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ABSTRACT 

Underground transmission cables in power systems are less likely to experience 

electrical faults, however, resulting outage times are much greater in the event that a 

failure does occur. Unlike overhead lines, underground cables are not self-healing from 

flashover events. The faulted section must be located and repaired before the line can be 

put back into service. Since this will often require excavation of the underground duct 

bank, the procedure to repair the faulted section is both costly and time consuming. These 

added complications are the prime motivators for developing accurate and reliable ratings 

for underground cable circuits.  

This work will review the methods by which power ratings, or ampacity, for 

underground cables are determined and then evaluate those ratings by making 

comparison with measured data taken from an underground 69 kV cable, which is part of 

the Salt River Project (SRP) power subtransmission system. The process of acquiring, 

installing, and commissioning the temperature monitoring system is covered in detail as 

well. The collected data are also used to evaluate typical assumptions made when 

determining underground cable ratings such as cable hot-spot location and ambient 

temperatures.  

Analysis results show that the commonly made assumption that the deepest 

portion of an underground power cable installation will be the hot-spot location does not 

always hold true. It is shown that distributed cable temperature measurements can be 

used to locate the proper line segment to be used for cable ampacity calculations.  
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NOMENCLATURE 

a[
W

m2C
] Convection Coefficient 

D[m] Diameter of UG cable to center of embedded fiber optic cable 

Δt[C] Temperature difference between ambient and conductor 

K Temperature, Kelvin 

l [m] Length-of-Lay 

L[m] Length of underground cable 

Le[m] Distance from Earth Surface to Closest Cable 

Lf[m] Length of embedded fiber optic cable 

r0[
C∙m

W
] Thermal Resistivity of Native Soil 

Rd[
C∙m

W
] Thermal resistance of the cable dielectric insulation 

Re[
C∙m

W
] Equivalent thermal resistance of earth/backfill materials 

Rs[
C∙m

W
] Thermal resistance of the cable screen 

sf Unitless factor used to scale the embedded fibers of the Nexans UG 

power cables  

Tavg Average Temperature  

tamb[C] Ambient temperature 
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tc[C] Cable conductor temperature 

Wc[
W

m
] Heat generated by the cable conductor 

Wd[
W

m
] Heat generated by the cable dielectric insulation 

Ws[
W

m
] Heat generated by the cable screen 
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1. INTRODUCTION 

1.1 Background 

Growing urbanization and increased emphasis on aesthetics are just two of the 

major drivers for installing underground power transmission and distribution circuits. 

Underground cables provide increased system reliability due to their reduced exposure to 

environmental strains but their design and construction offer greater difficulties than 

those of traditional overhead lines. 

The major disadvantages associated with using underground power cables are the 

added cost of installation, increased environmental disruption and increased repair time 

due to underground cable failure. While underground cables are more reliable than 

overhead, fault locating and repair can be much more difficult and costly than that of an 

overhead system. The most easily controlled cause of underground cable failure is excess 

heating of the cable insulation. The power capacity of an underground cable is limited by 

the maximum allowable operating temperature of the cable insulation. Overhead lines are 

insulated and cooled by open air and self-heal from arc flashovers. Conversely, the 

dielectric insulating materials used in underground cables are susceptible to degradation 

caused by heating and do not self-recover when flashover occurs. 

Cable heating is a direct function of the power carried by an underground cable 

and therefore a limiting steady-state current rating (ampacity) is used to rate the amount 

of electrical current allowed to flow through the line.  Cable ampacity is defined as the 

amount of electrical current that can flow in an underground cable which results in the 

maximum allowable operating temperature of the cable conductor.   
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1.2 Motivation: 

Underground cable installations are typically operated well below their steady 

state ratings. These ratings however, are calculated assuming a “worst-case” scenario 

which means that the ampacity is overly conservative for all but the hottest days of the 

year. Ambient temperature and burial depth are the two main factors that control the rate 

of heat flow away from the cable circuit. For most underground cable installations the 

maximum expected ambient temperature and the deepest portion of the line are used for 

ampacity calculations. While this serves to protect the cables from overheating, it also 

causes the cables to be significantly underutilized throughout a majority of their 

functional life.  

Another concern with the above rating approach is that the hot-spot of an installed 

underground cable may not necessarily be at its deepest portion, which is the usual 

assumption used when performing temperature calculations. This source of error in 

ampacity calculations may or may not be conservative. The hot-spot of an underground 

cable installation is defined as the section of cable that experiences the highest 

temperature at a given loading relative to the entire cable length. Since the hot-spot 

section will reach critical temperature first, it is used as the limiting portion for the 

underground installation. However, crossings with other underground cables, water and 

gas lines and other complexities in the underground environment can make determining 

the system hot spot more complex. Additionally, underground cables in the vicinity of 

high solar irradiance, such as those located inside riser poles or close to asphalt paving, 

could potentially experience higher heating than the traditional hot spot location due to 

the influence of the solar heat flux.  
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The much higher cost of installation and repair for underground transmission lines 

makes it especially important to properly select the correct location and geometry used in 

calculating cable ampacities. Also, more accurate thermal models can allow for more 

accurate steady-state ratings and potentially the development of dynamic ratings. Both of 

these can potentially increase the utilization of both existing and new underground 

installations. 

1.3 Research Goal and Project Scope 

The Salt River Project (SRP) power and water utility company currently operates 

sixteen    69 kV underground transmission lines. The ampacities for each installation 

were originally calculated using traditional closed form mathematical formulae and later 

updated with more sophisticated iterative computer based methods, using Cymcap. The 

intention of this research is to collect real-time temperature data from one of SRP’s 

underground 69 kV transmission lines using advanced Distributed Temperature Sensing 

(DTS) equipment and to evaluate the accuracy of these existing ratings. Also checked 

will be the assumptions made when performing ampacity calculations, such as hot spot 

location, ambient temperature and soil/backfill thermal properties. More accurate cable 

ratings have the potential to offer improved system reliability and expanded system 

capacity by fully utilizing the potential of installed underground systems.  
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2. LITERATURE REVIEW  

2.1 Underground Power Transmission Cable Components 

Underground transmission lines are required to operate at high voltage while 

being in close proximity to grounded materials. This creates a challenge because the 

cable needs to be both protected from physical damage and electrically insulated with 

consideration being given to the heat generated during cable operation. Operating 

voltages and currents as well as environmental considerations dictate the ultimate cable 

construction that should be selected for a given installation. The geometry and materials 

used in an underground cable both affect the ultimate temperature and thus the cable’s 

rating. The analyses carried out in this thesis will involve only 1500MCM XLPE 

underground cables.  

 
Figure 2.1: Cross Section Schematic of Nexans Cable 
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Figure 2.1 shows a cross-sectional schematic view of one of the 69kV underground 

power cables monitored in this research. The individual cable components of Figure 2.1 

are described below. 

2.1.1. Cable Conductor: 

Cable conductors are made of either copper or aluminum and with varying geometry 

[1]. Conductor cross-section geometries include stranded, round, quarter segment, hollow 

core, six-segment, oval and others. Both the conductor material and construction affect 

the amount of heat generated by the cable. The conductor shown in Figure 2.1 is a 

1500MCM (thousand circular mills) copper core with a compact stranded design.  

 

2.1.2. Conductor Screen 

The conductor screen is layered between the conductor and the insulation material 

[2]. Along with adding strength to the cable, the main function of the conductor screen is 

to help create a uniform, radial electric field distribution around the conductor. This helps 

to reduce the stresses imposed on the cable insulation. 

 

2.1.3. Insulation 

High-density cross-linked polyethylene (XLPE) is the material of choice for most 

high voltage underground cables for both its electrical as well as thermal characteristics. 

XLPE is rated for a continuous conductor current of 90oC and emergency ratings of up to 

140oC [2].  
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2.1.4. Insulation Screen 

The insulation screen provides a uniform electric field distribution, relieves surge 

voltage by providing uniform cable capacitance and provides a low impedance path for 

line charging current [2]. 

 

2.1.5. Cable Screen and Concentric Neutral Wires 

The primary purpose of the cable screen, which is made of copper, is to ensure that 

there is no electric field outside the cable [2]. It also provides radial waterproofing for the 

cable insulation as well as active conductors for carrying of capacitive charging currents 

and zero sequence short circuit currents. The screen also provides physical strength for 

the cable construction. Some cable manufacturers may include fiber sensing cables in the 

position of one of the neutral conductors (see Figure 2.1). The Nexans cable under study 

in this paper includes 6 optical fibers contained in one stainless steel tube in the screen 

and neutral wire layer. 

