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ABSTRACT 

Computer supported collaborative learning (CSCL) has made great inroads in classroom 

teaching marked by the use of tools and technologies to support and enhance 

collaborative learning. Computer mediated learning environments produce large amounts 

of data, capturing student interactions, which can be used to analyze students’ learning 

behaviors (Martinez-Maldonado et al., 2013a). The analysis of the process of 

collaboration is an active area of research in CSCL. Contributing towards this area, Meier 

et al. (2007) defined nine dimensions and gave a rating scheme to assess the quality of 

collaboration. This thesis aims to extract and examine frequent patterns of students’ 

interactions that characterize strong and weak groups across the above dimensions. To 

achieve this, an exploratory data mining technique, differential sequence mining, was 

employed using data from a collaborative concept mapping activity where collaboration 

amongst students was facilitated by an interactive tabletop. The results associate frequent 

patterns of collaborative concept mapping process with some of the dimensions assessing 

the quality of collaboration. The analysis of associating these patterns with the 

dimensions of collaboration is theoretically grounded, considering aspects of 

collaborative learning, concept mapping, communication, group cognition and 

information processing. The results are preliminary but still demonstrate the potential of 

associating frequent patterns of interactions with strong and weak groups across specific 

dimensions of collaboration, which is relevant for students, teachers, and researchers to 

monitor the process of collaborative learning. The frequent patterns for strong groups 

reflected conformance to the process of conversation for dimensions related to 

“communication” aspect of collaboration. In terms of the concept mapping sub-processes 
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the frequent patterns for strong groups reflect the presentation phase of conversation with 

processes like talking, sharing individual maps while constructing the groups concept 

map followed by short utterances which represents the acceptance phase.   For “joint 

information processing” aspect of collaboration, the frequent patterns for strong groups 

were marked by learners’ contributing more upon each other’s work. In terms of the 

concept mapping sub-processes the frequent patterns were marked by learners adding 

links to each other’s concepts or working with each other’s concepts, while revising the 

group concept map. 
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1. Introduction  

1.1 Motivation and Thesis Goals 

The long term goal of this research is to inform the design of tools which would support 

teachers and researchers alike in analysing how students collaborate in classroom 

learning and provide appropriate interventions to improve collaboration and enhance 

learning. 

 

The knowledge, facilitation and improvement of collaboration skills is a key factor for 

enhanced learning in computer supported learning environments. The probability of some 

specific cognitive mechanisms like knowledge elicitation, externalization, reduced 

cognitive load and internalization, which lead to learning, is more when students interact 

with each other while collaborating (Dillenbourg, 1999). This makes collaboration skills 

important for higher performance in learning, critical thinking, higher retention and 

interest in the students (Johnson & Johnson, 1986). The use of computer-mediated tools 

to support collaboration is increasingly becoming an important aspect of classroom 

learning. These tools provide encouragement to students to pursue higher individual 

learning and achieve better collaboration (Dillenbourg et al., 2011). But collaboration 

does not necessarily happen just because CSCL environment is conducive to it. Effective 

collaboration in CSCL needs development of certain skills such as providing 

explanations and seeking information, joint coordinated effort, negotiation among others 

which makes teachers a pivotal cog in enhancing students’ performance by monitoring 
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the collaborative process, understanding student strategies and providing appropriate 

feedback or interventions.  

 

The role of teachers in classroom orchestration has always been of the utmost 

importance, but with the advent of CSCL it has evolved even further in the past 3 decades 

(Dillenbourg & Fischer, 2009). As much as CSCL is about supporting collaboration, 

group cognition and the idea that students co-construct meaning, it doesn’t endorse 

“teacherless learning”(Dillenbourg & Fischer, 2009).  This necessitates a shift in focus 

for teachers from providing support on content to understanding how students think and 

learn, and channelling their suggestions based on that understanding. They need to have 

better awareness about the flow of knowledge and collaboration dynamics during small 

group learning activities (Dillenbourg et al., 2011). Their role is crucial in advancing the 

group collaboration skills of the students and improving their group dynamics 

(Dillenbourg et al., 2011) and hence there is a rising need for them to be equipped with 

tools that facilitate this knowledge growth. 

  

To address this, the large amount of data that can be captured from the interactions of 

students with the tools, technologies and their peers can be exploited to support the 

teachers and researchers in monitoring and gaining insights into the collaborative and 

learning process. In order to leverage this data and support teachers in facilitating 

classroom activities, it is important to have a deep understanding of what constitutes a 

good collaborative process. Meier et al. (2007) defined nine process dimensions across 

five aspects of collaborative processes which are rated quantitatively to measure the 
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degree of collaboration. The dimensions were derived from data from a study combined 

with theoretical considerations on literature from collaborative learning, CSCL and group 

cognitive processes. The data was taken from a study involving psychology and medicine 

students collaborating over a desktop based videoconferencing system and involved a 

qualitative analysis of the video recordings which resulted in the rating scheme. This 

rating scheme was then applied to a new study for evaluation. The ratings were given by 

humans. This multidimensional model of collaboration given by Meier (2007) covered 

aspects of communication, joint information processing, coordination, interpersonal 

relationship and motivation. 

 

The students’ interactions with their peers and the computer mediated learning 

environment while engaged in a joint problem solving task constitute one of the most 

important aspect of collaborative learning. The group cognition (Stahl, 2006) and 

distributed cognition (Hutchins, 1996) theories which are reflective of collaborative 

learning, also give utmost importance to these interactions and talk about them as an 

essence of collaborative cognitive processes. Thus, the analysis of students’ interactions 

is the most essential component for evaluation of the collaborative process. The rating 

scheme and the dimensions Meier (2007) defined to assess the quality of collaboration 

can be used in different CSCL settings for assessing collaboration using students’ 

interactions. The rating scheme involves human evaluations which are arduous and time 

consuming.  But deeper aspects of collaboration require human intervention to be 

evaluated as it involves subtleties which cannot be conveyed by only automated metrics 

of logged data or events. One approach going forward is to incorporate these human rated 



  4  

 

dimensions as an external reference model and then use automated interaction analysis 

techniques to characterize these dimensions of collaboration in a way that that reflects the 

already proven model of human analysis (Kahrimanis et al., 2011a). Identification of 

patterns of students’ interactions is one of the most essential components of interaction 

analysis and these patterns are reflective of the collaborative learning. (Stahl, 2013). The 

analysis of patterns of interaction in small groups is important for understanding 

collaborative learning and we can use the “good” and “bad” collaboration models based 

on human evaluations to automatically extract frequent patterns of interactions. 

 

As established, there is this need and opportunity for automatically associating patterns of 

students’ interactions to higher-order collaborative process dimensions. There has been 

research which uses the students’ interactions to analyze the collaborative process, taking 

into account high vs. low collaboration in groups based on all the aspects of collaboration 

taken as a cumulative unit. Analyzing the collaborative process across all the different 

aspects of collaboration would give deep insights about the strategies and interactions 

that characterize these different aspects of collaboration. 

 

This thesis aims to examine the frequent patterns of students’ interactions to analyse the 

collaborative learning process across the different dimensions of collaboration defined by 

Meier et al., (2007). I used an exploratory data mining technique that is known as 

sequence pattern mining and it was applied on the sequential data of students’ 

interactions with the multi-touch tabletop while they were engaged in the collaborative 

concept mapping activity. I only focused on the first four dimensions under the 
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“communication” and “joint information processing” aspects of collaboration, defined by 

Meier et al., (2007) and the results obtained were frequent patterns of students’ 

interactions across these four dimensions of collaboration(Sustaining Mutual 

Understanding, Dialogue Management, Reaching Consensus, Joint Information 

Processing). 

  

The specific context of the study, which this thesis is based upon, is a face-to-face 

collaborative learning activity using concept maps in an enriched interactive tabletop in a 

small group. Martinez-Maldonado et al. (2013a) conducted this study and exploited the 

affordances of these tabletops to automatically capture digital traces of students’ 

interactions. The data was logged in the database in terms of all the physical actions, 

instances of verbal communication accompanied with the participants’ identifiers. 

Lemonier & Martinez-Maldonado et al. (2014), defined a coding scheme to encode this 

low level logged data into high level collaborative concept mapping processes. This 

resulted in sequence of concept mapping sub-processes for each group participating in the 

study. 

 

There is an opportunity to apply exploratory data mining techniques to compare 

collaboration across the different dimensions in terms of the sub-processes and take the 

research beyond what has been done by the other noteworthy researchers. The idea is to 

take the analysis of the students’ interactions and learning traces that characterize high and 

low collaborative groups,  or high and low achieving students ,one step further and 

determine which patterns of sequences of high level sub-processes of the group concept 
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mapping activity characterize the specific dimensions of collaborative processes that 

differentiate the groups of students. This inspires and motivates the goal for my thesis 

which can be formulated as below: 

 

1. Use sequence pattern mining to examine how frequent sequences of collaborative 

interactions differ between high-performing groups and low-performing groups across 

different process dimensions of measuring the collaboration quality. 

2. Use sequence pattern mining to identify frequent sequences of collaborative 

interactions that characterize the important process dimensions of collaboration 

considering theoretical underpinnings for each dimension.  

 

1.2 Contribution 

The contribution of this work is the analysis of the collaborative process at a more 

granular level by associating the frequent patterns of interactions with different 

dimensions across which the quality of collaboration is assessed. The results can assist 

teachers and researchers in analysing the collaborative processes that ensue in high and 

low collaborative groups, enabling them to provide interventions or feedback in 

classrooms in real time. This thesis is only contributing in terms of presenting the 

information to the researchers or teachers for their perusal. The associations between the 

frequent patterns and dimensions of collaboration are presented considering the 

theoretical underpinnings for each dimension, which makes the contribution more 

exciting as the results are not just explained around the dimensions but analysed to 
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examine if the patterns obtained are meaningful and meet the expectations considering 

the literature as well.    

