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ABSTRACT

The amount of time series data generated is increasing due to the integration of

sensor technologies with everyday applications, such as gesture recognition, energy-

optimization, health care, video surveillance. The use of multiple sensors simultane-

ously capturing different aspects of the real world attributes has also led to an increase

in dimensionality from uni-variate to multi-variate time series. This has facilitated

richer data representation but also has necessitated algorithms determining similarity

between two multi-variate time series for search and analysis.

Various algorithms have been extended from uni-variate to multi-variate case, such

as multi-variate versions of Euclidean distance, edit distance, dynamic time warping.

However, it has not been studied how these algorithms account for asynchrony in

time series. Human gestures, for example, exhibit asynchrony in their patterns as

different subjects perform the same gesture with varying movements in their patterns

at different speeds. In this thesis, we propose several algorithms (some of which also

leverage metadata describing the relationships among the variates). In particular,

we present several techniques that leverage the contextual relationships among the

variates when measuring multi-variate time series similarities. Based on the way

correlation is leveraged, various weighing mechanisms have been proposed that de-

termine the importance of a dimension for discriminating between the time series as

giving the same weight to each dimension can led to misclassification. We next study

the robustness of the considered techniques against different temporal asynchronies,

including shifts and stretching.

Exhaustive experiments were carried on datasets with multiple types and amounts

of temporal asynchronies. It has been observed that accuracy of algorithms that rely

on data to discover variate relationships can be low under the presence of temporal
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asynchrony, whereas in case of algorithms that rely on external metadata, robustness

against asynchronous distortions tends to be stronger. Specifically, algorithms using

external metadata have better classification accuracy and cluster separation than

existing state-of-the-art work, such as EROS, PCA, and näıve dynamic time warping.

ii



DEDICATION

To my grandparents,

Shanti Devi Agrawal & Shyamlal Shah Agrawal,

you will always be missed.

If it weren’t for you, I wouldn’t be here

iii



ACKNOWLEDGEMENT

Research is formalized curiosity. It is poking and prying with a purpose - Zora

I would like to take this opportunity to express my deep gratitude to my advisor
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Chapter 1

INTRODUCTION

1.1 Overview

In the past decade, time series have become intrinsically involved in everyday ap-

plications with the integration of sensor infrastructures to the applications. This has

drawn major emphasis on search and analysis of time series. Many applications gener-

ate large amount of time series data, at a very fast pace, that requires efficient storage

and retrieval mechanism for analysis. This analysis could be similarity search over

a time series database to discover existing patterns or for predicting future patterns.

For example:

1. Weather monitoring systems employ time series analysis to determine weather

patterns and to predict future weather patterns [35].

2. In stock markets, financial data analysis helps understand fluctuations in stock

pricing, detect fraudulent trading and establish correlation between different

stocks by exploiting the temporal correlation amongst the stocks [66, 67, 69].

3. Video surveillance helps investigate crowd movement patterns at different point

in time to facilitate congestion management and planning of public transporta-

tion schedules. This has been made possible by temporal video processing[29].

4. Network analysis helps in load balancing, preparing for sudden burst of traffic in

the network by analyzing past and current patterns. Further in-depth analysis

facilitates detection of irregular pattern that might result in intrusion into the

network [74].
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5. Efforts have been made to design energy efficient buildings which has increased

the involvement of sensor networks that tracks various attributes such as tem-

perature, humidity, pressure, number of people in a room to give an optimal

setting to reduce the carbon footprint [53].

6. Motion recognition [70] has been dealing with determining similarities amongst

how different people perform same activities.

Wide application of time series analysis has not only led to an active research

domain but has unearthed new paths for data analysis whilst exploiting the temporal

aspect of the data, furthermore, instigating a devouring need to determine similar

time series stored in an enormous data corpse. Similar time series can be retrieved by

using any of the following two approaches, first, using k-nearest neighbor query, k-NN,

[13, 36, 42] and second, by performing clustering of time series [6, 11, 48, 56, 76].

The need to define large amount of information associated with time series, effec-

tively, has undoubtedly proven that one-dimensional time series (uni-variate time

series) is not sufficient to store and represent all the necessary information associated

with it. This has led to a significant increase in dimensionality of time series called

multi -dimensional time series (multi-variate time series) to store information from

multiple attributes at the same time.

Definition 1.1. Time Series or Uni-Variate Time Series, T , is defined as a

sequences of pair of data values and time at which they were recorded for a certain

attributes. In general these timestamps can be of equal increments or can be varying

time increments1.

T = [< t1, d1 >,< t2, d2 >, ..., < tN , dN >] (1.1)

1gap between two consecutive timestamps
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Figure 1.1: Uni-Variate Time Series for Opening Price of GOOG at NASDAQ from

March 27th 2014 - August 28th, 2015. Source : [4]

where, N is defined as the length of time series i.e number of sampled pairs, d is the

data value and t is the corresponding timestamps. Figure 1.1 illustrates an example

of uni-variate time series.

Definition 1.2. Multi-Variate Time Series, T, is set of time series, T , that

record different attributes.

T = [T1, T2, ..., TD]. (1.2)

where, T is the multi-variate time series, set of uni-variate time series (T ) and the D

is dimensionality of T or the number of uni-variate time series. Figure 1.2 illustrates

an example for multi-variate time series.

Definition 1.3. Correlated Multi-Variate Time Series, TR, is defined as the a

multi-variate time series where a relationship or dependency exists between different
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Figure 1.2: Multi-Variate Time Series for GOOG at NASDAQ for Opening Price,

Closing Price, Daily Maximum Price and Daily Minimum Price from March 27th

2014 - August 28th, 2015. Source : [4]

variates of the time series.

TR = [T, R] (1.3)

where, T is a multi-variate time series, and R is the relationship matrix / contex-

tual correlation between the variates. For example, this relationship can be the sensor

distance or nearness or hierarchy similarity matrix if the multi-variate time series is

based on a sensor based networks or the correlation coefficient if there exists a pro-

portionality relationship.

Definition 1.4. Contextual Correlation/Relationship Matrix, R, defines a

correlation model, if any, over the variates of a time series. It could be defined as:

R[i, j] = Θ(Ti, Tj) (1.4)
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Figure 1.3: (a) Physical Connectivity Between Different Sensors (b) Relationship

as Graph Connectivity (c) Spatial Position of Sensors (d) Relationship as Sensor

Distance (Euclidean Distance)

where (i, j) ∈ [1, D] and Θ is a application specific function to determine relationship

between two variates. This relationship could be computed by using domain knowledge,

such as sensor distance or physical connectivity or by examining historical data to

determine correlation between the variates.

With wide spectrum of applications, time series and its varied representations have

facilitated involvement of associated metadata with the time series for efficient and

effective similarity-based retrieval. The most important concern here is to define the

similarity between two time series. For the purpose of quantifying similarity, there is

an incumbent need to define a new distance function to leverage the metadata, such

5



as relationship matrix, associated with the time series. This metadata could be used

to extract hidden relationships between the variates.

Definition 1.5. Variate Hierarchy, HD, is a agglomerative clustering technique

that aims to determine hierarchy of variates. The decision to cluster two variates is

based on strength of their relationship. Strength of their relationship can be extracted

based on how close they are in space (Fig:1.3 (d)) or closely they are connected to

each other (Fig:1.3 (b))

MaximumDistanceCluster = max{R(x, y) : x ∈ T, y ∈ T, x 6= y} (1.5)

MaximumDistanceCluster = min{R(x, y) : x ∈ T, y ∈ T, x 6= y} (1.6)

where xT and yT are two variates in time series T and are clusters iff they satisfy

the condition (Eq: 1.5 or Eq: 1.6) being used.

Definition 1.6. Hierarchy Similarity Matrix, H, is defined as the hop simi-

larity between two variates in the variate hierarchy, HD, created on the basis of the

relationship matrix, R.

H(xT , yT ) = height(HD)− edgeDistance(xT , yT )

2
(1.7)

where, xT and yT are located at the leaf of HD and xT , yT ∈ T, height(HD) is defined

as number of edges between root and the furthest leaf node in HD, edgeDistance(xT , yT )

is the shortest path (number of edges) between xT and yT .

To leverage the information extracted from metadata we need an effective distance

function to incorporate metadata into similarity measure.

Definition 1.7. [23] defines distance, dis, on the data space, D, on time se-

ries where X, Y ∈ D, as follows:

dis : D ×D −→ R (1.8)
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where, R is a real data set. This distance can also be regarded as dissimilarity on

D and following holds true of dis:

1. dis(X, Y ) ≥ 0 - Non-Negativity

2. dis(X, Y ) = dis(y, x) - Symmetry

3. dis(X,X) = dis(Y, Y ) = 0 - Reflexivity

Distance function plays a very significant role in similarity-based retrieval as it is

used to quantify similarity of a time series to the query time series. Thus, applications

such as classification are directly affected by the choice of distance function and

also its robustness to accommodate out-of-phase time series. Out-of-phase does not

necessarily mean exact phase difference but also refers to the temporal shift in patterns

(local time shift) and wavelength of patterns (acceleration).

Plentiful amount of measures have been proposed to determine similarity between

a pair of uni-variate time series like euclidean distance [23], cosine distance[14, 60]

and dynamic time warping [12, 40, 61]. Euclidean distance and cosine similarity

are well known measures for their ease of computation at the same time, they cannot

accommodate temporal changes in patterns, such as, shift and speed. To overcome the

limitation of local-time shift, dynamic time warping was proposed. But its robustness

to what extent of asynchrony is acceptable is yet be investigated. More details on

these measures have been presented in Section 2.1 and Section 2.3.

