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ABSTRACT

Due to the shortcomings of modern Mobile Device Management solutions, busi-

nesses have begun to incorporate forensics to analyze their mobile devices and respond

to any incidents of malicious activity in order to protect their sensitive data. Current

forensic tools, however, can only look a static image of the device being examined,

making it difficult for a forensic analyst to produce conclusive results regarding the

integrity of any sensitive data on the device. This research thesis expands on the

use of forensics to secure data by implementing an agent on a mobile device that can

continually collect information regarding the state of the device. This information is

then sent to a separate server in the form of log files to be analyzed using a specialized

tool. The analysis tool is able to look at the data collected from the device over time

and perform specific calculations, according to the user’s specifications, highlighting

any correlations or anomalies among the data which might be considered suspicious

to a forensic analyst. The contribution of this paper is both an in-depth explanation

on the implementation of an iOS application to be used to improve the mobile foren-

sics process as well as a proof-of-concept experiment showing how evidence collected

over time can be used to improve the accuracy of a forensic analysis.
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Chapter 1

INTRODUCTION

Mobile devices have become a critical tool for any modern employee. Companies

typically want their employees to quickly communicate information related to their

business goals, and as a result each employee will often store sensitive company in-

formation on his or her device. Naturally this information needs to be secured, so

businesses will often utilize Mobile Device Management (MDM) software to ensure

that their sensitive data is protected. One of the key aspects of MDM software is the

security features that they offer, namely allowing encryption of sensitive data, remote

locking, and remote wiping; however, even with these features in place, attackers have

still been able to breach devices that use MDM software through vulnerabilities in

the operating system and privilege escalation [1]. Even though no system is ever com-

pletely secure, many companies are solely reliant on MDM software for their security

needs, and because of this they have no set course of action for when their sensitive

information is compromised [2].

Computer Forensics is a discipline that involves obtaining and analyzing computer

data for judicial purposes. Typically computer forensics techniques are only used in

solving computer-related crimes; however, they can also be used as a possible solu-

tion for the lack of intrusion detection measures present in a lot of MDM software.

In [3], Scholnick states the use of forensic methods is one of two primary weapons

that businesses have for protecting enterprise security because it provides “eviden-

tiary discovery.” In other words, companies can use forensic methods to find evidence

of malicious activity and then respond once they determine that their sensitive in-

formation may have been compromised. Our approach expands on this premise by
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implementing a system that would allow for a more accurate assessment of the state

of a mobile device.

One common security mechanism of Mobile Device Management tools is to pre-

vent the installation of any third-party application [1]; however, this sort-of defense

mechanism typically relies on signature verification and can be bypassed if additional

checks are not in place. Such is the case with Gatekeeper program on OSX which

protects the system by only allowing programs that are signed by known third-party

developers to run. According to an article by Edward Kovacs [4], the Gatekeeper pro-

gram does not check all included, externally-referenced binaries, which means that an

attacker could replace a non-malicious binary, that’s being externally-referenced by

a signed application, with a malicious binary, and the signed application would still

execute it. Because MDM systems use an application validation mechanism similar to

that used by the Gatekeeper program for OSX, it follows that a similar attack would

be possible on iOS, assuming that an approved application that runs the external

binary can be installed on the device. Additionally, due to MDM’s lack of intrusion

detection, the victims would likely not be able to determine the cause of the attack.

Using forensic techniques, however, a user might be able to gather evidence to piece

together a story about the origins of any recent malicious activity on the device.

In the case of the Gatekeeper vulnerability, for example, a user could use forensic

techniques to see which processes had recently been launched and are currently using

system memory. He or she could then check to see if any processes had similar launch

times, which would indicate that they were related, and from there begin to speculate

that a malicious process was launched from a non-malicious one.

Access Data’s Mobile Phone Examiner Plus (MPEPlus) is one of the most widely-

used mobile forensic tools, and it is a good example of software that a business’s

security manager could use to extract data from a device to investigate whether or not
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the sensitive information on their devices had been compromised. Although the data

extraction methods vary depending on what types of operating systems are running

on the devices being examined, extracting data using MPEPlus typically works by

installing a temporary agent on the mobile device and then transferring all accessible

files to a logical image of the device on the host computer which can then be explored

using the tool. Once all data has been extracted from the mobile device, a forensic

examiner can then search through the various files, logs, and databases in an attempt

to find any evidence of malicious activity. For example, if after extracting all data

from a mobile device an analyst saw that several unrecognized SMS messages had

been sent to an unrecognized number and that an application with an unrecognized

publisher was installed on the device, the analyst could conjecture that a malicious

application had been installed on the device which was sending SMS messages for

nefarious purposes.

Although tools like MPEPlus can be used to help identify whether or not a busi-

ness’s devices have been compromised, and even though the collected evidence may

seem somewhat suspicious to an analyst, often times he or she may not have enough

information to draw a definitive conclusion about the integrity of the data on the

device. When considering the example with the unrecognized application and unrec-

ognized SMS recipient, although the examiner could suspect that the unrecognized

application was a malicious application responsible for sending the SMS messages,

there is no evidence that those two factors are necessarily related. Another possibil-

ity could be that the user simply let someone else use the device to contact someone

that the user did not recognize. If this were the case, then there would not be enough

data for an analyst to confidently draw a conclusion. If, however, the analyst also

had a time-line of events showing that the unrecognized recipient was contacted via

SMS at the same times that the unrecognized application was active, then the evi-
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dence would be more complete, and the analyst could more confidently conclude that

the application may be malicious. Similarly, in the case of bypassing the Gatekeeper

program in OSX, although the user can use forensic techniques to speculate that

a malicious process may be linked to a non-malicious process, he or she may not

have enough information to make that conclusion definitively, but with a time-line of

events, the user might be able to see a consistent pattern of a specific process being

launched in conjunction with another process.

As described in the paper by Paglierani et al. in any forensic investigation, the

investigators should ensure that any collected evidence adheres to the four major

rules of evidence [5]:

1. Authenticity — The evidence can be linked to a specific individual or incident.

2. Admissibility — The evidence was legally obtained and can be admitted in a

court.

3. Completeness — The evidence is not partial; it includes all available informa-

tion.

4. Reliability / Accuracy — The evidence collection procedure is explainable.

Our approach focuses primarily on improving the completeness of the evidence

that can be collected from a mobile device. In contrast to incomplete evidence, com-

plete evidence is capable of aiding an analyst in drawing conclusions about an event

or series of events with a high level of confidence. Although a commercial tool like

MPEPlus can certainly offer an analyst insight as to whether or not malicious activ-

ity had occurred on a mobile device, the analyst often times is unable to confidently

draw conclusions about specific events due to only having glimpses of what took

place, i.e. the analyst only has partial evidence. How then can forensics be used to
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help an analyst definitively determine the integrity of the data on a mobile device?

The answer, as previously mentioned, is that the analyst needs to be able to look

at the events that transpire over a period of time. In other words, there needs to

be a way to continuously collect information about the state of the device over time

and order the events along a time-line which can be forensically examined. Scholnick

mentions this in his article when talking about comprehensive monitoring and track-

ing capabilities [3]. Our approach discussed in this thesis uses similar techniques for

enhancing the completeness of the forensic evidence, allowing an analyst to have a

more comprehensive understanding of the events that transpired.

It seems somewhat obvious that continuously collecting information is advanta-

geous for an analyst compared to only gaining a snapshot of the information through a

commercial tool like MPEPlus; however, there are various restrictions that make this

approach challenging. One of the restrictions, which will be discussed in more detail

later, is the sandboxing mechanism for the iOS platform which limits our continuous

collection of data by allowing us to collect only specific types of information from iOS

devices. Another restriction is that with iOS, the kind of methods required to even

obtain the limited information available would cause any application in which they

are implemented to be rejected from the official application store, making deployment

of the application impractical. It is still possible, however, to use a development li-

cense to install such an application on actual iOS devices, and this sort of deployment

mechanism is much more feasible in a corporation setting, which is the setting from

which the motivation for our approach originated. Additionally, although the data we

can collect is limited, it is useful in that it still can give an analyst further insight into

the events that transpired on the device to some degree if used alongside a commercial

forensics tool. Furthermore, our approach not only demonstrates how continual data

collection is useful in spite of these restrictions, it also shows specifically how a more
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complete data set can be used to improve the accuracy and efficiency of a forensic

analysis.
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Chapter 2

RELATED WORK

The aim of some of the more recent advancements in mobile forensics techniques is to

provide forensic analysts with ways to draw accurate, complete conclusions regarding

the events that occurred on the device based on the extracted evidence. As mentioned

previously, one of the most recent advancements involves continuously monitoring the

mobile device and collecting information from it; however, with this advancement, it

is important to know precisely what information to collect. This research thesis

focuses primarily on advancing mobile forensics on the iOS platform, so in order to

ensure optimal development for this advancement in mobile forensics, we needed to

have an understanding of various threats and attacks targeted at the iOS platform

in addition to any threats that could impact mobile devices in general. The study of

these threats, in addition to our Preliminary Investigation discussed in section 7.1,

are what helped us determine what types of information are essential in conducting

a mobile forensics investigation.

One type of threat is discussed in [6], the authors describe how users often times

inherently trust the host that is providing a mobile device with power via a USB

connection, and as a result, make themselves vulnerable to unapproved installation of

malicious applications on their devices. By using the same communication protocols

as iTunes, the authors were able to obtain the device’s UDID using their proof-

of-concept malicious charger host. They then created a provisioning profile which

they could use to install any iOS application on a victim’s device, bypassing the

vetting process of the iOS AppStore. Knowing the mechanisms of this type of attack,

we need to determine what information we should continually try to obtain from
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an iOS device to aid a forensic analyst in drawing accurate conclusions. Although

there are limitations to the information we are able to extract, which is discussed

later in chapter 5, we can see that much of the success of this type of attack would

depend on the user being unable to identify a malicious application running on his

or her device. Continuously obtaining information about the running processes on

the device, however, would allow an analyst to identify a malicious process belonging

to a malicious application or an unusual parent process to a particular application

which could lead to the conclusion that a malicious application has been running on

the device.

Collecting information about the currently running processes on the device could

also prove useful in defending against attacks by malicious applications downloaded

from the official application store. In [7] the authors describe how it is possible for

malicious applications to gain approval to be placed on the official iOS application

store. This can be done by dynamically loading private APIs and then obfuscating the

instructions in the source code that do the dynamic loading. Private APIs can allow

for certain malicious activities to be carried out, such as programatically sending SMS

messages from the device, and obfuscating the instructions responsible for loading

those APIs allows the application to hide its malicious intentions from static analysis

tools. These malicious applications, however, would likely not be able to hide their

malicious intentions from an analyst who is able to view a history of the device’s

currently running processes. In regards to the example given in the paper by Han

et. al., a malicious application that sends premium rate SMS messages using the

device’s SMS service could easily be detected over time since the “mobileSMS” process

would be running whenever a message is sent. It would seem then that continuously

collecting information about the currently running processes on a device is highly

beneficial since it is useful in detecting mobile malware applications which are capable
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of infecting a device different ways.

