Effect of Various Holomorphic Embeddings on Convergence Rate and Condition Number as Applied to the Power Flow Problem

Yuting Li
Committee members:
Dr. Daniel J. Tylavsky, Chair
Dr. John Undrill
Dr. Vijay Vittal

Outline

中, Davinut

T

1. Introduction

- Traditional Power Flow (PF) methods
- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations (PBE's)

4. Simulation Results
5. Conclusions and Future Work

Outline

1. Introduction

- Traditional Power Flow (PF) methods
- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations (PBE's)

4. Simulation Results
5. Conclusions and Future Work

Introduction

- The power-flow (PF) study is used for power system operations, planning and expansion.
- The PF study algorithms are used to find the bus voltages and branch flows in an electric power system.
- The traditional iterative methods (such as Gauss-Seidel method, Newton-Raphson method, and Fast Decoupled Load Flow method) are widely used to solve the power flow problems, but sometimes are unreliable.

Introduction

Iterative methods (GS, NR, FDLF methods)

Non-iterative methods

- Initial operating point is obtained through fixedpoint numerical iteration process (Series Load Flow Method) [4]
- Long execution time because of computational Complexity [5]

Holomorphic Embedding Method

- It eliminates the uncertainty of solution existence
- It's guaranteed to converge to the highvoltage solution when it exists
- It unequivocally signals when no solution exists (precision limitations notwithstanding) [6]-[8]

Outline

1. Introduction

- Traditional Power Flow (PF) methods
- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations (PBE’s)

4. Simulation Results
5. Conclusions and Future Work

HE Algorithm: Holomorphic Embedding

The Maclaurin series is generated when the Taylor series is

 expanded about zero:$$
f(\alpha)=\sum_{i=0}^{\infty} c[i] \alpha^{i}=\frac{f^{(i)}(\alpha)}{i!} \alpha^{i}, \text { when }|\alpha|<r
$$

- Assume the voltage function is holomorphic, it can be expanded in a power series:

$$
V(\alpha)=\sum_{i=0}^{\infty} V[i] \alpha^{i}=V[0]+V[1] \alpha+\cdots V[n] \alpha^{n}, \text { when }|\alpha|<r
$$

- The complex conjugate of the voltage function $V(\alpha)$ can be expressed by two forms:

$$
\begin{aligned}
& \text { Form1: } V^{*}\left(\alpha^{*}\right)=V^{*}[0]+V^{*}[1] \alpha+\cdots V^{*}[n] \alpha^{n} \\
& \text { Form2: } V^{*}(\alpha)=V^{*}[0]+V^{*}[1] \alpha^{*}+\cdots V^{*}[n]\left(\alpha^{*}\right)^{n}
\end{aligned}
$$

- Form1 is used in the HE algorithm, as it is holomorphic.

HE Algorithm: Analytic Continuation

- Analytic continuation is used to extend the analytic domain of a function (in our case of interest) outside of the convergence region of the original analytic expression in the form of another analytic (holomorphic) function.
- Two examples are provided to illustrate this concept.

HE Algorithm: Analytic Continuation (con'd)

Ex1: The summation of a geometrical series is given as:

$$
f_{1}(\alpha)=1+\alpha+\alpha^{2}+\cdots \alpha^{n}+\cdots=\sum_{i=0}^{\infty} \alpha^{i}=\lim _{n \rightarrow \infty} \frac{1-\alpha^{n+1}}{1-\alpha}
$$

When $|\alpha|<1, \alpha^{n+1} \approx 0$. The equivalent function to $f_{1}(\alpha)$ is:

$$
\tilde{f}_{1}(\alpha)=\frac{1}{1-\alpha}
$$

The convergence radius for $f_{1}(\alpha)$ is the blue area. Whereas the converge radius for $\tilde{f}_{1}(\alpha)$ is the whole complex plane except the red point where $\alpha=1$.