 

1.3 Organization of the Thesis 

This thesis document is organized as follows: Chapter 2 talks about the relevant 

background research related to Computer Supported Collaborative Learning (CSCL), 

assessment of collaboration, data exploration and mining and collaborative concept 

mining which for the basis of the thesis. Chapter 3 describes the research methodology 

including the study and dataset upon which this work is based along with the specific 

data mining technique (DSM) that has been used. It also formally introduces the research 

questions being targeted in this thesis. Chapter 4 presents the results obtained on 

executing DSM on the sequential dataset prepared for this work with in-depth discussion 

of the results. This is followed by the conclusion and further work section.  
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2. Background and Related Work 

2.1 Collaboration and Learning Theories 

A number of theories contribute towards providing a framework for understanding 

aspects of CSCL and the way research has evolved in the past few decades. The 

constructivist theory of Group Cognition (Stahl, 2006) occupies an important place as a 

theoretical perspective in CSCL research. CSCL is all about supporting collaborative 

learning, co-construction of knowledge and group cognition (Stahl, 2013). For this thesis, 

I focused on the group cognition theory to define the theoretical framework. Martinez 

(2014b), also designed his approach based on this theory as he considered “the tabletop 

hardware as just a partial mediator of knowledge, and the artifacts that are built through 

this medium as true containers of student’s shared understanding”. Before moving 

forward, it’s also important to discuss collaboration and cooperation, which are key 

elements of CSCL. 

  

A number of researchers have defined collaboration in different ways, which reflects 

different perspectives. Collaborative learning can be broadly defined as a “situation in 

which two people learn or attempt to learn together” or simply come together for joint 

problem solving (Dillenbourg, 1999). Roschelle & Teasley (1995) define collaboration as 

“a coordinated, synchronous activity that is the result of a continued attempt to construct 

and maintain a shared conception of a problem". Another term that is used synonymously 

with collaboration is co-operation. However researchers differentiate between these two 

forms of peer learning. In collaborative learning the work is done by the group as a whole 

and even the division of tasks/labor is horizontal which means it is across different 
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aspects of a task. In contrast, in cooperative learning tasks are divided into independent 

sub-tasks so that individuals can work and construct their knowledge independently and 

then combine their results for the common task. The end product of collaboration is more 

synergistic and the group effort cannot be traced in terms of individual contributions. 

Researchers agree that it’s difficult to arrive at a single definition of collaboration and 

that collaborative learning is not a single mechanism or method (Dillenbourg, 1999). 

Dillenbourg (1999) further explains how collaborative learning can be described in terms 

of a situation, which might facilitate certain interactions to occur that may trigger 

learning mechanisms. However, it cannot be ascertained whether or not these interactions 

would occur. In general, collaborative learning is associated with students giving 

explanations and receiving feedback, which helps students elaborate their knowledge and 

repair their mental models of understanding (van boxtel et al., 2000). This elaboration 

process is stimulated by social interactions and learning is enhanced when students have 

to indulge in the process of giving explanations, negotiating and reaching a shared 

understanding. 

 

In light of this discussion about collaborative learning, it’s imperative to discuss how 

different theoretical perspectives contribute towards grounding this concept. All the 

theories in CSCL research are based on the same underlying paradigm that considers 

individual cognition in a social context rather than in isolation. CSCL research is highly 

influenced by social interactions, individual learning and their interplay supported by 

tools and technologies (Hartman, 2015).  As part of this discussion, it also becomes 

relevant to describe the role of social interactions within all these theories. Further, 
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referring to Hartman’s et al., (2015) work, linking these roles to different forms of 

constructivism helps categorize the nature of learning within these theories of CSCL.  

A large body of research on collaborative learning and CSCL is rooted in socio-cognitive 

and socio-cultural theories by Piaget and Vygotsky respectively, based on which we will 

move to our discussion about the group cognition theory. 

 

2.1.1 The Piagetian Perspective, Vygotskian Perspective and Constructivism 

Piaget posits that the individual cognitive development happens when a child/learner 

experiences a cognitive conflict owing to interactions with new information or different 

cognitive frameworks and eventually cognitive equilibrium fosters development.  

According to social constructivists, this cognitive conflict is facilitated by social 

interactions. Moshman (1982) classifies this as endogenous constructivism, as the social 

interactions are enabling the individual cognitive developmental process that is more 

reflective of cooperative learning. While this socio-cognitive approach focuses on 

conflict being the mediating factor enabled by social interactions, Vygotsky’s approach 

showcases individual cognitive change as a causal effect of social interactions. The 

Vygotskian perspective also known as the socio- cultural perspective says that the 

cognitive development happens in the zone of proximal development which is the 

distance between the accomplishments of a student when he/she works alone with respect 

to what he/she can achieve working with an advanced expert peer. According to 

Vygotsky’s principle, individuals develop cognitive processes within the social context - 

aided by expert peers, or cognitive aids and then later use these abilities individually. 

This is quite consistent with the current state of CSCL that considers the role of social 
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collaborative interactions as an integral part of individual learning processes with 

technology playing a mediating role. 

 

2.1.2 Group Cognition and Dialectical Constructivism 

The earlier sections talk about the different theories that contribute and lead to the 

perspective that characterizes the concept of collaboration. Collaboration can be 

associated with dialectical constructivism where social interactions are viewed as a 

constitutive factor and an integral part of the individual cognition.   

 

Researchers have laid emphasis on social interactions being integral component of group 

and individual leaning processes. (Vygotsky, 1978; Webb, 1996). Dialectical 

constructivism emphasizes the constitutive role of social interaction in individual 

cognitive processes and knowledge construction. Along the same lines, group cognition 

theory (Stahl, 2006) also talks about individual cognition and social environment 

exhibiting a dialectical relation. Martinez et al. (2012 d) described the group cognition 

model based on Stahl’s theory. It constitutes of two main cycles: the personal 

understanding (1) that occurs inside individual’s mind and the social knowledge building 

cycle (2) which includes all the sub- processes that may be present when building social 

understanding. 

 

Group cognitive processes cannot be gauged from and described by the individual 

cognitive processes or social interactions alone. Thus these processes must be 

conceptualized as an amalgamation of both, the individual cognitive process and the 
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social interactions. Collaborative learning is most often associated with these approaches, 

which emphasize the synergistic, reciprocal and dialectical character of social 

interactions and individual cognitive processes. 

 

Furthermore, in face-to-face interactions, within a short period of time a large number of 

cognitive artifacts are generated by the group cognition processes. Each member of the 

group has to express their thoughts and views to persuade other members about their 

understanding. Learners, by externalizing their personal understandings, integrate their 

knowledge with the group understanding as a whole to then appropriate some of it into 

their own personal understanding. By externalizing their thoughts, potentially, they leave 

digital traces of the collaborative knowledge building process. As discussed, these digital 

traces have a huge potential and can be exploited to analyze and support the collaborative 

knowledge building activity and to support the researchers and teachers in understanding 

the collaborative and cognitive processes. 

 

To summarize on a higher level, group cognition (Stahl, 2006) focuses on the small 

groups of more than 2 members, which create shared understanding or meaning across 

the interactions of the students and this shared meaning is also contained in the cognitive 

artifacts (abstract or physical). These artifacts are also an integral part of the collaborative 

activity. Martinez et al. (2013a), whose work I am building upon, used this theory to 

inform the design of tools, technologies and learning activity and also to define the 

collaborative learning scenario he aimed to analyze and support. 
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As already mentioned, the group cognition theory motivates and is reflected in different 

aspects of the theoretical framework, which would be discussed in the coming sections. 

The fact that social interactions are one of the most important constituents of 

collaborative learning also becomes evident and supports the motivation of this thesis to 

examine the collaborative process in terms of students’ interactions and individual 

cognitive processes. I have leveraged these principles to inform the process of analyzing 

the collaborative process using the patterns of interactions of students engaged in a 

collaborative concept mapping activity. 

 

2.2   Assessment of the Collaborative Process 

Numerous researchers have already established the importance of analyzing the 

collaborative process and the interactions that are useful for learning and solving 

problems in CSCL has (Meier et al., 2007). From a research perspective, the analysis of 

collaborative process involves identification of key aspects of collaboration that are 

essential for collaborative learning to happen and a method to assess these aspects. 

Based on the group cognition theory (Stahl, 2006) discussed in section 2.1, which stated 

when groups of students collaborate, the learning process and shared understanding is 

contained within the students dialogues and the cognitive artifacts, the analysis of these 

interactions and artifacts results in more awareness about the collaborative process which 

is of utmost importance. Researchers have defined indicators of collaborative learning 

that focus on the collaborative process and interactions rather than only the conditions 

and outcomes. For instance Dimitracopoulou et al. (2004) defined certain indicators of 

group interactions, which included collaboration intensity, level of participation, 
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transactivity, division of labor to list a few. These indicators can be used to aid the 

assessment or evaluation of collaboration and even promote awareness about the 

collaborative process. Martinez Maldonado (2014) used basic statistics on the low level 

data of students’ interactions, group artifacts and individual artifacts obtained as part of a 

collaborative concept mapping activity to differentiate between groups based on these 

indicators. 

 

In terms of defining generic assessment methods for CSCL, Meier et al. (2007) defined a 

rating scheme for the assessment of the quality of collaboration applicable in a multitude 

of collaborative settings. Meier identified the dimensions of collaboration that determine 

the quality of collaborative learning encompassing a broad set of collaboration settings 

and gave a rating scheme to quantifiably measure the quality of collaboration. The 

process dimensions were defined based on an empirical derivation from the data of a 

collaborative problem solving activity as well as theoretical considerations. Considering 

the fact that quality of collaborative process has to be assessed instead of frequency 

measures, and how time consuming it is to transcribe audio or video recordings, a rating 

scheme was preferred over coding schemes. As compared to coding schemes that are 

employed to assess the frequency of specific behavioral indicators or types of utterances, 

a rating scheme allows a more direct assessment of process quality. Rating schemes in 

general, apply to a larger data-set and rely more on the skills and knowledge of humans 

whereas coding schemes makes the coders follow strictly defined rubrics for coding.  

Thus, rating approaches are better in terms of the true evaluation sense (Kahrimanis et al., 

2011a). 
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Martinez et al., 2014 used this rating scheme to assess the quality of collaboration for his 

work, which will be discussed in the next chapter. This rating scheme comprised of nine 

dimensions: sustaining mutual understanding, dialogue management, information 

pooling, reaching consensus, task division, time management, technical coordination, 

reciprocal interaction, and individual task orientation over four aspects of collaboration 

namely, communication, joint information processing, coordination and motivation. 