Another attack discussed in [8] by Tielei et al. shows how through the use of

return-oriented programming (ROP), applications that are seemingly benign can pass

the vetting process for the iOS Appstore only later to dynamically load private APIs

triggered by some form of remote signal. Essentially any iOS app that attempts to

load private APIs for cross-application communication will be quickly rejected by the

AppStore once they are submitted, but by using ROP and control-flow hijacking, an

attacker can bypass this measure and still use private API’s and carry out malicious

operations on the device such as sending emails, posting tweets, and sending SMS

messages without the user’s knowledge. Like with the previous attack, in order to

improve the mobile forensic process, we need to consider what information we should

continuously try to extract from an iOS device for an analyst to be able to identify

this type of attack. Again because the attack revolves around placing a malicious

payload onto a victim device, gathering process information over time would be useful

in identifying potentially malicious applications, since the process used to launch

the malicious application would only appear when the attack is being carried out.

Additionally, because the end goal of this type of malicious application mentioned

in the paper is to perform malicious operations, an analyst may also be able to

identify those operations through the listed process IDs obtained from the extracted

information and conclude that this type of attack is being carried out. Extracting

network information could also be of use since it seems that the Jekyll application

relies on placing vulnerabilities in the source code that can be exploited remotely. If

an analyst is able to see both the running processes and any IP addresses that are

actively trying to communicate with the device during the time of the attack, then

he or she could potentially deduce that the attack is being carried out by correlating

suspicious process information with suspicious network information.
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In addition to platform specific attacks, to make our approach as robust as possi-

ble, we need to also consider attacks that are generic to all devices, such as network-

based attacks, and continuously collect pertinent information accordingly. In [9]

Cassola et al. discuss an “Evil Twin” network attack which can impact any type of

wireless computer regardless of operating system. In the paper the authors describe

that the “Evil Twin” attack consists of setting up a rogue wireless network that has

an indistinguishable SSID from a valid wireless network. They consider a system

where the valid network uses a valid authentication server and a valid certification

authority to ensure normal users that the network that they are attempting to con-

nect to is trustworthy. In the attack, the attacker establishes a rogue access point,

a rogue authentication server and a rogue certification authority to mimic the valid

system without raising any suspicion from the user. The attack proceeds by using

what the authors call “reactive jamming,” making it so that the wireless signal from

the valid network is not detected by the victim user. Because the rogue network has

the same SSID as the valid network as well as a certificate signed by a certificate

authority, the user unwittingly connects to the rogue network at which point the

attacker can obtain a hash of the user’s credentials for that network. The hash is

then brute-forced to reveal the user’s credentials for the valid network, allowing the

attacker access to the valid network with the same privileges as the user. This attack

effectively demonstrates how any wireless-enabled device can be susceptible to an at-

tack involving a rogue network, and although the goal of the attack mentioned in the

paper was to steal the user’s credentials, the user is prone to additional devastation

by simply connecting to a malicious network. Naturally in order to identify this type

of threat, a forensic analyst would need to have a record of any wireless networks

that the mobile device in question had been connected to, so continuously collecting

current network information such as an access point’s SSID and BSSID would likely
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prove useful in a forensic analysis.

After exploring several known attacks on mobile devices, and more specifically

iOS devices, it seems that there are a few different types of information that should

be monitored and collected from the device over time including but not limited to:

currently running processes, current network traffic information, and current network

access point information. To reiterate, the reason why continuously collecting infor-

mation from the device over time is useful is because it gives a more complete set

of evidence which then leads to more accurate conclusions about the state of the

device. Bianchi et al. use this same reasoning in [10]. In the paper the authors talk

about how when it comes to rootkits infecting a host machine, there is always some

sort of evidence which can lead to the discovery of their existence. To ensure the

discovery of rootkits, the tool described in the paper performs several different types

of analysis including configuration comparison, code comparison, data comparison,

and kernel entry comparison, and because their approach considers a variety of ways

that a rootkit may attempt to hide its existence, and consequently a variety of dif-

ferent types of information, an investigator can draw accurate conclusions regarding

the existence of rootkits when using their tool. Although this type of data collection

is fairly new to mobile forensics, it is not completely unique to our approach. As

previously mentioned, Scholnick draws attention to the importance of an on-device

monitoring application and how it can potentially enhance forensics in [3]. He states

“The core of any device’s enhanced forensic potential, regardless of OS, will center

on the availability of more comprehensive monitoring and tracking capabilities both

inside the device and at the back end.”

Other parties have made advancements in developing tools that continuously mon-

itor and collect information from mobile devices, operating in a seemingly similar

matter to the tool we developed in our approach. The most notable example of this
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is AccessData’s mobile endpoint monitoring capabilities that have been integrated

into their ResolutionOne platform. According to [11], AccessData’s implementation

“detects unknown threats by providing visibility into network communications and

running processes, so anomalous activities can be identified and remediated.” At the

time of writing this paper, however, no documentation is available regarding how

AccessData’s monitoring application actually operates, and no explanation is given

regarding how a forensic analyst can actually identify the anomalous activities from

the collected data. Other works have shown implementations for monitoring tools on

the Android platform, such as the one discussed in the paper by Grover. In the paper,

Grover talks about the implementation of a tool capable of collecting various types of

evidences over time that can be used in a forensic investigation. Although the paper’s

discussion on monitoring screen lock status begins to show the tool’s effectiveness in

a forensic investigation [12], the tool does not explore methods that an investigator

might use to improve their analysis given the information from the monitoring tool,

whereas our approach does. In addition to offering a detailed explanation of how

such a monitoring tool operates, we also show a proof-of-concept for how precisely an

investigator could use the obtained information to form a more accurate conclusion

of the events that transpire, thus enhancing the forensic analysis.
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Chapter 3

PROPOSED APPROACH

After having discussed both why mobile forensics is important from a security perspec-

tive and how our approach seeks to enhance it, we now discuss our implementation

process for our forensics tool. As mentioned in the previous section, our approach

involves creating an on-device application to continuously gather current running pro-

cess information, current network traffic information and current network access point

information. That information is stored in logs on the device which are then sent to

the server, where a Python script is run to parse the logs. After the server-side script

parses the logs, the user is able to enter parameters to specify which sections of the

collected information to analyze and how any anomalous information should be high-

lighted. This chapter is divided into four sections reflecting the steps in our approach:

the Preliminary Investigation sections describes the background work done before we

began designing our forensics tool; the System Architecture section describes the var-

ious components of our system, their interactions, and their purposes; the On-Device

Application section describes the iOS application we created and some of the tech-

nologies used there-in to accomplish our goals; and the Server-Side Analysis section

describes the analysis program we created as well as how the information is handled

after it is sent from an iOS device to our server.

3.1 Preliminary Investigation

Before we began development of our on-device application, we were approached

by a company that had had some of their sensitive information stolen from their

mobile devices while their employees were on a business trip. They tasked us with
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investigating one of their devices to try to find evidence of a compromise. The device

that we were given to investigate was a 4th generation Apple iPad with Retina Display.

In addition to this device we were also given an Apple iPad 2 which had no alterations

to any of its settings and was supposed to represent a base model to which we were

to compare the 4th generation Apple iPad. We began the investigation by taking

logical images of both the device suspected to have been compromised and the base

model device using AccessData’s Mobile Phone Examiner Plus (MPEPlus) software.

We then browsed through the logical image of the suspected device, seeing what

types of information could be gleaned from a static image. Once we had an idea of

what information MPEPlus was able to offer, we determined which of those types

of information would be useful in figuring out whether or not the device had been

compromised. Looking through all the relevant data extracted from the logical image,

we attempted to find any evidence of malicious activity and tried to form a story of

what malicious event, if any, might have occurred.

One of the pieces of evidence that we collected during our investigation of the

suspected device was the times at which various applications were installed and unin-

stalled. This information was contained in the “MobileInstallation directory,” which

is under the “Logs” directory in the iOS file system and can be seen in Table 3.1.

The reason why we decided that application installation information was relevant to

the investigation was because if a malicious application were installed on the device,

then the time stamp of the installation could potentially be correlated with other ac-

tivity. Additionally, if we saw any anomalies in how long a particular application was

installed, then we would have more reason to be suspicious of that application. For

example, if an application was installed and then uninstalled a few moments later,

then there would be a possibility that it was installed for a few moments only to carry

out malicious instructions. Table 1 shows that a few of the applications were only
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Application Installation Time Uninstallation Time

com.fmi.afaria Sep 4th, 08:30:17 Sep 4th, 09:04:18

com.verisgin.mvip.iphone Sep 4th, 14:51:17 Sep 4th, 14:53:24

com.sabre.tripcase.prod Sep 7th, 15:17:11 Sep 18th, 23:08:25

com.hbo.hbogo
Sep 18th, 03:15:20 Sep 18th, 05:00:40

Oct 8th, 04:37:00 Oct 14th, 11:27:19

com.amazon.Lassen Sep 5th, 07:43:18 Oct 14th, 11:27:24

com.skype.SkypeForiPad Sep 4th, 07:43:18 Oct 14th, 11:27:26

com.fishdog.hearts2 Sep 6th, 14:51:59 Oct 14th, 11:27:32

com.internationalsos.membership.isos Sep 4th, 15:12:48 Oct 14th, 11:27:34

com.optimesoftware.Backgammon.free Sep 6th, 15:13:01 Oct 14th, 11:27:36

com.pandora Sep 5th, 17:29:58 Oct 14th, 11:27:38

Table 3.1: Mobile Installation Log

installed for a few hours or less, but once we researched the them a bit further, we

found that they were not malicious.

Another piece of evidence we looked at in our preliminary investigation were device

security and user settings, which determined a lot of the allowed actions on the device,

located in the “PublicInfo” directory which is in the “configurationProfiles” directory

in the iOS file system. The rationale behind looking into the user and security settings

was that a malicious application could potentially try to disable specific settings to

allow a malicious instruction set to be carried out, and by comparing the values for

the user and security settings on the suspected device with those on the base-model

device, we could see which settings were different and potentially maliciously altered,

assuming the user did not tamper with the settings.
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One of the more lucrative types of information that we investigated, in terms

of what we were able to deduce about the integrity of the device, was the WiFi

network information. We obtained the WiFi information from a plist file located

in the “SystemConfiguration” directory which is in the “Preferences” directory in

the iOS file system, and from this we were able to extract details about the various

networks that the suspected device had connected to including the network’s SSID,

the BSSID, the channels over which the network was broadcasting, the country code,

the time the device last joined the network, and the time the device last auto-joined

the network. Additionally, elsewhere in the logical image file of the suspected device

we were able to obtain the name of the vendors for each of the wireless routers in the

plist file. Using all of this information, we were able to construct a rough timeline of

networks that the suspected iPad had connected to, but what was most interesting

about the WiFi information was that it revealed a potential rogue access point attack.

