
Molecular Models for Conductance in Junctions and Electrochemical Electron

Transfer

by

Shobeir Khezr Seddigh Mazinani

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the
Graduate Supervisory Committee:

Vladimiro Mujica, Co-Chair
Tarakeshwar Pilarisetty, Co-Chair

Charles A. Angell
Anne K. Jones

ARIZONA STATE UNIVERSITY

December 2015



ABSTRACT

This thesis develops molecular models for electron transport in molecular junctions

and intra-molecular electron transfer. The goal is to identify molecular descriptors

that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular

conductance is examined. A correlation emerges whereby the measured conductance

of a tunneling junction decreases as a function of the calculated molecular polarizabil-

ity for several systems, a result consistent with the idea of a molecule as a polarizable

dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equa-

tion to the molecular domain and Simmon’s tunneling model is developed to explain

this correlation. Despite the simplicity of the theory, it paves the way for further

experimental, conceptual and theoretical developments in the use of molecular de-

scriptors to describe both conductance and electron transfer.

Second, the conductance of several biologically relevant, weakly bonded, hydrogen-

bonded systems is systematically investigated. While there is no correlation between

hydrogen bond strength and conductance, the results indicate a relation between the

conductance and atomic polarizability of the hydrogen bond acceptor atom. The

relevance of these results to electron transfer in biological systems is discussed.

Hydrogen production and oxidation using catalysts inspired by hydrogenases pro-

vides a more sustainable alternative to the use of precious metals. To understand

electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of

hydrogenases, high-level density functional theory calculations are described in the

fourth chapter. The results, based on a detailed analysis of the energies, charges

and molecular orbitals of these metal complexes, indicate the importance of geomet-

ric constraints imposed by the ligand on molecular properties such as acidity and

electrocatalytic activity. Based on model calculations of several intermediates in the
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catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which

very well agrees with the observed experimental results, is proffered.

Future work related to this thesis may involve the systematic analysis of chemical

reactivity in constrained geometries, a subject of importance in the context of enzy-

matic activity. Another, more intriguing direction is related to the fundamental issue

of reformulating Marcus theory in terms of the molecular dielectric response function.
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Chapter 1

INTRODUCTION

A long-standing subject of substantial importance for both experimentalists and

theorists is the understanding of how charge is transferred across molecules or in-

terfaces. [69, 122, 149, 150, 188] While this seemingly simple process is of utmost

importance in biology, chemistry, and material science, it is interesting to note that it

does not involve bond breaking or bond formation. While charge transfer can involve

both electron and hole transport, the latter is not considered in this dissertation.

Intramolecular electron transfer is a chemical reaction involving a quantum tunneling

process whereby an electron is transferred from a donor to an acceptor site either

through chemical bonds or through space under the influence of a free energy gradi-

ent. Electron transport involves the passage of current when a molecule is connected

in a circuit to two electrodes under an external voltage bias. While both processes

involved electronic charge transfer, there are fundamental differences and they are de-

scribed using different theoretical frameworks.[100, 101, 122] Under some simplifying

assumptions it is possible to establish a simple proportionality relationship between

molecular conductance and electron transfer rate.

Electron transfer and transport in biological systems are key to our existence.

They are present in the cellular energy harvesting and storage that is the driving-

force of all our activities. Electron transfer (ET) in photosystems (Figure 1.1), and

mitochondria catalyzes the transformation of redox equivalents into usable ATP and

are two processes that portray the importance of ET in biological systems.[24] Perhaps

one of the most intriguing cases in biological ET is the extracellular respiration that

some microbes have adapted. Through this process, they oxidize the organic matter

1



Figure 1.1: An Illustration of an Electron Transfer Chain in PSI (Pdb Entry 1jb0).

The Electron Transport Rate in the Two Different Branches (a and B) Is Different.

inside the cell and use the electrons to reduce the transition metal oxides that are

rocks!

Inspired by ET in biological systems, chemists have tried to tune the redox proper-

ties of metalloenzymes to produce renewable fuels.[74, 13, 221] In chapter four of this

thesis, I discuss an example of a successful exploitation of an organometallic complex

to produce an exquisite hydrogen production catalyst.

In the realm of material science, electron transfer/transport is the key to the

fabrication of the next generation of diodes, wires, and sensors which can be hooked

to biological systems. In fact the idea of using an organic molecule as a diode was at

2



the onset of the new field of molecular electronics.[10] Against this background, I will

examine several aspects of electron transfer/transport in a diverse variety of systems

throughout this dissertation.

In this chapter, I briefly address the theoretical prerequisites necessary for under-

standing the material discussed in the subsequent chapters. In the next chapter, I

discuss our attempts to find a molecular descriptor that can capture the essence of

electron transport which can be used as a screening parameter in designing molec-

ular wires. We then shift into weak interactions and discuss our results in assess-

ing and studying electron transport (ETP) through biologically-relevant hydrogen-

bonded systems. We also discuss the effect of cations on conductance of a molecular

system through weak interactions (not covalent bonding).

Lastly, I examine our use of computational tools in understanding the mechanism

of several hydrogen-generating catalysts in an electrochemical realm.

1.0.1 Marcus Theory of Electron Transfer

A few expressions have been proposed within the framework of classical, semi-

classical, and quantum mechanics, to explain electron transfer rate.[149, 122, 124, 24]

Here, I briefly review the major expression that is often used, which is based on Mar-

cus’s groundbreaking work.[122]

For the purpose of this thesis, electron transfer is considered to occur between two

ionizable chemical entities. These two groups can be classified as, the donor (D) and

acceptor (A). In other words, the donor is in its reduced state (R) and the acceptor

is oxidized (O).

RO −→ OR
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Let us assume that two different electronic states, a and b, corresponding to the

minima of two different potential energy surfaces associated with different charge

distributions of the same molecule, are the initial and final states of associated with

the electron transfer reaction. States a and b can be described by two charge localized,

diabatic electronic states with energies Ea and Eb. These energies depend on the

nuclear coordinates. A simple idea about these diabatic states is that they could can

be related to resonant structures in valence bond theory, but in reality they correspond

to real charge rearrangements induced by the fluctuations in nuclear polarization of

the environment, typically a solvent. In some cases, e.g. photo-induced ET, these

states depend on the experimental preparation details and they do not correspond to

the Born-Oppenheimer adiabatic states that diagonalize the electronic Hamiltonian.

The electronic Hamiltonian in the diabatic states basis can be cast into the following

form:

H =

Ea Vab

Vba Eb

 (1.1)

where the Vab is the electronic coupling matrix element. The eigenvalues of this

Hamiltonian1.1 are the adiabatic electronic ground state (E0) and charge-transfer

excited states’ energies (E1). These energies are defined as:

E0/1 =
Ea + Eb

2
± 1

2

√
(∆E)2 + 4|Vab|2 (1.2)

where the vertical diabatic energy gap is defined as ∆E = Eb − Ea. While diabatic

states give a more clear representation of the problem, adiabatic states are more

readily used and obtained from electronic structure calculations (Figure 1.2). In fact,

all the density functional theory calculations that are described in the coming chapters

are the adiabatic states, with E0 being the outcome of DFT calculations and E1 can

be calculated within the time-dependent DFT formalism.
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Figure 1.2: “Free Energy Curves for Electron Transfer Between Electron Donor (D)

and Acceptor (a) in a Dielectric Environment (Solution Or Protein). Finite Temper-

ature Fluctuations and Reorganization Of the Dielectric Environment along the Et

Reaction Coordinate Are Indicated by Green Chevrons.” Adapted with Permission

from Reference [24].Copyright(2015) American Chemical Society.

The electronic coupling term, discussed above, is a key parameter. In the small

coupling regime, Vab is small in comparison to the reorganization energy, λ which is the

Gibbs energy expended when the chemical system that has gone through a vertical

electron transfer relaxes to the equilibrium state for the new charge distribution,

the D and A groups to a good approximation save their individual identity. This

corresponds to the non-adiabatic regime. In the adiabatic regime where the coupling

is substantial this causes the system to stay in the lower potential energy curve (Figure

1.2) because of the large gap between the adiabatic ground and excited states.
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In this sense, Marcus theory is corresponds mostly to a non-adiabatic process.

Hence the Landau-Zener theory is applicable to find the probability that the system

goes from state a to state b through the intersection of potential energy curves. This

approximation together with Fermi Golden Rule can be used in the derivation of the

basic equation of Marcus theory for electron transfer rate:

kET =
2π

~
|Vab|2

1√
4πλKbT

exp(−(λ+ ∆G◦)2

4λKbT
) (1.3)

where kET is the rate of ET reaction, Vab is the electronic coupling between the initial

(a) and final (b) states, λ is the reorganization energy, ∆G◦ is the Gibbs free energy

change for the electron transfer reaction, Kb is the Boltzmann constant, and T is the

absolute temperature. Reorganization energy is the energy needed to reorganize the

system (compound + its environment) from state a to the structure of state b in the

absence of charge transfer.

Marcus’s theory follows and enhances the Arrhenius ideas for the rate of a chemical

reaction. It neatly defines the activation energy of the reaction through the reorga-

nization energy and Gibbs free energy for the formation of the transition state. It

also defines a pre-exponential factor based corresponding to the thermally averaged

overlap of the electronic wave functions of states a and b. In the final section of

the next chapter, I will mention how we believe we can improve on this equation to

provide more time-dependent and dynamical equation.

1.1 History and Background of Molecular electronics

How do electrons move in and through a molecule? What is the electronic con-

ductance of a single molecule sandwiched between metal electrodes? How can we

build an electronic device using individual molecules? Molecular electronics (ME)

is an interdisciplinary effort of scientists and engineers to answer these questions.
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The early efforts in molecular electronics can be traced back to the 1950s, where it

was recognized as a potentially promising subject by the United States Department

of Defense.[135] In 1974, Arieh Aviram and Mark Ratner proposed, theoretically,

that a molecule can act as a device, molecular rectifier (i.e. a molecule that shows

diode behavior).[10] This paper was revolutionary because it laid out a schema for

calculating molecular conductance through a molecule.

How can someone attach a molecule to a metallic electrode? This was the num-

ber one challenge that the field faced in the 1970s. Several conferences devoted to

the field, in the 1980s, that were hosted by Forrest Carter and Aviram, stimulated

some seminal (and some borderline science-fiction) ideas that popularized molecular

electronics.[135] But perhaps the major breakthrough ensued by the IBM labora-

tories’ discovery of the scanning tunneling microscope (STM) and later the atomic

force microscope (AFM). It was soon clear that these tools, that help us ’touch’ and

manipulate individual molecules, can be used to observe and measure conductance

(current versus voltage behavior) of a single molecule conencted to, for instance, two

gold electrodes (i.e. STM tip and substrate). The first earnest attempt at measur-

ing electron transport through a single-molecule was carried out by Mark Reed and

James Tour’s groups.[170] Also Robert Metzger’s group experimentally proved the

feasibility of a molecular rectifier.[136] These experiments taught us, how to mea-

sure the conductance of a single-molecule, but the importance and dominance of the

fluctuations in the experimental data remained unrecognized.

A collaborative effort among synthetic and physical chemists along with physicists

and theoreticians was and is needed to overcome the issues that the molecular elec-

tronics community faces. The synthetic problems are more or less resolved. The main

challenge for chemists were to coming up with anchoring groups that can robustly

connect the molecule to the electrodes. In most cases, sulphur and amine or other
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groups with lone-pairs are used. Gold and platinum are commonly used as the elec-

trodes due to their resistance to oxidation and degradation and also their ability to

easily form nanometer-sized STM tips. The inescapable problem that experimental-

ists and device-makers face, is the considerable size of the fluctuations. This problem

was solved by using the break-junction techniques that enabled scientists to make

thousands of measurements. By theoretical and statistical analysis of the outcome of

those measurements, in form of histograms, we can reproducibly measure molecular

conductance.[188]

The theoretical and computational efforts in the realm of quantum transport are

mostly around the non-equilibrium Green’s function techniques. I would briefly dis-

cuss the theoretical framework to describe electron transport.

1.1.1 Theoretical Overview

Theoretically, there are different regimes that depending on the applied voltage,

the thermal energy, length of the molecule, etc. I briefly describe the formalism to

compute the molecular conductance based on the non-equilibrium Keldysh Green’s

function method.[216]

1.1.2 Problem Set up

Figure 1.3 presents the setup that is used to calculate electron transport in an

electrified junction. The junction comprises of left and right semi-infinite electrodes

and a molecule, [6]helicene. It is assumed that the metal electrodes are defect free,

periodic crystallines with the unit cell defined in the direction of transport.

Thermodynamically, we have two bulk gold electrodes and a region in the middle.

Mostly for computational reasons the molecular device is considered to incorporate

some parts of the electrodes. This will be clarified later. We treat the combination of
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the main molecule and the parts of the leads as one system and we name it ’extended

molecule’. The two electrodes normally have different chemical potentials (in the

presence of bias voltage), µL and µR, and they are able to exchange electrons with

the extended molecule.

Electrostatic view of the problem can clarify the reason we need to include few

(2 to 4) layers of gold atoms in the extended molecule. The conductance depends on

the spatial profile of the electrostatic potential, which in principle has to be deter-

mined self-consistently through the simultaneous solution of Schrödinger equation to

calculate the charge density ρ(~r) and Poisson equation to determine the electrostatic

potential Φ(~r). This is expressed schematically as the following set of equations.
HΨ = EΨ

Ψ→ ρ

∇2Φ = − ρ
εr

(1.4)

Where εr is the dielectric constant of the inter-electrode medium.This scheme,

described by the set of equations 1.4, was used for a one dimensional tight-binding

system, and Mujica et al. found that the self-consistent charge distribution for a

finite applied voltage corresponded essentially to that of a polarizable dielectric.[66]

Similar conclusions using three-dimensional models and ab initio electronic structure

methods have been found by Ratner et al. [216] These results strongly hinted to the

importance of explicitly including the molecular polarization in a conductance model,

a topic that is explored extensively in this dissertation and in particular in chapter 2.

To avoid the discontinuity, the self-consistent electrostatic potential that is cal-

culated for the extended molecule should be equal to the electrodes’. Hence we add

several layers of the electrode to form the extended molecule. This is also consistent

with the physical picture of a molecule adsorbed on an electrode surface which would
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Figure 1.3: This Figure Shows an Electrified Molecular Junction. In This Image a

Molecule That ([6]Helicene) Is Sandwiched Between Two Electrodes (Gold) Is Shown.

This Is Also the Setup We Use Through out This Dissertation for Calculating Charge

Transport.

reconstruct the surface of the electrode, hence make the extended molecule a nice

practice.

Conductance as a Transport Process; Landauer Formula

In a typical conductance measurement, in a nano-device, the molecule is connected

to two leads that are assumed to act a reservoirs for electrons at a well-defined tem-

perature and chemical potential, as depicted in Figure 1.3. Under some assumptions

regarding the many-body aspects of the electron transport process, we can view this

phenomenon as a scattering process. This way, the problem can be reduced into

dealing with the transmission and reflection probabilities, an idea first introduced in
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the seminal work of Landauer. It is worth mentioning that the transport process is

limited in this case to a one-electron process that conserves phase coherence. This

approach is surprisingly successful in describing the experimental observations, in

spite of its relative simplicity. Pedagogically, it is very beneficial to understand the

connection between current and transmission intuitively before moving into a more

mathematically intensive approach.