Transcribed dialogue content from a study involving a psychology and medical student 

collaborating on a medical case using a desktop-teleconferencing was taken as the data 

source to extract these dimensions. The content of these dialogues was analyzed against 

roles of communication, interpersonal relationship, coordination, joint information 

processing and motivation. As a validation and evaluation method, the rating scheme was 

then applied to rate data for a new study involving 40 collaborating dyad. Based on the 

findings on inter-rater reliability, consistency, and validity from this evaluation, the 

researchers argued that this rating scheme is suitable to be applied in diverse CSCL 

settings. 

 

For understanding the general processes that entail these dimensions and relate them to 

the specific concept mapping processes, it is imperative to discuss the theoretical 

underpinnings behind the first four covered under the two aspects, communication and 

joint information processing, which I am focusing on in my thesis. This section would be 

helpful in shaping up the hypothesis for this thesis. 
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2.2.1. Communication Aspect of Collaboration 

Meier identifies the need for establishing “common ground” and “turn taking” when the 

learners converse. The coordination of content and the process is important for effective 

communication, which can both be encompassed by the “coordination” aspect of 

collaboration. But Meier lays focus on the basic communication processes to separate 

them from higher-level coordination. 

 

As per the communication theory by Clark (1996), pupils engaged in a communication 

have to take care of both coordinating the communication content and the communication 

processes through which the content is produced. So at one (the low) level, the speakers 

and listeners have to coordinate between generating utterances and paying attention, 

understanding and giving feedback respectively. At the higher level, there has to be co-

ordination between what speakers say and mean and what the listeners understand and 

their feedback. 

 

Co-ordination on content is based on the assumption that the learners already share 

information or common ground, i.e. they have a set of mutual beliefs, mutual knowledge 

and assumptions. And as for co-ordination of the processes, they have to continually 

maintain pace with their evolving “common ground”. So all the actions are built upon 

sustaining common ground and how it gets aggregated over time during the activity. 

The process of updating the common ground moment by moment is called grounding. 

The learners try to establish a set of mutual beliefs or common ground. Speakers make 
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sure what is being said has been understood and listeners pay attention to understand and 

give positive/negative feedback or ask for clarifications. Different situations, 

environment and the media do affect grounding but in general, the process of contributing 

to a conversation has two phases:  

 

Presentation Phase: “A presents an utterance u for B to consider. He/She does so on the 

assumption that, if B give evidence e or stronger, he can believe that she can understand 

what he means by u.”  (Clark, 1996) 

Acceptance Phase: “B accepts utterance u by giving evidence e that she believes she 

understands what A means by u. She does so on the assumption that once A registers the 

evidence, he will also believe that she understands.” (Clark, 1996) 

 

These phases define the basic flow of communication in a co-located setting and the 

grounding mechanisms are also embedded within these, and could be witnessed in 

multiple hierarchies, which would be beyond the scope of this discussion. 

 

2.2.2 Joint Information Processing 

Meier defined two dimensions for joint information processing: information pooling” 

(eliciting information and giving appropriate explanations) and “reaching consensus” 

(reviewing and assessing information in order to make a joint decision). It requires 

participants to pool their knowledge and process it as a group and reach a joint decision, 

which requires a transactive memory system. 
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The concept of transactivity arises from the famous theoretical model of transactive 

memory systems given by Wegner et al. (1987) who states that transactive memory 

system aids the pooling of information. Wegner et al. (1987) talks about how individual 

minds can come together to form larger, organized and social shared memory systems or 

group mind. The development of an effective transactive memory system amongst a 

group of learners involved continuous communication and sharing of each other’s’ 

knowledge bases. Effectively, it's analogous to an external memory drive for a computer 

system where each member is aided by the others’ knowledge base. 

 

Transactivity takes into account the social modes of co-construction of knowledge among 

learners and illustrates the effectiveness and ways in which learners refer to each other’s’ 

contributions. Transactivity, in general is reflected in collaborative settings when learners 

build upon or refer to each other’s contributions and has been found to be positively 

related to knowledge acquisition in collaborative scenarios (Teasley, 1997). 

 

Meier talks about eliciting information, giving explanations and building consensus 

which are basically different social modes of co-construction of knowledge. Elicitation, 

externalization, quick consensus and integration/conflict-oriented consensus building are 

actually defined to be the different degrees of transactivity. Externalization is the process 

of mutually exchanging knowledge previously exclusive to each partner whereas 

elicitation is the process of explicitly seeking out information from your partner through 

questioning. A quick consensus is achieved when both partners accept the other partner’s 
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knowledge at its face value and the conversation proceeds to the next chapter of learning 

whereas integration occurs when a joint decision is reached by disagreement and 

agreements and is the highest mode of co construction.                                                                                   

 

2.3 Data Exploration, Analytics and Mining Collaborative Learning Data 

There has been a large body of research in CSCL, which has been instrumental in 

developing tools and technologies that support collaboration in networked environments 

(Jermann et al., 2000). There also has been an evident shift towards supporting 

collaborative activities in face-to-face classroom environments where teachers orchestrate 

the collaborative activities with the help of computer-supported tools. 

 

The data that can be captured when students interact with these systems and with their 

peers can be put to meaningful use for analysis and supporting the learning process. 

Roberto et al. (2012) classifies 3 primary uses of this students’ data: self-regulation done 

by students, scaffolding, teaching and assessment performed by teachers and deeper 

analysis, design oriented modeling and interventions by researchers. The data could be in 

the form of videos, low-level logged events and students’ actions and even their gestures 

and eye movements that can all be captured automatically and analyzed manually or 

automatically through the use of tools and technologies. From our discussion in section 

2.2, as much as human intervention is required for assessing the deeper level aspects of 

collaboration, the human evaluation is bogged down by the fact that it is time consuming 

and cannot be applied to support and analyze the collaboration process in real time. Moving 

towards the automated analysis of interactions, one approach could be to use the human 
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evaluations as an external reference to define the good and bad collaboration and then 

estimate metrics or find patterns of interactions that can lead to these good or bad models 

of collaboration defined by human analysis. For automatically rating the collaboration 

quality, Kahrimanis et al. (2010), developed an approach wherein he defined automated 

metrics of interaction from the automatically captured logs of students’ data and a model 

was trained using the collaboration quality ratings given by human raters. The data was 

categorized in to events like messages, actions, etc. Some of the automated metrics were 

number of these events, symmetry in these events and so on. 

 

Before even going into specific techniques for the automated analysis of the collaboration 

process, one needs to know about the different approaches and needs behind the design of 

collaborative systems for learning. Soller et al. (2005) distinguishes between two different 

approaches behind designing supportive collaborative learning system. One focuses on 

capturing students’ interaction data and present visualizations that create awareness about 

the process in general. With this approach the students and teachers have to interpret and 

decide on future course to improve the collaborative process. The second approach is about 

creating models on students’ interactions and come up with appropriate guidance to the 

teachers and students to improve the collaborative learning. With this approach the analysis 

of students’ interaction data is usually automatic and done as part of a black box which can 

potentially run some data mining algorithms and present results that inform the design of 

appropriate interventions. 
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It has been proven that data mining and artificial intelligence techniques can be used to 

better understand the social interactions and cognitive processes within groups of students 

that lead to high or low collaboration. (Anaya & Boticario, 2011; D'Mello et al., 2011). 

Over the last two decades there has been significant research going on in this field and I 

will talk about some notable work relevant to this thesis published by noteworthy 

researchers. 

 

Soller et al. (2002) did some initial research work in this area using Hidden-Markov Models 

to identify knowledge sharing instances of students in a collaborative environment. Anaya  

and Boticario (Anaya & Boticario, 2009) applied both supervised and unsupervised 

learning methods to gain insights into the collaboration process using statistical indicators 

of students’ interactions in online collaborative forums as the data source. Researchers have 

also worked on analyzing students’ learning behaviors and strategies in terms of the 

sequential patterns of their actions or learning traces captured by Computer Based Learning 

Environments (Martinez et al., 2013b; Perera et al., 2009). An exploratory data mining 

technique which can be used with sequential events or temporal data is sequential pattern 

mining (Martinez et al., 2013b; Kinnebrew et al., 2012). It finds sequential patterns that 

occur in a dataset with at least a minimal level of frequency called support (Agrawal & 

Srikant, 1995). Reflective of research in this area is Perera’s et al. work (Perera et al., 2009) 

which modeled key aspects of teamwork for groups working with an online project 

management system by proposing alphabets to represent sequential events that can 

distinguish strong from weak groups. Kinnebrew et al. (2012) presented the differential 

sequence mining method (DSM) that automatically compares patterns of students’ 
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interactions for high and low performing learners and also contextualizes the sequence 

mining with information about student’s performance in terms of productive and 

nonproductive behavior over the course of learning interactions. Martinez et al. (Martinez 

et al., 2013 b), whose dataset I will be using in my thesis, also used differential sequence 

mining to characterize the high and low collaborating groups based on the sequences of 

students’ actions captured in the form of raw low-level logged data from the face-to-face 

group concept mapping activity on the interactive tabletops. 

 

The use of alphabets by Perera et al. (2009), Kinnebrew et al. (2012) and Martinez et al. 

(2013a) to represent the sequential actions that can make use of information about 

authorship, interactions between learners apart from the students’ actions is novel. The 

frequent patterns of interactions can then be associated with different behaviors in the 

collaborative process and used to differentiate between high and low collaborative 

groups. 

 

2.4   Concept Mapping and Collaboration 

This section gives a brief about concept mapping and then moves towards collaborative 

concept mapping and how concept maps as learning tools are extremely useful in 

collaborative settings. I have used the high level collaborative concept mapping processes 

extracted from the low level students’ data to analyze the collaborative learning process. 

