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ABSTRACT

This thesis studies recommendation systems and considers joint sampling and learn-

ing. Sampling in recommendation systems is to obtain users’ ratings on specific items

chosen by the recommendation platform, and learning is to infer the unknown ratings

of users to items given the existing data. In this thesis, the problem is formulated as

an adaptive matrix completion problem in which sampling is to reveal the unknown

entries of a U ×M matrix where U is the number of users, M is the number of items,

and each entry of the U ×M matrix represents the rating of a user to an item. In the

literature, this matrix completion problem has been studied under a static setting,

i.e., recovering the matrix based on a set of partial ratings. This thesis considers both

sampling and learning, and proposes an adaptive algorithm. The algorithm adapts

its sampling and learning based on the existing data. The idea is to sample items

that reveal more information based on the previous sampling results and then learn

based on clustering. Performance of the proposed algorithm has been evaluated using

simulations.
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Chapter 1

INTRODUCTION

Modern recommendation systems, such as the recommendation systems used by Ama-

zon and Netflix, involve a large number of users and a large number of items. The

input of a recommendation system is the partial ratings of the items given by the

users. For example, a user may rate a movie from 1 to 5. The output of a recom-

mender system is a few items that each user would like. The common approach is to

exploit the similarity among users and items to predict users’ preference. Mathemat-

ically, the problem can be formulated as a matrix completion problem. Assume there

are U users and M items, then the rating matrix is an U ×M matrix whose entries

are the ratings. Then to learn all the ratings, the problem is a matrix completion

problem which is to recover all unknown entries from the known entries. The matrix

completion problem has been extensively studied in the literature recently.

It is obvious that the problem is impossible to solve if the underlying matrix

has no structure (i.e., can be an arbitrary matrix), so the existing studies focus on

the cases where the matrix has structural properties that can be exploited. Two

popular structural properties that have been utilized in the literature: (1) The first

popular one is the low-rank assumption (Candès and Recht, 2009; Candès and Tao,

2010; Recht, 2011; Gross, 2011; Keshavan et al., 2010) which assumes the matrix is

a low rank matrix, i.e., the rank (denoted by K) is much smaller than U and M.

This low-rank assumption implies each row (the ratings from a specific user) can

be represented by a linear combination of K basis vectors. Therefore, if the known

ratings are sufficient for us to recover the K basis vectors, then we can utilize them to

recover the full matrix. Algorithms used to recover low-rank matrices include 1-1 norm
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minimization (Candès and Recht, 2009; Candès and Tao, 2010; Recht, 2011; Gross,

2011; Keshavan et al., 2010) and alternating minimization (Jain et al., 2013). (2)

The second popular assumption is the clustering assumption (Tomozei and Massoulié,

2014; Barman and Dabeer, 2012; Xu et al., 2013; Zhu et al., 2014) which assumes

that users, or items or both form clusters. For example, when users are clustered, the

users in the same cluster give the same rating to the same item. Assume users form

K clusters and items form K clusters, then recovering the rating matrix is to recover

a K ×K matrix. Each entry of the K ×K matrix represents the rating to a cluster

of items from a cluster of users.

With these assumptions on the rating matrices, the fundamental limits and com-

putationally efficient matrix completion algorithms have been studied in the litera-

ture. However, most models used so far took a static view, where the goal is to predict

the unknown ratings as accurate as possible from a fixed set of revealed partial rat-

ings. In other words, it is a single-shot optimization problem without considering

sampling.

In practice, new ratings are added to the system every day, and new users and

new items are added into the system constantly. After we recommend items to a user,

if the user purchases the item, she/he may rate the item, which provides more rat-

ings for future recommendation. The system can even offer free products (samples)

to users to seek their feedback to obtain more ratings and enhance the performance

of the system. Therefore, when we decide on which ratings to obtain by various

methods. The focus of this thesis is on adaptive and dynamic matrix completion al-

gorithms to develop efficient sampling and learning algorithms to recover the ratings

matrix with a minimum number of samples. The remaining of the thesis is organized

as follows: Chapter 2 presents the basic models and problem formulation, Chapter

3 presents analytical analysis and proposes the adaptive sampling and learning algo-
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rithm, Chapter 4 presents the performance evaluation using simulations and Chapter

5 concludes this thesis.
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Chapter 2

PROBLEM FORMULATION

In this thesis, we consider the model studied in Barman and Dabeer (2012); Xu et al.