1.2 Background and Motivation

1.2.1 Similarity Search Query

Similarity-based retrieval has become an universal terminology for mechanisms

that determines similarity between a pair of objects. These objects can be multimedia
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(audio, video, image), text (.doc, .pdf) or a data points. In general, similarity-based

retrieval on a time series data space, D, can be achieved by deploying one of the

following concepts:

1. Pattern similarity query [8, 31]- is defined as a query, on a time series data

space, D, with a query file, Q, that returns all the time series contained in D

that are relatively similar to Q or has some acceleration or deceleration in their

pattern.

simQuery(Q,D) (1.9)

2. Pattern containment query [64] - is defined as a query, on a time series data

space, D, that searches for a specific pattern, QP , contained in Q and returns

all the time series that contains QP in them.

simPatternQuery(QP ,D) (1.10)

These queries can be subtly used to query a time series data space, D, to determine

the top-k similar time series in D, k-Nearest Neighbors Problem, with respect to Q or

QP [22, 28] and also for range query where the similar files must satisfy a threshold

condition.

There are different algorithms proposed for the purpose of similarity search but

they can mainly be classified under two headings: first, range query and second,

k-nearest neighbor query.

Definition 1.8. Range query, similarity/distance threshold query [17], Given a

distance function or a similarity measure, dis, a data space, D, a query file, Q, and a

threshold, ∇, where ∇ ≥ 0, finds all the matching files in the D that pass the threshold

condition [19].

rangeQuery(Q,∇, dis) = {S ∈ D | dis(Q, S) ≤ ∇} (1.11)
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where, S = φ, if there is no file in D for which dis(D,S) ≮ ∇ [26, 27]

Definition 1.9. k-nearest neighbor query, kNN , Given a distance function or

a similarity function, dis, a data space, D, a query file, Q, and top-k, where k ≥ 1,

will return k most similar data file to Q in D.

knnQuery(Q, k, dis) = {Si ∈ D | ∀ S ∈ D −D′, dis(Si,Q) ≤ dis(S,Q)} (1.12)

where, D′ = φ, if i = 1 and D′ = { S1, .., Si−1}, if 1 < i ≤ k [26]

Similarity queries, such as Def: 1.8 and Def: 1.9, can be specialized for querying

time series as a pattern similarity or pattern containment queries. These can further

be classified as whole-matching query and subsequence matching query where tem-

poral similarity is also taken into account. Formal formulae of these queries will be

defined in the view of a range query but they can similarly be written for k-nearest

neighbor query as well.

Definition 1.10. [58] defines whole matching query as, ”given a query file, is

matched with all the file in the data space to find the ones that are either exactly

identical or similar to the query time series”. Formally, given a distance function or

similarity measure, dis, a data space, D, a query time series, Q, and a threshold, ∇,

the whole matching query finds all the time series in D that are exactly identical or

similar to the Q.

wholeMatchQuery(Q,∇, dis) = {S ∈ D | dis(Q, S) ≤ ∇} (1.13)

where, S and |Si| is the set of matching time series and length of ith time seriesre-

spectively.

Definition 1.11. Subsequence matching query [34], can also be regarded as par-

tial match query. The interest of this type of query is to find all the objects that are
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partly similar to the query file. Formally, given a distance function or similarity mea-

sure, dis, a data space, D, a query time series, QP , with length less than the minimum

length of any time series in D and a threshold, ∇, will return all the time series that

contains exact or similar pattern described in QP that satisfy the ∇ condition.

subSequenceMatch(QP ,∇, dis) = {S ∈ D | dis(S [ts : (ts + |Q|−1)]) ≤ ∇} (1.14)

where, |Q| ≤ |S| i.e. the temporal length of Q must be less than the length of S and

ts is the start time of the subsequence.

1.2.2 Classification & Clustering

Berkhin [11] refers to clustering as “division of data into groups, called clusters,

of similar objects. Each cluster consist of objects that are similar to one another and

dissimilar to objects from other clusters.” These clusters are the outcome of patterns

contained the data objects. Wide application of clustering and classification is evident

from the amount of work done in multiple domains [6, 11, 24, 25, 30, 48, 56, 76].

Clustering can be used as an exploratory or a confirmatory measure based on the

application. Intuitively, a cluster contains similar patterns in it, if not identical, from

the patterns contained in other clusters [37]. Figure 1.4 shows, how the data spread

can be categorized into different clusters and how objects that are close in the space

are inherently similar to each other.

As discussed, the crux of clustering is to group similar object into a cluster. It is

important to make a careful selection of a distance function or similarity measure. As

the distance function is used to quantify the similarity or dissimilarity between two

objects, therefore its effectiveness is very crucial for efficient clustering. Euclidean

distance has been the most common choice as a similarity measure because of it’s
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Figure 1.4: (a) Shows The Data Point Spread In The Space, (b) Based On The

Separation and Closeness Of Data Point In The Space Different Label Where Assigned

That Suggests Similar Data Points Being Grouped Into Different Clusters. Source :

[37]

simplicity and linear computational cost.

euclidean(X, Y ) = 2

√√√√ N∑
i=1

(Xi − Yi)2 (1.15)

Euclidean distance belongs to the family of Lp − norm, Minkowski Distance, where

p = 2. In Chapter 2, details on the merits and demerits of euclidean distance as

a similarity measure for time series data is discussed. More measures like cosine

distance, edit distance, dynamic time warping, sub-sequence matching can also be

used. Once the distance measure is selected, there are different methodologies that

can be used to perform clustering and they are as follows:

1. Agglomerative and Decisive Clustering [65] - The two techniques are the two

subsets of hierarchical clustering. Agglomerative clustering is a bottom-up clus-

tering technique that considers every object in the data space, D, as individual

clusters and iteratively clusters two such object at a given point in time that are
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(a)     (b)     (c) 

Figure 1.5: (a) Data Space, (b) Hierachical Clustering, (c) Dendogram. Source: [1]

closest to each other until the data space is left with one single big cluster that

contains hierarchical clustered objects. On the other hand, decisive clustering,

a top-down approach, begins with the assumption that all the objects in the

data space are, in fact, a part of one single clusters and hierarchically splits the

cluster into two sub cluster until every object belongs to a individual cluster

containing itself only. Figure 1.5 illustrates visually the working of hierarchical

clustering.

2. Monolithic and Synthetic Clustering [10] - These clustering techniques are based

on how features associated with the objects are used to perform clustering.

When all the features, all dimensions, are used for distance computation the re-

sultant clustering is regarded synthetic clustering, whereas when single feature,

one-dimension, is used for clustering, it is regarded as monolithic clustering.

Anderberg [10] presents one to the initial monolithic algorithm where features

were sequentially considered, i.e. first feature is used to make the first division

on data space into two subsets followed can used of second feature to subdivide

the subsets into two subsets each.

3. Deterministic and Stochastic Clustering [9]- In deterministic clustering exactly
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same clusters are achieved on the data space irrespective of when the clustering

algorithm is executed whereas in stochastic clustering, different clusters are

returned on different iterations of the algorithm which results in good clusters.

4. Hard and Fuzzy Clustering [33] - In hard clustering, each object is contained in

only one cluster which results in crisp clusters whereas in fuzzy clustering an

object can be associated with more than one cluster.

This thesis addresses the problem of increasing the accuracy of pattern similar-

ity query, k-nearest neighbor search, and improving effective cluster separation of

influence of temporal asynchrony in time series, as the complexity and performance

of a similarity measure is affected when the dimensionality and asynchrony in data

increases.

1.3 Limitations in Existing Work

With wide application of time series, such as epidemic spread analysis [50], has led

to an active spatio-temporal research area that have posed some important questions

again and again. Cai in [15] and Wang in [70] proposed algorithms that leverage

variate relationships for time series comparison. These challenges are:

1. High-dimensionality 2 - With the need to understand the effects of different

attributes in various applications; uni-variate time series is no longer sufficient

enough to describe and record all the information. As the number of attributes

increases, it becomes more difficult to determine similarity between two multi-

variate time series as the computational complexity is directly affected by the

dimensionality.

2which is called multi-variate time series
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(a)                                                                               (b) 

Figure 1.6: (a) High-Dimensionality Of The Time Series Can Be Seen, 62-Dimensional

(b) Sensor Arrangement On human Body To Record Time Series

2. Contextual Correlation - Multi-variate time series representing real world ap-

plications are often accompanied by associated information that establishes a

relationship across variates, such as sensor network or connectivity information.

In this thesis, it is argued that structurally correlated variates are more similar

than the variates that are structurally far or less correlated variates.

Figure: 1.6, aptly shows the dimensionality of a multi-variate time series in (a) and

(b) shows how the different sensors are placed and connected that establishes the

correlation among the variates in a time series. More importantly correlation between

the time series helps to establish the dependency on behavior of the sensors based on

the analysis of another correlated/connected sensor.

It is important to know that the contemporary state-of-the-art measures can effec-

tively determine similarity between a pair of uni-variate time series and multi-variate
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time series 3 but without taking into account the contextual correlation across the

variates. This relationship is crucial to consider while determining the similarity.

Measure(s) presented in this thesis leverage the correlation between the variates. Use

of contextual correlation helps to effectively overcome the asynchrony in patterns

contained in the time series.