The concentric neutral wires may travel parallel to the conductor in a simple straight 

path or may be wound around the cable in a helical fashion. For neutral wires that are 

wound, the linear distance along the cable for one complete turn is known as the length-

of-lay of the cable. Figure 2.2 shows the path of the concentric neutral wires and fiber 

optic cable for the Nexans cable of Figure 2.1. The length-of-lay for the Nexans UG 

cable is 400 mm for each complete turn of the neutral wires or optical fiber. Using the 

diameter (D), as measured from the cable screen layer and the length of lay (l) the ratio of 

fiber length (Lf) to cable length (L) can be calculated.  
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𝐿𝑓

𝐿
=

√𝑙2 + 𝜋2D2

𝑙
= 1.163[unitless] 

(2.1) 

 

 

From (2.1) we can see that for an arbitrary meter of cable the concentric neutral wires and 

optical fibers will measure 1.163 meters. 

 

 
Figure 2.2: Concentric Neutral Length-of-Lay 

 

2.1.6. Sheath 

The cable sheath is the final layer and the first line of defense for protecting the cable 

from physical damage. Cable jacket materials include polyethylene (PE), propylene 

rubber and PVC. The Nexans cable shown in Figure 2.1 has a PE sheath. 
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2.2 Underground Cable Installations 

The surrounding environment for underground cable installations is as important to 

determining cable temperature as the cable construction itself. Factors such as burial 

depth, conductor spacing and geometry all contribute to how quickly heat is able to flow 

outward from the conductor. Underground cables used for transmission are typically 

enclosed in PVC conduit that has been encased inside a concrete duct bank. The duct 

bank is then covered with a backfill material which is more stable than the native soil and 

has desirable and known thermal characteristics. The thermal properties of each of the 

materials used in every layer must be known by direct measurement or by calculation in 

order to accurately determine cable ampacity. Figure 2.3 shows an example design for a 

vertical configuration duct bank installation. 

 
Figure 2.3: Vertical Duct Bank Configuration  [3]  
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2.3 Cable Ampacity Calculation 

Given a particular operating voltage and installation environment, cable ampacity is 

determined by the maximum conductor current that does not create conductor 

temperatures that exceed those allowed by the cable insulating materials. Ampacity 

calculation is largely based on the 1957 Neher and McGrath method [4] which describes 

methods for both steady-state and transient temperature calculation.  

The heat generated by the cable is radiated outward through the various cable 

components described in section 2.1, through the cable conduit and duct bank, and 

ultimately to the earth surface and to open air. To determine temperature drop across each 

element it is useful to recognize that the system is analogous to an electrical circuit with 

heat flow analogous to electrical current and temperature drop analogous to voltage drop 

across the thermal resistances. Figure 2.4 shows an example of a thermal electrical 

equivalent circuit where the current sources represent the heat sources of the cable’s 

conductor, dielectric insulating material and metallic screen and the resistances represent 

the thermal resistances of the cable layers and surrounding environment. 

 
Figure 2.4: Thermal Equivalent Circuit 
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The term Δt in Figure 2.4 represents the temperature difference between the 

ambient and cable conductor and is a function of conductor current and the surrounding 

thermal resistances. Since the thermal resistances and ambient temperature are assumed 

to be constant, Δt can be found as a function of only conductor current.  The thermal 

resistances (Rd, Rs and Re) of Figure 2.4 are determined by the material properties of the 

surrounding environment and have units of oCmW-1. 

The dielectric loss (Wd) is a function of cable capacitance(C), operating voltage 

(V), angular frequency (ω) and the cable loss angle (δ). The calculation of the loss angle 

is too lengthy to be detailed here. The curious reader can find more detailed analysis in 

many published works on the subject including reference source [5]. 

𝑊𝑑 = 𝜔CV2 tan(𝛿)  W m−1 
(2.2) 

The screen loss (Ws) is proportional to the conductor loss by the factor λ. The 

scaling factor λ is a function of the circulating eddy currents in the cable screen and is 

affected by the proximity of cables to each other and the configuration in which the 

screens are bonded together [6]. The calculation of the loss factor, even in advanced finite 

element analysis methods, is usually conducted analytically [7].  

𝑊𝑠 = 𝜆 ∙ 𝑊𝑐 W m−1 
(2.3) 

Finally, the conductor losses themselves (Wc) are a function of conductor ac 

resistance and current. Conductor ac resistance (Rac) is a function of the cable core 

material and geometry, and conductor temperature.  
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𝑊𝑐 = Rac ∙ I2 W m−1 
(2.4) 

The formulation for ac resistance is shown below where α is the coefficient of 

variation with temperature, R0 is the resistance at test temperature (t=20oC) and variables 

𝛾s and 𝛾p are determined by cable core geometry [6]. 

Rac = R0[1 + 𝛼(𝑡 − 𝑡0)] ∙ (1 + 𝛾s + 𝛾p) Ωm−1 
(2.5) 

The circuit shown in Figure 2.4 is used to derive (2.6) which gives Δt as a function the 

heat generated by various cable components and the surrounding thermal resistances. 

∆𝑡 = (𝑊𝑐 +
1

2
𝑊𝑑) 𝑅𝑑 + (𝑊𝑐 + 𝑊𝑑 + 𝑊𝑠)(𝑅𝑠 + 𝑅𝑒) C (2.6) 

By substituting (2.3) and (2.4) into (2.6) and after some algebra, (2.7) is obtained which 

gives cable current as a function of temperature (ampacity). 

I = √
∆𝑡−Wd(

1

2
Rd+Rs+Ra+Re)

Rac∙Rd+Rac(1+𝜆)∙(Ra+Re)
 Amps (2.7) 

 

The solution for ampacity described above is for steady-state operation and therefore 

the thermal capacitances for each thermal layer are not considered. Also, (2.7) is for a 

single current carrying cable. For the more complex geometries and transient results 

needed for analysis completed in later sections, a computer based numerical solver was 

employed and its operation is described below in Section 2.4. 

2.4 Cymcap 

Cymcap [6] is a computer program used for the calculation of power cable ampacity 

and temperature rise. Cymcap was developed jointly with CYME International, Ontario 
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Hydro and McMaster University. Temperature rise and ampacity are calculated for both 

steady-state and transient conditions using iterative techniques based on Neher-McGrath 

[4] and IEC-60287 [8] standards. CYMCAP allows the user to create graphical 

representations of cables, duct-banks, and back-fills. Cable loading and ambient 

temperature are used as input and the program iteratively solves for either steady-state 

ampacity or transient results of temperature versus time. Figure 2.5 shows an example 

underground installation created using CYMCAP. The original installation geometry 

used to model Figure 2.5 can be seen later in Figure 4.7. 
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Figure 2.5: Cymcap Graphical Representation with Steady-State Ampacity Shown 

 

 

Figure 2.6 shows an example of calculated cable temperature results using Cymcap and 

the associated input load shape. 
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Figure 2.6: Cymcap Transient Temperature and Load Shape 

 

2.5 Distributed Temperature Sensing (DTS) 

Distributed temperature sensing is a technology that uses optical fiber cables to 

measure temperature using the fiber medium (typically SiO2) itself as the temperature 

probe. This allows for the temperature at any point along the length of the fiber to be 

measured as opposed to using point sensors such as thermocouples. Of particular benefit 

is the fact that the optical fiber is not affected by electromagnetic interference from low 

frequency sources such as power cables and transformers. This makes DTS an ideal 

method for monitoring power system equipment which can generate high electric and 

magnetic fields. Using DTS a complete temperature profile of an underground line can 

easily be generated. With typical accuracies of around ±1 oC, for commercial equipment, 

the temperature is measured at each desired point with a spatial accuracy of 1 m. Since 
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DTS generates an entire temperature profile of the measured cable, it is possible to 

directly measure, rather than infer, the hot-spot location of a cable installation.   

2.5.1. DTS Theory and Operation 

Distributed temperature sensing (DTS) equipment operates by analyzing the 

backscattered light generated when an incident monochromatic light source sent by the 

DTS interacts with the lattice structure of the optical fiber medium. The back scattered 

light is composed of three main scattered components; Rayleigh, Stokes and anti-Stokes. 

The Rayleigh component is due to elastic scattering and is at the same frequency as the 

source. The Stokes and anti-Stokes components are the result of inelastic scattering and 

are temperature dependent. The Stokes component is at a longer wavelength (lower 

frequency) and the anti-Stokes a shorter wavelength (higher frequency). The ratio of the 

magnitudes of Stokes and anti-Stokes backscatter component is used to determine the 

temperature of the fiber medium.  