Let us imagine that a plane wave, ( 1√
L
eikx) is representing the electrons that are

coming from the left electrode towards a potential barrier with length L. Part of

this wave will be reflected, with the probability amplitude of r and part of it will be

transmitted (T = |t|2).

The current density, Jk, in quantum mechanics is defined as:

Jk =
~

2mi

[
ψ∗(x)

d ψ

d x
− ψ(x)

d ψ∗

d x

]
=
e

L
v(k) T (k) (1.5)

where v(k) = frac~km is called group velocity. Equation 1.5 is define for an electron

with an specific energy while in a real device there are many electrons, with different

energies, contributing to the current. Hence, we need to sum over all the positive k

values. We also have to take into account the Pauli Principle which results in the

introduction of fL(k)[1− fR(k)]. fR/L(k) are the Fermi distribution functions of the

electrons. This factor also guarantees that we are only considering transfer from the

occupied states on the left electrode into the empty states of the right electrode. Also

it can account for the shifts in the chemical potential in the presence of an applied

bias voltage. These considerations will give us:

JL→R =
e

L

∑
k

v(k)T (k)fL(k)[1− fR(k)] (1.6)

Next step is to convert the sum into an integral:

JL→R =
e

L

∫
dk v(k) T (k) fL(k)[1− fR(k)] (1.7)
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In solid states physics, the density of states is defined as: dk
dE

= m
~2k

. To simplify the

equation we change the integration variable from k to E, which results in:

JL→R =
e

h

∫
dE T (E) fL(E)[1− fR(E)] (1.8)

Similarly, since the transmission function of crossing from the left side of barrier to

the right and vice-versa are the same, we can prove that the current from the right

electrode to the left electrode is:

JR→L =
e

h

∫
dE T (E) fR(E)[1− fL(E)] (1.9)

Finally, the total current is I = JL→R−JR→L. We have to also double the current

because of electron’s spin degeneracy. It is worth mentioning that this degeneracy

does not always hold and in fact conductance current can be spin-dependent.[118, 33,

49, 219, 22, 150] The final outcome is the simplest version of the eminent Landauer

formula and shows the connection between the current and transmission.

I(V ) =
2e

h

∫ ∞
−∞

dE T (E) [fR(E)− fL(E)] (1.10)

We can see that this is similar to equation 1.14 that is discussed in the next section.

Green’s function techniques

At the molecular level, we are assuming that the electron transport can be described

as involving an incident plane-wave (or state) propagating from deep in the electrode

comes and interacting with the extended molecule potential (scattering region) to be

collected a the outgoing wave in the other electrode. This system is described by a

Hamiltonian, H, which has an infinite dimension. It is worth mentioning that through

this dissertation I use calligraphic letters for matrices with infinite dimension. In the
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absence of magnetic field the Hamiltonian can be molded into the form:

H =


HL HLM 0

HML HM HMR

0 HRM HR

 (1.11)

The retarded Green’s function for the whole system, Gr, contains all the informa-

tion needed for solving this problem. The retarded Green’s function can be calculated

by solving the Green’s function equation:

[ε+S −H]Gr(E) = I (1.12)

where ∫ is the overlap matrix and ε+ = limδ→0+(E + iδ).

Finding the Green’s function, that is an infinite dimensional matrix, can be

mapped into a simpler yet equivalent problem by benefiting from Löwdin partitioning

technique. This technique was used by Mujica et al to reduce “the infinite dimen-

sional matrix problem into an N × N problem”.[140] The retarded Green’s function

contains all the information about the extended molecule that is attached to the elec-

trodes. In other words this is a Green’s function that corresponds to the effective

Hamiltonian of the extended molecule

Heff = HM + Σr
L(E) + Σr

R(E) (1.13)

with
∑r

L/R(E) is the self-energy of the left and right electrodes. This dimension

reduction comes at a price. While 1.11 is hermitian, due to the introduction of the

self-energies, the 1.13 is not hermitian anymore.

The current in this framework is given by:[132]

I =
2e

h

∫ µR

µL

dETr[ΓLGaΓRGr][fL(E)− fR(E)] (1.14)

where fL(E) andfR(E) are the Fermi functions for the left and the right electrode.
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At zero bias, we can calculate the conductance of the system at Fermi level:

g(E) = g0Tr[ΓLG
a
MΓRG

r
M ] (1.15)

where Tr[ΓLG
a
MΓRG

r
M ] is the transmission function (T (E)) and ΓL/R = i[Σr

L/R(E)−

Σa
L/R(E)]and g0 is the quantum of conductance.

In principle, the NEGF (Non-Equilibrium Green’s Function) theoretical frame-

work permits the description of elastic and inelastic transport including electron-

electron and electron-phonon interaction through an appropriate inclusion of self-

energies for each type of interaction. It is however important to consider approxi-

mate schemes and the combination of non-equilibrium Green’s function method with

density functional theory has been extensively used for the approximate description

of electron transport in molecular junctions.
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Chapter 2

POLARIZABILITY AS A MOLECULAR DESCRIPTOR OF CONDUCTANCE

2.1 Introduction

Organic molecular electronics have garnered tremendous interest[115, 73, 86, 163,

39] due to the possible ability to replace circuit elements such as transistors. [39, 8,

176] This is outshone by the recently explored interface of molecular electronic devices

with biochemistry[110] and the study of various phenomena such as charge transfer

on the bio-nano interface.[190] One of the key properties for an efficient design is

the ability of these molecular structures to transport electrons effectively. There are

an endless number of possibilities for the molecular structures.[153] While having a

plethora of options for design gives scientists and engineers many opportunities, it

can become overwhelming in the absence of a physical parameter that can be used

as a screening factor that can a priori discern between desirable and unattractive

candidates.[88, 176] For example, such a factor can be very important in finding an

optimized reader molecule in a recognition junction since synthesis and measuring or

computing the conductance of these is very time consuming.[96, 223]

Traditionally, some rules of thumb have been used to make fast predictions about

the conductance in a single molecule junction, parameters such as length,[98] temper-

ature and the energy gap between HOMO (Highest Occupied Molecular Orbital) and

LUMO (Lowest Unoccupied Molecular Orbital.[149] But due to the intrinsic com-

plexity of the transport and its relation to molecular electronic structure, these rules

do not always hold. [184, 215] Molecular polarizability can be used as a guideline for

designing systems with desired transport properties.
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The physical plausibility of the connection between conductance and polarizability

can be realized from Mujica and coworkers’ work that described the spatial profile of

the electrostatic potential in a junction by solving Schrödinger and Poisson equation

self-consistently by connecting the quantum electronic density to the electrostatic

potential.[141]

The picture that emerges from this model is that if many-body and inelastic effects,

such as charging and electron-phonon coupling, are neglected, molecules behave to a

large extent as a dielectric whose polarization response counteracts the driving field.

This leads to a spatial profile that differs substantially from that of a vacuum junction

between two electrodes, which is a linear function of the inter-electrode separation as

found by solving Poisson equation for zero charge density, and corresponds rather to

an S-shape function associated with a spatial profile characterized by the fact that

the potential drop occurs essentially at the interfaces between the molecule and the

electrodes.[141]

Accepting the crucial role of the molecular bridge in determining the local di-

electric properties of a junction; the next conceptual step is to connect the dielectric

constant to the molecular polarizability, which I introduce by assuming the validity

of the Clausius-Mosotti relation from electromagnetism. Once this is achieved, the

missing link is the connection between conductance itself and the molecular polariz-

ability. This is still an open theoretical question, which has been addressed in several

articles.[201, 25, 55] . In this work, I approach this problem in its simplest form,

using Simmons’ tunneling model, which connects the barrier properties, that in turn

determine the current and the conductance, to the junction dielectric constant.

The main goal of this study is to explore the robustness of this connection in

different design motifs and discuss the domain in which it is applicable. To this

end, I have investigated the correlation between calculated molecular polarizabilities
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and the experimental zero voltage conductance of different families of molecules used

in junctions. The results are remarkably consistent with the qualitative and even

quantitative predictions of my simple model.

The structure of this chapter is as follows. First the computational protocol

is discussed. In the result section on polarizability, I present several systems and

discuss the success of this approach for various families of molecules. I then finish by

discussing the limitations and possible application of this correlation in helping the

design of next generation nano-electronics components.

2.2 Computational Details

Geometry optimizations and polarizability calculations were carried out at the

Density Functional Theory level by using the Becke gradient-corrected exchange func-

tional and Lee-Yang-Parr correlation functional with three parameters (B3LYP) and

the 6-31G* basis set by ORCA electronic structure package.[144, 48, 162, 18, 103, 60,

67] The polarizability calculations were also done with aug-cc-pVTZ basis set.[206]

The tabulated results show that the trend in polarizability is conserved in spite of

the change in the values.

2.3 Results and discussion

As mentioned in the Introduction, I approach the rational design of molecular elec-

tronics materials by studying the correlation between polarizability and conductance.

It is worth mentioning that since polarizability is a tensor property and conductance

is a scalar quantity, in the simplest case I need to use the isotropic molecular polar-

izability which is defined as:

ᾱ =
1

3
tr(α) =

1

3
(αxx + αyy + αzz)
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α (Å)3

System 6-31G* aug-cc-pVTZ

Aniline 11.6 12.3

Anisole 12.5 13.4

Benzaldehyde 12.4 13.1

Chlorobenzene 11.7 12.6

Fluorobenzene 9.8 10.4

N-methylaniline 13.5 14.4

Nitrobenzene 12.5 13.2

Nitrosobenzene 12.2 12.8

Phenol 10.6 11.3

Toluene 11.7 12.5

Table 2.1: Calculated B3LYP, Isotropic Polarizabilities (α) of Different Substituted

Benzenes.

I investigated systems whose experimental conductance has been reported and I tested

the correlation between calculated polarizabilities and such measured conductance. I

observed that an increase in static polarizability of the molecules results in a decrease

in the conductance values. This correlation holds for families of molecules. I classify

the results based on different molecular groups and show that the correlation holds

within different groups, thus indicating the potential of this molecular property as a

general guidance for designing new molecular electronic devices.
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2.3.1 Halobenzene, the effect of substituents

The effect of halogen substitution on benzene’s conductance is investigated as an

initial step. Due to their electronegative nature, halogens are electron withdrawing

groups (EWG). Hence they reduce the electron density on the benzene which results

in a decrease in the energy of the HOMO orbital in comparison to HOMO energy

of benzene.[160] The calculated conductance values reported by Venkataraman and

coworkers are plotted against calculated molecular polarizability. Figure 2.1 clearly

indicates that the conductance of the molecule decreases as its static polarizability

increases by changing the substituents.

2.4 Amine-Gold linked molecular motif

The thiol group has been used extensively as an anchoring group between the

molecular bridge and gold electrodes.[188, 6, 98, 163] The strong bond between gold

and sulfur is the reason for this general interest towards the Au-S anchoring groups.

The main issue with sulfur-gold motif is the dramatic dependence of the conductance

on the anchoring groups’ geometrical parameters.[160, 47, 159] Nitrogen-based an-

choring groups are seemingly a good solution.[224]

Due to the reproducibility and smaller effect of the anchoring groups’ geometry on

conductance; using this motif in designing the molecular circuits and thermoelectric

systems seems to be a sensible path.[200, 160, 158] To investigate the robustness of

the proposed signature decaying trend, I calculated the polarizabilities of the diamine

family and the bipyridine family and plotted them against the conductance values that

were measured.[200, 160, 158] Figure 2.2 summarizes the results. The difference

between the conductances of the two families is mainly due to the different nature of
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Figure 2.1: The Correlation Between Conductance (milli g0) and Static Polarizability

(Å
3
) Can be Seen. In These Systems The Halogens Affect The Conductance Through

Modifying The HOMO of The Molecule. It Can Be Inferred That Polarizability Can

Be Used to Predict The Effect of These Substituents on Conductance of Benzene.

their individual anchoring group.

2.5 Thiophene and Furan oligomers

Five-membered heterocycles, in particular thiophene and furan, have been used

extensively in organic electronic devices such as organic field effect transistors (OFET)

and organic photovoltaics (OPV).[108, 173, 177, 211, 203, 147] The oligomers can be

considered as a cis π-conjugated (CH)x system that are stabilized by a heteroatom.[172]

These systems are aromatic. Breslow and coworkers showed that an increase in the

(negative) aromatic stabilization energy correlates with the conductance values in
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(a) (b)

(c)

Figure 2.2: The Structures of the Compounds Are Presented. (A) Structures 1, 2 and
3 Belong to the Diamine Family Whereas 4, 5 and 6 Are from the Bipyridine Fam-
ily of Molecules (B). (C) Measured Conductance, Obtained from Venkataraman and
Coworkers Work[200, 160, 158], in the Unit of Quantum of Conductance Are Plot-

ted with Respect to Calculated Polarizability (Å
3
). The Figure Suggests That for a

Family of Molecules (Molecules That Are Structurally Similar) We Can Use Polariz-
ability as a Descriptor of Conductance to Predict the Electron Transport Properties
of a Molecule.
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systems with thiophene and furan motifs.[36] I have selected the aromatic systems

in Breslow’s work, to put the polarizability-based design guideline through a strict

test. Compound 7, 8, 9 and 10(named in accord with Breslow’s work) are 2,5-bis-

(4-aminophenylethinyl)furan, 2,5- bis-(4- aminophenylethinyl)thiophene, 2,5-bis-(4-

aminophenyl) furan and 2,5-bis-(4- aminophenylethinyl) thiophene respectively (Fig-

ure 2.3-a). The calculated polarizability and measured conductance are presented in

Figure 2.3-b. There are two sets of correlations for these systems. First, the correla-

tion between 7 and 9 (8 and 10) that are furan (thiophene) based compounds that

their structures are modified by addition of alkyne groups. Second, the furan versus

thiophene (7, 8 and 9, 10). It can be seen that for both sets of molecular wires, an

increase in polarizability is followed by a decrease in conductance of the heterocyclic

molecules. In fact this is not very surprising. It has been shown that an increase in

polarizability is an indicator of an increase in the aromaticity of the compound.[45],

which has led to several ways of measuring aromaticity based on the static polarizabil-

ity of the system.[44] It is worth mentioning that increasing the length of a molecular

wire by increasing furan/ thiophene units mainly modifies the LUMO and has a neg-

ligible effect on the energy of the HOMO, which again points out to the limitations

of schemes based on molecular orbitals to predict the behavior of the conductance

.[19, 45]

2.6 Hydrogen bond motif

A ubiquitous motif in organic molecular electronics, in particular bio-inspired de-

signs, takes advantage of the unique properties of hydrogen bonding to build low cost,

bottom-up organic materials with desirable properties.[52, 54, 12, 59, 82, 222, 214]

Nishino et al have measured the conductance through the hydrogen bond and showed

that at short distances hydrogen-bonded wires have higher conductance than alkane
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(a) (b)

(c)

Figure 2.3: (A) and (B) Shows the Structure of the Compounds 7, 8, 9, and 10.