1.4 Research Contribution

Contributions presented in this thesis can be categorized into four categories -

1. Multi-scale-hierarchical time series representation that leverages the metadata

describing the properties associated with the time series. The metadata could be

relationship defined between a pair of variates or correlation or distance between

sensors. This relationship could be defined in terms of correlation between the

variates etc.

2. WDTW : Weighted dynamic time warping and different weighing strategies

based on variate relationship. This approach leverages the relationship between

the variates while determining the similarity across the multi-variate time se-

ries. We carry out the eigen-decomposition of the relationship matrix so that the

corresponding eigenvalues could be used to determine the weighted similarity

across the variates.

3. PDTW : Projected dynamic time warping - This approach projected the data

space onto to a vector basis extracted from the metadata. This approach enables

similarity computation on the orthogonal projection of data.

4. SIDTW : Structurally inherent dynamic time warping - We deploy hierarchical

clustering on variates from multi-variate time series. This hierarchical clus-

3considering each variate independently
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tering is based on the relationship between variates such that similar variates

are clustered. Variate based clustering improves the performance of similarity

computation.

1.5 Organization of Thesis

Thesis thesis is organized as follows:

• In Chapter 2, background and related work have been reviewed

• In Chapter 3, multiple weighing strategies have been proposed for weighted

dynamic time warping

• In Chapter 4, de-correlated dynamic time warping is introduced based on Eigen

decomposition of hierarchical relationship matrix defined between the variates

• In Chapter 5, structurally inherent dynamic time warping is presented which

is based on hierarchical clustering of variates by using the variate distance or

connectivity relationship.

• In Chapter 6, details on experimental setup, evaluation criteria, dataset and

analysis methods are discussed.

Chapter 7 concludes the thesis and describes the direction for future work.
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Chapter 2

RELATED WORK

As discussed in Chapter 1, the main issue with time series analysis is the need for

an efficient and effective retrieval mechanism, be it similarity search or performing

cluster analysis over the time series. This chapter presents an overview of the existing

work in time series analysis and how various algorithms have evolved. In Section 2.1

various linear distance measures are discussed that are used to compute similarity

between a pair of time series. Following Section 2.2 presents feature based distance

measures for the features extracted from time series data. Section 2.3 discusses the

distance functions that allows non-linear mapping between time series. In remainder

of this thesis, the symbol, T, will be used to represent both multi-variate time series,

T, and correlation-multi-variate time series, TR.

Section 1.1 discussed multiple data representations that can be used to represent a

time series. It is important to define an informative and scalable data representation

that facilitates data analysis but at the same time an appropriate definition of distance

function is also very important aspect of time series analytics. Various distance

measures have been proposed for the said purpose starting from Euclidean distance

to extracting SIFT features [16, 51, 70].

2.1 Linear Distance Function

As mentioned in Chapter 1, time series is a sequence of real numbers recorded

at an instance in time that can be separated by uniform or non-uniform increments

[23]. Leveraging the data representation defined in Equation: 1.1 and 1.2, Euclidean

distance was the first ever distance measure used to determine the similarity be-
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tween two time series. It determines the summation of Lp − norm of values at

similar timestamps (Eq : 1.15 : Uni-Variate time series) and for multi-variate time

series as euclidean(X,Y) =
∑D

j=1
p

√∑N
i=1(X(j)i − Y(j)i)p, where p = 2. Euclidean

distance was an indisputable distance measure because of its linear computational

cost and ease of computation. Mao [52] states “Euclidean distance works well when

data space has compact and isolated clusters.” Euclidean distance requires the time

series, being compared, be of same temporal length making it a non-elastic distance

measure, one-to-one mapping across the temporal axis, which might not be the case

with time series anymore. It is not always possible to get accurate results from

Euclidean distance, specially when patterns contained in the time series are not syn-

chronous along the temporal axis (Figure: 2.1), that is, local time shift [19]. Another

major drawback of using Euclidean distance is it’s brittleness to data values [40], as

it is data-driven not shape-driven. With an unbounded distance space [0,∞) and its

invariance to changes over time had led to development of similarity measure based on

Pearson’s Correlation Coefficient. This measure accounts for the changes occurring

over time, that is, this is a correlation-driven similarity measure:

pearsonSimilarity( ~X, ~Y ) = 1− ( ~X − ~X)(~Y − ~Y )′√
( ~X − ~X)( ~X − ~X)′

√
(~Y − ~Y )(~Y − ~Y )′

(2.1)

At the same time, this measure is not robust against temporal asynchrony in the time

series. To overcome the brittleness of Euclidean distance and account for pattern in

data, cosine similarity was proposed [14, 60]. Although they share the common back-

ground definition of one-to-one mapping along the temporal axis, cosine similarity

gives more importance to shape-based similarity being robust against the amplitude

of data values.

Definition 2.1. Cosine Similarity, Csim, is the measure of similarity that deter-

mines the cosine of angle between two vectors. Similarity is the ratio of dot product
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Figure 2.1: Temporal Alignment Between Two Sequences With Local Pattern Shift

For Euclidean Distance (left) and Dynamic Time Warping (right) . Source : [49]

of two vector to their magnitude.

Csim =

N∑
t=1

X(t).Y (t)√
N∑
t=1

X(t)2

√
N∑
t=1

Y (t)2

(2.2)

Cdis = 1− Csim (2.3)

Cosine similarity is strictly bound to the range [−1, 1] and the corresponding dis-

tance (Cdis) is bounded in the range [0, 2]. Cosine similarity also requires the time

series, being compared, to be of equal length. Various algorithms like PCA-Similarity

Factor [44] and EROS(Extended Forbenius norm) [77] have been proposed that use

matrix factorization like singular vector decomposition(SVD) [32] and principle com-

ponent analysis [73], to transform the time series into equal length and then apply

cosine similarity over them.

2.2 Feature-Based Distance Function

Feature-based measures have been in existence in computer vision community

since a very long time. Classification algorithms, such as Decision Tree are based on

feature space by transforming the sequential data space into a set of features[75]. Lax-

man in [45] described feature as a local structures that reflects the characteristic point
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in the sequences. Ji in [39] proposed a feature-extraction algorithm, minimal distin-

guishing subsequences, that extracts subsequences that can be used as features. Ad-

dition feature based measures are proposed that are based on frequency of occurrence

of data values. Morchen in [54] proposed use of DFT (Discrete Fourier Transform)

and DWT (Discrete Wavelet Transform) for feature extraction, specifically because

in DWT both temporal properties and frequencies are preserved whereas in DFT

only frequency-based aspects are preserved [47]. Higher frequency feature generated

from DWT illustrates global features whereas lower frequency features denotes local

features on temporal axis [7]. Wang in [70] and Candan in [16] used extended SIFT-

based features for determining robust multi-variate time series features to determine

similarity between multi-variate time series.

2.3 Warping Distance Function

As seen in Section 2.1, a distance measure for time series analytics needs to take

into account the temporal alignment between time series. Therefore, there is a need

for a distance measure that is robust against local time shift and also accounts for

acceleration and deceleration in patterns contained in time series. One of the most

preliminary warping distance was given for determining minimum the number of

operations required to make two strings similar. Edit distance [43, 46, 57], a metric

measure, determines minimum number of sequence of operations that are required

to achieve string similarity. Edit distance considers unit cost of each operation that

needs to be performed, as the goal here is to determine minimum number of operations

required. This measure has been extended to determine the similarity between two

time series as it accounts for local time shift in the time series. Using unity cost for

every operation is valid for string similarity as the comparison is between symbols

contained in the string but not an appropriate cost definition for time series [20]. Since
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Figure 2.2: Temporal Alignment Between one-Dimensional time series. The Arrows

Indicates Temporal Mapping [55]

time series is a real sequence that contains real numbers as symbols such cost definition

penalizes the similarity between two time series and can result in misclassification.

Berndt [12] proposed dynamic time warping in 1996 as an algorithm that accounts

for the limitation of Euclidean distance. Muller states in [55]: “Dynamic time warp-

ing (DTW) is a well-known technique to find an optimal alignment between two given

(time-dependent) sequences under certain restrictions (Fig. 2.2). Intuitively, the se-

quences are warped in a nonlinear fashion to match each other.” The wide acceptance

of DTW is the result of its flexibility in handling different sized time series and ability

to account for acceleration and deceleration in patterns contained in the series.

Let us consider two time series, X and Y, of length M and N respectively, where

M and N may or may not be equal.

DTW (X, Y ) = cp(X, Y ) =


Infinity ifM = 0 or N = 0

min(cp(X, Y ), p ∈ PM×N) ∀M 6= 0 and N 6= 0

(2.4)

With the use of dynamic programming, computational cost of minimum DTW path

can be done in quadratic time, O(MN)(M and N). At the same time, DTW does

not follow triangular inequality. Chen in [20] proposed, ERP, an extended version of

DTW that satisfies triangular inequality by adding a gap when there is a difference

in values during sequence comparison.
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DTW was initially given for one-dimensional time series [12]. Multiple extensions

of DTW have been proposed for multi -dimensional time series [62, 68]. The most

prevalent ones are vectorized and independent. In vectorized DTW, a multi-variate

time series is considered as a one-dimensional vector time series, where the length of

vector is equal to the dimensionality of time series. On the other hand, independent

DTW is applied on each dimension independently and then DTW cost from all the

dimensions are added independently. They have been known to perform better than

various multi -dimensional distance measures like euclidean distance.