𝑇(𝑧, 𝑡) =
𝛾

ln (
PS(𝑧, 𝑡)

P𝑎𝑆(𝑧, 𝑡)
) + 𝐶(𝑡) − ∫ 𝛥𝛼(𝑧′)𝑑𝑧′𝑧

0

 
(2.8) 

 

Equation (2.8) shows the calculation of optical fiber temperature at location z based on 

the ratio of the Stokes to anti-Stokes intensities [9] where: 

𝛾(Ω) =
ℏΩ

𝜅
 C (Ω is the frequency shift between stokes and anti-stokes radiation) 

𝐶(𝑡)[unitless] is the collector sensitivity correction factor which may vary with time. 

𝛥𝛼(𝑧)[
dB

m
] is the differential attenuation along the optical fiber at point z[m]. 
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PS(𝑧,𝑡)

PaS(𝑧,𝑡)
[unitless] is the measured ratio of the Stokes and anti-Stokes power reaching 

the DTS from measurement location z. 

A simplified diagram showing single channel DTS operation can be seen in Figure 2.7. 

 
Figure 2.7: DTS Operation 

 

2.5.2. DTS Differential Attenuation and Dual-Ended Measurement 

Due to bends, connectors, splices and other irregularities the differential attenuation 

(𝛥𝛼) from (2.8) does not remain constant along the fiber [9]. Dual-ended measurement 

DTS systems allow for the differential attenuation to be resolved directly for each desired 

measurement location. This allows for much more accurate temperature profiles to be 

generated than with single-ended measurement techniques where the differential 

attenuation is assumed constant along the fiber. For dual ended measurements, a single 

fiber loop is measured by the DTS. At one end the fibers are connected to two separate 

channels of the DTS and at the other end the fibers are spliced together. This allows the 

DTS to send laser pulses in either the forward or reverse directions through the loop. 
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Each measured point is measured once in the forward and once in the reverse direction. 

For a fiber optic cable of length ½ L the resulting loop created by the splicing two strands 

will be L. A measured location z in the forward direction will be at L-z when measured 

from the reverse direction. Figure 2.8 shows the basic configuration for dual-channel 

measurement of a single fiber.  

 
Figure 2.8: DTS Dual Channel Measurement 

Assuming that the time interval between forward and reverse measurements is 

sufficiently small so that the temperature at measurement location z remains constant, the 

time dependence of (2.8) may be ignored yielding the following equations for fiber 

temperature as taken in the forward (z) and reverse (L-z) directions [9]. 

𝑇(𝑧) =
𝛾

ln (
PS(𝑧)
P𝑎𝑆(𝑧)

) + 𝐶 − ∫ 𝛥𝛼(𝑧′)𝑑𝑧′𝑧

0

 

( 2.9 ) 

𝑇(L − 𝑧) =
𝛾

ln (
PS(L − 𝑧)

P𝑎𝑆(L − 𝑧)
) + 𝐶 − ∫ 𝛥𝛼(𝑧′)𝑑𝑧′L−𝑧

L

 

( 2.10 ) 

By setting ( 2.9 ) and ( 2.10 ) equal, the differential attenuation 𝛥𝛼 can be found 

algebraically over distance Δz and is shown below in (2.11) [9]. 
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∫ 𝛥𝛼(𝑧′)𝑑𝑧′

𝑧+Δ𝑧

𝑧

=
ln (

PS(𝑧 + Δ𝑧)
P𝑎𝑆(𝑧)

) − ln (
PS(𝑧)

P𝑎𝑆(𝑧)
) + ln (

PS(L − 𝑧)
P𝑎𝑆(L − 𝑧)

) − ln (
PS(L − 𝑧 + Δ𝑧)

P𝑎𝑆(L − 𝑧 + Δ𝑧)
)

2
 (2.11) 

 

By stepping along the entire length of the fiber in steps of Δz, and summing the 

values of Δα, an estimate for the differential attenuation from the DTS to the any 

measurement point can be calculated. In Chapter 5 the results of single- and dual-channel 

measurements are compared using a controlled testing environment.  

2.5.3. Optical Fiber Construction 

Optical fibers are constructed according to their intended applications. The main 

defining factors for optical fiber cables are the core and cladding diameters and the 

frequency range for which they are designed. The core and cladding dimensions are 

typically given in micro meters, also known as microns, and are listed as core/cladding 

microns. Fibers which are meant to carry only a specific light frequency are known as 

single-mode (SM) and those designed to carry a range of frequencies are called multi-

mode (MM) fibers. The DTS used for data collection in this work was designed to 

operate using 50/125 micron MM fibers. 
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3. SELECTION OF MONITORED UNDERGROUND (UG) LINE 

With sixteen installed 69 kV underground circuits it was not clear initially which line 

would be the best choice for monitoring. It was desirable to use a line that had a relatively 

large range of loading and also one and that would not pose too many obstacles to 

installation of monitoring equipment and/or sensors. The first choice was the 

underground portion of the line connection substations Papago and Buttes. This line was 

the original choice for its heavy loading, long underground length (3500 ft), higher than 

usual burial depths and interesting underground terrain. However, during the preliminary 

research stages of using the Papago-Buttes UG line it was discovered that in 2002 SRP 

had used UG 69 kV cables with (preferable) embedded optical fibers on the installation 

of the Brandow to Pickrell UG line. The optical fibers were located in the jacket of the 

UG cables. By using DTS, this would allow for the most accurate and real-time 

measurements of cable temperatures. The Papago-Buttes installation would require 

installation of thermocouples or optical fiber into one of the spare duct bank conduits 

which would yield distorted measurements that would require estimation of conductor 

temperatures based on approximate thermal models. Using the Brando-Pickrell 

installation was the better choice not only for achieving more accurate results but also for 

reduced cost since the temperature probes (the fiber) were already installed. Only the 

monitoring equipment needed to be purchased and installed. 
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4. BRANDOW – PICKRELL EXISTING INSTALLATION 

4.1 Overview 

The Brandow – Pickrell 69 kV transmission line consists of two overhead and one 

underground section which together connect SRP owned substations Brandow and 

Pickrell. The underground section connects the overhead conductors which terminate at 

SRP riser poles P24 and P30 located at the N-E and S-E corners, respectively, of Rio 

Salado and Priest Dr. in Tempe AZ. Figure 4.1 shows an overhead view of the 

underground path of the Brandow to Pickrell underground line. 

 
Figure 4.1: Overhead View of Brandow to Pickrell Underground Line 
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The UG circuit consists of six (two per phase) 1500MCM high voltage cables 

manufactured by Nexans of Germany. Each cable contains six 50/125 micron MM 

optical fibers. When the installation was constructed in 2003 the optical fibers of the 

Nexans cables were spliced at the riser pole insulators to six-strand, riser grade, 62.5/126 

micron MM optical fibers manufactured by Corning Optical. The Corning cables were 

brought down the riser poles to termination boxes approximately ten feet from the riser 

pole’s base. Approximately thirty feet of spare fiber for each UG cable was left inside the 

termination box at P24 and P30. Figure 4.2 shows the fiber splice box (right) on riser pole 

30. 

 
Figure 4.2: Riser Pole 30 Fiber Splice Box 
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4.2 Duct Bank Configurations and Materials 

Various configurations were used in the duct bank construction along the 

underground path. Figure 4.3 and Figure 4.4 show the underground profile. Different duct 

bank configurations are denoted by color change and corresponding labels above each 

section.  

 

 
Figure 4.3: UG Duct Bank Profile - Section A 
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Figure 4.4: UG Duct Bank Profile - Section B 

 

 

The underground profile consists of three main duct bank configurations; 

horizontal, vertical, and vertical at manhole and riser poles. Cross-sectional views of each 

configuration type can be seen below in Figure 4.5, Figure 4.6 and Figure 4.7. 
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Figure 4.5: Horizontal Configuration [3] 

 

 
Figure 4.6: Section at Manhole and Riser Poles [3] 
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Figure 4.7: Vertical Configuration [3] 

 

The duct banks are constructed of a medium density concrete and consist of eight 6-

inch PVC conduits and four 2-inch PVC conduits. Six of the 6-inch conduits are used for 

the high voltage electric power cables (two per phase) and two are spares which could be 

used for cable replacement or unforeseen future need. The 2-inch conduit is used for low-

voltage copper, and fiber-optic communications cabling. 
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4.3 Section Requiring Structural Reinforcement 

Due to underground obstructions discovered during installation, reinforcement was 

required in two locations to bring the duct bank closer to the road surface than originally 

designed. To accommodate the higher stresses at these points, the sections required 

additional structural reinforcements including the use of 4000 psi concrete and fiberglass 

rebar in the duct bank construction. While the thermal resistivity of these higher strength 

concrete sections was not directly measured, values taken from literature indicate a lower 

resistivity value than the typical duct bank sections of approximately 0.9 oCmW-1. After 

speaking with the original design engineers, it was concluded that no thermal backfill was 

used between the reinforced duct bank and the asphalt. This puts the top of the duct bank 

at the bottom of the road surface at a depth estimated to be 12 inches. Without a physical 

bore sample to check for material depths, these estimates will be used for any analysis 

done at this reinforced location. Figure 4.8 shows the original design for the Brandow-

Pickrell UG section which required additional reinforcement. 