In the Structures Nitrogen, Oxygen, Sulfur, Carbon and Hydrogen Are Blue, Red,

Yellow, Black, and Pink. (C) the Calculated Polarizabilities Versus Experimental

Conductance Shows That for the Families of Molecules That Shows the Change in

the Polarizability Correlates with the Changes in the Conductance of the Junction.
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Figure 2.4: The Correlation Between Measured Conductance and Calculated Static

Polarizability of Three Hydrogen-bonded Carboxyl Groups (cncooh) Is Shown in This

Plot. The Labels Show the Total Number of Carbons in the Molecular Junction in a

Manner Consistent with the Work of Nishino etal .[148]

chains.[148] Based on their results, I investigate the connection between polarizability

and conductance for the family of carboxylic acid alkane thiols. Figure 2.4 shows the

robustness of the correlation between conductance and static molecular polarizability.

I have previously shown for a set of biologically-relevant hydrogen-bonded systems,

that polarizability can be used as a universal guideline to qualitatively predict con-

ductance through the hydrogen bonded system.[131]
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2.7 Barrier model of conductance

To explore the connection between polarizability and conductance I consider a

model of molecular conductance as a tunneling process, which essentially ignores all

the many-body and inelastic aspects of the transport process and assumes that the

molecule acts as a one-dimensional tunneling barrier, specified by two parameters:

the height and the width of the barrier. Simmons’ model, which includes image

charges and dielectric effects, has been extensively used for the description of tunnel-

ing through metal-molecule interfaces with remarkable success.[181] I am particularly

interested in the expression for the height of the tunneling barrier, which has been

shown in the Simmons model to be related to the dielectric constant as:[181]

φ̄ = φ0 − qV
s1 + s2

2x
− 1.15λx

∆s
ln(

s2(x− s1)

s1(x− s2)
).

1

εr
(2.1)

with λ defined by:

λ =
q2ln2

8πε0x
(2.2)

Where q is the electron charge, V is the bias voltage, φ0 barrier height, s1 and s2 are

the turning points in the barrier shape, ∆s = s2 − s1, x is the nominal width of the

barrier, ε0 is the vacuum permittivity and εr is the dielectric.

The relation between the current and the voltage in the tunneling junction can

be recast in the following form:

J = J0(φ̄ e−A
√
φ̄ − (φ̄+ qV ) e−A

√
φ̄+qV )

J0 = q
2πh(σ∆s)2

A = (4π∆s
h

√
2me)

(2.3)

where σ is a correction factor as described by Simmons and is usually around 1.[181]

On the other hand the most straightforward connection between the dielectric con-

stant εr of an electrified interface and the molecular polarizability α of the intervening
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medium is given by Clausius-Mossotti equation:

εr = ε0+2γα
ε0−γα

γ = NAd
3M

(2.4)

with NA being the Avogadro number, ε0 vacuum permittivity, M is the molar mass of

the material and d is its density. It applies to the dielectric constant of a bulk dielectric

material that is homogeneous and isotropic, and it connects the static polarizability

of a single molecule with the susceptibility of a three-dimensional molecular material.

The basic microscopic premise of this relation is that in a uniform electric field, each

molecule is represented as a polarizable point dipole that experiences the external

field inducing a polarization response. These conditions might seem too simplistic to

describe a molecular junction, but the nanoscopic validity of the Clausius- Mossotti

equation has been systematically explored by Natan et al. [143] and it corresponds

to a well-defined limit that provides us with a physically reasonable starting point,

that is only applicable for simple junction where tunneling is the dominant transport

mechanism. The inclusion of hopping or hybrid transport mechanisms, like those

present in DNA, is well beyond the validity of my simple model.

The combined use of Equations 2.4 and 2.1 results in the desired connection between

the effective barrier’s height and the polarizability:

φ̄ = φ0 − qV
s1 + s2

2x
−B(

ε0 − γα
ε0 + 2γα

) (2.5)

where B = 1.15λx
∆s

ln( s2(x−s1)
s1(x−s2)

). The differential conductance g is defined as:

g(V ) =
∂J

∂V
(2.6)

And the differential conductance in the limit of zero voltage can be obtained straight-

forwardly from Equation (2.3).

lim
V→0

g(V ) = −qJ0e
−A
√
φ̄

(
1− A

√
φ̄

2

)
(2.7)
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(a) (b)

Figure 2.5: Plot of ln of Conductance Versus Third Root of Polarizability for Diamine

(a) and Bipyridine (B). I Used the Following Values and Fitted the Equation 2.8. I

Used the Following Values to Fitting. (A) for Diamine I Used g1 = 11.26, c = .01

and β1 = 3.76. (B) for Bipyridine Family, I Used g1 = 2.75, c = .01 and β1 = 4.31

In deriving Equation 2.7, I assumed that the molecular polarizability is not dependent

on the bias voltage. Expanding the barrier in terms of polarizability and insert it into

the equation 2.7 gives:

g = g1e
−β1α

(
C − β1

2
α + . . .

)
(2.8)

where β1 = ABγ
2ε0
√
φ0−B

, g1 = −J0qe
−A
√
φ0−B and C = 1 − A

2

√
φ0 −B. Inspired by the

correlation between polarizability and volume of the molecule, I write α ' L3. Fig-

ure 2.5 plots natural log of conductance versus α1/3 and compares it with conductance

values calculated via equation 2.8 for the diamine and bipyridine systems (Figure2.2).

2.8 Conclusions

In this work I have explored the rather substantial evidence of an existing corre-

lation between the static isotropic molecular polarizability and the molecular contri-

bution to the zero-voltage conductance of a molecular junction. I have also examined
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the physical origin of such a correlation via a model that connects the local dielectric

properties of the junction to its transport behavior via changes in the effective shape

of the associated tunneling barrier.

While my model is clearly not a first-principle theory, it does incorporate strong

physical plausibility arguments and provides a rationale for the apparent correlation

between experimental conductances and calculated molecular polarizabilites. It also

relates to recent efforts by Ratner, Marks and co-workers to use the dielectric constant

as a single variable characterizing the extent of electric network connectivity at the

molecular level.[21, 76, 75] Finally, these findings strongly suggests, together with the

already demonstrated connection between conductance and electron transfer rate,

that it should be possible to reformulate Marcus theory of electron transfer in terms

of response functions associated to the frequency-dependent polarizabilities, a subject

I am currently working on and that is related to the original approach taken by Marcus

to this subject[123, 121]
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Chapter 3

ELECTRON TRANSPORT THROUGH HYDROGEN BOND

3.1 Introduction

Designing and developing new functional electronic devices at nano scale based

on supramolecular self-assembly and controlled organization have mustered immense

interest.[207, 209, 208, 220, 94, 154, 105]

The recent demand for electronics in biomedical applications is in part the driving

force of this trend.[110] Despite substantial progress in nucleotide sensing technologies,

there have been very few studies on electron transport through molecular systems

that have non-covalent interactions.[35, 213, 80, 182] Therefore we believe there is a

need for systematic studying of electron transport through hydrogen bond. Despite

their small interaction energies, in particular through their cooperative and collective

effects, hydrogen bonds have shown promising results in direct monitoring of chemical

processes.[137, 142, 126]

Hydrogen bonds are also known for their relatively high polarizability and hyper-

polarizabilities.[90] Their polarizabilities further increase in the presence of external

field.[53] For electron transport through hydrogen bond this is indeed a very important

feature, because the more polarizable systems have a soft electron cloud that responds

to the external bias which in turn can modulate and modify the barrier shape and

height.

Ultimately the change in the barrier parameters, directly changes the tunnel-

ing current. Weiss and coworkers have shown that by studying the changes in

the conductance of molecules adsorbed on gold electrodes, we can measure their
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polarizabilities.[139] As it was shown in the previous chapter, based on the cor-

relation between polarizability and the measured conductance of hydrogen-bonded

systems, we were inspired to look systematically into the important, yet somewhat

neglected[148, 197, 29, 185], ubiquitous weak interaction. We have investigated the

effect of factors such as hydrogen bond geometry, strength, polarizability and elec-

tronic couplings on electron transport. In this study, we focus on biologically-relevant

hydrogen bond between O,N,S, and H.

3.2 Computational Details

Geometries of all the hydrogen-bonded structures and their monomers were DFT-

optimized by using B3LYP functional. We have also used two different basis sets,

6-311++G(2d,2p) and 6-31G*, which we will refer to as large and small basis sets to

calculate the electronic structure of these molecules. [144, 61, 48, 162, 18, 103, 60]

This level of calculation has been shown to be successful at describing hydrogen-

bonded systems’ properties. For interaction energies, we have used Boys and Bernardi

counterpoise correction to consider the basis set superposition error.[27]

In this chapter, I use atomic polarizabilities by partitioning the static molecu-

lar polarizability components into atomic components by using Hirshfeld population

analysis.[125]

αγγ =
∑
i

αγγi (3.1)

where αγγi is defined as:

αγγi = lim
Fγ→0

µγ(Fγ)− µγ(0)

Fγ
(3.2)

In this equation, µγ(Fγ) and µγ(0) are the distributed contributions to the dipole

moment. These parameters are obtained from Hirshfeld population analysis. Fγ is

the magnitude of the auxiliary field that is used for polarizability calculations. On
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the other hand the spherically averaged molecular polarizability can be computed as:

αγγ =
(∂µγ
∂Fγ

)
Fγ→0

(3.3)

where γ is the x, y, and/or z. The static polarizability tensor can be recovered by

summation over all the individual atomic polarizabilities.

For the electron transport calculations we used Non-Equilibrium Green’s Func-

tion (NEGF) formalism combined with density functional as implemented in the

TranSiesta 3.1.5 package.[183, 43, 57] The devices were set up in usual left electrode,

molecule, right electrode form and a minimal single-ζ basis set [92] at the local density

approximation (LDA) parametrized in the Perdew-Zunger form were used for all cal-

culations. The electrodes were modeled as Au (111) crystal lattice [97], each unit cell

consisted of three sub-layers of 3, 7 and 3 gold atoms in a ABCABC order. We used

a 3× 3× 100 Monkhorst [138] type k-grid to sample the Brillouin zone for the leads

and only the gamma point was calculated for the device region. For the real space

grid, a mesh cut off were set to 380 Ry and a 30 Å space in the plane perpendicular

to the direction of transport to prevent interactions between the super-cells. Figure

1.3 shows the computational setup of an organic molecular sandwiched between to

metal (gold) electrodes.

3.3 Results and Discussion

3.3.1 Geometries and Energies

Interaction energies of the hydrogen-bonded systems follow an expected pattern

of: (N−H · · ·O < N−H · · ·N < O−H · · ·O < O−H · · ·N). Our calculations show, Tables

3.1 and 3.2, that the smaller basis set produce similar trends in energy and distances

as of the larger basis set. Interestingly, the strongest hydrogen bond, O−H · · · N, is

not a very common hydrogen bond in natural systems.[91]
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Figure 3.1: Structures Are Made By Combining Crotonic Acid C, Benzoic Acid B,

Aniline A, and Pyridine Py.
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6-31+G* 6-311++G(2d,2p)

System rD...A rD−H rA...H rD...A rD−H rA...H

11(O-H...O) 2.793 0.984 1.840 2.792 0.981 1.839

12(O-H...O) 2.806 0.982 1.845 2.804 0.979 1.846

13(O-H...N) 2.809 1.001 1.828 2.816 0.995 1.840

14(O-H...N) 2.808 1.000 1.824 2.818 0.994 1.839

15(N-H...O) 3.127 1.015 2.128 3.175 1.010 2.166

16(N-H...O) 3.130 1.015 2.126 3.151 1.010 2.142

17(N-H...N) 3.149 1.019 2.151 3.158 1.015 2.160

18(N-H...N) 3.140 1.019 2.153 3.147 1.015 2.162

11D(O-H...O)2 2.702 0.999 1.704 2.654 1.001 1.653

12D(O-H...O)2 2.694 0.999 1.695 2.648 1.001 1.647

Table 3.1: Geometrical Parameters of B3lyp-optimized Hydrogen-bonded Systems.

The Distances Are in the Unit Of Å.

The accuracy of our calculations are bolstered by the nice agreement between our

calculated interaction energies for the benzoic acid dimer and values reported in the

literature.[2] Of course it is not surprising that the interaction energy is higher for

the dimeric system in comparison with the single hydrogen bond formed in the linear

set up.

Tables 3.1 and 3.2 shows that there is almost no correlation between the strength

and length of hydrogen bond. It is known that in most cases, the closer the hydrogen

bond angle to 180◦ the higher the chances of forming a stronger hydrogen bond. But as

we discussed in previous chapter for electron transport within the limits of hydrogen

bond length , the process is mostly controlled by quantum tunneling through the
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6-31+G* 6-311++G(2d,2p)

System ∆E ∆EB ∆E ∆EB

11(O-H...O) -6.3 -5.5 -5.5 -5.1

12(O-H...O) -6.1 -5.2 -5.3 -4.9

13(O-H...N) -10.1 -8.8 -8.6 -8.2

14(O-H...N) -10.0 -8.6 -8.3 -8.0

15(N-H...O) -3.7 -3.2 -2.8 -2.6

16(N-H...O) -4.0 -3.2 -3.3 -3.0

17(N-H...N) -4.5 -4.0 -3.9 -3.7

18(N-H...N) -4.8 -4.2 -4.2 -4.0

11D(O-H...O)2 -16.8 -15.4 -15.8 -15.2

12D(O-H...O)2 -17.1 -15.6 -16.0 -15.4

Table 3.2: The Interaction Energies Are Calculated at B3lyp Level of Theory and

Are Reported in the Unit of Kcal. ∆e and ∆Eb Are Interaction Energy with and

Without Bsse Correction. D, A Stand for Donor and Acceptor.

Figure 3.2: B3LYP/6-311++G(2d,2p) Optimized Structures of The Crotonic (11d)

and Benzoic (12d) Acid Dimers.
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barrier.

The most important issue in the transmission of the electron through the barrier

is the barriers shape which is dictated by the length of the hydrogen bond.

3.3.2 Electron Transport through Hydrogen Bond

In justifying transport properties of material, one of the first parameters to look

at is the frontier molecular orbitals. Hence, it is informative to look at the FMOs of

these hydrogen-bonded complexes to gain a preliminary insight into the systems.

The monomers all have similar HOMO-LUMO gaps (Table 3.4). In these systems,

the nitrogen atom in propenyl amine and aniline, acts as the hydrogen bond donor and

acceptor, but the nitrogen atom in the pyridine is merely a hydrogen bond acceptor.

For carboxyl group, the oxygen can behave as donor in the form of hydroxyl and

it behaves as an acceptor in the form of carbonyl.

It is worth noting the relative polarizabilties of the hydrogen bond donor and acceptor

atoms. Relatively, the atomic polarizability of the hydrogen bond donor atoms is

substantially lower than the acceptor atom. The covalent bond between the donor

atom and hydrogen might be the reason for this observation.

