

(2015), uilog Zou et al. (2014), IBM SmartCloud Analytics Analysis (2015), Fluent-

d Project (2015), Google Analytics Google.com (2015), XpoLogXpolog.com (2015)

and Nagios Nagios.org (2015) etc. Depending on the different stand point, they all

have different usages within their own domains. To handle the unstructured, large

data mixed with untraceable failures, none of the existing systems have a complete

solution. This paper is to propose a new logging solution for efficient and effective

triaging of the production failures with these challenges.

The research topic covers the following research areas: service modeling, policy

specification, code generation, dynamic simulation, timing, event and log analysis.

3

Chapter 2

SIMSAAS: SIMULATION SOFTWARE-AS-A-SERVICE

2.1 Introduction

Early exploration of simulation in a cloud has been done by Lanner group Group

(2014) and Thomas PaviotPaviot (2010). Lanner group develops a simulator for

business process management systems in a cloud. Thomas offers simulation CAD

services in a cloud. However, they have not explored the configuration, MTA, and

scalability features of SaaS.

This paper explores the potential of using these SaaS features for simulation soft-

ware. To support configurability at multi-layers, both simulation supporting frame-

work and simulation models need to be included. To support MTA, the system should

have the abilities to add/modify/delete the tenants, address the tenants accessibili-

ty controls, distinguish tenants simulation interaction message during executions and

isolate tenants own specific data. To support scalability, both scale up and scale down

need to be considered Wikipedia (2014b). To fully explore these features, one can

assume the Platform as a Service (PaaS) such as EC2 Palankar et al. (2008a) or GAE

Google (2014) can provide relevant features such as scheduling, automated workload

detection, web data storage, automated redundancy management, scalability (includ-

ing scaling up and down, out and in) and recovery, which is indeed supported.

As a summary, the contribution of this paper is as follows:

• Propose SimSaaS framework that incorporates key elements of SaaS features

for simulation;

• Design a platform-independent configuration model to support MTA;

4

 Figure 2.1: Elements of SimSaaS Architecture

• Present a simulation runtime infrastructure that supports MTA;

• Investigate various run-time analysis techniques that can monitor, analyze and

calibrate the simulation continuously.

This paper is organized as follows: Section 2 discusses the SimSaaS framework;

Section 3 presents a SimSaaS MTA configuration model; Section 4 talks about a

MTA simulation runtime; Section 5 presents analysis and calibration of the simulation

model; Section 6 presents an example, Section 7 concludes this paper.

2.2 Simulation Architecture

The SimSaaS architecture design is discussed in this section, As shown in Figure

2.1 shows the SimSaaS architecture; and Figure 2.2 shows the relations of the major

components in the framework through the life cycle of SimSaaS, including a modeling,

code generation/deployment, simulation, and analysis cyclical process.

5

AnalysisModeling

Code

Generation

Services

Deployment

Services

Resource

Allocation

Profiling

Services

Visualization

Services

Service

Repository

UI

Repository

Workflow

Repositories

Data

Repositories

Participant/

Environment

Modeling

Services

Service

Modeling

Services

C
o
n
fig
u
ratio
n
 S
erv
ices

In
tellig

en
t Q
u
ery
 S
erv
ices

Ontology

Sytem

Simulation

Execution

RTE Services

RTI

Services

RTS

Services

Secure

Check in/

out

SimulationCodegen and

Deployment
Participant

Repository

Figure 2.2: SimSaaS Main Flow

As one may find out, the design is similar to the SOA simulation framework Tsai

et al. (2009, 2010b, 2006c) but with several distinct differences. In modeling phase,

configuration services are offered to configure the existing simulation services with

MTA abilities. In simulation runtime phase, a new infrastructure is introduced to

handle the tenant add, delete, modify operations and the MTA simulation execution

including resource allocation, addressing, isolation, accessibility control et al.

Supporting Environment: This contains repositories and services that facilitate

the reuse of simulation models. Service repositories store simulation services, work-

flows, participants and data; ontology systems classify the models, store their relations

and support reasoning function for models; intelligent recommendation services serve

as the interfaces to query metadata.

Model information is then passed to the modeling services through intelligent

query services. To speed up the searching, continuous indexing and caching system

can be used.

Modeling Services: These provide modeling and configuration for simulation

using PSML Tsai et al. (2007d), simulate service modeling for both atomic and com-

posite services Tsai et al. (2007d). Configuration services are offered here as well to

support the MTA configuration. Tenant configuration will be discussed in section 3.

6

Code Generation/Deployment Services: These include services that gener-

ate and deploy the code to simulation engine. Similar to DDSOS Tsai et al. (2006c),

simulation deployment in SimSaaS can support both the on demand and automated

way.

Simulation Runtime: This offers the vital infrastructure services, stores neces-

sary information and executes simulation models in cloud. Three major components

include Run Time Infrastructure (RTI) services, Run Time Execution (RTE) services

and Run Time Storage (RTS) services. More details of Simulation Runtime and MTA

support will be discussed in section 4.

Analysis Engine: This tracks the runtime information, analyzes the simula-

tion and displays through a graphic interface. Profiling services analyze the runtime

execution information and make predictions to aid the dynamic calibration of simu-

lation. Visualization services display the data from logging, provenance and profiling

services. Both timing analysis Tsai et al. (2009) and event analysis Tsai et al. (2010b)

will be supported in SimSaaS.

The whole process is a continuous cycle, in which the analysis results are sent back

to the modeling phase for continuous calibration until it meets the desirable goals of

the simulation.

Considering the space constraint, this paper will focus on MTA configuration,

execution runtime, and the continuous analysis.

2.3 Simulation Multi-Tenancy Configuration

This section designs a configuration model for the MTA support of existing PSML

simulation model.

The simulation models used in SimSaaS are described by PSML, which can be

executed in cloud platform such as GAE through the code generation abilities. How-

7

ever, PSML does no support of MTA inherently. The desirable features for supporting

MTA can actually be configured using a model describing essential requirements for

MTA. Then, simulation runtime can read the tenant configuration model, further-

more handle resource allocation, and other related problems in execution runtime.

Thus this paper needs to figure out a MTA configuration model first.

Take a smart home simulation example. Suppose a HomeSimulation model is

developed using PSML for a room. Before deploying the simulation to cloud, the

director changes her mind and wants to replicate the simulation for 100 different

families and each room has its unique requirements. One straightforward solution is

to make modification to existing model and create 100 instances. In cloud, the 100

different simulations are essentially 100 tenants. And thus this is a MTA problem.

However, several issues are raised: Do we need to change the existing model for

MTA? How we differentiate the requirements of tenants? Will hardware, software

and storage be shared among the simulations? How does the system manage these

simulations with respect to resource allocation, addressing, accessibility control and

execution? In the following discussion, our model will solve these issues in turn.

Thus the following requirements are required for support MTA in an existing

simulation model:

• Identities and requirements for different simulation tenants.

• Physical and logical address for the simulation models.

• Capability controls of different simulation models.

• Sharing strategies among tenants.

This paper proposes TC (T-Filter Configuration), a configuration model for SimSaas,

to address the above MTA requirements.

8

2.3.1 T-Filter Configuration: The MTA Model for SimSaaS

TC is used to support MTA in PSML simulation model. The goal of TC is to let

tenants focus on the simulation modeling without worrying about the tedious MTA

concerns at code level.

TC is composed of four parts: S-Model (Simulation Model), T-Filter (Tenant

Filter), TE (Tenant Expressions) and hardware requirements. S-Model represents the

PSML simulation model. T-Filter stands for tenant filter, which is used as a unique

id for filtering different tenants at simulation runtime. TE is tenant expression which

defines which T-Filter will be applied to which S-Model as well as the capability

controls towards the S-Model.

Formally, corresponds to the four MTA configuration requirements, this paper

categorized the definition into three groups: tenant model definitions and addressing,

capability controls and sharing strategies.

Tenant Model Definitions and Addressing

The configuration model first needs to define the configuration (TC), the tenant (T-

Filter, T-Space), the simulation model(S-Model, Sub-Model), and how to apply the

configuration to the simulation model (TE). Then, the end of this section explains

using these models for physical and logical addressing.

Definition 1, Given a tenant set T, T = {T1, T2, ...Tn} there exists a tenant

configure set TC, which maps tenant Ti to TCi, denotes as Ti → TCi (i=1,2,...n).

Each TCi is composed four parts, denotes as < Fi,Mi, Ei, Ri >, in which

• Fi is the configures file for TCi.

• Mi is the simulation model set for TCi, Mi = {Mi,1,Mi,2, ...Mi,k}, | k | is the

size of Mi.

9

• Ei is a set of regular expression. Given a finite alphabet
∑

, with operations .

(concatenation), | (alternation), * (start set union) are defined.

• Ri is the hardware requirements for a specific resource, Ri = {Ri,1, Ri,2, ...Ri,q},

in which Ri,1 is request for a recourse q, e.g. cache.

In the following discussion, this paper will define each components in details.

Definition 2 Simulation Model (S-Model): A simulation M is composed of

several sub model, denote as M (j), ∀M , ∃M (1), M (2),..., M (p) such that M =
∪

M (j).

Let S-Model denotes the set of simulation model names. si is in S-Model. si =

{sub1, sub2, ...subn} and subn ∈ Sub−Model.

Example 1: BankSimulation and HomeSimulation are two S-Models which contain

Sub-Models including workflows, services, participants and data.

Definition 3 (Sub-Model): Sub model of PSML simulation model. Sub-Models

are identified by a unique id under each S-Model. For convenience, the later part of

the paper uses names instead of ids.

Let Sub-Model denotes the set of sub simulation model names. subi is in Sub-Model

and subi ∈ participant, UI, data, service, workflow. Sub-Model can be accessed using

. from S-Model.

Example 2:

HomeSimulation.UI1

HomeSimulation.Workflow1

Definition 4 Tenant Filter (T-Filter): T-Filter is unique name that is used

for supporting multi-tenancy in cloud for SimSaaS. T-Filter and tenant names are

interchangeable.

Let T-Filter be the set of tenant filters, let Tenant be the set of tenants. ∀tenanti

in Tenant, ∃ t-filteri in T-Filter. tenanti ∈ string.

10

Figure 2.3: T-Space Implementation using TRIE

Example 3:

RoomA, RoomB can be two different T-Filters

Definition 5 T-Filter Space (T-Space): T-Space stores and guards the u-

niqueness of the T-Filters in a simulation environment. It is a TRIE Willard (1984)

thus it eliminates the naming conflicts in simulation runtime. TRIE is a prefix tree

in which the value of the node is stored on the edge. Every leaf of the prefix tree

represents a T-Filter. A lemma of prefix tree is that every leaf will be different since

the paths from root to the leaves are different.

Example 4:

In Figure 2.3, the sample T-Space has four different T-Filters and each of them is

a leaf in the TRIE, thus no naming conflicts will occur.

Definition 6 T-Filter EMPTY Set (∅): Defines the case that no T-Filter is

applied to an S-Model. It is represented as ∅. Empty set implies no tenant will use a

specific S-Model.

Definition 7 Tenant Expression (TE): TE is the tenant expression to describe

how to apply T-Filters to S-Models. It is composed by a number of T-Filters, S-Model

and T-Filter operators including ”Capability”, ”Negation”, ”Union”, ”Intersection”

11

Figure 2.4: A Sample Tenant Expression (TE)

as defined below. Capability and Negation tells whether and how the S-Model is

accessed. Union and Intersection tells how the S-Model is shared.

Let TE be the set of tenant expressions. Each tei in TE is a 4-tuple < T−Filters,

S−Model, Operators, Capabilities > where T-Filters denote the set of tenant filters

to tei, S-Model the simulation model to tei, Operators the operation from T-Filter

to S-Model, and Capabilities the read, write, execute capabilities to tei. Figure 2.4

shows a TE example.

The six definitions are also used in addressing the resource in execution runtime.

More specifically, T-Filter, Req in TC are used later in physical addressing. T-Filter,

TE, Sub-Models and S-Models are used in logical addressing.

Capability Controls

Capability-based systems Levy (1984) has been proposed in hardware system to apply

access control. This paper uses capability to solve tenant access control problems in

a MTA simulation runtime. Meanwhile, capability system is also used in the logical

addressing in runtime.

Operation 1 Capability Operator (→): Defines the capability operation from

a T-Filter to a specific S-Model. By default, capability operator implies to have all

capabilities unless addressed specifically.

12

Let C be a tuple < T −Filter, S−Model > where T-Filter denotes tenant filter,

and S-Model denotes simulation model. ci is in C. t is a T-Filter and s is a S-Model.

Operation t → s means that T-Filter t will be applied to S-Model s in ci with default

capabilities.

Example 5:

RoomA → HomeSimulation

RoomB → HomeSimulation

Indicate two tenants which logically share the same S-Model HomeSimulation, but

physically separate in implementation. Two T-Filters RoomA and RoomB are used

to isolate tenant information between the two model implementations.

Example 6:

RoomA → HomeSimulation

RoomA → TemperatureControl

Indicate one tenant with a T-Filter RoomA contains two different S-Models.

Operation 2 Negation Operator (¬): Negation operator defines the T-Filter

that will not be applied to an S-Model.

Example 7:

¬RoomA → HomeSimulation

The expression means that T-Filter RoomA cannot be applied to HomeSimulation

model.

Definition 8 Tenant Capability (Read, Write, and Execute): Defines the

Read, Write and Execute capability for the capability operator. Let a be a tenant

filter and b be a simulation model.

13

a
r,w,e−−−→ b denotes that T-Filter a will be applied to S-Model b with Read(r), Write

(w) and Execute (e) capability. Thus this expression will be identical to a → b.

a
¬r,¬w,¬e−−−−−→ b denotes that T-Filter a will be applied to S-Model b without Read,

Write and Execute capability. This will be identical to the ¬a → b.

Capability control to the Sub-Model of the simulation will give flexibility for the

accessibility of S-Models.

However, this might result in some validity problems since not every Sub-Model in

S-Model can be simply assigned with a capability. A way to go around is to list out

Sub-Models that can be configured. And thus it will be safe to configure the S-Model

with the capabilities.

Model Sharing Strategies

Operation 3 Union Operator (∪): Union operator defines the set of T-Filters

that can be applied to the same S-Model. It can concatenate T-Filters. Often, it is

used for abbreviation purpose.

Let tn be the tenant filter, s be the simulation model. (t1 ∪ t2 ∪ ...tn) → s denotes

t1, t2, ...tn all share the same logical model s.

For instance, the aforementioned example 5 can be expressed as

Example 8:

(RoomA ∪ RoomB) → HomeSimulation

Operation 4 Intersection Operator (∩): Intersection operator defines the set

of tenants that share the same S-Model. The difference between Intersection and

Union is that Union keeps separate execution instances for different tenant while

Intersection shares the same execution instance.

14

Let tn be the tenant filter, s be the simulation model. (t1 ∩ t2 ∩ ...tn) → s denotes

t1, t2, ...tn all share the same s in execution.

Example 9:

(RoomA ∩ RoomB) → HomeSimulation

The example means the same HomeSimulation model is shared between tenant

RoomA and tenant RoomB. This is different to the meaning of example 5. In example

5, HomeSimulation has two copies of models at runtime; in this example, only one

copy of model is shared between tenants at runtime.

Whether the intersection operator can be applied to simulation is depend on the

cloud platform implementation.

Next chapter of the paper will discuss applying these configurations for MTA

simulation.

2.3.2 Discussions

As discussed earlier the goal of TC is to support MTA in PSML simulation model

in a cloud platform such as GAE. With TC, GAE can 1) integrate the physical

addressing from the cloud and the logical addressing from PSML; 2) GAE will know

how to apply the resource sharing strategies to simulation; 3) apply the fine grained

capability controls to the PSML simulation model.

2.4 SimSaaS Execution Runtime

This section designs a simulation runtime that be able to handle MTA simulation

in cloud. MTA support is enabled in simulation runtime through TC. Other than the

runtime infrastructure, three main issues exist for supporting MTA. 1) To configure

the simulation tenants in real-time; 2) To allocate and address the tenant resource

15

Figure 2.5: Simulation Runtime

among the tenants; 3) To execute the model, share and isolate resources, and apply

the capability controls to the model.

2.4.1 Simulation Runtime Infrastructure

Simulation runtime includes three major responsibilities: storing simulation model

and related information for the simulation; executing the model; offering fundamental

services for the execution of the model. In this paper, Runtime Storage Services

(RTS), Runtime Execution Services (RTE) and Runtime Infrastructure Services (RTI)

are introduced to solve the three responsibilities. Figure 2.5 shows an architecture

view of simulation runtime.

RTS store the necessary information for the simulation engine in cloud. The data

include tenant data, tenant metadata, tenant index and simulation logging data.

RTE allocate resource according to individual simulation model and tenant con-

figuration and then execute it from server side. They support adding, modifying,

deleting tenants; addressing tenants; and executing the simulation for tenants.

RTI manage the simulation models and support the communication within each

individual tenant. A list of services are offered for execution of simulation including

16

control services for the synchronization among the simulation parties, event space

services for categorizing the events, global status services for sharing the current sta-

tuses of the variables, runtime monitoring services for watching the current execution

status, logging services for recording the simulation procedures, configuration services

for runtime and provenance services track the origin of simulation data from logging

services.

Simulation models and configurations are delivered to the RTS first. RTE read

data from RTS and then execute the simulation model. To handle events, resources,

timing and synchronization issues of individual simulation, RTI is then required to

offer infrastructure level support.

2.4.2 Real-Time Tenant Configuration

After modeled S-Model and defined the TC for the model, the next step is how

to apply the configuration to the simulation runtime. This section will discuss three

basic operations: add, delete and modify.

S-Model is stored in RTS as tenant metadata thus when creating a new tenant for

an existing model, there is no need to upload the S-Model for multiple times. The

simulation developers just need to operate upon the TCs.

The following algorithm explains how to do tenant configuration. The inputs

are the S-Model and the type of the operation. Different outputs will be yielded

depending on the operations.

Add Operation: This adds a new tenant by offering a new tenant configuration.

In the algorithm, it involves the new allocation of computing and storage resource,

and the recording of the current TC.

17

Algorithm 1 Real-Time Tenant Configuration Algorithm
Input:

1: Tenant configuration TC, Operation type (add, delete, modify)

Output:

2: Create, delete or update the virtual tenant according to TC and operation type

3: LoadBalancer loadBalancer = DeliverTC2LoadBalancer(TC);

4: FilterServer filter = loadBalancer.RoutTC2FilterServer(TC);

5: if add tenant then

6: filter.getResourceAllocater.allocateComputingResource(TC);

7: filter.getResourceAllocater.allocateStorageResource(TC);

8: addTCToRuntime(TC);

9: startSimulationModel(TC);

10: else if delete tenant then

11: stopSimulation(TC);

12: filter.getResourceAllocater.removeComputingResource(TC);

13: filter.getResourceAllocater.removeStorageResource(TC);

14: removerTCFromRuntime(TC);

15: else if modify tenant then

16: if s model accessed then

17: restartSimulation(TC);

18: else

19: filter.updateTenantTC(TC);

20: proceedSimulation();

21: end if

22: end if

18

Delete Operation: This deletes an existing tenant from simulation runtime. In

the algorithm, it involves the removal of computing resource, storage resource and

TC from the existing system.

Modify Operation: modifying an existing tenant configuration in runtime. In

the algorithm, it is related to the TC modification rules.

For each capability of the S-Model (Sub-Model), it is marked with a boolean flag

as stated in S-Model/Sub-Model capability table. Two rules that will change the

Real-Time behavior when modifying the simulation:

Restart Rule: If the model has been accessed when being modified, a restart

of simulation is required and the runtime will have to clean/differentiate the existing

data associated with the current simulation execution.

Precede Rule: If the model has not been accessed being modified, the modifi-

cation will be marked as safe. The simulation can proceed without restarting.

Using the above algorithm, people can add tenant, delete tenant and modify an

existing tenant at real time.

2.4.3 Tenant Physical and Logical Addressing

Another important issue is to find the resources for different simulations in the

same simulation runtime. The addressing includes both physical and logical address-

ing.

Resource physical addressing is related to resource allocation since when allocating

the physical resource to different tenants, it will be specified with the details of the

hardware resource.

Resource allocation is done through the Resource Allocator in RTE as shown in

Figure 2.5. When a new tenant configuration arrives, the defined physical resource

requirement (Figure 2.6) will be stored to the resource requirement. Physical resource

19

Figure 2.6: Resource Addressing Example

for each tenant such as CPU, memory and storage requirements will be specified. The

resource allocator will then interact with PaaS such as GAE for the required physical

resources. Each T-Filter will point to an entry in resource allocation table, in which

the physical address for the allocated resource including JobId, node names, storage

table address and limits for the storages are specified. The arrows in the left part of

Figure 2.6 show how to address the physical resources.

Logical addressing is related to TE. As stated earlier, each simulation model has a

TE. It defines the capability control from T-Filters to the S-Models and Sub-Models.

That in fact is also used for addressing the logical resource. The addressing is divided

in two steps. First, S-Model level: it can be addressed by T-Filter since each of them

is different in tenant space. Second, Sub-Model level: it can be addressed by the ids

of the Sub-Model. The arrows in the right hand side of Figure 2.6 explain how to

address the logical resource.

Note that each Sub-Model is part of S-Model, thus the addressing for a Sub-Model

will involve the addressing for the S-Model first and then for the Sub-Model. For each

20

 Figure 2.7: Virtual Space for Simulation Execution

type of S-Model, it will have its own Sub-Model capability table since they contain

different Sub-Models.

Caches are also used for speeding up the lookup in a relational table. LRU, MRU

and other algorithms can all be applied for the cache services.

2.4.4 Resource Isolation and Capability Control

MTA introduces two new issues in the simulation runtime. 1) Share and isolate

the resources; 2) Apply the different capability controls to the models deployed in

runtime.

Logical isolation of the resource is done by T-Filter. Each tenant creates a virtual

space by T-Filters. Logically, these virtual spaces are independent since none of them

will duplicate.

In fact physically, the execution environment can share models and resources. As

stated in section 3.1.3 the sharing happens at two levels.

The first is at resource level. Sharing is confined to S-Models, hardware and

storage. Sharing S-Model is obvious, since through TC, it is easy to create two

tenants out of the same PSML simulation model. Sharing hardware can actually be

21

handled by the PaaS in a synchronized or sequential way. Sharing storage can be done

through proper data storage schema design. In Tsais book Chen and Tsai (2010) 6

different schema designs for supporting MTA in cloud are provided. All of them can

be used in SimSaaS design. Other than that in the case study part, the paper listed

a T-Filter based design for storing the tenant data in Bigtable.

The other sharing is at the execution level, in which two or more tenants share

the same execution instance. This will require a redesign of the simulation model

and it will be PaaS dependent. For instance, GAE allows sharing the same execution

instance from different tenants. S-Model of SimSaaS can also implement simulation

in this way; however, this requires a redesign of the simulation model since namespace

switch will be extensively used in GAE. To support this, a code generator needs be

introduced to insert pieces of code into the model. In the resource allocation table in

figure 6, physical addressing will point to the same set of resource, while it will have

a controller to budget the resource usage according to the requirements. Instance

sharing may also include resource sharing including S-Models, computing and storage

resources.

Sharing of the models tells the common parts of different simulation, while capa-

bility controls specify the differences among the different tenants. With capability

control, one set of S-Model can behave differently since they are configured with dif-

ferent accessibilities. Problems are raised in checking the capability in a MTA since

it allows the capabilities to be considered in a MTA environment.

Various designs can be applied to solve the capability control problems. Consid-

ering MTA, we summarized two ways below with their own pros and cons.

• Inject: Require every Sub-Model maintain a capability attribute along with the

model. The capabilities of the model are injected to the model when the virtual

model is initiated. This works pretty efficiently since the capability is with the

22

Figure 2.8: Simulation Process

model. However, it has potential problem in MTA since the model needs to be

redesigned to record the different T-Filters and its capabilities.

• Force Look Back: Update the capability in TC, force look back the TC whenever

accesses the model. It will cost a bit more since an external look up is required.

However, it requires no change towards the existing simulation model and the

MTA problem is solved by offering a capability lookup table as shown in Figure

2.6. This solution is taken in SimSaaS.

2.5 Real-Time Analysis and Continuous Calibration

This section talks about how to do real-time analysis and continuous calibration

in SimSaaS.

Continuous calibration of simulation includes the interferences of simulation users,

simulation analyzing services, simulation modeling services and simulation runtime.

And it is done through the dynamic cyclical process as shown in the Figure 2.8.

While static analysis provides useful data, many analyses can be done only via

dynamic simulation. Simulation modeling services are useful to make the process

dynamic. By monitoring the execution data from the simulation analyzing services,

a simulation engineer can change the model.