 
Figure 4.8: Duct Bank at Reinforced Section [3] 
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4.4 Existing (assumed) Hot Spot Location and Cable Ampacity 

For the original ampacity calculations the deepest portion of the underground path 

was selected as the hot-spot location. This location also crossed beneath another high-

voltage underground transmission line operated by Arizona Public Service (APS) and can 

be seen in Figure 4.9. The APS line is a 230 kV underground circuit and uses one 

conductor per phase.  

 
Figure 4.9: APS 230kV UG Line Crossing With Brandow - Pickrell Line 
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Using the geometry of this assumed hot spot, an ambient temperature of 35 oC and 

two conductors per phase the original steady-state ampacity of 1600 A and a 300 hour 

emergency rating of 1900 A were assigned when the line was first commissioned. The 

original ampacity calculation was done using traditional closed form solution analysis 

based on the Neher-McGrath [4] method. The original calculation results can be found in 

reference source [3].  
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5. DTS LABORATORY TESTING 

The DTS unit is designed for use with 50/125 micron optical fibers. However, the 

Brandow – Pickrell installation posed a unique situation where the fibers in the measured 

underground cable were of the correct specification but connected at each end to jumper 

fibers with a larger core diameter of 62.5 micron. Since the DTS manufacturer was 

uncertain of the effects the mismatched fibers would have, it was necessary to validate 

the accuracy of the DTS measurements before attempting to collect any underground 

cable temperature data. A laboratory testing setup to simulate the Brandow-Pickrell UG 

installation was constructed at an SRP warehouse facility. Two sections (A and C) of six 

strand-riser-grade 62.5/125 micron fibers were used to simulate the jumper fibers on riser 

poles 24 and 30. The integrated fibers of the Nexans UG cable were simulated by a six-

strand, reinforced 50/125 micron fiber optic cable (section B). Only two of the available 

six strands were used from each section. Section A was connected to Section B by fusion 

splicing two color matched fiber strands. The same was done to connect section B to C. 

The two strands were spliced together at the end of section C and at the beginning of 

section A they were spliced to E2000 connectors. The result was a single fiber loop 

consisting of three distinct sections that accurately represented the Brandow – Pickrell 

UG line. A graphical representation of the test setup can be seen in Figure 5.1.  
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Figure 5.1: Test Setup Simulating Brandow – Pickrell Fiber Optic Arrangement: 

Section A represents the splice fiber on riser pole 24; Section B represents the Nexans 

UG fiber; Section C represents the splice fiber on riser pole 30. The E2000 connectors 

are connected to channels 1 and 2 of the DTS. 

 

5.1 Laboratory Test Setup 

The arrangement shown in Figure 5.1 was to be used determine the effects of 

mismatched fiber core diameters, like those of the Brandow-Pickrell UG line, on the DTS 

measurement accuracy. Each section was coiled and placed into individual plastic 

containers with a thermocouple placed inside to collect reference temperature data. A 

diagram of the testing setup can be seen in Figure 5.2. The boundaries of each section 

were precisely located using Optical Time Domain Reflectometer (OTDR) data provided 

by the DTS. The OTDR data shows the power in decibels of the received Stokes and anti-

Stokes backscattered light. The step change in attenuation due to the splices between 

different fiber strand diameters made it easy to identify the individual fiber sections.  
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Figure 5.2: Test Setup With Coiled Reference Temperature Sections 

 

 

Figure 5.3: DTS OTDR Showing Boundaries for Each Fiber Section 

 

Figure 5.3 shows the OTDR resulting from a scan of the entire loop created by splicing 

the individual strands from cable sections A, B, and C. The Stokes backscatter is 

displayed in red and the anti-Stokes in green. The larger core diameters of sections A and 

C result in a higher magnitude of the received Stokes and anti-Stokes components 

relative to the smaller core fibers of section B. It can be seen that each section is 

represented twice in a single OTDR scan due to the loop configuration.  
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5.2 Laboratory Test Results 

DTS measurements were taken for each coiled section and compared to their 

corresponding reference temperatures. In order to avoid measurement distortion due to 

connectors or fusion splicing, the temperature of each section was represented by taking 

the average temperature over the center 30 percent of each coil. Figure 5.4 shows the 

DTS temperature trace taken over a 20 meter span at the center of fiber section B. The 

minimum, maximum and average temperature over the displayed distance is also 

highlighted in Figure 5.4. 

 
Figure 5.4: Section B DTS Trace - Reference Temperature at 31.1oC 

 

Table 5.1: Test Setup Results 

  

Measureme

nt 

Time [s] 

Spatial  

Resolution 

[m] 

 

Fiber 

Section 

Averag

e 

[C] 

Max/Min 

[C] 

Referenc

e 

[C] 

Dual 

Ended 60 
1 

B 

 

31.04 

31.57/30.6

5 
31.10 

Single 

Ended 120 32.59 

33.01/32.0

0 
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The same procedure was repeated for sections A and C. The procedure was also 

repeated with section B being submerged in a water and ice solution. Table 5.1 shows the 

average (column 5) and maximum/minimum (column 6) DTS temperature over the center 

20 meters of Section B using both Single-Ended and Dual-Ended measurement mode. 

The measurement times (column 2) represent the total time over which the DTS 

measurements were made. The measurement time listed is the measurement time per 

channel; thus the total measurement time for both Dual and Single-Ended measurements 

is effectively 120 seconds. Table 5.1 shows the average temperature taken using Dual-

Ended measurement mode was only 0.06 oC less than the reference temperature reading 

(column 7) which is well within the rated ±1 oC rating of the DTS. Table 5.1 shows that 

by using single-ended measurement mode over the same section the average temperature 

varied by nearly 1.5 oC. These results confirmed that by using dual ended measurement 

configuration the effects of the mismatched fiber diameters could be negated and the 

temperature accuracy of the DTS maintained within its rated tolerance. Conversely, it 

was shown that temperature calibration was needed for single ended measurements. 

While the use of single channel measurements may be applicable in some situations, the 

inability to accurately take reference temperature readings from the UG cable in the case 

of this research makes single channel measurements an unreliable and impractical 

solution. It was decided from this experiment to use the dual channel measurement 

configuration for the Brandow – Pickrell UG data collection. 
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6. DTS INSTALLATION 

This section details the physical construction at the DTS installation location as well 

as the initial commissioning process. It is included to serve as a guide and lessons learned 

for SRP or other utilities installing DTS monitoring systems in the future. To understand 

the interpretation of the results section (provided in Chapter 9) it is not necessary to read 

this chapter.  

The proposed installation location for the DTS system was in a shaded area 

approximately 3 feet to the east of the concrete base of riser pole 24 (see Figure 6.1). The 

DTS system required a secure, climate controlled environment with an electrical power 

source, neither of which was available at the installation site. This section lists and 

describes the necessary work completed that allowed for the on-site installation and 

commissioning of the DTS system. 

 
Figure 6.1: DTS Enclosure Installed Next to Riser Pole 24 
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6.1 NEMA Rated Outdoor Enclosure 

Due to the harsh outdoor environment and high temperatures of Phoenix, it was 

decided to mount the DTS system in an insulated and air-conditioned NEMA (National 

Electrical Manufacturers Association) Type 4, outdoor enclosure which can be seen in 

Figure 6.2. The enclosure was purchase with an attached mini air-conditioner which 

required a 120 Volt ac power source. SRP provided a fiberglass distribution transformer 

pad to be used as a mounting base for the enclosure. 

 
Figure 6.2: NEMA Rated Outdoor Enclosure for DTS System 
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6.2 AC Power Connection 

Both the DTS and the mini air-conditioner required 120 V ac which was not readily 

available at the installation site. After some investigation it was discovered that an SRP 

streetlight circuit (120/240Vac split phase) ran just beneath the sidewalk to the south of 

the riser pole. It was decided to remove a section of sidewalk nearest to the DTS 

enclosure and tie into the existing streetlight circuit. A new junction box was installed 

between the sidewalk and the enclosure location and a new underground conduit was 

installed allowing power to be brought into the base of the DTS enclosure.  

 
Figure 6.3: Conduit Trench for AC Power Cable to DTS 
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6.3 Fiber-Optic Cable Installation, Identification, and Splicing 

The fiber optic cables needed to be brought from the junction box on the riser pole to 

the opening in the base of the DTS enclosure. A riser molding cover was used to bring 

the fiber from the junction box approximately 10 feet to the concrete base of the riser 

pole. Flexible conduit was buried between the concrete base and the enclosure. To protect 

the flexible conduit where it was exposed at the riser pole base, it was covered with a 

quick setting concrete.  

