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ABSTRACT    

  The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the 

most versatile nanoscale materials, provided opportunities to tailor material's properties, 

and boosted related technological innovations. Colloidal nanocrystal-based materials 

have been demonstrated success in a variety of applications, such as LEDs, electronics, 

solar cells and thermoelectrics. In each of these applications, the thermal transport 

property plays a big role. An undesirable temperature rise due to inefficient heat 

dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, 

the first project is focused on investigating the thermal transport in colloidal nanocrystal 

solids. This study answers the question that how the molecular structure of nanocrystals 

affect the thermal transport, and provides insights for future device designs. In particular, 

PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and 

ligand binding group are systematically varied to study the corresponding effect on 

thermal transport.  

  Next, a fundamental study is presented on the phase stability and solid-liquid 

transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase 

change of nanoparticles has been a long-standing research topic, the melting behavior of 

colloidal nanocrytstals is largely unexplored. In addition, this study is of practical 

importance to nanocrystal-based applications that operate at elevated temperatures. 

Embedding colloidal nanocrystals into thermally-stable polymer matrices allows 

preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling 

observation of stable melting features. Size-dependent melting temperature, melting 

enthalpy and melting entropy have all been measured and discussed. 
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  In the next two chapters, focus has been switched to developing colloidal nanocrystal-

based phase change composites for thermal energy storage applications. In Chapter 4, a 

polymer matrix phase change nanocomposite has been created. In this composite, the 

melting temperature and energy density could be independently controlled by tuning 

nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on 

metal matrix-metal nanocrytal composite is presented. This approach enables excellent 

morphological control over nanocrystals and demonstrated a phase change composite 

with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change 

materials, such as organics and molten salts. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Colloidal Nanocrystals  

  Colloidal nanocrystals is an important class of nanomaterials that draws tremendous 

attention in the recent 30 years, starting with pioneering work by Brus et al,.
1, 2

 Since then, 

relentless efforts have been devoted into modifying the synthesis, studying the properties 

and integrating them into devices.
3-12

 Until now, successful nanocrystal synthesis have 

been demonstrated on a variety of compositions, such as metals, metal oxide, and 

semiconductors. Excellent morphological control over nanocrystal's size and shape have 

also been demonstrated.
6, 10, 11

 In-situ techniques have been developed to visualize the 

growth of nanocrystals.
13, 14

 Tons of nanocrystals have been produced for ultra-LED 

screen with enhanced displaying properties(Figure 1b). Consequently, colloidal 

nanocrysals is considered one of the most versatile nanoscale materials.   

  Colloidal nanocrystals consists of an inorganic core and organic ligands bound to its 

surface. The larger surface area and quantum confinement from the nanocrystal core is of 

both interest for fundamental studies and applications.  The surface ligand plays a big 

role in controlling the nanocrystal's morphology during synthesis, passivating the high-

energy surfaces and imparting them with solubility. The solubility of colloidal 

nanocrysals again supports low-cost solution-phase processing, allows deposition onto 

arbitrary substrates and embedding into various matrices. Based on this, solution-

processed LEDs,
15, 16

 photovoltaics,
17, 18

 and electronics
19, 20

 have all been reported.  
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  The optical properties was firstly thoroughly studied on semiconductor colloidal 

nanocrystals (quantum dots). The quantum confinement of nanocrystal yields a tunable 

bandgap, which could be used to produce luminescence covering the entire visible 

spectrum.
21

 Surface chemistry later has been found important to affect nanoparticle's 

transport properties and energy conversion efficiencies.
22-28

 For example, it was found 

that the charge transport in nanocrystal solids could be greatly improved by replacing the 

native organic ligands with ligands that have compact structures.
29

 A variety of short 

organic ligands, inorganic ligands have then been developed and applied to facilitate 

efficient electron transport.  

 

Figure 1.1  (a) In-situ observation of colloidal Pt nanocrytal growth using transmission 

electron microscopy [Ref 14], Ultra-LED display that exhibits enhanced  brightness and 

sharpness using quantum dots technology. 
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1.2 Fundamentals of thermal transport 

  Heat in solids is conducted by diffusion of energy carriers. There are two types of 

carriers that participate in thermal transport, i.e., free electrons and phonons. In metallic 

materials, heat is predominantly conducted by electrons due to the large free electron 

density. In dielectrics and moderate doped semiconductors, heat is conducted primarily 

by lattice waves, which has quantized energy and momentum, and could be depicted 

using a phonon picture. Since this work will discuss the thermal transport in both metallic 

composites and semiconductor nanocrystal thin films, brief introductions of both 

electrons and phonons are given . 

1.2.1 Phonons  

Lattice waves and phonons 

  In a crystalline solid, atoms are connected together via chemical bonds in a periodic 

manner. At 0 K, all atoms freeze at the equilibrium position with no atomic vibrations. At 

a non-zero temperature, atoms start to vibrate and displace from the equilibrium position 

due to thermal energy. This energy, scales as kBT, leads to thermal transport throughout 

the solid. The motion of atoms in solids could be described using a spring-mass system 

with atomic mass M, spring constant K and inter-atomic space A (Figure 1.2). A one-

dimensional lattice model is often used to understand this process and it turns out the 

classical wave equation could be applied to described the lattice waves with minor 

modification:  
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  Solve this equation, we can obtain the dispersion relation, which decribes the relation 

between the wavevector and frequency: (Figure 1.2)  

    
 

 
    

  

 
  

   Note that the wavevector k here is not arbitrary and it has to satisfy two requirements: 

1). The largest allowable wavevector is 
  

 
, which limited by the inter-atomic distance. 

Because any wavevector larger than 
  

 
 will lead to a wavelength smaller than  , which is 

not physically meaningful for a real crystal;. 2). The smallest wavevector is   
  

 
 that 

limited by the dimension of the crystal, and the smallest increment of k is also 
  

 
 . 

  
   

 
  (n = 0, 1, 2, 3...) 

  The dispersion relation is of great importance because it provides all the allowable 

vibration modes in the lattice. However, this treatment based on classical mechanics will 

give an incorrect answer to the energy of each oscillator. From quantum mechanics, if we 

solve Schrodinger equation, we will obtain the exact same formula of dispersion relation 

but with quantized oscillator energy. 

          
 

 
    (n = 0, 1, 2, 3...) 

  The energy quanta of lattice vibrations    has been named as phonon, which is a 

concept parallel to the quantized energy of electromagnetic waves - photon. This 
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treatment significantly simplifies the transport picture, instead of considering all the wave 

propagation in a solid, we can then consider phonon particles travelling in a box. 

 

Figure 1.2 (a) Schematic of 1-dimensional mass-spring system with atomic mass M, 

spring constant K and interatomic distance A, Phonon dispersion of (b) mono-atomic 

chain and (c) diatomic chain. 

Phonon branches and polarizations 

   In a lattice basis that consists of two types of atoms (different mass, different spring 

constant or different distances), there will be in-phase vibration modes (acoustic branch) 

and out of phase vibration modes (optical branch) as shown in Figure 1.2 (c). The optical 

phonons in general have higher energies but their contribution to thermal transport is very 

limited because of the low speed. The speed of phonon is determined by the group 

velocity, vg. 
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  As we can see, the acoustic branch of phonons have a larger slope (  ), and hence 

dominates thermal transport. The optical phonons although have greater energies, its 

group velocity is small and leads to negligible contribution to thermal transport. 

   In one-dimensional atomic chain, atoms can only vibrate in the longitudinal direction, 

where the atomic displacement is same as wave propagation, hence only one longitudinal 

branch exist. In a three-dimensional crystal, the atoms can also displace in two directions 

that perpendicular to the wave propagation, hence there are two more transverse branches 

in typical band diagrams.  

Density of states and Debye approximation 

  At each energy level, there can be more than one corresponding wavevector, which lead 

to degenerate phonons. A concept of density of states (DOS) is created to represent the 

energy degeneracy. We note that this concept is not unique for phonons but broadly used 

for other particles, such as photons and electrons. To obtain the DOS of phonons, we 

count how many phonon modes exist in a given k space.  For example, in a three-

dimensional cubic crystal with L as the length, the number of phonon modes within a 

sphere in k space is: 

    

 
    

       
 

The DOS of phonons D(ω) is defined as:  
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where we need to specify the relation between wavevector k and  frequency ω. For 

acoustic phonons, Debye approximation is always used, which assumes a linear 

relationship between k and ω, i.e., ω = vgk, where vg is the group velocity of phonons in 

the long wavelength limit (speed of sound). Hence, the DOS could then be represented as: 

     
         

         
  

    

     
  

  If we consider the per volume basis DOS and 3 polarizations of phonons, the DOS will 

be: 

     

 
    

     
 

  
 

   

     
    

  We note that Debye approximation gives a reasonable estimation of acoustic phonons 

with small wavevectors, it overestimates the velocity close to the Brillion zone boundary. 

Also, it is not appropriate for optical phonons, which could be estimated using Einstein 

model.  

Bose-Einstein distribution and Fermi-Dirac distribution 

  The DOS of phonons provides all the allowable energy states in materials, however it 

tells nothing about which and how many phonons will present at a given temperature. 

This question could be answered by statistical thermodynamics. According to statistical 
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thermodynamics, phonons and photons are obeying the same distribution, i.e. Bose-

Einstein distribution, and they are bosons. 

          
 

    
  
   

   
 

  Electron on the other hand, obeys a different distribution, i.e. Fermi-Dirac distribution 

and thereby is a fermion. It only changes a sign in the denominator, but in fact, this is one 

of the fundamental differences between electrons and phonons. 

          
 

    
  
   

   
 

  A simple picture could be used to illustrate these two distributions: Fermi-Dirac 

distribution is like a tall but narrow bottle, whereas Bose-Einstein distribution is like a 

big but shallow plate. When you fill electrons into the narrow bottle, only two electrons 

are allowed at the same height, i.e. the same energy level. In contrast, the big plate (Bose-

Einstein distribution) allows many phonons filled at the same energy level. This 

difference determines that only the electrons at the highest level (near the Fermi level) 

can participate in heat or charge transport, while all phonons make contributions to heat 

transport. 

Specific heat and thermal conductivity 

  Until now, we have discussed phonon energy, allowable energy states and statistical 

distribution, hence we are able to calculate the total energy of all lattice vibrations, which 

is just a summation of phonons over all wavevectors and polarizations: 
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  For bulk crystals, the discretization in K space is very small, and we can replace the 

summation with a integration.  

          
 

 
         

 

 

  We then applied Debye approximation and take derivative with respect to temperature T 

to get phonon specific heat Cp, where the Debye frequency    represents the cutoff 

frequency of phonons in solids. 

    
  

  
  

   

     
     

   
      

 
   

 

     
  
   

    
 

  

 

 

  At low temperatures, this formula could be further simplified as following form: 

    
      

  
 
 

 
  

 

  
 
 

 

which says the phonon specific heat scales as T
3
 at temperature lower than Debye 

temperature   . The Debye temperature is the temperature that all phonons are excited in 

the solid, and can be related to Debye frequency as: 

    
   

  
 

  We have now established the formula of phonon specific heat   , and the phonon 

thermal conductivity    could be represented as    
 

 
       using kinetic theory. This 
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simple form, originally used to describe the thermal conductivity of gas molecules is 

valid to predict the thermal conductivity of both electrons and phonons. This formula 

could also be derived directly from solving Boltzman transport equation (BTE) with 

relaxation time approximation. The mean free path l is an important concept that 

represent the average traveling distance of phonons between two scattering events.  

Phonon scattering 

  In a perfect crystal with only harmonic interatomic potential, all lattice waves can be 

decomposed into normal modes and propagate without interaction. In this case, there is 

no resistance to thermal energy transport, which would lead to a infinite thermal 

conductivity. However, phonons in a real crystal are encountering all types of scatterings 

during transport, which leads to a finite thermal conductivity. The occurrence of phonon 

scattering could be roughly categorized into two reasons: a. The imperfections of crystals, 

including defects, impurities, and grain boundaries. These structural features in real 

crystals will lead to changes of mass and/or spring constant in the system, hence induces 

disturbance on phonon transport. b. The anharmonic interatomic potential. The harmonic 

assumption of  interatomic potential is only true near the equilibrium point, where the 

displacements are small. As temperature increases, the atomic vibration intensifies, at 

which point anharmonic terms comes in. This will result in phonon-phonon scatterings.  
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Figure 1.3 Illustration of different scattering mechanisms, (a) normal process, and (b) 

unclampp process. (c) Temperature-dependent thermal conductivity trend of a dielectric 

material and corresponding dominant scattering process at different temperatures. 

 

  Phonon-phonon scattering could be further classified into two categories: normal 

process (N process) and umclapp process (U process) The fundamental difference 

between these two mechanisms is: In N process, both energy and momentum are 

conserved, whereas in U process, momentum is no longer conservative. The U process is 

arising from the finite wavevector of lattice waves: For instance, the largest wavevector 

for a lattice wave is 2π/3a; If two lattice waves combines and each has a wavevector of 

π/2a, the produced lattice wave will have a wavevector of 7π/6a, which exceeds the 

wavevector limit and cannot exist.  As a result, the third lattice wave lose some 

momentum and has a wavevector of π/6a. We note all the scattering mechanisms(defect, 
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impurity, grain boundary and unclampp scattering ) that cause momentum reduction will 

lead to resistance to thermal transport. 

  To consider all the different scattering mechanisms, Matthiessen rule is always used, 

which relates the overall relaxation time   to the relaxation time of umclapp scattering, 

boundary scattering and impurity scattering. Relaxation time is the average time that 

phonon travels between two collisions, and mean free path l could be represented as l = 

vgτ  if we treat all phonons have the same velocity. 
30

 

      
     

     
   

  
     

   
       

  
       

  
         

  We note that the relaxation time are all frequency dependent, and so does mean free 

path. Hence, we should modify the expression of thermal conductivity as: 

   
 

 
      

  

 

          

  In addition, among these scattering mechanisms, phonon-phonon scattering is a strong 

function of temperature, which indicates the thermal conductivity should also be a 

function of temperature. At low temperatures, low frequency phonons with long mean 

free path dominate thermal transport and phonons were majorly scattered by boundaries. 

At higher temperature, shorter wavelength phonons take it over, which is then scattered 

primarily by defects and impurities. As temperature increased to even higher, more 

phonons are "active", and umclapp scattering dominates. As a result, the thermal 
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conductivity decreased with further increment in temperature due to the large number of 

phonon-phonon scattering. 

1.2.2  Electrons  

  Electron is the primary heat carrier in metals but contributes very little to the thermal 

transport in dielectrics and semiconductors. This is dictated by its fermion nature, i.e. 

only the electrons closed to the Fermi level could participate in energy transport. Fermi 

level is the highest filled energy level at 0 K. In metals, the Fermi level is in the middle of 

conduction band, thereby a large population of electrons could participate in energy 

transport. For semiconductor and dielectrics however, the Fermi level locates in the 

bandgap between conduction band and valence band, which means there is no energy 

carrier at 0 K.  The size of the bandgap determines if a solid is a semiconductor or a 

dielectric material. Semiconductor usually have a small bandgap, and some amount of 

electrons can be thermally excited as temperature increases and carry energy. Dielectric 

materials on the other hand have larger bandgaps, and hence there is negligible 

population of charge carriers even at room temperature.  

Electronic thermal conductivity 

  Just like phonon thermal conductivity, the electronic thermal conductivity can be 

expressed as     
 

 
          . Several comparisons of interest could be made here 

between phonon thermal conductivity and electric conductivity: 

a) The specific heat of phonons and electrons are both a function of temperature. At 

low temperatures, phonon specific heat scales as T
3
 and it will reach to a constant 
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at Debye temperature as all modes of phonons have been excited. For electrons, it 

increases as T in the entire temperature range.   

b) The velocity of free electrons is much greater than (2 - 3 orders of magnitude) the 

group velocity of phonons. The electron moves at a speed of ~ 10 e6 m/s, whereas 

the speed of sound is ~ 10 e3/s  for most materials.  

c) At room temperature, the electron mean free path is around 1e-8 m. For phonons, 

its mean free path also depends on frequency, but in general a good heat 

conductor should have a mean free path 2 - 3 orders of magnitude greater than 

that of electrons.  

Electron Scattering 

  Electrons are predominantly scattered by phonons. That's why superconducting in 

general occurs at very low temperature, where not many phonons activated. The 

relaxation time of electron is inversely proportional to temperature,        , and 

electronic thermal conductivity is 100 - 1000 times greater at low temperatures (<10 K) 

than that at room temperature. 

Wiedemann-Franz law  

  Since electrons are both charge carriers and heat carriers in metals, it is a smart idea to 

compare the electrical conductivity and thermal conductivity of metals. Interestingly, it is 

found that the electrical conductivity σ and thermal conductivity k can be related by the 

famous Wiedemann-Franz law: 
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where L is called Lorenz number and it is a constant for most metals. 

   
  

 
 
  

 
 
 

                  

  This law presents the beauty of simplicity in science. In addition, it is practically useful 

to determine the thermal conductivity of metallic materials. Because the measurement of 

thermal conductivity is generally more complicated than measuring electrical 

conductivity.  

1.2.3  Thermal transport in nanostructures 

  In nanostructures, thermal transport could be affected by classical size effect as well as 

quantum confinement. As the characteristic length reduces, the boundary scattering 

enhances as we discussed previously, which will lead to reduction of mean free path and 

in turn thermal conductivity (Classical size effect). Quantum confinement also occurs 

because the smallest increment of wavevector  
  

 
 increases as L decreases. The quasi-

continuous dispersion for bulk materials becomes discrete and the DOS changes. We note 

that these size effects are true for electrons as well as phonons.
31
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Figure 1.4 Electronic and phononic density of states in low dimensional materials due to 

quantum confinement [Ref 31]. 