(2014); Zhu et al. (2014). In other words, the thesis focuses on the matrices with

clustering structures instead of studying general low rank matrices. The reason the

clustering assumption is chosen for this thesis is because it has been discovered in the

literature Barman and Dabeer (2012); Xu et al. (2014); Zhu et al. (2014) that with the

clustering structure, algorithms with much lower computational complexity can be

developed to achieve better and more robust results. It is noted that both clustering

and low-rank are modeling assumptions. Most real-world datasets are incomplete so

both assumptions are difficult to be validated in practice. The only meaningful val-

idation of the assumptions seems to compare the recommendation accuracy resulted

from the algorithms derived under different assumptions to see which algorithm (as-

sumption) yields the best recommendation accuracy in real world datasets. A recent

study Zhu et al. (2014) has given favorable answer to the clustering assumption. As

it becomes clear in the remaining parts of the thesis, the clustering structure can

be exploited further in the dynamic sampling/recommendation setting to significant

improve the system performance.

We next review the model used in Zhu et al. (2014). The notions used in Zhu

et al. (2014) are adopted in this thesis as our algorithm extends the algorithm in Zhu

et al. (2014) in a dynamic setting. The ratings to items from users are represented

by a U ×M matrix, where U is the number of users and M is the number of items.

The rating matrix is denoted by B. In Zhu et al. (2014), the authors considered

both clustering and co-clustering cases, where in the clustering case, the users (or
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the items) form K clusters. Each user (or item) belongs to one and only one cluster,

so each user-cluster has U/K users, and each item-cluster has M/K items. In the

model, the users in the same cluster give the same rating to the same item. The

authors in Zhu et al. (2014) further considered the case where both users and items

are cluster, called co-clustering. As a simple example, assume users are clustered and

items are not. An example of a rating matrix B is then given below

B =



item 1 item 2 item 3 item 4 item 5 item 6

user 1 5 1 2 4 1 1

user 2 5 1 2 4 1 1

user 3 5 1 2 4 1 1

user 4 1 3 5 5 2 5

user 5 1 3 5 5 2 5

user 6 1 3 5 5 2 5



, (2.1)

where the users are separated into two clusters, where cluster 1 includes users 1, 2, 3

and cluster 2 includes users 4, 5, 6.

The true rating matrix in practice is not available. The goal of the matrix com-

pletion problem is to recover this matrix from a sparse and noisy observed rating

matrix, denoted by R. Given the true rating matrix, the observed rating matrix is

generated by removing majority of the ratings and then flip remaining entries with

a certain probability. The following picture given in Zhu et al. (2014) illustrates the

overall process.

B→ a noisy channel R̃→ an erasure channel R.

In other words, the observed rating matrix R is generated by passing the true rating

matrix B through a noisy channel (flipping the ratings) and then an erasure channel
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(removing the ratings). An example of R generated from the B in (2.1) is given below

B =



item 1 item 2 item 3 item 4 item 5 item 6

user 1 5 ? 1 ? ? ?

user 2 5 1 ? ? ? 1

user 3 ? ? 3 ? 2 1

user 4 ? 3 ? 5 ? 5

user 5 ? 1 5 ? ? ?

user 6 ? ? 5 ? ? 5



. (2.2)

In this model, the erasure models the fact that only a small fraction of ratings are

known to the recommendation platform and the random flipping models the fact

that users may give inaccurate ratings in practice because of various reasons. A

recommendation system requires less number of ratings is called more effective and

can tolerate more errors is called more robust. Both effectiveness and robustness are

important criterions for the design of a practical recommendation system.