HE Algorithm: Analytic Continuation (con'd)

Mas:

Ex2: The integral of an exponential function is given as:

$$
f_{2}(\alpha)=\int_{o}^{\infty} e^{-(1-\alpha) x} d x=\lim _{A \rightarrow \infty} \int_{o}^{A} e^{-(1-\alpha) x} d x=\left.\lim _{A \rightarrow \infty} \frac{e^{-(1-\alpha) x}}{-(1-\alpha)}\right|_{0} ^{A}
$$

$\lim _{x \rightarrow \infty} e^{-(1-\alpha) x} \approx 0$, when $\alpha<1$
The equivalent function to $f_{2}(\alpha)$ is:

$$
\tilde{f}_{2}(\alpha)=\frac{1}{1-\alpha}
$$

The convergence radius for $f_{2}(\alpha)$ is the blue area. Whereas the converge radius for $\tilde{f}_{2}(\alpha)$ is the whole complex plane except the red point where $\alpha=1$.

HE Algorithm: Padé Approximation

- The maximal analytic continuation of a power series can be achieved by calculating its diagonal and near-diagonal Padé approximant [9].
- Two proposed approaches to calculate the Padé approximant are: direct matrix method and Viskovatov method (also known as the continued fraction method).

HE Algorithm: Padé Approximation (con'd)

- Direct Matrix Method [10]: the Padé approximant can be written as a rational function, which is a fraction of two polynomials:

$$
V(\alpha)=[L / M]_{\alpha}=\frac{a[0]+a[1] \alpha+\cdots a[L] \alpha^{L}}{b[0]+b[1] \alpha+\cdots b[M] \alpha^{M}}+o\left(\alpha^{L+M+1}\right)=\sum_{n=0}^{\infty} V[n] \alpha^{n}
$$

- By cross-multiplying the equation above and equating the coefficients of the same order of $a^{0}, a^{1}, \ldots, a^{L}$, we get:
$b[0] V[0]=a[0]$,

$$
b[0] V[1]+b[1] V[0]=a[1],
$$

$$
b[0] V[2]+b[1] V[1]+b[2] V[0]=a[2]
$$

$$
\sum_{i=0}^{L} b[i] V[L-i]=a[L]
$$

HE Algorithm: Padé Approximation (con'd)

- By equating the coefficients of the $\alpha^{L+1}, a^{L+2}, \ldots, a^{\alpha+M}$ to zero, we get:

$$
\begin{aligned}
& b[M] V[L-M+1]+b[M-1] V[L-M+2]+\cdots b[0] V[L+1]=0 \\
& b[M] V[L-M+2]+b[M-1] V[L-M+3]+\cdots b[0] V[L+1]=0
\end{aligned}
$$

$$
b[M] V[L]+b[M-1] V[L-M+2]+\cdots+b[0] V[L+M]=0
$$

- In matrix form:

$$
\left[\begin{array}{ccccc}
V[L-M+1] & \mathrm{V}[L-M+2] & \mathrm{V}[L-M+3] & \cdots & \mathrm{V}[L] \\
\mathrm{V}[L-M+2] & \mathrm{V}[L-M+3] & V[L-M+4] & \cdots & \mathrm{V}[L+1] \\
\mathrm{V}[L-M+3] & \mathrm{V}[L-M+4] & \mathrm{V}[L-M+5] & \cdots & \mathrm{V}[L+2] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathrm{V}[L] & \mathrm{V}[L+1] & \mathrm{V}[L+2] & \cdots & \mathrm{V}[L+M]
\end{array}\right]\left[\begin{array}{c}
b[M] \\
b[M-1] \\
b[M-2] \\
\vdots \\
b[1]
\end{array}\right]=-\left[\begin{array}{c}
\mathrm{V}[L+1] \\
\mathrm{V}[L+2] \\
\mathrm{V}[L+3] \\
\vdots \\
\mathrm{V}[L+M]
\end{array}\right]
$$

The coefficient matrix on the LHS is called the Padé matrix.