23

Profiling services in the simulation analyzing services are also useful to make the

calibration process dynamic. Based on the information from the provenances services

and logging services in RTI, profiling services can control the selection of services by

following the predefined algorithms in the services.

Simulation model can evolve by calibrations. In Jins paper Zeng et al. (2009)

he addresses some patterns for service evolvement such as add, replace. Since these

operations can be strictly described and proved, it is easy to derive that the whole

process can in fact be automated. For instance, the calibration process can automat-

ically use the intelligent query service and then use the query results to replace the

current model with the other candidates.

A report is generated at the end and thus it is easy to compare the simulation

models by viewing them visually.

T-Filter still applies in analysis engine since it isolates data collection from the

Logging Services and Provenance Services. Analysis and reports are generated by

different T-Filters and presented to end users.

2.6 Example

Figure 2.9 shows a smart home Device Control simulation which requires control-

ling the devices in a smart home. The whole process is divided in five steps. The

goal of this case is to create two tenants RoomA and RoomB which use the same

S-Model. In execution time, the two tenants will create two execution instances with

their data stored in one Bigtable.

Step1: An S-Model template is created using PSML model. The S-Model contains

a workflow and a table which contains the device lists.

24

 Figure 2.9: Creating Device Control Simulation to Support Multi-tenancy

Step 2: An S-Model is created through customization. In customization, the

simulation developers will design the ontology system for the desired UIs, services,

workflows, data and participants.

Step 3: Two tenants are created by specifying the tenant configuration defined

follows:

RoomA → DeviceControl

RoomB → DeviceControl

¬RoomB → DeviceControl.TurnOnDevice

This TC configured two tenants RoomA and RoomB which shared one simulation

S-Model while executes separately.

Step 4: The TC will be added to simulation runtime. Simulation runtime invoke

the resource allocator and allocate necessary computing resource through GFS ac-

25

cording to the hardware resource requirements. Two execution instances are named

after RoomA and RoomB.

Step 5: a Bigtable is created for the storage of the data according to the schema.

In implementation, it used Bigtable to store the data, in which each column name

contains the logical addressing of the data. This helps isolating the data from tenant

RoomA and RoomB. For instance, the id of DeviceControl for RoomA will have a

column name RoomA:DeviceControl:ID. Thus it is easy to store and look up data for

different tenants.

2.7 Related Work

CloudSim is a simulation project that simulates a cloud platform. It has two

features: 1) to allow the cloud developers to test the provisioning and service delivery

policies before the actual deployment of the application; 2) to support tuning up

the performance bottlenecks before deploying on real clouds. CloudSims focus of the

cloud simulation focused on the backend infrastructure, they simulate data centers,

virtual machine availabilities, and ability for picking up the virtual processing cores

for virtualized services.

Early explorations of simulation in cloud has been done by Lanner group Group

(2014), an business process improvement company. Lanners simulator simulates the

business process management systems. L-SIM 2.0 is configured as a RESTful service

in the cloud and thus the end user can do the business process simulation in the

cloud. In his presentation, Thomas Paviot (2010) used open source project and

open standard and built a CAD simulation on cloud to reduce the need for expensive

hardware, costly licensing scheme and to solve the interoperable problems of using the

CAD software. However, most of these early explorations are still at a very primitive

state. For instance, instead of considering customization, MTA, and scalability, both

26

L-SIM 2.0 and Thomas CAD simulation simply deployed their current simulator from

a local server to a remote cloud by using the web services protocols. Obviously, there

are more challenges for doing simulation in cloud. How to model simulation, how to

reuse simulation, how to execute simulation and how to do the analysis and calibration

have become ever important to solve to run simulation on cloud and makes fully use

of cloud.

Different cloud platform has different ways to support MTA. For instance, sale-

force.com uses a database approach, IBM uses Corent to solve MTA Chate. (2010),

and Google enforces namespaces in Google App Engine to support MTA Google

(2014).

Configuration is widely used in software Cons and Poznanski (2002) and hardware

system to add flexibility to existing models. With proper configurations, one can mod-

ify the existing model easily and satisfy diverse requirements. SimSaaS uses tenants

configuration to address the MTA requirements and then applies the configurations

to the simulation runtime.

2.8 Conclusion

This paper proposed a MTA simulation framework SimSaaS by following the SaaS

architecture in cloud computing. Furthermore, this paper uses a filter system to

perform access control similar to the capability systems proposed earlier, but this

feature is used in MTA in cloud platform. The design of SimSaaS on GAE will be

presented in the near future.

27

Chapter 3

MODEL-DRIVEN TENANT DEVELOPMENT FOR PAAS-BASED SAAS

3.1 Introduction

The conventional approach to develop SaaS application on GAE is through code

based approach in that the programmers are responsible to develop the entire ap-

plication using a programming language. However, in fact, SaaS application can be

modeled in a model driven way. In that, SaaS application can be modeled in the

service modeling language and then customized with the multi-tenancy architecture,

scalability, and redundancy & recovery techniques, finally generate code with these

models directly for the target PaaS.

SaaS systems have been classified into four categories Tsai et al. (2009):

1. Integration with databases: In this approach where software applications

are fully integrated with a database. Salesforce.com is one such example.

2. Kernel-based approach: In this approach, software applications will run on

top of kernel that runs on top of databases, and any communication between

software applications and databases is via the kernel. Corenttech.com is an

example of this approach.

3. Service-oriented SaaS: In this approach, a SaaS system is designed in a

service-oriented manner with service components that communicate via a ser-

vice bus. EasySaaS is one such example Tsai et al. (2011a,e).

4. PaaS-based systems: In this approach, a SaaS system is developed on top

of a commercial PaaS system such as GAE, Azure Microsoft (2014), and EC2

28

Figure 3.1: PaaS Independent SaaS Application Development

Amazon (2014); Palankar et al. (2008a). The following figure shows a PaaS

independent SaaS application development model.

The customization, MTA, and scalability mechanisms have been compared in T-

sai et al. (2012). Using a commercial PaaS system for developing a SaaS system

has its advantages as well as disadvantages. The most notable advantages are that

a commercial PaaS system already has built-in fault-tolerant capabilities, scalability

mechanisms such as provisioning and automated migration, and database support.

A new SaaS system can use these PaaS capabilities and save significant effort. How-

ever, these are also key disadvantages, as a PaaS system often controls these features

directly, and a SaaS may not have indirect control only. Thus, a PaaS-based SaaS

system may not be efficient as it does not control its key features directly, but relies

on the underlying PaaS mechanisms for implementation. These PaaS mechanisms

may be efficient for scalable Web applications, but they may not necessarily be the

best solution for customizable and scalable SaaS with MTA.

3.2 PaaS Support for SaaS Implementation

GAE is a well-known PaaS system and this section will use it to illustrate PaaS

support for SaaS. GAE provides a seemingly unlimited computing resource and vir-

tualizes applications across multiple servers and data centers. Its infrastructure al-

lows its hosted Web applications to scale easily, and frees developers from hardware

29

Figure 3.2: Code Based versus Model Driven Approach

con?guration and many other troublesome system administration tasks. GAE handles

deploying code to a cluster, monitoring, fail-over, and launching application instances

as necessary. GAE currently supports Python, Java, and Go languages. GAE also

provides an eclipse plug-in to assist developers to create, develop and deploy applica-

tions. The compiled applications are deployed on a read-only file system on GAE. It

has an admin console dashboard that allows the application administrators to create

applications, monitor their executions, and check their usage/quota information.

PaaS Support for Tenant Customization: Most PaaS systems do not allow

direct access of underlying dataStore or database, while common SaaS customization

is done by storing configuration data into a database. At runtime, the SaaS controller

will retrieve tenant application components from the database, compose the retrieved

components into code at runtime, compile the composed code into executable code,

deploy the executable code into the platform, execute the deployed code, monitor the

execution, and return the results to the user Tsai et al. (2014). SaaS customization

involves searching software components stored in the SaaS database, creating new

30

components if necessary, and compose the needed component into a code that can be

compiled. If a PaaS system does not allow direct access to the underlying database,

the customization will be slowed. A PaaS-based SaaS designer has three choices:

• Limited or no customization: Essentially, the SaaS offers limited or no

customization capabilities for tenant application developers. For example, a

limited customization is to allow change of logos in a Web system with identical

functionality;

• Explicit customization points with options: Using this approach, a SaaS

system allows tenant application developers to customize their choices only

at specific customization points with limited options, and each customization

point also come with its constraints. Tenant application developers can upload

their options for each customization point, but these options must pass the

constraints specified in the customization point;

• Virtual customization workspace for tenant application developers:

Using this approach, a SaaS will allow tenant developers to develop their cus-

tomized applications like traditional SaaS systems such as Salesforce.com or

EasySaaS where GUIs, workflows, services, and data components can be select-

ed and composed for specific tenants. However, SaaS must develop this virtual

workspace on top of a PaaS where direct database access may not be available.

GAE provides indirect support for customization by offering the configuration

mechanism. A configuration of an application specifies the way the application is

uploaded, the construction of dataStore indexes, and task scheduling priorities. GAE

configurations include

• Deployment descriptor: This is used to determine URLs mapping to servlets

and authentication requirement for URLs;

31

• App configuration: This specifies the app’s registered application ID, the version

identifier of the latest code, and the location of the resource files used by the

application;

• Backend configuration: This declares the name and desired properties of each

backend server;

• Index configuration: This specifies the indexes needed for the application;

• Scheduled tasks: defines the job execution times or regular intervals;

• Task queue configuration: This specifies both push queues and pull queues;

• DOS (Denial of Service) protection configuration: This defines the quota to

prevent DOS attacks. These configurations are at the platform level, rather

than at the application level. Thus, the SaaS developer needs to design its own

customization features in GAE.

PaaS Support for MTA: Each PaaS system supplies its own MTA support

mechanisms. For example, GAE provides the namespace, and each tenant is unique-

ly identi?ed by an entry in the namespace, and that information is used to distinguish

one tenant from another. This namespace supports is at the code level as it is provid-

ed as namespace APIs. Each entry in the namespace essentially is an address within

GAE, and the system uses the address to look for items related to a tenant for pro-

cessing. However, the programmer must be cautious when dealing with namespaces,

because it is possible that it can inadvertently cause data leaks. This is caused as

all tenants share the same namespace mechanisms, and isolation among tenants or

access control by tenants must be designed by the SaaS designers.

Namespace is currently supported in DataStore that is a schemaless object dataS-

tore, Memcache that is in-memory data cache for high performance web application,

32

Task Queue that is designed for executing background work, Blobstore that is used

to serve data objects are much larger than the size allowed in the DataStore service,

DataStore viewer that is the console for queries, and bulkloader that is designed for

loading bulk data. The following example shows how to use NameSpaceManager to

retrieve and switch the Namespace in code.

String oldNamespace = NamespaceManager.get();

NamespaceManager.set (”asu”);

try {

dosomething(); // do something under namespace ”asu”

} finally {

NamespaceManager.set (oldNamespace);

}

PaaS Support for SaaS Scalability: Each PaaS system has its unique scala-

bility mechanisms. For instance, GAE, Amazon EC2 and Azure allow the users to

change the numbers of CPUs and RAMs to scale out applications, and a user feel-

s like using a virtual machine with the given resources. However, such scalability

mechanisms are often controlled by the PaaS, and such control may not be directly

available to the SaaS.

GAE uses instances to scale applications, and instances are basic building units in

GAE. It offers the language, runtime, APIs, application code, and the memory. GAE

automatically allocates instances to the application as traffic increases to support

the increased workloads. Each instance maintains the incoming requests in its own

queue. If the load increased to a certain threshold, GAE will automatically create a

new instance to handle the increased load. The max number of instances that can be

defined is specified in the configuration files, and it can be adjusted at runtime.

33

PaaS Support for SaaS Reliability: Most PaaS systems offer reliability of the

system, e.g., each write in GAE is a triplicate write where three copies are made in

different chunks to ensure that data will not be lost easily. In case of a failure, GAE

tries to recover the lost data automatically without involving the user. GAE also

claims to offer a 99.95% SLA (Service-Level Agreement) of in any calendar month.

However, a PaaS system cannot guarantee any reliability for applications that runs

on top of the PaaS.

GAE also offers reliability mechanisms for application developers to take advan-

tages the services provided in GAE. Specifically, it offers APIs to detect outage and

schedule downtime for maintenance or outrage. Currently, availability of the blog-

store, dataStore read, writes, image service, mail service, memcache service, task

queue service, URL fetch service, and XMPP service capabilities are supported to

enable the application to take actions in case that these services are down. GAE does

not support fault tolerant mechanisms at the service/workflow level. The following

code illustrates GAE APIs that support reliable computing:

CapabilityStatus status =

service.getStatus(Capability.DATASTORE WRITE.getStatus();)

if (status == CapabilityStatus.DISABLED) {

// Do something to compensate

}

Often a SaaS system keeps redundant data and metadata, as well as redundant

load balancers.

34

3.3 Model-Driven SaaS In PaaS

Comparing to traditional software, a SaaS system has its unique software archi-

tecture and operation procedure as it is effective a consortium of tenant applications

running in the same software, and each tenant application does not interfere with

other applications. Furthermore, it also allows new tenant applications to be added

into the consortium while other tenant applications are running. Thus, a SaaS system

can be divided into two major functionalities: 1) tenant application development and

2) SaaS control and operation.

Tenant Application Development (TAD): This supports tenant application

development via customization. For example, the following steps will be taken for a

tenant to compose applications following the Grapevine approach:

1. Login onto the SaaS application;

2. Input the keywords and their relationships to the SaaS recommendation system;

3. After matching the tenant application requirements with the existing applica-

tions and components in the SaaS database, the recommendation system returns

a collection of similar composed applications for customization with alternative

GUI, workflow, service and data components from the SaaS database;

4. The tenant can choose one application from the set , and customize it with

replacement components including those supplied by the tenant;

5. Evaluate the newly customized application via constraint analysis and simu-

lation, and if the composed application passes the evaluation, the application,

together with any new components that are supplied, will be updated in the

SaaS database storage, and various relationships will also be updated so that

the recommendation system can use for other tenants in the future.

35

SaaS Control and Operation (SCO): This supports SaaS executions including

scheduling, handling user requests, distributed redundancy management and recov-

ery, scalability including resource allocation and provisioning, and distributed and

autonomous data migration for recovery and scalability. For example, a typical SaaS

handles a user request in the following steps:

1. Determine the tenant ID of this request;

2. Check if the tenant application is already in the cache. If yes, send the request

for the tenant application for execution;

3. If not, retrieve the tenant components from the SaaS database, and compose

the tenant application using the retrieved components. After compiling the

composed application, send the request to the just compiled code for execution;

4. After the execution, update the SaaS databases, and return the results to the

user.

Currently, most of SaaS systems have been developed by software design and

coding. This paper proposes to use a model-driven approach to develop the SaaS.

Instead of developing the code for SaaS infrastructure and tenant components, a SaaS

developer can focus on building the models for TAD and SCO, and used the automat-

ed code generation capabilities to generate the SaaS code and tenant components..

The tenant developers can also use the same modeling approach to develop tenant

applications using the SaaS infrastructure on top of a PaaS system. Both models

can be simulated before deployment. This paper uses the PSML (ACDATER)Tsai

et al. (2009, 2006a) modeling language to model services and workflows for the SaaS

development. This modeling approach has been used to develop large applications

including semiconductor manufacturing control software and command-and-control

36

software. One advantage of this approach is that once a model is updated, the code

is re-generated to rapid deployment.

3.3.1 Modeling Language

ACDATER Model Tsai et al. (2009) includes Actors, Conditions, Data, Actions,

Timing, Relations and Events. An Actor is a system with a clear boundary that

interacts with other actors. A Condition is a predicate on data elements used to

determine the course of a process. A Data element is an information carrier that

represents the state of an actor or the status of the entire system. An Action represents

an operational process to change state of an actor or perform computation. An

Attribute specifies various properties. A timing element specifies the time constrains o

Actors, Conditions, Data, Actions, and Relations. An Event represents an observable

occurrence with no time duration, and it can be an input to an actor or an output

from an actor. ACDATER can be used to model the services and workflows Due to

the size limitation, this paper will describe the support for TAD only. Specifically, this

paper addresses TAD customization and MTA, and with respect to customization, it

will discuss modeling extension points and OIC/Grapevine approaches. One of key

support of GAE for SaaS are various configuration files that can be used. For MTA

SaaS, these files can be used to store tables needed for customization and MTA as

shown in Table 3.1.

3.3.2 Modeling Customization with Extension Points

To support TAD using the extension-point (section 2) approach, the SaaS needs

to have the following support:

1. Database support to store, search, and retrieve applications, workflows (with or

without extension points) and services, Each extension points will store a list of

37

Table 3.1: Tables Required for Tenant-Development

Table Names Description

Tenant Information Table

(TIT)

This stores tenant c information.

Tenant Component Table

(TCT)

This stores the tenant read, write, execution

rights for various components.

Component Addressing Ta-

ble (CAT)

This stores the mapping from components to

their physical addresses.

Scalability Management Ta-

ble (SMT)

This stores the scalability information for com-

ponents.

Cache Management Table

(CMT)

This store recent tenant activities.

Redundancy and Recov-

ery Management Table (R-

RMT)

This stores the redundancy and recovery details

for the components associated with tenants.

options and each points to a workflow or service that can be used for the specific

extension point. The pointed workflow can have its own extension points. The

database will store the related information such as workflows, services, extension

points, constraints for search and discovery.

2. The system will verify the any user supplied options by checking the constraints

associated with the extension point.

3. System support to simulate the customized application.

Table 3.2 shows the modeling approach of using the ACDATER approach:

38

Table 3.2: PSML Modeling for SaaS

Entities to be Modeled PSML Modeling

Workflows An execution graph using if-then-else, sequence,

conditions, and actions

An extension point It will be a special node with constraints with

alternative workflows or services as options

Constraints associated with

an extension points

Conditions associated with an extension node

Events such as user request

arrival

Events

GUI components An actor with GUI attributes

Service components An actor with IOPE attributes

Data components Data.

The following diagram illustrates an example of this approach. The workflow is an

Action that describes a user authorized to a video control system, turn on a content

directory, and then turn on a video control. An extension point was specified with

links to the video control (as alternative options). Each extension point can have

multiple constraints, for instance in the example, it requires the MPEG-2 support

proprieties to be true. And these constrains can be specified for selection the extension

candidates. Each newly supplied option needs to be verified by the TAD system by

executing the constraints associated with the extension point.

3.3.3 Modeling OIC/Grapevine Customization

To support OIC/Grapevine approach Tsai et al. (2010c), in addition to the database

and simulation support described in Section 3.2, the system needs to have

39

Figure 3.3: A PSML Action Describes a Video Control

1. A recommendation system, but this system does not need to be specified by

tenant developers, but by the SaaS developer;

2. A tenant application development system to allow tenant developers to choose

and compose applications using workflows using either retrieved and/or upload-

ed components;

3. A system to update various relationships among tenant components once a new

tenant application is developed.

3.3.4 Modeling Multi-Tenancy Architecture

MTA needs to address the following features Tsai et al. (2011d):

• Access right for each component: Each tenant can access its own compo-

nents used in its tenant application and data area;

40

Table 3.3: Tenant Information Table (TIT)

TenantName ID Status CPU

MediaCtrlTenant1 Tenant1 off 4 CPUs

MediaCtrlTenant2 Tenant2 off ...

...

• Component sharing constraints for each component: Each component

needs to specify those tenants that can have access;

• Tenant resource addressing: This stores either physical or virtual addresses

for various resources for each tenant. The resources can be components in

the SaaS database, cache, memory, data storage, and their constraints such as

quota, upper limits and lower limits to support sandbox (for security reasons).

This table will be dynamically updated during the SaaS execution. While the

TAD will not involve in execution of these tables but the TAD is responsible to

create this infrastructure.

Tenant Information Table (TIT): When a new tenant configuration arrives,

the specified resource requirements such as CPU, memory, and storage will be stored

in the TIT.

Each tenant has its own components and this information will be stored in a

Tenant-Component Table (TCT). As a tenant may use selected components, all cross-

product of tenants components will be a large but sparse table. Read(R), Write(W),

and Execution(E) access rights can be specified in the TCT. As shown in the following

table authorization, content directory and rendering control are the three components

used in the workflow in the Video Control example.

The CAT (Component-Address Table) will store the virtual address provided by

the PaaS for different components.

41

Table 3.4: Tenant-Component Table (TCT)

TenantID Authorization Content Directory ... Rendering Control

Tenant1 RWE RE ... RE

Tenant2 RWE RE ... RE

...

Table 3.5: Component-Address Table (CAT)

Component ID Address

Authorization Authorization1 Server0

ContentDirectory ContentDirectory1 Server0

RenderingControl MediaPlayer Server1

RenderingControl RealPlayer Server2

RenderingControl QuickTime Server3

3.3.5 Scalability Management

To support the scalability, the SaaS system needs to know the location of each

tenant application such as processor, cluster, and site information. The following

table shows that for tenant1, the content directory and rendering control components

can be scaled to 2 and 3 times.

3.3.6 Modeling Cache Management

The SaaS can manage its cache management using MemCache API provided by

GAE using the information in the CMT). The next table shows the recent used tenant

and the information related to this tenant in the cache.

42

Table 3.6: Scalability Management Table (SMT)

TenantID Authorization Content Directory ... Rendering Control

Tenant1 1 2 ... 3

Tenant2 1 1 ... 1

...

Table 3.7: Cache-Management Table (CMT)

GUI component (x) Authorization

Location Server1

Copy 1

Which Tenant use Tenant1

Recent visit Timestamp of visit

Weight 3

... ...

3.3.7 Modeling Redundancy and Recovery

A SaaS system can store two or more copies of data and metadata of each tenant

and various tables mentioned in the PaaS as shown in Table 8. Note that this will

create six copies of data and metadata in the PaaS as GAE automatically triplicate the

storage by default. Also, it will define recovery is required or not for the component

specified.

3.4 Code Generation and Case Study

The PSML models including modeling, analysis, simulation, and code generation

tools have been under development since 2000.

After modeling and customization, the tenant application model can be converted

into executable code to be deployed in a PaaS system such as GAE.

43

Table 3.8: Redundancy & Recovery Management Table (RRMT)

Tenant ID
Authorization Content Rendering

Directory Control

Redun- Recovery Redun- Recovery Redun- Recovery
ancy ♯ ancy ♯ ancy ♯

Tenant1 1 N 2 Y 2 Y

Tenant2 1 N 2 Y 1 Y

...

The first step is the translation process, where first Tenant Information Retrieval

Algorithm. Tenant component details, access rights, physical addresses, scalability,

R&R information are collected from the table-look-up interface in this step. Then,

PSML model is serialized as XML file after service discovery. A BFS (breadth-

first search) graph traversal algorithm and uses a queue to record traversed nodes

(including the PSML Assign, Execute and Execute steps) Li et al. (2012a); Lee et al.

(2009). When the node is pushed out of the queue, the corresponding XML generation

function will use the collected tenant information and write the content to a XML

file. In the meanwhile, it also calculates the subsequent unprocessed nodes and pushes

them into the queue for further processing. The output of the algorithm is an XML

specification of the workflow.

The second step is code generation, where each element is first put to code gen-

erator and the code generator generates the target code based on the CodeSmith

templates. The templates are executable and they convert the XML descriptions of

the models to executable code. Functions are built for each step, and workflow is

retained through function invocations. Figure 3.4 specified the detail regarding the

44

mechanism of the code generation template. It is essentially a series of converters

mapping from the customized model to the target code.