A significant contribution of Zhu et al. (2014) is to take into account information

rich and information sparse users in the recovering the underlying rating matrix,

where an information-rich user is a user who rates βM movies on average, where

β is a positive constant. Information-poor users, which are the majority, only rate

logM movies each. It shows that with the existence of information-rich users in each

cluster, the authors proved that the true rating matrix can be fully recovered when

we have ω(MK logM) noisy entries. The authors also proved that MK entries are

necessary. This surprising result shows that the existence of heterogeneous users can

significantly help us recover the rating matrix. Zhu et al. (2014) also showed that

the existence of information-rich users in real-world datasets. The paper found that

in MovieLens dataset, the number of users who rated more than 1,000 movies is 38

while the total number of users is 6,040, and 73% of users gave less than 200 ratings.
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Now come back to the adaptive sampling question, the implication of results in

Zhu et al. (2014) is that we should recommend items to users in such a way that we

can quickly identify one information-rich user from each user cluster. Then for the

remaining users, we only needs to assign them to the “right” cluster. The ratings

can then be recovered by properly aggregating the observed ratings within a cluster

(e.g.., using a majority voting for each item among observed ratings). There are a

sequence of questions needed to be answered:

• Question 1: Given two users, how many co-rated items are needed to tell

whether they are in the same cluster or not with a given accuracy? In other

words, let pe,W denote the error probability of hypothesis testing on whether

two users are in the same cluster, the problem is

min
W

pe,W ≤ p̄

for given a requirement on p̄.

• Question 2: Now assume we identified an information-rich user for each clus-

ter. Given a new user, how to sample the users’ item to identify its cluster with

a minimum number of samples? Let C(x,W ) denote the cluster the algorithm

assigns user x to after sampling W ratings and C(x) denote the actual cluster

the user is in. The problem is to

min
W

Pr (C(x,W ) 6= C(x)) ≤ p̄,

where p̄ is the requirement on the error probability.

• Questions 3: Finally, after we identify the initial cluster of all users, how to

recover the rating matrix based on the known samples? For this question, we

will leverage the algorithm in Zhu et al. (2014).
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In the following chapter, the answers to each of the three questions above will be

presented.
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Chapter 3

METHODOLOGY

This thesis takes a significant step of answering the questions mentioned in the previ-

ous chapter. We will first consider the hypothesis testing problem for two users, then

the cluster identification problems, and finally the profit maximization problem.

3.1 Two-User Hypothesis Testing

The first question is when given users u and v, how many corated items are needed

to tell whether they are in the same cluster or not. Let us first consider a simple

scenario where there is no flipping, i.e., assume the reported ratings are all accurate.

In order to conduct some preliminary theoretical analysis to derive the intuition of this

problem, we assume the ratings are binary {−1,+1}, and the following assumption

is also made.

Assumption 1 For two users in different clusters, at least β fraction of their ratings

are different.

Based on this assumption, we consider the following hypothesis testing problem.

Hypothesis Testing: LetMc denote the set of items rated by both user u and user

v. We want to know whether the two users are in the same cluster or not. In other

words, the binary hypothesis testing is

• H0 : users u and v are in the same cluster.

• H1 : users u and v are not in the same cluster.
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We consider the following hypothesis testing rule.

Hypothesis Testing Rule for Zero Flipping Probability: The two users are

declared to be in the same cluster if both users agree on the ratings inMc; otherwise

we declare they are in a different cluster.

Let A0 denote the event that hypothesis H0 is accepted and A1 denote the event

that hypothesis H1 is accepted. The next lemma presents the type-I and type-II

errors.

Lemma 1 Assume the set of co-rated items are uniformly, randomly selected from all

items. The hypothesis testing rule above is the maximum likelihood test. Furthermore,

Pr (A1|H0) = 0 (3.1)

Pr (A0|H1) ≤

 (1− β)M

|Mc|


 M

|Mc|


. (3.2)

Proof: Equality (3.1) is obvious since given two users are in the same cluster, all of

their ratings should agree. When the flipping probability is zero, A1 will not occur.