Once the fibers were brought into the DTS enclosure it was not known which 

underground power cable each fiber was associated with. It was not practical to 

physically trace out each fiber since it would require coming into close proximity with 

live 69 kV lines or requesting that the line be de-energized. Instead each fiber was 

identified by using the length markings printed on the jackets of each cable. This required 

that the length marking be read from five of the six fiber optic cables ascending from the 

DTS to the HV insulators on riser pole 24. The highest insulator was at approximately 48 

feet from the base of the pole and the cable length markings were less than one inch in 

height. In order to read the length markings at this distance, a digital camera with optical 

image stabilization and a telephoto lens was used. The recorded length markings, 

observing whether the length markings were ascending or descending combined with the 

approximate length of each of the fiber optic cables allowed for each cable to be precisely 

identified. Figure 6.4 shows the length marking on the riser-grade fiber optic cable taken 

at a distance of approximately 30 feet.   
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Figure 6.4: Length Markings on 

Corning Fibers 

 

 
Figure 6.5: Diagram Showing the 

Label Associated with Each UG 

Cable 

 

Once each cable was identified it was labeled with a unique identifying mark 

determined by the north/south orientation and phase of its connected underground cable. 

Figure 6.5 shows a diagram indicating the labels that can be found on each fiber optic 

cable inside the DTS enclosure beside the underground cable it is connected to. 

At the DTS enclosure, two E2000 connectors were spliced to each of the six fiber-

optic cables and remarked with the identifying mark described above. At the other end of 

the underground line, at riser pole 30, two fiber strands from each cable, those associated 

with the E2000 connectors, were spliced together forming 6 separate fiber loops, one for 

each UG cable. Each fiber loop was a full-scale version of the test setup described above 

in section 5.1.  
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7. EXPERIMENTAL SETUP 

A Distributed Temperature Sensing (DTS) system was installed on the Brandow-

Pickrell underground 69 kV circuit. The underground circuit consists of two 1500 MCM 

cables per phase, each with integrated optical fibers in the cable jackets. The DTS was 

installed in an outdoor NEMA rated cabinet beside one of the underground riser poles 

(P24). The integrated fibers on each underground power cable were spliced to individual 

riser grade fiber optic cables at the underground/overhead insulators and brought down 

the riser poles at either end of the circuit. The fibers were connected so that dual ended 

measurements (2.5.2) could be made on each underground cable.  

 

7.1 Measured Cable/Phase and Fiber Connection 

Cable SA was selected for measurement because it is the center phase throughout the 

underground path and as such is expected to have higher relative temperatures. A 

schematic of the fiber connection for cable SA can be seen in Figure 7.1 and an overview 

of the fiber path can be seen in Figure 7.2. 

 
Figure 7.1: Brandow-Pickrell Fiber Optic Configuration 
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Figure 7.2: Brandow-Pickrell UG Cable SA Path 

 

 

 

 

7.2 Length of Underground Cable 

In order to relate measured data taken from the underground cable it was crucial 

to have a reliable estimate of the cable distance and a map of the underground profile 

which could be compared to the DTS measurements. Since the exact installed lengths 

for each UG cable were not known it was necessary to estimate the lengths using the 

as-built installation data and field measurements. The length of the underground 
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section was estimated by creating a scale, CAD drawing of the Brandow-Pickrell UG 

line and measuring along the cable path with one of the built in CAD measurement 

tools. The riser section heights were directly measured using a laser range finder and 

the measured distance was used to correctly scale the CAD representations of riser 

poles 24 and 30. The total estimated length of cable SA (see Figure 6.5) was 

determined by adding the above ground riser section lengths to the estimated length 

of the UG section. The total estimated length of the Nexans underground power cable 

connected to measured fiber (SA) was 1489 feet.  
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8. DTS COMMISSIONING AND PRELIMINARY RESULTS 

The DTS was rack-mounted into the outdoor enclosure described in section 6.1 on 

January 16th 2015. The DTS was connected to the newly installed ac power source and 

the optical inputs (Chanel 1 and Chanel 2) were connected to the E2000 connectors on 

cable SA. The DTS needs to be configured each time it is connected to new optical fibers 

for the first time. This section gives a brief overview of that commissioning process and a 

review of the initial DTS trace results. 

 

8.1 DTS Commissioning and Charon3 Software  

Changes to the DTS configuration are made using a PC computer via a USB 

connection with the manufacturer-provided software package called Charon3® by LIOS 

Technology®. Since the DTS needs to be connected to the optical fibers it would be 

measuring during the commissioning process, a laptop PC with Charon3® software 

installed was used on-site for the initial setup.  

Using Charon3®, the connected fiber loop was scanned from each direction using 

DTS channel 1 and channel 2. Figure 8.1 shows the resulting length scan of channels 1 

and 2 for fiber SA. 

 
Figure 8.1: Charon3 Quick Start Length Scan of Optical Channels 1 and 2 
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The length scans of fiber channels 1 and 2 shown in Figure 8.1 are of the entire fiber loop 

comprised of the Nexans UG power cable and both of the Corning optical fibers on riser 

poles 24 and 30. Also, since the fibers along the Nexans cable are wound helically (as 

described in section 2.1.5) the resulting length scan is greater than the actual linear 

distance of the combined Nexans and Corning cable sections. The DTS length scan 

cannot be directly used to estimate cable lengths. The process of scaling and adjusting the 

raw DTS data to align with the underground power cable is shown in section 8.3.2. If the 

length scan shows that the length of fiber connected to both channel 1 and 2 is equal 

Charon3® will allow the user to use the Dual-Ended measurement mode which is listed 

as “Loop Configuration”. 

By default the DTS measurement parameters call for the entire length of 

connected fiber to be measured with a spatial resolution of 1[m] and a measurement time 

of 30 seconds. These initial settings were used to acquire an initial temperature trace and 

backscatter profile which were used to determine the appropriate adjustments to the 

measurement parameters. Figure 8.2 shows the backscatter scan of fiber loop SA with the 

Stokes component displayed in red and the anti-Stokes in green.  
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Figure 8.2: Backscatter Scan of Fiber SA 

Discontinuities in the magnitudes of the backscatter components occur at 35, 565, 

624 and 1154 meters and are due to splices between the embedded fibers of the Nexans 

UG cable and those of the Corning optical fibers. The section of Corning fiber that 

extends down riser pole 30 is identified in Figure 8.2 between 565 and 624 meters. The 

smaller discontinuity in backscatter attenuation seen near the center of this section (595 

meters) is cause by the splice between the two strands of the Corning fiber-optic cable. 

This point marks the start point for the return half of the fiber loop. Any temperature 

readings taken from this point onward would be redundant and thus are excluded from 

the trace range of the DTS. Figure 8.3 shows the initial DTS temperature trace of the 

entire 1189.5 meter loop and it is can be seen that the data are roughly symmetrical about 

the 594 meter point which corresponds to the loop midpoint fiber splice. Data reported 

from further temperature scans only include data from 0 to 594 meters. 
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Figure 8.3: Temperature vs Distance for Complete SA Loop 

 

The final measurement configuration can be seen in Figure 8.4 and in Table 8.1 a 

description of each setting is shown. 

 

 
Figure 8.4: DTS Measurement Parameters for Cable SA 
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Table 8.1: DTS Measurement Parameters 

SETTING DESCRIPTION 

Sampling Interval [m] Sets distance between measured points 

Measuring Time [s] Duration of each temperature trace 

Averaging (1,2,..10) Up to 10 temperature measurements for a single point 

can be averaged for greater temperature resolution.  

Reference Point Sets the selected point to be reference point (0 m) 

Temperature Profile Start Starting position for recorded data 

Temperature Profile End Ending position for recorded data 

Send Each x. Curve Interval value determining how often trace data will be 

stored. A setting of 2 will result in every other trace to be 

stored in memory.  

Transmit Backscatter 

Profile 

Selecting will result in the backscatter profile for each 

trace to be stored in memory 

 

 

8.2 Data Collection 

The DTS was programed to take a temperature trace every 5 minutes. Each trace 

consisted of a temperature reading taken each 1 meter starting at the DTS output and 

ending at the return loop splice on riser pole 30 (the rightmost fusion splice shown in 

Figure 7.1). This allowed for data to be collected from the entire UG cable as well as 

ambient temperatures at either riser pole taken from the Corning 62.5/125 micron fibers. 

Data were stored to an onboard compact-flash card in the DTS unit and downloaded via 

USB connection at one week intervals. 
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8.3 Preliminary DTS Results 

A preliminary analysis of the DTS temperature trace data was performed to verify 

temperatures were within expected ranges and to fit measured data with the underground 

profile maps.  