Algorithm 2 Tenant Information Retrieval Algorithm
Input:

1: Component s, String tenantname

Output:

2: Details of the tenant information

3: Tenant t = LookupinCMT(tenantname);

4: if t == NULL then

5: t = LookupinCMT (t);

6: end if

7: AccessRights rights = LookupinTCT(t, s);

8: Address addresses = lookupinCAT(s);

9: int scalability = LookupinSMT(t,s);

10: int redundancy = LookupInRRMT(t, REDUNDANCY);

11: bool recovery = LookupInRRMT(t, RECOVERY);

12: setTenantInformation(t, rights, address, scalability, redundancy, recovery);

45

Algorithm 3 Model XMLGeneration Algorithm

Input: XmlWriter xmlwriter, ExcutableElement start

Output: An XML file with all the workflow information

1: if start= null then

2: Queue queue = new Queue();

3: queue.Add(start);

4: Set processedSteps = new Set();

5: ExcutableElement next; setTenantInformation(invokeTenantRetrieval(next));

6: while queue.Count > 0 do

7: next = (Step)queue.Dequeue();

8: if processedSteps.Contains(next.Id) then

9: continue;

10: end if

11: Iterator iter = next.next();

12: while iter.hasNext() do

13: queue.Enqueue(iter.next());

14: end while

15: if next is StepAssign then

16: GenerateStepAssign((StepAssign)next,xmlwriter);

17: else if next is StepSelect then

18: GenerateStepSelect((StepSelect)next,xmlwriter);

19: else if next is StepExecute then

20: GenerateStepExecute((StepExecute)next,xmlwriter);

21: end if

22: processedSteps.Add(next);

23: end while

24: end if

46

CodeCode Converter

(Code Smith Template)

Function flow

Converter

Device View

Element

Definition

Workflow

Select step

Process step

Assign step

Constructor

Function

Function Flow

Variable Converter

Package/Inport

Definition

Class Definition

Task

SchedulingScheduling

parameter

Scheduling

Converter

Tenant Related

Informoration
Tenant

Converter

Tenant Control

Access Right

Scalablity

Redundancy

Recovery

Figure 3.4: Mapping Process in Code Generation

Figure 3.6 shows a code generation example of the VideoControl. The left-hand

side is the PSML element view, the middle is the XML model for this PSML model,

the right-hand side is the generated Java code. Figure 3.5 is the runtime status of

two tenants after deployed to GAE. With the generated code, GAE runs two different

binaries for each tenant. Only one model is defined, however, with different tenant

customizations, each tenant now has its own isolated execution environment. Figure

3.7 shows in GAE console with the two deployed tenants.

In addition to isolated execution binary, we can also define in the modeling phase

to have two or more tenants share the same execution binary. To add more tenants,

we simply need to go through Table 3.2 to Table 3.8 for the necessary customization

information for the new tenants in the modeling/customization phase.

47

Figure 3.5: Two Tenants with Isolated Execution Instances

3.5 Conclusion

This paper described a model-driven development to develop tenant applications

for a GAE-based SaaS system. The modeling language used in the PSML and it

has associated modeling, analysis, simulation, and code generation tools. This paper

demonstrated several tenant applications specified using PSML and generate code for

GAE, and execute the code in GAE. Currently, developing a SaaS system is expen-

sive and requires multi-year development with many engineers involved. However,

the proposed approach of using the model-driven approach and use a commercial-

ly available PaaS system can save significant effort and time in developing a large,

scalable and fault-tolerant SaaS system.

48

Authorization

Content Directory

Authorized

Rendering Control

Yes

No

 Figure 3.6: Example Code Generation from PSML Model to Java Code

Figure 3.7: Two Tenants Deployed at GAE

49

Chapter 4

P4-SIMSAAS: POLICY SPECIFICATION FOR MULTI-TENDENCY

SIMULATION SOFTWARE-AS-A-SERVICE MODEL

4.1 Introduction

Cloud computing receives significant attentions as it can enable the rapid delivery

of computing resources as utilities in a dynamic, scalable, and virtualized manner.

A lot efforts have been devoted to build cloud platform and cloud-based enterprise

solutions, from both industry and research communities. Typical cloud products

include Amazon EC2 Palankar et al. (2008b), Google GAE Google (2014), Microsoft

Azure Microsoft (2014), Salesforce.com Salesforce (2014), VMware VMWare (2014),

Eucalyptus Eucalyptus (2014), Citrix Citrix (2014).

Cloud-based simulation is an active research area. Simulation can benefit from

cloud computing with its vast computing resources, scaling abilities, and an infras-

tructure support for MTA (Multi-tenancy Architecture). For examples, Lanner group

Group (2014) designed a simulator L-SIM 2.0 to simulate the business process man-

agement systems through RESTful Web Services deployed in the cloud platform.

Thomas Paviot (2010) used open-source software to develop a CAD simulator in

a cloud platform to reduce the needs for expensive hardware and costly licensing

scheme. Malik, Park and Fujimoto Malik et al. (2009) discusses about executing

parallel and distributed simulation using a master/worker design for parallel discrete

event simulation.

Simulation Software-as-a-Service (SimSaaS) Tsai et al. (2011d) was proposed as a

new approach to simulate service-oriented software in a cloud infrastructure. It can

50

Figure 4.1: PaaS Independent SaaS Application Development

simulate a family of application using the same code base running in a PaaS (Plat-

form as a Service) such as Googles GAE (Google App Engine), Amazons EC2, and

Microsofts Azure. These PaaSs often supports tenant identification, isolation, ad-

dressing, and resource sharing. Sometimes a SaaS platform can also use a distributed

database running on a clusters of processors. Often the SaaS infrastructure is ful-

ly integrated with the PaaS, for example, Salesforce.com CRM SaaS runs in a fully

integrated environment Force.com. While full integration has significant advantages

of performance, separating the SaaS from a PaaS has other advantages. Specifically,

a platform-independent SaaS infrastructure can generate code to be run in different

PaaS environments as shown in Figure 4.1. As each PaaS has its own unique design

structure, dividing the SaaS application into this platform-independent SaaS develop-

ment, followed by platform-dependent PaaS code generation and execution support

reusability, portability, and vendor-neutrality. In this way, simulation also plays a

critical role, as SaaS applications are developed, they can be simulated in a virtual-

ized system, rather the target PaaS for testing and evaluation before deployment and

execution in a PaaS. For example, one can develop a SaaS application, perform sim-

ulation, and once the application is considered successful, it will then be deployed to

GAE for execution. Deriving from PaaS dependent to PaaS independent simulation

models requires the model to be designed in a succinct and configurable way for the

different cloud PaaSs.

51

The MTA SimSaaS needs to meet several goals: First, SaaS providers need to

support tenants with a configurable code base, such that each tenant can configure

its own version based on the same code base; Second, SaaS providers need to support

various of tenants with a multitude of options of tenant-specific data, domain data and

application metadata. SimSaaS provides two-level multi-tenancy support for SaaS

simulation. At the data level, tenants can share domain data and service metadata

while maintain tenant-specific data. At the application level, tenants can create their

over versions based on the same configurable code base. However, MTA simulation

is complicated due to diversified tenant-specific requirements and discrepant runtime

behavior. The design of reconfigurable database and code base is usually hard.

This paper proposes P4-SimSaaS in the SimSaaS project. P4-SimSaaS introduces

an ontology system for tenant specification with a policy system for tenants regulation.

As each tenant may have its unique configuration, it is difficult to check all the

issues at the design time, and thus some constraints will be enforced at runtime

by the policy mechanism. In this way, the SaaS maintainers allow tenant to have

freedom in composing their applications using services in the SaaS infrastructure,

but enforce various constraints including security constraints at runtime or simulation

time. This approach will simplify the design process for tenants while maintaining

high integrity of SaaS applications. The ontology system can be used to specify the

vocabulary, classification and relationships in different simulation domains, thus to

facilitate simulation modeling including domain knowledge sharing, logical reasoning,

policy specification, and simulation model discovery.

Tenants policies are designed and associated to tenants execution. A Policy system

often consists a set of rules to regulate the related actions. Many policy languages are

available, such as Rei as a formal and executable language to enforce constraints over

allowable and obligated actions on resources. Pi4-SOA Zhou et al. (2006) is a policy

52

Figure 4.2: MTA Simulation Architecture

infrastructure for verification and control of service collaboration based on service

metadata and collaboration patterns stored in the service registry. In P4-SimSaaS,

MTA policies are constructed for the shared tenant model as well as tenant specific

requirements. They are defined at three levels: global policies for shared code base,

regional policies for groups of tenants, and local policies for individual tenant. Figure

4.2 shows an MTA simulation architecture. In the architecture, PaaS is the supporting

environment for the SimSaaS Execution Environment, which is built at SaaS layer.

SimSaaS supports the MTA simulations which are built from the MTA-Based Models.

This contributions of this paper are as follows:

53

• An ontology system for MTA simulation SaaS modeling and policy definition.

• A MTA policy specification for the shared tenant model and the multitude of

tenant requirements.

• A modeling process that designs the information from the ontology system and

associates the global, regional and local policies for the desired MTA simulation

model.

This paper is structured as follows: Section 2 discusses ontology system design for

MTA SaaS simulation. Section 3 describes the policy specifications related to the

MTA SaaS simulation. Section 4 describes the consumer centric ontology based mod-

eling process guided by the policies specified. Section 5 illustrates a case study for

the proposed solution. Section 6 concludes the paper.

4.2 Ontology Systems

4.2.1 Ontology

The SimSaaS modeling and policy definition process discovers and reuses the data

from the ontology system. The ontology system for SimSaaS has three major ontolo-

gies: Domain, MTA and Application ontology. Domain ontology stores the informa-

tion related to the different categorization of the domains; MTA ontology contains

tenant-related information, e.g., identities, sharing strategies, and access control s-

trategies; Application ontology stores the metadata for composing the simulation

model, e.g., participants, GUIs, services, workflows, and data. Domain ontology Tsai

et al. (2010c) defines the knowledge in a specific domain; MTA ontology helps to con-

figure the existing model with the tenant-specific information; Application ontology

can be used to facilitate code generation for simulation.

54

Figure 4.3: Sample MTA Ontology and Domain Ontology

Table 4.1: Classes in the MTA Ontology

Class Properties Description

Tenant hasID, isClientOf, uses-

Resource, usesCapabili-

ty, providesCapability

Concept that represents individual

tenant of the SaaS

Resource hasID, hasCapacity, has-

Cost

Represents the resources that are

available to tenants

Access

Control

Type of access a tenant has for a

resource. Instances include actions

such as read, create, write, modify,

and delete.

Capability hasID, usesResource A specific function or feature that a

tenant can perform.

MTA Ontology contains the related information for supporting MTA. Earlier

paper Tsai et al. (2011d) explained in details about the essential elements in support-

ing MTA, e.g., the identity, accessibility, sharing strategies of MTA. Other than that,

scalability, security issues can be also included if required by the MTA design.

Table 4.1 shows some classes that are defined in the MTA ontology, and Table 4.2

shows some key properties and relationships.

55

Table 4.2: Relationships and Properties in the MTA Ontology

Properties and

Relationships

Relationship

type

Description

hasID, hasName Identity Provides identification for objects

isClientOf business Indicate a business relationship be-

tween tenants

usesCapability,

usesResource,

providesCapability

Usage Relationships that define when re-

sources are.

hasCapacity, has-

Cost

Resource Relationships that define the magni-

tude or cost of using a resource or ca-

pability.

Domain Ontology: A collection of information about application domain on-

tologies. For example, the Building Control domain has Building, Device, Service,

and Room; the bank domain has Accounts and Securities. Table 4.3 shows key classes

in the domain ontology, and Table 4.4 shows key properties and relationships.

Figure 3 shows a portion of an MTA ontology and an Application domain on-

tology. In the MTA ontology, the classes Tenant, AccessControl, and Resource are

shown. Some instances of AccessControl are also shown. For the Application Do-

main Ontology, three application domains are presented, Building Control Weather,

and Banking. A dependency between the Building Control domain and the Weather

domain is shown to represent the fact that some simulations of building control may

rely on simulations of weather.

Application Ontology contains the metadata for the application model construc-

tion. The structure of Application ontology depends on domain content.

56

Table 4.3: Relationships and Properties in the MTA Ontology

Class Properties Description

Domain hasID, hasNames-

pace

Concept that represents an application do-

main ontology

Table 4.4: Properties and Relationships in the Application Domain Ontology

Properties and

Relationships

Relationship

type

Description

hasID, hasName Identity Provides identification for domains

usesInformationIn Usage Relationships that define which do-

mains use other domains.

Table 4.5 shows some classes in the Building Control Ontology, and Table 4.6

shows some key properties and relationships.

Figure 4.4 shows a sample building control application domain ontology for a

smart home.

Boxes represent classes, ovals represent properties that can be assigned to objects

of a given class, and arrows show the relationships that objects in different classes can

have. For example, an object of typeRoom hasID (which defines its identity), isType

(which would give the room some usage information), and is ownedBy someone. It

isLocatedIn a object of type Building.

4.2.2 Relationships

Relationships express different types of associations among classes and items. Re-

lationships exist within an ontology and cross different ontology systems. According

to the relationships specified, a service provider can identify the related objects quick-

ly for modeling. Properties are used identify and further classify individual objects.

57

Table 4.5: Classes in the Building Control Application Domain Ontology

Class Properties Description

Device hasID, isType,

ownedBy

Concept that represents a device or oth-

er equipment. Examples include a light

switch, or an A/C control.

Service hasID, isType,

hasSpecification,

hasQoS

Represents a computer-accessible service

that provides either a user service, or ac-

cess to a device.

Building hasID, isType,

ownedBy

Represents a building.

Room hasID, isType Represents a room

AccessControl hasID, hasPolicy Represents the access policies for a device

or other object within the domain.

RoomUser hasID, hasRole Represents people that use a building.

Figure 4.5 shows three intra-ontology relationships (categories, properties, and

part-whole), and two inter-ontology relationship (use, typeof). MTA ontology

and Domain ontology are cross-referenced by use relationship. Application Ontology

are cross-referenced by typeof relationships. The cross-referencing from Domain

Ontology to MTA ontology is unique for MTA simulation since the simulations desires

for the tenant information other than just for application metadata out of Application

ontology.

These relationships can help the tenants to discover and reuse the data for de-

signing and configuring their desired simulation applications and policies.

58

 Figure 4.4: Sample Application Ontology in Building Control Domain

 Figure 4.5: Cross Referencing among Ontologies

59

Table 4.6: Properties and Relationships in the Building Control Ontology

Relationships Relationship

type

Description

hasID, hasType Identity Provides identification for objects in

the domain.

isLocatedIn Location Defines a locational relationship

ownedBy Ownership Defines object ownership.

providesInterfaceFor Control Defines what device a service provides

an interface to.

affectsConditionsIn Control Specifies that a device can affect the

conditions of a room or building.

hasSpecification Usage Defines the protocol for using a ser-

vice.

specifiesControlFor Control Users can control buildings and room-

s.

receivedRequestFrom Control Defines where requests are received

from

hasPolicy Security Defines conditions for access and per-

mission

hasRole People Defines information about people.

4.3 MTA Policy Specification

Policies can be used to enforce various constraints at simulation time, several

policy languages are available already such as Rei , XACML Godik et al. (2002),

Appel Turner et al. (2007), and PSML-P Zhou et al. (2006). As these languages have

60

been developed before the development of MTA SaaS, thus they have not addressed

MTA SaaS specific issues.

MTA simulation SaaS modeling process identifies the required model elements

from the ontology system. This modeling process has two steps: tenant-independent

modeling, and then configured this model with tenant-specific modeling. This ap-

proach handles the access control in the MTA simulation model. However, if the

application is complex, it is difficult to incorporate all the requirements into the

model, and it is also difficult for the SaaS maintainer to enforce various behaviors of

all the tenants at runtime.

This paper propose using a policy approach to model constraints, and various

policies can be specified to be enforced at runtime. Policies will be hierarchical such

as global, regional, and local policies where a global policy will be enforced for all

SaaS applications, a local policy will be enforced for a specific tenants, and a regional

policy will be enforced for a group of tenants. In this way, each tenant just needs to

model its unique features, while allowing various policies to enforce global, regional

and local constraints. For example, a SaaS infrastructure administrator will maintain

those global policies, such as security and privacy policies that must be enforced for

all SaaS applications and tenants, a tenant administrator will maintain local policies

to ensure that its customer applications running the SaaS applications are executed

in a secure and fair manner; another tenant administrator may maintain a set of

regional policies as it is a part of a business consortium with other tenants. In this

way, the simulation model can be lightweight, flexible and easy to maintain while

sophisticated as constraints will be specified and maintained by different groups of

people for different purposes, making the SaaS application easier as it does not need

to address all these issues at the same time.

61

A sample global policy is that the SaaS infrastructure may request additional

processors if the current workload of all the tenants has exceeded 50% CPU usage

for elastic computing, a key feature of cloud computing. A sample regional policy

can be as shutting down TVs after 9 PM for tenant applications related to school

dormitories, and a local policy can be lowering TV volume by 20% after 10 PM for

tenant related to TV control in a given area.

A policy usually includes three components: a target, a condition set, and an

action. In a MTA SaaS environment, a policy needs to consider two more elements:

the application domain and the tenant.

Definition: Range

Let R be a finite set of Ranges, R = {r1, r2, ..., rn}, a range ri ∈ R for a policy is

a tuple ri = < di, tei, tai >, where

• di is the domain ID for the policy, and di ∈ DomainOntology.

• tei is the tenant ID for the policy, and tei ∈ MTAOntology.

• tai is the target, and it represents the target of the policy, and tai ∈ Meta-

dataOntology.

Definition: Condition

Let C be a finite set of Conditions, C = {c1, c2, ..., cn}, a condition ci ∈ C where

each ci can be any of the following three possibilities:

• ci is an crispy condition expression that the value of ci ∈ {true, false};

• ci is an fuzzy condition (Kosko 1991)that the value of ci ∈ {Fuzzy values};

• ci is an adaptive condition that the value of ci ∈ {adaptive datastructure} ,

that the adaptive data structure can be a condition tree in implementation.

62

In a crispy condition, the value of the condition expression can only be true or false.

The bound of the truth value is firm under this scenario. For instance, the tem-

perature is over 80. And the policy action is triggered provided that the range and

condition factors are both meet.

In a fuzzy condition, the condition expression is a fuzzy value. For instance, the

condition can be defined as temperature around 80. Under this case, the fuzzy value

treats both temperature 79 and 81 as around 80. Thus the policy value could be

triggered by both 79 , 80 and 81. More detailed about fuzzy theories can be followed

in Biacino and Gerla (2002).

In an adaptive condition, the condition value can be changed by different contexts.

For instance, in the spring, when the temperature is over 82, trigger the action turn

on AC. In the summer, when the temperature is over 78, trigger the action turn on

AC.

Definition: MTA Policy

Let P be a finite set of policies, P = {p1, p2, ..., pn}, a MTA policy pi ∈ P is a tuple

pi = < pidi, Ri, Ci, Ai >, where

• pidi is id for the policy, that is unique to identify each policy and ∀pi, pj ∈ P,

if i ̸= j, pidi ̸= pidj;

• Ri is the range id for a policy, that Ri ∈ Range that defined above;

• Ci = {ci1, ci2, ..., cim} is the set of conditions for pi, that Ci ∈ Condition that

defined above;

• Ai is the action associated with the policy. It denotes that Ai will be executed

provided Ri AND Ci == true.

Definition: Global Policy

63

Let P be a finite set of policies, P = {p1, p2, ..., pn}, a global policy pgi ∈ P where

tei == null. A global policy applies to all tenants.

Definition: Regional Policy

Let P be a finite set of policies, P = {p1, p2, ..., pn}, a regional policy pgi ∈ P where

tei = {tei1, tei2, ..., tein}. A global regional applies to a group of tenants.

Definition: Local Policy

Let P be a finite set of policies, P = {p1, p2, ..., pn}, a local policy pli ∈ P where

tai != null. A local policy is applicable to a specific tenant.

Definition: Policy Set

Let Pset be a finite set of policy sets, Pset = {pset1, pset2, ..., psetn}, a policy set

pseti ∈ Pset where each Pset = {p1, p2, ..., pn}, where p1, p2, ..., pn are policies.

The case study part will demonstrate policies stored in the XML format. Also, it

will demonstrate the usage of global and local policies, and policy sets.

4.4 Modeling and Simulation Process

This section demonstrates the constructing of the simulation model by identifying

and reusing the data from the associated ontology systems, and specifying policy

for different tenants including global, regional, and local policies to be enforced at

simulation time.

To make the modeling process efficient, approaches such as Consumer-Centric

SOA (CCSOA) Tsai et al. (2006a) can be used. In CCSOA, in addition to publish-

ing simulation services, simulation requirements and simulation workflows can also

published, discovered and used. Once these requirements are published, a service

provider can submit their software or services to meet the application requirements.

A service consumer can compose the existing service using composition languages

such as PSML and BPEL.

64

 Figure 4.6: Four-Step Cyclical SimSaaS Modeling and Simulation Process

The modeling and simulation process follows a service-oriented approach as char-

acterized in the following cyclical four-step process(Figure 4.6):

1) SOA Modeling: In the context of MTA SaaS, each simulation model can be

treated as a service and it can be published, discovered and composed.

1. Publishing: a service can be published so that it can be discovered and used by

others, and as policies can be published and reused by others as well;

2. Discovery: a service can be discovered using various search strategies and al-

gorithms can be used to select the best services to be used among discovered

services, and policies can also be discovered by others including tenants, end

users, and SaaS maintainers;

3. Composition: Selected services can be connected by a workflow to form a new

application, and policies can be composed by reusing several policies.

As a MTA simulation model, abundant simulation model candidates from the on-

tology system can offer abundant options for the modeling process. To solve this

issue, different service selection and ranking algorithm can be applied, including rep-

utation based ranking, usage based ranking, QoS-based service selection and ranking

with trust and reputation management Vu et al. (2005) by EPFL, context-sensitive

ranking algorithm Haveliwala (2003), social closeness ranking and even correlation

ranking based on a topology model.

2) Policy construction and tenant configuration: The constructed simula-

tion model can be configured with the MTA properties and also be associated with

65

the MTA policies for the tenant constrains. Policy and tenant information should

be specified once the tenant-independent models are created. Meanwhile, these con-

structed models can be configured directly using the Tenant Configuration model

specified in SimSaaS. This configuration model includes the information specified in

MTA ontology, including identity, accessibility, and sharing strategies.

In composing the policy, the ontology system is used. The cross referencing among

the ontology can match the Application ontology from Domain Ontology, then query

the associated Application ontology for the desired conditions and actions. For in-

stance, in a building control definition, we can construct a global policy P0 for tenant

A, if the CPU usage is over 80%, allocates one more CPU for the application.

One can also define local policies, P1 for tenantA, for instance, if temperature

is over 80, then turn on the AC. However, another policy p2 for tenant B, if the

temperature is over 80, turn on the fan.

Global policies are categorized to the PolicySet regarding the associate application.

Regional policies are categorized to the PolicySet regarding the associate tenants.

Local Policies are categorized to the PolicySet regarding to the associate tenant.

66

Algorithm 4 Monitoring and Policy Enforcement
Input:

1: Ranked policy set, Simulation model

Output:

2: Simulation result

3: StartMonitoringSimulation();

4: while more simulations do

5: Log();

6: Type type = SelectPolicyExecutionAlgorithm();

7: if type == FYI then

8: while hasPolicy() do

9: executePolicy();

10: executeSimulation();

11: end while

12: Log();

13: else if type == conservative then

14: while !checkPolicy() do

15: Log();

16: end while

17: executePolicy();

18: executeSimulation();

19: Log();

20: else if type == greedy then

21: Rollbackpoint roolbackPoint = setRollBackPoint();

67

22: executePolicy();

23: executeSimulation();

24: Log();

25: if !checkPolicy() & PolicyNoneViolable() then

26: rollback(rollbackPoint);

27: end if

28: Log();

29: ReRankPolicies();

30: end if

31: end while

3) Deploy and execute: The composed application can be deployed in a cloud

environment to be executed; Similar to DDSOS Tsai et al. (2006c), simulation de-

ployment in SimSaaS can support both the on demand and automated way.

Various issues requires to be considered for MTA simulation execution. Including

runtime tenant management, tenant physical and logical addressing, tenant resource

allocation, and capability control. The details about simulation deployment and

execution can be followed in earlier paper SimSaaS.

Before the policies are deployed, the policies are configured in different policy sets

and with each police sets, the policies are ranked by the policy editors.

4) Monitor and policy enforcement: The execution of the simulation can be

monitored and various runtime policies can be enforced.

As shown in the Algorithm 4.4, the service execution and policy enforcement

processes are monitored by SimSaaS infrastructure. While monitoring, the execution

processes of simulation services and the polices are stored through the distributed

tracing infrastructure in PaaS. Frameworks such as Dapper from Google Sigelman

68

et al. (2010), Magpie Barham et al. (2003) from Microsoft, and X-trace Fonseca et al.

(2007) from UC Berkeley can be used as the distributed tracing infrastructure. Later

on, data provenance mechanism can be applied to these tracing data for simulation

analysis, simulation tuning, and policy ranking.

Policy enforcement can be categorized into three ways Tsai et al. (2006b) includ-

ing:

• For your information (FYI) algorithm: the policy engine does not perform policy

checking at runtime. It simply do the static checking before policy enforcement.

In runtime, the policy engine only logs the relevant information into log file for

analysis. It is not suiable for safety Ccritical processes.

• Conservative algorithm: the simulation engine stops whenever it needs to check

the policy enforcement point (PEP). It holds the simulation step until the next

step can be confirmed safe. If the PEP needs to check lots of polices in simula-

tion, this algorithm will consume a large amount of time.