To obtain inequality (3.2), it is noted that given two users are in different clusters,

they give different ratings to at least βM fraction of items. Therefore, the probability

that none of the |Mc| randomly selected items are from the αM items is (1− β)M

|Mc|


 M

|Mc|


.
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We next prove that the hypothesis testing rule is the maximum likelihood testing.

First given A1

Pr (A1|H1) = 1 > Pr (A1|H0) = 0.

Second given A0,

Pr (A0|H0) = 1 > Pr (A0|H1) .

Therefore, the hypothesis testing rule is the maximum likelihood rule. �

Note that Pr (A1|H0) is the so called type-I error (also called false positive), and

Pr (A0|H1) is the so called type-II error (also called false negative).

The next is to consider the scenario the flipping probability is not zero. Let pf

denote the flipping probability and assume pf < 0.5. When the flipping problem

is nonzero, even two users in the same cluster can have different observed ratings,

where an observed rating is a probabilistically-flipped version of the user’s true rating.

Therefore, we may want to declare two users are in the same cluster when most of

their ratings (even not all of them) agree.

Hypothesis Testing Rule for Non-zero Flipping Probability: The two

users are declared to be in the same cluster if both users agree on at least ρ fraction

of ratings in Mc; otherwise we declare they are in a different cluster.

We now analyze the performance of this hypothesis testing rule. First, we have

Pr (A1|H1) =

|Mc|∑
m=0

 (1− γ)M

|Mc| −m


 γM

m


 M

|Mc|


×

|Mc|∑
κ=ρ|Mc|

min{κ,m}∑
z=κ−|Mc|+m

 m

z


 |Mc| −m

κ− z

 pm+κ−2z
f (1− pf )|Mc|−m−κ+2z,
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where m is the number of items for which the true ratings of user u and v are different,

κ is the number of different observed ratings, and z is the number of observed different

ratings for which the true ratings are also different. Following a similar analysis, we

have

Pr (A1|H0) =

|Mc|∑
κ=ρ|Mc|

 |Mc|

κ

(1− p2f − (1− pf )2
)κ

(p2f + (1− pf )2)|Mc|−κ.

Note that Pr (A1|H1) is complex and difficult to analyze, so we use the following

calculation to approximate it. Given H1, when an item is uniformly at random

selected, the two observed ratings from users u and v are different with probability

q = γ
(
p2f + (1− pf )2

)
+ (1− γ)

(
1− p2f − (1− pf )2

)
.

So we use the following approximation.

Pr (A1|H1) ≈
|Mc|∑

κ=ρ|Mc|

 |Mc|

κ

 qκ(1− q)|Mc|−κ.

From the results above, we can see that under both H0 and H1, the results of

hypothesis testing are results of binomial random variables. Since a binomial random

variable is the sum of i.i.d. Bernolli random variables, it is not difficult to see that

according to law of large numbers, the value of the binomial random variable will

concentrate around its mean. Let X be B(|Mc|, q′), where q′ = 1 − q2f − (1 − qf )2,

then

E[X] = |Mc|q′

V ar(X) = |Mc|q′(1− q′).

Let Y be B(|Mc|, q), then

E[Y ] = |Mc|q

V ar(Y ) = |Mc|q(1− q).

12



Theorem 2 Assume two users are uniformly at random selected from the M users.

Given an upper bound p̄ on the error probability, the minimum number of co-rated

items needed is

W = arg min
W

{
W : min

S

1

K
(1− F (W )

X (S)) +
K − 1

K
F

(W )
Y (S) ≤ p̄

}
,

where F
(W )
X (·) is the cumulative distribution function of X with |Mc| = W, and

F
(W )
Y (·) is the cumulative distribution function of Y.