 

8.3.1 Comparison of Measured Riser Temperatures to Ambient 

The analysis of the backscatter data performed in 8.1 showed that DTS trace data 

from approximately 3 m to 35 m was from the Corning 62.5/125 micron fiber optic cable. 

To verify that the DTS measurements were within the expected range, temperature data 

was collected from the Corning fiber on riser pole 24 using the DTS and then compared 

to recorded ambient temperature from a nearby, SRP owned, temperature data collection 

site. The position was selected for being a point along the Corning riser fiber (see Figure 

7.1) which would not see heating from the 69 kV cables since it was not embedded in the 

cable and thus would more closely follow ambient temperatures. Figure 8.5 shows the 

DTS measured temperature and the recorded ambient temperature for the same time 

period. It can be seen that the measured temperature follows the shape of the daily 

ambient temperature curve with a positive shift which is due to the difference in 

collection location, direct sunlight heating and the greater thermal resistance of the fiber 

cladding and jacket compared to the dedicated temperature probe at the SRP site used to 

collect the ambient temperature data. 
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Figure 8.5: Measured Temperature of Corning Optical Fiber 26 meter from DTS 

 

8.3.2 Alignment of DTS Trace Data With UG Profile 

SRP provided the as-built installation records for the Brandow-Pickrell UG line 

which included detailed underground profile maps which were used to construct the CAD 

representations shown in Figure 4.3 and Figure 4.4. It was decided to shift the DTS 

collected data so that measurement points (distance from origin) would align with zero-

reference on the existing SRP drawings. This would simplify the process of correlating 

data to the installation geometry since all of the existing drawings used the same 

measurement units and reference points. In order to align the data collected by the DTS to 

the provided UG profile several steps were required. First the data needed to be cropped 

to only include points along the underground cable. Next since the DTS collected data 

with riser pole 24 being the starting point, it needed to be inverted so the position data 

would be ascending from riser pole 30 to 24. The data now had to be scaled to align the 
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points of the helically wound fiber strand with the linear path of the UG cable (see 2.1.5). 

Using the DTS backscatter data presented in section 8.1 the start and end of the fiber 

strand embedded in the Nexans UG cable were determined. The backscatter profile for 

the fiber loop can be seen in Figure 8.6 which shows the starting and ending points for 

the Nexans UG cable (first half of loop) at 35 and 565 meters. By taking the difference of 

these two points the unscaled length of the embedded fiber of the Nexans UG cable was 

found and the calculation can be seen in (8.1). 

𝐿𝐶𝑆𝐴,𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 = 565 − 35 = 530 m (8.1) 

 

This length of 530 meters corresponds to 1731 ft. Taking the sf=0.86 into account, this 

corresponds to the 1489 ft. cable length. 

 

 
Figure 8.6: DTS Backscatter Data Showing Fiber Splice Locations 
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The length-of-lay data as described in 2.1.5 was used to determine the appropriate 

scaling factor (sf) needed to adjust the DTS measurements so that they would correlate to 

positions along the underground profile map. Equation (8.2) shows the calculated scaling 

factor. 

𝑠𝑓 =
1

1.163
≅ 0.86 (8.2) 

 

Applying the scaling factor (sf), the calculated linear distance of the UG cable SA 

is approximately 455.7 m or 1495 feet. The calculated distance of 1495 feet was 6 feet 

greater than the estimated length of 1489 feet discussed in 0. It was unknown whether the 

difference between the DTS measured length and the estimated length was due to 

inaccuracies in the UG profile map, extra fiber coiled at splice locations or some 

combination of both. Since the distance was relatively small (less than 2 m and the spatial 

resolution of the DTS is 1 m) and the dimensions at either riser pole were equal, it was 

decided to split this difference by aligning the DTS measurements with the center of the 

underground profile. This means that the center of the scaled DTS temperature trace data 

taken between 35 and 565 meters was aligned with the center point of the UG profile 

map. Figure 8.7 shows a DTS temperature trace taken on August 15th at 5:32 pm which 

has been scaled using the scaling factor (sf) and aligned with the SRP UG profile for the 

Brandow-Pickrell line. 
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Figure 8.7: DTS Temperature Trace Aligned With SRP UG Profile Map 
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9. MEASURED RESULTS AND ANALYSIS 

9.1 Hot-Spot Locating 

The collected DTS trace data included measurements every 1 m along the length of 

the UG cable and traces were recorded every 5 minutes. By aligning the DTS trace data 

with the underground profile map provided by SRP it was possible to identify the 

location of the section of UG line experiencing the highest temperatures relative to the 

rest of the installation.  

A Matlab® code was written to analyze all of the collected DTS data and identify 

the hot-spot location from each trace. Data from 35 m to 565 m (the beginning and end of 

the Nexans UG cable) was considered and a total of 57,209 traces were analyzed. In 

Figure 9.1 the y-axis shows the number of times each x-location was the hot-spot, as a 

percentage of the total number of traces taken. 

 
Figure 9.1: Hot-Spot Occurrences between 35 and 565 Meters 
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In order to relate the hot-spot location information presented in Figure 9.1 to the 

UG profile the data was scaled and inverted as described in 8.3.2 so that the x-axis 

locations would correlate to the length markings on the UG profile. The hot-spot data in 

Figure 9.2 has been aligned with the SRP underground profile map and shows the 

number of hot-spot occurrences for each location as a percentage of the total number hot-

spot occurrences for the UG portion. 

 
Figure 9.2: Hot-Spot Location plot 

Matched to UG Profile 

 
Figure 9.3: Hot-Spot Location Plot - 

Cropped between 1100 and 1200 Feet on 

UG Profile 

 

Summing the number of occurrences of Figure 9.2 between 1100 and 1200 feet 

and normalizing by the total number of hot-spot occurrences taken from the entire UG 

section, it was revealed that 75% of the hot-spot occurrences of the underground portion 

were collected from this region. Figure 9.3 show the hot-spot locations and occurrences 

for the UG portion between 1100 and 1200 feet grouped into bins of approximately 3.281 

ft (1 m). From this region the greatest number of occurrences occurred at approximately 

1146 feet. Based on these results the underground profile location at 1146 feet was 

concluded to be the hot-spot location used for future ratings analysis. The hot-spot 
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location can be seen in Figure 9.4. The hot-spot location at 1146 feet on the UG profile 

corresponds to unscaled DTS data located at 176 m for cable SA.  

 
Figure 9.4: DTS Temperature Trace Aligned with UG Profile - Hot-Spot Location 

Identified 
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9.2 Measured Temperature at Hot-Spot Location 

Continual data collection for UG cable SA began on April 9th 2015. Figure 9.5 and 

Figure 9.6, respectively, show measured temperatures at 5 minute intervals and averaged 

daily temperatures at the hot-spot location for the period April 9 through Oct 24 2015.  

 
Figure 9.5: Raw DTS Temperature Data at the Hot-Spot Location 

 

 
Figure 9.6: DTS Daily Average Temperature at the Hot-Spot Location 

The peak measured temperature for the hot-spot location was 50.4 oC and the highest 

daily average was 48.97 oC. Both occurred on August 18th 2015.  
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9.3 Evaluation of Steady-State Ampacity at Hot-Spot Location 

The original duct bank construction data from the hot-spot location identified in 

section 9.1 was used to construct a Cymcap model and the steady-state ampacity 

determined for this location. The original duct bank construction used at the hot-spot 

location can be found in Figure 4.8. The Cymcap representation can be seen in Figure 9.7 

where the bottom layer represents the duct-bank containing the 6 Nexans UG cables 

(single cable per conduit), the middle layer represents the reinforced concrete that was 

used at this section and the black upper layer represents the asphalt surface. The 

surrounding (white) area represents native soil. More details on the duct-bank 

construction and configuration can be found in section 4.2 and the Cymcap input data 

used for steady-state Ampacity calculation can be found in Table 9.1. 