Table 3.6 summarizes all the electronic and transport information for the com-

plexes studied in this section. It has been shown experimentally, that at short dis-

tances and at bias, the conductance of the experimentally observed conductance of

hydrogen-bonded ω-carboxyl ethanethiol (HS-(CH2)2COOH) dimer is 1.5 nS, in com-

parison with octanedithiol molecular junction (0.99 nS)[148]

While many have reported correlation between HOMO energy or the HOMO-

LUMO gap energy and molecular conductance, Table 3.6 clearly shows an absence

of this correlation with our systems. It is also noted that, the aromatic molecules

consistently show lower conductance than the double bonded systems.

35



6-31+G* 6-311++G(2d,2p)

System H L α H L α αD αH αA

Crotonic Acid -7.7 -1.6 41 -7.7 -1.6 44 4.3 4.7 6.3

Propenyl Amine -5.5 0.1 35 -5.6 -0.2 38 3.4 3.7/4.8 3.4

Benzoic Acid -7.4 -1.8 61 -7.5 -1.8 63 3.7 5.1 7.7

Aniline -5.7 -0.3 56 -5.8 -0.4 58 3.8 4.6/4.6 3.8

Pyridine -7.2 -1.1 45 -7.2 -1.1 46 5.8

Table 3.4: Calculated B3LYP Orbital Energies, Molecular and Atomic Polarizabil-

ities of Different Hydrogen-bonded Systems. HOMO (Highest Occupied Molecular

Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) Energies Are in eV. α

Is The Static Molecular Polarizability in Atomic Units(a.u.). αD, αH , and αA Are

The Polarizabilities (a.u.) of The Donor, Hydrogen, And Acceptor Atoms in The

Various Monomers.

Given the relation between conductance and polarizabilities, we plot the calcu-

lated molecular polarizabilties and the corresponding conductances in Figure 3.3. It

is obvious from the plot that for complexes exhibiting identical hydrogen bonding

interactions, an enhanced conductivity is associated with a smaller polarizability.

On an interesting note, we can see that larger values of conductance directly

correspond to a smaller atomic polarizability of the acceptor atom. This correlation

is put into the spotlight in subsequent sections.

This is indeed another piece of evidence, that even when HOMO/LUMO are not

informative, polarizability can be used as a molecular descriptor of conductance.
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6-31+G* 6-311++G(2d,2p)

System α G αD αH αA α G

11 83 3.0 1.8 1.7 1.9 87 3.9

12 124 0.3 0.0 0.3 4.8 127 0.8

13 77 0.5 3.2 2.0 0.2 82 1.4

14 118 0.4 2.7 2.0 0.5 121 0.1

15 76 6.6 1.7 1.7 2.0 82 0.3

16 117 1.0 2.8 2.0 3.2 121 0.4

17 81 2.2 1.1 1.6 1.2 85 1.9

18 101 0.3 1.7 1.9 0.5 105 0.2

11D 84 41.4 3.4 1.8 2.5 88 9.4

12D 125 12.6 2.7 1.8 2.4 129 5.8

Table 3.6: α Is The Static Molecular Polarizability in Atomic Units(a.u.). αD, αH ,

and αA Are The Polarizabilities (a.u.) of The Donor, Hydrogen, and Acceptor Atoms.

The Molecular Conductance (G) Is in Units of NanoSiemens (nS).

3.3.3 Quinone- Imidazole: A Model System

The hydrogen bond between p-benzosemiquinone and imidazole is critical in the

role of electron transfer in energy conversion reactions involving most biological sys-

tems including photosystem II.[130] Therefore we examine the nature of charge trans-

port across this hydrogen bond. Substituent effects have a very well-known effect on

electron transfer processes. With this in mind, we also investigated the effect of sub-

stituents on the nature of hydrogen bond and charge transport through hydrogen

bond.
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Figure 3.3: Correlation Between The Calculated Molecular Polarizabilities (a.u.) And

The Molecular Conductances (nS) of All The Hydrogen-bonded Complexes.

I use an electron withdrawing (NO2) and electron donating (NH2) groups on the

imidazole and/or the ortho and meta positions of the phenyl ring. Figure 3.4, the

B3LYP/6-31+G* optimized structures of the various substituted p-benzosemiquinone-

imidazole complexes. Also these complexes are positively charged and are open-shell

spin doublets.

Since the interaction energies, HOMO-LUMO gaps are not very informative on

the nature of electron transport, only the polarizabilties, geometrical parameters, and

the conductance values are reported in Table 3.7.

An electron-withdrawing or an electron-donating substituent on the imidazole

ring has negligible effect conductances. However, positioning an electron-withdrawing
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System αN αH αO α G

111 -0.4 1.2 3.3 87 18.7

112 -0.6 0.9 4.0 99 2.4

113 -0.8 1.0 5.1 99 77.8

114 0.0 1.2 2.8 100 7.3

115 -0.5 1.2 3.0 94 44.0

116 -0.6 1.3 4.4 96 6.9

117 -0.1 1.1 2.4 95 8.1

Table 3.7: Calculated Polarizabilties, Selected Geometrical Parameters, and Molec-

ular Conductance of the P-benzosemiquinone-imidazole Hydrogen-bonded System.

The Molecular Conductance (G) Is in Units of Nanosiemens (Ns).

group at the meta position or an electron-donating group at the ortho position of the

phenyl ring enhances conductance. While this effect can be comprehended in the

context of activating and deactivating groups in electrophilic aromatic substitution

reactions, we should understand this more in the context of electrostatic potential

effects. Thus, the electron withdrawing (NO2) group at the ortho position leads to a

partial positive charge on the carbon attached to acceptor oxygen atom. This results

in a decrease in the electron density of the acceptor oxygen atom and results in a

weakening of the O · · ·H−N hydrogen bond. The enhancement of the condutance in

15 can be explained.

Electron density on the acceptor oxygen atom is influenced by the presence of

the substituents, it can be expected that its polarizability would reflect the observed

conductance. It can indeed be seen in Figure 3.5, that the polarizabilities of the

acceptor oxygen atom exhibit an inverse correlation to the observed conductance.
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3.4 Future work

The first line of research is the obvious inclusion of S hydrogen bonds that are very

peculiar and there is not a universally accepted trend for their strengths in literature.

In some systems they form very strong hydrogen bonds with nitrogen. They are also

involved, as methionine and cytosine, in biological systems. Our initial results show

very strong hydrogen bond that is formed between nitrogen and sulfur.

Next, we have to investigate the effect of metal ions on the hydrogen bond. Charge

effects can be considered in two themes: one through weak interactions. In fact in

an study, it has been shown experimentally that presence of an ion increases the con-

ductance of hydrogen-bonded system; second, we can study the effect of coordination

to a metal on the electron transport. This opens up a venue to expand, cautiously,

the results obtained from electron transport to electron transfer in organometallic

systems.
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Figure 3.4: B3LYP/6-31+G* Optimized Structures of All The p-benzosemiquinone-

imidazole Hydrogen- bonded Complexes.
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Figure 3.5: Correlation of the Calculated Atomic Polarizabilities (A.U.) Of the Ac-

ceptor Oxygen Atom and the Molecular Conductances (Ns) of Ortho-substituted

P-benzosemiquinone-imidazole Hydrogen-bonded Complexes.
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Chapter 4

ELECTRON TRANSFER AND HYDROGEN REDUCTION CATALYST

The experimental results of this chapter are not done by this author and

are purely work of professor Jone’s group. The reader is referred to

Papers [62] and [175] for the complete discussion of the experiments.

4.1 Introduction

Climate change and energy crisis, while seemingly different, can both be addressed

by a single silver bullet: renewable energy.[225, 78] One viable option to produce a

renewable fuel that can be easily stored is hydrogen. It is proven challenging to mass-

produce hydrogen in the scale of global energy consumption. An ideal catalyst has

a very high turnover frequency and preferably use abundant and non-precious met-

als. Hydrogenase, is an enzyme that reversibly catalyses the proton reduction reaction

with high turnover frequencies (over 1000 s−1) with extremely low overpotentials.[119]

The hydrogenase performance is even more impressive when considering that they

only use first row transition metals, i.e. Fe and Ni, work in aqueous solutions and un-

der weak acidic condition. So it is not a surprise that a broad spectrum of researchers

have been studying hydrogenase.[71, 9, 81, 204]

Although a number of heterogeneous catalysts, such as nickel nanomaterials, are

reported to catalyse hydrogen production reaction; molecular catalysts are supe-

rior and more desirable for the facile modification of the catalytic behavior of these

systems.[7] It is worth mentioning that while there are many studies that use noble

metals, such as Pd and Pt[202, 146], for hydrogen generation, in order to make a cata-

lyst that can be practically used in future, it should be based on cheap and abundant
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metals. To this end, scientific community has moved towards preparing and studying

molecular systems their catalytic moiety is Co, Ni or Fe based. In other words, earth

abundant first row transition metal complexes.[4, 50]

In understanding the catalytic process, it is necessary to assess if the molecular

structure of the catalyst is retained or is transformed into active metallic particles.[7]

To this end, we can apply the mercury poisoning test to see if Hg(0) poisons the

Ni nanoclusters. Most of the studies showed that mercury amalgamates with cobalt

and nickel. While these results alone are not conclusive, the lack of lag phase in the

kinetic study of hydrogen evolution and the system-dependent (linear or quadratic)

relation between the concentration of cobalt and the H2 production rate that presents

distinctive mechanistic features, are all pointing away from the degradation and trans-

formation of the molecular catalyst into a metallic, active nanocluster. Although iron

powder is inactive as a catalyst, several studies have shown that both iron and nickel

nanoparticles are capable of being used as hydrogen production catalysts in aqueous

solutions.[217, 95]

The presence of an electrode in electrochemical experiments make them inevitably

heterogeneous. We can put these experiments in to three different categories. First,

electrode only acts as a source of electron to the molecular catalyst (electro-assisted

catalysis). Second, the electrode itself acts as a catalyst by interacting with the

substrate (electrocatalysis). Third, the molecular catalyst is chemisorbed on the

surface of the electrode. In this thesis, electrocatalysis is used as a general term that

encompasses all the three categories.

Based on the active site of the di-iron [Fe-Fe] and [Ni-Fe] hydrogenase, a plethora

of macrocyclic and pincer nickel and iron and cobalt complexes are reported in the

literature.[116, 117, 174, 40] Most of the catalytically active compounds are not bio-

mimicked but bio-inspired. And among those the catalysts usually deactivate after a
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few dozens of turnovers. The degradation of catalyst may form catalytically inactive

species and compounds. The molecular catalysts have been re-characterized and the

robustness of the compound was approved.[34] But one might be cautious in drawing

conclusions from these studies since during the bulk electrocatalytic experiments,

only molecules that are inside the diffusion layer around the electrode are active and

a large number of the catalyst do not cycle.

Some studies show that some of the hydrogen production catalysts that were re-

ported in before are not truly a molecular catalyst; meticulous studying of the surface

of the electrode proved that in fact the metal atoms are adsorbing on the electrode

surface, modifying it and producing hydrogen over a considerable pH range.[20, 5]

These studies cast doubts on the success and relevance of the well-designed organic

ligands, if the final result is going to be a metal that is electrochemically deposited

and formed nanoparticles at even neutral pH in aqueous surroundings. Fortunately,

chemisorption of these complexes on a solid material can stabilize them.

All of the aforementioned instances point to the complex nature of this process

and proves that no generalization is possible and each situation needs a particular

systematic analysis. To this end, in a collaboration with Prof. Jones’ group we

have applied several computational tools, such as frontier orbital analysis, charge

analysis, charge decomposition analysis, to clarify and understand the underlying

mechanism of Fe, [Fe-Fe] ,and [Ni-Fe] hydrogen evolution catalysts. The results of

these calculations and correlations and corroborations from the experiments done by

Jones and coworkers are presented in the following sections. Finally, I show some

promising correlations that can be used to as design guidelines to amp up the search

for the next best hydrogen evolution catalyst.
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4.2 A nickel phosphine complex as a fast and efficient hydrogen production catalyst

1 2

4.2.1 Introduction

The successful bioinspired catalysts have set some design guidelines that can be

used in producing an effective and efficient hydrogen evolution catalyst. For instant,

an internal proton relay in a nickel phosphine complex was used by DuBois and co-

workers, in the outer sphere, that resulted in an exceptionally fast catalyst.[157, 30]

McNamara et al. have investigated the role of non-innocent ligands such as benzene-

dithiolate (bdt) as internal redox systems that provide the reducing equivalent nec-

essary in the two-electron reaction.[128, 129] Ott and coworkers have systematically

studied and synthesized a series of mononuclear, unsaturated complexes that by the

support of bdt, a CO and chelating phosphine to produce hydrogen and relatively

high rates and small overpotentials.[23, 93] Also Jones and coworkers have used 1,1’-

bis(diphenylphosphino)ferrocene, dppf, that is a sterically prohibitive ligand with

unsaturated coordinations around the iron complex and proved that it can perform

at low overpotentials. This complex will be discussed in the next section of this thesis.

A combination of these design motifs resulted in a nickel complex that can effi-

ciently reduce proton from a weak acid in THF in a surprisingly low overpotential.

In this complex, the Ni is covalently bonded to thiolate and phosphine. The thiolates

come in the form of a bdt, which can be a non-innocent ligand, and the phosphines

are a part of the dppf sterically demanding ligand. Not only the bdt moiety can act

1The figures of this section are adapted with permission from reference[62] Copyright 2015 Amer-
ican Chemical Society.

2The experimental results of this chapter are not done by this author and are purely work of
professor Jone’s group. The reader is referred to the complete paper [62] for the further discussion
of the experimental results.
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as a redox non-innocent ligand but also it might act as an internal proton transfer

conduit.A combination of theoretical calculations, spectroscopic data and electro-

chemical information is used to characterize this compound and explain its reaction

mechanism.

4.2.2 Computational Detail

Geometry optimizations were carried out at the Density Functional Theory level

by using the Becke gradient-corrected exchange functional and Lee-Yang-Parr cor-

relation functional with three parameters (B3LYP) and the 6-31G* basis set. The

crystal structures were used as the initial structure for 1 and 2. The calculations were

performed by ORCA and Gaussian electronic structure suits.[144, 61, 48, 162, 18, 103,

60, 67] The calculations were also done at BP86/def2-TZVP level.[206] Scalar rela-

tivistic effects were introduced by using zeroth-order regular approximation (ZORA)

as implemented in ORCA.[198, 199] This level of theory have been shown to yield

energies and spectroscopic parameters comparable to those obtained at higher levels

of theory and larger basis sets.[180, 171, 46] The synchronous transit-guided quasi-

Newton (STQN) method was applied to found the transition state.[11]

4.2.3 Results and Discussion

Ni(bdt)(dppf) complex, 1, was synthesised with a 45% yield in two steps. A

second compound, Ni(bdt)(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane), 2, was

also made. The second compound’s, 2, dppe is a less restrictive phosphine. Table

4.1 shows the comparison between selected geometrical parameters as calculated by

DFT and crystallography data.