As we have already discussed about the assessment of collaborative processes in the 

previous sections, it is imperative to discuss different collaborative concept mapping 

processes in light of the different dimensions for assessing the quality of collaboration 
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that have already been discussed and establish associations between these two taking into 

account the theoretical underpinnings. This section will end with a brief discussion about 

the studies on collaborative concept mapping which will set-up a base for understanding 

the work in this thesis. 

 

2.4.1 Collaborative Concept Mapping 

This thesis is completely based upon the work that combines face-to-face collaborative 

learning facilitated through interactive tabletops using concept maps as a learning tool, 

which foster meaningful learning amongst students (Martinez-Maldonado, 2014a). There 

is a large body of research supporting the fact that concept maps are extremely effective 

learning tools (Novak, 1995). A concept map is a type of graphic organizer that uses 

labeled nodes to denote concepts and links to denote relationships among concepts. 

 

Concept mapping as a process or strategy facilitates students to externalize their thoughts 

in a visual form to improve students’ understanding. It allows them to link different ideas, 

consider multiple perspectives and organize them in a structured way (Martinez-

Maldonado, 2014a). While collaborating on a concept mapping activity, students indulge 

in joint construction of knowledge by exchanging information and negotiating meaning 

(Cañas & Novak, 2008; van boxtel et al., 2000). Thus, concept maps can serve as 

vehicles of discussion and negotiation of meaning between students (Novak, 1995). They 

can be used for facilitating collaborative learning, offering students the opportunity to 
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discuss ideas, present knowledge from diverse perspectives, identify misconceptions, 

build consensus and reach a joint decision (Chaka, 2010; Novak, 1995; Stahl, 2006). 

 

As already mentioned, I have used the high level concept mapping processes extracted 

from low level logged data by Martinez et al. (2006). Martinez in one of his work 

proposed an approach to inform the design of visualizations to support the teachers to 

analyze the collaborative concept mapping process. The digital traces of students’ 

interaction over a multi-touch interactive tabletop while engaged in collaborative concept 

mapping activity were exploited for demonstrating the visualizations. For this specific 

work, the low-level meaningful actions were abstracted in to high-level processes 

representing the collaborative concept mapping process. These processes were then used 

to reveal the sequence of interactions in terms of 8 sub-processes identified, namely: 

sharing individual maps, consulting own maps, generation of concepts, organization of 

concepts, generating links, revising and layout of the map and speaking. 

 

2.4.2 Collaborative Concept Mapping and Aspects of Collaboration 

Moving forward to the discussion about collaborative concept mapping processes with 

the backdrop of the dimensions defined my Meier for assessing the quality of 

collaboration; the focus is on explaining how the different processes meaningfully relate 

to the different theories discussed with respect to the different dimensions. These 

associations form the base of automatically assessing the quality of collaboration in terms 

of the patterns of the high-level concept mapping processes. 
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As per the rating scheme of Meier, with respect to the communication aspect of 

collaboration, the focus is assessing the processes involved wherein learners or 

interlocutors converse and are continually engaged in pursuit of reaching a “common 

ground”. Therefore, the two dimensions defined were “dialogue management” (assess 

turn taking and other aspects of the communication process) and “sustaining mutual 

understanding” (assesses the grounding process). 

 

From the communication theory, the presentation phase and acceptance phase were 

discussed as the two phases which constitute the process of contributing to the 

conversation. In relation to the concept mapping processes, we can decipher that effective 

turn-taking in the collaborative activity is reflected by episodes of symmetric talking 

between participants with other interwoven processes. The discourse should also conform 

to the sequence of presentation phase followed by acceptance phase. 

 

The grounding process is also reflected in terms of the presentation and acceptance phase, 

so it’s important to talk about collaborative concept mapping with respect to these phases 

as well. The presentation phase can be represented with processes like “Adding a 

Concept”, “Sharing Individual Map” and “Adding Links” with talking in parallel and the 

acceptance phase should mostly be characterized with “Link” or “Revise” in conjunction 

with talking which represents evidence of grounding and a signal of understanding. For 

effective turn-taking discourse should conform to the sequence of presentation phase 

followed by acceptance phase. 
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Meier defined two dimensions defined for joint information processing: information 

pooling” (eliciting information and giving appropriate explanations) and “reaching 

consensus” (reviewing and assessing information to come to a mutual agreement) and we 

discussed earlier how the concept of transactivity relates to these two dimensions. 

Transactivity is reflected in collaborative concept mapping when learners build upon or 

refer to each other’s’ contributions. More specifically transactivity is evident in the 

collaborative concept mapping activity when learners consult each other’s’ individual 

maps, interact with/co-manipulate each other’s’ objects (concepts, links) and add links to 

their partners’ concepts. Martinez et al. (2012) posits that in a collaborative concept 

mapping activity transactivity can be strictly measured by taking into account the number 

of links added by learners using concepts that were added by different learners in the 

group map. In one of his more recent works, the same author also goes one step further 

and takes into consideration other interactions by learners on each other’s objects. 

  



  27  

 

3.   Research Methodology 

For this thesis, I have used data collected from a study carried out by Roberto Martinez-

Maldonado, a post-doctoral candidate at the University of Sydney using his concept 

mapping system built around interactive tabletops. This chapter will introduce the system 

setup, describe the study and then talk about the dataset that has been used to analyze the 

collaborative learning process. I will also talk about the specific exploratory data mining 

technique, namely sequential pattern mining which can help discover patterns of 

students’ interactions and gain insights into the strategies of small groups of students 

effectively collaborating or even facing problems. 

 

3.1 Study Description 

The study was conducted by Martinez et al. (2014b) and captured traces of students’ 

activity on the multi-touch tabletop. It was aimed at building an interface that can 

automatically analyze and generate visualizations of the face-to-face collaboration and 

concept mapping process to support the teachers and researchers (Lemonier et al., 2014a; 

Martinez et al., 2014b). 60 university students from science background, grouped into 

triads, participated in the study and were asked to build a group concept map on the tabletop 

around a focus question. The focus question was: What types of food should we eat to have 

a balanced diet? Students were asked to read a one-page article based on the Australian 

Dietary Guidelines 2011. The study also had pre and post-individual concept map 

construction phases. Students built an individual map before and after the group concept 

mapping activity using the CmapTools and these individual sessions took around 30 

minutes. For this thesis, I will only focus on the group concept mapping part of the study. 
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 The group activity was partitioned into two phases, namely: 

Brainstorming: Students were asked to create general concepts for the group joint map. 

No propositions were created in this phase. It was advised that 5-10 minutes be spent in 

this phase. 

Linking: Students could add new concepts and add propositions. It was advised to spend 

20-25 minutes in this phase. These phases were clearly distinguished in the study with 

different learning goals and range of student activities. 

 

Martinez et al. (2012b), talks about the synergy between collaborative learning, concept 

mapping and the use of interactive tabletops, which offers to support and analyze the 

process of collaborative knowledge building. To explore this potential he has already built 

a system, Cmate, which can be used for face-to-face collaborative group concept mapping 

activity on interactive multi-touch tabletops. 

 

Cmate (Martinez-Maldonado et al., 2010) is a tabletop application that provides a platform 

to the learners to collaboratively construct knowledge through concept maps. The 

application has a personal menu for each user that can be used to add any new or existing 

concepts by the students. Students can also view a private screenshot of the map, which 

helps them in recalling and sharing their thoughts with their group members. The students 

also have access to their individual maps built earlier, while engaged in the group concept 

mapping activity.  They can add links between concepts and even delete concepts and links. 

In addition to using a new link for propositions, the students can also choose from the top 

six linking words based on their usage history that appears on their personal menu. This 
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data from the tabletop, of students’ actions was logged in the database. For capturing the 

nuances of face-to-face interactions and multiple touches on the tabletop, Martinez built a 

system called Collaid. 

 

Collaid (Martinez-Maldonado et al., 2011), which is a sensing system, was also integrated 

with the tabletop, capturing the verbal and face-to-face interactions between the students. 

The tabletop was a regular 46-inch LCD interactive touch screen with the ability to detect 

multiple touches at a time. Collaid extended this tabletop using overhead sensors to 

associate the touches to the students performing that action. A microphone was also 

attached to the tabletop to record the audio and distinguished sounds coming from different 

locations. The microphones attached with the set-up also logged the instances in the 

database when the students were engaged in conversation.  

 

The available dataset consists of the following:  

1.     Low Level Student Logs: These consist of all the activities, actions performed by all 

the students in the groups while partaking the concept mapping activity on the multi-touch 

interactive tabletop. 

2.     Ratings for High and Low Collaborative Groups: This data consists of the ratings 

for all the groups across the mentioned nine dimensions of collaboration. 

3.     Human Coding of the Sub-Processes: This consists of time-sequenced coding of the 

8 identified sub-processes of the collaborative concept mapping process for each group 

session. 
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Martinez et al. (2014a) identified and analyzed the captured data, which may exist in 

multiple levels. The lowest level of abstraction is the raw data from the logs, which contains 

a record of all the student actions. The low level logged data comprised of evidence of 

speech and all the touch actions, which may or may not change the group collaborative 

product. The meaningful actions extracted out of this raw data, which affect the 

collaborative artifact, were adding, deleting, editing and moving concepts and links and 

accessing individual maps. At the next level, the data is categorized into sub processes of 

concept mapping which is nothing but a sequence of actions of the students, which have a 

semantic meaning. The aim is to be able to automatically generate visualizations of the 

collaborative and concept mapping processes with some level of semantic understanding 

(Lemonier, Martinez-Maldonado, 2014).   

 

Based on the qualitative observations by a human and the sub-processes involved in the 

concept-mapping activity, a coding scheme was defined and each of twenty sessions were 

encoded to reveal the succession of sub-processes. The focus was on understanding the 

meaning of the low level logged data; the content of verbal interactions was not taken into 

account. The 8 events that were defined are (Lemonier, Martinez-Maldonado, 2014): 

1. Sharing individual map: Learners opened their individual concept maps and shared 

them with other students in the group. 

2. Consulting own map: Learners consulted their individual maps. This is supposed to 

occur when students open and read from their maps even if they talk in parallel. When the 

map was opened but the student did not pay attention to it for a long time, the map was 

considered as closed. 