 

1.3 Thermal conductivity measurement (3 omega technique) 

1.3.1 Basic Principle and Experiment Setup  

  We used 3 omega technique to measure the thermal conductivity of the materials of 

interest. The 3 omega technique, originally developed by Cahill,
32

 have been widely 

applied to thermal conductivity measurements for thin film geometries. In brief, 3 omega 
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technique uses a metal line on top of the sample as a combined resistive heater and 

thermometer. During measurements, heat flux is generated by running an AC current, 

I(ω), through the metal line. The excited AC current leads to a temperature oscillation of 

the metal line at 2 ω, which in turn causes the oscillation of electrical resistance of the 

metal line R(2ω). Combined the 1ω current I(ω) and 2ω electrical resistance R(2ω) gives 

a 3ω voltage V(3ω) = I(ω)* R(2ω), which contains the temperature information.  

 

Figure 1.5 Schematic illustrates 3 ω technique 

  

  The instrumental of our 3 omega station strictly follows the modified design suggested 

by Feser
33

. Both current source (Keithley 6221) and the built-in voltage source of lock-in 

amplifier (Stanford Research Systems SR830) have been identified as appropriate power 

source. The lock-in amplifier is also used to measure the 3rd harmonic voltage signals 

V(3ω). A potentiometer with known resistance (Rpot) is placed in series with the sample's 

resistive heater. Prior to measurement, a small excitation DC current is running through 
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the resistive heater and the potentiometer to determine the resistance of heater (Rs) by 

measuring the voltage drop, Rs = Rpot  
  

    
. Then, a larger AC current is excited and driven 

through the sample's heater, at which point the 3rd harmonic voltage signal is measured. 

As suggested by Dames
34

, instead of directly measuring V3w,s, we adjust the multiplying 

digital-to-analog (DAC) converter so that the multiplying constant is α = Rs/Rpot, and then 

measure the differential 3rd voltage signal V3w,diff = V3w,s - V3w,αpot. This helps eliminate 

any undesired response and the signals only comes from the sample. The temperature 

fluctuation in heater could be determined by: 

      
  

  

        

     
   

  To convert 3ω electrical signals into thermal responses, the temperature coefficient of 

resistance ( TCR= 
 

  

   

  
 ) is measured using a home-built thermal stage. In this 

measurement, the resistances of the 3ω lines were measured at 5 different temperature 

points between 15°C and 30°C, and a linear fit was used to determine the slope. 

 

Figure 1.6 Home-built stage for temperature coefficient of resistance (TCR) 

measurement.  
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1.3.2 Data Reduction 
 

  For a multilayer-film-on-substrate system, an analytic solution for 2-D heat conduction 

was reported by Borca-Tasciuc.
35

 The temperature change on the heater    could be 

expressed as: 

    
  

     
 

 

    

        

    
  

 

 

 

where 

     
  

     

          
             

     

     

          
          

, i= 2,...n, 

         
  

   

   
      , 

              
    

   
 . 

  In the above expressions, n is the total number of layers including substrate, and 

subscript i represents the ith layer from top to bottom. Other parameters are: k is thermal 

conductivity, α is thermal diffusivity, d is layer thickness, ω is angular frequency, P is 

heater power, l is heater length and b is the half heater width.  

    We note that the analytic solution in general needs iterative substitution to fit the 

temperature profile. As suggested by Cahill
32

, a simpler formula of could be used to 

calculate the temperature change on substrate under two assumptions: a. Line heater 

assumption, which requires the penetration depth q
-1

 =         to be much larger than 
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the heater half width b; b. Semi-infinite substrate assumption, which requires the 

penetration depth q
-1

 =         to be much smaller than substrate thickness. 

    
 

    
       

  

  
                   

 

    
  

where η is a constant and has been evaluated to be ~ 0.923. Importantly, using this 

formula, the thermal conductivity of substrate could be calculated as simple as: 

    
 

   
 

      

         
 
  

 

And the thermal conductivity of a thin film could then be derived using 1D heat conduction 

model if the thin film thickness (Tf ) is much less than half heater width (b) 

    
   

 ω   
  

1.3.3 Calibration samples 

  To calibrate our 3 omega setup, a total of six control samples have been measured and 

the results are summarized in Table 2. Among these control samples, three of them are 

bulk samples (Si, GaAs and quartz) and three are thin film samples (amorphous Al2O3, 

amorphous SiO2 and polystyrene) with thickness ranging from 50 - 200 nm. Our results 

are in excellent agreement with the suggested values in literature. 
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Figure 1.7 3 ω data of a bulk quartz sample. Temperature rise of the heater decreases as 

frequency increases. 

Table 1.1 Summary of control samples that used for 3 ω station calibration 

Sample 
Sample 

Type 
Thickness 

Line 

Dimension 

Measured 

Thermal 

Conductivity 

Reference 

Si Bulk ~ 500 um 

3 X 200 um 

5 X 500 um 

45 X 2600 um 

 

148 ± 10 W/m-

K 
142 W/m-K

36
 

Fused Quartz Bulk ~ 500 um 3 X 300 um 
1.4 ± 0.1 W/m-

K 

1.35 W/m-

K
37

 

GaAs Bulk ~ 500 um 3 X 180 um 
48.6 ± 2.0 

W/m-K 
55 W/m-K

38
 

Amorphous 

Al2O3 
Thin film 150 nm 45 X 2600 um 

1.5 ± 0.1 W/m-

K 
1.6 W/m-K

39
 

Amorphous 

SiO2 
Thin film 50 nm 3 X 300 um 

1.4 ± 0.1 W/m-

K 
1.3 W/m-K

40
 

Polystyrene Thin film 200 nm 45 X 2600 um 
0.14 ± 0.02 

W/m-K 

0.15 W/m-

K
41
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1.4  Size dependent melting of nanostructures 

  Size-dependent melting is a phenomenon commonly observed in nanostructures. It 

originates from the large surface to volume ratio as the characteristic length falling into 

the nanometer range. Pawlow predicts this effect as early as 1909 by considering the 

equilibrium state between solid and liquid that have the same vapor pressure.
42

 Buffet and 

Borel modified Pawlow's formula later, and their model is usually refer to homogeneous 

melting model (HMM).
43

 As the name indicates, this model ignores the surface melting 

and considers the melting occurs suddenly throughout the crystal once the temperature 

reaches the melting point. Other two important thermodynamic models are liquid skin 

model (LSM) proposed by Couchman
44

 and liquid growth model (LGM) proposed by 

Wronski.
45

 In these three models, the relation between nanoparticle size and melting 

point can be written in a similar form as below: 
46

   

 

  
   

  

 
         

  

  
     

 

 
         

 

  
   

  

 
 

   

      
                        

 

  
   

  

 
         

  

  
     

 

 
         

where T and Tb represents the melting temperature of nanoparticle and bulk materials, 

respectively. Other parameters are: H stands for bulk enthalpy of fusion, V stands for 

molar volume, γ stands for interfacial energies between two states, ρ stands for density 

and d stands for the diameter of nanoparticle. Distinct from HMM, LSM proposes the 

existence of a liquid layer with constant thickness δ below the melting temperature, and 
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this parameter is always used as a fitting factor. It should be noted that LSM predicts a 

nonlinear relations between T and d due to the parameter δ. As shown in the formulas, 

LGM has a very similar expression as HMM, and both models predict a linear 

relationship between T and d. Which differs from HMM is that LGM also takes surface 

melting into consideration, and thereby predicts a larger magnitude of melting point 

depression compared to HMM. 

Figure 1.8 (a) Illustrative scheme of three thermodynamic model for size-dependent 

melting of nanoparticles, (b) Micro-fabricated nanocalorimetric platform for enthalpy of 

fusion measurements on nanoparticles [Ref 101]. (c) First experimental demonstration on 

size-dependent melting enthalpy of fusion on Sn nanoparticles by Lai et al. [Ref 48]. 

  The first experimental observation on melting point depression of nanoparticles is made 

by Takagi using scanning diffraction method.
47

 In this experiment, nanoparticles formed 

by evaporating low melting metals (Sn, Bi and Pb) on cleavage faces of silicon carbide 

single crystal. The diffraction pattern was then monitored by a electron diffraction 
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camera at different temperatures. The melting temperature was determined by finding the 

right point when the diffraction pattern disappeared. A more comprehensive experimental 

study was later carried out by  uffet and  orel, which have shown that the melting 

temperature of gold nanoparticles could be varied as large as 5    C as the diameter 

reduced from ~20 nm to ~3 nm.
43

 This study motivates us to decouples the phase change 

material's melting temperature from its chemical composition. 

  Compared to melting temperature, the size-dependent enthalpy of fusion was not 

experimentally demonstrated until 1996. The difficulty of measuring this quantity lies on 

extracting the small amount of heat during nanoparticle melting. To solve this problem, 

Lai et al. 
48

 micro-fabricated a platform with very small thermal mass. As Figure 2b 

shows, a thin metal line was designed as a heater and a thermometer. As a support, the 

SiNx membrane is fabricated with 50 nm in thickness, which in turn leads to small 

thermal mass. During measurements, a DC current is running through the heater, and the 

temperature change was determined by measuring the  resistance change of the metal line. 

Given the temperature - resistance dependence, the temperature change was determined. 

To extract the amount of latent heat, the temperature profile was then compared to a 

control sample, which performs in a same condition but contains no nanoparticle. Figure 

1.8c shows a size-dependent enthalpy of fusion of Sn nanoparticles as reducing the 

particle diameters. 

1.5  Thermal Storage and Phase Change Materials  

  Thermal energy in solid could be stored in three different forms, sensible heat, latent 

heat and chemical bonds. Among these three mechanisms, sensible heat is the most 
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common one, which utilizes material's specific heat to store energy. The drawback of this 

approach is the relative low energy density. Chemical thermal energy storage uses a 

chemical reaction to realize the energy absorption/release. Although an excellent energy 

density could be achieved in this manner, the control over the reaction and experimental 

condition have always been a challenge for practical applications. To accomplish thermal 

charging/discharging, the third approach utilizes the solid-liquid phase transformation of 

a thermal storage material as temperature increased/decreased. This mechanism is easy to 

implement and in general has a greater energy density compared to sensible heat storage. 

The thermal storage medium employed in a phase change system is often named as phase 

change material (PCM). 

  A proper PCM should have certain physical properties, among which three thermal 

properties are of the greatest importance. They are melting temperature, thermal energy 

density and thermal conductivity. 
49, 50

 The melting point of a PCM needs to be matched 

with a given working temperature in practical situations. This is the first requirement for 

selecting a suitable material. Once the melting temperature is satisfied, the next goal is to 

find a material with large energy density. Thermal energy density is a property describes 

how dense the energy can be stored in a material, and it could be evaluated by 

gravimetric basis or volumetric basis depending on working conditions. For mobile 

devices, gravimetric-based performance is of more importance, while for stationary 

storage purposes, volumetric energy density is more concerned. Accompany with these 

two, thermal conductivity is also important because it determines the energy transport 

rate in the system.  
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  Thermal properties of typical phase change materials are listed in Table 1.2 
49-52

 In 

general, PCMs can be classified into four categories: organics, hydrates, salts and metals. 

As the table shows, the employment of organics and hydrates are typically restricted to 

applications below 10 - 120 C. At higher temperature, metallic materials and salts are 

two choices. Salts are more attractive due to the abundance and low cost, however they 

suffer from corrosion issues and slow charging/discharging rate, which could be 

attributed to the low thermal conductivity. In contrast, metals are in general excellent heat 

conductors and have similar energy densities as volumetric basis calculation is applied. 

Previous studies have not seriously considered metals primarily due to its poor 

gravimetric energy density. However, metals should find applications in high temperature 

stationary thermal storage systems.   

Table 1.2 Thermal properties of typical phase change materials 

 

        

            

         C) 

Gravimetri

c latent 

heat (J/g) 

Volumetric 

latent heat 

(J/cm
3
) 

Thermal Conductivity 

(W/m-K) 

Organics 10-120 ~ 100-300 ~80-450 ~0.1-0.5 

Salt hydrates 
10-120 

 
~100-300 ~150-500 ~0.5-1 

Salts/ 

Salt 

Mixtures 

100-900 ~100-1000 ~200-2200 ~0.5-5 

Metals/ 

Metal alloys 
100-900 ~50-800 ~ 500-2400 ~10-430 
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1.6 Overview of this dissertation 

  This dissertation presents four studies on investigating thermal properties of colloidal 

nanocrystal assembles and composites. The first work (Chapter 2) examines how to 

manipulate the thermal transport in colloidal nanocrystal solids via structure 

modifications. This work is of significant importance because nanocrystal solids has been 

used for a variety of applications, and in each of these applications, the thermal transport 

property plays a big role. For example, a low thermal conductivity is desirable for 

thermoelectrics, and a high thermal conductivity is beneficial for electronics and LEDs.   

  In Chapter 3, the phase change behavior of several colloidal metallic nanocrystals (In, 

Sn, and Bi) is studied. This work is of interests from two aspects. First, the solid-liquid 

transformation of colloidal nanocrystals are largely unexplored and it could have distinct 

phase change behaviors than other type of nanoparticles. Secondly, the phase stability of 

nanocrystals is also important to applications operates at elevated temperatures, such as 

solar cells and catalyst. 

  Chapter 4 presents an example of applying metallic colloidal nanocrytasl for phase 

change thermal storage application. The use of nanocrystals provides flexibility to control 

phase change material's melting temperature via changing size. Hence, this material could 

a potential solution for thermal energy storage at the temperature region (200 - 300 
o
C) 

that inaccessible for organics.  

  In Chapter 5, a solution-phase synthesis on metal matrix-metal nanoparticle composite 

has been developed. This approach has the advantage over other techniques that it 

enables excellent control over nanoparticle's morphology. In addition, this metallic 

composite was demonstrated a phase change material with a thermal conductivity 2 - 3 
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orders of magnitude greater than typical phase change materials. This high thermal 

conductivity could facilitate fast thermal energy charging/discharging rates in thermal 

cycles. 
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CHAPTER 2  

MODIFYING THMERMAL TRANSPORT IN NANOCRYSTAL SOLIDS USING 

SURFACE CHEMISTRY 

ABSTRACT 

We present a systematic study on the effect of surface chemistry on thermal transport in 

colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand 

binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, 

butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our 

experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal 

conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does 

not significantly impact thermal conductivity. (iii) Reducing the ligand length can 

decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing 

the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can 

exceed the effect of NC diameter and becomes more pronounced as NC diameter 

decreases. By combining these trends, we demonstrate that the thermal conductivity of 

NC solids can be varied by an overall factor of 4, from ~ 0.1-0.4 W/m-K. We 

complement these findings with effective medium approximation modeling and identify 

thermal transport in the ligand matrix as the rate-limiter for thermal transport. By 

combining these modeling results with our experimental observations, we conclude that 

future efforts to increase thermal conductivity in NC solids should focus on the ligand-

ligand interface between neighboring NCs.  
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Colloidal nanocrystals (NCs) are an important class of nanoparticle that can be 

synthesized with precise size, shape, and composition. This morphological control 

enables excellent control over NC properties and facilitates their use as building blocks 

for nanocomposites with novel and tunable properties that are unachievable in bulk 

materials.
53-55

 One commonly studied NC-based material is the colloidal NC solid, which 

consists of a densely packed array of colloidal NCs. These colloidal NC solids have been 

employed across a wide range of applications including light emitting diodes (LEDs),
15, 16

 

photovoltaics,
17, 18

 electronics,
19, 20

 thermal storage,
55, 56

 and thermoelectrics.
57, 58

 In each 

of these applications, thermal transport properties play an important role. For example, a 

high thermal conductivity is desirable for LEDs, photovoltaics, and electronics because 

this minimizes temperature rise during operation, which improves both device 

performance and lifetime. A high thermal conductivity is also beneficial for thermal 

storage because it facilitates fast thermal charging/discharging. In contrast, a low thermal 

conductivity is ideal for thermoelectric applications because this improves efficiency in 

thermoelectric coolers and generators. Despite the importance of thermal conductivity in 

each of these applications, experimental data on thermal transport in NC solids is very 

limited.
59

  

Colloidal NCs consist of an inorganic crystalline core with ligands bound to its surface. 

The native ligands on colloidal NCs are typically bulky organic molecules (e.g. oleic 

acid, trioctylphosphine oxide, alkanethiols, etc.). These native ligands help control the 

nucleation and growth of colloidal NCs during synthesis and are hence necessary from a 

synthetic perspective. However, these native ligands are generally undesirable from a 

functional materials perspective (e.g. electrically insulating). Previous studies have 
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shown that the choice of ligands dramatically affects NC properties,
22-28

 and it is now a 

common practice to replace the native ligands with new ligands that impart desirable 

properties. For example, by replacing the native dodecanethiol ligands with metal 

chalcogenide complexes, the electrical conductivity of Au NC solids was increased by 10 

orders of magnitudes.
26

 In another example, the optical absorption of PbS NCs was 

increased by a factor of 3 through the use of short conjugated ligands.
27

 In addition to 

these intended effects on electrical and optical properties, it is important to understand 

how ligand choice affects thermal transport.   

Thermal transport in NC solids was first experimentally studied by Ong et al.
59

 They 

found very low thermal conductivities and that NC diameter had the biggest impact on 

this property. They also conducted limited experiments on ligand-exchanged NC solids 

and found moderate thermal conductivity increases of  ~ 50%. A couple of molecular 

dynamics studies have since confirmed the importance of NC diameter on thermal 

transport and also identified the NC core-ligand interface as an important parameter.
60, 61

 

While these studies are important landmarks in the study of thermal transport in NC 

solids, important questions regarding the effect of surface chemistry remain. How does 

the ligand’s binding group and backbone length affect thermal transport in NC solids? 