Proof: Note that 1/K is the probability that the two users are in the same cluster

and 1 − 1/K is the probability they are not in the same cluster. 1 − F
(W )
X (S) is

the probability that the number of different observed ratings is more than S when

sampling W items and when the two users are in the same cluster. F
(W )
Y (S) is the

probability that the number of different observed ratings is at most S when sampling

W items and the two users are in the same cluster. These two are the type-I and

type-II errors, respectively. Therefore,

min
S

1

K
(1− F (W )

X (S)) +
K − 1

K
F

(W )
Y (S)

is the minimum error probability by choosing the optimal threshold in hypothesis

testing. �

The following figures show the value of W with choices of parameters. Figure 3.1

shows the case in which pf = 0.2, which is the flipping probability, γ = 0.5, which

is the fraction of ratings that are different, K = 5, which is the number of clusters.

The simulation shows that to 35 samples are needed to achieve error probability 0.1

and 146 samples are needed to reduce the error probability to 0.01.

Figure 3.2 shows the case in which the flipping probability varied from 0.1 to 0.3.

Similar to the first case, γ = 0.5, K = 5, and the upper bound on the error prob-

ability was chosen to be 0.05. From the figure, it can be seen that the number of
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Figure 3.1: The Number of Required Samples versus the Error Bound

required samples is very sensitive the flipping probability. When the flipping proba-

bility increases from 0.1 to 0.3, the number of required samples increases from 19 to

348.
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Figure 3.2: The Number of Required Samples versus the Flipping Probability

Figure 3.3 shows the case in which the percentage of different ratings among all

ratings varied from 0.2 to 0.5. Similar to the first case, pf = 0.2, K = 5, and the

upper bound on the error probability was chosen to be 0.05. When γ increases from

0.2 to 0.5, the number of required samples decreases from 398 to 67.
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Figure 3.3: The Number of Required Samples versus the Percentage of Difference

3.2 Cluster Assignment

This section focuses on assigning a user to the “correct” cluster after identifying

one information-rich user for each cluster. This is a somewhat difficult question

to answer as it depends on the observed ratings of the information rich users. To

obtain some analytical understand, the problem is formulated as follows. Assume

K information rich users are given, one for each cluster. Without loss of generality,

assume the users are indexed 1, 2, · · · , K. Furthermore, let Rk denote the set of

observed ratings of user k. For convenience, Rum = 0 is used to denote that the

rating to item m from user u is missing.

Again, we start from the case the flipping probability is zero, i.e., all observed

ratings are true ratings. In this case, if there exists an item such that Rum 6= Rvm 6= 0,

then users u and v are not in the same cluster. In other words, the possible clusters for

user u can be reduced by eliminating information-rich users who have different ratings

on the same item with user u. To apply this intuition, the following fast sampling

algorithm is used to identify the cluster of a user.
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Fast sampling algorithm:

Let Ut denote the remaining information users at iteration t, and U0 = {1, · · · , K}.

At tth iteration,

(i) Define

Ũ1,m =
∑
k∈Ut

1Rkm=1

Ũ0,m =
∑
k∈Ut

1Rkm=0

Ũ−1,m =
∑
k∈Ut

1Rkm=−1

Select item m∗ such that

m∗ ∈ arg max
m

Ũ1,m

2Ũ1,m + Ũ0,m

log(2Ũ1,m + Ũ0,m) +
Ũ−1,m

2Ũ−1,m + Ũ0,m

log(2Ũ−1,m + Ũ0,m)(3.3)

+
Ũ0,m|Ut|

(2Ũ1,m + Ũ0,m)(2Ũ−1,m + Ũ0,m)
log

(2Ũ1,m + Ũ0,m)(2Ũ−1,m + Ũ0,m)

|Ut|
, (3.4)

i.e., select the item that provides the most information.

(ii) Set

Ut+1 = Ut \ {k : k ∈ Ut and Rkm∗ = −sgn(Rum∗)} ,

i.e., remove information-rich users that are not possibly in the same cluster with

user u.