Three of the networks that appeared in the WiFi logs had similar SSIDs; they

were “Garden Hotel”, “GardeHotel” without a space character, and “Garden Hotel

Free”, respectively. The access point with the SSID “GardenHotel” and the one with

the SSID “Garden Hotel Free” both were broadcasting on the same channels, had

the same country code, and had the same device vendor. The access point with the

SSID “Garden Hotel” did not share this information with the other networks with

similar SSIDs. Additionally, the “Garden Hotel” access point did not have any value

for a time when the device had last auto-joined that network, meaning that the access

point may only have been available for a short time. This information, seen in Table

3.2, fits a scenario in which an attacker had set up a rogue access point with the SSID

“Garden Hotel” in an attempt to steal sensitive information from any unsuspecting

user who had connected to it. In this scenario it would make sense that the broadcast

channel, country code, and device vendor would all be different for the rogue access
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- Garden Hotel GardenHotel Garden Hotel Free

Security Mode None None None

Channels 11 1, 11, 6 1, 11, 6

Last Joined 2013-09-10 00:27:33 2013-09-10 00:27:46 2013-09-10 08:27:43

Last AutoJoined - 2013-09-10 23:54:20 2013-09-10 23:55:16

Country - CN CN

BSSID 00:1e:2a:07:7e:ce 38:22:d6:92:17:21 58:66:ba:ee:cf:01

Device Vendor Netgear Inc Hangzhou H3C T... Hangzhou H3C T...

Table 3.2: Suspicious Network Nodes

point since the accuracy of those details is irrelevant for carrying out an attack where

the goal is to trick users into thinking they are connecting to a valid access point.

Although we were able to extract various types of information from the device, we

were never able to make any definitive conclusions about whether or not the device

was compromised, only speculations. The installation and uninstallation times for

all the applications allowed us to see whether or not an application was immediately

removed after being installed, but even if that was the case, that information alone

does not guarantee that the application was suspicious. Similarly, by looking at the

user settings that we extracted we would have been able to tell if the device became

less secure when compared to the base-model device due to changes in the user and

security settings, but we would not be able definitively conclude that it was a malware

application or some sort of malicious activity that caused the settings changes. Even

with the WiFi network information, although we were able to conclude that there

is a fair possibility that the anomalous network we observed could be the result of

a rogue access point, we do not have the evidence to ensure that claim. It seems
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that when it comes to obtaining evidence from a static image of a mobile device,

there is a lack of confidence in any claim that an investigator can make regarding the

integrity of the device due to the unknown surrounding circumstances to any single

piece of information extracted. The solution to this problem then is to diminish the

unknown elements of the surrounding circumstances so that an investigator can make

conclusions about the device with a degree of confidence, i.e. there is a low probability

that the conclusions are incorrect. Our approach seeks to accomplish exactly this by

collecting various types of information from a device and correlating them with each

other over time.

3.2 System Architecture

As previously discussed, there are two major components to our approach, those

being an on-device application and also an analysis tool on a separate server. The

purpose of the on-device application is of course to collect various types of information

from the device over time using different methods and then to send that information

to the server in the form of logs to be analyzed. The server then runs a script

which parses through the information received and separates it into in different text

files. The analysis program, which is stored on the same machine running the server,

can then be run to analyze the text files created by the server script using different

parameters specified by the user. These parameters indicate to the analysis program

which additional calculations to perform as well as which information in the text files

to perform the calculations on. This process can be seen in Figure 3.1.

3.3 On-Device Application

Because our preliminary investigation dealt with potentially compromised iOS

devices and because we already had an understanding of what information was avail-
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Figure 3.1: System Architecture

able to us, we decided to make our on-device application, which would continually

extract information about the state of the device, for the iOS platform. The inte-

grated development environment (IDE) we used to build and test our application was

Xcode version 5.1.1, and the following Frameworks were imported into our project:

XCTest.framework, SystemConfiguration.framework, AddressBookUI.framework, Ad-

dressBook.framework, MessageUI.framework, CoreGraphics.framework, UIKit.framework,

and Foundation.framework. The device we used to test our application was an iPad

Mini (1st Generation), and the machine on which we developed the application was

a Mac Pro (Early 2008) running OS X version 10.9.3.

Regarding its design, our application was only ever intended to run in the back-

ground on the device and automatically collect and send information without any

interaction from the user, so we did not develop a user interface for it; the only

interaction that the user would need to have would be to simply launch the appli-

cation like any other iOS application. The application itself is centered around a

polling mechanism with a specific time interval, meaning that our application will
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gather all the information it is designed to gather every five seconds until the ap-

plication is closed. Creating background applications, however, comes with its own

set of challenges. According to Apple’s documentation about applications running

in the background, only applications that are performing specific tasks are allowed

to run in the background of a device without being suspended, one of which is an

application that needs to update the user on the device’s location [13]; thus in order

to ensure that our application never entered a suspended sate, and therefore never

stopped gathering information, we gave it instructions to check the device’s GPS lo-

cation during each poll every five seconds. This way the application had permission

to run in the background and continue performing its functionality.

As previously mentioned, one of the primary sources of information that we want

to continuously collect using the on-device application is the device’s currently run-

ning processes. Obtaining this information lets an analyst see when, if ever, any

suspicious processes are being run on the device. We accomplished this by creating

a method in our code to extract the running processes, and we called that method

whenever it was time for the application to perform a new poll, which was every five

seconds. This method works by calling the “sysctl()” function from the “sysctl.h” C

library which is used to effectively create an array of all the running processes at that

time. We then create a dictionary object containing all the attributes of every process

we just obtained. Using this method, we are able to collect relevant attributes for

each process, such as the process start time, the process ID, and the process name.

There are also additional process attributes available to us, such as process priority

and process sleep time, but because our goal is to create a time-line of processes that

are active at the time of each poll, we only need attributes that can help us identify

a particular process, such as the first few attributes we mentioned. Once we have all

the running processes for that particular poll, we place them in a string to be sent to
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our server.

Using the on-device application to obtain the network traffic information allows

an analyst to see when, if ever, any sort of suspicious or anomalous network traffic

is occurring. Similar to how we collected the currently running processes, we collect

the current network traffic by creating a network traffic collection method and calling

that method within the poll method, which is called every five seconds. Our network

traffic collection method is a modified version of the primary function in the “inet.c”

file, which is an open source C file used by Apple in their implementation of the

netstat program. We were able to modify the code so that instead of printing out

the resulting network information to standard output, it saves the results to a string

which is then passed back in to the main program. Our modified netstat function also

only collects information pertinent to identifying and distinguishing specific network

requests, such as the protocol used, the local IP address and port, the foreign IP

address and port, and the state of the connection.

Our on-device application also continuously collects the current network access

point information to gain a perspective on when, if ever, the device had been con-

nected to an insecure or malicious network. A good example of the relevance of this

information can be seen in our preliminary investigation where the WiFi logs revealed

a potentially malicious access point. Again, in order to collect this information, we

created a method that when called would obtain details about the current network

node being accessed, and we then called this method in our poll method. This method

works by using some of the functionality of the CaptiveNetwork library available for

iOS development. Specifically, we used a method in the library called “CNCopy-

SupportInterfaces” which allowed us to get an array of all the supported network

interfaces. We then used the method “CNCopyCurrentNetworkInfo” to obtain in-

formation about the current network interface from the list of supported interfaces.
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These methods gave us the SSID and BSSID of the network that the device was

currently connected to; however, by using an online IP detection API with the web

address “http://ip-api.com/line/?”, we were able to obtain the IP Address, the lati-

tude coordinate, and the longitude coordinate as well. Once we had the information

obtained from the IP detection API, we formatted it to be sent to our server.

Every time the poll method is called, all the information that was collected during

that poll is sent to the server. The way this works is that for each different data

collection method, once the data is collected, it is formatted in a certain way and

added to a global string. If for a particular poll, the current process information,

current network traffic information, and current network access point information

were all collected, the global string would then be composed of three separate sections.

Each section would contain a sequence number, which represents how many times

the poll method had been previously called at that point, and the data of one of

the collection methods, that being the current process data collection method, the

current network traffic data collection method, or the current network access point

data collection method, along with the time that the data collection method was

called. The collected information is formatted this way so that our server application

can easily parse through the data it receives and identify which information belongs

to which type of collected data and which sequence number each section of data

belongs to. A sample of how the logString contents are formatted can be seen in

Figure 3.2. The collected information is sent to the server by creating an HTTP

request object and setting the contents of that request object to be the contents of

the logString encoded as a data object. We then specify the HTTP method to be a

“POST” method and send the request to the server synchronously.

Although the on-device application can operate as described, it is not without its

share of usage limitations. One example of a usage limitation with the application is
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Figure 3.2: Sample logString contents

that sending the collected information to the server requires an internet connection,

which is not always available when using a mobile device. The problem with this is

that it is possible that an analyst would end up trying to analyze an incomplete set of

data due to some of the collected information not being sent to the server. We were

able to mitigate this issue somewhat by instructing the application to store the logs

locally if no internet connection is available; however, in order to not overload the

application memory space, we limited the application to only locally store up to one

hundred polls of information. Another instance of a usage limitation is that the most

recent information poll on the device may not necessarily be synchronized with the

data on the server since the log files of collected information may already exist on the

server when the application is launched. Once the server receives information from

the on-device application it detects the information’s sequence number and writes

that poll information to a log file. The deatails of this process will be explained in

the subsequent sections. Each log file on the server has ten instances of consecutive

poll information, meaning there would be a problem with sending information to the
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server if, for example, the application is launched and tries to send poll information

with sequence number zero (the first poll of the application) to the server, but a log

file already exists on the server that contained poll information with sequence number

zero from a previous session. The result would be that the additional sequence zero

information would be appended to that particular log file, which would cause our

analysis program to crash since it expects log files with at most ten instances of

polled information. The way we mitigate this is by telling the application to first

retrieve the most recent log file from the server and determine what the most recent

sequence number is in that log file. This way the current session will start where the

previous one left off.

3.4 Flask Server

The data collected by our on-device application is first received by our server,

which is responsible for organizing the information for analysis later. Our server uses

the Flask web application framework, specifically version 0.10.1, for handling the

various HTTP requests sent from our application, and because of this, we were able

to implement all of our instructions on handling communications from the on-device

application in a single python source file which we called “launcher.py”. According

to the Flask API documentation, once a Python file that uses the Flask web frame-

work is run, a global Flask object is created which contains instructions for how to

handle URL rules and also code for launching a local web server application, which

is activated on launch. The Flask web framework also allows us to specify URL rules

to call certain functions when receiving an HTTP request for a specific route on the

server [14]. This then allows us to perform some actions upon receiving an HTTP

request from the on-device application, which we use to organize all of our extracted

data for analysis.
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There are three primary routes used in the server’s communications with the

on-device application: “/hello”, “/startup”, and “/extraLogs”. The “/hello” route is

where the on-device application sends the requests containing the data of the collected

information from the device. The on-device application sets the request method to

“POST”, so it does not expect a response from the server, and sends the request to

the “/hello” route, which is just the base URL of the server with “/hello” appended.