The nickel is in the square planar coordination environment. The iron nickel

distance is about 4.257 Å. All the distances and angles are within an acceptable range
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Figure 4.1: The Structure of 1.

for a square planar nickel complex. Experiments (X-ray absorption spectra and X-ray

differaction) shows geometry of 1 appear to be similar in THF solution and crystal

structure. The relatively low dielectric constant of the THF solvent (ε = 7.58) means

that the structure obtained from the gas phase calculations should correlate well with

the crystallographic parameters. This is indeed the case, in particular, when we use

the ZORA approach to include relativistic effects into our calculations. The error in

the bond lengths for the B3LYP/6-31G* relative to the crystal structure is around

2% and when BP86(ZORA)/def2-TZVP functional and basis sets are used the error

in the bond lengths goes down to less than 0.1 %.

Figure 4.2 shows the UV-vis spectrum of the complex 1. Based on Laporte se-
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1 20 31 32 41 42 50 TS Exp.

Bond Length (Å)

Ni-S1 2.195 2.304 2.208 2.450 2.291 2.263 2.240 2.200 2.1661

Ni-S2 2.191 2.303 2.235 2.254 2.283 2.386 2.286 2.206 2.1657

Ni-P1 2.224 2.203 2.335 2.224 2.222 2.092 2.235 2.204 2.2228

Ni-P2 2.240 2.203 2.242 2.242 2.190 2.091 2.443 2.203 2.2264

Ni-Fe 4.294 4.255 4.225 4.212 4.131 4.131 4.339 4.253 4.2570

Ni-H 1.468 1.470 1.464

S-H 1.352 1.363

H-H 1.286 0.745

Bond Angles (◦)

S1-Ni-S2 90.5 91.5 92.3 89.6 90.4 89.2 90.4 91.5 90.66

P1-Ni-P2 103.1 105.9 106.4 105.9 112.0 112.4 101.1 106.1 101.43

Td- dihedral (◦)

32.1 66.8 75.7 81.1 88.0 86.5 73.7 45.8 -

Table 4.1: The ”Td dihedral” is the angle between the normal vectors of the S1-Ni-

S2 and P1-Ni-P2 planes. The short code written to calculate this is available in the

appendix.

lection rules, transitions such as d → d, which their parity does not change through

the transition, are forbidden, hence these forbidden transitions have small transition

amplitude, or ε (extinction coefficient).[107, 102]

The strong transitions(4.2) are standard feature of charge transfer band. The

charge transfer bands are due to the change in the charge distribution between the

central metal and the ligand. This high intensity is due to high probability of this
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Figure 4.2: The UV-vis Absorbance Spectrum From a 0.01 mM Solution of 1 in

Dichloromethane.[62]

transition of these metal to ligand (Ni to P and Ni to S) charge transfers. The lower

intensity peaks are π → π∗ transitions. The mass of the evidence from XAF, NMR

,and UV-visible spectrum clearly proves the structure of 1 in solution is similar to

the reported crystal structure and gas phase quantum chemical calculations. The

electron density of the cyclopentadienyl rings is affected by the phosphines that form

bond to the nickel. This presents itself in the downfield shift in the proton NMR of

the cyclopentadienyl protons relative to those of dppf.

Figure 4.3 shows the voltagramms of the 1.All the potentials are reported against

the saturated calomel electrode (SCE) It can be seen that there is a reversible reducing

reaction at E1/2 = −1.280 (V vsSCE). This reversible peak can be assigned to

NiII/NiI couple. The complex was stable under continuous potential cycling around

the NiII/NiI for 30 min. There is also a partially reversible oxidation peak around

E = +0.744 (V vsSCE) that can be attributed to the oxidation of ferrocenyl iron
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Figure 4.3: Cyclic Voltammograms of 3 mM 1 and 2.7 mM 2 in THF at a Potential

Scan Rate of 100 mV S−1 Where The Solid Line Represents 1 and The Dotted Line

Denotes Compound 2. The Supporting Electrolyte Is 0.3 TBAPF6. The Arrow

Denotes The Starting Point and Direction of The Potential Cycle.[62]

from FeII/FeIII. This has been observed in other ferrocene phosphine complexes.

This decomposition results in irreversible reaction.[38, 155]

The CV of 2 shows a reversible peak at -0.518 V corresponds NiII/NiI. I would

like to point to the 0.75 V difference in the reduction potential for NiII/NiI between

complex 1 and 2 which are structurally close. The dppf is a stronger donor which

can destabilize the reduced form of 1, but this alone can not account for 0.75 V of

difference. Electronic structure studies of these two complexes clarifies and shows

how the change in the LUMO (Lowest Unoccupied Molecular Orbital) from 1 and 2

can justify this result. Table 4.2 summarizes the results of higher level calculations.

Looking at these results, one can notice that the biggest difference between the

two complexes is in their P-Ni-P fragment. In fact both angles and lengths and
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1 2

Bond Length (Å)

Ni-S1 2.165 2.161

Ni-S2 2.161 2.159

Ni-P1 2.208 2.153

Ni-P2 2.221 2.156

Bond Angles (◦)

S1-Ni-S2 90.4 92.2

P1-Ni-P2 103.7 90.5

Bond Orders

Ni-S1 0.96 0.89

Ni-S2 0.97 0.90

Ni-P1 0.91 0.95

Ni-P2 0.85 0.94

HOMO/LUMO Energies (eV)

HOMO -4.4 -4.4

LUMO -1.4 -1.3

Table 4.2: Selected geometrical parameters, Mayer’s bond orders, and HOMO/LUMO

energies of complexes 1 and 2 are shown. These parameters are calculated at a higher

level of theory and relativistic effects are considered by the ZORA method.
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more importantly bond orders hints at the fact that the culprit in the relatively huge

difference between the two comes from the difference in their ligands.

Figure 4.4: Frontier Molecular Orbitals (FMO) of 1 and 2. The Difference in Delo-

calization of The LUMO Between The Two Complexes is Considerable.
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This ligand difference, which manifests itself geometrically, has effected the LUMO

energy of the two compounds more than their HOMO. Table 4.2 shows that the

calculated HOMO energies are identical but the LUMO energy of the 2 is slightly

more positive than 1. This may result in the more positive reduction potential.

Figure 4.4 shows the Frontier Molecular Orbitals (FMO) of the two complexes. It

is worth noting that while the two complexes present almost similar HOMOs, their

LUMOs are very different. In fact the LUMO of 2 is extremely more delocalized than

1. The LUMO in 2 is distributed into the phenyl rings.

4.2.4 Electrocatalytic Hydrogen Production by 1

As indicated in the Introduction of this chapter, to guarantee that the catalyst

plays major role in producing hydrogen and not other factors, further experiments

are performed.

The addition of acetic acid to the electrochemical experiment in the presence of

1 results in an increase in the current of the cathode at the reduction potential of

Ni. It also causes the oxidation peak to disappear. The unidirectional increase in the

current the characteristic feature of electrocatalysis.

Under exactly similar conditions, but without 1, the proton reduction by the

glassy carbon electrode was insignificant. This ensured us that the catalytic pro-

cess happens because of the complex 1. To rule out electrocatalysis as a result of

degradation of the NiFe complex and deposition of nanoparticles on the glassy car-

bon electrode,the working electrode was transferred to a fresh acidic solution in the

absence of 1. Catalysis was not observed for this second without complex 1. The

stability of the catalyst during the experiment was also confirmed qualitatively and

semi-quantitatively. Qualitatively, the color of the solution was unchanged through-

out the experiment. Also, the UV-vis spectrum of 1 did not change after 4 hours of
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Figure 4.5: Cyclic Voltammograms of 1 and Different Concentrations of Acetic Acid.

The Concentrations Are 0.0, 6.0, 8.0, 12.0, 16.0, 20.0, 30.0, 40.0, and 50.0 mM.

exposure to acetic acid (Figure 4.6).

Figure 4.6: UV-visible Spectrum of 1 (Black Line) and After Being Mixed With 0.5

mM Solution of Acetic Acid For Four Hours (Red Line).
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Unusually, 2 did not show any sign of catalysis in acetic acid or in p-tolunesulfonic

acid which is significantly stronger. Notably, 1 showed catalytic activity in the p-

tolunesulfonic acid with a higher turnover frequency but was not stable enough and

rapidly decomposed.

The current for the reduction of 1 in the presence of acetic acid (ic) and in the

absence of acetic acid, ip is shown in Figure 4.7. From 0 to 50 equivalent of acetic acid

there is a linear relation between the ic/ip and the concentration of the acid. This

implies that there is a first order kinetic relation between the two. Beyond this range

the increase in the concentration of acetic acid does not change the ic/ip ratio. This

means that the concentration of proton is high enough and there is no depletion in

the concentration of the proton due to the catalytic activity of catalyst. This implies

a pseudo zeroth order reaction with respect to the concentration of the proton.

Figures 4.8 and 4.9 show the robustness of this behavior under various scan rates

and concentrations of the catalyst.

The rate constant for this reaction can be calculated from:

ic
ip

=
n

0.4463

√
RTk

Fν
(4.1)

where k is the reaction rate, ν is the scan rate, n is the number of electrons (2 for

hydrogen evolution reaction), R is the universal gas constant, T is the temperature,

and F is the Faraday’s constant.[16] For the concentration independent section, we

find the Turn Over Frequency, TOF, to be 1240s−1. The TOF is in the same range

for different scan rates. This very fast hydrogen evolution reaction is higher than the

biological counterpart, hydrogenase. The TOF is a very important metric in assess-

ing a catalyst. While high TOFs are desirable, we must know that at what expense

we are achieving these high values. This concern is reflected in the electrochemical

overpotential values. The overpotential is the activation energy and energy penalty
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Figure 4.7: Dependence of Normalized Catalytic Current on Concentration of Acetic

Acid. Currents Were Extracted from Voltammograms Such as Those Shown in Fig-

ure 3 That Were Collected under the Following Experimental Conditions: 2.0 mM

1 in THF, .3 M TBAPF6 and an Electrochemical Potential Scan Rate of 100 mv

S1. Error Bars Indicate the Standard Deviation Calculated from Three Independent

Measurements.

that we pay over the thermodynamics to achieve those rates. In nature, hydrogen

evolution occurs with high TOF and very low over potentials. Under different exper-

imental conditions, the overpotential of the half of the overall catalytic current is in

the range of 265 mV to 500 mV in low and high acetic acid concentrations.

The favorable combination of low overpotential and high turnover frequency makes

1 an efficient catalyst for H2 production.

4.2.5 Reaction of 1 Hydrogen Gas

The small overpotential of the catalytic reaction of 1 and protons, which suggests

that the reaction happens close to the thermodynamic equilibrium, raises the question
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Figure 4.8: Dependence of Normalized Catalytic Current on Conecntration of Acetic

Acid. The Black, Red and Blue Points Are Experiments With 1mM, 2mM and

3mM of 1 Respectively. Error Bars Represent One Standard Deviation From Three

Independent Measurements.

that how does 1 interact with hydrogen? Figure 4.10 shows that in the presence of the

H2 the reduction potential for the NiII/NiI shifts from -1.280 V to -1.009 V. There

is also a suppression of the oxidation peak. Figure 4.11 shows that the reduction

potential of Fe in the ferrocene is unchanged.
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Figure 4.9: Dependence of Normalized Catalytic Current on Concentration of Acetic

Acid. The Scan Rates of 10 mV S−1, 100 mV S−1, and 5 V S−1 Correspond to Red,

Black and Blue Points. Error Bars Represent One Standard Deviation From Three

Independent Measurements.

Figure 4.11: The Solid Lines Correspond to the Cyclic Voltammogram of 1 in the

Absence of Hydrogen Gas and the Dash Line Is the Cv in a Solution Saturated with

Hydrogen in 1 Atm Pressure That Corresponds to the Reduction of Fe.
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Figure 4.10: The Solid Lines Correspond to the Cyclic Voltammogram of 1 in the

Absence of Hydrogen Gas and the Dash Line Is the Cv in a Solution Saturated with

Hydrogen in 1 atm Pressure.

This means that the change in the reduction potential of1 is not the result of

change in the ferrocene. In a computational study, it was hypothesized that the H2

molecule is bridging between the two metals Ni and Fe.[72] The lack of any change

in the reduction potential of the ferrocene moiety and also the absence of any consid-

erable change in the 1H NMR of the Ni(II)-H2 are pointing against this hypothesis.

Moreover the interaction between the hydrogen molecule and 1 is very reversible. In

fact a flow of argon gas in the solution returns the reduction potential peak back to

the -1.280 V, with a small change in the oxidative signal.

The change in the reduction potential translates to the fact that the it is con-

siderably easier to reduce the nickel moiety when it is interacting with H2. We can

conclude that the hydrogen ligand, either directly or indirectly, withdraws the elec-

tron density from nickel. This in effect, stabilizes the Ni(I). We explored the possible
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mechanism that governs this catalytic process and also attempt to gain more insight

into this process.

4.2.6 What is the catalytic mechanism?

The data presented in previous sections signifies that in this two-electron pro-

cess, initially there is an electron process that reduces the complex and then 1 goes

through a protonation step that is the rate-determining step of the reaction. We

propose and investigate the mechanism is electrochemical/chemical electrochemical/

chemical reaction (ECEC). This mechanism is consistent with the experiments that

are mentioned in previous sections.