HE Algorithm: Holomorphically embedded PBE's

- Load bus:

$$
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\alpha S_{i}^{*}}{V_{i}^{*}\left(\alpha^{*}\right)}-\alpha Y_{i_{\text {shunt }}} V_{i}(\alpha), i \in P Q
$$

- Generator bus:

$$
\begin{gathered}
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\alpha P_{i}-j Q_{i}(\alpha)}{V_{i}^{*}\left(\alpha^{*}\right)}-\alpha Y_{i_{\text {shunt }}} V_{i}(\alpha), i \in P V \\
V_{i}(\alpha) V_{i}^{*}\left(\alpha^{*}\right)=1+\alpha\left[\left(V_{i}^{s p}\right)^{2}-1\right]
\end{gathered}
$$

- Slack bus:

$$
V_{\text {slack }}(\alpha)=1+\alpha\left(V_{i}^{s p}-1\right), i \in \text { slack }
$$

HE Algorithm: Germ Solution

The germ solution is obtained when $\alpha=0$.

$$
\left\{\begin{array}{c}
\sum_{k=0}^{N} Y_{i k_{\downarrow} \text { trans }} V_{k}[0]=0, i \in P Q \\
\sum_{k=0}^{N} Y_{i k_{\downarrow} \text { trans }^{\prime} V_{k}[0]=-j Q_{i}[0] W_{i}^{*}[0], i \in P V}^{V_{i}[0] V_{i}^{*}[0]=1, i \in P V} \\
V_{\text {slack }}[0]=1, i \in \text { slack }
\end{array}\right\} \begin{gathered}
\text { yields }\left\{\begin{array}{c}
V_{i}[0]=1, i \in P Q \cup P V \cup \text { slack } \\
W_{j}[0]=1, j \in P Q \cup P V \\
Q_{k}[0]=0, k \in P V
\end{array}\right.
\end{gathered}
$$

HE Algorithm: General Recursive Relation

- Load bus:

$$
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}[n]=S_{i}^{*} W_{i}^{*}[n-1]-Y_{i_{\text {shunt }}} V_{i}[n-1], i \in P Q
$$

- Slack bus:

$$
V_{\text {slack }}[n]=\left\{\begin{array}{c}
1, n=0 \\
V_{i}^{s p}-1, n=1, i \in \text { slack } \\
0, n=2,3,4, \ldots
\end{array}\right.
$$

HE Algorithm: General Recursive Relation (con'd)

- Generator bus:

$$
\begin{gathered}
\sum_{k=1}^{N} Y_{i k_{\text {trans }}} V_{k}[n]=P_{i} W_{i}^{*}[n-1]-j\left(\sum_{l=0}^{n} Q_{i}[l] W_{i}^{*}[n-l]\right)-Y_{i_{\text {shunt }}} V_{i}[n-1] \\
V_{i_{\downarrow} \text { real }}[n]=\left\{\begin{array}{c}
1, n=0 \\
\frac{\left(V_{i}^{s p}\right)^{2}-1}{2}, n=1 \quad, i \in P V \\
-\frac{1}{2} \sum_{l=1}^{n-1} V_{k}[l] V_{k}^{*}[n-l], n=2,3,4, \ldots
\end{array}\right.
\end{gathered}
$$

HE Algorithm: Matrix Equation

cobcinc

 昰

- Take the three-bus system as an example, the matrix equation to calculate the coefficients for the $n^{\text {th }}(n=0,1,2,3, \ldots)$ term is:

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\operatorname{re}\left\{P_{2} W_{2}^{*}[n-1]-j\left(\sum_{l=1}^{n-1} Q_{2}[l] W_{2}^{*}[n-l]\right)-Y_{2_{\text {shunt }}} V_{2}[n-1]\right\} \\
\operatorname{im}\left\{P_{2} W_{2}^{*}[n-1]-j\left(\sum_{l=1}^{n-1} Q_{2}[l] W_{2}^{*}[n-l]\right)-Y_{2_{\text {shunt }}} V_{2}[n-1]\right\}
\end{array}\right\}-\left[\begin{array}{c}
0 \\
0 \\
G_{22} \\
B_{22} \\
G_{32} \\
B_{32}
\end{array}\right] V_{2_{2} \text { real }[n]} \\
& r e\left\{S_{3}^{*} W_{3}^{*}[n-1]-Y_{3_{\text {shunt }}} V_{3}[n-1]\right\} \\
& \operatorname{im}\left\{S_{3}^{*} W_{3}^{*}[n-1]-Y_{3_{\text {shunt }}} V_{3}[n-1]\right\}
\end{aligned}
$$

Outline

:

1. Introduction

- Traditional Power Flow (PF) methods
- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations (PBE's)

4. Simulation Results
5. Conclusions and Future Work

Modified HE Algorithm: Holomorphically Embedded PBE's

$$
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\alpha S_{i}^{*}}{V_{i}^{*}\left(\alpha^{*}\right)}-\alpha Y_{i_{\text {shunt }}} V_{i}(\alpha), i \in P Q
$$

- What if the embedding formula becomes:

$$
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\alpha^{2} S_{i}^{*}}{V_{i}^{*}\left(\alpha^{*}\right)}-\alpha^{2} Y_{i_{\text {shunt }}} V_{i}(\alpha), i \in P Q
$$

- What will happen if we have components of both α and α^{2} ?
- To examine if the HE algorithm can get a better numerical performance by including the component α^{2}, a modified formula $\beta \alpha+(1-\beta) \alpha^{2}$ is used to replace α in the basic embedded PBE's.
- The study parameter β ranges from 0 to 1.0.

Modified HE Algorithm: Three-winding Transformer

- The conversion of the equivalent circuit of three-winding transformer is:

Given impedances between any two buses $\left(Z_{i j}, Z_{j k}, Z_{i k}\right)$, the impedances between every two buses in the converted wye model can be calculated as:

$$
\left\{\begin{array}{l}
Z_{i}=\frac{Z_{i j}+Z_{i k}-Z_{j k}}{2} \\
Z_{j}=\frac{Z_{i j}+Z_{j k}-Z_{i k}}{2} \\
Z_{k}=\frac{Z_{i k}+Z_{j k}-Z_{i j}}{2}
\end{array}\right.
$$

Modified HE Algorithm: Phase-shifting Transformer

$$
\tilde{Y}_{i k}^{\prime}=\left[\begin{array}{cc}
A^{2} y & -A y \angle \theta_{\text {shift }} \\
-A y \angle-\theta_{\text {shift }} & y
\end{array}\right]
$$

Modified HE Algorithm: Holomorphically Embedded PBE's

- Load bus:
$\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\left[\beta \alpha+(1-\beta) \alpha^{2}\right] S_{i}^{*}}{V_{i}^{*}\left(\alpha^{*}\right)}-\left[\beta \alpha+(1-\beta) \alpha^{2}\right] Y_{i_{\text {shunt }}} V_{i}(\alpha)-\left[\beta \alpha+(1-\beta) \alpha^{2}\right] \sum_{k=0}^{N} Y_{i k_{u n s y m}} V_{k}(\alpha), i \in P Q$
- Generator bus:
$\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}(\alpha)=\frac{\left[\beta \alpha+(1-\beta) \alpha^{2}\right] P_{i}-j Q_{i}(\alpha)}{V_{i}^{*}\left(\alpha^{*}\right)}-\left[\beta \alpha+(1-\beta) \alpha^{2}\right] Y_{i_{\text {shunt }}} V_{i}(\alpha)-\left[\beta \alpha+(1-\beta) \alpha^{2}\right] \sum_{k=0}^{N} Y_{i k_{u n s y m}} V_{k}(\alpha)$ $V_{i}(\alpha) V_{i}^{*}\left(\alpha^{*}\right)=1+\left[\beta \alpha+(1-\beta) \alpha^{2}\right]\left(\left|V_{i}^{s p}\right|^{2}-1\right), i \in P V$
- Slack bus:

$$
V_{\text {slack }}(\alpha)=1+\left[\beta \alpha+(1-\beta) \alpha^{2}\right]\left(V_{i}^{s p}-1\right), i \in \text { slack }
$$