Upon receiving the request at the “/hello” route, the launcher.py program converts

the data in the request to a string and writes it to a log file in the current directory.

It accomplishes this by first using a regular expression to find the sequence number

of the received data. It then appends the received data to a specific log file which it

determines by dividing the corresponding sequence number by 10 and rounding down

to the nearest whole number. The log file naming convention is the word “Output”

followed by the number it calculated by dividing the sequence number by 10 and then

the “.txt” extension. For example, if the sequence number of the received data was

“39”, it would write the received data to the file “Output3.txt”. Using this method,

every log file will have 10 consecutive instances of the data extracted from the mobile

device with no limit to the number of “Output” log files possible.

The “/startup” route is responsible for letting the on-device application know

which sequence number to start at when it is first launched. As previously mentioned,

one of the usage limitations for our on-device application is that occasionally log files

already exist on the server from a previous session, and in order to avoid writing

collected information to log files that already contain 10 sets of collected data we

need to determine the sequence number of the most recent data written to the log

files on the server. The way we accomplish this is by having the on-device application

create an HTTP request object, setting the request method to “GET”, meaning that

it will be expecting a response back from the server, and we send the request to the
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“/startup” route on the server. Upon receiving the GET request from the application,

the server creates a list of all the files in the current directory, that being the same

directory where the “luancher.py” file is located, that have the “.txt” extension by

using a regular expression. This effectively creates a list of all our current “Output”

log files. We then use another regular expression to search through each file in our

list of files and find all the sequence numbers in each file. We then take the highest

sequence number we found and set that as our return value to send back to the on-

device application. In this way, we tell the on-device application what the most recent

sequence number that the server received was.

The “/extraLogs” route is used for receiving collected information that was tem-

porarily stored locally on the device. As previously mentioned, another limitation of

the on-device application is its need for an internet connection to save the collected

information from the device. The way we handle this limitation is by having the

application store the logs locally if there is no internet connection and then send that

information to the server at a later time. This locally stored information cannot be

sent to the server through the normal “/hello” route; however, since the locally stored

information may consist of information collected over many sequences instead of just

one sequence, which is what the “/hello” route would be expecting. The on-device

application, therefore, sends the locally stored information to the “/extraLogs” route

once an internet connection is detected. Once the server receives the request on the

“/extraLogs” route it parses through the request data, which is a compilation of the

locally stored instances of collected information, and uses a regular expression to

make a list of all the line numbers from the request data that start a new sequence

number. Once the list of line numbers is made, the server program then creates a list

of sections of the input received from the on-device application based on the list of line

numbers. In other words, we just split up the original input based on where a new se-
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quence number starts, so we get a list of individual sequence instances, each one being

similar to what the on-device application would normally send to the server through

the “/hello” route. The server program then iterates though this list of sequence

instances and adds them to an “Output” log file based on the sequence number, like

it would do through the “/hello” route. In this way, data stored locally on the mobile

device is not lost and can be stored in the log files on the server normally.

3.5 Analysis Program

After the data received from the on-device application is organized into individual

log files by the server program, the data is ready to be processed by the analysis

program. The primary goal of the analysis program is to provide a way for a forensic

analyst to draw conclusions with a high level of confidence about the state of the

device, and the specific features of our analysis program that aim to achieve this goal

are what makes our approach unique when compared to the existing approaches. In

the online article “Mobile Security for a Nomadic Workforce”, the author Lee Reiber,

who oversees all mobile forensics activities for the company AccessData, talks about

the capabilities of the company’s mobile endpoint monitoring software. He states,

“It also detects unknown threats by providing visibility into network communications

and running processes, so anomalous activities can be identified and remediated” [11].

Although this technology can continuously collect information from mobile devices

to allow anomalous activities to be identified, it does not show how this information

can be used to identify anomalous activity, meaning that it does not propose a way

for an analyst to effectively use that continuously collected information.
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3.5.1 Time-Line Table

Like our server program, our analysis program consists of a single python file

named “logAnalyzer.py”, which when launched will perform a various set actions

depending on the arguments it receives. One of the primary features of this program

is constructing a table that depicts the activity of each element of data that was

collected from the on-device application over time. The first task that the program

performs upon being launched is to scan through all the “Output” log files in the

current directory and create a dictionary of all the sequences, or instances of polled

data, from the device. We do this so that all of the collected data from the “Output”

log files are easily accessible and traceable for when the program is constructing the

time-line table structure. The way it does this is by first creating a list of all the

“Output” log files, and then for each log file in that list, it creates a dictionary of

sequences, appending all the key-value pairs to the dictionary of sequences of the

previous log file. Then for each sequence in the sequence dictionary, the program

creates another dictionary containing several lists, one for each type of data collected

for that sequence. This is done by scanning through the log files line by line and

using regular expressions to determine when a particular type of collected data is

being scanned. The result is a comprehensive dictionary of all the collected data

where each key is a sequence number and each value is another dictionary in which

each key is a type of collected data and each value is a list of all the elements of that

type of collected data. This structure is shown in Figure 3.3.

The next major task that the analysis tool performs is constructing the actual

time-line table structure from the comprehensive dictionary of all of the collected

data. The design of the time-line table is that all of the sequences from a set of

collected data are represented as different columns in the table and each individual

28



Figure 3.3: Comprehensive Structure Created from Output Logs

data element from each type of data is represented as its own row. This design allows

an analyst to easily compare different data elements and different sequences to one

another, allowing him or her to see if any data elements or sequences are suspiciously

similar to one another or uncharacteristically different from one another. A challenge

with this design, though, is that making a row for each data element from every

sequence would mean that there would be a lot of repeated rows in the final time-

line table structure, since a lot of data elements persist over several sequences. The

solution to this is to systematically make a list of all the unique elements to use

for creating the rows in the time-line table; however, because the data elements are

further separated into different lists based on the type of data in our comprehensive

dictionary, we can first create lists of unique data elements based on the different

types of data, which would allow the analyst to filter the time-line data structure

based on data type (discussed further in subsection 3.5.4). We can then append these

lists of unique elements together to produce a single list of every unique element

across all types of collected data for the session that the on-device application was

running. This process can be seen in Figure 3.4.
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Figure 3.4: Creating Lists of Unique Elements from Monitoring Session

Once we have a list of all the unique data elements we can begin to fill in the

cells in the table. Each cell that is not the first cell in a row or a column represents

whether or the data element at the beginning of the row it is in is active during the

sequence at the beginning of the column its in. To fill in the cells, we simply check to

see which sequence and data element a particular cell correlates to and then check the

comprehensive dictionary structure to see if that particular data element is present

in the list of elements for that sequence. If it is, then we write a “1” in that cell

representing that that data element was active; otherwise, we write a “0”.

Regarding the actual table that the “logAnalyzer.py” program outputs, the first

row of the time-line table is the header row, and it is simply the different sequences and

their respective time-stamps taken from the Output log files. Once we have a list of

all the unique data elements we can begin to fill in the cells in the table. Each cell that

is not the first cell in a row or a column represents whether or not the data element

at the beginning of the row its in is active during the sequence at the beginning of

the column its in. To fill in the cells, we simply check to see which sequence and data

element a particular cell correlates to and then check the comprehensive dictionary
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structure to see if that particular data element is present in the list of elements for

that sequence. If it is, then we write a “1” in that cell representing that that data

element was active; otherwise, we write a “0”. Fully copying each unique element as

the first item in each row of our table, however, is not feasible since each element is

too large in terms of character length to conveniently fit into a single cell of our time-

line table. As a result we pick out the most identifying attributes of each type of data

so that we can abbreviate what is actually being represented as the first item in each

row of our table. For the process data type we use the process name; for the network

traffic data type, we use the traffic’s foreign address; and for the network access point

data type, we use the BSSID. Abbreviating data like this causes a loss of information

available to the analyst when looking at the time-line; however, because we include

key identifiers for each element, the lost information can be easily looked-up in the

“Output” log files. Additionally, an analyst is still able to use the time-line table to

effectively draw conclusions, since abbreviating the information in the table has no

impact on an analysts ability to relate different types of information to each other or

identify certain elements of information as being anomalous. As an example, Figure

3.5 shows how obtained network traffic information found in the “Output” log files

is abbreviated when placed in our Time-line Table.

As previously mentioned, the purpose of creating a system that allows for continu-

ous collection of information from a mobile device is to provide an analyst with a more

complete story of the events that occurred, allowing him or her to make conclusions

with a higher level of confidence than those that could be made from a commercially

available forensics tool alone. For example, say that the on-device monitoring ap-

plication is able to collect 2 different types of information from the device, process

information and network traffic information, over a period of sixty seconds. If a poll

occurs every 5 seconds, then there would be 12 polls, which in our analysis program
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Figure 3.5: Abbreviating Data from the Log Files for the Time-Line Table

would be represented as sequences 0 through 11. Suppose that the analyst uses the

analysis tool to produce the time-line table output similar to that seen in Table 3.3

and notices that Process C is active only at sequence 9 and that at sequences 10 and

11 there is network traffic between the device and a server located in a foreign country.

The analyst would likely determine that there is a high probability that the process

observed in sequence 9 is malicious since it is anomalous and occurs directly before

the suspicious communications observed in the following sequences. In this case the

analyst is essentially able to determine more unknown factors about the events that

occurred on the device by looking at data collected over a period time as opposed

to using a commercial forensics tool that looks at a static image of the device, thus

allowing for a more complete analysis. In the case of a static image, if an analyst

were to obtain an image of the device through a commercially available tool, he or

she might know that the process in question was launched at some point and that the

network communications to the foreign servers occurred, but it would be unknown

how those events related to each other, leaving the analyst with little information to

make a conclusion. Perhaps the analyst would be able to find log files showing start

times of process and network activity on the static image of the device, but log files
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Sequence S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Process A 0 0 1 1 1 0 1 1 1 1 1 1

Process B 1 1 0 1 0 0 1 1 0 0 0 0

Process C 0 0 0 0 0 0 0 0 0 1 0 0

Local Address 1 1 0 0 1 1 1 1 1 1 1 1

Foreign Address 0 0 0 0 0 0 0 0 0 0 1 1

Table 3.3: Sample Time-line Table

typically do not give any insight as to the length of time that an event persists as

seen in the WiFi access point logs in our preliminary investigation.

Naturally, the works related to our thesis also propose mechanisms for continu-

ously collecting data in order for analysts to make conclusions with greater confidence,

but by creating a time-line table, our approach provides a way for the analyst to use

that collected information effectively, unlike the related works. In the hypothetical

situation given, an analyst is able to use our time-line table structure to quickly iden-

tify that a process is anomalous, since only one sequence in the table shows that

process, and also that there is a high probability that the process is related to the

suspicious network activity, since the process is active only directly before the suspi-

cious network activity. Essentially, our analysis program organizes the continuously

collected information by using our time-line table structure to improve the forensic

process.