Algorithm 1 Vectorized Dynamic Time Warping

double dtwV(X[1..D, 1..M ],Y[1..D, 1..N ]){

costMatrix ← array[1..M,1..N]

for i ← 1 to M

costMatrix[i,0] ← ∞

for i ← 1 to N

costMatrix[0,i] ← ∞

for i ← 1 to M

for j ← 1 to N

cost ← | norm2(X[1..D, i] - Y[1..D, i]) |

DTW[i,j] ← cost + minimum (DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])

return DTW[M,N]

}

DTW-vectorized and DTW-Independent are non-weighted distance measures that

are indifferent to dimensions while similarity is computed. This non-weighted distance

measures may lead to misclassification [18, 38]. EDR[21] was proposed a gap based

weighing. This weighing was a constant penalized the DTW score whenever two time

series had different values at an instance in time. In many cases, not all dimensions
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Algorithm 2 Independent Dynamic Time Warping

totalCost ← 0

for d ← 1 to D{

totalCost ← totalCost + dtwU(X[d, 1 : M ], X[d, 1 : N ])

}

double dtwU(X[1..M ],Y[1..N ]){

costMatrix ← array[1..M,1..N]

for i ← 1 to M

costMatrix[i,0] ← ∞

for i ← 1 to N

costMatrix[0,i] ← ∞

for i ← 1 to M

for j ← 1 to N

cost ← | X[i] - Y[i]) |

DTW[i,j] ← cost + minimum (DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])

return DTW[M,N]

}

have equal contribution while determining similarity in a multi-dimensional space. We

propose WDTW: Weighted Dynamic Time Warping and multiple weighing strate-

gies that defines the contribution of each dimension while similarity between time

series is determined. We propose both data-driven and metadata-driven weighted

measures. We also propose a PDTW : Project Dynamic Time Warping to project

a time series to a vector basis based on the relationship defined between the vari-

ates. Motivated from the variate relationship, we investigate the variate behavior

in presence of correlation by generating a multi-scale hierarchical data structure to

determine DTW over the hierarchy, SIDTW.
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Chapter 3

WDTW : WEIGHTED DYNAMIC TIME WARPING AND WEIGHING

STRATEGIES

Use of DTW to align two sequences on temporal axis with local acceleration and

deceleration results in higher retrieval accuracy [41]. This has been possible because of

its capability to perform non-linear temporal alignment between two time series called

optimal warping path. This warping path, is a non-weighted measure that gives equal

importance to all the dimensions irrespective of any phase difference or temporal

asynchrony between the two time series, which may in turn led to misclassification

[18, 38]. False positive outcomes can prove to be costly for application where shape

based retrieval is of crucial importance.

All existing distance measure discussed in this thesis, until now, share one par-

ticular property in common, are non-weighted towards different dimensions of the

time series. This holds true for both linear (Section 2.1) and warping (Section 2.3)

distance measure, that is,

dis(X,Y) =
D∑
i=1

distanceFunction(Xi,Yi).W i (3.1)

where, W i = 1, ith variate, W are the weights assigned to the variates. The assump-

tion made here is that both time series must have same number of dimensions, D,

but can be of different temporal lengths, N . At the same time, presence of temporal

asynchrony between different variates of a time series adversely affects their discrim-

inatory behavior while determining similarity between the two time series. Weighing

aims to increase the contribution of more discriminating variates to achieve better
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Figure 3.1: Singular Values Decomposition Of Multi-Variate Time Series

separation between the two time series. What is proposed in this thesis is W i ∈ R

and 1 ≤ i ≤ D.

This chapter discusses different weighing mechanisms that can be used to quantify

importance of each variate to facilitate similarity calculation between two time series.

As each multi-variate time series is independently generated, it is highly likely to

encounter different sets of discriminating variates for different time series. It becomes

a crucial task to extract one common set of weights that accounts for the importance of

variates in both time series. In the following section, six different weighing strategies

are proposed and discussed. Detailed experimental analysis has been discussed in

Chapter 6.

3.1 Data Driven Weights In Data Space

With decomposition, important patterns contained in the time series are ex-

tracted. The importance of each extracted pattern in the time series and for each

dimension is defined in terms of eigenvalues and eigenvectors. Let us consider two

multi-variate time series, X and Y of size D ×NX and D ×NY respectively, and we

will apply singular value decomposition (SVD) on them. Figure: 3.1 shows, how a

time series is decomposed using SVD [32]. In general, SVD is used to transform a
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D-dimensional space to C-dimensional vector basis.

[Uf , Sf , Vf ] = svd(X) (3.2)

where f is the time series file index.

It is nearly impossible to select C common subset of features in reduced space as

both time series are independently generated. Therefore, all the dimensions are con-

sidered. Intuition behind the use of eigenvalues is to determine the total contribution

of each variate based on the patterns contained in them as eigenvalues represents the

importance of each pattern.

Wf = Uf × diag(Sf ) (3.3)

where diag() transform the diagonal of input matrix into a column matrix. From the

Eq: 3.3 we will get two set of weights,W1 andW2, one set for each time series. Figure:

3.2 shows how weights are extracted. As each variate can have different importance

across different time series it is critical to formalize a strategy to find common set of

weights and this could be achieved in two ways:

1. Aggregated Weights - In this particular type of weighing mechanism, element

wise average is taken for the total contribution of each variate.

WA =
W1 +W2

2
(3.4)

2. Productive Weights - As seen in aggregated weights, difference in total contri-

bution of two corresponding dimension penalizes the dimension with the higher

contribution due to average. This step of penalization is to make two dimen-

sions with different contributions comparable. Productive weight on the other

hand attempts to amplify the contribution by taking element-wise product of

weights.

WP =W1 ×W2 (3.5)
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Figure 3.2: Demonstrates Data Decomposition into Eigenvectors and Eigenvalues;

Followed By Weight Extraction For Each Variate

Therefore, based on the choice of weights, the similarity between two multi-variate

time series can be determined as follows:

1. Aggregated Dynamic Time Warping

DTW U D wEDAvg(X,Y) =
D∑
i=1

dtwU(Xi,Yi).WAi (3.6)

2. Productive Dynamic Time Warping

DTW U D wEDProd(X,Y) =
D∑
i=1

dtwU(Xi,Yi).WP i (3.7)

Use of SVD on data space facilitates the extraction of high variant dimensions.

The crux of using this methodology is to leverage high variance in the variates of a

time series. Thus, use of eigenvalues makes the dominant dimensions more visible

while determining the similarity.
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3.2 Data Driven Weights In Feature Space

In Section 3.1, critical patterns contained in time series were extracted with their

importance. Based on there importance and contribution in each variate, total weight

for each variate was determined. These weights can be used on the features repre-

senting the variates in the time series. Therefore, we define the feature component

based similarity as follows:

Weighted-Euclidean on Feature Components:

weightedEDAvg(X,Y) =
C∑
i=1

ED(U i
X , U

i
Y ).WAi (3.8)

where, WA is derived from Eq : 3.4 with S1 as input. With the use of euclidean

distance on feature components we determine the difference in the importance of the

identified patterns.

3.3 Contextually-Driven Weights

Section 3.1 and 3.2 discussed different ways to identify critical patterns in the time

series and using there contribution to each variate to extract weights thus prevent

misclassification. It is important to note that, data-driven weights are solely ex-

tracted from the data itself. Thus they are not robust against temporal asynchrony.

As asynchrony like shift and stretching alters the pattern by modifying their temporal

length and presence in the time series. As we discussed in Section 1.3, the contempo-

rary time series has an associated structural information with them called contextual

correlation. This information can provide us with an insight on how variates in a

time series are related to each other irrespective of any temporal asynchrony between

them.
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Figure 3.3: Demonstrates Metadata Decomposition into Eigenvectors and Eigenval-

ues; Followed By Weight Extraction For Each Variate

3.3.1 Contextual Weights

Contextual correlation defines the relationships between the variates contained in

the time series. With the use of relationship, variates could be clustered in terms of

their closeness with each other. Let us consider a relationship matrix or contextual

correlation, R, that defines the relationship between different variates of the time

series. This relationship can be extracted from the graph connectivity associated

with the time series if the variates denotes sensor or relationship could be sensor

distance or correlation coefficient between the variates. The goal here is determine

important clusters of variates in time series. The use of a graph for weight extraction

highlights the node influence and how the cluster of nodes behaves. To achieve this,

we carry out eigendecomposition on the relationship matrix, R.

[UR, SR, VR] = eigen(R) (3.9)

The total contribution of a variate can be extracted as follows:

WR = UR × diag(SR) (3.10)
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where, diag() transforms the diagonal of the matrix SR to the column matrix. Thus

the new cost function based on weights extracted from relationship matrix is defined

as follows:

DTW U D wER(X,Y) =
D∑
i=1

dtwU(Xi,Yi).WRi (3.11)

Here, the discriminatory behavior of a particular variate in the time series is deter-

mined from the spatial properties associated with it. It is argued that more influential

the node is in the graph, the more dominance it has, thus the associated weight would

be higher.

Use of contextual correlation negates the weighted penalization, as a result of

matching the most contributing to least contributing dimensions, that was encoun-

tered in the weighing mechanisms proposed in section 3.1 and 3.2. It is critical to

understand the kind of relationship being used. A relationship can provide distance

or nearness between variates.