Can ligand exchange increase NC solid thermal conductivity beyond the moderate 50% 

demonstrated by Ong et al.? How is the impact of surface chemistry on thermal transport 

affected by NC diameter?  

To address these questions, we study thermal transport in PbS NC solids and 

systematically vary NC diameter and ligand structure. Our choice of PbS as a model 

system is motivated by the technological importance of PbS NC solids to optoelectronic 
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applications, such as photodetectors
6, 62

 and photovoltaics.
18, 24, 63

 In addition, PbS is 

among the most well understood colloidal NCs and there is a wide body of literature 

detailing its structure,
64, 65

 properties,
66, 67

 and behavior.
68, 69

 The native ligands on the 

PbS NCs in this study are oleic acid (OA) and we exchange these with ligands of varying 

backbone length (ethanedithiol, butanedithiol, hexanedithiol and octanedithiol) and 

different binding groups (thiols, amines, and halides). Our experiments reveals several 

findings: (i) The choice of ligand can increase the thermal conductivity of NC solids by 

up to ~ 150%. (ii) The ligand binding strength to the NC core does not significantly 

impact thermal conductivity. (iii) Reducing the ligand length can decrease the 

interparticle distance, which increases thermal conductivity. (iv) Increasing the NC 

diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed 

the effect of NC diameter and becomes more pronounced as NC diameter decreases. By 

combining these trends, we demonstrate that the thermal conductivity of NC solids can be 

varied by an overall factor of 4, from ~ 0.1-0.4 W/m-K. We complement these thermal 

transport findings with effective medium approximation (EMA) modeling and identify 

thermal transport in the ligand matrix as the rate-limiting factor for heat transfer. By 

combining our experimental observations with these modeling results, we conclude that 

future efforts to increase thermal conductivity in NC solids should focus on the ligand-

ligand interactions between neighboring NCs. 
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Figure 2.1 (a) Schematic of a PbS nanocrystal solid thin film on a silicon substrate. (b) A 

transmission electron microscopy image of 8.2 ± 0.7 nm PbS nanocrystals with native 

oleic acid ligands (the scale bar is 20 nm). (c) Cross-sectional scanning electron 

microscopy image showing a nanocrystal solid thin film that consists of 8.2 nm PbS 

nanocrystals with I
-
 ligands (the scale bar is 500 nm). (d) X-ray diffraction pattern of 8.2 

nm PbS nanocrystal solid thin film with oleic acid ligands. 

 

Results and discussion 

We synthesized PbS NCs with OA ligands using the hot-injection method described by 

Hines et al.
70

 Figure 2.1b shows a representative transmission electron microscopy image 

of the PbS NCs made using this approach and x-ray diffraction confirms the crystalline 

structure of the PbS core (Figure 2.1d). Varying the reaction conditions enabled NC 
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diameter control from 3.3 to 8.2 nm. After synthesis, the PbS NCs were spin-coated onto 

silicon substrates to yield a NC solid thin film (Figures 2.1a and 2.1c). The native OA 

ligands were then replaced with new ligands using a solid-state process. Seven different 

surface treatments were performed in this study: 1,2-ethanedithiol (EDT), 1,4-

butanedithiol (BDT), 1,6-hexanedithiol (HDT), 1,8-octanedithiol (ODT), 

ethylenediamine (EDA), tetrabutylammonium iodide (TBAI), and cetrimonium bromide 

(CTAB). The structures of these molecules are illustrated in Figure 2.2b. We note that 

treating PbS NCs with TBAI and CTAB results in an NC surface that is terminated with 

I
-
 and Br

-
,
 
respectively (i.e. the bulky organic component of these molecules washes away 

during the ligand exchange process).
18, 24, 71

 For simplicity purposes, we refer to these as 

I
-
 and Br

-
 ligands throughout this paper. Fourier transform infrared spectroscopy 

measurements confirm the success of these ligand exchanges (Figure 2.2a). The absence 

of the native OA ligands is indicated by the lack of COO
-
 and C = C absorptions, which 

are at 1500-1700 cm
-1

, in all ligand exchanged samples. 
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Figure 2.2. (a) Fourier transform infrared spectra of PbS nanocrystal solids with various 

ligands. (b) The chemical structure of the molecules used during ligand exchange. Note 

that treating PbS nanocrystals with tetrabutylammonium iodide (TBAI) and cetrimonium 

bromide (CTAB) results in nanocrystal surface terminations of I
-
 and Br

-
, respectively 

[References 17 and 71]. 

 

To prepare high-quality film for thermal conductivity measurements, we carried out the 

solid-state ligand exchange process using a layer-by-layer (LBL) approach (Figure 

2.3a).
69, 72, 73

 Each layer was prepared in three steps: a) Depositing a thin layer of PbS 

NCs with OA ligands via spin coating; b) Immersing the NC solid film in a solution 

containing the desired ligand (typically 30 s) and spinning dry; c) Removing unbound 

ligand molecules by repeatedly flooding the NC solid film with pure solvent and spinning 

dry. Depending on the NC diameter and ligand choice, each layer deposition resulted in a 

NC solid thin film of 10-25 nm. This deposition process was then repeated 6-10 times to 
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yield thicker films (100-180 nm) that are appropriate for thermal conductivity 

measurements. Films prepared by this approach exhibited excellent film quality with 

minimal porosity/cracking (Figure 2.3b). In contrast, NC solid films prepared via one-

time solid-state ligand exchange on thick films exhibited extensive/deep cracking that 

made them unsuitable for transport measurements. 

 

Figure 2.3. (a) Schematic illustrating the solid-state, layer-by-layer ligand exchange 

technique used to prepare nanocrystal (NC) solid films. This layer-by-layer technique 

minimizes film cracking during exchange of the long oleic acid (OA) ligands with new 

short ligands. (b) Scanning electron microscopy image of a 3.3 nm PbS NC solid with 

ethanedithiol ligands. The inset in part (b) shows an angled view of the NC solid film that 

confirms dense NC packing throughout the film thickness. The scale bar in both images 

is 1 μm. 

 

We first investigate the effect of the ligand’s binding group on the NC solid thermal 

conductivity (Figure 2.4). This is motivated by past thermal transport studies on a closely 

related cousin to colloidal NCs, self-assembled monolayer (SAM) junctions.
74, 75

 SAMs 

are molecular monolayers adsorbed onto planar solid surfaces
76

 and prior work has 
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shown an increasing thermal interface conductance as the binding strength between the 

SAM molecules and solid surface increases.
74, 75

 In effect, we ask ourselves whether this 

correlation between binding strength and thermal transport can be realized in the more 

complex structure of NC solids. To investigate this, we compare the thermal conductivity 

of 3.3 nm diameter PbS NC solids with EDA and EDT ligands. These two ligands have 

identical backbones, but different binding groups: amine groups for EDA and thiol 

groups for EDT. Both of these groups form covalent bonds to PbS NCs, although it is 

known that the thiol group forms a stronger bond.
77

 Interestingly, we find that PbS NC 

solids with EDA ligands have a higher thermal conductivity than with EDT ligands 

(Figure 2.4). This contrasts with data on SAM junctions, in which the thermal 

conductance through strong thiol-Au bonds is notably larger than the thermal 

conductance through weaker amine-Au bonds.
74

 To expand upon this binding group 

motif, we also prepared PbS NC solids with halide ligands (Br
-
 and I

-
). These ligands 

form ionic bonds to the NC surface, of which the PbS - Br
-
 bond is known to be the 

stronger of the two.
69

 We find that the thermal conductivity of NC solids with these two 

ligands are essentially equivalent and do not reflect the prediction based on bond strength 

as well. Based on these experimental observations, we conclude that the thermal 

conductance of the NC core-ligand interface (i.e. the binding strength between the NC 

core and ligand) does not dominate thermal transport in NC solids. As based upon our 

EMA modeling (see below), we hypothesize that the ligand-ligand interface between 

neighboring NCs is the critical interface for thermal transport in NC solids.    
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Figure 2.4. Thermal conductivity of 3.3 nm PbS nanocrystal solids with ethanedithiol 

(EDT), ethylenediamine (EDA), oleic acid (OA), I
-
, and Br

-
 ligands. 

 

We next study the effect of ligand length by using a series of alkanedithiol ligands with 

2, 4, 6, and 8 carbon atoms (i.e. EDT, BDT, HDT, and ODT, respectively) on 3.3 nm PbS 

NC solids. As the ligand backbone decreased from 8 carbon atoms to 4 carbon atoms, the 

NC solid thermal conductivity increased from 0.20 W/m-K to 0.27 W/m-K (Figure 2.5a). 

We attribute this trend to a reduction of interparticle distance, which increases the NC 

core volume fraction in the solids. It is not surprising that this increases the thermal 

conductivity of the NC solid because the thermal conductivity of PbS is an order of 

magnitude higher than hydrocarbons.
78, 79

 We also used x-ray reflectivity (XRR) to 

determine the mass densities of the NC solids with varying ligands, and then converted 

these values into interparticle distances using geometric. We found that our interparticle 

distance measurements agree to within experimental uncertainty with much more 

sophisticated synchrotron x-ray scattering measurements.
64

 Our interparticle distance 

trend shows an inverse correlation with our measured thermal conductivities (Figures 
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2.5a and 2.5b), which supports our conclusion that interparticle distance is an important 

parameter affecting the thermal conductivity of NC solids. Interestingly, our results show 

no thermal conductivity increase as the ligand backbone is further reduced from 4 to 2 

carbon atoms (BDT and EDT, respectively). While counterintuitive, we find that this 

thermal conductivity result still mirrors our findings on interparticle distance, which 

reveal approximately equivalent interparticle distances for BDT and EDT. We 

hypothesize that this change in trend for interparticle distance and thermal conductivity 

originates from a change in chemical binding motifs (Figure 2.5c). Similar property trend 

changes for varying alkanedithiol lengths have been observed in other works as well.
64, 72

 

Past studies have suggested that dithiol ligands preferentially bridge neighboring NCs 

(part i in Figure 2.5c).
9, 64, 80

 Since our measured interparticle distances for NC solids with 

ODT, HDT, and BDT are comparable to that of the corresponding molecular lengths,
64

 

we hypothesize that NC bridging occurs in these cases. However, in the case of EDT, the 

interparticle distance is notably longer than the molecular length. This implies an 

alternative chemical binding motif; both bidentate binding
64, 72, 73

 and dimerized 

binding
81, 82

 (parts ii and iii, respectively, in Figure 2.5c) have been identified as possible 

binding arrangements for EDT in NC solids. We also performed XRR measurements on 

NC solids with EDA ligands and found very short interparticle distances (i.e. ~ 0.7 nm). 

This result suggests that EDA likely bridges NCs and provides an explanation as to why 

EDA ligands yield a higher NC solid thermal conductivity than EDT (Figure 2.4). 
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Figure 2.5. (a) Thermal conductivity of 3.3 nm PbS nanocrystal solids with alkanedithiol 

ligands of varying backbone length. (b) Interparticle distance of 3.3 nm PbS nanocrystal 

solids with alkanedithiol ligands of varying backbone length. (c) Schematic of various 

binding possibilities for ethanedithiol in nanocrystal solids: i. bridging, ii. bidentate, iii. 

dimerized. 
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We next study the relative impact of surface chemistry on the thermal conductivity of 

NC solids with varying NC diameter. As a baseline, we first measure the thermal 

conductivity of PbS NC solids with their native OA ligands. We find that as the NC 

diameter increases from 3.3 to 8.2 nm, the thermal conductivity increases from 0.13 to 

0.27 W/m-K, which agrees with measurements by Ong et al.
59

 We next prepare each of 

these NC solids with I
-
 and EDA ligands and find that the thermal conductivity increases 

for all diameters (Figure 2.6a). This is consistent with the relationship between thermal 

conductivity and interparticle distance that we identified earlier. It is also possible that 

these ligand choices lead to higher effective thermal conductivities in the ligand matrix. 

In addition, we find that the relative thermal conductivity increase (k/kOA) is greater for 

smaller diameter NC solids than for larger diameters ones (Figure 2.6b). This trend is 

consistent with the fact that the ligands make up a greater volume fraction of the NC solid 

as the NC diameter decreases, and should therefore have a more substantial effect for 

smaller diameters. We achieve relative thermal conductivity increases of up to 150%, 

which improves upon the 50% increase demonstrated in prior work.
59

 While data in prior 

work suggests that NC diameter is the parameter that most effects NC solid thermal 

conductivity,
59-61

 our findings demonstrate that surface chemistry can have an even larger 

impact. For example, consider the case of a 3.3 nm PbS NC solid with OA ligands, which 

has a thermal conductivity of 0.13 W/m-K. Increasing the NC diameter to 8.2 nm and 

keeping the native OA ligands leads to a thermal conductivity of 0.27 W/m-K. In 

contrast, keeping the same 3.3 nm diameter, but exchanging the OA with EDA leads to 

an even higher thermal conductivity of 0.33 W/m-K. Naturally, the effect of NC diameter 

and surface chemistry can be combined; we achieve our lowest thermal conductivity in 
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3.3 nm PbS with OA ligands and our highest thermal conductivity in 8.2 nm PbS with 

EDA ligands. Overall, we find that within our size range (~ 3-8 nm), the thermal 

conductivity of NC solids can be varied from approximately 0.1-0.4 W/m-K, which 

demonstrates a moderately larger range of possibilities than prior work.
59

  

 

Figure 2.6. (a) Thermal conductivity of PbS nanocrystal solids with varying diameter and 

ligands; (b) The relative increase of thermal conductivity (k/kOA) in nanocrystal solids 

with ethylenediamine (EDA) and I
-
 ligands and varying nanocrystal diameter. 

 

To gauge how this range of NC solid thermal conductivities can be further expanded, 

we use an EMA model to fit our data on PbS NCs with OA ligands and then perform a 

sensitivity analysis on the various model input parameters. Since thermal interface 

conductances significantly impact the thermal conductivity of nanocomposites, we 

incorporate this factor by using the EMA model proposed by Hasselman and Johnson.
83

 

This EMA model calculates the thermal conductivity of a composite by accounting for 

the constituent volume fractions, constituent thermal conductivities, and thermal interface 
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conductance between the constituents. To apply the EMA model to our NC solid, we 

consider a nanocomposite consisting of NC cores in a ligand matrix. Figure 2.7a shows 

the EMA model fit to our PbS NC solids with OA ligands and varying diameter, which 

shows good agreement. In this fit we use 2 W/m-K, 0.13 W/m-K, 2.5 nm, and 220 

MW/m
2
-K for the NC core thermal conductivity (kNC), ligand matrix thermal conductivity 

(km), interparticle distance, and NC core-ligand thermal interface conductance (G), 

respectively. Our choice of these input parameters for the model is based upon results in 

the literature.
59, 64, 74, 84

  

To study the relative impact of each parameter (kNC, G, and km) on NC solid thermal 

conductivity, we independently vary each parameter while holding the other two constant 

(Figure 2.7b). We find that km has the largest impact, G has a moderate impact, and kNC 

has a small impact. As km, G, and kNC are each varied by a factor of 5, we calculate 

changes in NC solid thermal conductivity of 386%, 27%, and 4%, respectively. The 

insensitivity to kNC is not surprising given that it is an order of magnitude larger than km 

and the core-ligand interfaces further restrict this thermal pathway. Prior experimental 

work has also found that NC solid thermal conductivity is largely independent of kNC.
59

 

The fact that the NC solid thermal conductivity sensitivity is much greater to km than G 

means the thermal conductance of the ligand matrix is more important than the thermal 

conductance of the NC core-ligand interface. This possibly explains why we did not 

experimentally observe an increase in NC solid thermal conductivity as we increased the 

NC core-ligand binding strength (which, according to literature on solid-SAM junctions, 

should have increased the NC core-ligand thermal interface conductance). It is also worth 

noting that the thermal interface conductance of an individual solid-SAM interface only 
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changes by about a factor of 4 as the solid-SAM bond is changed from van der Waals to 

covalent.
74, 84

 According to our EMA model, this would correspond to an ~ 20% change 

in NC thermal conductivity. Given that the NC core-ligand bond strength is varied in a 

much narrower range during our experiments, any thermal conductivity changes arising 

from NC core-ligand bond strength were likely small, which explains why our 

measurements did not detect significant changes. 

Since km affects NC solid thermal conductivity the most, determining ways to increase 

or decrease km is a promising route to achieve an expanded thermal conductivity range 

beyond that demonstrated in the present work. It is notable that the maximum thermal 

conductivity for the matrix used in our EMA sensitivity analysis is only 0.5 W/m-K, 

which is representative of good thermal insulators. Consequently, there should be room to 

increase the thermal conductivity of the ligand matrix, and by extension, increase the 

thermal conductivity of the NC solid. This finding inspires us to hypothesize why thermal 

transport in the ligand matrix is poor to begin with. If we consider heat flow between two 

neighboring NCs, there are three interfaces: a NC core-ligand interface, a ligand-ligand 

interface, and then another NC core-ligand interface. Whereas the NC core-ligand 

interfaces are generally strong covalent or ionic bonds, the ligand-ligand interface is 

characterized by weak van der Waals forces. Several studies on polymers,
85

 molecular 

crystals,
86

 and carbon nanotube – polymer composites
87

 have identified weak van der 

Waals interactions as rate-limiters for heat transfer. We hypothesize that this is also true 

for thermal transport in NC solids. We note that there is no analogous ligand-ligand 

interface in solid-SAM-solid structures, which may explain why the solid-molecule 
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binding strength plays a significant thermal transport role in SAMs, but not necessarily in 

NC solids.  