3.5.2 Levenshtein Distance Calculation

Although our time-line data structure is a good example of a way to use the

continuously collected information to improve a forensic analysis, it is not the only
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improvement that we can make. In addition to organizing the collected data, we

can also perform various calculations on the data to highlight for the analyst which

parts of the data should be investigated thoroughly, thus improving the efficiency of

a forensic analysis. One way to do this is by calculating the Levenshtein distance

for each row in the time-line table. Levensthein distance describes the number of

changes that need to be made between two sequences of elements in order to make

them the same, and it has been shown to be useful in the field of computer forensics

by reducing the data to be searched through. Mangnes discusses this technique in

[15]. In the paper, Mangnes mentions how when searching for a specific piece of data

within a forensically obtained set of data, the data can be split up into a number of

data buffers and then searched through using a Levenshtein distance calculation. The

calculation would compare the piece of data that is of interest and any one of the data

buffers and return a Levenshtein distance value. The data buffer that corresponds

with the lowest Levenshtein distance value would be most likely to contain the piece

of data being searched for and then a more precise search can be performed on that

specific data buffer to find its exact location.

Similar to the approach in the paper by Mangnes, our approach uses Levenshtein

distance calculations to find similarities between sets of data. The difference, though,

is that instead of using Levenshtein distance to search for specific data, our approach

uses the calculation to find correlations among different pieces of evidence, which if

investigated further, may allow an analyst to quickly arrive at a conclusion about the

state of the mobile device. For example, If two rows in our table have a very small

Levenshtein distance over a large number of poll sequences, then it is very likely

that those two rows are related to each other, and if the analyst determines that

the evidence represented in those rows are typically not related to each other, then

that evidence potentially represents malicious activity. In this way the Levenshtein
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distance can highlight an area that should be further investigated.

For example, assume an analyst has a set of monitored data collected from a

mobile device which shows several processes and several instances of current network

traffic across 50 poll sequences. The analyst calculates the Levenshtein distance

for each data element, comparing each element to every other element in the set.

Once the calculation is complete, if the analyst notices that two seemingly unrelated

data elements, an unrecognized process and a network traffic instance showing a

connection to a foreign address, have a Levenshtein distance of 0, then the analyst

would determine that there is a suspicious relationship between those data and likely

investigate them further. In short, low Levenshtein distance values between elements

in a data set often indicate some sort of relationship, which can occasionally be

malicious if the analyst can determine that the elements are not typically related.

Our “logAnalyzer.py” program includes functionality to calculate the Levenshtein

distances for our data. For the calculation, we use the “Levenshtein” Python library

which contains a comparison function that can calculate the Levenshtein distance

between two strings. To perform the calculation we essentially format each row in

our time-line table into a single string object of 1’s and 0’s representing when the

element for that row was active or inactive. We then place all of these strings in a list

and loop through that list, performing the Levenshtein distance comparison on every

other element in the list for each element in the list. The results are then stored in

a table with both the columns and the rows being the list of all the elements in our

extracted data set. This process is illustrated in Figure 3.6; note that in the Resulting

Data table the values on the diagonal are not included since any element string will

have a Levenshtein distance of “0” when compared to itself.
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Figure 3.6: Levenshtein Distance Calculation

3.5.3 Euclidean Distance Nearest Neighbor Calculation

The other calculation that our “LogAnalyzer.py” program is capable of performing

on our data to highlight areas of interest for an analyst is a Euclidean distance

calculation. Euclidean distance is the mathematical term for the distance between

two points in Euclidean space, and is the metric used in calculating the k-th nearest

neighbor as decribed in the paper by Ramaswamy et al [16]. In this paper, the

authors use the Euclidean distance calculation to find any outliers in a set of data

points. The way they do this is by first determining a threshold number of points,

n, of the total points in the data set that would be considered outliers. Then by

calculating the Euclidean distance from each point to every other point in the set,

the authors determine the distance of the k-th nearest neighbor for each point in

the set. If for a particular point there are no more than n - 1 other points that

have a higher k-th nearest neighbor value, then that point is considered an outlier

of the data set. In another paper by Lazarevic et al. the authors demonstrate how

various outlier detection schemes can be used in anomaly detection. One such outlier

detection scheme was a modification of the k-th nearest neighbor outlier detection
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Figure 3.7: Nearest Neighbor Anomaly Detection

scheme described in the previously mentioned paper. The modification consists of

replacing the previously described threshold number of points in a data set, used to

determine the outlier points, with a numerical threshold value. Any point that has

a k-th nearest neighbor distance greater than the threshold value is considered an

outlier [17]. The authors tested the effectiveness of this outlier detection scheme,

among other schemes, as an anomaly detection scheme by seeing what percentage of

anomalies in the 1998 DARPA Intrusion Detection Evaluation Data set it was able to

detect. According to the resulting data, this particular anomaly detection scheme was

able to detect a higher percentage of anomalies associated with the network attacks

than any other anomaly detection method described in the paper. Figure 3.7 shows

how the nearest neighbor calculation can be used in anomaly detection.

An assumption one could make about malicious activity is that it tends to happen

significantly less frequently than non-malicious activity. This assumption is supported

in [18]. In the paper, the authors discuss how alerts from an intrusion detection system

can be prioritized and grouped based off anomalous behavior. They carry out attacks

on a test system and use their own tool to group intrusion detection alerts based off of

how anomalous they are, giving higher priority to the alerts that are more anomalous.
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When analyzing the higher priority alerts, they found that the true positive rate was

100 percent, meaning that no suspicious or malicious behavior was left out of the high-

priority grouping of the alerts, which implies that anomalousness is in fact a property

of malicious activity. Because of this property we decided to use Euclidean distance

k-th nearest neighbor calculations to find anomalous, and therefore suspicious, data

in our data sets, similar to how the modified k-th nearest neighbor outlier detection

scheme was used in the paper by Lazarevic et al. In order to calculate the nearest

neighbor Euclidean distances on a data set we receive from the on-device application,

we first need to specify what defines a data point within our data. The data points

that we use in our Euclidean distance calculations are essentially the different columns

from our time-line table structure where each value in a column, either a “1” or “0”,

represents a value for a different dimension in Euclidean space. This means that

if, for instance, there were a data set consisting of m data elements across n poll

sequences and we want to find the k nearest neighbors for each point, then we would

be performing Euclidean distance calculations between sets of 2 of n points across m

dimensions and keeping the lowest k distances for each of the n points . Once we have

our k nearest neighbors for each point, we create a new table to host those results, in

which there are k + 1 columns, which list the k nearest neighbors for each of the n +

1 rows, which represent each of the poll sequences. This resulting Euclidean distances

formed from a data set represented in a sample time-line table can be seen in Figure

3.8.

Naturally a concern that arises from this type of calculation is that if we have

an arbitrarily large number of dimensions across which we are trying to calculate

Euclidean distances for every point in our data set, then the calculations may become

computationally impossible - also known as the curse of dimensionality. To solve this

problem we employed the use of a ball-tree data structure to organize our data points
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Figure 3.8: K Nearest Neighbor Distance Calculation

and calculate the k-nearest neighbors for each point in a computationally feasible

amount of time. The ball-tree data structure is a type of binary tree where each node

defines a hypersphere with half of the dimensions of its parent’s hypershphere - its

sibling node defines a hypersphere with the other half of its parent’s hypersphere’s

dimensions. Each node also contains all of the points whose distance is closer to its

centroid than the centroid of its siblings hypersphere [19]. A ball-tree data structure,

therefore, has a special property in that for any point, p, in a ball tree, the distance

between p and another point in the tree will always be greater than or equal to the

distance between p and the centroid of any hypersphere containing that point [20].

What this means is that when searching for the point in our set of data closest to a

point, p, any subtree and all the points therein that are further away from the closest

point we have observed so far, which is easily discernable due to the organization

of the data structure, can be ignored for the rest of the search. Continuing the

search, we can keep track of whatever point is currently closest to point, p, and
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Figure 3.9: Nearest Neighbor Calculation Using Ball-Tree Data Structure

whenever a new closest point is found, we can discard the old closest point as well as

any points within subtrees further away from the new closest point. Eventually we

will discover the nearest neighbor to point p without having to have calculated the

Euclidean distance from p to every other point across an arbitrarily large number of

dimensions. This process is illustrated in Figure 3.9

Figure 3.9 shows a snapshot of a search for the nearest neighbor to point P in

a data set. In the figure we can see that point P shares a parent hypersphere with

the current closest point, point Q. When attempting to calculate if another point,

for example Point R, is closer to point P than point Q, we can simply check where
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the hyperspheres that contain the points are located in the ball-tree data structure.

Because it takes more hops to get from hypersphere A to hypersphere C than it

does from hypersphere A to hypersphere B, we know that point Q is closer to point

P than point R is. The computational complexity arises, however, when trying to

calculate which hyperspheres contain point R since there are an arbitrary number of

dimensions. Fortunately, because we only care about whether or not point R is closer

to point P than point Q, we can stop trying to locate point R’s location in the tree as

soon as we see that one of its ancestor’s hyperspheres is farther away to hypersphere

A than hypersphere B is, saving a considerable amount of computation.

To demonstrate how discovering anomalies by calculating the k nearest neighbors

from a data set can aid in a forensic investigation, we consider a scenario in which

a data set contains over 200 data elements across more than 500 poll sequences. In

this data set there are records of the mobile device connecting to a malicious WiFi

access point as well as several web addresses that were only communicated with while

connected to the malicious network, but other than these events, the activity on the

device is generally constant. This means that in an investigation an analyst could

potentially determine, by looking at the time-line table, that the sequences describ-

ing connections to those specific web addresses while on that particular network are

anomalous and therefore somewhat suspicious, but because the data set is somewhat

extensive, it is unlikely that the analyst would be able to detect the anomalous se-

quences. Using Euclidean distance calculations, however, an analyst can gain an

understanding of how different each sequence is from the other sequences, and be-

cause the sequences that show the connections to the specific web addresses while

connected to a malicious network are uncommon among the entire set of sequences,

they would show an abnormally high k-th nearest neighbor value. For example, if

there are four sequences that show the connections to specific web addresses while
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Figure 3.10: K Nearest Neighbor Euclidean Distance Anomaly Example

connected to the malicious network, then the fourth nearest neighbor distance value

for those sequences would be abnormally high when compared to the fourth nearest

neighbor distances of all the other sequences. In this way an analyst could deter-

mine more easily that those sequences are anomalous which could lead to him or her

discovering the connection to the malicious network. This scenario is illustrated in

figure 3.10. In the figure, the outlier points, which represent the four sequences in

which a connection to the malicious network was made, clearly are anomalous when

compared to the normal data points, but if we were to only look at the first three

nearest neighbors for each point, then they would not appear anomalous or suspi-

cious. The lines connecting the outlier points to the normal data points, however,

represent the fourth nearest neighbor distances for the outlier points, which are much

more evidently anomalous compared to the fourth nearest neighbor distances of any

other point.