Rdistance(i, j) = dis(i, j) ∀ i, j ∈ T (3.12)

Rnearness = max(Rdistance)−Rdistance (3.13)

3.3.2 Hierarchical Weights

Use of contextual correlation can give more in-depth information on time series.

As discussed in Chapter 1, correlation matrix could be used to determine hierarchical

similarity between two multi-variate time series. Hierarchical similarity is used to

identify critical cluster of variates to identify contribution of each variate to the

clusters. This can be achieved in the following proposed weighing mechanism:

HD = hierarchy(R) (3.14)

where, HD is the hierarchy created on the variates of time series based on the associ-

ated R with it (Def: 1.5). This results in a tree structure, with the variates located
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at its leaves. Once the hierarchy is created, hop distance from each leaf node to all

the other nodes is determined (Def: 1.6) and is called Hierarchy Similarity Matrix,

H.

Eq :3.9 and Eq: 3.10 are reused with H as input instead of R.

[UH , SH , VH ] = eigen(H) (3.15)

The total contribution of a variate can be extracted as follows :

WH = UH × diag(SH) (3.16)

Therefore the new cost function is,

DTW U D wEH(X,Y) =
D∑
i=1

dtwU(Xi,Yi).WHi (3.17)

With the use of contextual correlation between the variates, variates could be clus-

tered in terms of their closeness to each other. We investigate the resemblance in

pattern observed between the variates with close relationship.

3.4 Conclusion

Weighing gives higher importance to highly correlated variates. By assigning high

importance in terms of their contribution to important patterns or the cluster of vari-

ates in time series help increase the retrieval accuracy.

Experiments are discussed in Chapter 6.
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Chapter 4

PDTW : PROJECTED DYNAMIC TIME WARPING

Linear dependence and linear independence are the key concepts associated with the

vector space, namely dimensionality. Consider a set of vectors, V = {v1, v2...vD}, . V

is a set of linearly independent vectors iff any vector vi cannot be represented in a

linear combination of other vectors in V.

α1v1 + α2v2 + ...+ αDvD = 0 (4.1)

is only true when αi = 0, where 1 ≤ i ≤ D. If the Eq: 4.1 is true for any value of α 6= 0,

then V is a set of linearly dependent vectors. In simple terms, linear independence

suggests that vectors are orthonormal to each other and they cannot be represented in

linear combination of each other. It is well known that eigendecomposition of a square

matrix results in a linearly independent eigenvector space and a set of eigenvalues [71]

denoting importance of each vector.

4.1 Motivation

Correlation is the main reason for observing pattern similarities across multiple

variates. In case of multi-variate time series the correlation is defined in the metadata,

relationship matrix. This relationship matrix defines how two variates in a time

series are correlated. The goal is to observe the independent behavior of an attribute

contained in the variates by projecting them on a vector basis.
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4.2 Algorithm

With the increase in dimensionality of time series, associated information have

found their way into the data structures used to represent time series. One such

information is the relationship defined between the variates. This relationship defines

the closeness or correlation between the variates. In this approach we propose pro-

jecting a time series to a vector basis extracted from contextual correlation associated

with the time series.

Figure 4.1: Projecting Time Series to Vector Basis

where, ? is defined as the projection operator that extracts the vector basis from

contextual correlation, R, and projects the data on to it. Projection on to a basis

presents the behavior of a time series when there is minimal effect of any external

factor on their behavior.

For the said purpose we use hierarchy similarity matrix, H, to define relationship

between the variates, which in turn could be interpreted as correlation between two

variate is proportional to the similarity between the variates. With this transforma-

tion highly similar variates are projected on to the same vector in the basis. This

projection is defined as a two step process:

1. Vector Basis Extraction : In this step we extract the vector basis from the
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Figure 4.2: Projecting Time Series to Vector Basis

hierarchy similarity matrix (Def: 1.6), H of size D ×D.

[UH , SH , VH ] = eigen(H) (4.2)

this gives us two sets eigenvectors and one set of eigenvalues. UH , SH , and VH

are of size D × C, C × C and C × D respectively where C is the number of

components or critical clusters of variates.

2. Data Projection : In this step we project the time series on to the extracted

vector basis.

iX = VH ×X (4.3)

where iX is the projection of X on VH and is of size C × T .

Now the projected time series can be used for any operation related to search and

analysis. As we saw in Chapter 3, weighing helps in effective similarity calculation,

therefore we extend this approach further as Non-weighted and Weighted PDTW.
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4.2.1 Non-Weighted PDTW

Since the variates have been projected to a vector basis, investigating the search

and analysis with non-weighted measure is one option to explore.

1. DTW V HD - Application of vectorized dynamic time warping on iT highlights

the temporal similarity across all the dimensions in the time series.

DTW V HD(iX, iY) = dtwV (iX, iY) (4.4)

2. Uni-Variate PDTW (DTW U HD) - As the variates are projected to a vector ba-

sis, uni-variate dynamic time warping can identify similar individual projected

variates.

DTW U HD(iX, iY) =
D∑
j=1

dtwU(iXj, iYj) (4.5)

4.2.2 Weighted PDTW

As stated earlier, not all component have similar contribution to the data represen-

tation. Therefore, weighted PDTW gives different importance to different dimensions

based on the weights determined from the decomposition of the hierarchy similarity

matrix.

DTW U HD wEH(iX, iY) =
D∑
j=1

DTWuni(iXj, iYj).SHj (4.6)

4.3 Conclusion

Projecting data to a vector basis uncovers the relationships between the variates

by projecting them on to same vector in the basis. Therefore closely related variates

are now represent by a more unifiy representation on the project space.

Experiments are discussed in chapter 6.
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Chapter 5

SI-DTW : STRUCTURALLY INHERENT DYNAMIC TIME WARPING

5.1 Overview

It is a well known and proven fact that hidden patterns can be extracted from

the time series by generating their multi-scale representation by using the multi-scale

representation technique given by Witkin [72], of embedding the data into a family of

representation called scale-space pattern extraction. This type of data representation

was first given for image to facilitate intelligent analysis. Multi-scale representation

highlights the pattern that cannot be observed on a particular scale.

A multi-scale representation, pyramid representation, is obtained by smoothing

and sub-sampling the data iteratively on both variate and temporal axis simultane-

ously. Iterative smoothing uncovers hidden patterns that can be used to discriminate

between the time series unlike images where these patterns are regarded as features

and are used as image-representative.

In contrast to the computer vision community where adjacent image pixels are

smoothed and sub-sampled together, whereas in time series analysis, adjacency of

the variates is defined by the metadata associated with it. This metadata, such as

relationship matrix, generates a hierarchy of variates (Defn: 1.5).

Correlation based variate clustering discover more coherent patterns across differ-

ent scales. For experiments and dataset represented in thesis, correlation is defined in

terms of how close two variates are? This close proximity insinuates that the patterns

contained in the adjacent variates would be more similar, if not identical, than the

patterns contained in other variates.
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5.2 Motivation

The correlation defined between the sensors impose a structure between them.

This structure defines shared properties and behaviors between the time series gen-

erated by these sensors (variates).

The multi-scale hierarchical representation creates a hierarchical clustering of

these sensors based on how closely they are related. A strong relationship establishes

more coherent patterns between them. This coherence suggests that the patterns

contained in the two variates would be similar if not identical.

As seen in Section 1.3, high dimensionality makes the similarity computation a

computationally costly task. Pyramid structure based representation reduces the

dimensionality by a factor of two when moving from finer to coarser scale.

5.3 Algorithm

SIDTW is a bottom-top-bottom approach, where it moves bottom-up to generate

the multi-scale hierarchical data structure and top-down to determine the similarity

by inheriting DTW path from coarser scales. It can also be referred to as a two-pass

algorithm.

Pass 1 : Multi-Scale Hierarchical Data Structure

In this step, hierarchical clustering of variates is performed. The decision to cluster

two variates is based on the relationship defined between them. This relationship

could be defined in terms of distance, variates with minimum distance between them

are clustered together and if relationship is defined in terms of correlation between

the variates then the variate pair with highest correlation is clustered.

Once the deciding factor is determined, agglomerative hierarchical clustering is

performed which results in a hierarchical tree structure with variates positioned on
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Figure 5.1: Multi-Scale Hierarchical Data Structure

the leaf of the tree.

Step 1: Determine the pair of variates to cluster(e.g. distance)

[v1, v2] = minimum(Relation) (5.1)

Step 2: Determine the next scale variate

f =
Xv1 + Xv2

2
(5.2)

Step 3: Smoothening the new variate

L(., t) = g(., t) ∗ f (5.3)

where, g is the Gaussian kernel, t is the smoothing factor and f is the signal to be

smoothed.

Step 4: Sub-sampling the Signal

subSample(i) =
L(2 ∗ i− 1) + L(2 ∗ i)

2
(5.4)
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where i ∈ [1,N/2] where N is length of time series. These four steps are iteratively

done until root of the tree is reached.

Pass 2 : Inheriting Warping Path

Hierarchical clustering of the variates represents similarity in patterns between them.

Therefore, determining independent warping path between the variates does not ac-

count for similarity between patterns and relationship between the variates. With a

hierarchical data-structure we preserve the relationships between the variates and by

proposed inheritance of warping path, pattern similarities between the variates are

preserved. In this step, DTW warping path is only computed between the variates

at the root or the most coarser scale (Figure : 5.2). After the path is determined

at the most coarser scale, we translate this path into allowable search space on next

finer scale. This bounded space is represented by green colored boxes and region

from where path cannot pass through is represented by white boxes in Figure : 5.2.