- The germ solution is the same as that of the basic HE algorithm.

Modified HE Algorithm: General Recursive Relation

- Load bus:

$$
\begin{gathered}
\sum_{k=0}^{N} Y_{i k_{\text {trans }}} V_{k}[n] \\
=\beta S_{i}^{*} W_{i}^{*}[n-1]+(1-\beta) S_{i}^{*} W_{i}^{*}[n-2]-\beta Y_{i_{\text {shunt }}} V_{i}[n-1]-(1-\beta) Y_{i_{\text {shunt }}} V_{i}[n-2] \\
-(1-\beta) \sum_{k=0}^{N} Y_{i k_{\text {unsym }}} V_{k}[n-2]-\beta \sum_{k=0}^{N} Y_{i k_{\text {unsym }}} V_{k}[n-1], i \in P Q
\end{gathered}
$$

- Slack bus:

$$
V_{\text {slack }}[n]=\left\{\begin{array}{c}
1, n=0 \\
\beta\left(V_{i}^{\text {sp }}-1\right), n=1 \\
(1-\beta)\left(V_{i}^{s p}-1\right), n=2 \\
0, n=3,4,5, \ldots
\end{array}, i \in\right. \text { slack }
$$

Modified HE Algorithm: General Recursive Relation (con'd)

E e w

- Generator bus:

$$
\begin{gathered}
=\beta P_{i} W_{i}^{*}[n-1]-(1-\beta) P_{i} W_{i}^{*} \sum_{k=1}^{N} Y_{i k_{\text {trans }}} V_{k}[n] \\
-j\left(\sum_{l=0}^{n} Q_{i}[l] W_{i}^{*}[n-l]\right)-(1-\beta) Y_{i_{\text {chunt }}} V_{i}[n-1]-(1-\beta) Y_{i_{\text {chunt }}} V_{i}[n-2] \\
\sum_{k=0}^{N} Y_{i k_{\text {unsym }} V_{k}[n-2]-\beta \sum_{k=0}^{N} Y_{i k_{\text {unsym }}} V_{k}[n-1], i \in P V}^{1, n=0}, \\
\frac{\beta\left(\left|V_{i}^{s p}\right|^{2}-1\right)}{2}, n=1 \\
V_{i_{\downarrow} \text { real }}[n]=\left\{\begin{array}{c}
\frac{(1-\beta)\left(\left|V_{i}^{s p}\right|^{2}-1\right)-V_{i}[1] V_{i}^{*}[1]}{2}, n=2, i \in P V \\
-\frac{1}{2} \sum_{l=1}^{n-1} V_{i}[l] V_{i}^{*}[n-l], n=3,4,5, \ldots
\end{array}\right.
\end{gathered}
$$

Modified HE Algorithm: Matrix Equation

MAF:

The equation to compute the coefficients of α^{1} term (the first order) is ${ }_{2}$ given as:

$$
\begin{aligned}
& \left.\operatorname{im}\left\{\beta S_{3}^{*} W_{3}^{*}[0]-\beta Y_{3_{\text {shunt }}} V_{3}[0]\right\}\right]
\end{aligned}
$$

Outline

Ent ${ }^{2}$ and Introduction $-\quad$ Traditional Power Flow (PF) methods

- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations

4. Simulation Results
5. Conclusions and Future Work

Simulation

- Simulation tests are run by varying the value of the study parameter β in $\beta \alpha+(1-\beta) \alpha^{2}$ on (0,1] on the three-bus, the IEEE 14-bus, 118bus, 300 -bus and the ERCOT systems.
- The metrics for numerical performance are:
- Number of terms required to get a converged solution.
- Condition numbers of the Padé matrices built from the coefficients of the V and Q power series.