 

Figure 2.7. (a) Effective medium approximation model results and corresponding 

experimental data for the thermal conductivity of PbS nanocrystal (NC) solids with oleic 

acid ligands and varying diameter. (b) Sensitivity analysis on the effective medium 

approximation model for 3.3 nm PbS NC solids with three independent parameters: NC 
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core thermal conductivity (kNC, red triangles), NC core-ligand interface thermal 

conductance (G, blue rectangles), and ligand matrix thermal conductivity (km, black 

spheres) 

 

We hypothesize that two possible ways to increase the thermal conductivity of NC 

solids are (i) chemically crosslinking the NC ligands to strengthen the ligand-ligand 

interaction, (ii) eliminating the ligand-ligand interaction by bridging neighboring NCs 

with bidentate ligands. The first concept has been demonstrated in a recent study on 

amorphous polymer blends; by introducing appropriately engineered crosslinkers, the 

thermal conductivity of the polymer blend was increased by a factor of 7.
88

 The second 

approach has been highly sought after in studies to improve charge transport in NC 

solids,
80, 89, 90

 and motivated our choice of bidentate ligands (dithiols and diamine) in this 

study. However, this approach will likely prove complex because NC surfaces are highly 

curved, which leads to non-uniform distances between neighboring NCs. This curvature 

limits the surface area upon which ligand bridging can occur and may explain why we 

only observed moderately higher thermal conductivities with bridging ligands (e.g. EDA) 

relative to non-bridging ligands (e.g. EDT and I
-
). Using colloidal nanocrystals with flat 

surfaces (e.g. cubes) and/or more sophisticated ligand chemistries that can achieve 

bridging throughout the entire NC surface could prove interesting.  

Conclusion 

We have systematically explored the effect of ligand length, ligand binding group, and 

NC diameter on thermal transport in colloidal PbS NC solids. The primary effect of 

decreasing ligand length and/or increasing NC diameter is to increase the NC solid 
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thermal conductivity by decreasing the volume fraction of the thermally insulating ligand 

matrix. Varying the ligand binding strength to the NC core does lead to significant effects 

on thermal transport, which contrasts with literature on solid-SAM-solid junctions. We 

find that the choice of ligands can affect the thermal conductivity by up to a factor of 2.5 

and that the thermal conductivity of NC solids can be varied by an overall factor of 4, 

from ~ 0.1 to 0.4 W/m-K. By combining our experimental observations with EMA 

modeling, we identified the ligand-ligand interface between neighboring NCs as a critical 

interface for heat transfer. We then suggested ways to modify this interface and possibly 

increase NC solid thermal conductivity. Identifying ways to increase thermal 

conductivity will be beneficial to NC solid applications in electronics and 

optoelectronics, for which heat dissipation is important to device performance and 

lifetime. On the other hand, the naturally low thermal conductivities of NC solids bode 

well for NC solid-based thermoelectrics.  

 

Materials and Methods 

Materials and Equipment: Lead oxide (99.999%), bis(trimethylsilyl)sulfide (TMS, 

synthesis grade ), oleic acid (OA, 90%), 1-octadecene (ODE, 90%), tetrabutylammonium 

iodide (TBAI, 98%+), cetrimonium bromide (CTAB, 99%), 1,2- ethanedithiol (EDT, 

98%+), 1,4-butanedithiol (BDT, 97%+), 1,6-hexanedithiol (HDT, 96%+), 1,8-

octanedithiol (ODT, 97%+), ethylenediamine (EDA, 99%), methanol (anhydrous 99.8%), 

acetonitrile (anhydrous 99.8%), octane (98%), were purchased from Sigma Aldrich and 

used as received. Sample imaging was done with transmission electron microscopy (TEM, 

Tecnai F20) and scanning electron microscopy (SEM, Nova 200 NanoLab FEI). The X-
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ray diffraction was taken on high resolution x-ray diffractometer (XRD, 

PANALYTICAL X’PERT PRO), with CuKα X-ray source operating at 40 kV and 40 

mA. Fourier transform infra-red spectroscopy measurements were done using a Thermo 

Nicolet 6700 system equipped with Smart SAGA accessory. Thickness measurements 

were carried out using atomic force microscopy (Digital Instrument Dimension 3000) and 

profilometry (Dektek II surface profilometer). For thermal conductivity measurements, a 

Keithley 6221 was used as the current source and a Stanford Research Systems SR830 

lock-in amplifier was used to measure the 1st and 3rd harmonic voltage signals. 

Nanocrystal Synthesis: PbS colloidal NCs were synthesized by employing the hot 

injection technique reported by Hines et al.
70

 with minor modifications. In a typical 

synthesis of 3 nm PbS NCs, 0.45 g of lead oxide was dissolved in a solvent mixture of 2 

mL OA and 18 mL ODE, and degassed by heating under vacuum at 100 °C for 2 hours. 

After all of the solid dissolved and the solution turned transparent, the temperature was 

increased to 145 °C, at which point a mixture of 10 mL ODE and 210 uL TMS was 

injected. The heating mantle was removed from the reaction flask right after the TMS 

injection, and then replaced when the temperature dropped to 100 °C. The reaction 

mixture was slowly cooled to ~ 30 °C with the heating mantle in place and turned off. 

PbS NCs were then separated from the reaction mixture by precipitating with ethanol and 

resuspending with hexane. This precipitation/suspension process was carried out 3 times 

in total. To vary NC diameter, the ratio of OA:ODE was varied; higher OA concentration 

led to larger diameters. The diameters of the PbS NCs used in this study were 3.3 ± 0.3 

nm, 4.2 ± 0.4 nm, 5.8 ± 0.4 nm and 8.2 ± 0.7 nm. 
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Layer-by-Layer (LBL) Ligand Exchange: Ligand exchange in all NC solid films were 

done using a solid-state ligand exchange process in a LBL fashion. Prior to film 

deposition, all NCs were precipitated and resuspended an additional 3 times. The NC 

were suspended in octane with a concentration of 10 - 15 mg/mL for the film deposition. 

For each layer deposition, ~ 7  μL PbS NC suspension was dispensed onto a 2  mm x 2  

mm silicon substrate and spin coated at a speed of 3000 rpm for 1 min. Then, ~ 2   μL of 

the ligand solution was dispensed onto the NC solid thin film, allowed to rest for 30 s, 

and then removed by spin drying. The NC solid film was then flooded by ~ 2   μL of 

pure solvent and then spun dry to remove unbound ligands. The NC solid was then 

flooded with solvent and spun dry an additional 2 times. Depending on NC size and 

ligand, each layer deposition resulted in a thin film between 10 - 25 nm. Typically, 6 - 10 

layers of NC solid were deposited to yield an appropriate film thickness for thermal 

conductivity measurements (~ 100 - 180 nm). The ligand solution are prepared as 

suggested by previous studies:
69, 72

 CTAB and TBAI, 30 mM in methanol; EDA, 1 M in 

methanol; EDT, 1.7 mM in acetonitrile; BDT, 2.5 mM in acetonitrile; HDT, 4 mM in 

acetonitrile; and ODT, 8 mM in acetonitrile. 

Film Thickness Measurement: Thickness measurements on all ligand exchanged NC solid 

samples were determined by profilometry measurements. NC films were scratched using 

tweezers and the film thickness measured at the scratch location. The film thickness was 

determined by averaging measured thicknesses from 3 scans at different locations. The 

typical thickness variation of a film was found within 10 nm. NC solids with OA ligands 

were too soft to have their thickness measured with profilometry and were instead 

measured with atomic force microscopy. 
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Thermal Conductivity Measurement: Thermal conductivity measurements were 

performed using the differential 3ω method, which is a widely used technique for thin 

film geometries.
35, 91

 To prepare samples for measurement, NC solid films were first 

coated with a ~ 150 nm Al2O3 dielectric layer. Al metal lines, which function as 

combined heaters and thermometers, were then deposited on the samples using a shadow 

mask. The line dimensions in all samples were 45 μm wide, 2.6 mm long, and 15  nm 

thick. An AC current was run through the Al line to operate it as a heat source and the 

third harmonic of the voltage response was measured to operate the Al line as a 

thermometer. In accordance with the differential technique, a reference sample with only 

dielectric layer and silicon substrate was identically prepared. The thermal response of 

the NC solid thin film was obtained by subtracting the thermal response of the reference 

sample from the experimental sample. To convert 3 electrical signals into thermal 

responses, the temperature coefficient of resistance (TCR) of 3 lines were measured 

using a home-built thermal stage. In this measurement, the resistances of the 3 lines 

were measured at 5 different temperature points between 15°C and 30°C, and a linear fit 

was used to determine the slope.  

X-Ray Reflectivity Measurements to Determine Mass Density and Interparticle Distance: 

X-ray reflectivity (XRR) measurements were carried out using a PANalytical X-ray 

diffractometer, fitted with an x-ray mirror using a 1/32° slit and a parallel plate collimator. 

XRR measures the electron density of the sample and can be converted into mass density 

using the vendor software by providing the sample’s elemental ratio (i.e. Pb and S for the 

nanocrystal core and C, N, S, H, O, I, and Br for the ligands). We determined the number 

of Pb and S atoms in the nanocrystal (NC) core by comparing the volume of a 
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nanocrystal core, VNC, to the volume of PbS crystal unit cell, Vunit-cell. Since each PbS unit 

cell has four Pb atoms and four S atoms, the number of Pb and S atoms in the NC core 

(NPb, core and NS, core) can be expressed as: 

 NPb, core = NS, core = 4VNC/Vunit-cell = 16/3πr
3
/a

3
   (2.1) 

where r is the radius of nanocrystal and a is the PbS lattice constant (a = 5.96 Å). We 

used data in the literature
92, 93

 on ligand packing density, n
-1

, to estimate the number of 

ligand molecules on a nanocrystal core, Nligand: 

 Nligand = 4πr
2
n

-1
         (2.2) 

Equations 2.1 and 2.2 were used to determine NPb, core, NS, core, and Nligand. These values 

were then converted into an overall elemental ratio in the sample via the molecular 

formula of a given ligand.  

We estimated the interparticle distance in our samples using the mass density 

calculated above, the geometric model shown in Figure S1, and the following equation: 

 
 

 
    

 

 
 
 

            
 

 
                  (2.3) 

The only unknown in the above equation is the interparticle distance, d. The other 

parameters are known: r is the nanocrystal radius,   is the volume fraction of close-

packed spheres in a face-centered cubic lattice (0.74),          is the mass density of NC 

solid measured from XRR measurements,      is the mass density for bulk PbS, and 

        is the mass of the ligand shells. We directly estimate the mass of ligand shell by 

using the ligand molecular weight, Mw, and literature values
92, 93

 for the ligand packing 

density, n
-1

.  
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The overall interparticle distance uncertainty primarily originates from the ligand 

packing density uncertainty. The ligand packing density uncertainty effects the 

interparticle distance uncertainty in two ways: (i) via the elemental ratio used to 

determine the mass density of the NC solid (i.e. first paragraph in this section) and (ii) via 

the ligand shell mass used to convert the NC solid mass density into interparticle distance 

(i.e. second paragraph in this section). We varied the ligand packing density by ± 50% in 

our calculations to gauge how much uncertainty this causes. Varying the ligand packing 

density by ± 50% led to a          uncertainty of ~ 10 - 15 % that in turn affects the 

interparticle distance uncertainty via Equation S3. Varying the ligand packing density by 

± 50% also leads to variations in         that introduce an additional ~ 10% uncertainty 

to the interparticle distance via Equation 2.3. Table 1 summarizes the density and 

interparticle distance data for our 3.3 nm NC solid samples.  

 

Table 2.1. Densities and interparticle distances of 3.3 nm PbS nanocrystal solids 

with various ligands. 

Nanocrystal Ligand Density (g/cm
3
) 

Interparticle Distance 

(nm) 

Oleic Acid (OA) 2.2 ± 0.2 2.2 ± 0.4 

Ethanedithiol (EDT) 4.0 ± 0.5 1.1 ± 0.3 

Butanedithiol (BDT) 4.2 ± 0.5 1.0 ± 0.3 

Hexanedithiol (HDT) 3.4 ± 0.4 1.4 ± 0.3 

Octanedithiol (ODT) 3.2 ± 0.4 1.5 ± 0.3 

Ethylenediamine (EDA) 4.8 ± 0.5 0.7 ± 0.2 
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CHAPTER 3  

SIZE-DEPENDENT MELTING BEHAVIOR OF COLLOIDAL IN, SN, AND BI 

NANOCRYSTALS 

 

ABSTRACT 

Colloidal nanocrystals are a technologically important class of nanostructures whose 

phase change properties have been largely unexplored. Here we report on the melting 

behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer 

matrix prevents the nanocrystals from coalescing with one another and enables 

previously unaccessed observations on the melting behavior of colloidal nanocrystals. 

We measure the melting temperature, melting enthalpy, and melting entropy of colloidal 

nanocrystals with diameters of approximately 10 to 20 nm. All of these properties 

decrease as nanocrystal size decreases, although the depression rate for melting 

temperature is comparatively slower than that of melting enthalpy and melting entropy. 

We also observe an elevated melting temperature during the initial melt-freeze cycle that 

we attribute to surface stabilization from the organic ligands on the nanocrystal surface. 

Broad endothermic melting valleys and very large supercoolings in our calorimetry data 

suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting 

and low heterogeneous nucleation probabilities during freezing. 
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Introduction 

Colloidal nanocrystals are made via solution-phase chemistry and consist of an 

inorganic core with organic ligands bound to its surface. Rapid progress in the field of 

colloidal nanocrystal synthesis
94, 95

 has led to their use in numerous applications such as 

LEDs,
15, 16

 optoelectronics,
17, 18

 electronics,
19, 20

 thermal storage,
55, 56

 and 

thermoelectrics.
57, 58

 One potential concern for using colloidal nanocrystals in these 

applications is that their lower melting temperatures may be incompatible with elevated 

temperatures during device operation and/or fabrication. It is well known that the melting 

temperature of nanoparticles decrease as their characteristic size decreases and this 

phenomenon is commonly referred to as melting point depression.
45, 96-104

 However, the 

vast majority of melting point depression studies focus on a sub-monolayer of 

nanoparticles prepared by dewetting of a thin film. Nanoparticles prepared via other 

methods such as ball milling and/or colloidal synthesis are more commonly used and 

could exhibit different behavior due to variations in structure-property-processing 

relations. In addition, nanoparticles are often embedded in matrices, which remove the 

free surface of dewetted nanoparticles and also changes melting behavior.  

In this study, we focus on the melting behavior of colloidal nanocrystals whose 

phase change properties have been largely unexplored. Goldstein et al.
98

 used 

transmission electron microscopy (TEM) to measure colloidal nanocrystal melting 

temperature, but did not measure melting enthalpy. Calorimetry measurements can 

determine both melting temperature and melting enthalpy, and a few other researchers 

have used this approach to investigate colloidal nanocrystal melting.
105-108

 Unfortunately, 



55 
 

extracting size-dependent melting behavior from these experiments is problematic 

because the colloidal nanocrystals were poorly isolated from one another.
106, 108

 This led 

to nanocrystal coalescence during the calorimetry measurements and manifested itself as 

a melting temperature that drifted toward bulk values during thermal cycling.
107

 In some 

cases, the nanoscale dimensions of the nanocrystals degraded so fast that bulk melting 

temperatures were observed during the first melting cycle.
105, 106

  

We demonstrate that this nanocrystal coalescence problem can be completely 

mitigated by isolating the colloidal nanocrystals from one another via dispersion within a 

polymer matrix. Since colloidal nanocrystals and polymers have similar solubility and are 

easily mixed in a variety of solvents, this preparation of embedded nanocrystals requires 

little additional effort. We use polyimide resin (PI resin) for the polymer matrix because 

it has a glass transition temperature above 305°C. This makes it a suitable matrix for 

studying the low melting temperature metals in this work. Specifically, we focus on the 

melting behavior of In, Sn, and Bi nanocrystals whose bulk melting temperatures are 157, 

232, and 271°C, respectively. The use of the stabilizing PI resin matrix allows us to 

observe highly repeatable melting behavior throughout numerous melt-freeze cycles. We 

show that the colloidal nanocrystal melting temperatures, melting enthalpies, and melting 

entropies are all size-dependent and decrease as nanocrystal diameter decreases. We also 

observe an elevated melting temperature during the initial melt-freeze cycle that we 

attribute to surface stabilization from the nanocrystal’s organic ligands. Lastly we 

observe signatures of surface pre-melting and low heterogeneous nucleation probabilities 

in our samples that manifest themselves as broad endothermic melting valleys and very 

large supercooling in the calorimetry data.  
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Figure 3.1. Transmission electron microscopy images of (a) 14.9 ± 0.7 nm Bi 

nanocrystals, (b) 17.0 ± 1.1 nm Sn nanocrystals, and (c) 17.0 ± 1.1 nm In nanocrystals. 

Corresponding images of the (d) Bi, (e) Sn, and (f) In nanocrystals after dispersion into 

the polyimide resin matrix illustrate that the size and shape of the nanocrystals are 

preserved during sample preparation (the scale bar is 50 nm). 

Results and Discussion 

Melting Temperatures 

We prepared our samples by synthesizing colloidal nanocrystals and then dissolving 

them with PI resin in a shared solvent. We then drop-cast the solution and removed the 

solvent via heating. We synthesized our colloidal nanocrystals using hot-injection 

techniques reported by Yarema et al.,
109-112

 and controlled the nanocrystal diameter 

between ~ 10 and 20 nm by varying the reaction temperature and time. The transmission 
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electron microscope (TEM) images in Figures 3.1a to 1c show the excellent shape and 

size uniformity of the nanocrystals prepared using this approach. The images in Figures 

1d to 1f illustrate that the nanocrystal size and shape are preserved when embedded in the 

PI resin matrix. 