 
Figure 9.7: Cymcap Duct Bank Model at Hot-Spot Location 
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Table 9.1: Cymcap Model Input Data 

Conductor 

Temperature 

Load 

Factor 

Thermal 

Resistivity of 

Native Soil 

Thermal 

Resistivity 

of Concrete 

Thermal 

Resistivity 

of Asphalt 

Ambient 

Temperature 

90 oC 0.75 1.2 oCmW-1 1 oCmW-1 1.3 oCmW-1 35 oC 

 

The Cymcap model was used to calculate steady-state circuit ampacity using the same 

ambient temperature (35 oC) as was used in the calculation of the existing ampacity for 

the Brandow-Pickrell UG circuit. For steady-state ampacity calculation Cymcap 

determines the maximum continuous current that the cable circuit can carry with no cable 

conductor exceeding the assigned maximum operating temperature. More detailed 

explanation of steady-state ampacity calculation can be found in section 2.3.Thermal 

resistivity values were found using literature sources and assigned to the reinforced 

concrete and asphalt sections [10]. The Cymcap ampacity calculation yielded a steady-

state circuit ampacity of approximately 1800 A at the new hot-spot location. This was 

200 A greater than the historic ampacity calculation calculated at the previously assumed 

hot-spot location described in section 4.4 [3]. This result is expected since the surface 

ambient temperature was kept the same as was used in the historic ampacity calculation 

but the distance to the surface was reduced and the thermal resistivities of the reinforced 

concrete and asphalt were less than the resistivities of the surrounding materials at the 

assumed hot-spot location used in the historic calculation. The results of the Cymcap 

modeling suggested that the hot-spot location (according to the current model) should 

have lower temperatures and not higher than the historical hot-spot. It was suspected that 

solar irradiation on the asphalt surface was contributing to the higher temperatures of the 

new hot-spot location.  
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9.4 Comparison of Cymcap Transient Results to Measured DTS Data 

The Cymcap model shown in Figure 9.7 was used to simulate transient cable sheath 

temperatures at the hot-spot location. Cymcap is capable of performing transient analysis 

over a maximum of a one week period per simulation. The week of August 19th to the 

25th was selected for analysis due to the high ambient temperatures and line loading 

during this period while maintaining a relatively flat measured temperature profile. 

Cymcap is capable of using imported transient line loading data as input for transient 

temperature analysis but uses a fixed ambient temperature for calculation over the 7 day 

period. Clearly, this is not the desired assumption but it is the state of the art for this 

software package. For each 7 day period analyzed, the average temperature was found by 

summing the all of the ambient temperature data samples, T(k), from k=1, n, and dividing 

the total by the total number of measurements. The calculation of average ambient 

temperature is shown in (9.1) where n is the number of temperature data points. Ambient 

temperature data was collected from a nearby SRP weather station which recorded 

temperature measurements every 15 minutes.  

𝑇𝑎𝑣𝑔 =
1

𝑛
∑ 𝑇(𝑘)

𝑛

𝑘=1
 (9.1) 

 

This average temperature was used as the ambient temperature input into Cymcap for 

transient analysis. The average ambient temperature for the period of 08/19/2015 to 

08/25/2015 was approximately 35 oC and is included in Table 9.2. 

The initial conditions for the specified transient analysis period are determined by 

steady-state analysis which Cymcap performs prior to each transient simulation. In order 

to most closely match the initial thermal conditions prior to the transient analysis period, 
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the input current for the steady-state analysis is set to the average line current of the three 

days prior to the start of the transient analysis period. The average current is computed by 

summing the line current data samples taken every 15 minutes for the previous 3 days 

and dividing the total by the total number of measurements. Table 9.2 shows the steady-

state current input to Cymcap and the analysis period.  

The amplitude of the transient load shape, which is created by Cymcap from the transient 

input data file supplied by the user, is in per-unit format (each data point of the imported 

load shape is divided by the maximum value contained in the data set) and thus needs to 

be scaled appropriately in order to reflect actual line currents. The scaling value is 

determined by dividing the peak line current (per conductor) for the transient period by 

the average of previous three-day’s currents that is used as input for the steady-state 

analysis. This is because when Cymcap begins transient analysis, the steady-state current 

value used for the steady-state initial conditions solution is multiplied by the assigned 

scaling factor and then by each data point of the per-unit transient load shape in order to 

scale the load shape back to actual line loading values in ampere. The line loading curve 

(amperes) in Figure 9.8 is the circuit (two conductors per phase) current for the 

measurement period shown in Table 9.2 and has a peak of 609 A. For input into Cymcap 

each data point of the loading curve was divided by two to represent the current for a 

single conductor. From this halved load shape, Cymcap then creates a load shape with 

step changes every one hour. This means that four data points from the 15 minute 

measured line loading data are averaged together for each hour of the resulting Cymcap 

load shape. It can be seen that multiplying together the scaling factor and the steady-state 

current of Table 9.2 give one-half (the current per cable) of the peak current value of the 
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Cymcap load shape seen in Figure 9.9. Table 9.2 lists the relevant Cymcap input data and 

the DTS measurement location used to produce the measured and calculated temperature 

data presented in this section. 

Table 9.2: Cymcap Transient Analysis Parameters 

Measured 

Cable 

DTS 

Location 

[m] 

Start Date End Date Cymcap 

Scaling 

Factor 

SS 

Current 

[A] 

Ambient 

Temperature 

SA 176 08/19/2015 08/25/2015 1.264 240 35 

 

Figure 9.8 shows the measured line loading data and measured DTS data related to Table 

9.2 and the Cymcap load shape and predicted temperature for the same period can be 

seen in Figure 9.9.  

 

 
Figure 9.8: Smoothed DTS Temperature Data and Line Loading 
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Figure 9.9: Cymcap Load Shape and Predicted Temperature 

Since the temperature accuracy of the DTS unit is 1 degree Celsius and the 

measured temperature profile varied less than this over the 7 day period analyzed, the 

data shown in Figure 9.8 was processed using Robust Logically Weighted Scatter Plot 

Smooth (RLOESS) logical regression method. A built in RLOESS smoothing function of 

Matlab® was used to perform the logical regression smoothing. A detailed description of 

the process of logical regression can be found in reference source [11]. This helped to 

reduce signal noise generated by measurement inaccuracies and allowed for better 

visualization of the measured results. The load shape input into Cymcap and the resulting 

transient temperature data are displayed in Figure 9.9.  

In Figure 9.10 both the DTS measured temperature and the Cymcap predicted 

temperature (detailed in Table 9.2) are plotted together for comparison.  
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Figure 9.10: Measured DTS and Predicted Cymcap Temperatures with Cymcap Ambient 

Temperature at 35C 

 

A simple visual inspection of Figure 9.10 shows that the average predicted 

temperature by Cymcap is approximately 10 oC lower than that of the measured DTS data 

for the same period. The average temperature for the DTS data was computed according 

to (9.1) using Matlab and found to be approximately 48.8 oC and the average of the 

Cymcap data using the same method was found to be approximately 38.8 oC making the 

shift in average temperature approximately 10 oC.  

While the measured and predicted temperatures differed by approximately 10 oC, 

it should be noted that, for both data sets, the difference between the maximum and 

minimum hot-spot temperatures for each day as well as the hot-spot temperature behavior 

(shape) were very similar over the 7 day period. In fact, the difference between the 
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minimum and maximum temperatures over the measurement period for the DTS data was 

1.13 oC and for the Cymcap data was 0.97 oC.  

By increasing the ambient temperature setting in Cymcap by 10 oC (from 35 to 45 

oC) the transient temperatures predicted much more closely followed the measured 

temperatures of the DTS. Figure 9.11 shows the Cymcap predicted temperatures with this 

adjusted ambient temperature compared with the same DTS temperature data presented 

in Figure 9.10. The average temperature of the adjusted Cymcap result was 48.86 oC 

which was only 0.06 oC higher than the measured DTS average temperature.  

 
Figure 9.11: Measured DTS and Adjusted Cymcap Temperatures 

 

The large difference between the measured and predicted temperature curves shows 

that using the daily average of the ambient temperature for calculating cable temperature 

to be insufficient and inaccurate since it does not consider surface heading due to 
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solar irradiation. While inaccuracies in the thermal resistivities of the surrounding 

environment could also be cause for the discrepancy between measured and predicted 

temperatures that likelihood is much less since much is known from published sources 

about the thermal resistivities of the commonly used materials that make up the 

installation. The Cymcap model does not account for surface heating due to solar 

irradiation and thus this heat source is considered the greatest source of error in the 

thermal model. 

 

9.5 Adjustment of Ambient Temperature 

The 10 oC shift between the averages of DTS measured and Cymcap predicted 

temperature data for the 7 day period discussed in section 9.4 was thought to be attributed 

to the asphalt heating on the road surface above the hot-spot location. On August 19th at 

2:00 pm an infrared camera was used to survey the road surface directly above the hot-

spot location. The maximum temperature detected was 161 oF or 71.7 oC. Figure 9.12 

shows the infrared camera display screen while taking a temperature reading from the 

road surface above the hot-spot location.  
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Figure 9.12: Asphalt Temperature above Hot-Spot Location 

 

These hottest measurements only existed along the tar-filled cracks in the asphalt 

surface. Of the 11 temperature readings taken along the hot-spot surface area, the average 

reading was 150 oF or 65.6 oC. For comparison, the ambient temperature at the time the 

asphalt temperatures were read (Aug. 19th 2:00 pm) was 103oF or 39.4oC making the 

average asphalt temperature reading 26.2 oC higher than the current ambient temperature.  