Simulation: Convergence Criteria

- The tolerance of the largest deviation of consecutive Padé approximant values for the bus voltage magnitude (namely $\Delta|V|$) is empirically chosen as 10^{-4} per unit value.
- The tolerance of the largest power mismatch among all buses is 0.1 MW/MVAR or 10^{-3} per unit value for ΔP and ΔQ, respectively.

Simulation Results: Three-bus System

- The required number of terms to get a converged solution decreases from 17 to 9 terms as the embedding formula changes from α^{2} to α.
- The discontinuities on the orange and blue curves correspond to those on the purple curve.
- When the value of β is between 0.90~0.94, the number of terms needed decreases to 7 , which is fewer than the number required at $\beta=1.0$.

Simulation Results: IEEE 14-bus System

- The number of terms needed to converge decreases as the value of the study parameter β increases.
- The embedding formula α gives the optimal numerical performance.

- The flat segment on the purple curve is at $\beta=$ 0.96~1.0.
- There are several jump points on the "number of terms" curve which correspond to jumps on the condition numbers curves.

[^0]
Simulation Results: IEEE 118-bus System

- The overall trend is: the numerical performance becomes better with the increase of β value.
- It can be observed that cond V and cond Q tend to decrease as the number of terms required decreases, and increases as the number of terms required increases.
- Compared to the numerical performance at $\beta=1$, the numerical performance is better when the value of the study parameter $\beta=$ 0.84~0.92.

$-\log 10(\operatorname{condV})-\log 10(\operatorname{con} \mathrm{Q} Q) \quad-$ Number of terms

Simulation Results: IEEE 300-bus System

- The condition numbers of the Padé matrix constructed from Q power series are larger than those of the V power series.
- The number of terms required to get the converged solution remains the same in the range: $\beta=0.92 \sim 1.0$.

- This shows the existence of an alternative embedding formula, which is capable of giving a converged solution for the system with the same number of terms of the power series of $V(\alpha)$.

4

Simulation Results: ERCOT System

- The solution obtained from the HE algorithm with embedding formula α alone was also validated against the result from PowerWorld.

Table 1 Result Comparison between HE Method with α embedding and NR Method Using MATPOWER and PowerWorld

Tools	Using MATPOWER	Using PowerWorld	
The largest absolute	PU Volt	Angle (Deg)	PU Volt

- However, the HE algorithm did not obtain a converged solution when a nonzero a^{2} was introduced into the embedding formula.
- Instead, significant oscillations occurred on the maximum real and reactive bus power mismatches as well as on the largest voltage magnitude deviation.

Outline

Entroduction - Traditional Power Flow (PF) methods

- Non-iterative PF methods

2. Basic Holomorphic Embedding (HE) Algorithm

- Holomorphic Embedding
- Analytic Continuation
- Padé Approximation
- Holomorphically Embedded Power Balance Equations

3. Proposed Modified HE Algorithm

- Model of Three-Winding Transformer
- Model of Phase-shifting Transformer
- Modified Holomorphically Embedded Power Balance Equations

4. Simulation Results
5. Conclusions and Future Work

Conclusions

- As the value of β approaches 1.0 , fewer terms are generally required for convergence.
- As the number of power series terms required to converge to a solution increases, cond V and cond Q also increase.
- The Padé matrix built from Q power series coefficients is more poorly conditioned for larger systems.
- Even though the optimal value of β is system dependent, it seems to lie between $0.8 \sim 1.0$ based on the observation on the three-bus, the IEEE 14bus, 118-bus and 300-bus systems.
- Nevertheless, the modified HE algorithm presented here, when incorporating a nonzero α^{2} component in the embedding formula, was unable to obtain a converged solution for the ERCOT system.
- The original α-only embedding formula presented in this work, seems to be a good choice for the embedding formulation when numerical performance and simplicity are considered.