Although the time-line table structure, Levenshtein distance calculations, and

Euclidean distance calculations in our approach are all effective ways in which the

continuously collected information can be used to aid an analyst in an investigation,
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calculating the Euclidean distance to find the k nearest neighbors for each sequence is

somewhat unique in that it helps to identify how anomalous something is, which is a

property often associated with malicious activity, as opposed to calculating the Leven-

shtein distance which only points out correlations among the data elements and relies

on the analyst’s intuition to draw meaningful conclusions. As previously mentioned,

works related to our approach have drawn attention to the idea that by continuously

collecting information from a mobile device, it is possible to perform some form of

anomaly detection which would help an analyst identify malicious activity, but those

works never actually proposed how this can be accomplished. This feature of our

approach, therefore, offers meaningful contribution to the area of mobile forensics,

since we are specifically exploring effective ways in which the continuously collected

information can be used to improve a forensic analysis.

3.5.4 Additional Features

Another one of the major features of our “logAnalyzer.py” program is that it

can take in several command-line arguments that allow the user to manipulate the

different outputs of the program in various ways. For the time-line table, there are

two parameters “-S (–sequences)” and “-R (–rows)” that allow the user to specify

which sequences and rows are displayed in the time-line table, respectively. This

means that if an analyst has already determined that a specific set of sequences and

rows to be of interest in an investigation, he or she can specifically view that data

in order to more efficiently continue on with the investigation and draw conclusions.

Additionally, the user is able to filter the data that gets displayed in the time-line table

by the data type. There are three parameters “-P (–processes)”, “-A (–addresses)”,

and “-N (–networks)” that allows the user to only view specific types of data in the

resulting time-line table, and similar to the row and columns filtering parameters,
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these parameters are useful in that they can allow an analyst to more efficiently

arrive at a conclusion by limiting the data to be analyzed.

The Levenshtein distance calculation output table also has its own command-line

input parameter which is “-L (–levenshtein),” but instead of filtering the data that is

displayed in the table, the argument highlights certain cells within the Levenshtein

output table. This argument takes in a numerical value which all levenshtein distances

in the table are compared to. If any Levenshtein distance is less than or equal to the

argument’s value, then two asterisk characters are appended to the number in the

table. This allows an analyst to specify the maximum Levenshtein distance value

that would be of interest in the investigation and then easily see which entries in

the Levenshtein distance output table are below that specified value. Essentially

this parameter makes it easier for an analyst to identify data elements that have a

strong correlation with one another, and are therefore of interest, which improves the

efficiency of the analysis.

Like the other output tables, the k nearest neighbors output table also has a

corresponding input argument which is “-E (–euclidean)”, and it takes in a numerical

value which specifies how many nearest neighbors will be calculated and displayed for

the sequences in the output table. Naturally we need to allow an analyst to specify

how many nearest neighbor distances should be calculated for the sequences so that if

there are multiple anomalous sequences in a data set, like in the example previously

described, the analyst will be able to determine how many anomalous sequences there

are. Unlike the other input arguments, however, this argument does not improve the

efficiency of the forensic analysis as it does not filter out unimportant data or highlight

data of interest. Our program does, however, implement a highlighting mechanism

specific to the k nearest neighbor calculation. In order to ensure that a forensic analyst

is able to efficiently identify any anomalous sequences in the k nearest neighbor output
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table, we calculate both the average and the standard deviation for each of the nearest

neighbors 0 through k across every sequence. To calculate the standard deviation for

any one of the nearest neighbors 0 through k, we use the formula:

σ =

√∑n
i=1 (xi − x̄)2

n− 1

In the formula σ is the resulting standard deviation, xi is a single data value, x̄

is the mean of all the data values, and n is the number of data points. For every

sequence in the output table we compare the value of each nearest neighbor 0 through

k to the average value of that nearest neighbor. If the nearest neighbor distance

value for that sequence is greater than the average value for that nearest neighbor

by at least the value of the standard deviation, we append two asterisk characters

to the end of the value in that cell, specifying that for that sequence, that nearest

neighbor distance value is outside of standard deviation and is therefore suspicious.

Additionally because the k nearest neighbor distance metric is unique in that it can

be used to identify a property that is often associated with malicious activity, as

previously described, we also append an asterisk to every cell in the time-line table

that belongs to a data element (a row) that is active at some point in the table during

a sequence that was shown to have a k nearest neighbor distance value outside of

standard deviation. Figure 3.11 uses an example set of data to illustrate this process

further. Due to these modifications to the k nearest neighbor and time-line output

tables, we are effectively highlighting any pertinent information in those tables which

in turn can improve the efficiency of the forensic analysis.

After determining the nearest neighbor distance values that are outside of stan-

dard deviation, we can use a similar process to calculate anomalous data elements in

the time-line table structure. We first get a list of all the sequences in the Euclidean

distance nearest neighbors results table that contain at least one nearest neighbor
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Figure 3.11: Highlighting Anomalous Nearest Neighbor Distances

distance value outside of standard deviation, in other words, a list of the sequences

that have at least one value followed by asterisks. We again calculate standard de-

viation and average values, but this time we calculate those values for each row in

the time-line table structure. If any call for any row of the time-line table structure

contains a value that is outside of standard deviation and that cell also is within the

column of a sequence that is in the list of anomalous sequences from the euclidean

distance nearest neighbors results table, then that row in the time-line table structure

containing that cell has two asterisks appended to each of its cells. In this way, we

can highlight every data element in the time-line table structure that is related to the

anomalous sequences, since during those sequences, those particular data elements

also had abnormal values.
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Chapter 4

EVALUATION

The goal of our approach is twofold: First, it is to demonstrate that by continuously

collecting information, an analyst can perform a more accurate assessment of a mo-

bile device, and second, we show how specific methods can be used to interpret the

collected information to form meaningful conclusions. The first part of our goal is

achieved by demonstrating the discrepancies between the information collected from

a commercial forensics tool and the information we were able to gather using our on-

device application. In regards to the second part of our goal, although we can explain

our process for interpreting the collected data to form more meaningful conclusions,

demonstrating the effectiveness of our approach using actual data gives it credibil-

ity and helps solidify our claims; therefore, we simulated a network-based attack on

an iOS device similar to the “evil twin” attack previously mentioned in the Related

Works section. Our simulated attack is similar in the sense that it involves creating

a malicious access point with an SSID that resembles that of a non-malicious one.

Whenever an iOS device connects to the malicious access point and tries to access a

site hosted on a specific server, the request is forwarded to another malicious server

which hosts a malicious site without the user knowing. An applicable real world sce-

nario for this attack, for example, would be if an attacker set up a malicious access

point with a similar SSID as a non-malicious access point in a public location, such

as an airport or a coffee shop. The attacker could then host a server on his or her own

personal computer that mimics a site where a user would enter sensitive information,

like a banking site. The attacker could then manipulate DNS settings to instruct the

malicious access point to forward all requests meant for the legitimate banking site
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Figure 4.1: Attack Simulation Topology

to the fake banking site on his or her personal server where a user may then unsus-

pectingly enter sensitive information, such as log-in credentials. This would allow the

attacker to then impersonate the user on the legitimate banking web site and cause

harm.

4.1 Setup

There were several components needed to simulate the described attack; the main

ones include two Linux virtual machines, each running Ubuntu version 12.04 and

hosting both a web server and a DNS server; two wireless routers, a Rosewill RNX-

N150RT wireless-N router and a Medialink MWN-WAPR150N wireless-N router; and

an iOS device running our on-device application. In our setup the iOS device can

connect to each of the wireless routers, which are connected to their own respective

virtual machines hosting both a web server and a DNS server. A topographical

diagram of our network setup can be seen in Figure 4.1.

In addition to setting up the components of our network in a specific way, we

also needed to install specific software so that we could host a web server and a DNS

server on each of the virtual machines. One program that we installed on both of our

virtual machines is the Bind9 Domain Name System software. The Bind9 software

allows us to set up our own domain name system and specify which domains resolve to
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certain IP addresses by creating individual zone files referenced in the “named.conf”

configuration file. We also installed the Apache2 web server software on both virtual

machines in order to host web servers. After installing Apache2 we also created

slightly different html pages for each web server which are served upon accessing the

server. Once the DNS servers were set up on both virtual machines we needed to

modify some of the settings on the routers. We set one of the routers to have the

SSID “GoodInternet” and the other the SSID “Good1nternet” to portray a scenario

in which a user connects to a malicious wireless access point attempting to mimic

one that is not malicious. We also configured each wireless router to look to the

DNS servers on their respective virtual machines as the primary DNS servers which

we accomplished by specifying the address of the primary DNS server in the router

settings. Once set up, the router will try to resolve the domain name of any request it

receives by looking at the router’s primary DNS server, which is the DNS server being

hosted on the router’s corresponding virtual machine. Once the router receives back

from its DNS server the address that corresponds to the requested domain name, it

passes the request on to the web server with that address, which incidentally is on

the same virtual machine as the DNS server. The web server responds with its html

page which then is sent back to the iOS device. This process is illustrated further in

Figure 4.2.

4.2 Procedure

Simulating the attack after the setup is complete is a fairly involved process and

requires some precision in its execution. The following is the procedure we followed

in executing the attack simulation:

1. Run the “launcher.py” python program on the remote server.
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Figure 4.2: Request Path Traversal

2. Connect one of the virtual machines to the router with the SSID “GoodInternet”

and the other virtual machine to the router with the SSID “Good1nternet.”

3. On each virtual machine launch both the Apache2 Web Server and Bind9 DNS

services.

4. Connect the iOS Device to the router with the SSID “GoodInternet.”

5. Launch the on-device monitoring application on the iOS device.

6. Back out of the on-device monitoring application, leaving it to run in the back-

ground, and launch a web browser on the iOS device. In the browser navigate

to the domain “www.good.site”.

7. Refresh the page 2 to 3 more times, waiting a few seconds before each refresh.

8. Close the browser and in the Device settings on the iOS device, turn off the

device’s WiFi capability.
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9. Repeat steps 6 - 8 two more times.

10. Now connect the iOS device to the router with the SSID “Good1nternet.”

11. Launch a web browser on the device and navigate to “www.good.site”.

12. Close the browser and in the device settings on the iOS device, turn off the

device’s WiFi capability.

13. Reconnect the iOS device to the router with the SSID “GoodInternet” and

repeat steps 6 - 8 two more times.

14. Close the browser and in the device settings, connect to a WiFi access point

with an internet connection to send all the logged data to the remote server.

Starting off, we run the “launcher.py” program to ensure that any data collected

from the on-device application can be successfully received on our remote server. We

then connect to the “GoodInternet” access point to try to simulate browsing on a

normal, non-malicious network. In order to populate our data set with mostly non-

malicious data, we disconnect from the non-malicious router and rejoin multiple times

before connecting to the malicious router. Once we connect to the malicious router,

we launch a web browser only once and navigate to what the user would think is the

same web-page. We then immediately disconnect from that network and rejoin the

non-malicious network. This will ensure that the malicious network does not appear

as frequently in our resulting data as the non-malicious network, simulating how non-

malicious networks are more common than malicious ones. At the end we connect

to a network with an internet connection so the on-device application can send the

collected information to our remote server.