The analysis conducted in Section 9.4 showed that increasing the ambient 

temperature used by Cymcap for transient temperature analysis resulted in a proportional 

increase to the average predicted temperature. Using the same assumptions as in section 

9.4, one week per month starting in April and ending in October was simulated using 

Cymcap transient analysis and then compared to recorded DTS data for the same time 

period. In Table 9.3 each row represents a different 7 day period simulated using Cymcap 

transient analysis. The average temperature of the resulting Cymcap transient analysis for 

the cable sheath for each period is listed in column 2. Column 3 shows the average of the 

recorded DTS temperature data over the same period. The average ambient temperature 
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listed in column 4, is the average ambient temperature for each period and was used as 

the ambient temperature setting in Cymcap. Column 5 (Delta) is the required increase for 

the Cymcap ambient temperature setting which resulted in the averages of both the 

measured DTS and predicted Cymcap temperatures to converge within ±0.5 oC. The 

adjusted ambient temperature shown in column 6 is the addition of column 5 (Delta) to 

the average ambient temperature of column 4. All average temperatures were calculated 

according to (9.1) described in section 9.4.  

 

Table 9.3: Cymcap Transient Analysis Results and Required Ambient Temperature 

Adjustment 

Start Date  

Cymcap 

Average 

Temperature 

[C] 

DTS Average 

Temperature 

[C] 

Average 

Ambient 

Temperature 

[C] 

Delta 

[C] 

Adjusted 

Ambient 

Temperature 

[C] 

04/10/2015 24.0 33.3 22.2 9.3 31.5 

05/22/2015 24.5 37.2 22.4 12.7 35.1 

06/18/2015 40.3 46.5 36.6 6.2 42.8 

07/16/2015 36.7 47.1 33.2 10.4 43.6 

08/19/2015 38.8 48.8 35.0 10.0 45.0 

09/17/2015 32.8 43.4 29.7 10.6 40.3 

10/20/2015 24.1 35 22.6 10.9 33.5 

 

While it was expected that the temperature shift (Delta) value would vary more with 

changes in season, due to varying levels of solar irradiation on the asphalt surface, a 

relatively constant shift was calculated for each analyzed period. Taking the average of 

the Delta values of Table 9.3 yielded an average temperature shift of 10.0 oC.  
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9.6 Re-Evaluation of Steady-State Ampacity with Adjusted Ambient Temperature 

Due to the inadequacy of using the average daily temperature when calculating ampacity 

at the hot-spot location, a reevaluation of the steady-state ratings was conducted using the 

temperature shift value (Delta) found in section 9.5.  

 
Figure 9.13: Cymcap Reevaluated Steady-State Ampacity 

 

Figure 9.13 shows the Cymcap steady-state ampacity calculation results using the 

adjusted ambient temperature value of 45 oC. The reevaluated steady-state circuit 

ampacity was found to be 1640 A. This is 160 A less than the ampacity result found using 

the standard ambient temperature value of 35 oC which was used in the earlier evaluation 

of section 9.3.   
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10. SUMMARY, CONCLUSIONS AND FUTURE WORK 

10.1 Distributed Temperature Sensing (DTS) 

The DTS used in this work was designed for use with 50/125 micron multi-mode 

optical fibers. It was learned during preliminary research on the then proposed Brandow-

Pickrell UG monitoring site that a mix of both 50/125 and 62.5/125 micron multi-mode 

fibers had been used. The DTS manufacturer could not definitively state whether their 

unit would perform to its rated specifications given that mixed fiber diameters would be 

used. A small-scale controlled testing setup was constructed to simulate the fiber 

configuration at the Brandow-Pickrell UG installation. By using a dual-ended loop 

measurement configuration it was determined that the DTS could measure fiber 

temperatures within the manufacturers stated accuracy. The detailed analysis is presented 

in Chapter 5. 

 

10.2 Hot-Spot Locating 

For underground transmission lines installed without the ability to directly measure cable 

temperatures the deepest portion is often used as the cable hot-spot location. For an 

installation of uniform backfill, duct bank, burial depths which do not come into “close” 

proximity with the surface and native soil properties and without the presence of any heat 

sources this assumption will hold true. Most underground power cables however, are 

installed in residential and city areas making the underground path shared with the 

infrastructure of other utilities and have more complex underground environments that 

change along the installation path. Note that Cymcap ampacity calculation standards 

consider a distance as “close” to the earth surface (and do not guarantee accurate results) 
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when the ratio d/Le <0.4 or cable depths of less than 1.5 m. Le (meters) is the distance 

from the earth surface to the closest conductor and d (meters) is equal to 1/ar0 where a 

(W∙m-2∙oC-1) is the convection coefficient of the air earth interface and r0 (
oC∙m∙W-1) is 

the thermal resistivity of the native soil. 

DTS was used to take temperature traces of the SRP controlled Brandow-Pickrell 

69 kV underground circuit. Temperature trace data was taken every 5 minutes over a 

period 6 months. The collected data was analyzed and used to locate the true hot-spot of 

the UG cable. It was shown that the true hot-spot location for the Brandow-Pickrell line 

was not at the assumed, deepest, section but instead at one of the shallowest portions 

which came into close proximity with the asphalt road surface above. Asphalt 

temperature readings were taken that indicate asphalt surface heating (due to solar 

irradiation) was likely the main contributor to the hot-spot location being at this 

shallower location. Using the SRP provided underground profile of the installation as 

reference, the measured hot-spot location was located at position 1146 feet. The 

underground profile showing the hot-spot location and the locating analysis can be seen 

in section 9.1.  

The hot-spot locating analysis showed that the commonly made assumption that the 

deepest portion of an underground power cable installation will be the hot-spot does not 

always hold true. The results showed that performing distributed cable temperature 

measurements for UG power cables could be used to locate the proper segment to be used 

for ampacity calculations. 
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10.3 Ampacity Calculation at new Hot-Spot Location 

The new hot-spot location was modeled using Cymcap cable ampacity software. 

Steady-state ampacity was found using the same ambient temperature value of 35 oC that 

was used for the calculation of the historic circuit ampacity of 1600 A. Using this 

ambient temperature value, Cymcap calculated a steady-state circuit ampacity of 1800 A. 

A detailed description of the ampacity calculation can be found in section 9.3. 

 

10.4 Ambient Temperature Adjustment 

To evaluate the accuracy of the rating, Cymcap transient analysis was performed 

using measured line loading data as input. Transient cable temperature for a 7 day period 

was calculated. The ambient temperature used in the Cymcap calculation was the average 

temperature of the 7 day period. This produced a transient temperature curve with an 

offset of 10 oC. This is consistent with the average surface temperature being elevated 

due to solar irradiation on the asphalt surface above the hot-spot location.  

Further analysis on the asphalt heating was performed by evaluating the required increase 

to ambient temperature used in the Cymcap transient calculation for different 7 day 

periods during each month data was collected. A total of 7 weeks were evaluated 

spanning nearly 7 months. It was concluded that an average temperature increase to 

ambient of 10 oC was required for the Cymcap average temperature to align with the 

average DTS measured temperature of the same period. This result indicated that if an 

ambient temperature of 45 oC is used for steady-state ampacity calculations for this site, 

rather than the typical value of 35 oC, the steady-state ampacity simulation results are 

likely to be more accurate. 
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10.5 Reevaluation of Steady-State Ampacity at Hot-Spot Location 

Using the adjusted ambient temperature of 45 oC the Cymcap hot-spot location model 

was used to calculate steady-state circuit ampacity. The ampacity using the adjusted 

ambient temperature found was 1640 A which was a decrease in rating of 160 A from the 

first simulation. 

 

10.6 Proposed Future Work 

 

10.6.1 Surface Temperature Measurement and Effective Thermal Resistivity Estimation 

The thermal resistivities of the concrete duct bank and the asphalt surface at the 

measured hot-spot location were estimated using literature values. Also the exact depth of 

the duct bank at the measured location was not recorded at the time of installation and 

had to be estimated as well. Using DTS along with accurate ambient and surface 

temperature readings at the measurement site, the effective thermal resistivity from the 

cable conductor to the surface can be calculated [12]. Accurate measurements of the 

temperature profile at the hot-spot location surface can also be used to determine the 

accuracy of the Cymcap model given the shallow depth limitation discussed in section 

10.2. 
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10.6.2 Dynamic Thermal Ratings  

If appropriate measurement devices were installed at the hot-spot surface, future work 

could allow for the construction and implementation of a process to evaluate and estimate 

the effective thermal resistivities for underground cable installations. With the accurate 

thermal properties, a system of dynamic thermal ratings could be developed which would 

allow for greater utilization of installed underground transmission assets for electric 

utilities.  
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