The typical melting behavior of a colloidal nanocrystal sample dispersed in a PI 

resin matrix is illustrated in Figure 3.2a. This figure shows a DSC measurement on 17 nm 

Sn nanocrystals that have gone through multiple melt-freeze cycles. An endothermic 

valley is observed at ~ 200 °C during heating and an exothermic peak is observed at ~ 

20 °C during cooling. We attribute the endothermic valley to Sn nanocrystal melting and 

the exothermic peak to Sn nanocrystal freezing. These assignments are corroborated with 

a control DSC measurement on pure PI resin, which show no discernable features 

throughout the entire temperature range. Note that bulk Sn melts at 232°C and so our 

observed nanocrystal melting temperature is consistent with melting point depression.  

We observe an elevated melting temperature during the first melt-freeze cycle and 

attribute this to surface chemistry effects in colloidal nanocrystals (Figure 3.2b). For 

example, 17 nm Sn nanocrystals melt at 214 °C during the first cycle and then melt at 

204 °C during subsequent cycles. It is well known that melting typically initiates at the 

surface of a solid, and we postulate that the strongly bound surface ligands of colloidal 

nanocrystals inhibit melting by stabilizing the surface. Similar surface stabilization 

behavior has been observed in Pb nanoparticles in Al matrices
113

 and Ag nanoparticles in 

Ni matrices.
114

 The lower melting temperatures in subsequent cycles suggest that the 

ligands detach from the nanocrystal surface during the first cycle and remain detached in 
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subsequent cycles. This increase in initial melting temperature was observed for all of our 

nanocrystal compositions (In, Sn, and Bi) and diameters (10 – 20 nm), which suggests 

that this is a widespread characteristic of colloidal nanocrystals. 

 

Figure 3.2. (a) A typical heating (red curve) and cooling (blue curve) in a melt-freeze 

cycle during differential scanning calorimetry (DSC) measurements. This specific sample 

consists of 17 nm Sn nanocrystals (NCs) dispersed in a polyimide resin matrix. Note that 

the feature located in the 0 – 25 °C range of the heating curve is a measurement artifact 

that occurs when the DSC switches from cooling to heating. (b) The endothermic valley 
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of 17 nm Sn nanocrystals during several different melt-freeze cycles. After the initial 

melting cycle, a stable and repeatable melting temperature and melting enthalpy are 

observed. We attribute the elevated melting temperature during the initial cycle to surface 

stabilization from the organic ligands on the nanocrystal surface. (c) The endothermic 

valley of 17 nm Sn nanocrystals prepared at varying nanocrystal volume fractions within 

the polyimide resin matrix. As the nanocrystal volume fraction is changed, the melting 

enthalpy signature increases proportionately and the melting temperature remains 

unchanged. (d) The endothermic melting valley for Sn nanocrystals of varying diameters 

that are embedded in a polyimide resin matrix. As the nanocrystal diameter decreases, 

both the melting temperature and melting enthalpy decrease. The full-width at half-

maximum of the melting valley also increases for smaller nanocrystals. 

 

Our use of a PI resin matrix to isolate nanocrystals from one another prevents 

nanocrystal coalescence and leads to a repeatable and stable melting temperature after the 

initial melting cycle (Figure 2b). Prior colloidal nanocrystal calorimetry studies have 

been prone to nanocrystal coalescence problems due to unsuitable matrices or the absence 

of matrices.
105-108

 Consequently the observed melting temperatures drifted toward the 

bulk melting temperature during thermal cycling. In some cases, bulk melting 

temperatures could be observed during the first melting cycle.
105, 106

 This transient 

behavior makes measurements of size-dependent melting in colloidal nanocrystals 

problematic. This problem is further compounded by the increase in melting temperature 

observed during the first thermal cycle as described above. In our nanocrystal-PI resin 
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samples, we are able to observe repeatable melting temperatures during thermal cycling 

up to a nanocrystal volume fraction of ~ 30% (Figure 3.2c). We designate this repeatable 

temperature as the melting temperature of our nanocrystal samples throughout this paper.  

The melting temperature of colloidal Sn, In, and Bi nanocrystals all decrease as 

nanocrystal diameter decreases (Figure 3.3). In addition to melting temperature data 

collected with PI resin matrices, this figure also includes melting temperature data from 

our prior work on Bi nanocrystals in Ag matrices.
55

 The melting point depression in the 

Ag matrix is notably weaker than in the PI resin matrix and highlights the importance of 

both size and surrounding environment. The melting model proposed by Shi
115

 takes into 

account the effects of both size and matrix on melting and provides an excellent fit to our 

data. At the heart of Shi’s model is the Lindemann criterion,
116

 which states that melting 

occurs when the average root mean square displacement (MSD) of the atoms in a particle 

exceeds a critical value. Keeping in mind that surface atoms typically have a larger MSD 

than interior atoms, this criterion readily explains the qualitative size dependence of 

melting temperature. As the nanocrystal size shrinks, the number of surface atoms 

increases and therefore the average MSD increases. This increase in average MSD then 

causes the critical root MSD (i.e. melting) to be reached at lower temperatures.  
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Figure 3.3  The melting temperature of colloidal In, Sn, and Bi nanocrystals as a function 

of nanocrystal diameter. In addition to data for In, Sn, and Bi in polyimide resin matrices 

(green triangles, blue squares, and red circles, respectively), this figure also contains data 

from our prior work on Bi nanocrystals in an Ag matrix (black circles, Reference 55). 

The melting temperature and melting uncertainty in this figure represent the endothermic 

valley minimum and endothermic valley full width at half maximum in the DSC data, 

respectively. The dotted curves are experimental data fits using Shi’s melting temperature 

model that accounts for both nanoparticle size effects and matrix effects [Reference 114]. 

 

Shi’s melting temperature model
115

 expands upon the Lindemann criterion by 

including matrix effects on the atom MSD and fits our experimental data very well. This 
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matrix effect is captured in Shi’s model via the parameter, α, which is the ratio of surface 

atom MSD to interior atom MSD. The presence of a matrix predominantly affects the 

MSD of surface atoms and leaves the MSD of interior atoms largely unchanged. Shi’s 

model predicts a size dependent melting temperature, Tm(r), that depends upon particle 

radius, r, and α:  

                        
 

  
   

  

      

In this expression, h is a characteristic length representing the height of an atomic 

monolayer on a bulk surface and is estimated from the crystal lattice constant. We 

obtained reasonable fits to our experimental data on both Sn and In nanocrystals in PI 

resin with an α value of 1.54. It is intuitive that the same α value can be used to fit both 

sets of data because their matrices are the same and because Sn and In have the same 

crystal structure. The α value for Bi nanocrystals in PI resin was 1.42 and differed 

slightly from Sn and In. We speculate that this slight difference may arise from a 

difference in crystal structure, and hence a change in the value for h in Equation 1. The α 

value for Bi nanocrystals in an Ag matrix was 1.2 and indicates that the rigid Ag matrix 

suppresses MSD comparatively more than the soft PI resin matrix. 
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Figure 3.4.  The melting enthalpy of colloidal In (green triangles), Sn (blue squares), and 

Bi (red circles) as a function of nanocrystal diameter. This size-dependent melting 

enthalpy is a consequence of size- dependence in both melting temperature and melting 

entropy. 

 

Melting Enthalpies and Entropies 

While reports on size-dependent melting temperature are widespread, reports on 

size-dependent melting enthalpy are relatively limited.
99, 101, 117

 One of the primary 

challenges in measuring size-dependent melting enthalpy stems from the preparation of 

the experimental sample. Samples for size-dependent melting studies are typically 

prepared by vapor depositing a thin film on a substrate that subsequently dewets and 
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forms a sub-monolayer of nanoparticles. These samples produce small thermal energy 

signals during phase change and require sophisticated microfabricated nanocalorimeters 

to determine their melting enthalpy.
 17,19,102

  

Our sample preparation embeds a large ensemble of nanoparticles into the PI resin 

matrix and therefore produces a large thermal signal that can be easily detected using 

standard calorimeters. However, measuring the mass of our nanoparticles requires 

additional care due to the structure of colloidal nanocrystals. A direct measurement of 

colloidal nanocrystal mass would contain mass contributions from both the nanoparticle 

(i.e. the nanocrystal core) and the surface ligands. To circumvent this problem, we used 

cyclic DSC measurements to determine the mass ratio of the nanocrystal cores to the 

nanocrystal ligands. Let us consider the case of colloidal Sn nanocrystals for illustrative 

purposes. We first prepared a DSC sample consisting of colloidal Sn nanocrystals 

without a PI resin matrix. We then subjected this sample to multiple melt-freeze cycles, 

during which the absence of a protective matrix leads to nanocrystal coalescence into a 

bulk material. Upon observing the bulk melting temperature of Sn, we determined the 

true mass of Sn in our colloidal nanocrystals by comparing our measured melting 

enthalpy to the bulk Sn melting enthalpy (59 J/g). We did this measurement for all 

nanocrystal compositions and sizes because the core:ligand mass ratio depends on both of 

these parameters.  

The melting enthalpy of colloidal Sn, In, and Bi nanocrystals decrease away from 

their respective bulk values as nanocrystal size is decreased (Figure 3.4). Melting 
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enthalpy, Hm, can be expressed as the product of melting temperature, Tm, and melting 

entropy, Sm:  

Hm = Tm Sm ,     (2) 

Since melting temperature decreases as nanocrystal diameter decreases, a corresponding 

depression in melting enthalpy is also expected. However, we find that melting entropy 

also plays a key role as indicated by the fact that the depression rate of melting enthalpy 

is much faster than that of melting temperature. This trend is revealed in a plot of 

normalized melting enthalpy depressions, Hm,NC/Hm,bulk, and normalized melting point 

depressions, Tm,NC/Tm,bulk, versus the nanocrystal size (Figure 3.5). For example, 

nanocrystals with ~ 10 nm diameters have melting temperatures and melting enthalpies 

that are ~ 90% and ~ 30% of their bulk values.  
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Figure 3.5. The normalized depression in melting temperature (black) and melting 

enthalpy (blue) as a function of nanocrystal diameter for In (triangles), Sn (squares), and 

Bi (circles) nanocrystals (NCs). The depression rate for melting enthalpy is significantly 

faster than the depression rate for melting temperature. 

 

        The significant difference in depression rates for melting temperature and melting 

enthalpy means that melting entropy is also size-dependent and decreases with 

nanocrystal size. Melting entropy represents the difference between the solid state 

entropy and liquid state entropy. The entropy of a solid increases as nanoparticle diameter 

decreases due to the growing fraction of surface atoms, which have larger MSD.
118, 119

 

This brings the entropy of solid nanoparticles closer to the liquid state entropy and leads 

to decreasing melting entropy as nanocrystal diameter is reduced. Figure S4 illustrates the 

entropy size dependence for our colloidal In, Sn, and Bi nanocrystals. 
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Surface Pre-Melting and Supercooling 

Unlike melting in bulk materials, melting in colloidal nanocrystals occurs over a 

wide finite temperature range (i.e. the melting valley has a large full-width at half-

maximum, FWHM). Furthermore, the FWHM increases as nanocrystal diameter 

decreases (Figure 3.2d). For example, the FWHM of the melting valley for Sn 

nanocrystals changes from 17 to 30 °C as the nanocrystal diameter shrinks from 17 nm to 

11 nm. We also observe similar behavior for Bi and In nanocrystals (Figure S2c and S2d). 

This behavior is consistent with a phenomenon known as surface pre-melting, during 

which a thin liquid layer forms on the solid surface at a temperature below the 

conventionally recognized melting temperature.
99

 While this phenomenon has been 

observed in bulk materials,
120-122

 it has little effect on the overall melting behavior 

because of the extremely small fraction of surface atoms in bulk material. In contrast, 

nanoparticles have a significant fraction of surface atoms that can produce a much larger 

surface pre-melting signature. Furthermore, surface curvature enhances surface pre-

melting
104, 123, 124

 and is another reason that our samples produce large pre-melting signals. 

To capture the effect of surface pre-melting in the reporting of our size-dependent 

melting data (Figure 3), we have used the endothermic valley minimum and valley 

FWHM for the melting temperature and melting temperature uncertainty, respectively.  

Another notable feature in the melting of colloidal nanocrystals is that they exhibit a 

very large amount of supercooling. For example, our 17 nm Sn nanocrystals supercooled 

by ~180 °C, which is approximately 40% of its melting temperature (204 °C = 477 K). 

Classical nucleation theory explains supercooling as resulting from the energy barrier 
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associated with the formation of a solid-liquid interface.
125

 Supercooling is typically 

minimized because of energetically favorable heterogeneous nucleation occurs at pre-

existing interfaces and/or impurity sites. A large supercooling is regarded as evidence of 

homogeneous nucleation, and prior experimental efforts to maximize supercooling have 

found an empirical upper limit of ~ 0.2 – 0.3 Tm.
126-129

 One exception to this empirical 

upper limit is a relatively recent work on Ga nanoparticles.
130

 While our In and Bi 

nanocrystal data exhibited supercoolings of ~ 0.2 – 0.3 Tm, our data on Sn nanocrystals (~ 

0.4 Tm) represents a second exception to this empirical upper limit. We believe that the 

very large supercoolings observed during freezing of our samples are due to a decreased 

probability of heterogeneous nucleation. The probability for heterogeneous nucleation in 

our samples is low because colloidal nanocrystals are known to be highly defect- and 

impurity-free. In fact, the intentionally introduction of impurities (i.e. doping) has been 

an ongoing challenge for the colloidal nanocrystal community.
131

 These large 

supercooling values also suggest that the amorphous polymer matrix provides a poor 

heterogeneous nucleation site for crystalline metal.  

Conclusion 

  This systematic study on colloidal nanocrystal melting behavior provides guidance on 

the phase stability of these materials as they are incorporated into devices that experience 

elevated temperatures during operation and/or fabrication. Specifically, we have reported 

the melting temperatures, melting enthalpies, and melting entropies of colloidal In, Sn, 

and Bi nanocrystals with diameters ranging from 10 – 20 nm. All of these properties 

decreases as nanocrystal size decreases, although the depression rate for melting 
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temperature is comparatively slower than that of melting enthalpy and melting entropy. 

We also observed an elevated melting temperature during the initial melting of colloidal 

nanocrystals and we attribute this to surface stabilization from the nanocrystal’s ligands. 

Broad endothermic melting valleys and very large supercooling in the calorimetry data 

suggest a significant amount of surface pre-melting and low heterogeneous nucleation 

probabilities during freezing. These observations on colloidal nanocrystal melting 

behavior were enabled by our new calorimetry sample preparation technique that 

prevents nanocrystal coalescence during melt-freeze cycles.  

Methods 

Sn Nanocrystal Synthesis: Sn nanocrystals were synthesized following the procedure 

reported by Kravchyk et al.
109

 In a typical synthesis of 17 nm Sn nanocrystals, 20 g of 

oleylamine (OLA) was loaded into a three-neck flask and degassed at 140 °C for 2 hours. 

The flask was then heated to 210 °C, at which point 3 solutions were sequentially 

injected. The first injection was 0.5 mmol Sn[N(SiMe3)2]2 dissolved in 1 mL octadecane. 

The second injection was 3.6 mmol LiN(SiMe3)2 dissolved in 2 mL of toluene and was 

injected immediately after the first injection. After 10 s, 0.6 mL of 1 M lithium 

triethylborohydride in tetrahydrofuan (THF) was injected, and the solution immediately 

turned dark. The reaction temperature was then maintained for 1 hour and then quickly 

cooled to room temperature using an ice bath. This reaction yields Sn nanocrystals with 

OLA ligands. The OLA ligands were then exchanged with oleic acid (OA) to improve 

nanocrystal stability. Adjusting injection temperature and growth time allows control 

over the nanocrystal diameter. The Sn nanocrystals were isolated from the reaction 
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mixture by precipitating in ethanol and redispersing in a nonpolar solvent. This isolation 

process was repeated two additional times and the nanocrystals were dispersed in THF 

after the final precipitation.  

In Precursor Synthesis and In Nanocrystal Synthesis: In nanocrystals were synthesized 

using the procedure reported by Yarema et al.
111

 The first step in this synthesis is to 

create the In precursor, which is In[N(SiMe3)2]3. To synthesize In[N(SiMe3)2]3, 6.6 mmol 

of InCl3 and 20 mmol of LiN(SiMe3)2 were reacted in 120 mL diethyl ether at 60 °C for 

24 hours.
111

 The reaction mixture was filtered through a PTFE filter and then dried under 

vacuum to yield a pale yellow powder. The In[N(SiMe3)2]3 powder was then dissolved in 

15 mL of pentane, filtered, and dried again under vacuum. For In nanocrystal synthesis, 

20 g of hexadecylamine (HDA) was degassed at 100 °C for 2 hours and then heated to 

200 °C. Once the temperature stabilized at 200 °C, a solution of 0.26 g In[N(SiMe3)2]3 

and 0.728 g LiN(SiMe3)2 dissolved in 8 mL toluene was injected. The reaction 

temperature was then cooled to ~ 155 °C, at which point 0.1 mL of 1 M lithium 

triethylborohydride in THF was injected. Depending on the desired nanocrystal diameter, 

the reaction temperature was maintained for an additional 1 – 5 minutes. The reaction 

mixture was then cooled using a water bath. 20 mL of toluene was added to the mixture 

during the cooling process to prevent the solidification of HDA. This synthesis results in 

In nanocrystals with HDA ligands. We exchanged these HDA ligands with OA right after 

synthesis to promote stability of the nanocrystal solution. The In nanocrystals were 

isolated from the reaction mixture using precipitation techniques in a similar manner to 

the Sn nanocrystals.  
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Bi Precursor Synthesis and Bi Nanocrystal Synthesis: Bi[N(SiMe3)2]3 was used as the 

nanocrystal precursor for Bi nanocrystals. This precursor was synthesized via a 

metathesis reaction between BiCl3  and LiN(SiMe3)2 as reported by Yarema et al.
110

 In a 

typical synthesis, 6.6 mmol BiCl3 and 20 mmol LiN(SiMe3)2 were dissolved in 80 mL 

diethyl ether and 10 mL THF. This reaction was vigorously stirred and maintained at 

0 °C for 2 hours. Upon reaction completion, white precipitates of LiCl were filtered from 

the mixture by a PTFE filter and the resulting solution was dried under vacuum. The 

resulting Bi[N(SiMe3)2]3 powder was then dissolved in 15 mL pentane, filtered, and again 

dried under vacuum. In a typical Bi nanocrystal synthesis, 20 g of HDA was degassed at 

100 °C for 2 hours and then heated to 130 °C. 0.1 mL lithium triethylborohydride in THF 

was then injected. After 15 s, a solution of co-dissolved 0.14 g Bi[N(SiMe3)2]3 and 0.17 g 

Li[N(SiMe3)2] in 2 mL toluene was injected. After 15 s, the reaction was then stopped by 

cooling in a water bath. 20 mL of toluene was typically added during cooling to prevent 

the HDA from solidifying. This synthesis results in Bi nanocrystals with HDA ligands. 