To simulate a user unknowingly accessing a malicious web site, we created simple

HTML pages that are returned for requests to both the malicious and non-malicious
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Figure 4.3: Attack Simulation web pages

web servers. The pages are similar to each other in appearance but have slightly

different text so that we could differentiate between them during the experiment.

The benign and malicious web servers’ HTML pages can be seen in Figure 4.3.

4.3 Results

Simulating the malicious router attack resulted in a data set that had 97 poll

sequences spread over 10 different “Output” log files. We used our “logAnalyzer.py”

program to sift through the data set and to demonstrate what kind of conclusions

an analyst could potentially draw by using our analysis program on a data set of

continuously collected information. Running our analysis program on the data with-

out any input arguments resulted in the program outputting the data in a time-line

table structure in which we could see during which sequence specific data elements

were active. Assuming that an analyst looking at this data set would have no prior

knowledge of the attack that was simulated, we attempt to replicate the steps that

he or she could take to draw accurate conclusions about the malicious activity.

Without knowledge of which pieces of information in the resulting data set are

pertinent, an analyst could start the analysis by first looking at the time-line data
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Figure 4.4: Attack Simulation Time-line Table Layout

structure, which would give him or her an unfiltered summary of all the data elements

across every sequence in the monitoring session, showing which data elements were

active at specific times. The time-line table of the data set for the simulated attack

shows 111 data elements (rows) across 97 sequences (columns); however of those

sequences, only the first 84 of them are actually relevant to the investigation since

the last 13 occurred when the collected data was being sent to our remote server. Of

the data elements, 83 of them describe the processes that were running on the mobile

device during the monitoring session; 24 of them describe the foreign addresses of all

the connections that were active during the monitoring session, and the remaining 4

data elements show the BSSIDs of the different network entries. This layout can be

seen in Figure 4.4.

Because the time-line table structure is somewhat extensive it would be difficult for

an analyst to determine that the device had connected to a malicious network only by

looking at it. The next logical step would be for the analyst to try to figure out which

53



data elements are more interesting or suspicious than others, and this can be done by

figuring out which data elements in the table correspond to any anomalous activities.

To do this an analyst could modify the input arguments of the “logAnalyzer.py”

program so that it also displays the Euclidean distance nearest neighbors result table

for the k nearest neighbors, which in this case we will say is 5. Looking at the

Euclidean distance nearest neighbors results table, the analyst would see several cells

with asterisks appended to the distance values indicating that those sequences have

anomalous distance values for that nearest neighbor. However, the cells containing

anomalous distance values are fairly prevalent and spread throughout the table, so

the table does not reveal any particular sequence to be terribly suspicious compared

to the others. It is interesting to note, though, that with this data set, although the

cells with the asterisks appended are prevalent throughout the table, several of those

highlighted distances have a value of 0. The fact that the distances with a value of 0

are highlighted means that the average distance between sequences is larger than 0,

but not necessarily that these sequences are suspicious. In fact, it means the opposite,

since there would be at least k other sequences that are identical to the sequence in

question. In contrast, a cell that is highlighted for having a Euclidean distance nearest

neighbor value that is abnormally high would be suspicious since it would indicate

that the sequence in question is not similar to any other sequence. Figure 4.5 is a

screen shot of a segment of the Euclidean distance nearest neighbor output table,

showing how some of the highlighted values are 0 and others are closer to 2.

An analyst may not be able to make any conclusions regarding anomalous activity

by strictly looking at the Euclidean distance nearest neighbors result table since there

are a lot of highlighted cells that are not actually indicative of anomalies. The analyst

could, however, look at the Levenshtein distance result table to see if there are any

correlations among the data elements by including the appropriate input argument
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Figure 4.5: Unfiltered Euclidean Distance Table Segment

when running the “logAnalyzer.py” program. The Levenshtein distance argument

expects an integer value which the program uses as a maximum value for suspicious

distances in the resulting table - highlighting with asterisks any values less than

or equal to it. The resulting Levenshtein distance table for this data set shows a

large number of highlighted cells, the vast majority of which are processes being

compared with other processes. Furthermore, almost every process listed in the table

has a Levenshtein distance value of 0 when compared to almost any other process.

This means that almost all the processes are active and inactive at the exact same

times across every sequence. An analyst could verify this by looking back at the

time-line table structure and seeing that almost all the processes are in fact active

across the entire data set. Because the active processes do not drastically change, the

analyst could disregard them for the remainder of the analysis, specifying in the input

arguments of the “logAnalyzer.py” program that only the network traffic information

and network access point information should be considered.

Once the program is run again with the process information filtered out, the
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Figure 4.6: Filtered Euclidean Distance Table Segment

program displays a new time-line table, Euclidean distance nearest neighbors table,

and Levenstein distance result table without any process information. This changes

the Euclidean distance result table so that sequences that have a nearest neighbor

value of 0 are no longer highlighted as being anomalous. The result is that now only

a few sequences in the table have highlighted cells: sequence 15, sequence 41, and

sequences 51 - 56; however, of these sequences, only sequences 52 had a highlighted

cell for the nearest two neighbors, whereas all the other sequences that had highlighted

cells only had them highlighted for their 3rd, 4th, and 5th nearest neighbors. What

this means is that sequence 52 is more anomalous than any other sequence in the data

set, since even the distances of the sequences closest to it were outside of standard

deviation. These anomalies from the filtered data can be seen in Figure 4.6.

Knowing that sequence 52 is an anomalous sequence, an analyst would then be able

to look back at the time-line table structure to investigate which data elements were

active during sequence 52 and what that activity implies. As previously explained,

the time-line table highlights any data elements (rows) that has an anomalous value
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outside of standard deviation within any sequence that was determined to be anoma-

lous in the Euclidean distance nearest neighbor result table. This means that an

analyst could figure out which data elements are most suspicious within a sequence

that was identified to be suspicious and then trace those elements through the time-

line table to try to find any evidence of suspicious activity. In looking at the time-line

table from our attack simulation with the processes filtered out, we see that four

data elements have been highlighted: the foreign address “www.good.site.http”, the

network with BSSID “68:1c:a2:0:8c:d0,” the newtork with no BSSID which instead

says “NoConnection”, and the network with BSSID “14:35:8b:8:4b:a0”. Starting off,

an analyst might look at the network with BSSID “68:1c:a2:0:8c:d0” since it is the

data element that is first active among the four highlighted data elements. This

network connection is active from sequence 0 through sequence 14. It then becomes

inactive from sequence 15 through sequence 27 and then active again from sequence

28 through sequence 40, inactive again from sequence 41 through 62, and then active

again from sequence 63 through sequence 83. Because our tool labels having no WiFi

network connection as a type of network connection, whenever the network connec-

tion with BSSID “68:1c:a2:0:8c:d0” is inactive, another network connection is active.

In particular, the network connection with BSSID “14:35:8b:8:4b:a0” is active from

sequence 52 through sequence 55. The activity of the different WiFi networks can be

seen in Figure 4.7.

These sequences also happen to be the sequences that were highlighted in the eu-

clidean distance nearest neighbor result table, which could lead an analyst to conclude

that this particular network connection is more suspicious than the others. Looking

for any other activity that corresponds to this network, an analyst may notice that

one of the other highlighted data elements, the foreign address “www.good.site.http,”

is only active in sequence 52 which is within our series of anomalous sequences. The
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Figure 4.7: Attack Simulation WiFi Network Activity

fact that communication with a specific foreign address is the only network communi-

cation esatblished while on the network with the BSSID of “14:35:8b:8:4b:a0” is not

necessarily incriminating for that WiFi network. What is incriminating, though, is

the fact that the foreign address “www.good.site.http” was not active on any other

networks or at any other place in the data set. This means that there is a strong pos-

sibility that that foreign address “www.good.site.http” is somehow connected to the

network with BSSID “14:35:8b:8:4b:a0.” This is evidenced further by the Levenshtein

distance result table which shows that the two data elements have a Levensthein dis-

tance of only 4. The data set does show that other foreign addresses are exclusive

to certain WiFi networks, such as the address “192.168.1.132.http” only appearing

on the network with BSSID “68:1c:a2:0:8c:d0,” but the difference is that that for-

eign address appears on that network multiple times, and the network itself is active

throughout the data set, making it non-anomalous.

Seeing that the WiFi network with BSSID “14:35:8b:8:4b:a0” and the foreign ad-

dress “www.good.site.http” are both anomalous and related, an analyst could then

look at the actual log files themselves to see if any more information about these
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Figure 4.8: Excerpt from Log Files

data elements can be obtained. Knowing that the anomalous behavior occurs around

sequence 52, an analyst can easily locate the pertinent information in the log files

and find that the SSID of the WiFi network with the BSSID “14:35:8b:8:4b:a0” is

“Good1nternet”, and, in earlier log files, that the SSID of the WiFi network with

the BSSID “68:1c:a2:0:8c:d0” is “GoodInternet”. The analyst would notice that the

SSID’s of the two networks only differ by one character and that because the SSID of

the anomalous WiFi network has the less conventional spelling of the same phrase,

there is a good chance that it is attempting to mimic the non-anomalous network.

Figure 4.8 shows an excerpt from the log files obtained through the attack simu-

lation, highlighting the different SSIDs between a non-anomalous sequence and an

anomalous one. Taking into consideration that there is a connection to a statistically

anomalous foreign address on a statistically anomalous WiFi network that has an

SSID suspiciously similar to a non-anomalous one, an analyst could conclude that

there is a high probability that the device had connected to a malicious network.

Because we had a data set of continually collected information from the device,

we showed how an analyst could use the “logAnalyzer.py” program to step through
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the data set and eventually conclude that the device had connected to a malicious

network. As we saw in our preliminary investigation, it is not possible to make that

conclusion with the same level of confidence using a commercial forensics tool that can

only get a static image of the device since, as previously mentioned, the information

we had was somewhat limited. In the case of our preliminary investigation, we could

see that one WiFi network adapter had an SSID that was similar to the other networks

while having a different network adapter vendor and country code. The reason that

this information is somewhat limited is because all of these details help describe the

same idea, which is that the device had connected to multiple network adapters and

one of them was suspiciously different from the others. In our simulated attack, an

analyst could find similar information describing the same idea, that being that the

SSID of one of the routers is suspiciously only slightly different than the SSID of the

other router, but he or she could also find other information not directly related to

that idea, which would expand the analyst’s overall perspective, providing additional

insight into determining what malicious events may have transpired. For instance,

using the on-device application and the “logAnalyzer.py” program, we showed how

an analyst could determine that in our attack simulation one of the routers was

anomalous and also related to a connection to a web address that was anomalous.