  31  

 

3. Generation of concepts: Students add concepts to the map. This usually happens in the 

first few minutes of the activity and then they still add concepts during the whole activity 

but the frequency is low. 

4. Organization of concepts: Students focus on just spreading concepts on the whole 

surface in order to delete redundancies, create groups or subgroups of concepts, emphasize 

hierarchies, and add missing concepts. 

5. Generation of links: Students focus on creating links choosing for each the direction of 

the arrow and the linking word. Numerous cognitive conflicts may emerge at that stage. 

This sub-process may reflect different levels of understandings and misunderstandings as 

well. 

6. Revising and layout: Students focus on revision of the map, making small changes to 

the map (some generation of new links or editing linking words). This sub-process usually 

emerged as an iterative process with “Generation of links”. When students rearrange 

"aesthetically" links, they see often in the same time new problems in the meanings and 

have to reorganize their ideas. 

7. Adding the main concept(s): Students add the main concept pertaining to the focus 

question. This is usually added at the top or center of the whole map. 

8. Speaking: This is just noting down the time when the students speak. The quality of the 

interaction and the speaker itself is not taken into consideration. 

Table 3.1.1 summarizes the 8 sub-processes identified. 
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Table 3.1.1 Eight Sub-processes of Collaborative Concept Mapping 

Talk:  Oral interactions: closed loop communication, instructions, 

explanation, arguing, reach consensus 

KQ:  Key question: focus on the KQ or/and put it at the top or in the 

center of the map 

Gener Stat:  Generation of statements: add concepts (whatever the method: 

brainstorming, statements extracted from pre-map etc.,) 

Organization 

and Layout: 

Layout, structure statements: clustering, creating hierarchies, 

delete redundancies and add missed concepts. 

Link:  Add links and propositions. 

Revise:  Revising the map in construction (check with pre- concept map, 

simplify, give explanations and interpretations, rearrange links) 

Map own:  Consulting your own individual map. 

Map share:  Sharing your individual map with the group 
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Quantification of the quality of collaboration 

A quantitative assessment of all the sessions on the tabletop was performed to 

differentiate between the quality of collaboration in groups. The analysis method by 

Meier et al. (2007) was used to rate collaboration as high or low based on 9 dimensions. 

The dimensions have already been discussed earlier in the section 2.4. These dimensions 

were assigned a whole number ranging from -2(very bad) to 2 (very good) to obtain an 

aggregated result for all dimensions and categorize the groups. A higher score denotes a 

higher degree of collaboration and vice versa. This gave 10 groups negative scores (-10 

to 0). The other 10 groups had scores from 5 to 19. The averages were -4 (±3) (low 

collaboration) and 13 (±5), (more collaborative), where these differ by at least twice the 

standard deviation in each case. The sessions were tagged by two raters following the 

same rubrics as Meier et al., (2007) and a high inter-rater reliability was achieved 

(Cohen's k = 0.80). This qualitative rating scheme was useful to generate a quantitative 

measure to distinguish the groups. However, it still has the limitation of requiring human 

judgment. Researchers have been making efforts to automate this evaluation by having a 

machine learning model to provide these ratings which would enable teachers to perform 

real-time analysis using information from the ratings (Martinez-Maldonado et al., 2013b). 
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3.2 Research Questions 

The contribution of this thesis is in terms of analyzing the collaborative concept mapping 

process and examining the specific patterns of interactions with respect to the different 

dimensions of assessing the quality of collaboration. All the research questions are 

motivated to leverage theoretical underpinnings to associate and examine patterns of 

interactions of the concept-mapping sub-processes with respect to the different 

dimensions given by Meier et al., (2007) as discussed in the background section. 

 

Q1: Is the differentiation between high and low groups with respect to the 

communication aspect of collaboration characterized by more equality of discussion 

and conformance to presentation and acceptance phase in the frequent patterns of 

interaction? 

 

In terms of the collaborative concept mapping processes, the equality of discussion would 

be reflected if all the learners participate equally in the communication process. Having 

contextual information about different learners participating in the “Talk” process would 

have helped gauge this aspect in a better fashion but that information is not available with 

this data. A secondary indicator could be higher level of “Talk” process with other 

processes occurring in parallel, which would be more likely to involve multiple learners 

in the discussion. As for conformance to the presentation and acceptance phase, Table 

3.2.1 lists the collaborative concept mapping processes associated with both the phases. 

The frequent patterns of interactions should have stream of processes related to 

presentation phase followed by the processes related to acceptance phase. 
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The following table summarizes the collaborative concept mapping processes with 

respect to the phases of communication. 

 

Table 3.2.1 Associations between collaborative concept mapping processes and 

phases of communication 

Phases of 

Communication 

Process 

Collaborative Concept Mapping Processes 

Presentation 

Phase 

Learners could present their knowledge base just by talking or 

sharing their individual maps. Generating propositions in parallel 

to talking would also be indicative of the presentation phase. 

Acceptance Phase Learners can register the evidence of understanding by short 

independent utterances. 

Acceptance phase could also be characterized by revisions in 

parallel to discussions, which would mean some form of 

clarifications or negotiation. 
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Q2: 

Can we differentiate the high and low groups with respect to the joint information 

processing aspect of collaboration based on the level of transactivity observed in the 

frequent patterns? 

 

It has already been established that eliciting information, externalization and reaching 

consensus are all reflected through transactivity in collaborative settings and this is the 

motivation behind the above research question. 

 

As I discussed earlier in the background section, transactivity in collaborative concept 

mapping is reflected when learners build upon or refer to their peers’ contributions. It can 

be measured by taking into considering learners’ interactions with each other’s objects. 

The addition of contextual information about owners of objects with every block of 

processes in the sequence would be useful in this regard and it will be further discussed 

while talking about pre-processing of data to create alphabets. 

 

In terms of the specific collaborative concept mapping processes involved in the patterns 

of processes, the results will be analyzed for both high and low groups with respect to the 

two dimensions defined for the joint information processing aspect and discussed following 

abduction. 
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3.3 Data Mining Approach 

Sequence pattern mining is an exploratory data mining technique, which can used to 

differentiate high and low achieving groups by identifying frequent patterns that 

characterize these groups. This technique has been used keeping in mind that it considers 

the sequential nature of data and not only statistical information about the data. 

 

Kinnebrew et al. (2012) presented the differential sequence mining method (DSM), which 

automatically compares patterns that characterize high and low-achieving learners 

including contextual information of student’s actions. Martinez et al. (2012) also used the 

DSM algorithm with his own alphabets targeting different research questions, which take 

contextual information regarding the verbal interactions and physical actions performed by 

learners. He also considers the authorship of objects while learners perform the specific 

actions. 

 

This thesis uses Martinez’s above work as a baseline and builds upon the idea of application 

of sequence pattern mining to analyze the collaborative concept mapping process with 

respect to the dimensions of assessment of collaboration. 

 

3.3.1 Data Preparation and Pre-Processing 

We discussed in section 3.1 how low-level logged interactions for the collaborative 

concept mapping activity were encoded into high-level sub-processes.  

Refer Table 3.3.1, which summarizes the 8 sub-processes, identified. 
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For all the 20 groups involved in the study, I extracted the initial dataset in the form of 

sequence of these sub-processes. The sub-processes occurring in parallel at the same 

instant were represented as a block of concurrent sub-processes. For instance, a block of 

these sub-processes would be of the form of: {Talk-Revise-Link}, where Talk, Revise 

and Link are the sub-processes, which occur at the same instance and the relative order 

between these doesn’t matter. A sequence of sub-processes for a group can be 

represented by: 

{Talk-Revise-Link} -> {Map share-Link} -> …… 

where the temporal nature of the processes is represented by “->”.  So for {A} -> {B}, 

where “A” and “B” are concurrent sub-processes, “->” implies that B is followed by A in 

the sequence of sub-processes. 

 

There is much more contextual information available which can be useful to gain insights 

about different dimensions for which alphabets can be framed. Alphabets are used to 

encode the sequential concept-mapping sub-processes and make use of this information. 

In addition to having the sub-processes, they can also have information related to 

ownership of objects involved in the concept-mapping processes, turn taking or 

parallelism. 

 

The approach taken for encoding alphabets is based upon the level of abstraction needed 

for specific research questions. As already seen, the research questions pertain to one of 

the aspects of collaboration for which different dimensions are defined. The alphabets are 

also encoded taking selective contextual information, which is based on the theoretical 
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considerations presented for each of the aspect of collaboration. The framing of alphabets 

is inspired by the work of Martinez which was based upon the way alphabets were framed, 

to mine group behaviors by Perera et al. (2009) and the suffix nomenclature introduced by 

Kinnebrew et al. (2012). I will now discuss how each alphabet is associated with a research 

question in order to investigate the relationship between concept mapping processes, 

authorship, turn taking and interaction with others’ objects. 

 

Alphabet 1 for Q1 

Starting with the first research question, as discussed earlier in the background section, 

there is no need for any other information apart from the sub-processes only, which have 

already been discussed in light of the aspects of communication. So the alphabet for this 

is simply represented by the sequences of the sub-processes ({Talk-Revise-Link} -> 

{Map share-Link} ->….) as described earlier. 

 

Alphabet 2 for Q2 

For targeting the second research question we added some contextual information to the 

sequence of processes for all the groups. The authorship information was added with the 

processes in the sequence. By adding this information we would achieve the ability to 

take students’ interactions with each other’s objects that are involved in different 

collaborative concept mapping processes into consideration. More specifically, more 

transactivity would be reflected if the frequent patterns are characterized by higher level 

of interactions with others’ objects accompanied with higher levels of talking in the 

collaborative concept mapping processes (Molinari et al. 2008; Stahl, 2013). The two 
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keywords, OSAME and ODIFF were used to convey if only the owner of the object is 

involved during the process or if different learners are participating respectively. 

 

3.3.2 The Algorithm: Differential Sequence Mining 

Having encoded the students’ actions into sequences of concept mapping sub-processes 

and framed alphabets targeting specific research questions, I got 6 datasets of 20 

sequences each. There were 20 groups and these sequences were either for high or low 

collaborating groups for the 4 dimensions I was analyzing. I applied the differential 

sequence-mining algorithm (DSM) given by Kinnebrew (2012) for all the 4 dimensions 

to get patterns of the processes that can differentiate high vs. low datasets for each 

dimension. 