• Greedy algorithm: similar to the conservative algorithm but that the execution

and condition checking are separated to paralleled two threads. The simulation

execution thread will execute as far as it can go however, the condition checking

thread will wait for the PEP for the result. A rollback point is saved before

the simulation execution thread. And if the PEP returns out as false, the

simulation execution thread can choose to roll back or do an compensation or

proceed depending on the extend of the systems compromise for the violation

of the policies.

Moreover, policies may conflict with each other. For instance, a local policy can

conflict with a global policy, or two local policies conflict with each other within a

tenants scope. These cases can be solved by doing the consistent and completeness

69

checking over the policies Zhou et al. (2006), or applying policy combination and

integration algorithms such as Li et al. (2009); Mazzoleni et al. (2006).

A rerank of the policies can be done based on the traced date from the tracking

framework. These ranking can be updated to the existing policy set and it will replace

the original policy ranking results.

4.5 Case Study

The case study involves two tenants ABCDorm and XYZHome in Building control

domain. Both models are derived from the building control simulation, whereas,

configured by different tenant configurations specified by SimSaaS. The requirements

and constrains of both tenants are listed in the following Table.

4.5.1 SOA Modeling

Following the SOA modeling process(publish, discovery and composition), Dor-

mitory Control Simulation and Home Control Simulation are constructed separately

for the two tenants ABCDorm and XYZHome. The discovery process uses the ontol-

ogy system. The cross referencing among the ontologies can be beneficial to find the

desired service in an easier way. For instance, we can first query Domain ontology

to narrow down the Building Control Application Ontology for designing the simu-

lation model. In that, it is easier to discover the desired services for composing the

functions.

To simplify the scenario, this case study only involves a few services including TV

Control, Temperature Control and Kitchen Control. The overview constructed model

can be seen in Table 4.8. It specified the related services and required involved data

for the two different simulations.

70

Table 4.7: Requirements for ABCDorm and XYXHome Control Simulation

ABCDorm XYZHome

Simulation Model Dormitory Control Simu-

lation

Home Control Simula-

tion

Tenant Logo Yes Yes

Specific ♯ of Users 30 3000

Requirements Bandwidth

Usage

0.1 Gbytes 1 Gbytes

CPU time 0.5 CPU hours 10 CPU hours

Sample

Con-

strains

1. Shut down TV after

10 PM to TV control in

living room. 2. If tem-

perature is over 80, then

turn on the AC.

1. Lowering TV vol-

ume by 20% after 10 P-

M to TV control in living

room. 2. If the temper-

ature is over 80, turn on

the fan.

4.5.2 Configuration and Policy Construction

Once the simulation model is done, we can start configure these models with the

tenant information. The two models come with their own simulation models.

According to SimSaaS tenant configuration. The following configurations can be

done to the two different models.

XYZHome → Home Control Simulation

ABCDorm → Dormitory Control Simulation

For the different tenants, different policies are constructed by the tenant constrain-

s. These policies associate with the MTA SimSaaS model in the cloud infrastructure.

71

Table 4.8: Overview of Sample MTA Simulation Models

Dormitory Control Simulation Home Control Simulation

Services TV Control, Temperature

Control

TV Control, Temperature

Control, Kitchen Control

Data Samsung TV, GE Air Condi-

tioning

LG TV, Vornado Electricity

Fan, Haier Microwave, GE Re-

frigerator

Note that as a global policy p5 applies to all the simulation runs at the SimSaaS run-

time including Dormitory Control Simulation and Home Control Simulation. P1 and

P2 only belong to tenant ABCDorm. P3, P4 only apply to XYZHome. According to

PThus when a CoolDown functions are invoked in both simulations, ABCDorm will

turn on the AC, while in XYZHome it will turn on the electricity fan.

4.5.3 Deployment and Execution

The Figure 4.7 shows an deployment overview of the whole case study. P1 and P2

are configured for ABCDorm, and P3 and P4 are configured with XYZHome. P5 is

configured at global level. The Figure also tells that the global and regional policies

stay at the global level compare to local policies that stay with the individual tenants.

Policy offers more flexibility for the simulation details of different tenants although

they share the same service. Moreover, the overhead for the service designs can be

dispersed to the different policies of the tenants. Thus it can both benefit to the

service provider and the simulation execution engine.

72

Figure 4.7: Deployment OverView of Global, Regional and Local Policies

4.5.4 Monitoring and Policy Enforcement

The monitoring and execution of the policies follows algorithm in section 4.4. For

instance, when ABCDorm Simulation is put to execution. The SimSaaS simulation

engine starts to monitor the whole process.

The ABCDorm has a simulation temperature control. Before the execution of the

temperature control, it first checks which simulation algorithms it desires to take. For

instance taking the greedy algorithm for temperature control, the simulation engine

starts the execution of temperature control service before the P2 is evaluated. Taking

this way, the simulation can save the time in setting up the environment such as

73

starting the AC. If the policy condition does not meet, a compensation operation of

warming up can be done.

4.6 Conclusion

This paper presented an ontology based framework and the tenant related poli-

cies, to support building an flexible simulation models that can meet the variability

of tenant-specific requirements in SimSaaS. MTA simulation model construction can

benefit from the MTA ontology system provided, and this ontology can also be used

for the policy design. The specified policies can be used to meet the different require-

ments of the tenants. The innovative solution can greatly save the time in tenant

modeling and execution of SimSaaS. A case study is offered to demonstrate the entire

framework.

74

Table 4.9: Sample Policies for MTA Simulation Models

Policy

ID

Policy Description Policy Type Associated Ten-

ant

P1 Within a range ABCDorm in Building

control domain; If condition time after

10PM is meet; Trigger the action shut-

ting down TV in living room.

Local Policy ABCDorm

P2 Within a range ABCDorm in Building

control domain; If condition tempera-

ture over 80 is meet; Trigger the action

turning on the AC.

Local Policy ABCDorm

P3 Within a range XYZHome in Building

control domain; If condition time af-

ter 10PM is meet; Trigger the action

of lowing down the volume of TV to

20% in living room.

Local Policy XYZHome

P4 Within a range ABCDorm in Building

control domain; If condition tempera-

ture over 80 is meet; Trigger the action

turning on the Electricity Fan.

Local Policy XYZHome

P5 Within a range Building control do-

main; If the CPU usage is over 80%;

Trigger the action of allocating two

more CPUs.

Global Policy All tenants in

Building Control

Domain

75

Chapter 5

TIMING SPECIFICATION AND ANALYSIS FOR SERVICE-ORIENTED

SIMULATION

5.1 Introduction

This paper deals with time-based service-oriented simulation. Modeling time is

important for service-based software systems and necessary when services must com-

plete their tasks within specified timing constraints. Service-oriented models such

as WSDL and BEPL do not support specifying time yet even though the timing

constraints can be added. Thus, services with timing information stands to signifi-

cantly strengthen design, implementation, and testing of complex, real-time atomic

and composite services.

In this paper, the PSML (Process Specification and Modeling Language) Tsai et al.

(2007a) that supports development of service-based software system is extended to

quantify timing of services. DEVS (Discrete Event System Specification) ASU (2014)

is a component-based modeling and simulation approach and it supports specification

of timing.

5.2 Related Work

Service-oriented simulation has been an active research area recently, and some

existing projects include XMSF (Extensible Modeling and Simulation Framework)

XMSF (2007), the simulation grid system Cosim-Grid Li et al. (2005) and GridSim

Buyya (2008), Interface Simulation and Testing Framework (ISTF), Dynamic Dis-

tributed Service-Oriented Simulation (DDSOS) Tsai et al. (2006c), Dynamic Service-

76

Oriented Collaboration Simulation (DSOCS) Tsai et al. (2007c), simulation frame-

work with Microsoft Robotic Studio Tsai et al. (2008d), and SOA DEVS (SOAD)

Sarjoughian et al. (2008). XMSF creates a modeling and simulation framework that

utilizes a set of web-enabled technologies to facilitate modeling and simulation ap-

plications. XMSF involves Web/XML, Web services, and internet/networking to

improve the interoperability. Cosim-Grid is a service-oriented simulation grid based

on HLA, PLM (Product Lifecycle Management) IBM (2007), and grid/web services.

It applies OGSA (Open Grid Services Architecture) Globus (2007) to modeling and

simulation to improve HLA in terms of dynamic sharing, autonomy, fault tolerance,

collaboration, and security mechanisms. GridSim is an open-source simulation frame-

work that allows users to model and simulation the characteristics of Grid resources

and network. It provides intensive support for grid simulation, such as workload

trace simulation, jobs allocation, and network traffic simulation Buyya (2008). ISTF

INOA (2014) is an extensible SOA simulation tool, and it simulates the end-to-end

distributed application scenarios and demonstrates how individual components will

interface with each other in production.

DDSOS is an SOA simulation framework that provides simulation runtime ser-

vices and supports. DDSOS has runtime infrastructure (RTI) like the one in HLA.

Within this framework, simulation code can be dynamically generated and configured

whenever demanded by the users. The DDSOS framework provides the two layers of

modeling support by PSML, an on-demand automated dynamic code generator (ser-

vice) can generate executable code for simulation and for real applications directly

from the model (specification) written in PSML, an on-demand automated dynamic

code deployment service, an simulation engine engines, and an extended RTI.

As SOA development is mainly model-driven, and it is different from traditional

software development, thus SOA simulation will be model-driven and the modeling

77

languages used will have a great impact on the lifecycle of service-oriented application

development. Each component in the simulation framework, including the simulation

engines as well as application components and tasks, are modeled as services or work-

flows using various modeling languages such as BPEL or PSML-S Tsai et al. (2007a)

, and DEVSML Mittal et al. (2007). The activities that can be simulated include

service publishing, service discovery, service composition, dynamic architecture, re-

configuration, dynamic collaboration, policy enforcement. For example, PSML can

model service-oriented applications, simulation code can be automatically generated,

and various kinds of analyses can be performed on the model specified.

SOA allows services to be discovered and composed at design or runtime, and

for those systems composed at runtime, its behavior is determined at runtime. The

DSOCS framework Tsai et al. (2008d) addresses this issue by integrating the SOA

dynamic collaboration and simulation concepts, and it supports modeling and simu-

lating systems with the distributed, interactive, and discreteCevent driven focuses.

5.2.1 Service-Oriented Simulation Approaches

One approach to service-oriented simulation views simulation as an integrated part

of application development. Simulation is used to verify a service-oriented model, and

also used at runtime to validate that the application execution produces the same re-

sults as simulation Tsai et al. (2008d, 2007a). Another important feature is the policy

enforcement which often needs to be simulated Tsai et al. (2008b), as policy software

cannot be executed alone, before policies can be deployed to enforce constraints. In

this way, service-oriented simulation carefully follows the service-oriented models and

lifecycles. In this approach, the goal is not to simulate the support function of SOA,

but instead use these services as a part of simulation infrastructure.

78

Another approach for service-oriented simulating outgrows from the DEVS frame-

work. The SOA DEVS (SOAD) approach is developed to support representing and

simulating service-oriented applications Sarjoughian et al. (2008). In this approach,

DEVS formalism and the SOA principles together enable simulating basic aspects

of service-oriented applications such as discovery, composition, publication, and sub-

scription. Currently, the DEVS-Suite is an object-oriented simulator implemented in

Java ASU (2014). Unlike DEVS/SOA which enables execution of models as services

Mittal et al. (2007), the DEVS-Suite simulator is not service-based.

It is important for SOA DEVS models to be simulated as services and take advan-

tage of dynamic publication, discovery, composition, and policy enforcement offered

by SOA. This is similar to an object-oriented simulation, which was mainly based on

object-oriented framework and designed to take advantage of polymorphism, dynamic

binding offered by object orientation.

This paper provides a way to unify these two approaches by incorporating the

timing information into the service-oriented modeling language PSML.

5.3 Specifying Timing in Service-Oriented Model

This paper proposes several timing specification techniques to the service-oriented

model language PSML (Process Specification and Modeling Language) based on AC-

DATER (Actors, Conditions, Data, Actions, Timing, and Events, Relations). Specif-

ically, this paper uses Delay, Min (for minimum time needed), Max (for maximum

time needed), Deadline, and Distribution to Actors, Conditions, and Actions.

5.3.1 Timing Specifications

The timing information is specified by various guards including uni-guards, bi-

guards, and n-guards. As Data elements do not have timing information associated

79

with them, only Actor, Condition, Action elements have timing specifications. An

event is considered as an epoch. Each model can have zero or more guards, referred as

the guard set, to specify timing and other relationships among ACDATER elements.

Uni-Guards: These express timing constraints involving a single element and

they can be applied to Actors, Conditions and Actions. There are four different types

of uni-guards:

• Delay specifies the minimum time that the concerned elements must wait before

computing. Delay is often used for real-time processing to establish the environ-

ment before execution. An example is a heart defibrillator where its capacitor

needs to be charged before applying therapy.

• Deadline specifies the time within which the computation or communication

must be completed.

• Min specifies the minimum amount of time that computation or communication

will take.

• Max specifies the maximum amount of time the computation or communication

will take.

• Distribution specifies the time distribution function for computation or commu-

nication. The distribution largely depends on the characteristics of the input

such as size. A distribution function can be deterministic or stochastic such as

Poisson distribution.

A deadline associated with an element can be from three sources following the

three-party structure of SOA: providers, clients, or brokers.

• A deadline imposed by a provider can be a QoS guarantee that the provider is

willing to provide for all of its clients.

80

• A broker may act as independent agent to verify the deadline provided by a

provider satisfies the stated specification. With the brokers assurance, a client

has more confidence of using the timing specification provided by the provider.

• A deadline imposed by a client is the requirements that the client desires for a

specific application, and the provider may or may not be able to provide.

In ACDATER specification, timing specifications provided by providers are asso-

ciated with elements, but timing requirements for clients are carried by the current

active process during simulation. As a computation is being carried out, the timing

requirements by clients will be updated (e.g., at some regular time intervals) to see

if the client requirements are being met. Furthermore, based on the current status,

the active process may make runtime decision to select different services for execu-

tion based on the timing specification associated with elements supplied by providers.

This will be further discussed in Section 7.

Note that a Deadline should be equal or smaller than the sum of Max and Delay.

Otherwise the Deadline is meaningless.

Figure 5.2 shows a simple workflow for an account update process to illustrate

the above timing concepts. It consists of three services login, update, and logout.

The workflow is modeled as an Actor; login, update, and logout services are modeled

as Actions; IsBlank is a condition. The update service needs to verify the IsBlank

condition is satisfied before the update is performed. The login service can have

timing constraints in Figure 5.1:

Delay (login) = 0;

Deadline (login) = 0.09;

Min (login) = 0.01;

Max (login) = 0.1;

81

0.01,0 10

0.05,10 100
() ,

0.08,100 1000

0.1, 1000

x

x
f x x N

x

x

+

< ≤ 
 < ≤ 

= ∈ 
< ≤ 

 > 

Figure 5.1: Timing Constraints

Figure 5.2: A Simple Account Update Process

This means that the login should act immediately without delay to minimize

customer waiting. The minimum processing time is 0.01 second, and the maximum

processing time is 0.1 second to reduce customer waiting. f(x) defines the timing

distribution for the login service in terms of the number of concurrent users x. The

timing requirement will be relaxed with a specified value according to the distribution

function. Bi-Guards: They express timing constraints with respect to two elements

in the ACDATER model, and these timing constraints are also specified using Delay,

Deadline, Min, Max, and Distribution.

• Delay specifies the minimum time that the second element must wait after

completing the first element.

• Deadline specifies the time that the two elements must be completed.

82

• Min specifies the minimum amount of time to complete the two elements.

• Max specifies the maximum amount of time to complete the two elements.

• Distribution specifies the distribution function.

The relation between the deadline and max is similar to uni-guards. The following

examples show the bi-guards between the login, update, and logout services. The first

bi-guard shows that after finishing the login service, the update service must wait for

0.1 second to ensure that the database is properly activated. The second bi-guard

shows that these two operations must be completed within 0.2 second.

Delay (login, update) = 0.1;

Deadline (update, logout) = 0.2;

N-Guards: They express timing constraints with respect to n elements in the

ACDATER model, and these timing constraints are also specified using Delay, Dead-

line, Min, Max, and Distribution where n can be any positive integer number. Thus

one can have tri-guards and quad-guards. For example, an if-then-else construct

requires a tri-guard, and a sequence of four steps requires a quad-guard.

The following descriptions show more uni-guards and bi-guards examples.

Actor Administrator:

Delay (administrator)=0;

Deadline (administrator)= 0.4;

This means that to start the workflow in the Actor, the delay for the system

should be zero, and the entire workflow should be completed within 0.4 seconds.

Action Login:

83

Delay (login) = 0;

Min (login) = 0.01;

Max (login) = 0.1;

Deadline (login) = 0.09;

Deadline (login, update) = 0.1;

Action Update:

Delay (update) = 0;

Min (update) = 0.01;

Max (update) = 0.1;

Deadline (update) = 0.09;

Deadline (login, update) = 0.1;

Condition IsBlank:

Delay (IsBlank) = 0;

Deadline (IsBlank) = 0.1;

Action Logout:

Delay (logout) = 0;

Min (logout) = 0.01;

Max (logout) = 0.1;

Deadline (logout) = 0.09;

Deadline (update, logout) = 0.1;

5.3.2 Consistency of Timing Constraints

Timing constraints specified should be consistent with each other. For example,

a bi-guard must be consistent with those uni-guards involved in the bi-guard. Figure

84

Figure 5.3: An If-Then-Else Process

5.3 shows an if-then-else process. After the services0 verifies the condition, it can

either choose to execute service1 or services2 depending on the evaluation result.

The tri-guard, as it involves three elements and thus tri-guard, must be consistent

with individual uni-guards and two bi-guards. Bi-guards should be consistent with

the uni-guards:

Delay1 = Delay (Service0, Service1) = Delay (Service0) + Delay (Service1)

Delay2 = Delay (Service0, Service2) = Delay (Service0) + Delay (Service2)

Min1 = Min(Service0, Service1) = Min(Service0) + Min(Service1)

Min2 = Min(Service0, Service2) = Min(Service0) + Min(Service2)

Max1 = Max (Service0, Service1) = Max(Service0) + Max(Service1)

Max2 = Max (Service0, Service2) = Max(Service0) + Max(Service2)

Tri-guards should be consistent with bi-guards:

Delay (Service0, Service1, Service2) = Delay (Service0) + or(Delay1, Delay 2);

85

Min (Service0, Service1, Service2) = Min(Service0) + minimum (Min 1, Min 2);

Max (Service0, Service1, Service2) = Max(Service0) + maximum (Max 1, Max 2);

Deadlines are different from Min, Max and Delay. Bi-guards Deadline (service0,

service1) might not be equal to the Deadline (service0) + Deadline (service1). The

same also applies for the Deadlines for tri-guards.

5.3.3 States in ACDATER

Actor, Condition and Action elements in ACDATER have states. Their states can

either be active or inactive. An active state of Actor, Condition and Action means

the element is under execution. Similarly, the inactive state means the element is

idle.

For a workflow, it can either have only one element at the active states or multiple

elements at the active states simultaneously. When multiple elements are in the active

state simultaneously, the workflow might need synchronization among the elements.

Guards could be applied to the elements at the active states to help the synchro-

nization. Figure 5.4 shows Service1 and Service2 are in the active state at the same

time. The requirement for this flow is that Service1 and Service2 need to start at the

same time and the whole flow needs to finish in 10 seconds. Deadline of the tri-guards

can be applied to guarantee a sub-flow can be finished within a certain time, and the

delay for Service1 and Service2 need to be synchronized to make sure the two services

start at the same time.

Delay(Service1) = Delay(Service2)

Deadline (Service0, Service1, Service2) = Deadline(Service0) +

maximum(Deadline(Service1), Deadline(Service2)) < 10

86

Figure 5.4: Two Active Services in One Process

Min(Service0, Service1, Service2) = Min(Service0) + maximum(Min(Service1),

Min(Service2)

Max(Service0, Service1, Service2) = Max(Service0) + maximum(Max(Service1),

Max(Service2)

5.4 Simulation Architecture

Models that are developed according to the extended PSML approach can be

simulated as shown in Figure 5.5. The simulation environment consists of Event

Generator, Simulation Engine, and Simulation Analysis Engine. The Event Generator

generates events to drive the simulation. The Simulation Engine executes simulation

code given simulation configuration files and generated events. The results of the

simulations are stored in log files. The Simulation Analysis Engine uses the log files

at runtime to generate data depicting how the model dynamics are changing under

timing constrains. These results can also be visualized and evaluated by modelers.

87

Figure 5.5: Simulation Environment

5.5 Simulation Lifecycle

Once the service-oriented model has the timing information, it can follow a service-

oriented life cycle where application templates, collaboration templates, workflows,

and services can be published and discovered for reuse to rapidly develop the simula-

tion model.

Figure 5.6 shows the simulation lifecycle as the following phases:

• Service-oriented requirement and design phase: The model takes the system

requirements and then discovers the needed services and workflows from the

existing repositories. Note that not only do the services and workflows need to

match the functionality requirement; they also need to meet the timing con-

straints specified by the timing specifications. If the needed services or work-

flows are not available, it will be necessary to either develop them or modify

the existing services or workflows if their source code or design is available. The

modified or new items will be published in various repositories for publishing

so that they can be reused.

88

• Model evaluation phase: This phase evaluates the application model developed

in the previous phase. Specifically, all the timing inconsistencies will be detected

and eliminated at this phase.

• Code generation phase: This phase generates code from the application mod-

el developed in the previous phase with identified or developed services and

workflows.

• Simulation execution and monitoring phase: This phase executes the applica-

tion code including sending messages to participating services at remote sites.

Furthermore, the execution is monitored and data are collected for analysis.

• Data analysis and evaluation phase: This phase will analyze the data collected

in the previous phase, and the evaluation results will be used to guide the

modification of the application model in the next cycle. After completing this

step, the process goes back to the service-oriented requirement and design phase.

This phase will be further explained in Section 6.

Note that this simulation lifecycle can be an integrated part of SOA application

lifecycle where simulation plays a key role in verifying and validating system require-

ments and performance.

5.6 Data Collection and Model Tuning

Following the SOSE (Service-Oriented System Engineering) Tsai (2005) approach,

timing information can be collected for each Actor, Condition, Action, and Events

in a model. The collected information can be used to tune the model so that it can

better reflect the system.

Figure 5.7 shows an SOA communication bus architecture with time tracking

services. As one can see, each service and workflow is bundled with a tracking service

89

Figure 5.6: Model-Driven Service-Oriented Simulation Process

that keeps tracking all the information associated with timing and other information.

The information tracked can also be used to evaluate system security, reliability,

and integrity. Note that this is a simplified version of general SOA data provenance

architecture.

When the services used are from third parties and their source code is not avail-

able, the tracking service can only work in a non-intrusive way by intercepting mes-

sages sent between services and communication bus. For example, computation time,

tcomputation, can be computed from tresponse - trequest. When a number of re-

quest/response pairs were recorded, the average, min, max computation time can

be calculated. When an input classifier is added to the tracking service, the timing

distribution function can be obtained.

If the service code is available, the tracking service can work in an intrusive way by

adding code to services recording the time when interested events happen, therefore

more information, such as delay, can be obtained.

90

Figure 5.7: Time Tracking SOA Architecture

Similarly, as a full specification is available for workflow tracking, more interesting

timing information can be collected, such N-guards. Figure 5.8 shows how to collect

the timing information for a tri-guard. The small circles represent points of interest

in a workflow. In this example, the time when Service0 receives a request, and the

time Servcie1 and Service2 send out response are the points of interest. With the

information collected, Min, Max, Delay can be easily computed for this tri-guard.

Data collection and model tuning can happen in three different stages:

1. Simulated system and simulated environment: At the initial stage of develop-

ment, a model is specified for the system that needs to be produced. Some

initial assumptions, such as the value for Min, Max for primitive parameter set,

can be made for each model element. The values for more complex input set

can be obtained by running simulation with different simulated environments.

2. Real system and simulated environment: At this stage, a system based on the

model in stage 1 has been built, so data can be collected by running the system

91

Figure 5.8: Time Data Collection for Workflow

with the simulated environment. Some incorrect assumptions made in stage 1

may be found and corrected at this stage.

3. Real system and real environment: This stage is similar to stage 2. The only

difference is at this stage, the data collected is no longer from simulations, but

real execution of the system.

Figure 5.9 shows the relationship among the three stages. After the 3-stage tuning,

the model will reflect the behaviors of the real system.