We exchanged these HDA ligands with OA right after synthesis to promote stability of 

the nanocrystal solution. Adjusting injection temperature allows control over the 

nanocrystal diameter. The Bi nanocrystals were isolated from the reaction mixture using 

precipitation techniques in a similar manner to the Sn nanocrystals.  

Nanocrystal – PI Resin Sample Preparation: The dispersion of nanocrystals was 

completed using a three-step approach. First, the nanocrystals were synthesized as 

described above. In parallel, PI resin was dissolved in THF in a separate vial by stirring 

for 30 minutes. Then, an appropriate amount of nanocrystal solution and PI resin were 

mixed and stirred for 2 hours. The samples were then made by drop-casting the combined 
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solution onto appropriate substrates. The nanocrystal composition and size were 

controlled at the nanocrystal synthesis step and nanocrystal volume fraction was 

controlled at the mixing step.  

Transmission Electron Microscopy (TEM): To characterize the morphology of the 

nanocrystal samples, TEM (FEI Tecnai F20) was used and operated at 200 kV. The 

nanocrystal samples were made by drop-casting a dilute nanocrystal dispersion onto a 

carbon film coated copper TEM grid. The diameter of the nanocrystals was determined 

by statistical analysis of TEM images containing ~ 100 nanocrystals using ImageJ. The 

standard deviation of the nanocrystal diameters was used for the diameter uncertainties. 

The TEM samples of the nanocrystals dispersed in PI resin were prepared by drop-

casting dilute combined solutions onto SiNX window.  

Differential Scanning Calorimetry (DSC): DSC measurements were carried out using a 

standard differential scanning calorimeter (TA Q20). To prepare samples for DSC 

measurements, we drop-cast the combined solution into an aluminum DSC pan, and then 

heated it at 50 °C and 100 °C sequentially to remove the solvent. DSC measurements 

were carried out by cyclic heating and cooling at a rate of 10 °C/min. We also conducted 

control experiments at varying temperature scan rates of 2 – 10 °C/min and observed no 

effects of this parameter on the DSC signal (Figure S5). The temperature cycling range 

was 0 to 250 °C for Sn, 0 to 300 °C for Bi, and 0 to 200 °C for In. During these 

measurements, a nitrogen atmosphere was maintained using a flow rate of 50 mL/min. 

The DSC data was analyzed using the software provided by TA instruments. 
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CHAPTER 4  

PHASE CHANGE NANOCOMPOSITES WITH TUNABLE MELTING 

TEMPERATURE AND THERMAL ENERGY DENSITY 

 

ABSTRACT 

  Size-dependent melting decouples melting temperature from chemical composition and 

provides a new design variable for phase change material applications. To demonstrate 

this potential, we create nanocomposites that consist of a monodisperse ensemble of Bi 

nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. In this composite, the Bi 

NPs operate as the phase change component whereas the PI resin matrix prevents 

nanoparticle coalescence during melting. Benefits from the matrix, our experimental 

results have shown that the Bi NPs are preserved after 60 melt-freeze cycles.  By varying 

nanoparticle diameters, we successfully tuned the composite's melting temperature from 

218 to 240 C. Hence it is possible to leverage size effects to tune phase change 

temperature and energy density in phase change materials.  

  The origins of size-dependent melting arise from the increasing surface to volume ratio 

as a material’s characteristic length decreases.
44, 45, 132-135

 This size effect has been studied 

for over a century, starting with the theoretical work by Pawlow
42

 and the experimental 

observation done by Takagi.
47

 Buffet and Borel later used scanning electron diffraction to 

demonstrate that the melting temperature of gold can be varied by as much as ~ 500 C.
96

 

Their data and thermodynamic model indicate that the melting temperature of 

nanoparticles depends inversely on nanoparticle diameter. This size-dependent melting 
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phenomenon has since become known as melting point depression. Several other models 

and simulation results have since been conducted
44, 45, 115, 136, 137

 and many other 

experimental observations have been reported: particles have been melted on substrate 

surfaces,
103, 138, 139

 inside crystalline materials
114, 140, 141

 and inside amorphous 

materials.
142-146

 Lai et al.
99

 used nanocalorimetry measurements to show that a decrease 

in enthalpy of fusion also accompanies melting point depression.  

  While numerous efforts have been devoted to fundamentally understanding 

nanoparticle's melting, its application side is absent. There are two challenges to leverage 

this size effect to applications. First, the majority of research on melting point depression 

largely focuses on nanoparticles formed via dewetting of vapor-deposited metals on 

substrates. While this production approach is sufficient for fundamental studies, it has 

limited value for practical applications. Technological applications that leverage melting 

point depression will simultaneously require scalable nanoparticle synthesis, particle size 

distribution control, and particle stability. Scalable nanoparticle syntheses such as ball 

milling
147

, melt spinning
142, 146, 148, 149

 and ion implantation
141, 143

 have been used, but 

yield broad particle size distributions and consequently poor control over melting 

characteristics. Secondly, it is important to isolate the particles from one another to 

prevent coalescence and preserve size-effects over numerous melt-freeze cycles. Lacking 

a matrix possessed a greater thermal stability, the nanoparticles will coalescence and turn 

into a bulk material during melting.   

  To demonstrate a new approach to these challenges, we use solution-phase chemistry to 

create nanocomposites consisting of monodisperse Bi NPs dispersed in a PI resin matrix. 
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Solution-phase synthesis of colloidal NPs presents a scalable production approach that 

exhibits excellent control over NP size, shape, and composition.
150-152

 The PI resin matrix 

was chosen to prevent NP coalescence during melt-freeze cycles because it is a 

thermoplastic polymer with a glass transition temperature above the Bi melting 

temperature. The nanocomposites were made using a simple three-step approach: (a) 

synthesis of colloidal Bi NPs, (b) co-dissolution of Bi NPs and PI resin into a shared 

solvent, and (c) drop-casting onto an appropriate substrate. Adjusting the reaction 

conditions of the NP synthesis enabled control over NP size. Varying the ratio of NPs to 

PI resin in the shared solvent allows control over the composite’s NP volume fraction. 

The monodisperse NPs produced by this approach can be seen in Figures 4.1a and 4.1c, 

which show a transmission electron microscope (TEM) image and x-ray diffraction 

(XRD) pattern of typical Bi NPs. Figure 4.1b is a TEM image of the nanocomposite 

formed by combining the Bi NPs with PI resin. This modular sample preparation 

approach enables melting-point depression studies in 3-dimensional composites with 

carefully controlled nanoparticle size, shape, and composition. This approach also has the 

practical advantage of producing sample quantities large enough to be studied with a 

standard differential scanning calorimeter (DSC). This circumvents the necessity of 

highly sophisticated in situ electron microscopy melting and microfabricated 

nanocalorimeter methods, which have been the standard melting point depression 

research tools.
45, 97, 99, 135, 138, 139, 143
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Figure 4.1. (a) TEM image of Bi NPs with 14.5 nm diameter. (b) TEM image of a 

nanocomposite consisting of a PI resin matrix with embedded 14.5 nm diameter Bi NPs. 

The backgrounds in the top-right and bottom-left of the image correspond to PI resin and 

vacuum, respectively. (c) XRD pattern of 14.7 nm Bi NPs. 

 

  The Bi NPs were prepared by reducing Bi[N(SiMe3)2]3 with hexadecylamine in the 

presence of Li[N(SiMe3)2] and Li(Et3BH) as described by Yarema et al.
153

 Varying the 

reaction temperature and amount of Li(Et3BH) allowed control over NP size. The NPs 

were cleaned by precipitating in ethanol several times and then dissolved in 
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tetrahydrofuran (THF). The NPs produced in this synthesis consist of a Bi core with 

organic ligands that bind to the surface and act as a surfactant. To measure the true Bi-

content of the NP solution (as opposed to the combined content of the Bi and ligands), we 

used a DSC method. In brief, a sample of NPs were drop-cast into a DSC pan and then 

subjected to multiple melt-freeze cycles. During this process, the NPs coalesce into a 

bulk material because the organic ligands are insufficient at isolating the NPs from one 

another. Consequently a melting valley at the bulk Bi melting temperature (271C) is 

observed. The Bi mass was determined by comparing this valley to the enthalpy of fusion 

for bulk Bi (51.9 J/g). To make the nanocomposite, PI resin was dissolved in THF in a 

separate container. Appropriate amounts of the NP solution and PI resin solution were 

then combined and drop-cast into a DSC pan. DSC measurements were carried out by 

cyclic heating and cooling between 0 C and 300 C at a rate 10 C/min.  

  Figure 4.2a shows a typical heating and cooling cycle of a nanocomposite containing Bi 

NPs with 9.6 nm diameters. One endothermic valley and two exothermic peaks are 

observed during heating and cooling, respectively. We attribute the endothermic valley to 

NP melting. As expected this occurs well below the bulk melting temperature of Bi, 

which is 271 C. The two exothermic peaks during cooling are attributed to two separate 

freezing events because the total energy released at these temperatures is equivalent to 

the energy absorbed during melting. These freezing events occur below the melting 

temperature, which is a common phenomenon known as supercooling. These melting and 

freezing assignments in the DSC data are corroborated by control measurements on pure 

PI resin, which showed no discernable features throughout the 0 – 300 C temperature 

range. 



78 
 

 

 

Figure 4.2. (a) A heating and cooling DSC cycle for a composite with Bi NPs of 9.6 nm 

diameter. (b) The endothermic melting valley during DSC measurements for composites 

with Bi NPs of four different diameters. For clarity, the data in part (b) has been offset 

along the vertical axis. Each tick mark represents 0.1 W/g. (c) Size dependent melting 

temperature (circles) and enthalpy of fusion (triangles) for nanocomposites with Bi NPs 

of four different diameters. 

 

  One major benefit of using nanoparticles for phase change applications is that their 

melting temperature can be tuned independently of their chemical composition. We 

demonstrate this by examining composites with Bi volume fractions of ~ 9.0 – 9.5%, but 

varying NP diameters: 7.8 ± 0.5, 9.6 ± 0.5, 13.2 ± 0.7, and 14.5 ± 0.6 nm. As the NP 

diameter was varied from 14.5 to 7.8 nm, the melting temperature varied from 239.7 to 

218.4 C (Figure 4.2b,c). Our observations indicate that the NP diameter and melting 

temperature are inversely proportional, which is in agreement with prior work.
96, 97

 

Studies by Lai et al
99

 have previously shown that a decrease in enthalpy of fusion 

accompanies melting point depression. Due to the small NP signal, their studies required 
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specialized microfabricated nanocalorimeters.
99

 Since our NP synthesis approach 

produces large quantities of monodisperse particles, we are able to make this size-

dependent enthalpy of fusion observation using a standard DSC. As the NP diameter 

varied from 14.5 to 7.8 nm, the NP enthalpy of fusion changed from 42.1 to 12.9 J/g. For 

clarity we now note that this communication refers to two different enthalpies of fusion 

throughout its text. The first is the NP gravimetric enthalpy of fusion, which corresponds 

only to the mass of the composite’s  i component. The second is the composite’s 

volumetric enthalpy of fusion, which corresponds to the combined volume of the Bi and 

PI resin.  

  For practical applications, it may be desirable to tune the composite’s enthalpy of fusion 

independently of melting temperature. To demonstrate this capability, we created 

composites with Bi NPs of 14.7 ± 0.5 nm diameter and varied the Bi volume fraction 

from 5.3% to 19.8%. As the volume fraction increased, the composite volumetric 

enthalpy of fusion increased proportionately and no discernable effect on melting 

temperature is observed (Figure 4.3). This volume fraction design variable enables the 

composite’s melting temperature and enthalpy of fusion to be independently controlled 

by a simple two-step process. First, the NP size is chosen to yield the desired melting 

temperature. Second, the Bi volume fraction is chosen to yield the desired composite 

volumetric enthalpy of fusion. The Bi volume fraction can be successfully increased to ~ 

30%, however at ~ 41% bulk melting characteristics developed during thermal cycling. 

Hence this represents an upper limit on the Bi volume fraction for which the PI resin 

matrix no longer prevents NP coalescence. 
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Figure 4.3.  (a) The endothermic melting valley during DSC measurements for 

composites with 14.7 nm diameter NPs and varying Bi volume fraction. For clarity, the 

data in part (a) has been offset along the vertical axis. Each tick mark represents 0.1 

W/cm
3
. (b) The composite’s volumetric enthalpy of fusion for varying  i volume 

fractions. 

  Numerous melt-freeze cycles conducted on the nanocomposites demonstrate that the PI 

resin matrix is effective at preventing nanoparticle coalescence, which indicates that this 

approach could be used for technological applications. Despite subjecting the 

nanocomposite to 60 melt-freeze cycles, no notable changes in melting temperature or 

enthalpy of fusion were observed (Figure 4.4). This is in stark contrast to previous 

literature results in which bulk-like behavior can even be observed during the first 

thermal cycle.
105, 154

 We note that while the PI resin matrix was sufficient at preventing 

nanoparticle coalescence, it was not sufficient at preventing oxidation. The Bi NPs in the 

nanocomposite slowly oxidized over a period of weeks under ambient conditions. This 
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can be addressed by choosing alternative matrix materials. Unlike previous experiments 

that use composites with polydisperse nanoparticles and ill-defined melting temperatures, 

these experiments demonstrate the feasibility of creating composites with monodisperse 

nanoparticles and well-defined melting temperature.  

 

Figure 4.4.  Several representative heating cycles during cyclic DSC measurements on a 

composite with 14.5 nm Bi NPs.  

 

  One application where these nanocomposites could excel is as a phase change material 

for thermal energy storage and thermal management. Latent heat is commonly used to 

store thermal energy because enthalpies of fusion are typically on the order of 10
2
 C of 

sensible heat. In the low temperature regime (< 80 C), paraffin is commonly used for 

latent heat storage. One of paraffin’s attractive qualities is that its melting temperature 



82 
 

can be tuned, which is typically difficult with conventional materials. As the length of the 

paraffin’s carbon chain is decreased, its melting temperature decreases. In this respect, 

the Bi NP diameter plays a similar role to paraffin length. Furthermore, melting point 

depression is a general phenomenon and we see no reason why this nanocomposite 

approach cannot be generalized to other NP compositions. Hence NPs can provide 

thermal storage functionality and flexibility at temperatures above 80 C where paraffin 

is not a viable option. In addition to accessing a temperature regime unattainable to 

paraffin, these composites also benefit from high volumetric enthalpies of fusion. For 

example, the nanocomposite with a 19.8% volume fraction of 14.7 nm NPs has a 

volumetric enthalpy of fusion that is ~100% greater than a typical paraffin such as RT60 

(76 J/cm
3 
vs. 37 J/cm

3
).

155
 

 

Conclusion 

To conclude, this work demonstrates that polymer matrices can stabilize cyclic 

melting of NP ensembles and enable melting point depression studies in composites with 

carefully controlled nanoparticle size. This stabilized melting point depression also 

creates possibilities for applications in phase change materials. For example, engineered 

thermal storage materials should be possible because melting temperature can be tuned 

by varying nanoparticle size.  
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CHAPTER 5 

 METAL MATRIX – METAL NANOPARTICLE COMPOSITES WITH 

TUNABLE MELTING TEMPERATURE AND HIGH THERMAL 

CONDUCTIVITY FOR PHASE CHANGE THERMAL STORAGE 

ABSTRACT 

Phase change materials (PCMs) are of broad interest for thermal storage and management 

applications. For energy dense storage with fast thermal charging/discharging rates, a 

PCM should have a suitable melting temperature, large enthalpy of fusion, and high 

thermal conductivity. To simultaneously accomplish these traits, we custom design 

nanocomposites consisting of phase change Bi nanoparticles embedded in an Ag matrix. 

We precisely control nanoparticle size, shape, and volume fraction in the composite by 

separating the nanoparticle synthesis and nanocomposite formation steps. We 

demonstrate a 50 – 100% thermal energy density improvement relative to common 

organic PCMs with equivalent volume fraction. We also tune melting temperature from 

236 – 252C by varying nanoparticle diameter from 8.1 – 14.9 nm. Importantly, the silver 

matrix successfully prevents nanoparticle coalescence and no melting changes are 

observed during 100 melt-freeze cycles. The nanocomposite’s Ag matrix also leads to 

very high thermal conductivities. For example, the thermal conductivity of a composite 

with a 10% volume fraction of 13 nm Bi nanoparticles is 128  23 W/m-K, which is 

several orders of magnitude higher than typical thermal storage materials. We 

complement these measurements with calculations using a modified effective medium 
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approximation for nanoscale thermal transport. These calculations predict that the 

thermal conductivity of composite’s with 13 nm  i nanoparticles varies from 142 to 47 

W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle 

diameters and/or smaller nanoparticle volume fractions lead to larger thermal 

conductivities. 