Contribution

- Generated sparse-based MATLAB code capable of reading PSS/E format data.
- The sparsity-based code was further generalized to include a study parameter β to study α-embeddings of the form $\beta \alpha+(1-\beta) \alpha^{2}$.
- Implemented models of three-winding transformer and phaseshifting transformer.
- Tested the algorithm on ERCOT system.

Future Work

- Detection of islands and isolated (or out-of-service) bus in the data file
- DC line Model
- Further improvement on the bus-type switching subroutine
- Multiple-precision based algorithm in C programming

References

[1] B. Stott, "Review of Load-Flow Calculation Methods," PROCEFSMGS of the IEEE, vol. 62, No. 7, pp. 916-929, Jul. 1974.
[2] J. Thorp and S. Naqavi, "Load-flow fractals draw clues to erratic behavior," IEEE Computer Application Power, vol. 10, no. 1, pp. 59-62, Jan. 1997.
[3] Problems with Iterative Load Flow, available at:
http://www.elequant.com/products/agora/demo/iterativeloadflow/.
[4] P. M. Sauer, "Explicit load flow series and function," IEEE Trans. Power Sys-tems, vol. PAS-100, pp. 3754-3763, 1981.
[5] H. C. Chen, L. Y. Chung, "Load Flow Solution for ill-conditioned by Homotopy Continuation Method," International Journal of Power and Energy Systems, Vol. 28, No. 1, pp. 99-105, 2008.
[6] A. Trias, "Two Bus Model Detail," San Franscisco 2002, available at:
http://www.gridquant.com/assets/two-bus-model-detail.pdf.
[7] A. Trias, "The Holomorphic Embedding Load Flow Method," IEEE Power and Energy Society General Meeting, pp. 1-8, July 2012.
[8] A. Trias, "System and Method for Monitoring and Managing Electrical Power Transmission and
Distribution Networks," US Patents 7,519,506 (2009) and 7,979,239 (2011).
[9] H. Stahl, "On the convergence of generalized Padé approximants," Constructive Approximation, vol. 5, pp. 221-240, 1989.
[10] G. Baker, P. Graves-Morris, "Padé approximants", Series: Encyclopedia of Mathematics and its applications, Cambridge University Press, 1996.

Thank you

Questions?

Execution Time Comparison

Table of Execution Time Comparison Among Different Systems with Various Embedding Formulae

System	Case	value of β	Embedding formula	Number of terms needed	Execution time(s)
Three-bus	base	1.00	α	9	0.0045
System	optimal	0.93	$0.93 \alpha+0.07 \alpha^{2}$	7	0.0032
worst	0.001	α^{2}	17	0.0252	
IEEE 14-bus	base	1.00	α	7	0.0079
System	optimal	0.94	$0.94 \alpha+0.06 \alpha^{2}$	7	0.0078
	worst	0.25	$0.25 \alpha+0.75 \alpha^{2}$	11	0.0262
IEEE 118-bus	base	1.00	α	9	0.1570
System	optimal	0.85	$0.85 \alpha+0.15 \alpha^{2}$	7	0.0978
IEEE 300-bus	borst	0.09	$0.09 \alpha+0.91 \alpha^{2}$	17	0.5166
System	optimal	1.00	α	15	1.0093
	worst	0.95	0.22	$0.95 \alpha+0.05 \alpha^{2}$	15