5.7 Dynamic Simulation with Aid from Static Analysis

Essentially, timing analysis for a service-oriented application can be obtained by

aggregating the time needed for the entire applications from the participating services,

workflows, application templates and collaboration templates in a bottom-up manner.

The bottom-up process starts from analyzing timing requirement for atomic services,

which usually involves gathering timing constraints using data collection technique.

92

Tuning

PSML model with

timing specification

Simulated System

Simulated Environment

Real System

Simulated Environment

Real System

Real Environment

D
ata collection

Data collection

D
at
a
co
lle
ct
io
n

Figure 5.9: Data Collection and Model Tuning

Once the timing information about atomic services is known, the timing information

about composite services or workflows that call only atomic services can now be

computed. During simulation, a process that carries out the computation carries its

own timing requirements. During the simulation execution, whenever a service is

called, the calling process needs to provide its timing requirements to match with the

timing information of the called services to verify timing requirements against timing

capabilities.

Figure 5.10 shows the process for the static analysis and dynamic simulation.

Simulation modeling: Simulation modeling is done in the PSML modeling tool.

The tool can model the services, workflows and the timing constraints for all services

and workflows.

Code generation: Code generation includes element generation, path generation

and timing constraint derivation. Element generation will generate the simulation

code for all the atomic elements. Timing constraints can be attached to the generated

code. Path generation will generate the workflow among the elements.

93

Figure 5.10: Dynamic Simulation with Aid from Static Analysis

Timing constraint derivation will derive the timing constraints based on the gener-

ated workflow. The timing constraints generation algorithm is similar to the N-Guard

timing constraint generation algorithm.

Static simulation analysis: Static simulation analysis will need at least one set

of simulation result and all the existing timing constraints. The analysis will verify

the correctness and consistency of the current timing model and evaluate the timing

performance of the system.

For example, if a uni-guard specification for service1 is defined as Deadline (ser-

vice1) =5 and the simulation result to run this service1 is 10 second, then the simula-

tion result is inconsistent with the timing constraints. This means either the existing

timing specifications need to be updated or a different service or workflow should be

used.

Dynamic simulation: Dynamic simulation can either refer to runtime path

selection or runtime timing constraint configuration. Runtime path selection means

94

Figure 5.11: Switch Flow Sample

given different timing constraints, the simulation engine would dynamically choose

path to satisfy the timing constraints.

For example, suppose there is a 3-way switch.

In Figure 5.11, the bi-guard between service0 and service1 is defined as Delay

(service0, service1) = 5. Now, suppose the runtime simulation reports that when

choosing the path service0 to service1, the result is 10 seconds. In this way, runtime

path selection will choose the second path service0 to service2. In this manner,

the simulation program dynamically decide which service to run based on timing

constraints attached to the concerned services.

Runtime timing constraint configuration means the simulation engine would con-

figure the timing constrains at runtime. The constraints come from the static analysis

step.

5.8 Case Study

In this section, a case study based on a popular robotic game, sumoBot competi-

tion, is provided to illustrate the enhanced timing information for PSML. The main

95

purpose of sumoBot is to have the robot stay inside of an arena while trying to push

the opponent out. Timing plays an important role in order to win this competition.

The strategy used is to actively search for the opponent (Search), and once a target

is located, the robot speeds up and tries to push it off the arena (Chase). However, at

any time during the search or chase process a BorderDetected event is generated and

sent to the system, the robot must preempt its current action, and start to perform a

Backup & Turn action to avoid going off the arena. A PSML model for the sumoBot

competition has the following elements:

Actor: sumoBot

Action: Search, Chase, Backup & Turn

Event: BorderDetected

Condition: TargetFound, TargetLost

Figure 5.12 shows an event-based workflow for the competition using PSML model.

Some important timing constraints are listed as follows:

• Within 0.1 second after a target is found, a Chase action must be followed.

• With 0.5 second after a target is lost, a Search action must be followed.

• Within 0.05 second after a BorderDetected event is received, a Backup & Turn

action must be followed. This constraint has the top priority.

• A Backup & Turn action should not last more than 2 seconds.

The timing information and constraints can be imported into the PSML using the

schema explained in Section 3 as follows:

Action Search:

Delay (Search) = 0;

96

Figure 5.12: SumoBot Workflow

Min (Search) = 1;

Max (Search) = ∞;

Deadline (Search) = ∞;

Deadline (TargetLost, Search) = 0.5;

Action Chase:

Delay (Chase) = 0;

Min (Chase) = 1;

Max (Chase) = ∞;

Deadline (Search) = ∞;

Deadline (TargetFound, Chase) = 0.1;

Action Backup & Turn:

Delay (Backup & Turn) = 0;

Min (Backup & Turn) = 0.5;

97

Max (Backup & Turn) = 2;

Deadline (Backup & Turn) = 2;

Deadline (BorderDetected, Backup & Turn) = 0.05;

Condition TargetFound:

Delay (TargetFound) = 0;

Deadline (TargetFound) = 0.1;

Deadline (TargetFound, Chase) = 0.1;

Condition TargetLost:

Delay (TargetLost) = 0;

Deadline (TargetLost) = 0.1;

Deadline (TargetLost, Search) = 0.5;

According to the data collected during the first simulation, a time trajectory, as shown

in Figure 12, can be drawn. Static timing analysis reports that there are 3 violations

of time constraints: the time slot between Search and Chase is 0.15 sec, longer than

the specified 0.10 sec; it took 0.30 sec for the robot to respond to the BorderDetected

event, while the constraint is 0.05 sec; Backup & Turn lasted 2.5 sec, exceeding the

time constraint by 0.5 sec.

After improving the services and workflow, and tuning the model, the simulation

was rerun. Figure 5.14 shows a new timing trajectory.

If there are multiple Backup & Turn service implementations, dynamic service

selection technique can be applied. After the workflow is deployed on the robot,

system keeps tracking whether if any service exceeds the required execution time and

tries to switch a different implementation to eliminate the violations. For example,

the Backup & Turn service exceeded the required execution deadline, therefore, the

98

se
ar
ch

ch
a
se ba

ck
&
tu
rn

se
ar
ch

Figure 5.13: Action, Event and Condition Time Trajectories

system will select another service that has the shortest execution time guarantee out

of the available implementations.

5.9 Conclusion

This paper proposes timing specifications into a service-oriented model and applies

timing specification in analysis and simulation. Timing specification can be analyzed

to ensure their completeness and consistency by static analysis as well as by simu-

lation. Timing information can also be obtained by simulation. As service-oriented

simulation can be an integrated part of service-oriented application development, tim-

ing specification and analysis will enable simulation to obtain more accurate results.

A distinct feature of the timing specification is that timing diagrams can be automat-

99

se
ar
ch

b
a
ck
&
tu
rn

se
a
rc
h

Figure 5.14: Action, Event and Condition Time Trajectories

ically generated once the simulation is performed, and the simulation is performed

using the simulated code that is generated from a service-oriented model.

100

Chapter 6

EVENT-DRIVEN SERVICE-ORIENTED SIMULATION FRAMEWORK

6.1 Introduction

Service-oriented architecture (SOA) and event-driven architecture (EDA) have

received significant attention recently. Leading IT organizations support the combi-

nation of SOA with EDA and label it as SOA 2.0 Wikipedia (2014a), IBM Marechaux

(2010), Oracle Oracle (2010), and Tibco Tibco (2010) all have their own event-driven

SOA systems. In Marechaux (2010), IBM suggests using enterprise service bus (ESB)

to pass events around the system. An ESB service needs to have event transport ser-

vices, event detection/triggering services, and protocol mediation services to facilitate

event processing. In Oracle (2010), Oracle defines simple events as state changes of

data throughout its lifecycle, while a complex event is an aggregation of simple events,

and need to be detected outside a process. In Chandy and Schulte (2009), Chandy

and Schulte presented event processing architecture in business applications. Various

formalisms have been introduced to model composite event detection, including event

detection tree Vaculin and Sycara (2007), Petri nets Zang and Fan (2007), finite state

automata Pietzuch et al. (2004), and event detection graphs Akdere et al. (2008).

Event-driven SOA system has several advantages Wikipedia (2014a); Hanson

(2005) over traditional SOA systems:

1. Decoupling: event publishers need not be aware of the existence of event sub-

scribers, and this further reduces the coupling among system components

2. Consumer-based/event-based triggering: Services can be triggered by flow of

control and event messages allowing system to mimic business processes.

101

3. Synchronous/asynchronous operations: Event-driven SOA supports both asyn-

chronous and asynchronous operations, and these reduce blockings and improve

system responsiveness.

Service-oriented simulation is an active research area Buyya (2008) such as XMS-

F, ISTF INOA (2014), Cosim-Grid Li et al. (2005), DDSOA Tsai et al. (2006c), DCP

simulation Tsai et al. (2007c, 2006a), Ontology-based simulation Tsai et al. (2007b),

SOA simulation framework Tsai et al. (2007a) and SOAD Sarjoughian et al. (2008);

Mittal et al. (2007). However, few consider the combination of SOA and EDA. In

Tsai et al. (2008c,a), a BPEL engine is used as a simulation engine to simulate SOA

applications, and an event-driven policy enforcement framework is proposed to verify

the SOA applications. In Tsai et al. (2009), it proposes a timing specification and

the associated analysis techniques for PSML, a service-oriented modeling language.

Specifically, timing constraints such as delays, processing time, deadlines among el-

ements can be specified, and consistency among timing constraints can be verified.

The timing information can be used for static analysis to estimate time needed as

well as dynamically to verify the runtime behaviors of service-oriented applications.

This paper proposes a simulation framework with the following features:

1. Share and reuse events, event generators, composite event specifications, event

handlers, and event handler templates through an ontology system that facili-

tates publishing, discovery, and composition.

2. Specifications of composite events in PSML and patterns for event generation.

3. Static analysis with event triggering graphs and dynamic simulation with event

generation, composite event specification and event handling.

This paper is organized as follows. Section 2 presents the simulation framework.

Section 3 shows the PSML event specification. Section 4 discusses the publishing and

102

sharing of events, event handlers through the ontology systems. Section 5 presents

the static analysis and dynamic tuning for the simulated systems. Section 6 presents

a case study to show the effectiveness of the framework. Section 7 concludes this

paper.

6.2 Simulation Framework

6.2.1 Events and Their Attributes

Events have the following attributes:

Event Type: atomic events and composite events. An atomic event is a single,

low-level occurrence generated from data changes, service changes or any arbitrarily

triggered events. A composite event is a high-level event formed from other events.

Event Occurrence: onetime events, periodic events, sporadic events, and con-

tinuous events. A onetime event occurs once only. A periodic event occurs repetitively

after a fixed interval. A sporadic event occurs repetitively after arbitrary intervals.

A continuous event means that the type of event happens continuously.

Event Content: command events, data carrier events, and change notification

events. A command event happens when a certain action order is given with no

additional data. A data-carrier event is generated by the agent services responsible

for collecting or sensing data from the outside environment or another system and

injecting it into the system. A change notification event takes place when there is a

certain change in the environment state.

Event Scope: internal events, environmental events, and mixed events. An

internal event is generated on a change of the internal state of the system. An

environmental event is generated when there is a change with environment state

103

variables. A mixed event is an event that involves both internal and environmental

state changes.

Event Priority: events can have priorities from low to high.

Event Deployment: centralized events and distributed events. A centralized

event is generated from a centralized local broker in the system. A distributed event

is usually emitted from a remote agent.

Event Vertical Causality Hanson (2005): Lifecycle events, execution events

and management events. A lifecycle event specifies for a change in the lifecycle

of a service, such as create, destroy, start, stop, and resume. An execution event

specifies for the runtime status change of a service, such as idle, busy. A management

event signifies that the defined limits or ranges in the service management have been

exceeded, such as bandwidth overloaded, storage overuse, security breached.

Event Horizontal Causality Hanson (2005): System-layer events, platform-

layer events, service-layer events, business-layer events and application layer events.

For example, a system-layer event can be the closing of a port in the hardware. A

platform-layer event can be the modification of a data source. A service-layer event

can be an addition of a new service.

6.2.2 Framework Architecture

Figure 6.1 shows the main components of the simulation framework. It consists of

a list of repositories and services. The repositories include event repository, composite

event specification repository, event generator repository, event handler repository

and event handler template repository. The publishing and searching are guided

by the ontology systems in these repositories. The services are categorized through

three service groups: simulation modeling services, simulation runtime services and

simulation analyzing services.

104

Figure 6.1: Simulation Framework Architecture

Simulation modeling services include event-generation-modeling services, composite-

event-modeling services and simulation-workflow composite services. Application de-

velopers can use them to search and reuse events, event generators, composite event

specifications, and event handlers from the respective repositories, and build the simu-

lation model for a specific application/service. After the modeling phase, they deploy

the event generators, simulation workflow and the composite event specifications to

the event-generation services, simulation-execution services and the composite-event-

detection services.

105

Static-evaluation services evaluate the simulation model statically after it is pro-

duced from the modeling services. The evaluation may use the event graphs to be

discussed in section 5.

Event-generation services generate atomic events according to user-specified pat-

terns to drive the simulation.

Composite-event-detection services detect the composite events by following the

composite event specifications.

Event-registration services manage the event registration information through the

publishing and subscribing APIs.

Event-dispatching services dispatch events to the corresponding event handlers by

looking up in the event registration services.

Simulation-execution services execute the simulated workflows driven by the events.

Event-provenance services log and track the simulation data from the simulation

execution services.

Event-profiling services analyze the runtime execution information of the events

and aid the dynamic tuning for the simulation.

Visualization services display the data from the event profiling and provenance

services.

6.2.3 Sample Simulation Flow

The simulation process has four phases: preparation, deployment, execution, and

tuning. Figure 6.2 shows a sample simulation process.

Preparation phase:

1. Application developers use simulation-modeling services to search and reuse

the assets from various repositories, and develop a simulation model. The model

includes three types of elements: event generators, composite event specifications,

106

Figure 6.2: Sample Simulation Flow

and simulation workflows. The simulation workflows include event handlers and other

application logics.

2. Static evaluation services evaluate the model developed earlier. They also

verify if event specifications and simulation workflows are consistent with each other.

Deployment phase: 3. In the phase, the simulation model including event

generators, composite event specifications and simulation workflow is deployed. After

this, the simulation runtime services will run the simulation with the current model.

Execution phase: 4. Event-generation services generate atomic events and dis-

tribute them to the composite-event-detection services.

5. Event-detection services relay all atomic events to event dispatching service.

In addition, they also detect composite events according to composite event specifi-

cations and pass them to the event dispatching services.

6. Event-dispatching services check the event-registration service, and find the

event handlers registered for the detected events.

7. Event-dispatching services dispatch events to appropriate event handlers.

107

8. Simulate execution services execute the simulation workflows according to the

events received.

Tuning phase: 9. Event-provenance services log simulation statuses through the

process and meanwhile, they may send back request to simulation modeling service

to change the model with events, event generators and event handlers.

10. Event-profiling services compare the results and analyze the runtime execution

information. The analyzed results can be displayed through the visualization services.

11. Based on the simulation results, application developers can modify the model

with the modeling services. They can also change the event generation patterns,

composite event specifications, and continue tuning the simulation until it reaches a

satisfactory result.

6.3 PSML Event Specification

A composite event may consist of atomic and/or other composite events. Composite-

event-detection services can detect a composite event according to event specifications

and send it to the event-dispatching services. This paper extends the Event in PSML

Tsai et al. (2007d) based on ACDATER (Actors, Conditions, Data, Actions, Timing,

and Events, Relations) to specify the events. The event model is extended by offering

the basic event operations as shown in the Table 6.1.

The following example shows a composite event with three sub events event1,

event2 and event3.

Seq (event1, event composite)

event composite = conj (event2, event3)

108

Table 6.1: Event Specification in PSML

Sequential Seq (e1, e2) A composite event occurs when second sub

event happens after the first;

Conjunction Conj (e1, e2) A composite event occurs when all of sub events

occur at the same time;

Disjunction Disj (e1 , e2) A composite event occurs when at least one of

its sub events happens;

Exclusive Exc (e1 , e2) A composite event occurs when only one of the

sub events happens;

Negation Neg(e1, e2) A composite event occurs when the first sub

event happens while the second does not hap-

pen.

And these specifications can be abbreviated as Seq (event1, conj (event2, event3)),

which means event1 happens first, and then it will be followed with a composite event

which requires event2 and event3 occur at the same time.

Another example:

Exc (event1, event composite)

event composite = Disj (event2, event3)

And these specifications can be abbreviated as Exc (event1, Disj(event2, event3))

which means only one of its sub events will happen. Disj (event2, event3) occurs

when at least one of event2 or event3 happens.

Moreover, timing constraints in PSML including Delay, Deadline, Min, Max, and

Distribution discussed in [25] can be applied to events.

For example, a composite event can be expressed as:

Seq (event1, event2)

109

Delay (event1, event2) = 0.5

Deadline (event1, event2) =10

These specifications can be abbreviated as

Seq (event1, event2, Delay (0.5), Deadline (10))

which means event2 happens after event1 after a delay of 0.5 seconds and with a

deadline of 10 seconds.

Another example:

Neg (event1, event2)

Delay (event1, event2) = 0.9

Max (event1, event2) = 5

These specifications can be abbreviated as

Neg (event1, event2, Delay (0.9), Max (5))

which means event1 happens while the event2 does not happen after a delay of 0.9

seconds and within a max of 5 seconds.

6.4 Publishing and Sharing via Ontology System

Events, event handlers and event generators ontology systems provide classifica-

tion and reasoning to guide the search and publishing. This section uses the robotics

domain as an example to demonstrate how ontology systems can improve the pub-

lishing and sharing of events. Figure 6.3 shows the robotics domain event ontology.

The ontology is only for demonstration purpose, it is by no means exhaustive.

Sensors: Events triggered by the sensors that detect the surrounding environment.

The events can be further categorized by the different types of the sensors. As shown

110

Figure 6.3: Sample Robot Domain Event Ontology

in the figure, sonar-triggered events may include, Distance Reading Event, Speed

Increase (SI) Event, and Speed Decrease Event. Speed Increase/Decrease events

are composite events, which can be detected through Event Detection Service by

analyzing the atomic Distance Reading Event.

Actuators: Events triggered by the actuators of a robot, such as arms, legs, or

wheels. Events triggered by the actuators can often be seen as internal events, since

they are usually generated by application workflows or event handlers.

Each event has various attributes; the ontology system provides a reasoning mech-

anism to assist searching and publishing for events. For example, an event triggered

by Sonar may also have the following attributes: Type: Atomic; Time: Continu-

ous; Content: Shipping Domain; Scope: Environmental; Priority: High; Deployment:

Distributed. An event-discovery service can search for events according to these at-

tributes.

Event-handler ontology is similar to the event ontology. For each event, at least

one event hander should be in the event-handler ontology; otherwise the system will

have an event without an appropriate event handler. An event handler may handle

111

Figure 6.4: Sample Event Generation Patterns Ontology

multiple events, and an event may have multiple event handlers, and an appropri-

ate event handler will be selected based on the workload of these event handlers at

runtime.

Both event and event handlers are stored in the repositories. They can be shared

and reused by the other consumers. When a new type of event or a new type of event

handler is developed, they need to be registered in the ontology to facilitate future

searching and reuse. Note that they need to verified and validated before they can be

used, and they can be verified by associated verification mechanism associated with

the repositories.

There are basic event generation patterns as well as complex event generation

patterns. The complex event generation patterns may be composed by basic event

generation patterns. Event generators can also be classified using event generation

pattern ontology. Figure 6.4 shows a sample event generation pattern ontology.

112

Figure 6.5: Sample Event Graph

6.5 Static Analysis and Dynamic Tuning

Static Analysis can be performed prior to simulation to verify various properties.

For example, both event generators and event handlers can emit events, and link-

ing these together will generate an event graph as illustrated in Figure 6.5 where

{e1, e2, e3, ...} is a set of events and set {h1, h2, h3, ...} is a set of event handlers.

For example, an external event e1 may be handled by two event handlers h1 and h2,

each will trigger new sets of events, and these new events will be handled by their

corresponding event handlers. In this way, an event graph can be generated from the

ontology prior to simulation. The event graph can be useful to formal analysis.

113

A user may specify various relations among events including conjunction, disjunc-

tion, sequence, negation, and timing constraints such as Delay and Deadline.

For example, the composite event required by h3 in the graph is marked as green.

Its event specification is:

Seq (e2, e3)

Delay (e2, e3) = 0.5

Deadline (e2, e3) = 15

While e3 can be emitted from the event handler h1, e2 should be generated from an

event generator. Static analysis can detect the missing event and alert the simulation

designer for this fault.

Dynamic Tuning of the event-driven simulation includes the interferences of

simulation users, simulation analyzing services, simulation modeling services and the

simulation execution services. And it is done by through the dynamic cyclic process

as shown in Figure 6.6.

While static analysis provides useful data, many analyses can be done only via

simulation. Facts like e3 have to happen with a 0.5 second delay after e2 and e3 has

to occur within 15 seconds after e2 can be verified during simulation execution.

Simulation modeling services are useful to make the process dynamic. By monitor-

ing the execution data from the simulation analyzing services, a simulation engineer

can change the model.

Event-profiling services in the simulation analyzing services are also useful to make

the tuning process dynamic. Based on the information from the event provenances

services, event-profiling services can control the selection of events, event generators,

and event handlers by following the predefined algorithms in the services. A variety

of algorithms can be used to decide, depending on the factors of interest. Some of the

114

Figure 6.6: Dynamic Tuning Process

factors of interests can be functionality, minimal risk, minimal cost, minimal recovery

time, minimal execution time, and priority. A combination of these factors may also

be used in the dynamic tuning of the simulation model.

6.6 Case Study

This section illustrates the simulation framework using a robotic example with

the following services:

Robot Master: It is a laptop equipped with a keyboard, a speaker, an IR sensor,

a bluetooth adapter and a camera.

Robot Dog: It is a robot with two wheels, an arm, a touch sensor, a bluetooth

adapter, a sound sensor and a speaker.

IR Ball: It is a ball with an IR emitter. commands to the robot dog using the

keyboard, and the commands are sent to the robot dog via Bluetooth. Commands

from the keyboard have a higher priority than voice commands. When robot dog grabs

the ball, the touch sensor will notify the robot master that the ball is in possession.

If the robot dog drops the ball at any time, the touch sensor will notify the robot

115

master. To make things interesting, a secret command will be issued for the robot

dog to perform a robot dance if the operator taps the direction keys three times fast.

Preparation Phase:

An application model is developed by reusing the existing services, events, event

handlers in the according repositories. The search is guided by ontology systems. An

example of event ontology in robotics is shown in Figure 6.3. Before building the real

robots, a simulation needs to be conducted to verify if the application logic for this

scenario is correct. The following atomic events are needed:

• Voice command events (Ev),

• Action completed command events (Ea),

• Keyboard command events (Ek),

• Touch sensor event (Et),

• IR sensor reading events (Ei).

• Composite event Esecret

To achieve the secret command, a composite event needs to be detected: Esecret=

Seq(Seq(Ek, Ek, Deadline(t)), Ek, Deadline(t)), t = 0.05 sec. Therefore, after mod-

eling phase, the three outputs are produced as shown in Figure 6.6:

• Simulation Workflow.

• Event Generators: IR reading event generator, keyboard command generator,

Voice Command Event generator, Touch Sensor Event Generator.

• Composite Event Detection Specifications: Esecret= Seq(Seq(Ek, Ek, Dead-

line(t)), Ek, Deadline(t)), t = 0.05 sec.

116

At this stage, event graphs are also generated. A sample partial event graph is

also given in Figure 8. A static analysis of the event graph is performed according to

the simulation model.

Establishment phase:

The outputs from the preparation phase are deployed into the simulation frame-

work runtime environment. Proper parameters for the external event generators are

set to mimic different real world scenarios.

Execution phase:

This phase is a coordination of all the components in the simulation framework

to complete the simulation task. For this specific example, different generation pat-

terns can be passed to the IR reading event generator and keyboard command event

generator. For example, for the keyboard command event generator, one can have

the following patterns:

• Random Pattern: This generator emits a random keyboard command after an

arbitrary interval.

• Dense Pattern: This generator emits random keyboard commands at a very

fast pace.

• Spare Pattern: This generator emits a random keyboard commands at a slow

pace.

• Dense Secret Command Pattern: This generator emits 3 consecutive keyboard

commands at a fast pace.

Tuning phase:

Through the provenance and profiling services, one found out that when using

dense secret command pattern, the robot will try to start to dance over and over

117

Figure 6.7: Simulation Case Study

Figure 6.8: Sample Event Graph

again. This is not a desired behavior because one wants the robot dog finishes its

dance routine before it can start another. The model was adjusted accordingly to

correct this fault.