Latent heat thermal storage systems utilize the solid-liquid transition of phase change 

materials (PCMs) to store thermal energy. This results in much higher energy densities 

than commonly used sensible heat thermal storage systems and in turn leads to both 

material and space savings.
156-158

 For instance, the latent heat of ice is equivalent to 80 

degrees of sensible heat in water. Nevertheless, challenges exist for employing PCMs for 

effective latent heat thermal storage in varying environmental conditions. Commercially 

used PCMs are mostly organics and salt hydrates, which are limited to applications from 

10 C – 120 C.
159

 This is suitable for thermal management of buildings
160

 and typical 

electronics,
161

 but is mismatched for higher temperature applications such as industrial 

process heat,
162

 power electronics thermal management,
163

 and concentrated solar thermal 

power plants.
164

 Latent heat storage at elevated temperatures has been generally restricted 

to phase change salts in lab settings,
165

 whereas industrial practice instead focuses on 

molten salts for sensible heat storage.
164, 166

 However, salts are prone to corrosion 

problems and also suffer from low thermal conductivity, which in turn leads to slow 

thermal charging/discharging rates. In fact, this issue of low thermal conductivity is 

common to thermal storage materials in general.
167-169

 The thermal conductivities of 
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organic PCMs and salt hydrates range from ~ 0.1 – 1 W/m-K,
159

 and the thermal 

conductivity of salts range from ~ 0.5 – 5 W/m-K.
165

  

 

Previous efforts to improve the thermal conductivity of PCMs have focused on the use 

of thermally conductive filler materials (e.g. graphite,
170

 metallic nanoparticles,
171

 and 

carbon nanotubes
172

) or foams (e.g. graphite and metal). While fillers are easy to 

implement, thermal conductivity enhancements are unfortunately limited because the 

fillers do not form a continuous structure and the thermal interface resistance between the 

PCM and fillers is non-negligible. To overcome this problem, many researchers infiltrate 

PCM into thermally conductive foams (i.e. metal foam
173

 and graphite foam
174

), which 

have a continuous structure and leads to better thermal conductivity improvements. For 

example, a recent study using a graphite foam – paraffin wax composite demonstrated a 

thermal conductivity of 3.6 W/m-K, which is a 18-fold improvement over paraffin.
167

 

The use of foams has been demonstrated for many low melting temperature organic 

PCMs, however this technique is problematic for high melting temperature PCMs (e.g. 

salt) due to difficulties with the infiltration process and corrosivity.
175

 

 

To find a PCM that has high thermal conductivity, high melting temperature, and large 

enthalpy of fusion, we turned our focus to metallic materials. Metals have excellent 

thermal conductivities ranging from ~ 10 – 400 W/m-K and a broad range of melting 

temperatures ranging from -40 C to over 3000 C. Relative to other PCMs, metals have 

received little attention primarily due to their weight (i.e. poor gravimetric energy 

density).
156, 169

 While gravimetric energy density is important for mobile applications, 
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many thermal storage applications are stationary, and in these cases volumetric energy 

density is of more importance. Hence metallic PCMs could find applications in buildings 

thermal management, industrial process heat, and concentrated solar thermal power 

plants.  

 

In this paper, we propose the use of composites that consist of phase change metallic 

inclusions distributed in a metal matrix. The phase change inclusions provide the desired 

melting temperature and high volumetric energy density, whereas the matrix provides 

excellent thermal transport and mechanical strength when the inclusions melt. 

Furthermore, we explore the use of phase change nanoparticle inclusions as opposed to 

phase change macroparticle inclusions. The choice of nanoparticles is motivated by the 

use of size-dependent melting as a new PCM design tool. Size-dependent melting is a 

commonly-observed phenomenon in nanostructures and was first predicted by 

Pawlow.
176

 Substantial theoretical and experimental efforts have since been devoted to 

explaining the relation between nanoparticle diameter and melting temperature.
96, 98, 103, 

106, 177-179
 These fundamental studies inspired us to develop nanoparticle-based PCMs for 

application purposes.  

We demonstrate this nanoparticle-based PCM concept by creating composites 

consisting of phase change Bi nanoparticles embedded in an Ag matrix. We first present 

a solution-phase approach to embed high-quality colloidal Bi nanoparticles into a bulk 

Ag matrix. This approach separates the nanoparticle synthesis and composite formation 

steps, thereby enabling excellent control over nanoparticle morphology and volume 

fraction. This in turn permits control over the composite's melting temperature and 
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energy density. We investigate the composite’s thermal storage performance by using 

cyclic differential scanning calorimetry (DSC). Our composite’s energy density is 5  – 

100% better than composites containing an equivalent volume fraction of typical organic 

PCMs. Furthermore, varying the  i nanoparticle diameter tunes the nanocomposite’s 

melting temperature from 236 – 252 °C. Importantly, these DSC measurements also 

demonstrate that the silver matrix offers effective protection against coalescence of the Bi 

nanoparticles during melt-freeze cycles. The Ag matrix also greatly improves thermal 

transport in the nanocomposite. Thermal conductivity measurements using the 

Wiedemann-Franz law
180

 demonstrate that our nanocomposite’s thermal conductivity is 

several orders of magnitude better than typical thermal storage materials. We also employ 

a modified effective medium approximation (EMA) for nanoscale thermal transport to 

calculate the composite thermal conductivity over a broad range of nanoparticle 

diameters and volume fractions.  

 

Results and discussion 

Metal Matrix – Metal Nanoparticle Composite Synthesis  

The nanocomposite was prepared by a simple three-step approach: (a) synthesis of 

colloidal Bi nanoparticles, (b) co-dissolution of Bi nanoparticles and Ag precursor in a 

solvent mixture, and (c) heating to thermally decompose the Ag precursor into an Ag 

matrix. This three-step nanocomposite approach enables independent control of 

nanoparticle size, shape, and volume fraction by using a modular technique that separates 

nanoparticle synthesis from nanocomposite formation. Nanoparticle size and shape are 

controlled by step (a) whereas nanoparticle volume fraction is controlled by step (b). The 
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formation of the metal matrix - metal nanoparticle composite occurs in the last step, 

during which the Ag precursor thermally decomposes into an Ag matrix that encapsulates 

the Bi nanoparticles. 

 

Figure 5.1. Transmission electron microscopy images of the Bi nanoparticles used to 

create the Ag matrix – Bi nanoparticle composites. The nanoparticle diameters are (a) 

8.1±1.0 nm, (b) 9.8 ± 0.8 nm, (c) 13.2 ± 0.6 nm and (d) 14.9 ± 0.6 nm. (e) X-ray 

diffraction pattern of Bi nanoparticles with 13.6 nm diameter. 
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The Bi nanoparticles were prepared by a hot injection technique reported by Yarema et 

al.
110

 In brief, Bi[N(SiMe3)2]3 was used as a Bi precursor and reduced by hexadecylamine 

at a elevated temperature. Size variation was achieved by varying the reaction 

temperature from 115 to 140 C. This synthesis yields Bi nanoparticles with surface-

bound hexadecylamine ligands. In order to improve colloidal nanoparticle stability, the 

hexadecylamine ligands were exchanged with oleic acid ligands post-synthesis. Figure 

5.1 illustrates the high quality Bi nanoparticles prepared by this approach, which exhibit 

spherical shape, excellent size control, and narrow size distribution.  

 

We used silver benzoate as the precursor to create the nanocomposite’s Ag matrix. 

Silver benzoate is an organic silver salt with good solubility in amine solvents and is a 

well-known silver precursor.
181, 182

 Thermogravimetric analysis was employed to identify 

appropriate conditions for decomposing this precursor. A temperature ramp of 2 C/min 

was performed from room temperature to 300 C, where the sample was kept isothermal 

for 2 hours and then resumed up to 350 C. As Figure 2a shows, after the isotherm 

process at 300 C, the mass reached its final value of ~ 47% and no further decrease in 

mass was observed. This mass ratio indicates that the final product is Ag and this 

conclusion is further corroborated by x-ray diffraction measurements (Figure 5.2b). 

Together, these results indicate that 300 C is sufficient to fully decompose the silver 

benzoate. 

Prior to nanocomposite formation, the Bi nanoparticles and silver benzoate were mixed 

in an appropriate ratio to yield the desired nanoparticle volume fraction. We note that this 

step is sensitive to solvent choice because the Bi nanoparticles prefer nonpolar solvents 
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whereas the silver benzoate prefers mildly polar solvents. We addressed this issue by 

choosing a miscible solvent pair and controlling the concentration of Bi nanoparticles and 

silver benzoate. Prior to mixing, the Bi nanoparticles were suspended in toluene at ~ 1 

mg/mL and the silver benzoate was dissolved in pyridine at ~ 2 mg/mL. The Bi 

nanoparticle suspension and silver benzoate solution were then combined, stirred for 2 

hours, and used promptly. If not used promptly, partial precipitation could be observed 

the following day. We also chose toluene and pyridine as the miscible solvent pair 

because of their similar boiling temperatures, which should help prevent phase 

segregation as the solvent evaporates during the nanocomposite formation step. We note 

that since pyridine is a known ligand for colloidial nanocrystals,
183, 184

 a potential for 

ligand exchange between oleic acid and pyridine exists during this step. However, we do 

not believe ligand exchange occurs because the Bi nanoparticles with oleic acid ligands 

are insoluble in pyridine.  Had a ligand exchange occurred, the Bi nanoparticles should be 

soluble in pyridine and our use of a pyridine-toluene solvent pair would be unnecessary. 
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Figure 5.2. (a) Thermogravimetric analysis on silver benzoate. The temperature ramp 

rate was 2C/min and a 2 hr isotherm was applied at 300C. (b) X-ray diffraction pattern 

of silver made via the thermal decomposition of silver benzoate. 

 

Composites used for phase change studies were prepared by drop-casting the combined 

Bi nanoparticle – silver benzoate solution, solvent removal at 100C, and then silver 

benzoate thermal decomposition at 300C for 2 hours. The results of this nanocomposite 

formation process are shown in Figure 3. The size and shape preservation of the Bi 

nanoparticles during this process is most clearly seen in Figure 3a, which has a low Bi 

volume fraction. Figure 3b shows a composite with a large volume fraction of Bi 

nanoparticles, which is more representative of the composites used for phase change 



92 
 

studies (i.e. Figures 4 and 5). To confirm the homogeneous dispersion of the Bi 

nanoparticles throughout the matrix, we imaged a composite over a large area and 

collected chemical composition maps using energy dispersive x-ray spectroscopy. 

 

Figure 5.3. (a) TEM image of a Bi-Ag nanocomposite with a low Bi nanoparticle volume 

fraction. (b) TEM image of a Bi-Ag nanocomposite with a high Bi nanoparticle volume 

fraction. 

 

Despite the decomposition temperature of the silver benzoate being above the melting 

temperature of the Bi, we do not observe any alloying between the Bi nanoparticles and 

Ag matrix. This is primarily because the phase behavior of Ag-Bi is such that no 

compounds form between these elements.
185

 In addition, the solubility of Ag in Bi is 

negligibly small and the solubility of Bi in Ag is only 0.83 at% at 262C.
185

 We also 

believe the oleic acid ligands protect the Bi nanoparticles during silver benzoate 

decomposition. In our past work on Bi nanoparticle melting inside polymer matrices,
185

 

 i nanoparticle melting was only observed after an initial “break-in” period at elevated 

temperature (e.g. 1 hour at 300C). We presume this is due to the oleic acid ligands 

stabilizing the Bi surface and temporarily inhibiting melting. Similar surface stabilization 
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effects have been observed in other literature such as Pb nanoparticles in Al matrices
186

 

and Ag nanoparticles in Ni matrices.
187

  

Unlike typical in situ metal nanocomposite formation techniques (i.e. ball milling,
147, 

188
 melt spinning,

146, 189
 and ion implantation

179, 190
), our metal matrix - metal nanoparticle 

composite formation technique enables excellent control over particle size, shape, and 

composition. By separating the steps of nanoparticle synthesis and nanocomposite 

formation, we have enabled independent quality control over nanoparticle morphology 

and facile control over nanoparticle volume fraction. This concept of separating 

nanoparticle synthesis and nanocomposite formation has been previously demonstrated to 

produce nanocomposites with organic matrices
56, 191, 192

, oxide matrices 
53, 193

 and 

semiconductor matrices.
26, 194, 195

 Herein, we have applied this concept to metal matrix 

nanocomposites. We do note that identifying appropriate metal precursors is not trivial 

because many precursors decompose into metal-oxide instead of metal. This was another 

reason for our choice of a silver matrix; in addition to its favorable phase behavior with 

bismuth and its very high thermal conductivity, it is energetically favorable to form silver 

over silver oxide due to silver’s high reduction potential. By judicious selection of 

solvents, nanoparticles, and metal precursors, we believe this approach can be 

generalized to other metal nanocomposite chemical compositions. Soluble metal 

precursors that decompose into copper,
196, 197

 silver,
198, 199

 gold,
200

 palladium
201

, cobalt,
202

 

and rhodium
202

  have been identified in the literature.   
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Nanocomposite Melting Temperature and Thermal Energy Storage Density 

To investigate the melting characteristics of our Ag matrix – Bi nanoparticle 

composites, differential scanning calorimetry (DSC) measurements were performed. A 

representative heating and cooling cycle of a nanocomposite containing 13.2 nm Bi 

nanoparticles is shown in Figure 5.4a. One endothermic valley was observed at 246 C 

during heating and we attribute this to nanoparticle melting. In accordance with size-

dependent melting, this melting occurs well below the melting temperature of bulk Bi, 

271 C. During cooling, three exothermic peaks were observed. The first peak was broad 

and appeared around 224 C, where as the second and third peak appeared around 137 C 

and 93 C, respectively. We attribute these peaks to three separate nanoparticle freezing 

events because the total energy released is equivalent to the energy absorbed during 

nanoparticle melting; this data suggests that three different nucleation mechanisms are 

present within our nanocomposite. The Bi nanoparticles also exhibit a significant amount 

of supercooling, which could likely be mitigated via surface chemistry modification on 

the nanoparticles.
203

 The melting and freezing assignments in our nanocomposite were 

corroborated by a control DSC measurement on silver prepared via silver benzoate 

thermal decomposition. No discernible features in the control measurement are observed 

throughout the whole temperature range. In addition to facilitating fast thermal transport, 

the composite’s Ag matrix is also intended to function as a nanoparticle isolation barrier 

that prevents nanoparticle coalescence during melt-freeze cycles. To examine the 

matrix’s effectiveness, we subjected a composite to 1   melt-freeze cycles. As shown in 

Figure 4b, no notable changes in melting temperature or enthalpy of fusion were 

observed throughout the cycles. Note that in Figure 5.4 we have used the endothermic 
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valley minimum and full width half maximum for the melting temperature and melting 

temperature uncertainty, respectively. 

One benefit of employing nanoparticles as PCM is that the melting temperature can be 

tuned via particle diameter. This design variable provides additional flexibility when 

engineering the working temperature of a PCM. To demonstrate this capability, we 

prepared twelve composites containing 8.1 ± 1.0, 9.8 ± 0.8, 13.2 ± 0.6 and 14.9 ± 0.6 nm 

Bi nanoparticles. As the nanoparticle diameter varied from 8.1 – 14.9 nm, the melting 

temperature varied from 236 – 252C (Figure 5.4c-d). We also observe a size-dependent 

enthalpy of fusion that accompanies the size-dependent melting temperature; the 

nanoparticle enthalpy of fusion varied from 20.1 – 37.6 J/gBi over our range of 

nanoparticle diameters (Figure 5.4c-d). Our prior work on Bi nanoparticles in polymer 

matrices showed different ranges of melting temperature and enthalpy of fusion in 

similarly-sized nanoparticles (218 – 240C and 12.9 – 42.1 J/gBi).
56

 This indicates that the 

melting temperature and enthalpy of fusion of nanoparticles is a function of both size and 

surrounding environment. Past observations of size-dependent enthalpy of fusion 

required the use of sophisticated nanocalorimetry techniques.
99

 It is notable that we are 

able to extract size-dependent enthalpies of fusion using widely available standard 

benchtop DSC measurements. This is possible because our nanocomposite formation 

technique yields large sample sizes of monodisperse nanoparticles, accurate Bi volume 

fraction control, and protection against nanoparticle coalescence. We now note that this 

paper discusses two different types of enthalpy of fusion. The first one is the gravimetric 

enthalpy of fusion of the nanoparticle component in the composite, which is the enthalpy 

of fusion discussed above and in Figure 5.4. In the following discussion and Figure 5.5, 
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we focus on the nanocomposite’s effective volumetric enthalpy of fusion. We note that 

we use nanocomposite mass to deduce nanocomposite volume, and hence the volumetric 

enthalpy of fusions below do not account for porosity effects.  

 

Figure 5.4. (a) A heating and cooling DSC cycle for a composite with Bi nanoparticles 

(NPs) of 13.2 nm diameter. (b) Melting characteristics of a composite with 13.2 nm Bi 

nanoparticles throughout 100 thermal cycles. (c) The endothermic melting valley during 

DSC measurements on composites with different Bi nanoparticle diameters. For clarity, 

the data in part (c) has been offset along the vertical axis; each tick mark represents 0.2 

W/g. (d) Size-dependent melting temperature (triangles) and enthalpy of fusion (circles) 
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for the Bi nanoparticles. All nanocomposites in part (a), (b), (c), and (d) have a similar 

nanoparticle volume fraction of approximately 0.20 – 0.25. We note that the large error 

bars for melting temperature in (b) and (d) arise from our use of the endothermic valley's 

full width half maximum for the measurement uncertainty. We use the endothermic 

valley location as the melting temperature, and these variations were insignificant as seen 

in part (b). 