Equation (3.4) is motivated by the concept of entropy in information theory Cover

and Thomas (1991). Define K̃ =
∑

k∈Ut,1Rkm=0
Bkm, so K̃ is the number of “1” ratings

among those unknown ratings for time m. It is easy to see that

E[K̃] = 0.5Ũ0

16



Note that the rating of the sampled item, say item m, is equally likely to be 1 or -1.

Assume it is 1, then the probability that it is in the same cluster with information-rich

user k with Rkm = 1 is

p1 =
1

Ũ1,m + 0.5Ũ0,m

.

The probability that it is in the same cluster with information-rich user k with Rkm =

0 is

p10 =
1

2Ũ1,m + Ũ0,m

.

Similarly, assume it is −1, then the probability that it is in the same cluster with

information-rich user k with Rkm = 1 is

p−1 =
1

Ũ−1,m + 0.5Ũ0,m

.

The probability that it is in the same cluster with information-rich user k with Rkm =

0 is

p−10 =
1

2Ũ−1,m + Ũ0,m

.

Therefore, the expected entropy after knowing item m is

−Ũ1,m0.5p1 log(0.5p1)− Ũ−1,m0.5p−1 log(0.5p−1)

−Ũ0,m ((0.5p10 + 0.5p−10) log(0.5p10 + 0.5p−10))

=
Ũ1,m

2Ũ1,m + Ũ0,m

log(2Ũ1,m + Ũ0,m) +
Ũ−1,m

2Ũ−1,m + Ũ0,m

log(2Ũ−1,m + Ũ0,m)

+
Ũ0,m|Ut|

(2Ũ1,m + Ũ0,m)(2Ũ−1,m + Ũ0,m)
log

(2Ũ1,m + Ũ0,m)(2Ũ−1,m + Ũ0,m)

|Ut|
.

Figure 3.4 shows the average number of required samples under the proposed

algorithm and the random sampling algorithm when the number of clusters varied.

From the figure, we can see that the proposed algorithm outperform the random

sampling. Each cluster has 20 users in this experiment.
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Figure 3.4: The Number of Required Samples under the Proposed Algorithm and
the Random Sampling

For the case with flipping, we apply a similar algorithm for selecting the item for

sampling. However, since there are errors in the reporting ratings, to decide whether

a user is in a specific cluster (step (ii)), we can either apply the hypothesis testing

results in the previous section or use the similarity measure in the next section. Step

(i) of the algorithm remains to be the same.

3.3 Adaptive Sampling and Learning

At the clustering step, a variation of the user clustering for recommendation

(UCR) proposed in Zhu et al. (2014) is used in this thesis. In Zhu et al. (2014),

the authors defined the following concepts:

• Co-rating of users u and v : the number of items rated by both users.

ϕu,v =
M∑
m=1

1rvm 6=?,rum 6=?.

• Similarity of users u and v : the the number of items two users rate the same

18



minus the number of items they rate differently.

σu,v =
M∑
m=1

1rum=rvm 6=? −
M∑
m=1

1rum 6=rvm,rvm 6=?,rum 6=?

= 2
M∑
m=1

1rum=rvm 6=? − ϕu,v.

• Normalized similarity:

σ̃u,v =
σu,v
ϕu,v

=
2
∑M

m=1 1rum=rvm 6=?

ϕu,v
− 1.

A summary of notation is presented in Table 3.1.

U the number of users

M the number of items

K the number of clusters

B the true rating matrix

R the observed rating matrix

σu,v the similarity between user u and user v

ϕu,v the number of items co-rated by users u and v

σ̃u,v the normalized similarity between user u and user v

Table 3.1: Table of Notation

The following MUCR is a modified version of UCR proposed in Zhu et al. (2014),

which will be used in the thesis for clustering.

Modified User Clustering for Recommendation (MUCR)

(i) For user u, the algorithm selects a user v who has the highest similarity to user

u, i.e.,

v ∈ arg max
w 6=u

σu,w.
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(ii) The algorithm then selects U
K
− 2 users in a descending order according to their

normalized similarity to user v. Define Fu to be the set of the selected U
K
− 2

users, user v and user u.