HE Algorithm: Holomorphic Function

- The complex conjugate of the voltage function $V(\alpha)$ can be expressed by two forms:

$$
\begin{aligned}
& \text { Form1: } V^{*}\left(\alpha^{*}\right)=V^{*}[0]+V^{*}[1] \alpha+\cdots V^{*}[n] \alpha^{n} \\
& \text { Form2: } V^{*}(\alpha)=V^{*}[0]+V^{*}[1] \alpha^{*}+\cdots V^{*}[n]\left(\alpha^{*}\right)^{n}
\end{aligned}
$$

- A holomorphic function must satisfy Cauchy-Riemann conditions
- An equivalent condition is that the Wirtinger derivative of the function $f(\alpha)$ with respect to the complex conjugate of α is zero, which is expressed as:

$$
\frac{\partial f(\alpha)}{\partial \alpha^{*}}=0
$$

- Thus Form1 is used in the HE algorithm.

HE Algorithm: Padé Approximation

- The original power series $c^{(0)}(\alpha)$ is represented by the continued fractions:

$$
c^{(0)}(\alpha)=c^{(0)}[0]+\frac{\alpha}{c^{(1)}[0]+\frac{\alpha}{c^{(2)}[0]+\frac{\alpha}{c^{(3)}[0]+\cdots}}}
$$

HE Algorithm: Padé Approximation (con'd)

- The rational function is generated using a three-term recursion relation [11] as follows:

$$
\begin{gathered}
A_{0}(\alpha)=c^{(0)}[0], \\
A_{1}(\alpha)=c^{(0)}[0] c^{(1)}[0]+\alpha \\
A_{i}(\alpha)=c^{(i)}[0] A_{i-1}(\alpha)+\alpha A_{i-2}(\alpha), i=2,3,4, \ldots \\
B_{0}(\alpha)=1 \\
B_{1}(\alpha)=c^{(1)}[0], \\
B_{j}(\alpha)=c^{(j)}[0] B_{j-1}(\alpha)+\alpha B_{i-2}(\alpha), j=2,3,4, \ldots
\end{gathered}
$$

- Then the Padé Approximant can be expressed as:

$$
f(\alpha)_{[M / M]}=\frac{A_{2 M}(\alpha)}{B_{2 M}(\alpha)}, f(\alpha)_{[(M+1) / M]}=\frac{A_{2 M+1}(\alpha)}{B_{2 M+1}(\alpha)}
$$

Go back

Modified HE Algorithm: Matrix Equation (con'd)

The equation to compute the coefficients of higher-order ($n=2,3,4, \ldots$) terms is given as:

$$
W[n]=-\frac{\sum_{l=1}^{n} V[l] W[n-l]}{V[0]}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
G_{21} & -B_{21} & 0 & -B_{22} & G_{23} & -B_{23} \\
B_{21} & G_{21} & 1 & G_{22} & B_{23} & G_{23} \\
G_{31} & -B_{31} & 0 & -B_{32} & G_{33} & -B_{33} \\
B_{31} & G_{31} & 0 & G_{32} & B_{33} & G_{33}
\end{array}\right]\left[\begin{array}{c}
V_{1 r}[n] \\
V_{1 i}[n] \\
Q_{2}[n] \\
V_{2 i}[n] \\
V_{3 r}[n] \\
V_{3 i}[n]
\end{array}\right]} \\
& -\beta)\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & G_{23_{\text {unsy }}} & -B_{23_{\text {unsym }}} \\
0 & 0 & 0 & 0 & B_{23_{\text {unsy }}} & G_{23_{\text {unsy }}} \\
0 & 0 & G_{32_{\text {unsym }}} & -B_{23_{\text {unsym }}} & 0 & 0 \\
0 & 0 & B_{23_{\text {unsym }}} & G_{32_{\text {unsym }}} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
V \\
V_{1} \\
V_{2} \\
V_{2} \\
V_{3} \\
V_{3}
\end{array}\right.
\end{aligned}
$$

Bus-type Switching

Go back

[^0]: $-\log 10($ condV)
 $-\log 10($ condQ)
 ——Number of terms