One interested in the performance of processors in robotic applications. The

number of sensors is an important factor in this evaluation; however, due to the limited

number of sensors, one needs to perform simulation to complete the evaluation. This

simulation used various numbers of touch sensor event generators to simulate different

number of touch sensors. Each of them is a thread in the simulation. The simulations

are based on the Intel Core 2 Duo processor for various combinations of processor

frequencies and number of threads that are run in parallel. Figures 6.9 to 6.11 show

the simulation results.

118

Figure 6.9: Sleep Time = 100 Milliseconds

Figure 6.10: Sleep Time = 500 Milliseconds

119

Figure 6.11: Sleep Time = 1,000 Milliseconds

6.7 Conclusion

This paper presents a service-oriented event-driven simulation framework. It is

designed to allow the sharing and reusing events, composite event specifications, event

generators, event handlers and event handler templates through an ontology system.

Also, it offers the event specification of the service-oriented language PSML to allow

static analysis. Furthermore, dynamic tuning can be achieved through the changing

the event generators, composite event specifications and event handlers.

120

Chapter 7

LTBD: A TRIAGE SOLUTION FOR SAAS

7.1 Introduction

Originally ”triage” is a medical term to separate, sort, sift or select medical con-

ditions. In software engineering, this assigns a priority and severity to failures, and

this is done peliodioedes, say every hour or every day, or as necessary. Triage ? is

important for software quality assurance especially in a cloud environment. Specifi-

cally, in a modern SaaS (Software-as-a-Service), multiple tenants may share the same

SaaS platform, and tenants share service components stored in the database. Each

transaction for a tenant is composed by service components stored, and is compiled

and deployed at runtime to execute application. If there is a failure, it is necessary

to know the cause of the failure, but as each transaction software consists of shared

service components, thus engineers need to examine the log data to identify the failed

transactions, and then the service components involved that caused the failure.

For a large transaction system, engineers need to examine a large number of logs

to identify the failures. Currently, this process is mostly manual, expensive, and slow.

Furthermore, for a modern cloud-based transaction system, millions of transactions

may arrive, and for each transaction log data will be produced resulting in millions of

log data are produced and recorded. Furthermore, due to concurrent processing, log

data will arrive in an asynchronous manner, thus log analysis is a challenging task.

Many frameworks have been addressing the logging issues from different aspect-

s. For example Splunk Splunk.com (2015), LogStash Logstash.net (2015), uilog Zou

et al. (2014), IBM SmartCloud Analytics Analysis (2015), Fluentd Project (2015),

121

Google Analytics Google.com (2015), XpoLogXpolog.com (2015) and Nagios Na-

gios.org (2015). Depending on the approach, they all have different usages within

their own domains. To handle the unstructured, big volume of data mixed with un-

traceable failures, none of the existing systems have a complete solution. This paper

proposes a new logging solution for effective and efficient triaging of the production

failures with these challenges.

Logs in cloud are characterized as volume, unstructured formats and large amoun-

t of untraceable failures. Failures and exceptions happen frequently on production

unexpectedly as the developers continue putting new changes to existing or new sys-

tems. Often in commercial log processing, logs will be kept for one month, and then

new data will erase 30-day old data. Even with trustworthy cloud platforms such

as Amazon and Google, their services still experience constant downtime according

to their status reports Status.aws.amazon.com (2015) Code.google.com (2015). Ser-

vice downtime on production system become frequent, and every minute of failures

on production can result in huge loss. Programmers normally put least priority at

coding phase for logging, thus causing later on unstructured formats along with the

heterogeneous deployment of the different components in cloud. As log data accumu-

late at the rate of hundreds millions per hour on commercial production sites, they

become complicate to manage.

Most transaction processing systems use service-oriented structure. See Figure

7.1 for illustration. For example, a transaction system may have X services, and each

transaction often involve say on average Y services, thus not only the transaction

information is unique for each transaction, the software services involved are also

different. Each transaction software consist of a number of services selected from the

database, and they are composed in real-time to serve each transaction. Supporse

X = 200 and Y = 50 Then C
(
50
200

)
combinations of transactions are formed. Moreover,

122

with each transaction having a minimum of 10 services, and a maximum of 180

services, thus the number of transaction will be a extremely large number.

Figure 7.1: SOA Structure for Cloud Services

Time Service

Log file 1

Log file 1

Log file 1

Type Functi

on

Tenan

t
Transaction ID Log Detail

Figure 7.2: Sample Log Files in Cloud

Log data are done at the best effort only, thus production of log data is not guaran-

teed. For example, Figure 7.2 showed a typical log data. Currently, most companies

address this problem by having engineers on site to examine the log after software

processing, and manually determine if any transaction has failed. This process is

cumbersome, expensive, and time consuming.

Log data are unstructured as each transaction will be different. For example,

the buyer (name, address, contact information, ID), seller (name, address, contact

information, ID), items traded, dollar amount, time and place of transactions. As each

transaction unique, log data for different transactions will be different. Specifically,

each transaction log can have variations in

123

• Buyer;

• Seller;

• Items involved in a transaction;

• payment methods;

• Discount or promotion code;

• Currency;

• Time and place of transactions;

• Risk; and

• Compliance.

The same person engaged in two different transactions may result in different risks

and compliance issues.

There can be multiple reasons for failures:

1. Code exception: Exception happened in the workflow, log information is still

logged.

2. Service outrage: Entire or partial service is out thus no details is logged.

3. Media failure: The physical media of the server is malfunctioned thus no log or

only partial logs are logged.

The result can always be categorized as below

1. Partial log missing.

2. Complete log missing.

124

Most of the time, if it is a pure workflow exception and the details can be logged,

the log is traceable as the interaction log between services are still there. However, if

there is a partial or complete missing log, it is hard to diagnose further. In the case

of partial log missing, it complete the case as it depends on the available information

in the log details and the key activity log entry availability.

As for complete service missing, it can be:

• Service out completely and no subsequent service was invoked.

• Only log service is out but service was not interrupted, thus the subsequent

service call is still invoked.

In the later case we still need to continue trace in the other service for the workflow.

This approach is consistent with the approach of using data to identify data ? or

smart data approach.

Contributions of this paper:

1. Proposed a failure detection and correction mechanisms into a real-time transac-

tion management. The authors are not aware that any prior work has addressed

this problem;

2. Proposed a workflow indexing method by using MapReduce.

3. The proposed system has been extensively simulated and evaluated using large

amount of data, data size large enough for large online e-business systems;

The paper is organized as below. Section 2 describes the RTRM structure. Section

3 describes the related work. Section 4 designs the solution for a fast triage; section

5 evaluates the performance of the proposed solution.

125

Cluster

Log

management

Service

management

Load Balancer

App Server

Shared DB

App Server App Server

Shared DB

Gateway

Load Balencer

Semantic routing

Pivot Table

Log Service

Cluster

Log

management

Service

management

Load Balancer

App Server

Shared DB

App Server App Server

Shared DB

Figure 7.3: RTRM Architecture Design

Indexing Mapreduce Clusters
Log Servers

Log Service1 ... Log Service n

Map

Map

Map

Reduce

Reduce

Start

job
Stop

job

Load Balancer

Service 1

Routing Table

Event

logs

Query Service

Index Service

Activity Logs

Activity

Logs

Service 2
Event

logs
Activity

Logs

Service 499
Event

logs
Event logsActivity

Logs

Service 500
Event

logs
Activity

Logs

...
Event

logs
Activity

Logs

Event logs

Figure 7.4: Log Architecture on a Cloud

7.2 RTRM Architecture/Tradditional Triage

7.2.1 RTRM Architecture

A typical online transaction system has the following architectures:

1. A real-time transaction management (RTRM) as shown in Figure 7.3 that takes

user inputs and process the transaction using a pool of cloud resources. A RTR-

M often has a number of participating systems such as credit card verification,

payment methods, risk analysis, fraud prevention. And some of these systems

are not under control of the RTRM;

126

2. Usually RTRM is structured in a service-oriented manner with tens of thousands

of software services that can be called to provide services. As each user request

is unique as the user will select the needed services just before submitting a

transaction, thus numerous combinations of services will be called. For example,

a client at Amazon.com may select two books and three CDs for Christmas gifts,

and the transaction will select these books and CDs with Christmas gift wrap

with expedited delivery before Christmas. Another client may buy one vacuum

cleaner instead choose normal shipping method, and these two transactions are

different and cannot be predicted before hand.

3. The RTRM produces significant log data that need to be analyzed. However,

the RTRM cannot release much resources to handle logs because each server

must be ready to receive user requests. As a variety of transactions will be

created, the data created are not structured;

4. The log data are written into another cloud system LDAS (Log Data Analyzer

System) at the end of each hour as shown in Figure 7.4, the processors must

process the log data as soon as possible because more log data will be coming

within a hour;

5. Another complication is that the RTRM may fail or other participating systems

may fail, but either way the log data will either contains failure or miss impor-

tant data, and the RTRM may not have time or resource to detect and correct

these failures;

6. Instead LDAS must takes over the failure detection and correction after ana-

lyzing the data. Currently, failure detection is handled by engineers and thus

caused significant effort and time.

127

The RTRM architecture can be seen on Figure 7.3, that is divided into two layers:

Gateway layer and Cluster layer.A typical SaaS handles a user request in Algorithm

5 . The RTRM including scheduling, handling user requests, logging, distributed

redundancy management and recovery, scalability including resource allocation and

provisioning, and distributed and autonomous data migration for recovery and scal-

ability.

Gateway does the high-level routing of the traffic for tenants. It is composed by

the load balancer , semantic routing service,and pivot table.

1. Load balancer does the routing based on the semantic routing service, consistent

hashing service and pivot table.

2. Semantic routing routes the traffic for a specific tenant to the same cluster

or close by cluster. When traffic to one tenant comes in, it determines the

transaction based on the tenant and routes directly to the corresponding cluster.

3. Pivot table documents the routing logic for the transactions in the gateway for

the load balancer. It dumps the data to a replica after fixed intervals in a

distributed system. The data of the pivot table will later on be used in the log

retrieving logic.

Cluster is composed by the platform services and execution services.

1. Platform service serves the services with the management actions including

deploy, scheduling, redundancy&recovery management etc.

2. Execution components includes the stateless app servers used to serve different

services, stated DB cross app servers and cache service that to share the in

memory data crass the stateless app servers.

128

Algorithm 5 Service Request Management
Input:

1:

2: Determine the tenant ID of this request;

3: Check if the tenant application is already in the load balancer cache;

4: if Application in cache then

5: Send the request for the tenant application for execution;

6: else

7: Retrieve the tenant components from the SaaS database;

8: Compose the tenant application using the retrieved components;

9: Compiling the composed application;

10: Send the request to the binary for execution;

11: end if

7.2.2 Traditional Triage

This subsection describes the current triage in detail to illustrate the difficulties

encountered. Data size, large numbers of services and workflows, inconsistent coding,

and inconsistent logging behaviors made log analysis difficult. For example, Figure 1

shows two isolated files stores the same workflow logs one fo LoginService the other

for AuthenticationService.

According to the RTRM architecture, workflows, representing transactions, do

not enter log data, but those participating services do. Thus, if a workflow failed, it

is necessary to trace those logs entered by participating services. The issue becomes

involved because

1. Each service may be used by many transactions;

129

2. The system may execute many transactions at the same time resulting in inter-

leaving log data for these transactions;

3. Log data may not be entered because the transaction failed to complete;

4. Log data use service and workflow IDs in an inconsistent manner. For example,

in the same workflow, some services will use service IDs, but other services use

the workflow ID. In this case, searching using the workflow ID will produce

incomplete log data. Figure 7.5 illustrates two services, the loginService uses

ServiceID whereas the AuthenticationService uses the WorkflowID;

5. Service calls may not be explicit among services, thus one needs to scan the

36 GB log file to identify those missing find out those missing services. For

example, LoginService called AuthenticationService but this information is not

available in the log. Scanning and querying the log data will be expensive,

and engineers need to identify the items to be searched first, and this needs an

interactive process. As multiple transactions with shared services may fail with

the same failure code, care must be exercise to distinguish those services that

involved in multiple transactions that failed;

6. Missing log data causes troubles. For example in the number 3 box (Figure 7.5)

at the AuthenticaonService, the next service call from AuthenticationService to

AuthDBService cannot be found in the log. There are two alternative choices

for engineers:

• assuming there is no call missed as no log can indicate anything missing

(but in this case, the engineer erred);

• assuming there are something missing, but the engineer needs to determine

which ones are missed.

130

In this case, AuthDBService is a good choice as it is involved in authentication,

but what if multiple similar services are available or maybe other unrelated

services are missed?

The conventional triage process is shown in Figure 7.6 with the following steps:

• Migrate the log from production to off-production servers;

• Identify related services in the workflows;

• Reconstruction the workflow from the log;

• Query the database and check code to understand the workflow; and

• Manually generate reports for the concerned workflows.

After the examination into the logs, database and code base, one can identify cause

of the failure. The next step is to prioritize the issue based on business impacts. A

most important business impact is how many similar transactions happened. The

engineer needs to collect the number of impacted workflow types and the number

of incidences to answer this. Existing queries are mostly based on preset queries or

Spluk like systems that only report at failure code level. As a failure code can have

multiple workflow types related, a more fine-grained understanding of workflows is

necessary.

7.3 Related Work

This section first introduces the four metrics that based on the previous discus-

sion for a online transaction processing system. Then, these metrics will be used to

evaluate the existing logging solutions.

OLTP and OLAP: OLTP (Online transaction processing) and OLAP(Online

Analytical Processing)Curino et al. (2011) can provide different functions.

131

Log Snippet for LoginService

1 Service Name

2 ServiceID

3 ServiceCall

4 WorkflowID

Log Snippet for AuthenticationService

LoginService

AuthenticationService

Figure 7.5: A Sample Workflow with Log Snippets

• OLTP systems provide source data, whereas OLAP systems help to analyze it.

• OLTP systems serve production transaction whereas OLAP queries are often

complex and involve aggregations.

• OLTP and OLAP systems are isolated from each other most of the time.

Depending on the urgency for the log analysis, some log solutions will be categorized at

the OLAP systems such as Splunk and LogStash. Some log solutions are categorized

at the OLTP category such as Nagios that will enable the log processing system to

stay along with the online transaction processing system. It is challenging to have a

real-time checking mechanism to understand a desired system without impacting the

production performance.

Fault-tolerant capabilities: Failure is a major factor impacts the online trans-

action processing.

132

Production Server
Production Server Production Server Production Server

LogServer LogServer LogServer LogServer

Migrate Migrate Migrate Migrate

entering service

log some events

log other events

call AuthService

return value from AuthService

Call Landing Service

LoginService
entering service from Login

log some events

log other events

Return to LoginService

AuthService
entering service

log some events

log other events

call ComponentService

return value from

ComponentService

LandingService

entering service

log some events

log other events

Return to LandingService

ComponentService

entering service

log some events

log other events

call AuthService

return value from AuthService

Call Landing Service

entering service(WF ID)

log some events

log other events

call AuthService

return value from AuthService

Call Landing Service

entering service from Login

log some events

log other events

Return to LoginServiceentering service from

Login(Service ID)

log some events

log other events

Return to LoginService

entering service

log some events

log other events

call ComponentService

return value from

ComponentService

entering service

log some events

log other events

Return to LandingService
entering service (LandingID)

log some events

log other events

call ComponentService

return value from

ComponentService

NO LOG

1) Migration of logs from production to Log service have delays.

2) Log ID in each service is different, log search is manual and requires knowledge of system.

3) Services are isolated, log data are not organized by workflow. Recomposition of workflow

requires manual work.

4) Missing data in log, has to seek for other methods to understand the workflow.

Splunk

Query by failure

Code

Return List of log

entries or results

5) Log not accrued by workflows, analysis of log is not at workflow level.

Figure 7.6: Conventional Triage Method and Problems

133

• Most of the tools can offer statistics details based the accumulated log data for

one type of failures such as Splunk, LogStash, IBM smart cloud analytics.

• However, to understand a complete interaction graph of a transaction in a

data center, it is necessary to have capability to recover the failure points for

understanding the complete transaction workflow.

Failures can be categorized as two types, internal failures and external failures.

In both cases, it is important to have the log-analysis system to plot a complete

interaction graph based on the topology, previous log statistics, and data mining

algorithms. Nagios has some of the fault alerting capability based on its predefined

check points for the statistic data; however, tools like Splunk, LogStash neither can

recover a failure interaction graph nor give a complete interaction graph for a given

workflow.

Flexible data handling capabilities: In the cloud infrastructure, each ser-

vice serves multiple tenants and transactions at a time in public clouds Tsai et al.

(2011c)Tsai et al. (2011b). As transaction volume grows, log data also increase dra-

matically.

• The volume of logs to be handled in a cloud pose a challenging task while

retrieving data.

• For fast throughput of the service, logs are logged sequentially by time in plain

text files. For example, log files can be either saved on the servers and then

forwarded to the log servers with delays or rolled hourly/daily. It is necessary

for the log-processing system to have the capability to handle the big data in

logs.

134

• Based on the volume of the data, OLTP system normally do not handle the log

queries directly unless really urgent or requires minimum delays. Based on the

volume of the transaction, big data normally will cause significant impacts at

performance of both CPU and memory of production servers.

Load Balancer A

Box 1:

Service A1

Box ...:

Service A2

Box n:

Service A3

Service A1 Log

2014100801

Service A1 Log

2014100802

Service A1 Log

2014100803

Service A3 Log

2014100801

Service A3 Log

2014100802

Service A3 Log

2014100803

Figure 7.7: Log File Structure in Cloud

Figure 7.7 describes a deploy structure of the log file in a transaction processing

system. Box represents the physical server to host the service in cloud. Each client

interact with the services in a transaction. Log files are normally stored based on the

service running in each App Servers. The volume of a typical cloud for host online

transaction processing can be estimated to be up to 36GB per hour based on the

below estimation: Suppose 10 transactions complete per second for each tenant, and

each transaction on average interacts with 20 services. Each service logs an average

50 entries for each transaction. And each log entry is estimated with 1kb of data. For

each hour, the average log file size for each service is 1.8 GB. And the estimated log

size is for every tenant is 36GB of data based on the below calculation. In the case

10 tenants live in this cloud, the logs grow easily to 360GB hourly.

White-box vs black-box

135

• A log service analysis is considered as black when it exposes the input and out

of the services only.

• When the details of the internal workflow of the service is logged, it is considered

a white-box log analysis.

Nagios, Google Analytics are black-box logging solution: Nagios, interested in the

result or accumulated result of a certain type of predefined service call; Google Ana-

lytics, documents the call to a remote service at the stand point of a client. Splunk

and LogStash solutions can get inside of the workflow of the service details called

white-box analysis.

Based on these information, the paper briefly surveyed the below major logging

solutions.

• Splunk Splunk.com (2015) is a commercial product that captures indexes and

correlates data in a searchable repository. It uses Hadoop in the backend for

indexing the logs and then serves the log searching via its frontend by the

search processing language they offered. It gives the companies flexibility in

their existing logging environment and enable to integrate the logs via one

searching portal. However, its framework focuses on retaining the data and

indexing afterwards for better searching purposes. It is an OLAP system, and

it does not have the capability to recover the failed logs.

• Cloud Application Logging for Forensics Marty (2011) describes a logging solu-

tion to provide a proactive approach to logging to ensure the data required by

forensic investigations will be generated and collected. It is an OLAP system.

• Logstash Logstash.net (2015) is an open-source project offers similar functions

as Splunk. The ELK: Elasticsearch (search), Logstash (ingestion and process-

136

ing), and Kibana (reporting and visualization) stack forms the framework and

all of them are Apache-licensed projects. It is an OLAP system, and it does

not have the capability to recover the failed logs.

• Unilog Zou et al. (2014) classifies log into different catalogs by fault types. It

also used Keyword matrix to accelerate the speed of classification. Unilog is

more of data analysis of the log thus it is an OLAP system.

• IBM SmartCloud Analytics Analysis (2015) is a log analytics tool. It allows

the customer to analyze the operational data types in the logs to help identify,

isolate and resolve problems. The software can take source of data from multiple

sources including logs, events, metrics, support documents and trouble tickets.

SmartCloud Analytics is an OLAP system that can handle big data.

• Nagios Nagios.org (2015) Log Server is a log monitoring and management sys-

tem that allows organizations to configure, view and sort logs on a given net-

work. The data of the log is from real time and it allows the customers to

predefine various check points and metrics for the monitoring. A certain type

of alert is triggered when threshold is surpassed, and it will alert the customer

with the exception details at the failure point. It is with the OLTP system, it

can detect the exceptions at real time.

• Google Analytics Google.com (2015) Web log analysis tools offered by Google.

It works by the inclusion of a JavaSrcirpt code on the website. When users

view a pages, the JavaScript retrieves the data about the page and send back

the information to the Google Analytics services.It only documents the input

and output of the page thus it has no visibility of the service workflow on the

137

application host websites. It is an OLAP system with black box visibility of the

services.

• XpoLog Xpolog.com (2015) is a log-analysis and management platform to ac-

cess, config, analyze logs, and view information. Logs are exported to databases

and SQL queries are used to query against the logs. The XpoLog contains the

following components: Log Viewer, Log Analyzer, Reports, Seach, Log Man-

agement. It is an OLAP system with black-box visibility of services.

• FluentdProject (2015) is an alternative to Splunk. Its backend is written in

C++ and frontend in Ruby. It uses a pluggable architecture makes it compatible

with numerous data sources and data outputs. It also supports as the backend

for alerting, analysis and archiving of the log data. It is an OLAP system with

black-box visibility of services.

• Other tools

– Deep-log analyzer Deep-software.com (2014) is a local log analysis tool

that works on the website without requiring any code on the site. It is

similar to Google Analytics.

– AWStats Destailleur (2015) is a free Web analysis tool evaluates Web logs

with different reports. It can be used to analyze the FTP and mail logs

as well as Web log files. It also have the capability to export reports to

XML, text, and PDF.

– RealTracker Realtracker.com (2015) places code on a Web pages to track

the page. It is similar to Google Analytics, it can also generate reports

based on these log data.

The table 7.1 summarized the major logging solutions.

138

Table 7.1: Comparision of Major Logging Solutions

Tool name
OLTP

/OLAP

Fault tolerant

capability

Big Data

handling

capability

White box

/black box

Splunk OLAP N.A. Y. White box

Cloud Log for

Forensics OLAP N.A. N.A. White box

Logstash. OLAP N.A. Y. White box

Unilog OLAP N.A. N.A. White box

IBM Smart

Cloud Analytics
OLAP N.A. Y. White box

Fluentd OLAP N.A. Y. White box

Nagios OLTP Y. Y. Black box

Google Analytics OLAP N.A. Y. Black box

XpoLog OLAP N.A. Y. White box

7.4 Logging Solutions

A common method for searching the related information in a box is to use grep

function in the Unix/Linux environment. However, this only works when one exactly

know the log file. It becomes time and resource consuming to grep one transaction ID

crossing the data center in seeking for only one set of logs. It is important to model

the logs first and then define the operations upon for triage.

Need for real-time log analysis at transaction times: Majority of log ana-

lyze solutions such as Splunk, LogStash, and Fluentd are OLAP system, that means

that the log processing and analyzing process normally happen off the production

139

servers. As the transition of log data migrate from production machines to log servers,

a significant delay incurred between log reports and failure time.

Workflow and failure point recovery capabilities: Majority of these solu-

tions focus on the log reporting part of production data, and most of these such as

Splunk, IBM Smart Cloud Analytics are not designed to describe a transaction life-

cycle. Hence when a transaction failure happens, the log data are normally detached

at the failure point and the engineer cannot recover the failures easily.

Flexibly Data processing capabilities: Table 7.1 surveyed the logging so-

lutions. From the backend, most log processing solutions used Mapreduce/indexing

or similar techniques to handle the big volume of data. This in a sense will reflect

the potential delay in the indexing part of it. On the other hand, the query key-

word might not be in the existing index, it might be necessary to have a re-index

mechanism after no result is hit after the initial query.

White-box log analysis: Log data can be served for different purpose and so

are the log analyzing tools. Tools such as Nagios and Google Analytics view the

target system as a black box and interested in the interaction of the service call

only; however some others such as Splunk and Fluentd can dig into the details of the

service workflow. For triage the production failure, developers prefer the white box

solution to have visibility of the issue. But the more exposure to the data, the more

unstructured the data are. To resolve that, a new log structure will be needed to

unify log data for efficient searching and log tracking.

7.4.1 Modeling Logs

1. Behavior logs (BL) is related with the interactions of services. It includes the

activity of entering a service, exiting a service, and interactions with another

140

services. These details happen at service calls only, the data are structured and

can be saved for efficient processing.