Figure 4.12: Hypothesized Mechanism of Action of 1 in Hydrogen Production Reac-

tion. Nickel, Phosphorus, and Sulfur Are Green, Orange, and Yellow Respectively.
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Tables 4.4 and 4.6, show the HOMO and LUMO energy of the compounds that are

discussed in the Figure 4.12. Also, in these tables present the contribution percentage

of each fragment to the HOMO/ LUMO of the complexes.
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HOMO LUMO

1 20 31 32 41 42 5 1 2 31 32 41 42 5

α -4.4 -0.7 -4.3 -4.4 -0.6 -0.6 -4.5 -1.4 1.9 -1.4 -0.7 1.9 2.2 -1.8

β -4.4 -0.8 -4.8 -4.1 -0.6 -0.6 -4.5 -1.4 1.9 -2.0 -0.9 1.9 2.2 -1.8

Ni(s) 0 0 0 2 0 1 0 0 0 1 0 0 0 0

Ni(p) 5 1 1 6 0 8 5 3 0 3 8 0 0 5

Ni(d) 9 14 7 57 26 48 12 41 1 53 35 1 1 38

dz2 0 0 0 4 0 2 0 0 0 2 1 0 0 0

dxz 1 1 0 44 2 2 2 1 0 2 0 0 0 0

dyz 8 0 0 7 0 0 10 1 0 7 3 0 0 1

dx2−y2 0 1 5 1 1 2 0 28 0 31 30 0 0 22

dxy 0 12 1 0 22 42 0 11 1 11 0 0 0 15

S1(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S1(p) 19 25 25 5 26 1 20 12 0 11 1 0 0 11

S1(d) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2(p) 24 25 24 15 17 15 25 12 0 7 3 0 0 11

S2(d) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P1(s) 0 1 1 -1 1 -1 0 1 0 1 0 0 0 1

P1(p) 2 3 4 4 3 5 2 4 2 5 5 0 0 5

P1(d) 0 0 0 1 0 1 0 1 1 0 1 0 0 1

P2(s) 0 1 0 0 1 0 0 1 0 0 -1 0 0 1

P2(p) 2 3 2 1 2 4 2 4 0 2 4 5 4 6

P2(d) 0 0 0 0 0 0 0 1 1 0 1 2 2 1

Table 4.4: HOMO/LUMO energies (eV) and contributions of different fragments (on

and around nickel moiety) to the corresponding HOMO and LUMO.
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HOMO LUMO

1 20 31 32 41 42 5 1 2 31 32 41 42 5

α -4.4 -0.7 -4.3 -4.4 -0.6 -0.6 -4.5 -1.4 1.9 -1.4 -0.7 1.9 2.2 -1.8

β -4.4 -0.8 -4.8 -4.1 -0.6 -0.6 -4.5 -1.4 1.9 -2.0 -0.9 1.9 2.2 -1.8

Fe(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fe(p) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fe(d) 0 1 1 0 1 1 0 2 1 1 1 1 1 2

phenyl 34 20 31 4 17 6 30 3 0 5 7 0 0 3

cyclo 0 2 1 0 1 1 0 3 4 2 2 4 3 3

rings 3 4 3 3 5 9 3 11 87 7 31 87 90 13

H/H2 0 0 0 1 0 0 2 0 0 0

phenyl(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

phenyl(p) 34 19 30 3 17 6 29 2 0 5 7 0 0 3

phenyl(d) 1 1 1 0 0 0 1 0 0 0 0 0 0 0

cyclo(s) 0 0 0 0 0 0 0 0 1 0 1 1 1 1

cyclo(p) 0 1 1 0 1 1 0 3 2 2 1 3 2 3

cyclo(d) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rings(s) 1 0 1 1 1 1 1 1 1 0 1 1 1 0

rings(p) 2 3 2 3 4 7 2 9 84 7 29 84 87 12

rings(d) 0 0 0 0 0 0 0 0 2 0 1 2 2 0

Table 4.6: HOMO/LUMO energies (eV) and contributions of different fragments (not

coordinated to the nickel moiety) to the corresponding HOMO and LUMO.
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As Table 4.6 shows there is an insignificant contribution, 0%, from the iron atom in

the ferrocene moiety. This hints that the reactivity of 1 depends almost exclusively on

the Ni and the bidithiolate. This means that the 1 is in nature closer to a mononuclear

Ni complex than to a [NiFe] complexes.[111, 17, 51, 161]

Firstly, 1 gains an electron which reduces the nickel into a d9 nickel complex (20).

This extra electron manifests itself in changes in the bond lengths and bond orders

(Table 4.1). In particular, the phosphorus bonds strengths increase which reduces the

distance between the Ni and Fe, from 4.294 to 4.255 angstrom, as well as shortening

the Ni-P bonds.

The other effect of this geometry distortion is that the two phosphorus atoms

become indistinguishable and identical in terms of bond order and length. These

minute structural changes facilitate the protonation of Ni in the next step. There has

been studies that show that the protonation can occur on the thiolate site as well as

Ni.[104, 210]

Complexes 31 and 32 are the results of protonation of complex 20 on Ni and

sulfur sites respectively. Energetically, protonation of Ni is 3.6 kcal/mol more stable

than 32. While this is a considerable difference in energy, we do not discard the

hypothesized 32 yet. The next step in our EC/EC mechanism is the reduction of

complexes 31 and 32. The result of this reduction are complexes 41 and 42. The

energy difference between these two complexes is significantly larger, 15.3 kcal/mol.

This proves that the protonation of the bdt ligand is energetically undesirable (and

improbable). Interestingly, protonation of both 41 and 42 will form complex 50;

where the H2 is produced and left the nickel site. While this mechanism is fully sup-

ported by all the aforementioned experimental results, finding a transition state can

give us more insight into how does the final step of this process, hydrogen evolution,

happen?
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To find the transition state (TS), we performed Synchronous Transit-guided Quasi-

Newton (STQN2) calculation, where 41 and 50 are used as initial and final structures.

The results of this calculation was very interesting. The TS shows that the second

hydrogen will also bind to the Ni, but in order to facilitate this, the complex goes

through a geometry change. The TS forms a pseudo-octahedral structure. Table

4.1 shows that the Ni−S bonds and Ni−P bonds are, 0.1 Å and 0.15 Å longer in

comparison to 1. There is also a staggering 40◦ change in the dihedral angle. This

hints that the rearrangement in the geometry is likely a critical step that aids the

attachment of the second hydrogen to nickel by providing an open coordination site in

the juxtaposition of the first and second hydrogen. To sum up, this structural change

can be a key factor in the efficiency of this catalyst. It is also worth mentioning

that, analyzing the Mayer’s bond orders, also confirms the formation of a covalent

nickel-hydride bond during the proposed mechanism.

4.3 Conclusion and Future work

To understand the functionality of 1, it is better to consider it as a mononuclear

nickel complex even though it is a [NiFe] bimetallic compound. Density functional

theory based results show that effectively there is no bonding interaction between

nickel and iron moieties. In fact, the bite angle of the ddpf ligand and its rigidity

are likely more relevant factors. These properties of the ligand not only enforce a

certain geometry on the Ni(II) but also tune the redox properties of the complex by

modifying the LUMO energy and construction.

An efficient hydrogen evolution catalyst that can function in water at pH close to

7 and also be energetically desirable, are crucial ingredients that can make a proton

reduction catalyst economically feasible. Complex 1, on the other hand, is water

insoluble. However the structure of our catalyst makes it easily modifiable.
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Synthetically, tuning the ligands to make 1 water soluble is the clear next step.

From a theoretical point of view, I believe that the difference between the LUMO

energies of complexes 1 and 2 is not large enough to account for the significant

difference in the reduction potential of NiII/NiI. This means that further calculations

are essential into justifying this. It has already been an attempt in looking into this

problem[72], but this study comes short by ignoring some of the crucial experimental

results such as H-NMR results. Also, rational computationally-guided designing and

searching for ligands that can tune the water-solubility of 1 without interrupting the

mechanistic steps of this catalytic reaction can amp up and speed up reaching our

ultimate product.
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4.4 Catalytic Hydrogen Production by Fe(II) complex

3

4.4.1 Introduction

As we discussed previously, one way to address the global energy crisis is through

finding a sustainable energy source. An enticing opportunity seems to be producing

hydrogen from solar energy which can make a storable renewable fuel. Bio-inspired

by hydrogenases, that is the biological catalysts for hydrogen evolution, many efforts

have been made into using organometallic model systems of hydrogenases’ active sites

such as [NiFe] or [FeFe]. However, the synthetic model systems rarely come close to

natural hydrogenases’ performance of 1000 s−1 at close to zero overpotential.

[FeFe]-hydrogenases’ H-cluster is a distinct six-iron cluster comprised of an iron-

sulfur cluster ,Fe4S4 an a diiron site. These two sites are related by two bridging

cysteinyl thiolate groups. The diiron site is a biologically interesting complex as it

resembles many organometallic complexes. A bridging dithiolate ligand, CO, and

CN– are on each iron center.

It is worth mentioning that it is not very common to have CO and CN–, both

very strong π-acceptors, in biological systems. Figure 4.13 shows the H-cluster of

two different categories of hydrogenase. It is clear from the figure that we have two

distinct irons: One which is closer to the iron sulfur cluster and is called proximal

iron, Fep; and second the distal iron, Fed, that is a five-coordinated ,pseudosquare

pyramidal center. Fed has electron deficiency and a terminal open coordination site

where the hydrogen production reaction takes place.

3The experimental results of this chapter are not done by this author and are purely work of
professor Jone’s group. The reader is referred to the complete paper [175] for the further discussion
of the experimental results.
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Figure 4.13: Active Sites of [FeFe] (A) And [NiFe] (B) Hydrogenase.

Organometallic complexes that have a [(µ−SR2)Fe2(CO)6 ] and their close rela-

tives that the CO ligands are substituted by phosphines (σ-donor ligand), have been

widely used as structural/functional bio-mimic alternatives to [FeFe] hydrogenase.[191,

56, 65] Many of the model complexes are poor catalysts for hydrogen production, due

to their high overpotentials. In many of these complexes it is believed that the hy-

drogen bridges, as a hydride, between the irons. In principle, a mononuclear iron

complex with an open terminal coordination site should be able to mimic the reac-

tivity of the distal iron of the natural enzyme, provided, the electronic environment

and geometrical constraints of the ligands imitate the diiron counterparts.

Followed by the determining of the crystal structure of [FeFe]- hydrogenase, many

have synthesized hexa-coordinated iron compounds that resembled the [FeFe]- hy-

drogenase which were mostly used as a model for spectroscopic studies.[99, 85, 42]

The synthesis of a 16-electron Fe(II) complex,[Fe(CO)2(CN)(SNH−C6H4)] and its

tendency to form a saturated coordination (sometimes by forming a dimer[109] have

started a realm for investigation for other groups.[112, 179] The bdt ligand was later

used by Sellman and coworkers to make [Fe(bdt)(PMe3)2(CO)2]. Interestingly, they

observed that this complex is readily losing a CO ligand to form an unsaturated,
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penta-coordinate complex.[178]

This complex inspired other inorganic chemists to create other iron complexes

in particular as a spectroscopic model of the H-cluster in hydrogenase.[164] None of

these studies investigated the electrocatalytic proton reduction; until recently, where

the distal iron site of the hydrogenase was modeled with bdt and chelating phosphine

ligands bonded to Fe and could undergo an electrocatalytic proton reduction.[63, 23,

152]

In this section, we discuss [(κ2−dppf)Fe(CO)(κ2−bdt)], 1 which is capable of re-

ducing proton at a very small over-potential. We have also compared this complex

with [(κ2−NP2)Fe(CO)(κ2−bdt)], 2, where NP2 stands for methyl-2-bis (diphenylphos-

phinomethyl) amino. Computationally, we aimed at utilizing several methods at Den-

sity Functional Theory level of theory to explain the different behavior of 1 and 2 in

reducing proton and their reactivity towards binding with CO.

4.4.2 Computational Details

All the structures were optimized at the DFT level of theory with B3LYP func-

tional and 6-31G* basis set. This level of theory has been shown to give reliable geo-

metrical parameters and vibrational frequencies.[87, 189] We have also benchmarked

the calculations using different functionals and larger basis sets. These results are

presented in the Computational Studies section. We have also performed overlap

population analysis to understand the nature of the interactions between the frag-

ments of the compounds.

4.4.3 Results and Discussion

The details of synthesis of these compounds can be found elsewhere and are not

within the scope of this thesis.[175] The bdt ligand is a natural π-donor and it is a
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Figure 4.14: The Solid Line and Dashed Line Are the Uv-vis Spectra of Complexes

1 and 2 Respectively in A .1 Mm Solution in THF.

redox non-innocent ligand. The dppf has an interesting bite angle. This wide bite

angle has a considerable effect on the structure and function of the complex.[14, 15,

114]. Complex 2 was made so that we can compare the effects of the wide bite angle

of dppf on catalytic properties of the iron center.

Figure 4.14 shows the UV-Vis spectra of the two complexes. Complex 1 absorbes

at 467 and 745 nm. The 467 nm peak, corresponds to a super blue color, is assigned

to two charge transfer processes even though the ε is not as high as what is normally

expected for charge transfer UV-vis features. The 745 nm band is assigned to d-d

transition. The relatively low ε is a signature of a forbidden d-d transition.

IR spectra of 1 and 2 presents a peak at 1918 and 1915 cm−1 that corresponds

to the stretching of the CO. The minimal difference between the CO-stretching IR

peak shows that the two different ligands have almost negligible difference on the CO
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bond. This point is reflected in the very similar CO bond length in the DFT studies

as can be seen in Table 4.7.

Crystal Structure

Tables 4.7 and 4.8 summarize the geometrical parameters obtained from single crystal

X-ray diffraction of 1 and 2. The geometries of 1 and 2 are completely different

around the central iron. Complex 1 has a distorted trigonal bipyramidal (TBP)

structure and complex 2 has a distorted square pyramidal structure (SP). CO ligand

is in an axial position in 2 and in an equatorial position in 1. Addison’s τ value, is

defined as:

τ =
β − α

60

where β is the larger of the angles between the trans aligands on the basal plane

in SP and/or the angle between the two axial ligands of a TBP; α is the smaller

angle between the trans ligands in SP and/or the larger of the basal angles in a TBP

complex.[1] τ is a factor that shows how much is the geometry of a pentacoordinate

complex distorted from the ideal SP (τ = 0) and TBP (τ = 1).

The Addison’s parameters of 0.099 and 0.721 was obtained for 2 and 1 which bol-

sters the assigned structures. Important for computational studies, it was confirmed

that 1 is diamagnetic. The perfect TBP geometry doesn’t allow a diamagnetic ground

state for a d6, Fe(II), but a ground state with multiplicity of one is consistent with

the distorted geometry.[85, 145] Also the benzene rings on the bdt have an alternative

bond lengths. The two C−S bonds have different bond lengths in both complexes and

are slightly shorter than the normal carbon sulfur bond lengths in bdt, suggesting

the bond orders are greater than a single bond.[168, 166, 165] The charge on the iron

center in 1 and 2 is less than +2 as it can be seen in the computational section.
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Bond Length X-ray Structure Calculated (B3LYP/6-31G∗

Å 1 2 1 2 1(H)+ 2(H)+
[1(H)-CO]+ [2(H)-CO]+

Fe1-S1 2.1719 2.2007 2.218 2.229 2.194 2.357 2.384 2.394

Fe1-S2 2.2243 2.1767 2.285 2.239 2.386 2.192 2.408 2.374

Fe1-P1 2.2405 2.2222 2.297 2.263 2.320 2.284 2.404 2.310

Fe1-P2 2.2241 2.2249 2.256 2.256 2.321 2.288 2.362 2.316

Fe1-C1 1.732 1.715 1.735 1.706 1.742 1.733 1.809 1.805

C1-O1 1.162 1.154 1.162 1.165 1.158 1.157 1.150 1.150

Fe1-C2 - - - - - - 1.826 1.835

C2-O2 - - - - - - 1.147 1.144

C1-C6 1.398 1.412 1.407 1.411 1.404 1.397 1.408 1.400

C1-C2 1.404 1.386 1.407 1.409 1.399 1.399 1.403 1.405

C2-C3 1.410 1.407 1.409 1.409 1.397 1.404 1.400 1.408

C3-C4 1.365 1.373 1.388 1.391 1.394 1.393 1.391 1.391

C4-C5 1.401 1.394 1.405 1.407 1.399 1.399 1.400 1.400

C5-C6 1.380 1.385 1.389 1.391 1.393 1.394 1.391 1.391

C1-S1 1.745 1.746 1.764 1.757 1.780 1.794 1.770 1.800

C2-S2 1.735 1.757 1.757 1.758 1.794 1.781 1.796 1.771

Table 4.7: The comparison between bond lengths (Å obtained from DFT calculations

and X-ray structures.
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Bond Angles X-ray Structure Calculated (B3LYP/6-31G∗

◦ 1 2 1 2 1(H)+ 2(H)+
[1(H)-CO]+ [2(H)-CO]+

P2-Fe-P1 101.18 87.49 102.4 89.3 100.8 92.9 98.0 91.8

S1-Fe1-S2 89.21 89.31 88.4 89.3 87.2 86.9 85.9 87.3

C1-Fe1-S1 134.57 101.30 137.9 102.4 130.4 93.3 89.1 88.6

C1-Fe1-S2 88.52 106.58 86.3 99.1 89.4 119.5 81.6 84.5

C1-Fe1-P1 90.19 94.11 89.9 96.0 89.5 92.8 90.1 93.4

C1-Fe1-P2 96.69 93.28 97.0 97.9 96.3 93.8 97.9 96.6

S1-Fe1-P2 128.48 165.14 124.7 159.7 132.9 172.6 176.1 178.0

S2-Fe1-P1 171.74 159.2 168.8 164.9 171.8 147.6 171.1 176.4

O1-C1-Fe1 173.4 176.7 172.6 173.4 170.5 173.0 173.1 173.3

O2-C2-Fe1 - - - - - - 173.4 173.9

Table 4.8: The comparison between bond angles obtained from DFT calculations and

X-ray structures.