To determine the allowable search space, let us consider the warping path on scale

3. The top left corner of the warping path maps index 2 of one time series to in-

dex 1 of another time series, < 2, 1 >. Therefore the corresponding allowable search

space will be translated from the coarser point, < 2, 1 >, to the finer points (finerP),

< 3, 1 >,< 3, 2 >,< 4, 1 >,< 4, 2 >.

finerP (x, y) =


(x+ 1, y), (x+ 1, y + 1), (x+ 2, y), (x+ 2, y + 1) ifx > y

(x, y + 1), (x+ 1, y + 1), (x, y + 2), (x+ 1, y + 2) ifx < y

(x+ 1, y + 1), (x+ 1, y + 2), (x+ 2, y + 1), (x+ 2, y + 2) ifx = y

(5.5)

where x and y are the x-coordinate and y-coordinate of the warping point on a coarser

scale respectively. Eq:5.5 presents a generalized equation for translating a warping

point on a coarser scale to candidate warping points on a finer scale. This translation
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Figure 5.2: Path Inheritance from Coarser Scale to Finer Scale in Multi-Scale Hier-

archical Data Structure for Time Series
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bounds the search to a list of candidate warping points, that is four times the coarser

path’s length. This bounding search space also satisfies all the DTW path conditions

of monotonicity, continuity and boundary.

5.4 Conclusion

Bounding the search space for path inheritance reflects the correlation between the

variates. Path inheritance minimizes the shift in path across different variates when

warping path is independently determined but adds sensitivity to sudden change in

pattern. Bounding search space to a 2 × 2 region is a very strict bound. There-

fore, this bounding emphasizes on variate clustering, that is, more asynchronous the

variates are with each other the better performance is observed. Experiments shows

how variates clustering augments the performance by minimizing the error incurred

because of bounded mapping.

Experiments are discussed in chapter 6.
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Chapter 6

EXPERIMENTAL SETUP AND EVALUATION

In this chapter, evaluation results for fourteen similarity measures using five gesture

recognition datasets (Kaggle Gesture Recognition (W, X, Y, Z)[5] and CMU Motion

Capture[2] are presented and evaluated. This thesis focuses on evaluating the retrieval

accuracies of various similarity measures and their robustness against various type of

asynchrony and to different degree of asynchrony. Robustness is evaluated against

different types of temporal asynchrony in the data such as shifts and distortion.

6.1 Datasets

This section discusses the datasets used in the experimental evaluation.

6.1.1 CMU Motion Capture Dataset

Human motions, ranging from walking to dribbling, were recorded in Mocap lab at

CMU[2] where subject were asked to perform different activities in a rectangular area

of size 3m× 8m. 12 infrared MX-40 camera Vicon motion capture system was used

to record the gestures. Vicon system requires skeleton information to operate. This

input was defined using 41 markers placed on human body at different position. These

markers recorded values for multiple attributes, a total of 62 values were recorded at

any given instance in time. Therefore the dimensionality of data is 62. These 62

values are the angular information of human joints movements. The relative position

(euclidean distance) of these joints is used as contextual correlation. Mocap dataset

contains 184 data files with varying temporal length from 150 to 1000 instances. It

contains 8 gestures in the dataset.
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Figure 6.1: Sample Multi-Variate Time Series from Mocap Dataset Each Line Plot

Denotes a Variate in Time Series. Data Source: [2]

Figure 6.2: Arrangement of Markers on Human Body (From Left-to-Right: Anterior

Body, Posterior Body, Inferior Body and Forelimb Palm) Source : [2]
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Gesture # of series

Climb 18

Dribbling 14

Jumping 30

Running 19

Salsa 30

Soccer 6

Walk 36

Walk Uneven Terrain 31

Total 184

Table 6.1: List of Gestures Contained in Mocap Dataset. Data Source: [2]

6.1.2 Kaggle Gesture Dataset

This data was made available for Kaggle 2013 Multi modal gesture recognition

competition in collaboration with Kinect and ICMI 2013[5]. Data was generated

using 20 markers place on different human joints. It contains 20 Italian gestures with

31 time series for each gestures. These 20 markers recorded the angular rotation

Gestures: # of series = 31 each

’vattene’ ’seipazza’ ’prendere’ ’cheduepalle’

’vieniqui’ ’combinato’ ’noncenepiu’ ’tantotempo’

’perfetto’ ’freganiente’ ’fame’ ’buonissimo’

’furbo’ ’ok’ ’basta’ ’messidaccordo’

’chevuoi’ ’cosatifarei’ ’daccorda’ ’sonostufo’

Table 6.2: List of Gestures Contained in Kaggle Dataset
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Figure 6.3: Sample Multi-Variate Time Series from Kaggle-W Dataset. Each Line

Plot Denotes a Variate in Time Series. Data Source: [5]

Figure 6.4: Kaggle Gesture (From Left-to-right: Frame of Gesture Video, RGB Ren-

dering of gesture, Grayscale or Depth of Gesture, Marker Position) Source : [3]
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of skeletal bones at any given time instance. These orientations were extracted in a

three-dimensional camera space, thus rendering 4 different multi-variate time series

for W, X, Y and Z component of rotation of skeletal bones.

6.2 List of Algorithms

Algorithm Name Description Type

EROS Cosine of eigenvector of covariance matrix of data C

PCA Cosine of all pair combination of eigenvector of data C

DTW V Vectorized dynamic time warping D

DTW U Univariate dynamic time warping D

DTW D wEDAvg SVD on data, avg eigenvalues DTW D

DTW D wEDProd SVD on data, multiple eigenvalues DTW D

Euclidean ED wED SVD on data, Weighted Euclidean on feature components D

and weights from eigenvalues

DTW D wEN weights from decomposition of nearness matrix M

DTW D wER weights from decomposition of relationship matrix M

DTW D wEH weights from decomposition of hierarchy matrix M

DTW V PD VDTW on Project Data on Vector basis from hierarchy M

DTW U PD UDTW on projected data on vector basis from hierarchy M

DTW U PD wEH Weights from decomposition from hierarchy and M

DTW on projected data

SIDTW Create hierarchy based on relation, force dtw on M

each variate

Table 6.3: List of Algorithms Being Evaluated in the Following Section
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6.3 Alternative Algorithms

In this experimental evaluation proposed measures are compared against linear

and non-linear distance measures: EROS (Extended Frobenius norm) and PCA Sim-

ilarity Factor and naive DTW (Dynamic Time Warping).

6.3.1 Dynamic Time Warping

Dynamic time warping (DTW) [59] has been widely accepted as a full-length time

series comparison measure. It determines a minimum cost warping path between

two uni-variate time series and can be easily used on multi-variate time series by

individually using DTW on each variate. An important assumption here is the order

of variates. Identical order of the variates is assumed in both time series. Senin [63]

formalizes DTW as

DTW (X, Y ) = cp∗(X, Y ) = min{cp(X, Y ), p ∈ PN×M} (6.1)

where, PN×M is the set of all possible warping path defined in cost matrix CM , cp is

the candidate warping path, cp∗ is the minimum cost warping path.

1. CM [1, j] =
∑j

k=1 dis(X(1), Y (j))

2. CM [i, 1] =
∑i

k=1 dis(X(i), Y (1))

3. CM [i, j] = min(CM [i, j − 1], CM [i− 1, j], CM [i− 1, j − 1]) + dis(X(i), Y (j))

where, M is length of X and N is length of Y .

6.3.2 EROS

EROS (Extended Frobenius Norm), [77] described it as “let us consider two multi-

variate time series, XD×M and YD×N . Let UX and UY be the two right eigenvector
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matrices by applying SVD to the covariance matrices, coX and coY , respectively. Let

UX = [x1, ...., xD] and UY = [y1, ...., yD].” Formally, EROS defined as

EROS(X, Y,w) =
D∑
i=1

wi.cosine(U
i
X , U

i
Y ) (6.2)

where w, is the aggregated weight determined by taking the average of eigenvalues of

the two time series.

6.3.3 PCA

PCA similarity factor [44] measures similarity between two groups of principal

components.

SPCA(X, Y ) =
k1∑
i=1

k2∑
j=1

cosine2(X i, Y j) (6.3)

where, k1 and k2 are the number of principal components in X and Y respectively

that preserve 95% of the variance in data.

6.4 Evaluation Task

For uniform evaluation of algorithms, experiments are based on the following two

tasks: first, classification accuracy and second, effective separation between clusters

of time series. It is important for a similarity measure to have high retrieval accuracy

but robustness to temporal asynchrony is crucial too. To measure robustness, gains

and losses in accuracy and effective cluster separation is evaluated.

6.4.1 Retrieval Accuracy

To measure the retrieval accuracy, experiments use the true labels assigned to each

time series at the start of experiments. Top-k queries are executed on the dataset and

accuracy is determined based on the number of time series returns with the same label

to that of the query time series’s label. Percentage accuracy is the ratio of number of
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time series returned with query file label to total number of time series returned.