 

A contiguous (consecutive or non-consecutive) subset of a sequence of events that is 

ordered qualifies as a frequent pattern if it meets a support factor. This support factor is 

called the sequence support (s-support), which gives the number of sequences in which 

the pattern occurs irrespective of the number of times it occurs within each group 

sequence. Following Martinez’s et al. (2013) and Kinnebrew’s el al. (2012) work I set the 

s-support threshold to .5 to consider patterns present in at least half of the high or low 

groups. The DSM algorithm also captures the frequency of the patterns within each 

group’s sequence for the dataset without overlaps and it is called the instance-support (i-

support). The i-support of a pattern for a group of sequences is given by the mean of the 

i-support values of that pattern across all the sequences for the high or low group. For 

pattern matching, again following previous work, I used 1 as the maximum error gap to 
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allow patterns with the sub-sequences having an edit distance 1 or 0, which means at 

most one different sub-process is allowed in the sub-sequence. A set of frequent patterns, 

meeting the threshold s-support value for each dataset is returned as an output of the 

DSM. These patterns differentiate high collaborative groups from the low collaborative 

ones across the four dimensions of collaboration. 
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4.     Results and Discussion 

4.1 Statistical Analysis 

To start the data analysis for this thesis, a preliminary statistical analysis was conducted 

to extract any relations that may exist between collaborative level of groups (high/low for 

different dimensions), and the aggregate counts of the sub processes in the students’ 

interaction sequences. The aim of this activity was to examine if the aggregated counts of 

the sub processes in the group activity patterns had any effect on the group collaboration 

score for the different dimensions. To do this, first I aggregated the count of the sub 

processes in the sequences for each of the four dimensions for every group. For each 

group, the percentage of counts of the sub processes in their group sequences was 

calculated. These were then grouped together into high and low collaboration groups, and 

the average for every sub process across all groups was calculated. The results are shown 

in the tables from 4.1.1 to 4.1.4 below. Table 4.1.1 shows that for “sustaining mutual 

understanding”, the sub-process “Talk” accounted for 42.90% of the total sub-processes 

for the high groups whereas for low collaborative groups it only accounted for 34.90%. 

The total aggregated count of all the sub-processes for the high groups was 1928 and for 

the low groups it was 1200 which gives the total for all the groups to be 3128.We can 

look at other sub-processes for different dimensions in a similar fashion.   

Overall the averages and standard deviations just give a sense how the counts of sub-

processes vary across dimensions for high and low groups. We need further statistical 

tests to determine if meaningful differences exist between the high and low collaborative 

groups based on these aggregated counts. 
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Table 4.1.1 Average values of Sub-Processes for Sustaining Mutual Understanding 

Sustaining 

Mutual 

Understanding 

High Low 

Average 
Std. 

Dev. 
Average 

Std. 

Dev. 

Talk 42.90% 7.60% 34.90% 7.60% 

KC 0.90% 0.50% 0.90% 0.50% 

Map share 6.20% 5.90% 5.00% 3.70% 

Map own 12.90% 11.30% 12.90% 9.00% 

Link 14.90% 3.80% 20.70% 7.40% 

Gener stat 7.90% 5.10% 8.20% 4.50% 

Organiz stat 4.50% 1.90% 5.40% 4.30% 

Revise 9.80% 4.30% 11.90% 4.40% 

 

Table 4.1.2 Average values of Sub-Processes for Dialogue Management 

Dialogue 

Management 

High Low 

Average 
Std. 

Dev. 
Average 

Std. 

Dev. 

Talk 46.78% 7.90% 25.92% 9.40% 

KC 1.14% 0.50% 0.50% 0.40% 

Map share 7.16% 5.10% 5.00% 6.00% 

Map own 16.44% 11.20% 10.08% 9.60% 

Link 18.10% 5.20% 14.58% 7.80% 

Gener stat 8.77% 5.00% 6.50% 4.90% 

Organiz stat 5.45% 2.20% 4.00% 4.70% 

Revise 11.51% 4.50% 8.75% 4.70% 
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4.1.3 Average values of Sub-Processes for Joint Information Pooling 

Brainstorming 

Joint Information 

Pooling 

High Low 

Average 
Std 

Dev. 
Average 

Std 

dev. 

Talk 31.80% 6.60% 19.20% 17.80% 

KC 0.70% 0.70% 0.70% 0.00% 

OSAME 20.20% 4.10% 12.20% 11.40% 

Map share 6.10% 6.80% 6.50% 0.50% 

Map own 5.70% 7.50% 6.60% 1.30% 

Gener stat 13.80% 9.20% 11.50% 3.30% 

Organiz stat 13.40% 9.70% 11.50% 2.70% 

 

Link 

Joint Information 

Pooling 

High Low 

Average 
Std 

Dev. 
Average 

Std 

Dev. 

Talk 25.90% 7.30% 22.90% 9.90% 

KC 0.10% 0.10% 0.10% 0.20% 

OSAME 17.60% 2.60% 19.30% 2.70% 

Map share 2.70% 3.30% 0.90% 1.40% 

Map own 7.70% 8.90% 5.20% 4.70% 

Link 18.00% 6.40% 21.50% 8.80% 

ODIFF 13.00% 2.30% 14.70% 2.30% 

Gener stat 0.70% 0.80% 1.00% 0.90% 

Organiz stat 0.80% 1.30% 1.80% 3.80% 

Revise 13.70% 4.90% 12.60% 6.30% 
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4.1.4 Average values of Sub-Processes for Reaching Consensus 

Brainstorming 

Reaching 

Consensus 

High Low 

Average 
Std 

Dev. 
Average 

Std 

Dev. 

Talk 30.00% 4.00% 15.60% 10.70% 

KC 1.00% 1.00% 0.60% 0.30% 

OSAME 19.00% 4.00% 10.10% 6.50% 

Map share 7.00% 7.00% 5.70% 2.90% 

Map own 6.00% 8.00% 5.90% 2.80% 

ODIFF 9.00% 4.00% 7.30% 3.50% 

Gener stat 14.00% 10.00% 9.60% 4.20% 

Organiz 

stat 
14.00% 10.00% 11.70% 3.00% 

 

Linking 

Reaching 

Consensus 

High   Low   

Average 
Std 

Dev. 
Average 

Std 

Dev. 

Talk 29.00% 4.00% 21.00% 9.00% 

KC 0.00% 0.00% 0.00% 0.00% 

OSAME 17.00% 2.00% 19.00% 3.00% 

Map share 2.00% 2.00% 2.00% 4.00% 

Map own 7.00% 8.00% 7.00% 8.00% 

Link 17.00% 4.00% 21.00% 9.00% 

ODIFF 12.00% 2.00% 15.00% 2.00% 

Gener stat 1.00% 1.00% 1.00% 1.00% 

Organiz stat 0.00% 0.00% 2.00% 3.00% 

Revise 14.00% 5.00% 12.00% 5.00% 

 

Next I performed a regression analysis for the 4 dimensions, using the counts of sub 

processes as independent variables and the collaboration category (high or low) as 

dependent variable using SPSS tool. This analysis gives a “B” value (or slope), which is a 

measure of how the sub-process count and collaboration levels are related. “B” gives the 
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magnitude of the change that will take place in the dependent variable per unit change in 

an independent variable with all other variables as constant. A positive “B” signifies a 

positive relation and vice versa. However, this merely gives the closest representation of 

the two variables on a straight line. It may or may not be an actual predictor of the 

observed data. I examined whether there was a significant relationship between the 

collaboration scores and the aggregated count of sub-processes using a stepwise 

regression. Using the forward-LR method, each variable was entered into the process if 

its contribution to the score statistic was more than 0.05, which is a default entrance 

criterion for this model. Therefore, variables with the most statistical significance were 

added first, followed by the second and so on, till they did not have a significant impact 

on the model fit. This stepwise technique starts with step 0, which creates a model only 

using an intercept. It then adds the statistically significant variables, one at a time, to the 

regression using the entry probability as previously described. As seen in Table 4.1.5, for 

sustaining mutual understanding dimension, “link” was the only sub process that satisfies 

the criteria to enter step 1. The “B” value in this table is negative, which implies that with 

an increase in count of “link”, the probability of collaboration reduces. The extremely 

low “sig.” value reaffirms that this parameter is statistically significant in the regression 

equation. However, since a stepwise model already takes into account the score statistics 

while entering a variable into the equation, the “sig.” value is irrelevant and is not used 

further to draw any conclusions. There were no other independent variables that were 

statistically significant and thus the regression finished at step 1. From step 1(Table 4.1.6) 

it could be seen that the adjusted R square value for this regression was 0.398. The R 

square value is a measure of how well the predicted model from a regression fits the 
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actual data. The higher the R square score, the better is the accuracy of predictions. Thus 

if a model were built using the regression values for a low r-square model, the accuracy 

of predictions from the model would also be low. As we can see from Table 4.1.6, this is 

relatively low which also implies that this model built upon the count of the sub-

processes plotted against the collaboration score is not an effective model to study and 

predict group collaboration. 

Table 4.1.5 Regression Results for Sustaining Mutual Understanding 

 

Variables in the Equation 

  B Sig. 

Step 1a Link -.131 .028 

Constant 4.243 .018 

a. Variable(s) entered on step 1: Link. 

 

 

Table 4.1.6 Link vs. Score Regression Model Summary- Sustaining Mutual 

Understanding  

Model Summary 

Step 

-2 Log 

likelihood 

Cox & 

Snell R 

Square 

Nagelkerke 

R Square 

1 19.075a .289 .398 

a. Estimation terminated at iteration number 

5 because parameter estimates changed by 

less than .001. 