Reaction with CO

1 and 2 were reacted with CO to assess whether the open coordination site on them

is sn accessible binding site. Figure 4.15 presents the IR spectra of 1 when exposed

to CO, bubbled through the solution of 1. As a result two new bands are observed

for CO at 1996 and 2020 cm−1. These peaks are an indication of formation of 1-

CO complex. Original, the presence of two peaks was interpreted as a sign that

the CO are in Cis conformation.[175] But the computational studies shows that the

trans structure is energetically favorable. One hypothesis is that the reaction is under

kinetic control, but on the other hand 4.7 shows that even in the trans conformation
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the calculated bond lengths for the two CO are slightly different which can account

for the presence of two CO bands.

The phosphorus NMR spectra also shows two peaks at 66.32 ppm and 62.59 ppm

that can be a further proof for the formation of 1-CO These peaks disappeared after

purging removing the CO from the environment, which indicates the reversibility of

the CO binding. Under similar conditions, similar behavior was observed for 2 with

two IR peaks at 1995 and 2021 cm−1 (4.15). It is worth mentioning that the reaction

of 2 with CO is not as complete as 1. Accepting the hypothesis 1, cis conformation,

then the difference in the reactivities can be explained by the substantial change in

the geometry that is necessary for the formation of the cis conformer, meanwhile 1

can form the bond more readily.

However, the reaction performance was improved by adding a strong acid, HBF4 ·

OEt2. This new complex, [1 (H)−CO]+, has also two CO vibrations at 2089 and 2043

cm−1. Adding a base to the solution and purging the CO out of the solution will

reversibly form 1. We believe that the acid protonates one of the sulfurs on the bdt,

which will in return weaken the bonding between the metal-ligand character. This

will be discussed in detail in the next section. The electrocatalytic properties of these

two compounds are discussed elsewhere [175]

Computational Studies

New studies have shown good performance of BP86 and TPPS functionals in par-

ticular for first row transition metals.[218, 212, 28] Hence the geometrical parame-

ters of 2 are calculated and compared with these functionals and with larger basis

set (TZVPP). The results show a good agreement with the chosen B3LYP/6-31G*

method. Table4.9 summarizes the results.
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Figure 4.15: IR Spectra of 1 and 2 Are Presented in the Absence (a) and (B) and in

the Acidic Environment with CO Gas Bubbling Through the Solution.
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Parameters X-ray BP86 TPPS B3LYP

6-31G* TZVPP 6-31G* TZVPP 6-31G*

Fe1-S1 2.201 2.211 2.211 2.208 2.206 2.227

Fe1-S2 2.177 2.202 2.199 2.206 2.198 2.222

Fe1-P1 2.225 2.232 2.230 2.229 2.229 2.292

Fe1-P2 2.222 2.237 2.236 2.229 2.224 2.285

Fe1-C1 1.715 1.709 1.711 1.716 1.716 1.723

C1-O1 1.154 1.185 1.173 1.182 1.170 1.164

P2-Fe-P1 87.5 91.1 90.1 89.0 88.9 91.1

S1-Fe-S2 89.3 88.8 88.8 89.1 89.0 88.9

C1-Fe-S1 101.3 101.5 101.5 102.3 101.8 100.0

C1-Fe-S2 106.6 106.8 105.8 104.6 105.1 103.3

C1-Fe-P1 94.1 94.8 96.1 95.2 95.8 96.7

C1-Fe-P2 93.3 94.1 93.4 94.4 94.3 94.6

S1-Fe-P2 165.1 163.7 165.1 162.2 163.9 163.3

S2-Fe-P1 159.2 159.1 158.1 161.0 159.0 162.1

O1-C1-Fe 176.7 175.8 175.5 175.9 175.7 175.9

Table 4.9: The comparison between geometrical parameters with different functionals

and basis sets. The bond lengths are measured in angstrom and the bond angles are

in degree units.

1, 2, 1(H)+, 2(H)+, [1(H)-CO]+, and [2(H)-CO]+ are all optimized at DFT

level of theory. Tables 4.7 and 4.8 show that the crystal structures and B3LYP-

optimized structures are in good agreement with each other.
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Figure 4.16: Electron Density Profiles of The HOMOs and LUMOs of 1, 1(H)+, 2,

and 2(H)+.
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Figure 4.17: Electron Density Profiles of The HOMOs and LUMOs of The Cis And

Trans Conformers of [1(H)-CO]+ And [2(H)-CO]+.
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HOMOs of both 1 and 2 are delocalized on the central iron and the bdt ligand.

This hints to the partial oxidization of the bdt ligand that make it to exhibit π-radical

character and justifies its distortion.

The HOMOs are comprised of a bonding interaction between Fe d orbitals and

S p(π) orbitals and an antibonding interaction between S and the nearby carbons.

This implies delocalization of the electrons over iron and bdt. To further investigate

this bonding pattern, we applied ”overlap population” analysis. These parameters

are listed in Table 4.10. The overlap populations are a semi-quantitative measure for

quantifying the nature of the orbital interactions.[68, 79, 192, 64] A positive over-

lap population implies a bonding combination, the negative overlap analysis means

there is an anti-bonding interaction and a zero overlap represents negligible bonding

between the fragments. The overlap parameters of 1 and 2 and their protonated

counterparts are tabulated in Table 4.10

HOMO LUMO

1 1(H)+ 2 2(H)+ 1 1(H)+ 2 2(H)+

Fe1-S1 0.00 0.00 0.02 -0.01 -0.08 -0.08 -0.07 0.02

Fe1-S2 0.02 0.00 0.04 0.04 -0.04 0.01 -0.07 -0.08

Fe-C 0.00 0.00 -0.01 -0.01 0.02 0.00 0.00 0.01

Fe-P1 0.03 0.00 0.02 0.01 0.00 0.04 0.05 0.03

Fe-P2 0.00 0.00 0.01 0.01 -0.04 0.02 0.05 0.04

Table 4.10: Overlap populations of different fragments of 1 and 2 and their protonated

form.
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Interestingly, there two S atoms are not identical from an FMO point of view.

The HOMO of 1 shows bonding interactions only with the axial sulfur, another

manifestation of the peculiar geometry of 1. Contrary to 1, both S of the bdt ligand

have contributes to the bonding interaction substantially. More over, the HOMO of 1

and 2 have an uncanny resemblance with SOMO, Singly Occupied Molecular Orbital,

of the π-radical anion form of a free bdt ligand.[169, 167] The overwhelming evidence

from molecular orbital theory calculations shows that the interaction between iron

and dithiolate ligand can be justified as a result of charge (density) transfer from the

ligand to the empty d orbital of the iron center. This likely causes the ligand to metal

charge transfer peaks in the UV-vis spectra.

The Lowest Unoccupied Molecular Orbitals, Figure 4.16, along with the orbital

decomposition results, Table 4.11, show that the LUMOs of both compounds are

dominated predominantly by Fe center with small contributions from phosphine and

bdt. These convey that reducing the complex, causes a charge localization and accu-

mulation on the iron center. In other words, reduction of the compounds will cause

a very basic site, Fe, make it a suitable site for interacting with the protons in the

acidic environment. It is worth mentioning that the heavy contribution from Fe to

the LUMOs in both 1 and 2 is consistent with the reactivity of these complexes with

CO.
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HOMO LUMO
1 1(H)+ 2 2(H)+ 1 1(H)+ 2 2(H)+

Energy (eV) -4.79 -8.16 -4.81 -8.47 -1.72 -5.06 -1.48 -4.96
s 0 0 0 1 1 0 0 0
p 3 0 5 3 4 8 7 9

dz2 10 0 11 6 11 23 21 36
dxz 3 0 0 0 2 3 22 10

Fe1 dyz 0 0 1 1 12 9 0 2
dx2-y2 0 0 0 1 22 19 0 0

dxy 6 0 0 1 4 0 0 4
Total d 19 0 12 9 51 55 43 52

s 0 0 - - 0 0 - -
Fe (ferrocene) p 0 0 - - 0 0 - -

d 0 79 - - 1 1 - -
s 0 0 0 0 0 0 0 0

S1 p 0 0 9 1 8 9 8 2
d 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0

S2 p 41 0 26 37 6 1 7 10
d 0 0 0 0 0 0 0 0
s 0 0 0 0 1 2 4 4

CO p 0 0 1 1 2 2 2 2
d 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0

P1 p 1 0 2 1 2 2 4 5
d 0 0 0 0 0 0 1 0
s 0 0 0 0 1 0 0 0

P2 p 0 0 1 1 7 6 4 3
d 0 0 0 0 1 0 1 0

Phenyl ring (bdt) Total 32 0 40 39 5 5 4 5
Cp rings Total 0 20 0 0 2 1 0 0

Phosphine phenyls Total 2 1 3 7 9 5 16 5
Proton (H) Total - 0 - 0 - 1 - 1

Table 4.11: Orbital contribution percentages.

In order to estimate the charge transfer between different fragments of the com-

pounds, we used Mulliken charge decomposition analysis.I discussed Mulliken charge

decomposition framework and briefly discussed its limitations in appendix A.
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1 2 1-H+ 2-H+ t1-HCO+ c1-HCO+ t1-HCO+ c1-HCO+

Fe1 25.64 25.65 25.60 25.65 25.77 25.72 25.78 25.73

Fe2 25.54 25.52 25.53 25.53

S1 16.20 16.17 16.12 15.98 16.13 16.16 16.14 16.15

S2 16.17 16.18 16.00 16.11 15.99 15.97 15.98 15.97

CO1 14.11 14.09 14.07 14.05 13.97 14.03 13.98 14.02

CO2 13.97 13.96 13.94 13.97

P1 14.69 14.69 14.68 14.65 14.60 14.60 14.61 14.61

P2 14.63 14.69 14.65 14.66 14.62 14.60 14.63 14.61

bdt phenyl 40.20 40.21 40.04 40.05 40.07 40.07 40.07 40.09

CP/glycine 68.70 62.19 68.57 62.10 68.58 68.59 62.10 62.09

P-phenyls 164.13 164.13 163.91 163.90 163.93 163.93 163.93 163.91

Proton (H) 0.84 0.84 0.84 0.84 0.84 0.85

Table 4.12: Mulliken Charge Decomposition analysis.

The Mulliken partial charges are presented in Table 4.12 and they are in accord

with the FMO description of the systems. The ferrocenyl’s iron (Fe(II)) in 1 can

be used as an internal standard to assign a charge to the Fe center. The central Fe

always has a smaller charge which is yet another proof for the ligand to metal electron

transfer which results in a less than +2 oxidation state for Fe.

Next, we try to understand the reactivity of 1 and 2 towards the CO. To this aim,

we study two more complexes that are protonated, because of the acidic condition in

the experiment.
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Two main sites can be hypothesized for the protonation of 1, the iron center and

the S in bdt that shows the highest contribution to the HOMO.[113]

Compound 2 has more possibilities, since both S are involved in the HOMO and

it has an amine group in its ligand that can (and probably will) become protonated.

Protonation of 1 on the S is 13 kcal/mol more stable than the Fe center. Similarly

for 2, sulfur is the preferred protonation site since it is 6.4 kcal/mol more stable than

the protonated amine. So logically, all the other calculations are performed on the

structures that the protonation occurred on the thiolate site.

The structure of 1(H)+ shows only negligible changes around the iron center.

Particularly, the Addison value of this structure (0.65), shows minor distortion in

comparison to 0.72 of the original complex.

Contrary, protonation of 2 starkly distorts the structure from a square pyramidal

geometry (τ = 0.09) to an intermediate structure between SP and TBP (τ = 0.42).

More importantly, the frontier molecular orbitals of the 1(H)+ and 2(H)+ exposes

major distinctions that are crucial in explaining the diverse reactivity behavior of

them towards the CO.

Ferrocene moiety harbors almost entirely the HOMO of 1(H)+; whereas the

HOMO in 2(H)+ is delocalized ove the bdt ligand (almost exclusively with small

contribution from the iron center). The bdt ligand shows a bonding pattern, com-

bined with the orbital contributions of the HOMO, we can deduce that bdt is partially

oxidized in the 2(H)+. The Mulliken charges show a considerable change in the thi-

olate’s partial charge between 2 and 2(H)+ complex. Also the aromatic fragment of

the bdt has smaller negative charge.

Indeed the most interesting change happens in 1, where protonation of the complex

breaches the electron delocalization between the iron and the bdt ligand. This re-
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establish the aromaticity of the benzene ring in the bdt. This charge rearrangement

helps 1(H)+ to act as a typical coordinatively unsaturated d6 iron (II).