 

The thermal energy storage density of the composite can be controlled independently of 

melting temperature by varying the nanoparticle volume fraction. As shown in Figure 5a, 

the composite exhibits an increase in volumetric enthalpy of fusion as the volume 

fraction of Bi nanoparticles is increased. This enables a simple two-step process for PCM 

design. First, the nanoparticle size is chosen to yield the desired melting temperature. 

Second, the Bi content is varied to yield the desired composite volumetric enthalpy of 

fusion. We successfully increased the Bi nanoparticles volume fraction to ~34% without 

observing detrimental effects on melting temperature (i.e. nanoparticle coalescence 

during melt-freeze cycling), which indicates that the Ag matrix effectively protects to this 

level of nanoparticle loading (Figure 5.5a). The Bi volume fraction in the nanocomposite 

was determined by using the relative concentrations of the bismuth nanoparticle and 

silver benzoate solutions. Since the Bi nanoparticle solution contains both the 

nanoparticles and surface ligands, we used a procedure described in our prior work
56

 to 

determine the nanoparticle solution’s true  i content. In brief, this procedure works by 

doing cyclic DSC measurements on the Bi nanoparticles in the absence of Ag matrix. 

During this procedure, the nanoparticles coalesce into bulk and melting is observed at the 
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bulk Bi melting temperature, 271C. The Bi mass is then determined by comparing the 

absorbed energy during melting to the bulk Bi enthalpy of fusion (51.9 J/g). Our 

nanocomposites achieve a ~ 50 – 100% enhancement in volumetric energy density 

relative to composites with an equivalent volume fraction of typical organic PCMs 

(Figure 5.5b).
204

 
205

 However, due to nanoparticle coalescence at high nanoparticle 

volume fractions, the maximum PCM volume fraction in our composites is lower than 

that achievable with organic PCM composites. 

 

 

Figure 5.5. (a) The endothermic melting valley during DSC measurements on 

composites with 13.2 nm diameter Bi nanoparticles and varying Bi volume fraction. For 

clarity, the data in part (a) has been offset along the vertical axis; each tick mark 

represents 0.5 W/cm
3
. (b) The effective volumetric energy density for composites 

containing 13.2 and 14.9 nm Bi nanoparticles with varying Bi nanoparticle volume 

fractions. For comparison, two common organic phase change materials, P116 paraffin 

wax and myristic acid, are also shown. 
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Nanocomposite Thermal Transport 

Another objective of this nanocomposite design is to facilitate fast thermal 

charging/discharging. Conventional thermal storage materials such as paraffins, salt 

hydrates, and inorganic salts have poor thermal conductivities on the order of 10
-1

 – 10
0
 

W/m-K, which lead to poor thermal charging/discharging rates. In contrast, metals have 

thermal conductivities ranging from 10
1
 – 10

2
 W/m-K, which suggests our metal 

nanocomposite should have superior thermal transport performance. To validate this 

conjecture, we measured the thermal conductivity of our nanocomposites using the 

Wiedemann-Franz law.
180

  

The Wiedemann-Franz law states that the thermal conductivity, k, of metallic materials 

can be related to the electrical conductivity, , via the Lorenz number, L, and absolute 

temperature, T. 

 

 
    

For most metals, the Sommerfeld value for the Lorenz number, L0, is a reasonable 

approximation:
206, 207

  

L0 = 2

22

3e

kB
= 2.44 × 10

-8
 WΩK

-2 

where kB, and e are the Boltzmann constant and elementary charge, respectively. In 

general, both electrons and phonons conduct heat in solids, and so it should be noted that 

thermal conductivity measurements obtained using the Wiedemann-Franz law approach 

only contain electron contributions.
30, 180

 However, since the phonon contribution to 

thermal conductivity in metals is negligible, this approach effectively measures the total 

thermal conductivity in our nanocomposites.
30

 We prepared thin film nanocomposite 
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samples by spin-coating and then measured their corresponding electrical conductivity 

using the Van der Pauw method. The thermal conductivity was then obtained using the 

Sommerfeld value for the Lorenz number in the Wiedemann-Franz law.  

We measured the thermal conductivity of nanocomposites containing 13 nm Bi 

nanoparticles with volume fractions ranging from 0 – 10% (Figure 5.6). The 

nanocomposite thermal conductivity varied from 270  61 W/m-K to 128  23 W/m-K 

over this range and larger Bi nanoparticle volume fractions resulted in lower thermal 

conductivities. Notably, these thermal conductivity values are significantly greater than 

typical thermal storage materials by several orders of magnitude. The thermal 

conductivity of our nanocomposite with 0% Bi nanoparticles corresponds to silver 

prepared via thermal decomposition of silver benzoate and is approximately 40% less 

than literature values for bulk silver. Given that our Ag samples exhibit porosity and are 

nanocrystalline with grain sizes on the order of 100 nm, this moderate decrease in 

thermal conductivity is reasonable. The uncertainty in nanocomposite thermal 

conductivity was dominated by film thickness uncertainty caused by roughness. Samples 

with Bi nanoparticle fractions greater than 10 vol% were not experimentally measured 

due to poor film quality. We also note that our use of the Sommerfeld value for the 

Lorenz number assumes that the nanocomposite’s electron gas is degenerate and that the 

electron mean free path is the same for both electrical conductivity and thermal 

conductivity.
206, 207

 Since Lorenz number deviations of up to ~50% from the Sommerfeld 

value have been reported in the literature,
208, 209

 our use of this value introduces additional 

uncertainty. Nonetheless, this uncertainty is relatively small given the several orders of 

magnitude improvement in thermal conductivity of our nanocomposites. 
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The nanocomposite thermal conductivity decreases from 215 ± 51 W/m-K to 128 ± 23 

W/m-K as the volume fraction of 13 nm Bi nanoparticles increases from 2% - 10%. This 

thermal conductivity trend arises due to two different effects. The first effect is that 

increasing nanoparticle volume fraction decreases the thermal conductivity of the Ag 

matrix itself. This arises because the nanocomposite’s interface density is commensurate 

with the mean free path of the thermal energy carriers in the Ag phase (i.e. ~ 33 nm, see 

Supporting Information). These interfaces act as scattering sites, which leads to smaller 

effective mean free paths in the Ag and lower Ag thermal conductivities. The second 

effect causing this thermal conductivity trend is that the volume fraction of the highly-

conductive Ag component decreases as the nanoparticle volume increases. It should also 

be noted that due to the finite thermal interface conductance between the Ag and Bi, the 

Bi nanoparticles contribute a negligible amount to the overall nanocomposite thermal 

conductivity. Based on experimental data for similar interfaces,
74, 210

 we estimate that the 

thermal interface conductance between the Bi nanoparticles and the Ag matrix is 34 

MW/m
2
-K (this value is lower than typical metal-metal interface conductances

211
 due to 

the presence of organic ligands at the Bi-Ag interface). For reference purposes, an 

interface conductance can be converted into an equivalent film thickness by dividing the 

film’s thermal conductivity by its thickness. In the case of our nanocomposite, the 

interface conductance between the Bi nanoparticles and Ag matrix is equivalent to a 7.9 

m thick Ag film. Consequently, the nanocomposite’s thermal conductivity is dominated 

by the thermal conductivity of the monolithic Ag matrix and smaller Ag matrix volume 

fractions directly lead to small thermal conductivities.   
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Figure 5.6. Nanocomposite thermal conductivity measurements using the Wiedemann-

Franz (W-F) law and thermal conductivity calculations using the modified effective 

medium approximation (EMA) for varying nanoparticle (NP) diameter and volume 

fraction. 

 

To further explore the effects of nanoparticle size and volume fraction on the 

nanocomposite thermal conductivity, we utilize a modified effective medium 

approximation (EMA) that accounts for nanoscale thermal transport effects. The 

conventional EMA approach is invalid for nanostructured materials because large 

interface densities lead to enhanced scattering of thermal energy carriers. This scattering 

leads to thermal conductivity changes in the nanocomposite as well as the individual 

nanocomposite constituents themselves. The modified EMA approach suggested by 

Minnich and Chen
212

 addresses this issue by accounting for interface density when 

estimating the mean free path of thermal energy carriers. Using their modified EMA 
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approach, they obtained good agreement with more sophisticated Monte Carlo 

calculations on nanocomposite thermal conductivity. Recently, Ong et al.
59

 successfully 

applied this approach to fit experimental thermal conductivity data on nanocrystal arrays 

comprised of nanoparticles with similar structure to the nanoparticles in our work. 

Consequently, we believe this modified EMA method should provide reasonable 

predictions for the thermal conductivity of our nanocomposites. Note that the original 

work by Minnich and Chen
212

 focused on thermal transport via phonons. Since our 

nanocomposites are metallic, the predominant heat carriers are free electrons instead of 

phonons and we have adapted our calculations to account for this. We neglect the phonon 

contribution to thermal conductivity because it is typically three orders of magnitude 

smaller than the electron contribution in metals. Additional calculation details can be 

found in Supporting Information. 

Figure 6 directly compares our modified EMA calculations with our experimental 

measurements. Given our measurement uncertainty, these results are in reasonable 

agreement. These calculations indicate that our nanocomposites with ~35 vol% Bi (i.e. 

the highest volume fraction for which melting point depression could be maintained) 

have a thermal conductivity of approximately 33 to 52 W/m-K for nanoparticle diameters 

from 8 to 15 nm. Changing the Ag-Bi thermal interface conductance and/or the Bi 

nanoparticle thermal conductivity by several orders of magnitude in the EMA 

calculations had negligible effects on the nanocomposite thermal conductivity (see 

Supporting Information). This supports our above assertions that the dominant factors 

causing the nanocomposite thermal conductivity trend for increasing Bi nanoparticle 

volume fraction are decreases in Ag thermal conductivity and Ag volume fraction. These 
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modified EMA calculations also indicate that smaller Bi nanoparticle diameters lead to 

smaller nanocomposite thermal conductivities. This can be understood by realizing that 

for equivalent volume fractions, the Ag-Bi interface density increases as the Bi 

nanoparticle diameter decreases. This increased interface density causes the effective 

mean free path in the Ag matrix to decrease and consequently the thermal conductivity of 

the Ag matrix itself decreases as nanoparticle diameter decreases. Overall, our combined 

thermal conductivity calculations and modified EMA calculations indicate that our 

nanocomposite thermal conductivity is on the order of 10
1
 – 10

2
 W/m-K, which is several 

orders of magnitude better than typical thermal storage materials (e.g. 10
-1

 – 10
0
).

159, 165
 

This increased thermal conductivity improves thermal energy storage performance via 

significantly faster thermal charging/discharging times. 

 

Conclusion 

We have created nanocomposites that consist of phase change Bi nanoparticles 

embedded in an Ag matrix. Our nanocomposite formation approach enables excellent 

control over nanoparticle size, shape, and volume fraction, and can likely be generalized 

to other metal matrix – metal nanoparticle compositions. Using these Ag matrix – Bi 

nanoparticle composites, we have experimentally demonstrated PCMs with tunable 

melting temperatures and large thermal energy densities. The Ag matrix preserves the 

nanocomposite structure during melt-freeze cycles and enables excellent thermal 

conductivities. Thermal conductivity measurements and modified EMA calculations 

indicate that our nanocomposite thermal conductivity is on the order of 10
1
 – 10

2
 W/m-K, 

which is several orders of magnitude better than typical thermal storage materials. 
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Overall, this metal matrix – metal nanoparticle composites represents a new paradigm for 

PCMs that can be used for thermal storage and management applications.  

 

Materials and Methods 

Materials and Equipment: All reagents and solvents were purchased from Sigma 

Aldrich. Sample imaging was done with transmission electron microscopy (TEM, Tecnai 

F20) and scanning electron microscopy (SEM, Nova 200 NanoLab FEI). The X-ray 

diffraction was taken on high resolution x-ray diffractometer (XRD, PANALYTICAL 

X’PERT PRO), with CuKα X-ray source operating at 40 kV and 40 mA. The 

thermogravimetric analysis and differential scanning calorimetry were performed using a 

TA Instruments Q500 TGA and TA Instruments Q20 DSC. Elemental analysis was 

carried out by energy dispersive spectroscopy (EDS, EDAX). The masses of 

nanoparticles and nanocomposites were determined using a Mettler Toledo UMX2 Ultra-

Microbalance. Thin film conductivity measurements were performed with a Keithley 

2400 sourcemeter and film thicknesses were determined by profilometry (Dektak XT 

stylus profilometer). Unless otherwise indicated, all samples were prepared and stored in 

an air-free environment. Samples were exposed to air for brief periods when using the 

above instruments.  

Bi Precursor Synthesis: Bi[N(SiMe3)2]3 is a metal silylamide and was used as the Bi 

precursor in this work. This precursor was prepared by reacting BiCl3 and Li[N(SiMe3)2] 

at 0 °C for 2 hours.
110

 In a typical synthesis, two solutions were prepared in a nitrogen 

filled glovebox: 1) 3.34 g of Li[N(SiMe3)2] dissolved in 40 mL diethyl ether, and 2) 2.10 

g BiCl3 dissolved in a mixture of 40 mL diethyl ether and 10 mL tetrahydrofuran (THF). 
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Solution 1 was firstly added into the flask and cooled down to 0 °C with an ice bath. 

Solution 2 was then added drop-wise to the flask and reacted for 2 hours. After 2 hours, 

the reaction mixture was a non-transparent yellow color and was then filtered through a 

PTFE filter (pore size 200 nm). The resulting bright yellow solution was dried under 

vacuum for 1 hour, and then redissolved in 15 mL of anhydrous pentane. The solution 

was again filtered and dried under vacuum for another 2 hours. The final product 

Bi[N(SiMe3)2]3 was a yellow powder and stored in a nitrogen-filled glovebox for future 

use.  

Bi Nanoparticle Synthesis: In a typical 13 nm Bi nanoparticle synthesis, 20 g of 

hexdecylamine (HDA) was loaded into a three-neck flask and degassed before heating to 

130 C. At this temperature, two solutions were injected into the flask with a time 

interval of 15 seconds between injections. The first solution was 1   μL of 1 M 

Li(Et3BH) in THF and the second was 0.14 g Bi[N(SiMe3)2]3 and 0.17 g Li[N(SiMe3)2] 

co-dissolved in 2 mL of toluene. 15 seconds after the 2
nd

 injection, the flask was swiftly 

removed from the heating mantle and cooled using a water bath. During cooling, 20 mL 

toluene was injected into the reaction mixture to prevent the HDA from solidifying. Once 

the temperature dropped to 40 C, the flask was disconnected from the schlenk line and 

the cleaning process was done in air. The Bi nanoparticles were isolated from the mixture 

by precipitating with a 1:1 addition of ethanol and centrifuging at 3000 rpm for 5 

minutes. It should be noted that this synthesis yields Bi nanoparticles with surface-bound 

HDA ligands. We switched these HDA ligands for oleic acid ligands immediately after 

the first precipitation, which led to improved colloidal nanoparticle solution stability. The 



107 
 

Bi nanoparticles were further cleaned three times by precipitating with ethanol and finally 

suspended in toluene. 

Nanocomposite Formation: The nanocomposites were prepared in three steps. First, the 

Bi nanoparticles were synthesized as described above. The nanoparticles were further 

cleaned by additional precipitations with ethanol and then dissolved in toluene with a 

concentration of ~ 1 mg/mL. A fresh silver precursor solution was prepared by dissolving 

silver benzoate using pyridine and stirring overnight. The concentration of silver 

benzoate solution was ~ 2 mg/mL. Second, an appropriate amount of Bi nanoparticle 

suspension and silver benzoate solution were combined to yield the desired Bi 

nanoparticle volume fraction and this combined solution was stirred for an additional 2 

hours. This combined solution was then filtered through a PTFE filter and drop-cast on 

appropriate substrates (e.g. DSC pan or TEM silicon nitride window). Finally, the cast 

film was thermally annealed in two steps: 100 °C for 1 hour and then 300 °C for 2 hours 

in a nitrogen atmosphere.  

DSC Measurements: All DSC samples were prepared by drop-casting an appropriate 

amount of Bi nanoparticle – silver benzoate combined solution into an aluminum DSC 

pan. The sample was then subjected to a two-step thermal anneal in a nitrogen 

atmosphere as described above. During DSC experiments, all samples were heated and 

cooled between 0 C to 300 C at a rate of 10 C/min for at least 15 cycles. 

Thermal Conductivity Measurements: The thermal conductivity measurements were 

carried out by first measuring electrical conductivity using the Van der Pauw method and 

then converting this electrical conductivity into a thermal conductivity using the 

Wiedemann-Franz law.
180

 Samples for thermal conductivity measurements were prepared 
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on silicon substrates by spin coating 100 L of solution at 1500 rpm. The film was then 

heated sequentially at 100 °C and 350 °C. In some instances this deposition process was 

repeated to yield an appropriate film thickness. Final film thicknesses were typically 200 

- 600 nm.  

TEM sample preparation and particle size determination: All Bi nanoparticle TEM 

samples were prepared by drop-casting 5  μL of a dilute nanoparticle suspension onto a 

carbon film supported copper TEM grid. The nanoparticle diameter was determined with 

ImageJ by analyzing a representative TEM image containing 100 - 200 Bi nanoparticles. 

The diameter uncertainties in manuscript represent the standard deviation of the 

nanoparticle diameters. The nanocomposite TEM samples were prepared by drop-casting 

a dilute combined solution of Bi nanoparticles and silver benzoate onto a Si3N4 window 

and then annealed as described in the nanocomposite formation section above.  
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