2. Event logs (EL) is the detailed logging information during the executing of

workflow, it contains the print outs during the executions of the service that

can be large in size and thus documented in the plain text files on servers.

BL and EL together form the call stack of a workflow in logs. Logging the BL

and EL at the code is straight forward, as following:

int serviceCall(){

...

// calling serviceB from serviceA.

int retvalue = callserviceB(serviceRequest);

// log behavior call into behavior log.

Log.logtoBehavior(this, ”serviceB”);

...

int valB;

....

// do some processing. log valB to event log.

Log.logtoEvent(this,valB);

...

return flag;

}

BL can be stored in tables in DB, that are a collection of Log Entries as∑
BehaviorEntry

BehaviorEntry = < Ts, Lt, S, F, Ts, Tx, Ln, S >where

< Ts > is the time stamp;

141

< Lt > is the log type that belongs to the enumeration of start, end, break,

interaction etc;

< S > is the service name;

< F > is the function name;

< Ts > is the tenant ID;

< Tx > is the transaction ID;

< Ln > is the line number in the log file, and

< S > is the log message, typically plain text file.

EL can be saved as log files, that are a collection of Log Entries at each file∑
EventEntry. Each line of the EL is a tuple that contains detail for a transaction,

that can be represented as:

EventEntry = < Ts, Ll, S, F, Te, Tx,E, S > where < Ts > is the time stamp;

< Ll > is the log level that belongs to an enumeration of info, warning, and

failure;

< S > is the service name;

< F > is the function name;

< Ts > is the tenant ID;

< Tx > is the transaction ID;

< E > is the failure code, and

< S > is the log message, typically plain text or XML file. If this EL a service

call, it will be the endpoint to the next service.

A tenant is a group of users sharing the same view on cloud services. A tenant

consumes same set of shared services, and contains a number of properties and func-

tions as in a tuple < TenantInfo < TenantID, TenantName >, TenantConfig <

Service, AccessControl, Policy >>

142

TenantInfo is a tuple < TenantID, TenantName > that contains the tenant Id

and name.

TenantID is a unique ID that represents a tenant in cloud.

TenantName is the name for the tenant.

TenantConfig defines the tenant related details in the cloud other than identity.

It is a tuple < Service, AccessControl, Policy >

Service defines the used atomic and composed service used for a tenant.

AccessControl defines the tenant level access including Read, Write, Execute and

delete.

Policy defines the different level of policies to the tenants in a cloud.

Any major database can be used to store the BL, for instance relational database,

column-based database or BigTable. Different type of storage backend can be chosen

depending on the requirement for the performance in log storing and searching. In

fact, separating BL and EL will change the existing logging structure slightly. How-

ever, separation of the BL out of the EL will extract the essential information for the

call stack of the workflow and thus enable the effective rebuilding of the call stack.

Storing the BL in a database will greatly increase the searching speed. On the

other hand, store the event logs in the database is not practical duo to the volume

and performance concern. BL will count for 1% to 2% of the logs thus making this

solution practical.

7.4.2 Triage Single Workflow

A service call can be rebuilt as a connected directed graph trough the BL. Algo-

rithm 6 states log traversing. When no problem happens to a transaction, the graph

is connected and traversable. When a failure occurs or missing log entry happens, the

connections between the services can be lost thus the graph becomes disconnected.

143

This is called Failed interaction call (FIC). It is necessary to recover the FIC and

rebuild the call stack.

With the to be proposed solutions one can identify via the transaction ID, tenant

ID in the BL, and regardless what edge it is, one can recover the FIC for the workflow

by algorithms.

Algorithm 6 Log Matching Algorithm

Input: TimeStamp, TenantId, TransactionId

Output:
∑

LogEntries = ResultSet;

ResultSet;

BehaviorEntry;

while GetNextAccessedService!=NULL do

if Application in BehaviorLog then

BehaviorEntry.starteEntry = selectStartFromCache(TenantID, Transaction-

ID);

BehaviorEntry.endEntry = selectEndFromCache(TenantID, TransactionID);

else

BehaviorEntry.starteEntry = selectStartFromBahaviorLogs(TenantID, Trans-

actionID);

BehaviorEntry.endEntry = selectStartFromBehaviorLogs(TenantID, Transac-

tionID);

end if

ResultSet.append(BehaviorEntry);

BFS(ResultSet);

end while

144

Definition 7.4.1. (IN: Interaction Network) An interaction network is denoted

as G(V,E,Att) where

V is the set of vertices, that denotes services;

E ⊆ V × V is the set of edges, that denotes the service calls;

and Att = {a1, a2, ...an} is the set of attributes for a vertex, n is the total number

of the attributes.

Definition 7.4.2. (IIN: Incomplete Interaction Network): given an interaction

network G = (V, E, Att) and a network G’ = (V’, E’ Att’), network G’ is called an

Incomplete Interaction Network.

G’ can be called IIN has to meet the conditions: iff (1) V’ ⊂ V and E’ ⊂ E (2) ∀

v ∈ V and ∀ v’ ∈ V’ if v = v’ then Att(v) = Att(v’); (3) ∃ v ⊂ V and ∃ e ∈ E(V) ,

but e /∈ E’(V’)

There can be different types of IINs such as vertices or edges are missing.

Definition 7.4.3. (INT: Interaction Network with Time dimension): An

interaction network is denoted as GT = G(V,E,Att, T) where V is the set of vertices,

that denotes the services;

E ⊆ V × V is the set of edges, that denotes service calls;

and Att = {a1, a2, ...an} is the set of attributes for vertices, n is the total number

of attributes. Att denotes the attributes to describe services.

and T = {t1, t2, ...tn} is the timestamp for the G. In implementation, we normally

use ti to denote the time span between ti and ti−1 .

Topology is the static interaction graph between services that can be retrieved

from source code, configuration and production firewall rules. It describes an overall

interactions between different services.

145

1FIC 2FIC 3FIC

100 services 100 10000 1000000

Average 10 topo

connections
10 100 1000

1

10

100

1000

10000

100000

1000000

N
u

m
b

e
r
 o

f
C

o
n

n
e

c
t
io

n
s

Figure 7.8: Number Of Workflow Combinations With And Without Topology

For example, in a data center with N services, theoretically, any service can have N

possible connecting destinations. For a workflow involves 50 services, in a data center

with 100 services deployed, with one FIC happened in the workflow, the possible

services to be investigated can be up to 100. If there are N FICs in the workflow, the

combination of the service will soon make it impossible to investigate.

With the topology involvement of production site, it dramatically reduces the can-

didate service in Figure 7.8 for the investigation and on average, the total outbound

connection can be eliminated to a very reasonable number. Having the below Com-

plete Topology before doing the service rebuild thus will effectively help the workflow

rebuild with FICs.

Definition 7.4.4. (CT: Complete Topology): is denoted as GT (V,E,Att, T)

where V is ∀T the set of completed vertices used defined in the code and configura-

tion. E is ∀T the set of completed Edge used defined in the code and configuration.

Att is ∀T the set of completed attributes related.

T denote the time span between t1 and tn that tn denotes the current time and t1

denotes the start time of the service.

146

For example, a workflow A executed at ti, v1 represents the service 1 and v2

represents the service 2 and v3 represents the service 3. There is a service call from

v1 to v2 and then from v2 to v3.

At a different ti+1 , the same workflow was executed, but it only has the connection

from service v1 to v2, and service v2 is missing the connection to v3 at the time stamp

ti−1.

This can be

• A missing log entry that means no issue,

• A one time failure such as a timeout,

• Code failure that caused a service outrage.

Definition 7.4.5. (SC: Structural Rebuild) Structural rebuild defines the mech-

anism to recover the FIC for an IIN. It can be implemented in different ways. Two

typical ways can be empirical finding and data mining. The Algorithm 7 describes

the method for the FIC completion on production.

• Empirical finding: If there is a FIC from vi → vj at ti , and at ti+1 there is no

call from from vi → vj . One can derive that there is a potential FIC from from

vi → vj .

Empirical finding can be based on statistics Chuvakin et al. (2012), calculating

the weight of the service calls by the statistics.

W (Ei→j) =
∑

Vi→V j∑n
k=0 Vi→V k

Ei→j denotes the service call from service Vi to Vj Weight W is calculated based

on the percentage of all the outbound service calls from Vi to Vj divided by the

total outbound n types of service calls from Vi .

W (Ei→j) is used to rank the candidate edges for the FIC.

147

Algorithm 7 FIC Rebuild Algorithm
Input: IN : G, V : start

Output: Result;

if start != null then

Queue queue = new Queue();

queue.Add(start);

Set processedServices = new Set();

V next = null;

while queue.Count > 0 do

next = (V)queue.Dequeue();

if processedServices.Contains(next.Id) then

continue;

end if

Iterator iter = next.next();

while iter.hasNext() do

if iter.next().isInTopology() is true then

queue.Enqueue(iter.next());

else if iter.next().isTraversableInHistory(pasthour) then

LogStep(next,”recovered based on statistics”);

queue.Enqueue(iter.next());

else if iter.possibleNextPR() then

LogStep(next,”recovered based on PR”);

queue.Enqueue(iter.next());

148

else if iter.possibleNextDatamining() then

LogStep(next,”recovered based on Data Mining”);

queue.Enqueue(iter.next());

end if

end while

LogStep(next);

processedSteps.Add(next);

end while

end if

• Page Rank Page et al. (1999): Page rank used to weight the edges among the

vertices for an IIN G. For example, for a service U the numerical weight can

be denoted as PR(U). PR value of an outbound service call is equal to the

service’s own PageRank score divided by the number of outbound links L(V).

The below example shows the PR(U) is equal to the PR of its outbound service

Vi, Vi+1, Vi+2

PR(U) = P (Vi)
L(Vi)

+ PR(Vi+1)
L(Vi+1)

+ PR(Vi+2)
L(Vi+2)

In the general case, the PageRank Page et al. (1999) value for any vertices

(services) U can be expressed as:

PR(U) =
∑

v⊆Bu

PR(V)
L(V)

PageRank value for a service U depends on the PageRank values for each page

V contained in the set Bu (the set containing all vertices connect to vertices

U), divided by the number L(V) of calls from page V. PR(U) is used to rank

the candidate edges for the FIC.

149

• KNN: The intuition here is that similar transactions can result in similar call-

ing structures among the different services. Hence if one transaction with an

existing calling structure has a FIC, a potential prediction can be made for the

target service by using the different data mining algorithms. Several memory-

based algorithm can be used, including k-Nearest Neighborhood(kNN) Wu et al.

(2008). Using kNN, the most commonly used calculation is Euclidean distance

formula.

distance =
√∑n

i=1(pi − qi)2

distance is used to rank the candidate edges for the FIC. It makes use of two

vectors of data: p and q. p is the set of known patterns and the q is the set of

pattern we are trying to detect. One goes through each set of vectors for the

workflow,k closest neighbors can be get by using a majority voting scheme.

7.4.3 Macro Log Analysis of Workflows

The previous section discussed micro log analysis for individual transactions.

As it deals with individual transactions only, it can be done at real-time where the

resource is limited.

Macro log analysis deals with multiple transactions at the same time. It in-

cludes statistics analysis, workflow identification and clustering. It is computationally

expensive and thus it is suitable mainly for off-time analysis. The log data can be

preprocessed to produce the indexes to speed up the query processing. For example,

this can be done by Splunk. Specifically, queries from Splunk return the frequency of

each transaction with the list of services. An example from Splunk Query is in Figure

7.11.

Traditional triage performs the following two steps:

150

• Step 1: Log data are migrated from production to backend servers on a regular

basis. Log data are stored in the format of raw text files and DB entries as

shown in 7.9. Log data are organized chronologically by services instead of

by workflows. Each workflow contains various services and each service log is

stored in a corresponding file and database.

• Step 2: Log-processing tool such as Splunk indexes log data as shown in Figure

7.10, and one can query the log entry indexes for frequency analysis. Query for

log entries can be improved since log entries are indexed. But workflows are

not indexed at this phase. It is possible to analyze multiple transactions at this

time, but it requires extensive work and significant experience.

• Step 3: Step 3 named workflow indexing can be added to analyze a collection

of workflows. Figure 7.12 shows the process for log triage including the three

steps.

Login service

Authentication Service

Account Service

…...

Log Server

Figure 7.9: Raw Log Files Stored on Log Server

151

Figure 7.10: Index the Raw Log Files for Log Query

Figure 7.11: A Splunk Sample Query Result Represented in a List

There are three challenges for workflow indexing: workflow construction, process-

ing storage/time requirements and processing data size.

Workflow construction can be resolved by the algorithms in section 4.2. Each

individual transaction data are first identified, traversed and constructed into the

workflow.

Processing storage/time requirements are challenging as each service contains nu-

merous log entries and most of them are irrelevant to the workflow structure, the

workflow structure needs to be extracted and stored in a data structure requires less

memory for clustering the workflows by types.

There are three ways to store an individual workflow:

1. Nodes as objects and edges as pointers;

2. A list of edges between numbered nodes;

152

3. A matrix containing all edges between numbered node x and node y.

Indexing the workflows requires comparing two workflows by types, the first and

second data structure both need to traverse the workflow for the comparison, thus

the time complexity will be the BFS or DFS time complexity. The third, matrix is

enabled with its math operation, and if it is a bit array, it can be O(1).

Bit array, known as bit map, is an array data structure that compactly stores bits.

Bit array is effective at bit-level parallelism to perform operations quickly Wikipedia

(2015). Comparing if two bit array is the same can be as simple as do an OR operation

between two arrays and this is O(1). The below definition defines the data structure

WorkflowBitArray. As it stores in bits, it can efficiently solve the processing storage

and time issue.

Definition 7.4.6. (WorkflowBitArray): For a bit arrayWorkflowBitArray[N][M],

WorkflowBitArray denotes a workflow, index N and M at row and column denotes

to a service and it ranges from 0 to N-1. The corresponding bit is can be true(1) or

false(0). If service n calls service m, WorkflowBitArray[n][m] is marked as true(1);

Otherwise, marked as false(0).

OR operation of bit array is used to examine if two workflows have the same

structure.

• If WorkflowBitArrayA OR WorkflowBitArrayB is true(1) then two workflows

are different;

• If WorkflowBitArrayA OR WorkflowBitArrayB is false(0), then two workflows

have the same structure.

153

For example, in a three-service workflow, service A calls service B, and then service

B calls service C. It is represented as:
0 1 0

0 0 1

0 0 0


.

As for comparison, another workflow B stored as:
0 1 0

0 0 1

0 0 0


.

One can do (workflowA) OR (workflowB), and the following result shows that

the two workflows are the same type.

(010001000) OR (010001000) = 000000000 (7.1)

For a third workflowC structured as bit array 010000000. The following (workflowA)

OR (workflowC) shows they are identical type.

(010001000) OR (010001000) = 000000000 (7.2)

For a third workflow C structured as bit array 010000000. The following (workflowA)

OR (workflowC) shows they are different types.

(010001000) OR (010000000) = 000001000 (7.3)

Processing data size can be resolved by using MapReduce or other parallel algo-

rithms. Algorithm 8 and 9 illustrate the process to use Mapreduce to scale out the

computation.

154

• At the mapper phase 7.13 of the Mapreduce, individual workflows are construct-

ed by different mappers, the results are stored in WorkflowBitArrays.

• At the reducer phase 7.14, bit array OR operation is executed on each Work-

flowBitArray to categorize the workflows. Workflow indexes are generated as

the output of Mapreduce.

• Various queries can be done based on workflow indexes. A report can be gen-

erated from the workflow indexes to reflect the workflow statistics.

For instance, one can use Mapreduce to calculate all LoginService types out of

one hour RTRM logs. Lots of login flows are related but with variants by countries,

including USLoginFlow, CandadaLoginFlow, and ChinaLoginFlow. As shown in 7.15,

the following steps can be done for the indexing of login workflows.

1. Query for the log in related services, identified around 30,000 transactions.

2. Distribute the transaction logs to 20 different mappers to construct the work-

flows, each mapper handles around 1500 transactions. As the log data are

pre-indexed by IDs, query for log entries is faster than grepping the log files.

Each workflow takes around 1 second to complete. This step takes around 20-30

minutes to complete.

3. Count the workflow types at 10 different reducers for workflow indexes. Since

it is stored in the WorkflowBitArray, computation of the bit array is at O(1)

time. Including the overhead for retrieving the data. The entire process takes

3 to 5 minutes to complete.

4. Workflow indexes generated.

Analysis based on workflow indexes can be done into two major parts:

155

• Fine-grained business impact estimation:

Figure 7.16 shows a report generated from the workflow indexing example. It

shows the shares of each workflow type. As shown in Figure 7.16, the outputs

from workflow indexing enable the decision makers to determine an accurate

number of a given workflow type. As the average transaction value can be

estimated based on history data, the business impact can be calculated as BV =

N ∗ V where BV is the business impact value, N is the number of the impacted

workflows and V is the number of the estimated per transaction value.

For instance, the CanandaLoginFlow has be identified to be defective, the total

of impacted value can be calculated as 1108*56=62048 USD, where 1108 is the

total related workflows and 56 is the estimated per transaction value.

Estimate business impacts calculated helps decision makers accurately make

business decisions by workflow types.

• Decision tree based failure detection:

A decision tree can be built based on different workflows to fast triage the

failures. For instance, workflow type BrazilLoginFlow is not enabled yet at pro-

duction. According to the log, there are 10 occurrences of this workflow type

in the log. The decision tree for this is straightforward as seen in Figure 7.17.

If logs are seen for BrazilLoginFlow, the configuration file for BrazilLoginFlow

is wrongfully configured. Another example can be seen on the CanandaLogin-

Flow in Figure 7.17. According to its decision tree, when error type 10225 is

seen on this CanadaLoginFlow, the error is in CanadaAuthenticationService,

in the other case, if error type 10227 is met on this flow, the error type is on

CanadaAccountService.

156

The decision tree can be a community based knowledge base maintained by the

triage engineers and the developers. Other than the query function described

above, they are also updated constantly to make it consistent with the desired

behaviors. For instance, if the transaction is launched in Brazil, the Brazil-

LoginFlow should be enabled and the decision tree should be updated since the

business behavior has changed.

On top of the decision tree, some tasks can be automated in the system. For

example, when 10227 error code is identified on production for CanadaLogin-

Flow, the database connections on the server has been used up and the solution

is to restart the server. These types of processes can be automated when having

a decision tree.

Algorithm 8 WorkflowIndexMapper

Input: LogData,WorkflowType

Output: WorkflowBitArray

while GetNextWorkflow!=NULL do

WorkflowBitArray = ReconstructWorkflow();

end while

Algorithm 9 WorkflowIndexReducer

Input: WorkflowBitArray, WorkflowBitArrayCandidate

Output: Sum of Workflows in every WorkflowType

if wfBitArray isTypeof WorkflowBitArrayCandidate then

Count++;

else

AddNewWorkflowType(wfBitArray);

end if

157

Production Servers on Real-time

Log Servers after Hourly Migration

Cluster

App Server

Shared DB

App Server App Server

Shared DB

Load Balancer

Customers

Service

Request

Check Logs at Real-time

Log Server Log Server

Step 1: Migrate Log Data

Step 2: Log

Entry Index

Engineers

Check Logs for Failures

Step 3:

Workflow

Index

Engineers

Check Logs for Workflow Types

Figure 7.12: Overall Process for Log Triage

7.5 Experiment and Evaluation

7.5.1 Experiment

The experiment runs a large scale simulation with over a million BL to demon-

strate the performance of the solution for retrieving the logs and completing the

FICs with the transactions (details described in Table 7.2). At the end, different

scenarios of the FIC distributions are discussed and workflow level exception rates

are discussion. Finally, the rebuild algorithm are evaluated based on the inputs.

158

 Figure 7.13: Workflow Indexing: Mapper Phase

Figure 7.14: Workflow Indexing: Reducer Phase

Figure 7.4 shows an architecture view about the logs deployed on cloud. Giving the

shopping transaction Figure 7.19 , with a unique transaction ID, that has several FICs

in the workflow. In total,twelve services involved in the test workflow. It is unknown

whether the transaction is complete or not as the interaction with the credit card

authorization in workflow has been lost, and the charge service is also disconnected

at the workflow. Given a transaction ID, we can search in the BL from the start

159

Figure 7.15: An Example of Workflow Indexing

26%

3%

55%

6%

7%
0%3%

USLoginInFlow CanadaLoginFlow ChinaLoginFlow IndianLoginFlow

UKLoginFlow BrazilLoginFlow AustraliaLoginFlow

Figure 7.16: A Sample Report Generated from Workflow Indexes

service checkout. Via the BFS searching in the BL, we can get all the interactions

before the service compliance analysis and build a connected IN.

As we can see in Figure 7.20, the interactions for the current transaction has

been disconnected into three INs and obviously, to understand the complete picture

of the transaction, we need to correlate the three INs. The first IN is what we can

normally explore by the traverse algorithms in log searching, however, the other two

INs are unknown to the program as the interactions to them are lost. We will need

a structure rebuild for the interaction network. Before doing that, we will have an

pre-generated topology of services at the data center helps to filter out the candidate

160

Figure 7.17: Decision Tree Example Based on Workflow Types

Figure 7.18: Mapreduce to Calculate Workflow Indexes

services in the structure rebuild. The most efficient method method is the empirical

finding defined for structure rebuild. By this method, we can compare the previous

interactions for the same service at different time as seen at the ti−1 time in Figure

7.20. In this example, we can easily recover the workflow by the empirical finding. In

rare cases, the empirical finding can match nothing in the current disconnected INs;

in that we can use other techniques such as data mining, combinational algorithm for

attempting the recovery of the structure further.

7.5.2 Performance for Real-Time Log-Search

The below Figure 7.21 is based on 200GB of transaction logs as mentioned on Table

7.2. And the FICs are evenly distributed at each single services. Using the convention-

al triage methods, when a customer perform a search at the data center, the average

search time will decrease as the search might share the same CPU/database/file sys-

tems when they hit the same services for searching. In the example, we search the log

of the same type of workflow by the transaction ids, as we can see, because they are

161

V1:Checkout

Customer V6: Risk

Analysis

V7:Complianc

e Analysis

V5: Payment V9:Charge

V2:Page

Rendering

V3: Limit

Analysis

V8:Credit

Authorization
V12:Transacti

on Completion

V11:Credit

Card Charge

V10:Warehou

se Update

V4: ...

FIC

FIC

Figure 7.19: Experiment: Failed Interaction Call in a Purchase Transaction

V1

V2 V3 V4

V5

V6 V7 V8

V9

V1

0

V1

1

V1

2

Interaction graph at ti time for transaction

Interaction graph at ti-1 time for transaction

Disconnected Area Disconnected Area

V1

V2 V3 V4

V5

V6 V7 V8

V9

V1

0

V1

1

V1

2

Figure 7.20: Experiment: Empirical Completion for a FIC

competing the resource while hitting the similar services, the search response time

will increase.

Use the traditional triage method search increases to 10 ways, we can see the

response time will increase from around 217 seconds of one way to 493 seconds; in

extreme cases, when there is 100 concurrent searches were filed, the response time

can be upto 7238 seconds. It will take over two hours of response time thus it will be

not acceptable if we use this method to triage the live issue. Using the LTBD and

log structure in this paper, when number of search increases to 10, we can see the

response time will increase from around 10 seconds to 28 seconds, in extreme cases,

when there is 100 concurrent searches were filed, the response time can be upto 281

seconds. The reason for the performance improvement in the method in this paper

are result from the hybrid structure of the BL and EL. As we extracted the core

162

1 2 4 8 10 100

Conventional 217.92 226.61 262.8184 493.46875 571.1309 7238.11

LT 10.342 10.749 12.198 22.5252 28.296 281.055

0

1000

2000

3000

4000

5000

6000

7000

8000
S
e

a
rc

h
 T

im
e

 (
S
e

co
n

d
)

Number of Concurrent Searches

Average Search Time

Figure 7.21: Experiment: Test Evaluation for The Triage Method

Table 7.2: Data Size for One Hour of Simulated Transaction Logs

Total number of services 200

Log data time range 1hour

DB log entries 2millions

Total log file size 200GB

Total number of log files 200

information of the logs and stored them in DB, we can quickly traverse the call stack

and hit the logs in a much faster way than traversing all related logs individually.

The second diagram in Figure 7.21 shows the average CPU usage time for both

traditional and the LTBD method. Using the tradition method, the average CPU

usage surge to more than 50% at four-ways of searching, and LTBD method the

average CPU usage still kept at 32% at the eight-ways searching. However, in both

cases, when the queries increases to more than 10-ways, the CPU usage will get

163

worsen and the production CPU will be occupied compeletely by the log query. This

is not acceptable in production as it needs to serve the transactions. Thus we can see

that the best applicable of the LTBD method will be limited to less than 10-ways of

concurrent searching.