% accuracy =
# of time series with query label

# of time series returned
(6.4)

6.4.2 Cluster Separation

Cluster separation is defined in terms of how far two clusters are. The aim is to

keep different clusters at a sufficiently large distance to prevent misclassification. Thus

preventing overlaps or outliers between them. In sum, experiments try to identify a

similarity measures that creates compact clusters with sufficient separation between

different clusters. Separation can be measured in 3 ways:

1. Cluster Strength (CS): is the ratio of average inter class distance to average

intra class distance. Intuitively, more compact or dense the cluster is, the

higher the cluster strength would be. A dense cluster represents closely related

time series which means that the time series are highly similar to query time

series. Also, the higher value of inter class average distance denoted the time

series outside clusters are distanced effectively away to avoid misclassification

or overlap.

Figure 6.5: Cluster Strength : Blue Arrow Represents Distance Between Query Time

Series and Time Series with Same Label as Query; Red Arrow Represents Distance

Between Query Time Series and Time Series with Label Other Than Query Time

Series Label.
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CSC =
Inter Class Average Distance

Intra Class Average Distance
(6.5)

where,

Inter Class Average Distance =
∑
dis(Q, T ) ∀‘TLabel 6= QLabel

Intra Class Average Distance =
∑
dis(Q, T ) ∀‘TLabel = QLabel

and C is the cluster of interest.

Higher values of CS denotes that the clusters have minimal overlapping with

respect to the query time series and there is sufficient distance between the

clusters for effective separation.

2. Border Separation (BS): Cluster strength is an overall measure that accounts

for all the time series in the data space, whereas, border strength is more strict

measure that evaluates the boundary of a cluster. The question that it answers

is: How well the cluster boundary is defined such that time series close to the

cluster boundary are effectively separated without misclassification?

Figure 6.6: Border Separation : Blue Arrow Represents Distance Between Query Time

Series and Most Similar Time Series with Label Other Than Query Time Series Label;

Red Arrow Represents Distance Between Query Time Series and Least Similar Time

Series with Label Same As Query Time Series Label.

BSC =
Most similar inter cluster time series

Least similar intra cluster time series
(6.6)

where,
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Most similar inter cluster time series = min(
∑
dis(Q, T ) ∀‘TLabel 6= QLabel)

Least similar intra cluster time series = max(
∑
dis(Q, T ) ∀‘TLabel = QLabel)

and C is the cluster of interest. If value of BS > 1 then the cluster border is

effectively strong in keeping the two cluster separate.

3. Deceptor Prevention (DP ) : This is the extreme condition check where

the outliers from outside cluster member is more similar to that of most similar

inside cluster member. Formally, deceptor prevention is the ratio of most similar

inter cluster time series to that of most similar intra cluster time series.

Figure 6.7: Deceptor Prevention : Blue Arrow Represents Distance Between Query

Time Series and Most Similar Time Series with Label Other Than Query Time Se-

ries Label; Red Arrow Represents Distance Between Query Time Series and Most

Similar Time Series with Label Same As Query Time Series Label.

DPC =
Most similar inter cluster time series

Most similar intra cluster time series
(6.7)

where,

Most similar inter cluster time series = min(
∑
dis(Q, T ) ∀‘TLabel 6= QLabel)

Most similar intra cluster time series = min(
∑
dis(Q, T ) ∀‘TLabel = QLabel)

and c is the cluster of interest.

If DP > 1, this denotes that there are no outliers present for the given query

that could be more similar to the query time series than the time series contained
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in the cluster which the query time series belongs.

6.5 Temporal Asynchrony

We introduce two different type of temporal asynchrony, shift and stretch, which

are be further divided in structurally inherent or random, in the time series. These

asynchronies are:

1. Shift-based : Temporal shift is a type of asynchrony that introduces lag in

temporal occurrence of a pattern. Shift creates a step function in the pattern.

This step is padded either with the first data value in the time series, right

shift, or with the last value in time series, left shift. Right shift suggests delay

in occurrence of pattern, whereas left shift denotes advancements in pattern

occurrence in time.

Depending on how shift is introduced in the data representation, multi-scale

hierarchical data structure, seen in Chapter 5, shifts can be classified into two

categories : Random shift and Inherent Shift. Let us consider, we have to

introduce a shift of 25% in time series.

(a) Random Shift: In case of random shift each variate at each level in the

hierarchy is shifted independently. Also, the direction of shift, whether

to shift left or right is randomly selected. In case of 25% shift it picks a

random integer between 22 and 28 if the length of time series is 100 units.

We kept a margin of 3% to keep the decision random.

(b) Inherent shift: Whereas in case of inherent shift, shift is independently

and randomly select at each variate at each level in the hierarchy, HD, but

shift at a particular variate is inherited by the sub-hierarchy underneath

it.
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2. Stretch based : Temporal Stretching is a type of asynchrony that alters the

temporal length of occurrence of pattern. Temporal length refers to the duration

of time in which a pattern is observed. A random point is picked, between the

start and end of time series which divides the time series into two sub-sequences,

one of them is compressed and other one is stretched.

(a) Random Stretching: In case of random stretching, each variate at each

level in the hierarchy is stretched independently. Random point, A, is

picked on each variate from where the time series will be stretched and

compressed. Consider 25% stretching, then point B at a distance of 25%

of length of time series is selected at random on either side of the point A.

(b) Inherent Stretch: Inherent stretching is similar to random but here point

A is same for all variates.

Direction of shift or stretch is selected at random. Each asynchrony is introduced at

6 different degree defined in terms of 0% - 50% of the length of time series. For each

percentage asynchrony, five iterations are run to eliminate the effect of a particular

random choice. The reason for adding percentage based asynchrony is to investigate

robustness of a measure to different degree of temporal asynchrony.

6.6 Experimental Setup

Experiments were performed on Windows 7 (6.1.7601) x64 based workstation fea-

turing 3.10 GHz Intel(R) Core(TM) i5-2400, Quadcore CPU with 8GB RAM and

MATLAB 2014b 32-bit (8.4.0.150421).
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Figure 6.8: Temporal Asynchrony (a)Original Data (b) Right Shift in Data of 25%

(c) Stretch of 25%

6.7 Evaluation of Retrieval Accuracy

In this evaluation, retrieval accuracy is measured. Three different top-k queries,

Top-1, Top-5 and Top-k (k is total number of elements contained in a cluster), are

fired on the time series database for both Mocap and Kaggle dataset.
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6.7.1 Top-1 Retrieval Accuracy

The common observation is the 100% retrieval accuracy for all measures when no

asynchrony is observed in time series, with no exception found in the experiments

performed for five different datasets. When asynchrony, such as random stretching is

introduced, a drop in accuracy is observed (Refer Figure: 6.9). This drop is significant

in the case of data-driven measures, whereas meta-driven measures show insignificant

drop in retrieval accuracy for low degree of stretching but in case of higher stretching

less drop in retrieval accuracy is observed for metadata-driven measures in comparison

to data-driven measures. It is important to note the stable performance of measures

operating on feature components extracted from the time series as pattern are pre-

served in the time series but with different temporal presence (Refer Figure: 6.9).

Performance of different measures observed in the presence of inherent stretching is

analogous to the performance observed in the presence of random stretching except

for the sudden drop in retrieval accuracy for SIDTW at 50% inherent stretching. This

sudden drop is the outcome of excessive similarity introduced due to the synchronized

similarity across all variates in the variate hierarchy, HD (Refer Figure : 6.10).

In the case of random shift, the step introduced in the data due to shift adds a

pseudo-similarity between the variates in contrast to stretching where the temporal

length of pattern is altered. Because of the similarity introduced by the step function,

a significant drop in retrieval accuracy is observed (Refer Figure: 6.10(c)). But in the

presence of random stretching, insignificant amount of change in retrieval accuracy is

observed (Refer Figure: 6.10(a)).

It is important to understand, for Kaggle data (X), different measures behave

similarly in the presence of different temporal asynchronies (Refer Figure: 6.10).

This is observed because of the similar data distribution observed in the variate of
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure 6.9: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-1
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Kaggle-X (Refer Figure: 6.11).

6.7.2 Top-5 Retrieval Accuracy

When temporal asynchrony like random stretching is observed in data, relatively

all measures demonstrate similar behavior across all datasets (Refer Figure: 6.12).

Measures involving similarity computation over feature components, such as EROS

and PCA, show relative robustness or minimal drop in retrieval accuracy in the pres-

ence of high degree of random stretching, whereas metadata-driven measures show

higher accuracy than data-driven measures as metadata is not affected by asynchrony

(Refer Figure: 6.13). The relative robustness of feature component based measures

is due to the use of important patterns extracted from the time series, as patterns

are not lost in stretching but their scope on time axis is altered.

Measures demonstrate a loss in retrieval accuracy when inherent stretching is in-

troduced in the time series and have a relatively stable retrieval accuracy for higher

degree of inherent stretching. This loss in accuracy is observed because of the syn-

chronized stretching that introduces similarity between the variate at the same time

instance (Refer Figure: 6.14).

In the presence of temporal shift, different measures show difference in their robust-

ness for different datasets (Refer Figure: 6.15). The reason for this is the difference in

data distribution as seen earlier in this section: Mocap and Kaggle has high variance

and low variance in data in its variates respectively. But in both cases, random and

inherent shift, a drop in accuracy is observed as a result of step similarity introduced

by the shift in pattern. At the same time, measures show relative stability in retrieval

accuracy for different degree of distortion (Refer Figure: 6.16). Most accuracy loss

is observed in mocap data as shift reduced the discrimination power of each variate

(Refer Figure: 6.15 and 6.17(a)). In Figure: 6.17(a), different variates have different
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(a) Random Distortion (b) Inherent Distortion

(c) Random Shift (d) Inherent Shift

Figure 6.10: Kaggle - X; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-1
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Figure 6.11: Sample Time Series Kaggle-X Dataset

data distribution which is lost because of shift Figure: 6.17(b) and 6.17(c), which

introduces a step function that results in a pseudo-similarity between the variates of

different time series in contrast to that of kaggle data (X) where variates have similar

distributions across variates that do not get affected significantly (Figure: 6.17(d)).