 

 

Similar regressions were performed for “Dialogue Management”, and “Joint Information 

Pooling” and “Reaching Consensus” in brainstorming and linking phases. For all of these 

activities, the regression terminated at step 0. This implies that none of the independent 

variables were statistically significant to enable creation of a prediction model.  
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From the above analysis we can conclude that these aggregated statistical counts for each 

of the sub-processes were not enough to create a predictive model of high or low 

collaboration levels. Moreover one more limitation is that these counts are aggregated at 

the end of the session, which makes it unsuitable for a real time analysis as well. These 

averages and counts do not exploit the sequential nature of the interactions and thus in the 

next section, I present an approach which can be used to explore patterns of interactions 

that can help distinguish high vs. low collaborative groups. 
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4.2 Sequential Pattern Mining Results 

I executed DSM algorithm for the four dimensions of collaboration with different 

alphabets as discussed and only selected the s-frequent patterns comprising at least two 

blocks of processes ({Talk-Link-} -> {Talk-Revise-}...) and having a confidence factor 

of at least 90% (p value<=0.1) for i-support (instance support) values that distinguish 

high from low groups for the different dimensions of collaboration. The p values here are 

not used as a confidence factor to differentiate between low and high groups. It signifies 

an important measure to limit patterns that are most likely to be used differentially in the 

groups. The top differential patterns were chosen based on comparing the mean i-support 

values between the high and the low groups for the frequent patterns (diff= i-value 

(high)- i-value (low)). The frequent patterns with the maximum “diff” value were 

selected as the top patterns, which provides a useful heuristic for most likely differential 

patterns. 

 

For the first research question, targeting the first two dimensions of collaboration, the 

dataset wasn’t partitioned into the brainstorming and linking phases. The reason behind 

taking this decision was that these two dimensions are concerned with mutual knowledge 

sharing and turn taking during the collaborative process, for which it makes more sense 

to consider the dataset collectively for both the phases. The differentiation for these two 

dimensions is not intuitive across the two phases as the brainstorming phase is marked by 

only addition of most general concepts. 
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 For the next research question, which seeks to address the “information pooling” and 

“reaching consensus” dimensions of collaboration, the analysis of the frequent sequences 

was carried out separately for the brainstorming and linking phase of the collaborative 

concept mapping activity. 

  

Q1: Is the differentiation between high vs. low groups with respect to the communication 

aspect of collaboration characterized by more equality of discussion and conformance to 

presentation and acceptance phase in the frequent patterns of interaction? 

 

After applying the DSM algorithm on Alphabet 1 for the first two dimensions of 

collaboration, I got the frequent patterns given in Table 4.2.1 for both high and low 

collaborative groups.  I obtained 30 differential patterns for sustaining mutual 

understanding and 22 for dialogue management. The top-3 most differential patterns that 

were found in each subset for each dimension are shown in the table. As discussed in 

section 3.2 and as expected, the frequent patterns for the high groups for both “Sustaining 

Mutual Understanding” and “Dialogue Management” are marked by higher percentage of 

“Talk” process occurring in parallel with other sub-processes. The frequent patterns for 

high groups have “Talk” for each process block in the sequence. In contrast, the low 

groups for these two dimensions have processes occurring without any speech in parallel 

in some of the sequences. 
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Table 4.2.1 Top Sequential Patterns for Sustaining Mutual Understanding for high 

and low groups 

Pattern 

I 

Freq 

(|Hi-

Low|) 

S-

support 

Diff 

(|Hi-

Low|) 

S-

frequent 

group 

P-

value 

I-

Support 

(Hi) 

I-

Support 

(Low) 

{Talk-Map share-} -> {Talk-

} -> {Talk-} 
1.208 0.53 High 0.02 1.92 0.71 

{Talk-} -> {Talk-Revise-} -

> {Talk-} -> {Talk-} 
1.24 0.53 High 0.01 1.38 0.14 

{Talk-Link-} -> {Talk-} -> 

{Talk-Revise-} -> {Talk-} 
0.85 0.53 High 0.02 1 0.14 

{Talk-Link-Map own-} -> 

{Talk-Link-Map share-} 
0.71 0.71 Low 0.008 0 0.71 

{Link-Revise-} -> {Link-} 2.06 0.57 Low 0.04 0.08 2.14 

{Talk-Link-Map own-} -> 

{Talk-Link-} -> {Link-} 
0.76 0.57 Low 0.04 0.23 1 
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Table 4.2.2 Top Sequential Patterns for Dialogue Management for high and low 

groups 

Pattern 

I-

Freq 

(|Hi-

Low|) 

S-Support 

Diff(|High-

low|) 

S-

frequent 

Group 

P- 

value 

I-

Support(Hi) 

I-

Support 

(Low) 

{Talk-Revise-} -> 

{Talk-Map share-} 
0.71 0.5 High 0.006 0.71 0 

{Talk-} -> {Talk-

Revise-} -> {Talk-

Link-Revise-} 

0.83 0.5 High  . 019 1 0.17 

{Talk-Map share-} -

> {Talk-} -> {Talk-

} 

1.19 0.5 High 0.02 1.86 0.67 

{Talk-Revise-} -> 

{Talk-Link-} -> 

{Talk-} 

1.35 0.64 High 0.028 1.86 0.5 

{Talk-Link-Revise-} 

-> {Link-} -> {Link-

} 

0.5 0.5 Low 0.07 0 0.5 

{Talk-Link-Revise-} 

-> {Link-Revise-} -

> {Link-} 

0.5 0.5 Low 0.07 0 0.5 

{Talk-} -> {Talk-

Revise-} -> {Talk-

Gener stat-Revise-} 

0.5 0.5 Low 0.07 0 0.5 

  

For both the dimensions the high groups conform to the processes in the presentation 

phase followed by the acceptance phase (refer Table 3.2.1). For instance, the frequent 

patterns {Talk-Map share-} -> {Talk-} -> {Talk-}, {Talk-} -> {Talk-Revise-} -> {Talk-} -

> {Talk-}, {Talk-Link-} -> {Talk-} -> {Talk-Revise-} -> {Talk-}, {Talk-} -> {Talk-Revise-

} -> {Talk-Link-Revise} reflect the presentation phase with processes like “Talk”, “Map 

share”, “Link” occurring independently or concurrently, followed by the acceptance 

phase marked by “Talk” representing short utterances of approval or “Revise” and “Talk” 
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representing some clarifications or negotiation. Delving in one more layer deeper into the 

specific dimensions of collaboration and comparing the frequent patterns that 

characterize them, it is evident that for “Sustaining Mutual Understanding” the high 

groups have all the frequent sequences with well-defined presentation phases which start 

with processes “Talk”, “Map share”, “Link” followed by an acceptance phase with 

independent “Talk” process reflecting evidence of approvals with short utterances. On the 

other hand, the high groups for “Dialogue Management” have some frequent sequences 

having “Talk” and “Revise” in the beginning which is then followed by “Talk”, “Link”, 

“Revise” or “Map share” (independently or concurrently). This represents a discussion 

ensuing as part of a justification or clarifications in which different learners indulge in 

making the point clear, possibly taking turns to present different point of views. 

For the low groups, the frequent patterns do not seem to conform to the order of 

presentation phase followed by the acceptance phase. For instance, the frequent pattern 

“{Link-Revise-} -> {Link}” for the “Sustaining Mutual Understanding” dimension 

doesn’t comprise of processes which reflect any discussion or actions pertaining to 

presentation and then acceptance phases. Similarly most of the frequent patterns for both 

the groups are in some cases marked by a presentation phase but it is followed by 

independent “Link” process in most of the cases which doesn’t reflect an acceptance 

phase and as a whole, the patterns don’t reflect mutual knowledge building or turn taking. 

In terms of the s-support and i-support values, it has already been discussed that the s-

support values indicate the percentage of the high groups (or low groups) the particular 

sequence occurs in. For instance, we have 13 high groups and 7 low groups for the 

dimension “Sustaining mutual understanding”. Then a score of .53 for the frequent 



  54  

 

pattern “{Talk-Map share-} -> {Talk-} -> {Talk-}” means that it occurs in 7 of the 13 

high groups. Similarly these numbers can be easily interpreted for all the other frequent 

patterns. For the i-support values, which signify how frequently the patterns occur within 

the groups, the i-support (high) value 0.71 for the frequent pattern “{Talk-Revise-} -> 

{Talk-Map share-}” ( refer Table 4.2.2) means that it occurs 0.71 times within all the 

high groups on an average. The i-support (low) value 0.00 for the same pattern indicates 

that it doesn’t occur at all in those 7 low groups for the specified dimension. The i-

support (high-low) scores, which we have used for getting the top-k differential patterns, 

indicate the magnitude of differentiation with which these patterns occur in high vs. low 

groups. 

 

Frequent patterns, that characterize a high or a low group and don’t occur at all in the 

other group, can be more meaningful. It is also interesting to note that the i-support 

values for patterns that characterize the high or low groups are not that high. For 

“sustaining mutual understanding” the values lie in the range 1.00 – 1.92 for the high 

groups and between .71-2.04 for the low groups. For “dialogue management” it lies 

between .71 – 1.86 for high groups and .50 for all the low groups. This indicates that 

there would be 1-2 episodes of around 2-5 seconds each of these frequent sequences (for 

low and high groups) in the whole group activity. These might be just because of the 

limitation of the dataset, as it is too small but we can still draw one general inferences 

that it is important to consider more number of frequent patterns for both the high and 

low groups to get a clear differentiation between the two in terms of these interaction 

patterns. 
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Q2: Can we differentiate the high and low groups with respect to the joint information 

processing aspect of collaboration based on the level of transactivity observed in the 

frequent patterns? 