The distinction between electronic structures of 1(H)+ and 2(H)+ can explain

why the CO uptake is observed mostly for 1 in acidic solution. We can also see the

stronger CO interaction with 1(H)+ than with 2(H)+. The lower LUMO energy in

the 1(H)+ (0.1 eV in comparison to LUMO of 2(H)+) can make a stronger bond to

the HOMO of CO. Also we should notice that addition of CO to 1(H)+ or/and 2(H)+

saturates the Fe and will result in the complexes to maintain an octahedral structure

with a sp3d3 hybridization, where the dz2 and dd2−y2 orbitals form the hybridized

orbitals. This is clear, from the increased contribution of the dz2 and dd2−y2 to the

LUMO of 1(H)+. This also makes it more likely, and more favorable, for 1(H)+ to

form a bond with CO.
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HOMO LUMO
1CO 1CO 2CO 2CO 1CO 1CO 2CO 2CO
trans cis trans cis trans cis trans cis

Energy (eV) -7.83 -7.97 -7.80 -7.80 -4.44 -4.58 -4.34 -4.43
s 0 0 0 0 1 1 1 2
p 0 0 0 0 1 1 0 1

dz2 0 2 1 1 1 7 2 5
dxz 2 1 2 1 0 13 1 16

Fe1 dyz 5 1 4 2 1 0 3 4
dx2-y2 0 2 0 1 13 36 0 11

dxy 0 0 0 1 41 1 43 17
Total d 7 6 7 5 56 57 49 52

s 0 0 - - 0 0 - -
Fe2 p 0 0 - - 0 0 - -

d 0 1 - - 1 1 - -
s 0 0 0 0 0 0 0 0

S1 p 53 51 54 53 5 2 4 2
d 0 0 0 0 0 0 0 0
s 0 0 0 0 1 1 2 1

S2 p 0 1 0 0 8 9 9 9
d 0 0 0 0 0 1 0 0
s 0 0 0 0 0 1 0 1

CO1 p 0 1 0 1 3 1 6 1
d 0 0 0 0 0 0 0 0
s 0 0 0 0 0 1 0 1

CO2 p 1 1 0 1 3 1 6 3
d 0 0 0 0 0 0 0 0
s 0 0 0 0 1 2 1 2

P1 p 0 0 0 0 4 7 4 7
d 0 0 0 0 0 1 1 1
s 0 0 0 0 1 0 0 0

P2 p 0 2 0 1 3 1 3 1
d 0 0 0 0 0 0 0 0

Ring (bdt) Total 36 32 36 34 2 2 2 2
Cp rings Total 0 1 0 0 2 2 1 1
Phenyls Total 1 3 1 3 7 7 11 12

Proton (H) Total 0 0 0 0 0 0 0 0

Table 4.13: Orbital contribution percentages for trans-[1 − (H)CO]+, cis-[1 −
(H)CO]+, trans-[2− (H)CO]+, and cis-[2− (H)CO]+
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4.4.4 Conclusion

In short,two pentacoordinate FeII(CO)P2S2 complexes with benzene-1,2-dithiol

and two different chelating bis-phosphine ligands: NP2 and dppf. The electronic

structures of both complexes are similar, but the different geometrical constraints

imposed by the two phosphine ligands make two complexes with very different reac-

tivity. We have utilized various computational tools to explain the spectroscopic and

reactivity of this two complexes. While, we haven’t discussed the electrocatalytic ac-

tivity of these complexes in this dissertation, it is worth noting that 1 reduces protons

at a very low overpotential.

4.5 Future Works: Towards a Molecular Descriptor for Hydrogen Evolution

Catalyst

With the ever increasing pressure on chemical industry and academia to produce

and develop products and results at the shortest time with minimum cost and the

relative scarcity of the funding sources, there is more need than ever to produce new

ideas and increase the success rate of the scientific endeavors. There are two methods

that have proven to be helpful and were initially embraced by the pharmaceutical

companies to escalate and optimize their efforts in drug discovery. They had a 10200

drug-like chemical space and it seemed as if all the low-lying drugs were already been

harvested. With such a huge space to cover and search, there is a need for massive par-

allelization and use of high-throughput methods as well as using molecular descriptors

that can, with the help of data manipulation and machine learning methods, quickly

search a big part of chemical space and screen the undesirable molecules and produce

a handful of candidates. These ”brute force” approaches to material discovery can

be classified as : Combinatorial methods and computational approaches.[32]
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4.5.1 Combinatorial Methods

Combinatorial methods are based on an iterative process for material discovery.

Firstly, a library of candidates with relatively similar structures is synthesized. It is

essential that in this step the synthetic process has only few steps with high yields

so that it can be automated by use of a robot-synthesizer. Secondly, the synthesized

candidates are tested to find which one has the desirable catalytic properties (Figure of

Merit, FOM). This step is normally parallelized as well. Typically FOMs are product

selectivity, enantioselectivity, and price. In the case of hydrogen evolution catalysts,

the FOMs are turnover frequency, overpotential and perhaps water solubility. Finally,

it is time for using data analysis. By using data-science tools, we search for relations

between the FOM and different chemical properties. Within this three-step framework

the search for a new homogeneous catalyst can be mapped into a search for an optimal

region in a multi-dimensional space. Combinatorial methods well-suit the problems

were the large search space make the conventional methods improvident. Once an

initial desirable candidate is found, then a new library is constructed around that

compound to sample this smaller region with a higher resolution!

It is worth noting that, as it is the case in computational chemistry, there is a

trade-off between the quantitative precision and screening time and cost. Although,

this field is still in its maturation time, it has been successfully applied and resulted

in many discoveries.[106, 84, 205, 3, 156]

4.5.2 Computational Approaches

The theoretical approaches and calculations have grown exponentially in recent

decades. Once exclusively a scientific and academic interest, theoretical calculations

of catalytic reactions is now at the stage of solving commercial problems. These
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endeavors are primarily focused on modifying the ligands to make the catalysts more

selective and more efficient.

The biggest challenge in theoretical modeling of catalysts, in particular the ones

with transition metals, is choosing the right model system. Experimental setups are

normally too complicated to model. They are comprised of precursors, catalysts,

solvents, counter-ions, electrodes, substrates and etc. It is impractical to model all of

this; moreover it does not necessarily improve our insight and understanding. Also,

in case of transition metals, appropriately modeling the d orbitals (and electrons) or

have the right molecular mechanic’s parameters for these metals is also challenging.

Also, we should note that catalysis, in its very nature, a kinetic problem. Hence,

inevitably, the transition state, its structure/function, are of paramount importance,

because it governs the activation energy and rate of the reaction. A single model,

can not deal with all of these parameters. So practically, we choose a smaller and

‘hopefully’ representative system.

Combinatorial design is based on finding the fastest way to calculate a molecular

descriptor, that can uniquely distinguish between structures and correlates with

the FOM. The Quantitative Structure-Activity Relationship (QSAR) equation is our

predictive model that correlates the experimental results to the molecular descriptor.

Ab initio calculations are assumed to be very expensive for screening enormous

libraries. While this is true, we can benchmark the lower-level calculations for par-

ticular forms of catalysts and use the less exact methods that preserve the trends,

in a qualitative/semi-quantitative manner, for the molecular descriptor. Also with

the increase in the computational power, as it was discussed in previous chapters,

the computational cost of QM-related methods are becoming less important and less

problematic. Another venue is the realization of quantum computers and quantum

computation. Quantum computers are ideal for doing parallel search. by utilizing
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quantum mechanic’s peculiarities, and are also perfect for solving quantum problems.

Hence, in parallel with developing and relying on soft computational methods it is

worth exploring ab initio and quantum mechanical descriptors in catalysis. This was

the main incentive for using polarizability as a descriptor for quantum transport in

the first section of this dissertation.

Soft computational methods suffer from the fact that the model may not comprise

of all the crucial parameters. Currently, the way around this problem is to calculate

as many descriptors as possible and by using “chemical intuition” and benefiting

from statistical methods choose the most relevant ones. So it is obvious that these

structure/function relationships are purely empirical and lack the foundation that an

ab initio method will give us based on the energies and FMOs.[32]

Tolman proposed the first stereo-electronic 3D-descriptors for catalysis as early as

seventies.[196, 195, 193, 194, 26] He correlated the basicity and acidity of phosphorus

ligands to the CO stretching frequency of the coordinated to metal in Nickel com-

plexes. He defined a measure called cone angle, θ, which was defind as the angle of

a cylindrical cone that has an origin at 2.28 Å from the center of P in monodentate

ligands. This concept was further developed and expanded to include asymmetrical

ligands as well. While this is generally a useful measure to predict the structure, it

has some limitations specially in the case of bulky ligands where a more stable struc-

ture can be formed by distortions from the perfect structures. Similar to the case we

studied in last section(1).

An trade-off between ab initio method calculations and soft computation is using

the Semi-empirical quantum mechanical methods. These methods are faster than

first principle calculation and can be used to categorize and screen a mid-size (100 to

1000) libraries in a reasonable time. For instance, a two dimensional stereo-electronic

map for characterizing phosphines and phosphates was developed in the early 2000s
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based on semi-empirical methods.[37] More recent attempts have been made in using

computational tools such as electrostatic potential calculations to categorize ligands

and make predictions for organometallic compounds.[127, 187, 58] It is important to

know the limitations of each of these methods. For example, while the electrostatic

potential maps are very useful, they are not very representative and accurate for core

electrostatic characteristics of a complex with bulky ligands. In case of bidentate

phosphine ligands, there is a theoretical measure, called flexibility, based on the bite

angle range of a ligand in an energy range close to the minimum is proposed. Unlike

bite angle that is measurable, this is completely theoretical and can be used as how

easily a ligand can accommodate different coordination state in a catalytic cycle by

changing its bite angle without a huge energy penalty.

4.5.3 Preliminary Results: New Descriptor?

The machine-learning and linear regression modeling approaches have been suc-

cessfully applied to material discovery for solar energy and even hydrogen evolution

catalysts. But it the field of hydrogen evolution catalysts, most of these efforts are

concentrated on heterogeneous hydrogen evolution catalysts.[41, 31, 89, 120, 83, 151,

70, 77, 186] Hence, We still have a big challenge facing us in designing a hydrogen

evolution catalyst that is inexpensive, made from abundant metals that is fast and

have a small overpotential and can act in an aqueous solution. It seems that we can

successfully synthesis a complex that has a high turnover frequency or has a very

small overpotential and not both simultaneously. Recently, we have found that in

pentacoordinate Fe complexes, such as the ones discussed in this section, there is

a correlation between the overpotential and the LUMO energy of these compounds

(Correlation Coefficient = 0.98). We have also found that the same correlation (0.98)

is obtained for the overpotential of these structures with their HOMO-LUMO gap.
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This raises the question of whether we can use the LUMO and HOMO/LUMO gap

as a design guideline for a rational and computationally-assisted design of iron-based

hydrogen production catalysts.

I believe since, these compounds are structurally related, their reorganization

energy in the course of electron transfer steps should be comparable. In this case, it

has been shown that we can correlate the experimental reduction potential of organic

compounds to their HOMO/LUMO energy. Further investigation is needed to make

this deduction an statistically reliable result.[133, 134]

Developing quantum-mechanical based descriptors, ab initio or semi-empirical,

are particularly helpful in understanding reaction mechanisms. Also, they usually

have a definite physical meaning which make it easier to assess their limitations (for

instant see A). But the main disadvantage of these methods is that quantum chemical

calculations are done most often than not on the most stable structure. Also they are

at zero temperature and zero pressure (it should be noted that these two conditions

are addressed within the DFT framework). As a result, the quantum mechanical

descriptors do not account for the entropic or temperature effects.

In short, although there are some obstacles that need to be addressed, the search

for Quantum Mechanical, 3-dimensional molecular descriptors and synchronously

benefiting from the improvements and progress in the statistical methods, can help

reducing the time needed for material discovery.
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[177] Markus C. Scharber, David Mühlbacher, Markus Koppe, Patrick Denk,
Christoph Waldauf, Alan J. Heeger, and Christoph J. Brabec. Design rules
for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion
efficiency. Adv. Mater., 18(6):789–794, 2006.

[178] D Sellmann, U Kleinekleffmann, L Zapf, G Huttner, and L Zsolnai. Transition-
Metal Complexes With Sulfur Ligands. SYNTHESIS AND STRUCTURE
OF THE BENZENEDITHIOLATO-IRON COMPLEXES [ASPH4] 2 [FE
(S2C6H4) 2] AND [FE (S2C6H4)(PME3) 3]. J. Organomet. Chem., 263(3):321–
331, 1984.

[179] S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke,
E. Warkentin, R. K. Thauer, and U. Ermler. The Crystal Structure of [Fe]-
Hydrogenase Reveals the Geometry of the Active Site. Science (80-. ).,
321(5888):572–575, jul 2008.

[180] Per E M Siegbahn, Jesse W. Tye, and Michael B. Hall. Computational studies
of [NiFe] and [FeFe] hydrogenases. Chem. Rev., 107(10):4414–4435, 2007.

[181] John G. Simmons. Generalized Formula for the Electric Tunnel Effect be-
tween Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys.,
34(6):1793, 1963.

[182] Krzysztof Slowinski, Richard V. Chamberlain, Cary J. Miller, and Marcin Ma-
jda. Through-bond and chain-to-chain coupling. Two pathways in electron
tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am.
Chem. Soc., 119(17):11910–11919, 1997.

107
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MULLIKEN POPULATION ANALYSIS
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Population analysis is about looking at the charge distribution within a compound.

This is a more rigorous version of the partial charges that chemists use within the

domain of Lewis structures. Because partial charges can not be measured experimen-

tally, there is a level of arbitrariness in their definition. But the idea behind all the

various models is very simple; one must define the spatial boundaries of atoms in a

molecule and integrate over the charge distribution within the volumetric boundary.

This causes more fundamental question to arise: where does an atom electron cloud

starts?, where does it ends?, Which nucleus does an specific volumetric element of

the electron cloud belong to?

Mulliken tried to resolve this question by Partitioning the electrons onto the atoms

based on the contribution of atomic orbitals of a specific site to the molecular orbital.

This method is benefiting from the theoretical framework of LCAO, Linear Combi-

nation of Atomic Orbitals. Within this framework the total number of electrons, N ,

is:

N =
∑
j

(
∑
r,s

∫
cjrφr(rj) cjsφs(rj) drj) (A.1)

where j is the molecular orbital, r and s are atomic indexes of the atomic orbital φ.

This equation can be recast into:

N =
∑
j

(
∑
r

c2
jr +

1

2

∑
r,s

cjrcjsSrs) (A.2)

This equation consists of two sums, the first summation simply denotes the electrons

that belong to one atom. The second summation can be interpreted as the shared

electrons between two atoms. In fact this second term is the problematic term and is

difficult to handle.

In order to treat the second term Mulliken proposed to break these electrons in half

between the two atoms. Here is a very quick red flag for chemists, because Mulliken

charges are assigned to atoms by neglecting the electronegativity of the atoms. So,
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in Mulliken framework the electrons that belong to atom k are:

Nk =
∑
j

(
∑
r∈k

c2
jr + 0.5

∑
r,s∈k

cjrcjsSrs + 0.5
∑
r,s/∈k

cjrcjsSrs) (A.3)

The second problem with Mulliken charge can be seen within this equation. Mulliken

charges are notoriously basis-set dependent. So they are not meant to be used as a

quantitative measure. They are a very nice comparative tool that can give relatively

good chemical intuitions into the system at very computationally inexpensive way.
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This code calculates the normal vector of the planes that pass through S-Ni-S and

P-Ni-P. Then it calculates the angle between the two planes and finally checks to

make sure it reports the acute angle.

import numpy as np

def bordar(a,b,c):

vec1=np.array(b)-np.array(a)

vec2=np.array(c)-np.array(a)

vec3=np.cross(vec1,vec2)

return vec3

Ni=[ -0.248893000, 0.863606000, -0.954728000]

S1=[ -2.143854000, 1.383427000, -2.030408000]

S2=[ -0.697042000, 2.443230000, 0.635116000]

P1=[ 1.859796000, 0.710333000, -0.230978000]

P2=[ -1.181825000, -1.238211000, -0.130040000]

bor1=bordar(Ni,S1,S2)

bor2=bordar(Ni,P1,P2)

ang=np.arccos(np.dot(bor1,bor2)/(np.linalg.norm(bor1)*np.linalg.norm(bor2)))

if np.isnan(ang):

if np.linalg.norm(bor1)==np.linalg.norm(bor2):

print 0.0

else:

print np.pi*180.0/np.pi

else:

print ang*180.0/np.pi
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