(iii) For each item m, the score of the item, denoted by swm for w ∈ Fu, is determined

by the sum of users’ ratings in Fu, i.e.,

swm =
∑
v∈Fu

rvm.

Furthermore, let Rwm = sign(swm).

We next present the adaptive sampling and learning algorithm. We first introduce

a popular measure in matrix completion with clustering structure is to user the cosine-

based similarity. The similarity for user m and user n under the cosine-based measure

is defined below

similarity(R(m), R(n)) =

∑
i:R(m,i)6=?,R(n,i)6=?

R(m, i)R(n, i)√ ∑
i:R(m,i) 6=?

R2(m, i)

√ ∑
i:R(n,i)6=?

R2(n, i)

,

where R(m, i) is the rating user m gives to item i.

Adaptive Sampling and Learning

(1) Identify one information-rich users for each cluster. First define RU = ∅. For

k = 1, · · · , K, repeat the following:

1.i Random select a user u and sample γM ratings from the user.

1.ii For there exists a user w ∈ RU such that similarity(R(m), R(n)) > α,

repeat step (1.i); otherwise, RU = RU ∪ {u}.
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(2) For each user u, continue to reveal its rating until

max
k

Pr (R(u)|u is from cluster k) > β.

(3) Apply MUCR to recover the matrix.

21



Chapter 4

PERFORMANCE EVALUATION

The performance of the proposed algorithm has been evaluated using synthetic data.

Specifically, we randomly generated a true rating matrix B. The adaptive sampling

and learning algorithm is then applied. When a rating is sampled, it will be flipped

according to a given flipping probability. In the synthetic data, it is assumed that

bum takes binary values {−1,+1}, where bum = +1 means user u likes item m and

bum = −1 means user u does not like item m. It is further assumed that rum takes

values from {−1, 0,+1} where 0 means the rating of user u to item m is unknown.

We considered the case with 100 users and 100 items, i.e., B is a 100×100 matrix.

We assume each cluster has 20 users. The adaptive sampling and learning algorithm is

compared with a random sampling algorithm with the same number sampled ratings.

The error rate (the fraction of ratings that are different from the true ratings) is used

as the performance metric.

4.1 Case 1: Noiseless Reporting

In the first set of simulations, it is assumed that the flipping probability is zero.

When identifying information rich users, we reveal γ = 0.8 fraction of ratings. The

results are shown in Figure 4.1, in which the red ‘o‘-line is under the joint sampling and

learning (named Joint) and the blue ‘+’ line is under the random sampling algorithm

(named Random). It can be seen that Joint performs much better than Random.

Figure 4.2 shows the sampling rate versus the cluster size, where the sampling rate is

the fraction of ratings that were revealed.
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Figure 4.1: The Performance Comparison between Joint and Random.

4.2 Case 2: Noisy Reporting

In this case, the flipping probability is chosen to be 0.1. The results are shown

in Figure 4.3. Again we can see that Join performs better than Random. It can

be noted that the error rates are smaller than those without flipping. One possible

reason is because the sampling rates are much here in this scenario (see Figure 4.4).

So the number of observed ratings are much larger while the observations are noisy.

As a summary, the joint sampling and learning algorithm performs better than the

random sampling, which significantly reduces the error rates when the same number

of ratings were given.
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Figure 4.2: The Sampling Rate versus the Cluster Size.
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Figure 4.3: The Performance Comparison between Joint and Random.
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Figure 4.4: The Sampling Rate versus the Cluster Size.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This thesis investigated adaptive sampling and learning in recommendation systems.

The proposed algorithm adaptively selects samples to maximize the recover accuracy.

One limitation of the proposed algorithm is that it fixes the number of users and

the number items. It indeed would be interesting to investigate the case where the

number of items changes (i.e., new items come to the market) and the number of

users also change (i.e., new customers join the system).
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