7.5.3 FIC Detection Rate

At the beginning of the paper we have put the estimation of the typical large scale

transaction processing system: a typical data center will have thousands of services ;

in each workflow it will contain around 50 of services and we define this number as

Sn; out of these services, when a FIC happen, we define the service involved to be

Sf .

Failure rate can be defined as

Frate(Total) =
∑Total

n=1
totalfailures

totalserviceoccurences

Based on this, we carries out an experiment of with even distributions.

Even distribution: Suppose FIC can happen at any service at the same possi-

bility, for a service workflow with Sn services involved, the accumulated rate of the

workflow can be:

Frate(workflow) = 1− (1− Frate(Total))Sn

Sporadic failure rate distribution: FIC happens to different type of services

at different rate, and in most cases, most of the rate in every service is very low,

however, the failure rate at one of the service is very high.

For any give Sn the failure rate can be defined as Frate(Sn) , under the condition

of every service of having a different failure rate, the accummulated rate can be

calculated as :

Frate(workflow) = 1− (1− Frate(S1)) ∗ (1− Frate(S2)... ∗ (1− Frate(Sn))

164

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.001 frate 0.01 frate 0.1 frate 0.2 frate

Workflow failure rate for the test data

12 services workflow 50 services workflow

Figure 7.22: Workflow Failure Rate Based on Even Service Failure Rates

According to Figure 7.22 that is based on even distribution of failure rate, one

can see that when the failure rate of the workflow failure rate will go up to 60% with

the 50 average services in a workflow or 11.30% with the 12 services example used

earlier. Thus there is no need to go above 10%(0.1) as the workflow will already be

down.

With this set of 0.1, 0.01 and 0.001 average failure rate, we further tested in the

simulated log data with the recovery of them. The rate has been proven effective. It

is normal that when failure rate increases, the recovery rate will drop. The reason is

that when more failure happens, the more chances of a consequence of services will

result in FICs in a roll. Under this case, it is difficulty to recover the log as if more

than three services in a roll has no log data, it is hard to recover a workflow of that

nature.

This set of data can also be proved by conditional possibility. For all the node in

a graph, given a failure rate of Frate(Snode) , the possible two and more consequence

node to have failures can be calculated.

165

Table 7.3: FIC Recovery Rate with Even Distribution

Method used 0.1% Frate 1%Frate 10%Frate

Empirical 97.982% 95.85% 95.2%

Empirical + Page

Rank
98.984% 97.95% 96.99%

7.5.4 Workflow Query Evaluation

To evaluate the performance of the workflow query in macro log analysis, we ran

the real experiment on the one-hour simulation data that has 0.25 million transac-

tions.

Transaction identification rate is defined first to estimate how many workflows of

each transaction type will have.

TIrate(workflow) = TotalNumberOfTargetWorkflows
TotalNumberOfWorkflows

A hypothesis that the similar transactions to the target transaction type can hit

a TIrate 0.1% of the workflow, 0.01%, 0.001% and 0.0001% of all workflows. The

paper assumes that the conventional manual process also designs a dedicated script

for calculating the workflow by the program. Suppose each server has full capacity

for query, each single query of conventional manual method takes around 10 seconds

to reconstruct a workflow. The time used of the conventional method will decrease

when the TIrate rate decreases as shown in Figure 7.23. The data of manual process

is consistent with the transaction volume as this process needs to be done sequentially

at query time. However, the proposed solution to query workflow indexes, the time

consumed remains the same linear time because the workflow is pre-calculated and

categorized.

The time required to index workflows is not an issue. At off-production mode,

numerous servers can be allocated, and as this is a divide and conquer issue, it can

166

be solved by putting in more servers. Also, there is no hard deadline for workflow

type computing, as it is more used as a subsidiary for real-time analysis. It starts

automatically after log migration and is queried only when is needed.

0

5000

10000

15000

20000

25000

30000

1% 0.10% 0.01% .0.0001%

Consumed

Time

(Seconds)

Transaction Identify Rate

Proposed

Coventional

Figure 7.23: Comparison of Conventional and Proposed Workflow Query Time

7.6 Conclusion

The paper addressed the challenges for the log analysis in a cloud infrastructure.

• It presented a modeling framework for logs by proposing BL in addition to EL.

• It demonstrated that using the log model, workflow can be recontructured from

failures in real-time production servers.

• It presented a workflow analysis technique to further assist the workflow recov-

eries.

With all these features, the complexity of triaging production log can be greatly

decreased.

167

Chapter 8

CONCLUSION

This thesis covers the modeling, simulation and analysis on cloud computing.

SimSaaS introduced the overall infrastructure for cloud based simulation. It pro-

posed a MTA simulation framework SimSaaS in cloud computing.

P4-SimSaaS designed the policy specification for the SimSaaS. It presented an

ontology based framework and tenant related policies, to support building an flexible

simulation model that can meet the variability of tenant-specific requirements in

SimSaaS. The specified policies can be used to meet the different requirements of the

tenants.

Model-driven development is to develop tenant applications for a GAE-based SaaS

system. The modeling language used in the PSML and it has associated modeling,

analysis, simulation, and code generation tools. It demonstrated several tenant ap-

plications specified using PSML and generate code for GAE, and execute the code

in GAE. The proposed approach of using the model-driven approach and use a com-

mercially available PaaS system can save significant effort and time in developing a

large, scalable and fault-tolerant SaaS system.

Timing specification can be analyzed to ensure their completeness and consistency

by static analysis as well as dynamic tuning by simulation. Timing information can

also be obtained by simulation. As service-oriented simulation can be an integrated

part of service-oriented application development, timing specification and analysis

will enable simulation to obtain more accurate results. A distinct feature of the

timing specification is that timing diagrams can be automatically generated once the

168

simulation is performed, and the simulation is performed using the simulated code

that is generated from a service-oriented model.

The service-oriented event-driven simulation framework allows the sharing and

reusing events, composite event specifications, event generators, event handlers and

event handler templates through an ontology system. Also, it offers the event speci-

fication of the service-oriented language PSML to allow static analysis.

Log Triage proposed a new framework to handle the unstructured, large volume

of data mixed with untraceable failures in cloud. It offers the capability to identify

the workflows from the log files at both real-time and non-realtime. It enables the

engineers to have a high-level overview of the system and further efficiently and

effectively triage production failures.

Further work can be done on expanding the modeling, simulation and analysis

along with testing and verification on cloud computing.

169

REFERENCES

Akdere, M., U. Çetintemel and N. Tatbul, “Plan-based Complex Event Detection
Across Distributed Sources”, Proc. VLDB Endow. 1, 1, 66–77 (2008).

Amazon, “EC2”, http://aws.amazon.com/ec2/ (2014).

Analysis, I., “Ibm smartcloud analytics - log analysis”, URL http://www-03.ibm.
com/software/products/en/ibm-smartcloud-analytics---log-analysis
(2015).

ASU, “DEVS-Suite”, http://acims1.eas.asu.edu/WebStarts/ (2014).

Barham, P., R. Isaacs, R. Mortier and D. Narayanan, “Magpie: Online Modelling
and Performance-aware Systems”, in “HotOS”, pp. 85–90 (2003).

Biacino, L. and G. Gerla, “Fuzzy Logic, Continuity and Effectiveness”, Archive for
Mathematical Logic 41, 7, 643–667 (2002).

Buyya, R., “Service and Utility Oriented Distributed Computing Systems: Challenges
and Opportunities for Modeling and Simulation Cmmunities”, in “Proceedings of
41st Annual Simulation Symposium (ANSS2008)”, pp. 3–3 (2008).

Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya,
“Cloudsim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning Algorithms”, Softw. Pract. Exper.
41, 1, 23–50 (2011).

Chandy, K. and W. R. Schulte, Event Processing: Designing IT Systems for Agile
Companies (McGraw-Hill Osborne Media, 2009).

Chate., S., “Convert Your Web Application to A Multi-tenant SaaS Solution”, http:
//www.ibm.com/developerworks/cloud/library/cl-multitenantsaas/ (2010).

Chen, Y. and W.-T. Tsai, Service-Oriented Computing and Web Data Management
(Kendall/Hunt Publishing, 2010).

Chong, F. and G. Carraro, “Architecture Strategies for Catching the Long Tail”,
(2006).

Chuvakin, A., K. Schmidt and C. Phillips, Logging and log management: The authori-
tative guide to understanding the concepts surrounding logging and log management
(Newnes, 2012).

Citrix, “Citrix”, http://www.citrix.com/ (2014).

Code.google.com, “Google app engine system status”, URL https://code.google.
com/status/appengine (2015).

170

Cons, L. and P. Poznanski, “Pan: A High-Level Configuration Language”, in “Pro-
ceedings of the 16th Conference on Systems Administration (LISA 2002)”, pp.
83–98 (2002).

Curino, C., E. P. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan
and N. Zeldovich, “Relational cloud: A database-as-a-service for the cloud”, (2011).

Deep-software.com, “Deep log analyzer - iis and apache log analyzer — web analytics
software”, URL http://www.deep-software.com/ (2014).

Destailleur, L., “Awstats - free log file analyzer for advanced statistics (gnu gpl).”,
URL http://www.awstats.org/ (2015).

Eucalyptus, “Eucalyptus”, http://eucalyptus.cs.ucsb.edu/ (2014).

Fonseca, R., G. Porter, R. H. Katz, S. Shenker and I. Stoica, “X-trace: A Pervasive
Network Tracing Framework”, in “Proceedings of the 4th USENIX conference on
Networked systems design & implementation”, pp. 20–20 (USENIX Association,
2007).

Globus, “Towards Open Grid Services Architecture”, http://www.globus.org/
ogsa/ (2007).

Godik, S., A. Anderson, B. Parducci, P. Humenn and S. Vajjhala, “Oasis eXtensible
Access Control 2 Markup Language (XACML) 3”, Tech. rep., Tech. rep., OASIS
(2002).

Google, “Google App Engine”, http://code.google.com/appengine/ (2014).

Google.com, “Google analytics official website”, URL http://www.google.com/
analytics/ (2015).

Group, L., “Simulation as a Service to Business Process Management (BPM)”, http:
//www.lanner.com/comms/090924/L-SIM_September.pdf/ (2014).

Hanson, J., “Javaworld.com, event-driven services in soa”, http://www.javaworld.
com/javaworld/jw-01-2005/jw-0131-soa.html?page=1/ (2005).

Haveliwala, T. H., “Topic-ensitive Pagerank: A Context-sensitive Ranking Algorithm
for Web Search”, Knowledge and Data Engineering, IEEE Transactions on 15, 4,
784–796 (2003).

IBM, “PLM: Product Lifecycle Management”, http://www-03.ibm.com/
solutions/plm/index.jsp/ (2007).

INOA, “Istf”, http://www.iona.com/solutions/it_solutions/istf.htm/ (2014).

Lee, Y.-H., W. Li, W.-T. Tsai, Y.-S. Son and K.-D. Moon, “A Code Generation
and Execution Environment for Service-oriented Smart Home Solutions”, in “Pro-
ceedings of IEEE International Conference on Service-Oriented Computing and
Applications (SOCA2009)”, pp. 1–8 (2009).

171

Levy, H. M., Capability-Based Computer Systems (Butterworth-Heinemann, Newton,
MA, USA, 1984).

Li, B. H., X. Chai, Y. Di, H. Yu, Z. Du and P. Xiaoyuan, “Research on Service
Oriented Simulation Grid”, in “Proceedings of Autonomous Decentralized Systems
(ISADS2005)”, pp. 7–14 (2005).

Li, N., Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo and D. Lin, “Access
Control Policy Combining: Theory Meets Practice”, in “Proceedings of the 14th
ACM symposium on Access control models and technologies”, pp. 135–144 (ACM,
2009).

Li, W., Y.-H. Lee, W.-T. Tsai, J. Xu, Y.-S. Son, J.-H. Park and K.-D. Moon, “Service-
oriented Smart Home Applications: Composition, Code Generation, Deployment,
and Execution”, Service Oriented Computing and Applications 6, 1, 65–79 (2012a).

Li, W., W. Wu, W.-T. Tsai and B. Esmaeili, “Model-driven tenant development for
paas-based saas”, in “Proceedings of the 2012 IEEE 4th International Conference
on Cloud Computing Technology and Science (CloudCom)”, pp. 821–826 (IEEE
Computer Society, 2012b).

Logstash.net, “logstash - open source log management”, URL http://logstash.
net/ (2015).

Malik, A. W., A. Park and R. M. Fujimoto, “Optimistic Synchronization of Par-
allel Simulations in Cloud Computing Environments”, in “Proceedings of IEEE
International Conference on Cloud Computing (CLOUD’09)”, pp. 49–56 (2009).

Marechaux, J.-L., “IBM Combining Service-Oriented Architecture and Event-
Driven Architecture using an Enterprise Service Bus”, http://www.ibm.com/
developerworks/library/ws-soa-eda-esb/ (2010).

Marty, R., “Cloud application logging for forensics”, in “Proceedings of the 2011
ACM Symposium on Applied Computing”, pp. 178–184 (ACM, 2011).

Mazzoleni, P., E. Bertino, B. Crispo and S. Sivasubramanian, “XACML Policy In-
tegration Algorithms: Not to Be Confused with XACML Policy Combination Al-
gorithms!”, in “Proceedings of the eleventh ACM symposium on Access control
models and technologies”, pp. 219–227 (ACM, 2006).

Microsoft, “Windows Azure”, http://www.microsoft.com/windowsazure/ (2014).

Mittal, S., J. L. Risco and B. P. Zeigler, “Devs-based simulation web services for
net-centric t&e”, in “Proceedings of the 2007 Summer Computer Simulation Con-
ference”, SCSC ’07, pp. 357–366 (2007).

Nagios.org, “Nagios - the industry standard in it infrastructure monitoring”, URL
http://www.nagios.org/ (2015).

Oracle, “Architecting Event-Driven SOA: A Primer”, http://www.oracle.com/
technology/pub/articles/oraclesoa_eventarch.html/ (2010).

172

Page, L., S. Brin, R. Motwani and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.”, (1999).

Palankar, M., A. Iamnitchi, M. Ripeanu and S. Garfinkel, “Amazon S3 for Science
Grids: A Viable Solution?”, in “Proceedings of Data-Aware Distributed Computing
Workshop (DADC)”, (2008a).

Palankar, M. R., A. Iamnitchi, M. Ripeanu and S. Garfinkel, “Amazon s3 for Science
Grids: A Viable Solution?”, in “Proceedings of the 2008 international workshop on
Data-aware distributed computing”, pp. 55–64 (2008b).

Paviot, J. F. T., “Implementation of a Saas Based Simulation Platform Using Open
Standards and Open Source Software”, in “Proceedings of 12th NASA-ESA Work-
shop on Product Data Exchange (PDE2010)”, (2010).

Pietzuch, P., B. Shand and J. Bacon, “Composite Event Detection as a Generic
Middleware Extension”, Network, IEEE 18, 1, 44–55 (2004).

Project, F., “Fluentd — open source data collector”, URL http://www.fluentd.
org/ (2015).

Realtracker.com, “Realtracker”, URL http://www.realtracker.com/ (2015).

Salesforce, “Salesforce”, http://www.Salesforce.com/ (2014).

Sarjoughian, H., S. Kim, M. Ramaswamy and S. Yau, “A Simulation Framework for
Service-oriented Computing Systems”, in “Proceedings of Simulation Conference
(WSC2008)”, pp. 845–853 (2008).

Sigelman, B. H., L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan and C. Shanbhag, “Dapper, A Large-scale Distributed Systems Tracing
Infrastructure”, Google research (2010).

Splunk.com, “Operational intelligence, log management, application management, en-
terprise security and compliance — splunk”, URL http://www.splunk.com (2015).

Status.aws.amazon.com, “Aws service health dashboard - jan 3, 2015 pst”, URL
http://status.aws.amazon.com/ (2015).

Sun, W., X. Zhang, C. J. Guo, P. Sun and H. Su, “Software as a Service: Configuration
and Customization Perspectives”, in “Proceedings of IEEE Congress on Services
Part II, 2008, SERVICES-2”, pp. 18–25 (2008).

Tibco, “Event-Driven SOA: A Better Way to SOA”, http://www.tibco.com/
multimedia/wp-event-driven-soa_tcm8-803.pdf/ (2010).

Tsai, W., “Service-oriented System Engineering: A New Paradigm”, in “Proceed-
ings of IEEE International Workshop on Service-Oriented System Engineering
(SOSE2005)”, pp. 3–6 (2005).

173

Tsai, W., X. Bai and Y. Huang, “Software-as-a-Service (SaaS): Perspectives and
Challenges”, Science China Information Sciences 57, 5, 1–15 (2014).

Tsai, W., Z. Cao, X. Wei, R. Paul, Q. Huang and X. Sun, “Modeling and Simulation
in Service-Oriented Software Development”, Simulation 83, 1, 7–32 (2007a).

Tsai, W., Q. Huang, X. Sun and Y. Chen, “Dynamic Collaboration Simulation in
Service-Oriented Computing Paradigm”, in “Proceedings of 40th Annual Simula-
tion Symposium (ANSS07)”, pp. 41–48 (2007b).

Tsai, W., Q. Huang, J. Xu, Y. Chen and R. Paul, “Ontology-based Dynamic Process
Collaboration in Service-Oriented Architecture”, in “Proceedings of IEEE Interna-
tional Conference on Service-Oriented Computing and Applications (SOCA07)”,
pp. 39–46 (2007c).

Tsai, W., X. Wei, Z. Cao, R. Paul, Y. Chen and J. Xu, “Process Specification and
Modeling Language for Service-Oriented Software Development”, in “Proceedings
of 11th IEEE International Workshop on Future Trends of Distributed Computing
Systems (FTDCS ’07)”, pp. 181–188 (2007d).

Tsai, W., B. Xiao, R. Paul and Y. Chen, “Consumer-centric Service-oriented Archi-
tecture: A New Approach”, in “Proceedings of the Second International Workshop
on Collaborative Computing, Integration, and Assurance and the Fourth IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems
(SEUS 2006/WCCIA2006)”, pp. 6 pp.– (2006a).

Tsai, W., X. Zhou and Y. Chen, “SOA Simulation and Verification by Event-Driven
Policy Enforcement”, in “Simulation Symposium, 2008. ANSS 2008. 41st Annual”,
pp. 165–172 (2008a).

Tsai, W., X. Zhou and X. Wei, “A Policy Enforcement Framework for Verification
and Control of Service Collaboration”, Information Systems and e-Business Man-
agement 6, 1, 83–107 (2008b).

Tsai, W., X. Zhou and X. Wei, “A Policy Enforcement Framework for Verification
and Control of Service Collaboration”, Information Systems and e-Business Man-
agement 6, 1, 83–107 (2008c).

Tsai, W.-T., Y. Chen, R. Paul, X. Zhou and C. Fan, “Simulation Verification and
Validation by Dynamic Policy Specification and Enforcement”, Simulation 82, 5,
295–310 (2006b).

Tsai, W. T., C. Fan, Y. Chen and R. Paul, “DDSOS: A Dynamic Distributed Service-
Oriented Simulation Framework”, in “Proceedings of the 39th Annual Symposium
on Simulation”, ANSS ’06, pp. 160–167 (2006c).

Tsai, W.-T., Y. Huang, X. Bai and J. Gao, “Scalable Architectures for
SaaS”, in “Proceedings of 2012 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops (ISORCW2012)”, pp. 112–117 (2012).

174

Tsai, W.-T., Y. Huang and Q. Shao, “EasySaaS: A SaaS Development Framework”,
in “Proceedings of 2011 IEEE International Conference on Service-Oriented Com-
puting and Applications (SOCA2011)”, pp. 1–4 (2011a).

Tsai, W.-T., Y. Huang, Q. Shao and X. Bai, “Data Partitioning and Redundancy
Management for Robust Multi-Tenancy SaaS”, Int. J. Software and Informatics 4,
3, 437–471 (2010a).

Tsai, W.-T., W. Li, X. Bai and J. Elston, “P4-simsaas: Policy specification for
multi-tendency simulation software-as-a-service model”, in “Simulation Conference
(WSC), Proceedings of the 2011 Winter”, pp. 3067–3081 (IEEE, 2011b).

Tsai, W.-T., W. Li, H. Sarjoughian and Q. Shao, “Simsaas: simulation software-as-
a-service”, in “Proceedings of the 44th Annual Simulation Symposium”, pp. 77–86
(Society for Computer Simulation International, 2011c).

Tsai, W.-T., W. Li, H. Sarjoughian and Q. Shao, “SimSaaS: Simulation Software-
as-a-Service”, in “Proceedings of the 44th Annual Simulation Symposium”, ANSS
’11, pp. 77–86 (2011d).

Tsai, W.-T., W. Li, X. Sun, A. Sabnis and Y. Chen, “Event-driven Service-Oriented
Simulation Framework”, in “Proceedings of the 2010 Spring Simulation Multicon-
ference”, SpringSim ’10, pp. 176:1–176:9 (2010b).

Tsai, W.-T., G. Qi and X. Bai, “AgileSaaS: An Agile SaaS Development Framework”,
in “Proceedings of the Third Asia-Pacific Symposium on Internetware”, Internet-
ware ’11 (2011e).

Tsai, W. T., H. S. Sarjoughian, W. Li and X. Sun, “Timing Specification and Analysis
for Service-oriented Simulation”, in “Proceedings of the 2009 Spring Simulation
Multiconference”, SpringSim ’09, pp. 51:1–51:9 (2009).

Tsai, W.-T., Q. Shao and W. Li, “OIC: Ontology-based Intelligent Customization
Framework for SaaS”, in “Proceedings of 2010 IEEE International Conference on
Service-Oriented Computing and Applications (SOCA2010)”, pp. 1–8 (2010c).

Tsai, W.-T., X. Sun, Q. Huang and H. D. Karatza, “An Ontology-based Collab-
orative Service-oriented Simulation Framework with Microsoft Robotics Studio”,
Simulation Modelling Practice and Theory 16, 9, 1392–1414 (2008d).

Turner, K. J., S. Reiff-Marganiec, L. Blair, G. A. Cambpell and F. Wang, “Appel:
An Adaptable and Programmable Policy Environment and Language”, (2007).

Vaculin, R. and K. Sycara, “Specifying and Monitoring Composite Events for Seman-
tic Web Services”, in “Proceedings of Fifth European Conference on Web Services
(ECOWS07)”, pp. 87–96 (2007).

VMWare, “VMWare”, http://www.vmware.com/ (2014).

175

Vu, L.-H., M. Hauswirth and K. Aberer, “QoS-based Service Selection and Ranking
with Trust and Reputation Management”, in “On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE”, pp. 466–483 (Springer, 2005).

Wikipedia, “Event-Driven SOA”, http://en.wikipedia.org/wiki/Event-driven_
SOA/ (2014a).

Wikipedia, “Scalability”, http://en.wikipedia.org/wiki/Scalability/ (2014b).

Wikipedia, “Bit array”, URL https://en.wikipedia.org/wiki/Bit_array/
(2015).

Willard, D. E., “New Trie Data Structures Which Support Very Fast Search Opera-
tions”, J. Comput. Syst. Sci. 28, 3, 379–394 (1984).

Wu, X., V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in data mining”, Knowledge
and Information Systems 14, 1, 1–37 (2008).

XMSF, “SAIC Web-Enabled RTI”, http://www.movesinstitute.org/
xmsf/projects/WebRTI/XmsfSaicWebEnabledRtiDecember2003.pdf/ (2007).

Xpolog.com, “Xpolog log management - log analysis with log analytic search”, URL
http://www.xpolog.com/ (2015).

Zang, C. and Y. Fan, “Complex Event Processing in Enterprise Information Systems
Based on RFID”, Enterp. Inf. Syst. 1, 1, 3–23 (2007).

Zeng, J., J. Huai, H. Sun, T. Deng and X. Li, “LiveMig: An Approach to Live Instance
Migration in Composite Service Evolution”, in “Proceedings of IEEE International
Conference on Web Services ICWS2009”, pp. 679–686 (2009).

Zhou, X., W.-T. Tsai, X. Wei, Y. Chen and B. Xiao, “Pi4soa: A Policy Infras-
tructure for Verification and Control of Service Collaboration”, in “Proceedings of
IEEE International Conference on e-Business Engineering (ICEBE’06)”, pp. 307–
314 (2006).

Zou, D., H. Qin, H. Jin, W. Qiang, Z. Han and X. Chen, “Improving log-based fault
diagnosis by log classification”, in “Network and Parallel Computing”, pp. 446–458
(Springer, 2014).

176