This is not to say, however, that the data collected from the commercial tool is not

useful. It is important to note that although the on-device application was also able

to collect information which led to investigating the idea that one of the network

access points has some suspicious differences in addition to other ideas, it did not

offer the same level of detail as the commercial forensics tool. The most accurate

analysis, therefore, would take advantage of the detailed information that can be

obtained from a commercial tool as well as the information about the device over

time that comes from our on-device application.
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Chapter 5

DISCUSSION

In our approach we show that continuously collecting information from a mobile

device can significantly help a forensic analyst in an investigation; furthermore, we

also show precisely how this data collection helps by simulating an attack on a mobile

device and by using our analysis program to reason to an accurate conclusion. Our

approach, though, is not without limitations, one of the most important of which is

that our approach is only a proof of concept and not necessarily practically beneficial

for a forensic analyst. The simulated attack that we created was designed to parallel

a real-world scenario in the sense that the majority of the events in the data-set

were non-malicious and a few anomalous events were malicious. An actual network-

based attack carried out on an iOS device would likely be more complex than our

simulated attack, and our approach may not be as effective at helping an analyst

discover evidences of the attack. Additionally, we do not know for certain that our

approach would helpful for developing countermeasures against the other attacks

mentioned in this paper. If an analyst could collect enough information from a device

to identify anomalous activities associated with a specific attack, such as with our own

simulated attack, then he or she could begin devising incident response mechanisms

as a countermeasure to that attack, but we cannot say for certain that our approach

can identify those anomalous activities.

Another limitation of our approach is that the on-device application can only

operate on the iOS platform. We originally chose to design our on-device application

for the iOS platform since the original devices we were examining in our preliminary

investigation were iOS devices. Unfortunately, many corporations use Android or
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Blackberry devices for business-related communications, and with those corporations

our on-device application would be inapplicable. Additionally, although we were

able to successfully obtain various pieces of information from an iOS device to use for

analysis, it is not guaranteed that the same information would be available on another

platform, which also means that what we demonstrated through the simulated attack

may not be as relevant. Additionally, because commercial forensics tools have different

capabilities depending on the platform, we cannot guarantee that using an on-device

application to collect information over time would provide the same benefit on other

platforms as it did on iOS, since a commercial forensics tool could allow for an effective

analysis of the device in and of itself.

The most notable limitation with our approach is with the amount of information

we are able to collect using the on-device application. Naturally there are more areas

of information that we would like to draw from using our on-device application, but we

are unable to do so due to the restrictive nature of the iOS platform. The iOS platform

implements a security feature known as application sandboxing, which according to

Apple’s documentation [21] is a kernel-level mechanism that restricts the data and

resources that any third-party applications have access to. Specifically, applications

that are sandboxed are unable to access data or resources that are particular to any

other application, including first party applications. According to Bucicoiu et al.

the sandboxing mechanism is primarily handled by a TrustedBSD mandatory access

control module at the kernel level, which “enforces sandboxing at the level of system

calls and directory paths” [22]. A good example of how this restriction limits our

approach is with attempts to access SMS data. As previously mentioned, according

to the paper by Han et al. some attacks on the iOS platform take advantage of the

SMS service and attempt to charge the user premium rate messages without being

detected [7]. If, however, we were able to keep track of the messages sent from the
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SMS application and also see when the malicious SMS messages were sent by looking

at the running processes, we could compare the time-stamps on the messages with

the times that the SMS process was active and identify any malicious anomalies using

our analysis program.

One possible solution to our problem of data restriction on iOS is to create ad-

ditional applications and features that can be used to produce substitute or supple-

mentary data for analysis. We can see how an additional application can help with

analysis when considering our simulated SSID spoofing attack. When looking at the

results, we can see that the device’s connection to a specific foreign address was sus-

picious because the connection occurred on a network that was only active during a

short period of time, which made it anomalous. Looking at the actual log files we can

also see that the SSID of the suspicious network varies only slightly from the non-

suspicious network, and from both of these pieces of evidence we can conclude that

the anomalous network was set up in an attempt to spoof a legitimate network; how-

ever, we can reach this same conclusion with a higher level of confidence if we consider

further evidence that corroborates it. One way to do this is to determine what URLs

the user had entered when connecting to the foreign addresses. If we could show that

the URL entered into the browser while connected to the first network was the same

as the URL while connected to the second network, we could conclude with more

confidence that the logs show evidence of an SSID spoof attack since the BSSID’s of

the network connections were different. Although we can see from the web browser

screen shots that the user entered “http://www.good.site” into the search bar, only

the foreign address of the second network connection shows evidence of that URL

according to the log files as seen in Figure 5.1.

Developing another application to collect the entered URLs is a good way to

provide the supplemental information that we would need to conclude with a higher
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Figure 5.1: Comparing Foreign Addresses of Different Network Connections

degree of confidence that the evidence shown in the analysis program is indicative of

an SSID spoof attack. Due to the iOS sandbox policy, our on-device application that

was used to continuously collect information in our attack simulation did not have

access to the history of the browser that we used, and as a result, it did not log the

URLs. Naturally, one would then question how an additional application would be

able to obtain the data that the data collection application could not. Simply put,

it cannot since it falls under the same restrictions as the first application; however,

because we are designing a proof-of-concept system intended to aid companies in

securing the data on their mobile devices, we have some freedom in dictating how

those devices should be secured, meaning we can suggest policies for device usage

that would accompany our design for security. If then we create our own web browser

application, we could both gain additional information from the browser and ensure

that the users would actually use it, since we could recommend its usage as part of a

security policy.

Although it would be difficult to develop a web browser with the same function-

ality as those commonly used on iOS such as Safari or Google Chrome, it is possible

to develop a rudimentary browser with basic security features. We developed such
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Figure 5.2: Browser Application Screen Shot

a browser application, and although we never used it when carrying out the simu-

lated attack, we can still describe its effectiveness when used alongside our on-device

collection application. Figure 5.2 shows a screen shot of our browser application.

If we know ahead of time that the user will use our browser application instead

of a commercial browser, then we can program functionality that would send any

information private to the application to our remote server, including the browser

history. Had this been the case with our simulated attack, we would have been able to

determine that the URL of the foreign address on the first network matched the URL

of the foreign address on the second network, even though the foreign addresses were

different. Considering this along with the facts that the two networks had different

BSSIDs, similar SSIDs, and that one network was related to anomalous browsing

activity, an analyst could have determined with an even higher level of confidence

that the simulated attack was an attempt to spoof the SSID of a non-malicious

network.
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In regards to future work, our approach can be expanded upon by improving our

on-device application to continuously collect more types of information, such as SMS

information or device settings information. Porting the application to other mobile

platforms could also prove useful as it would allow for the exploration of the effec-

tiveness of continual data collection on platforms besides iOS. Through our analysis

program, we demonstrated how Euclidean distance and Levenshtein distance calcula-

tions can be used to aid a forensic analysis, but there may be other calculations that

can be made that take advantage of the additional context gained from continuous

data collection. Adding more calculations to the analysis program would only improve

the level of confidence with which an analyst could make conclusions. Furthermore,

we used a single simulated attack to demonstrate the effectiveness of our approach.

It stands to reason, therefore, that simulations of other types of attacks or real-world

usage could help improve our tools by demonstrating their effectiveness even further

or highlighting areas in which they can be improved.

We can see that there is potential for expanding our approach through the ad-

dition or improvement of specific features in our iOS application; however we can

also expand our approach by considering implementation on other platforms, such

as Android. Naturally one of the biggest concerns we would have when considering

porting our application to another platform would be whether or not we could achieve

the same goals that we can achieve with our iOS implementation; however, because

Android has fewer restrictive security features than iOS, we would likely be able to

continuously collect a sufficient amount of information to effectively assist a forensic

analyst. This can be seen in the paper by paper by Justin Grover in which he details

how his Android monitoring application is able to collect a variety of different types

of data including, but not limited to, application installation times, browser history,

browser searches, calendar events, call logs, contacts, location settings, incoming and
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outgoing SMS messages, and information from third-party logging applications [12].

According to the paper, an Android monitoring application can in fact gather an even

greater variety of different types of information than an iOS monitoring application.

Like iOS, Android also has a sandbox security feature that inherently restricts an

application’s access to assets from another application unless explicitly given. The

difference, though, is that there are many more permissions available to an Android

application than there are to an iOS application. One example is that applications

on Android can request permissions to a specific web browser application upon in-

stallation which would allow the application to access browser history and browser

search information as demonstrated in [12]. Additionally Android allows developers

to specify permissions regarding their own applications which other applications can

request to gain access to assets from those applications [23]. This feature would then

allow applications to collaborate their data locally instead of needing to use an out-

side server, which was the case with our application on iOS. Overall it seems that in

terms of data collection, the Android platform is suited for performing all the tasks

that our on-device application performs on iOS and more.
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Chapter 6

CONCLUSION

We have developed an on-device application for the iOS platform to continuously

collect information about the state of the device, such as current network connections

and active processes, every few seconds. The information collected is sent to a remote

server where it is separated into log files to be used with the analysis program we

created. The analysis program can perform correlation and anomaly distance calcu-

lations on the collected data that can help an analyst in drawing conclusions about

whether or not any malicious activity had occurred on the device. We also simulated

a potential network attack on a test iOS device running our application and demon-

strated how an analyst could use the tools we developed, in addition to commercial

forensics tools, to efficiently reason to an accurate conclusion.

The primary contribution of this research thesis is that it shows how continuously

collecting information from a mobile device can lead to a more complete set of evi-

dence which can then be used to improve a forensic analysis. We initially demonstrate

the usefulness of a forensic analysis in regards to securing data on mobile devices by

highlighting some of the weaknesses in modern Mobile Device Management systems,

particularly their inability to detect intrusions or compromises. To support this claim

we reference various papers that describe attacks carried out against mobile systems

and give hypothetical procedures as to how an analyst could use forensics to aid in

the discovery of those attacks. We continue to explore the effectiveness of forensic

techniques in regards to mobile security by conducting a preliminary forensic investi-

gation from which we find that traditional commercial forensic tools, although useful,

do not necessarily give an analyst enough information to draw a conclusion with a
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high level of confidence. Supplementing this information with continuously collected

information from the device, however, makes the evidence more complete by adding

more context for it, since an analyst can now know how different parts of the evidence

relate to each other over time. Although other works have suggested that having more

context of the collected information can lead to more accurate conclusions, we show

precisely how this can be accomplished by using distance calculations to correlate dif-

ferent data elements and detect anomalous data, and we demonstrate its effectiveness

with a simulated data set.

Regarding the future work of our approach, we have shown how, like with similar

applications on other mobile platforms, there is still the potential to collect more

types of data to be used in a forensic analysis. Naturally, the restrictive nature of the

iOS platform could make this advancement challenging, but not impossible if we can

use additional applications to collect data. Additionally, it is also feasible that we

would be able to port our approach over to the Android platform. Some monitoring

applications similar to ours already exist on Android, but unlike existing applications,

our approach uses a sophisticated analysis tool to produce statistics useful for drawing

conclusions with a high level of confidence.
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