 

After running DSM on the sequence of processes with authorship information (Alphabet 

2), I obtained the frequent patterns given in Table 4.2.3 and Table 4.2.4 for both 

“information pooling” and “reaching consensus” (brainstorming and linking phase), for 

high and low collaborative groups. I obtained 47 differential patterns for information 

pooling dimension and 218 differential patterns for reaching consensus. I present the top 

3-4 most differential patterns. As expected, the brainstorming phase is characterized by 

majority of the interactions on own objects rather than other learners’ objects for both 

high and low collaborative groups across both dimensions (information pooling and 

reaching consensus). This can be attributed to the fact that during the brainstorming 

phase, learners are mostly involved in adding the concepts independently and do not 

interact with each other’s objects.  Interestingly, the high and low collaborative groups 

are differentiated in terms of the processes in the frequent patterns with respect to the 

joint information-pooling dimension. The high collaborative groups are more focused 

towards adding propositions to the group map while the low collaborative groups tend 

more towards organizing the map. For the reaching consensus dimension, the results 

obtained weren’t significant and meaningful. 
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Table 4.2.3 Top Sequential Patterns for Joint Information Pooling for high and low 

groups 

  Pattern 

I-

Freq 

(|Hi-

Low

|) 

S-

Suppo

rt Diff 

(|High

-low|) 

S-

freq

uen

t 

Gro

up 

P- 

value 

I-

Supp

ort 

(Hi) 

I-

Supp

ort 

(Low

) 

B
ra

in
st

o
rm

in
g

 

{Talk-Gener stat-OSAME-} -> 

{Talk-Gener stat-OSAME-} 
0.9 0.5 Hi 0.03 1.07 0.17 

{Talk-Gener stat-Map share-

OSAME-} 
1.5 0.5 Hi 0.02 1.5 0 

{Talk-Gener stat-OSAME-} -> 

{Talk-Gener stat-OSAME-} -> 

{Talk-} 

1.43 0.5 Hi 0.07 1.93 0.5 

{Talk-Gener stat-Map own-

OSAME-} -> {Talk-Gener stat-

Organiz stat-Map own-OSAME-} 

0.83 -0.5 Lo 0.09 0 0.83 

{Gener stat-Organiz stat-

OSAME-} 
1.38 -0.7 Lo 0.08 0.29 1.67 

{Gener stat-Organiz stat-Map 

own-OSAME-} 
0.5 -0.5 Lo 0.08 0 0.5 

L
in

k
in

g
 

{Talk-Revise-Map own-OSAME-

} -> {Talk-Revise-Map own-

ODIFF-} 

3.66 0.64 Hi 0.01 3.86 0.2 

{Talk-Revise-Map own-OSAME-

} -> {Talk-Revise-Map own-

ODIFF-} -> {Talk-Revise-Map 

own-OSAME-} 

2.07 0.64 Hi 0.00 2.07 0 

{Talk-Revise-Map own-ODIFF-} 

-> {Talk-Revise-Map own-

OSAME-} 

3.53 0.64 Hi 0.01 3.93 0.4 

{Link-Revise-ODIFF-} -> {Link-

Revise-OSAME-} -> {Link-

OSAME-} 

0.8 -0.6 Lo 0.10 0 0.8 

{Link-Revise-OSAME-} -> 

{Link-Revise-ODIFF-} -> {Link-

OSAME-} 

0.6 -0.6 Lo 0.07 0 0.6 

{Link-Revise-ODIFF-} -> {Link-

OSAME-} -> {Link-OSAME-} 
0.8 -0.6 Lo 0.10 0 0.8 
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Table 4.2.4 Top Sequential Patterns for Reaching Consensus for high and low 

groups 

  

Pattern 

I-

Freq 

(|Hi-

Low|

) 

S-

Support 

Diff(|Hi

gh-low|) 

S-

frequen

t Group 

P- 

value 

I-

Supp

ort(Hi

) 

I-

Supp

ort 

(Low) 

B
ra

in
st

o
rm

in
g
 

       

{Talk-} -> {Talk-Gener 

stat-Map share-OSAME-

} 

0.4 0.5 Hi 
0.0577

3 

0.5 0.1 

L
in

k
in

g
 

{Talk-Revise-ODIFF-} -

> {Talk-Revise-

OSAME-} -> {Talk-

Link-OSAME-} -> 

{Talk-} 

0.767 0.800 Hi 0.0167 

1.10 0.33 

{Talk-Revise-ODIFF-} -

> {Talk-} -> {Talk-} 
1.589 0.500 Hi 0.0458 

2.70 1.11 

{Talk-Revise-ODIFF-} -

> {Talk-Revise-

OSAME-} -> {Talk-} -> 

{Talk-} 

1.600 0.500 Hi 0.0392 

2.60 1.00 

{Link-OSAME-} -> 

{Link-ODIFF-} -> 

{Talk-Link-OSAME-} 

0.900 0.556 Lo 0.0441 

0.10 1.00 

{Link-OSAME-} -> 

{Link-Map own-

OSAME-} 

0.456 0.556 Lo 0.0424 

0.10 0.56 

 

Moving to the linking phase, for the high collaborative groups, as expected, students 

interact more with others’ object and also communicate more while engaged in 

interacting with other learners’ objects for both the dimensions. The low collaborative 

groups on the other hand have lower interactions involving different owners of objects 

and almost negligible communication. As for the collaborative concept mapping 

processes, the high and low collaborative groups have interesting trends in the frequent 

patterns that characterize the joint information-pooling dimension. The high collaborative 
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groups are more inclined towards the revision of the group map and individual students 

consult their own maps while talking to each other and revising the map. As already 

pointed out students do interact with each other’s objects while engaged in the revision 

activity. The low collaborative groups tend more towards adding links to the group map 

and revising the group map but students communicate less and act more on their own 

objects. For the “reaching consensus” dimension, the high groups are more focused 

towards revising their group map and they also interact with each other’s’ objects during 

this revision process. In comparison to the “joint information pooling” dimension, the 

high groups for this dimension do not consult their map and the frequent patterns are 

marked by independent “Talk” process towards the end of the sequence. This behavior 

can be explained by the fact that for information pooling, students have to share or refer 

to their knowledge base and then pool the shared or unshared information they possess. 

The independent “Talk” process in the end of sequence of frequent patterns for “reaching 

consensus” marks the joint decision making that students achieve by communicating with 

each other. For the low collaborative groups, the trends are quite similar as for the 

“information pooling” dimension, adding links to the group map is more prominent, 

students communicate less and act more on their own objects. 
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5. Conclusion and Future Work 

This thesis was aimed at exploring whether we can associate frequent patterns of 

students’ interactions with the dimensions of assessing the quality of collaboration. My 

work was based upon the study conducted by Martinez et al. (2013a) and dataset from 

that study. The students’ interactions were represented in terms of sequences of high-

level concept mapping processes encoded for each of the 20 groups of the study. I used 

an exploratory data mining technique called the sequence pattern mining to extract 

frequent patterns that can characterize strong and weak collaborative groups across 

dimensions (first four) of collaboration quality defined by Meier. The results although 

preliminary, were effective in addressing the research questions that were concerned with 

characterizing the different groups across the dimension of collaboration. 

 

First up, the statistical analysis revealed that there were some differences in high vs. low 

groups for the four dimensions in terms of the aggregated averages of the concept 

mapping sub-processes. These differences were not meaningful considering the standard 

deviation values. I also performed regression analysis for the four dimensions for high 

and low collaboration groups to find if the aggregated counts of the sub-processes are 

predictive of the high vs. low collaboration. The regression results were not significant 

for any of the dimension. Moreover these statistical aggregations of the discrete 

events/interactions cannot be effectively used to evaluate collaborative learning in 

general and to overcome this limitation, I used differential sequence mining (DSM) 

which takes into account the sequential nature of these interactions. 
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The analysis was based on constructing alphabets for targeting each research question 

and preparing the data to reveal the succession of the sub-processes for all the groups. 

The alphabets were designed to capture the interactions of students with each other’s 

objects, parallelism along with the concept mapping sub-processes in the patterns.  

 

The frequent patterns for the “sustaining mutual understanding” and “dialogue 

management” dimensions showed tendency of the better groups to talk more as compared 

to the weaker ones. The high groups for both the dimensions conformed to presentation 

phase followed by the acceptance phase in terms of the concept mapping sub-processes. 

The frequent sequence of concept mapping sub-processes for “sustaining mutual 

understanding” (for high groups) represented establishing common ground by students. 

For the “dialogue management” dimension patterns of sub-processes representing turn 

taking, clarifications and justifications were evident. 

 

For the “joint information pooling” and “reaching consensus’ dimension, I used Alphabet 

2, which had the authorship information of the objects and also partitioned the dataset 

into the brainstorming and linking phase. The frequent patterns of the sub-processes 

differentiated the high vs. low groups for both these dimensions as well. For the 

brainstorming phase, the interactions were majorly with own objects and for “joint 

information pooling”, the high groups were mostly involved with generating propositions 

where the low groups were more inclined towards organizing concepts in the group map. 

The results obtained for “reaching consensus” weren’t significant. For the linking phase, 
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the high groups for both the dimensions interacted with each other’s’ objects more and 

the low groups didn’t. For the “joint information pooling”, the high groups were 

characterized by processes representing accessing individual knowledge bases and 

pooling information together. These processes were missing for the low groups. For the 

“reaching consensus’ dimension the frequent patterns for high groups evidently 

represented joint decision making.  

 

The frequent patterns of the high level concept mapping sub-processes obtained are 

useful for multiple reasons. These patterns represent students’ interactions in terms of the 

collaborative concept mapping processes, which in itself is a novel formulation. The 

associations of these frequent patterns with the four dimensions of assessing the 

collaboration quality takes the work beyond what has been done before and presents 

students’ collaborative strategies at a more granular level. It has the potential to enable 

teachers to orchestrate more efficiently, the collaborative processes of multiple groups in 

classrooms. The different alphabets constructed for targeting the two research questions 

by adding selective contextual information builds upon previous work and provides 

evidence that there is a need to design these alphabets carefully in order to get precise 

information and insights for different scenarios. This work can also serve as a platform 

for providing support to monitor the collaborative process for the students and teachers 

by creating real time visualizations of the group activities and even assist teachers to 

provide appropriate feedback and interventions to the groups at the right moments. For 

instance, these frequent patterns found for the low and high groups for the four 

dimensions can be used as a benchmark to compare interaction patterns of other groups. 
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Teachers can be informed of the patterns occurring in real time for the low and high 

groups for them to intervene with particular groups to provide help. One future step for 

this work is also analyzing the frequent patterns for the high and low groups in the 

recorded videos and gain awareness about the different strategies followed by different 

groups. This high level information about the process and strategies followed by high and 

low collaborating groups can be associated with respective frequent patterns and 

presented to the teachers.  
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