For inherent shift similar performance is observed, whereas measures involving fea-

ture components shows relative robustness to shifts and metadata-driven measures

demonstrate high accuracy (Refer Figure: 6.15).

6.7.3 Top-k Retrieval Accuracy

It is clearly observable in Figure: 6.18 that the performance of metadata-driven

measures for top-k retrieval is better than data-driven measures with the exception

of EROS (feature component based measure). Specifically, use of distance matrix

as metadata gives significantly better retrieval accuracy than naive DTW. Similar

retrieval accuracy, with low drop, is observed in the presence of high degree of random

stretching for mocap dataset as the self-discriminatory power of variates is preserved

(Refer Figure: 6.19). Again in the case of inherent stretching a drop in retrieval

accuracy is observed as a result of variate similarity due to stretching at same instance
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure 6.12: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for

Top-5
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(a) Kaggle - W (b) Kaggle - Y

Figure 6.13: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for

Top-5

in time (Refer Figure: 6.20).

In case of random shift, significant loss in retrieval accuracy is observed for mo-

cap data for all similarity measures except for feature component based measures

that have poor retrieval accuracy but are robust against shifts, whereas meta-driven

measures still give highest retrieval accuracy (Refer Figure: 6.21).

6.8 Evaluation of Effective Cluster Separation

While performing time series classification it is important for a similarity measure

to minimize false positive classification. In the following part of this section, cluster

separation for different time series similarity measures is evaluated on the following

three factors: first, cluster strength (CS), second, border separation (BS), and third,

deceptor protection (DP).
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(a) Inherent Distortion (b) Random Distortion

Figure 6.14: Kaggle - Y; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-5

6.8.1 Cluster Strength

When random stretching is observed in the data, measures demonstrate near stable

separation, that is, they show robustness against the stretching. But if gain and loss

in retrieval accuracy in analyzed, metadata-driven measures show the most robust

behavior against random stretching and data-driven measures show both gain and loss

(mostly) in their separation (Refer Figure: 6.22). Similar behavior is observed when

inherent stretching is introduced in the data (Refer Figure: 6.23(a)). Robustness of

different measures to stretching is the outcome of containment of the entire pattern

in the time series and the loss is observed due to the change in temporal occurrence

in the pattern. In case of shift in patterns, overall performance of different measures

is analogous to the behavior observed in case of presence of stretching in the time

series. But in case of shift, a drop in effective separation between clusters of time
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(a) Random Shift on Kaggle-X (b) Random Shift on Mocap

(c) Inherent Shift on Kaggle-X (d) Inherent Shift on Mocap

Figure 6.15: Kaggle - Y; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-5
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(a) Random Shift (b) Random Distortion

Figure 6.16: Kaggle - Y; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-5

series is observed (Refer Figure: 6.23(b)). This observation is due to the similarity

introduced by the step function due to temporal shift.

6.8.2 Border Separation

Border separation refers to effective classification of the time series allocated at

clusters boundary to minimize misclassification, false positives. Overall, in kaggle

dataset, due to the lack of self-discriminatory power amongst the variates (Refer

Figure: 6.17(a)) and 6.17(d)) a lower separation score is observed (Refer Figure:

6.24). In the case of random shifts, lower score for border separation for kaggle is still

observed (Refer Figure: 6.25(b)). At the same time, mocap dataset shows random

behavior because of lose in variate discrimination due to random shift in pattern

(Refer Figure: 6.25(a)). Upon clear observation, metadata-driven measures perform

better border separation than the data-driven measures with an exception to feature
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(a) Mocap Dataset (b) Mocap Dataset

(c) Mocap Dataset (d) Kaggle - X Dataset

Figure 6.17: Different Type of Temporal Shift on Mocap and Kaggle Data

component based measures.

6.8.3 Deceptor Prevention

There is possibility with every similarity measure for false-positive classification.

With deceptor prevention, the classification accuracy of most nearest classification

inside and outside cluster of query time series is evaluated.In this view, we can observe

that mocap suffers a signification lose in deceptor prevention as variates loose their

power of discrimination as the degree of shift based asynchrony is increased, whereas
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(a) Kaggle- Y (b) Kaggle - Z

Figure 6.18: Random Distortion, X-axis: % Asynchrony, Y-axis: % Accuracy for

Top-k

in kaggle where variates suffer a insignificant drop in accuracy due to minimal data

variance (Refer Figure: 6.26).

66



Figure 6.19: Random Distortion Mocap Data, X-axis: % Asynchrony, Y-axis: %

Accuracy for Top-k

Figure 6.20: Inherent Distortion Kaggle-Y Data, X-axis: % Asynchrony, Y-axis: %

Accuracy for Top-k
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Figure 6.21: Inherent Distortion Kaggle-Y Data, X-axis: % Asynchrony, Y-axis: %

Accuracy for Top-k
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(a) Cluster Separation (b) Separation Gains

Figure 6.22: Random Distortion Kaggle-X, X-axis: % Asynchrony, Y-axis: Separation

Ratio
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(a) Inherent Distortion (b) Random Shift

Figure 6.23: Kaggle-X, X-axis: % Asynchrony, Y-axis: Separation Ratio

(a) Mocap (b) Kaggle - Z

Figure 6.24: Random Distortion, X-axis: % Asynchrony, Y-axis: Separation Ratio
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(a) Mocap (b) Kaggle - Z

Figure 6.25: Random Shift, X-axis: % Asynchrony, Y-axis: Separation Ratio

(a) Mocap (b) Kaggle - Z

Figure 6.26: Random Shift, X-axis: % Asynchrony, Y-axis: Prevention Ratio
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Chapter 7

CONCLUSION AND FUTURE WORK

Conclusion

Using weighted measures improved the retrieval accuracy and effective cluster

separation, in contrast to the non-weighted measures. As weights add importance to

the variates with critical patterns contained in the time series.

In general, measures discussed in this thesis can be broadly classified into three

categories, first, feature component based, second, data-driven and third, metadata-

driven. Metadata-driven measures demonstrate high retrieval accuracy as relationship

between the variates is not affected by the temporal asynchrony. Major loss in accu-

racy is observed in data-driven measures as temporal asynchrony affect the patterns

contained in the time series. Whereas, metadata-driven and feature component based

measures either show relative stability to asynchrony or a minor drop in their effec-

tiveness. Also, the behavior of measures dependents on the data distribution in the

variates. As seen in kaggle dataset where variates are clustered in terms of their data

distribution show minimal loss in their effectiveness in the presence of asynchrony,

whereas in case of the mocap dataset, significant loss in effectiveness of measures is

observed as the variates have high difference in their data distribution.

The use of contextual correlation between the variates highlights critical variates

in the time series. Human gestures are the outcome of various attributes varying

simultaneously. DTW U D wER, DTW U D wEH and DTW U D wEN uses differ-

ent type of relationships between the variates to determine their importance. These

algorithms deliver the highest accuracy for similarity-based retrieval. Moreover, by
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projecting the data space onto a vector basis by using metadata leads to a more

robust similarity measure against temporal asynchrony.

Future Work

There are many aspects on which this research could be extended, such as in

SI-DTW, determining an optimal window width or an adaptive window. Also, more

work could be done on devising more effective time series representation for effective

time series analysis.
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.1: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-1
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.2: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-5
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.3: Random Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-k
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.4: Random Distortion; X-axis: % Asynchrony, Y-axis: Cluster Separation
Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.5: Random Distortion; X-axis: % Asynchrony, Y-axis: Anti-Deception Pre-
vention
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.6: Random Distortion; X-axis: % Asynchrony, Y-axis: Border Separation
Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.7: Inherent Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-1
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.8: Inherent Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-5
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.9: Inherent Distortion; X-axis: % Asynchrony, Y-axis: % Accuracy for
Top-k
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.10: Inherent Distortion; X-axis: % Asynchrony, Y-axis: Cluster Separation
Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.11: Inherent Distortion; X-axis: % Asynchrony, Y-axis: Anti-Deception
Prevention
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.12: Inherent Distortion; X-axis: % Asynchrony, Y-axis: Border Separation
Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.13: Random Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-1
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.14: Random Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-5
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.15: Random Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-k
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.16: Random Shift; X-axis: % Asynchrony, Y-axis: Cluster Separation Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.17: Random Shift; X-axis: % Asynchrony, Y-axis: Anti-Deception Preven-
tion
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.18: Random Shift; X-axis: % Asynchrony, Y-axis: Border Separation Ratio
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.19: Inherent Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-1
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.20: Inherent Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-5
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.21: Inherent Shift; X-axis: % Asynchrony, Y-axis: % Accuracy for Top-k
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.22: Inherent Shift; X-axis: % Asynchrony, Y-axis: Cluster Separation Ratio

104



(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.23: Inherent Shift; X-axis: % Asynchrony, Y-axis: Anti-Deception Preven-
tion
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(a) Kaggle - W (b) Kaggle - X

(c) Kaggle - Y (d) Kaggle - Z

(e) Mocap

Figure B.24: Inherent Shift; X-axis: % Asynchrony, Y-axis: Border Separation Ratio
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