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Introduction

• The power-flow (PF) study is used for power system operations, 
planning and expansion. 

• The PF study algorithms are used to find the bus voltages and 
branch flows in an electric power system.

• The traditional iterative methods (such as Gauss-Seidel method, 
Newton-Raphson method, and Fast Decoupled Load Flow method) 
are widely used to solve the power flow problems, but sometimes 
are unreliable.
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Introduction

Iterative methods (GS, 
NR, FDLF methods)

• They may produce 
voltage iterates that 
oscillate or diverge

• Numerical 
performance is 
dependent on the 
choice of the initial 
voltage guess [1]-[3]

Non-iterative methods

• Initial operating point is 
obtained through fixed-
point numerical 
iteration process 
(Series Load Flow 
Method) [4]

• Long execution time 
because of  
computational 
Complexity [5]

Holomorphic Embedding 
Method

• It eliminates the 
uncertainty of solution 
existence

• It’s guaranteed to 
converge to the high-
voltage solution when 
it exists

• It unequivocally signals 
when no solution 
exists (precision 
limitations 
notwithstanding) [6]-[8]
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HE Algorithm: Holomorphic Embedding

• The Maclaurin series is generated when the Taylor series is 
expanded about zero:

𝑓 𝛼 = $𝑐[𝑖]𝛼)
*

)+,

=
𝑓 ) 𝛼
𝑖! 𝛼),𝑤ℎ𝑒𝑛	 𝛼 < 𝑟

• Assume the voltage function is holomorphic, it can be expanded in a 
power series:

𝑉 𝛼 =$𝑉[𝑖]𝛼)
*

)+,

= 𝑉 0 + 𝑉 1 𝛼 + ⋯𝑉[𝑛]𝛼;, 𝑤ℎ𝑒𝑛	 𝛼 < 𝑟

• The complex conjugate of the voltage function V(α) can be 
expressed by two forms:
Form1: 𝑉∗ 𝛼∗ = 𝑉∗ 0 + 𝑉∗ 1 𝛼 +⋯𝑉∗ 𝑛 𝛼;

Form2: 𝑉∗ 𝛼 = 𝑉∗ 0 + 𝑉∗ 1 𝛼∗ +⋯𝑉∗ 𝑛 𝛼∗ ;

• Form1 is used in the HE algorithm, as it is holomorphic.
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HE Algorithm: Analytic Continuation

• Analytic continuation is used to extend the analytic domain of a 
function (in our case of interest) outside of the convergence region 
of the original analytic expression in the form of another analytic 
(holomorphic) function. 

• Two examples are provided to illustrate this concept.
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When 𝛼 < 1, 𝛼;=> ≈ 0. The 
equivalent function to 𝑓> 𝛼 is:

𝑓A> 𝛼 =
1

1 − 𝛼
The convergence radius for 𝑓> 𝛼
is the blue area. Whereas the 
converge radius for 𝑓A> 𝛼 is the 
whole complex plane except the 
red point where α = 1.

Ex1: The summation of a geometrical series is given as:

𝑓> 𝛼 = 1 + 𝛼 + 𝛼C +⋯𝛼; +⋯ =$𝛼)
*

)+,

= lim
;→*

1 − 𝛼;=>

1 − 𝛼
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Ex2: The integral of an exponential function is given as:

𝑓C 𝛼 = H 𝑒I >IJ K𝑑𝑥
*

N

= lim
O→*

H 𝑒I >IJ K𝑑𝑥
O

N

= lim
O→*

𝑒I >IJ K

− 1 − 𝛼 P
,

O

lim
K→*

𝑒I >IJ K ≈ 0,when	𝛼 < 1.	
The equivalent function to 𝑓C 𝛼
is:

𝑓AC 𝛼 =
1

1 − 𝛼
The convergence radius for 
𝑓C 𝛼 is the blue area. Whereas 
the converge radius for 𝑓AC 𝛼 is 
the whole complex plane except 
the red point where α = 1.
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HE Algorithm: Padé Approximation

• The maximal analytic continuation of a power series can be 
achieved by calculating its diagonal and near-diagonal Padé 
approximant [9].

• Two proposed approaches to calculate the Padé approximant are: 
direct matrix method and Viskovatov method (also known as the 
continued fraction method).
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• Direct Matrix Method [10]: the Padé approximant can be written as a 
rational function, which is a fraction of two polynomials:

𝑉 𝛼 = [𝐿/𝑀]J=
𝑎 0 + 𝑎 1 𝛼 +⋯ 𝑎[𝐿]𝛼Y

𝑏 0 + 𝑏 1 𝛼 +⋯𝑏[𝑀]𝛼[ + 𝑜 𝛼Y=[=> = $𝑉[𝑛]𝛼;
*

;+,

• By cross-multiplying the equation above and equating the coefficients 
of the same order of α0, α1,…, αL, we get:

𝑏 0 𝑉 0 = 𝑎 0 ,
𝑏 0 𝑉 1 + 𝑏 1 𝑉 0 = 𝑎 1 ,

𝑏 0 𝑉 2 + 𝑏 1 𝑉 1 + 𝑏 2 𝑉 0 = 𝑎[2]
⋮

$𝑏 𝑖 𝑉 𝐿 − 𝑖 = 𝑎[𝐿]
Y

)+,
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• By equating the coefficients of the αL+1, αL+2,…, αL+M to zero, we get:
𝑏 𝑀 𝑉 𝐿 − 𝑀+ 1 + 𝑏 𝑀 − 1 𝑉 𝐿 −𝑀 + 2 + ⋯𝑏 0 𝑉 𝐿 + 1 = 0
𝑏 𝑀 𝑉 𝐿 − 𝑀+ 2 + 𝑏 𝑀 − 1 𝑉 𝐿 −𝑀 + 3 + ⋯𝑏 0 𝑉 𝐿 + 1 = 0

⋮
𝑏 𝑀 𝑉 𝐿 + 𝑏 𝑀 − 1 𝑉 𝐿 −𝑀 + 2 +⋯+ 𝑏 0 𝑉 𝐿 + 𝑀 = 0

• In matrix form:
𝑉[𝐿 − 𝑀 +1] V[𝐿− 𝑀+ 2] V[𝐿 −𝑀 +3] ⋯ V[𝐿]
V[𝐿 − 𝑀+ 2] V[𝐿− 𝑀+ 3] 𝑉[𝐿 − 𝑀+ 4] ⋯ V[𝐿 + 1]
V[𝐿 − 𝑀+ 3]

⋮
V[𝐿]

V[𝐿− 𝑀+ 4]
⋮

V[𝐿 + 1]

V[𝐿 − 𝑀+ 5]
⋮

V[𝐿 + 2]

⋯
⋱
⋯

V[𝐿+ 2]
⋮

V[𝐿 +𝑀]

𝑏[𝑀]
𝑏[𝑀 − 1]
𝑏[𝑀 − 2]

⋮
𝑏[1]

= −

V[𝐿 + 1]
V[𝐿 + 2]
V[𝐿 + 3]

⋮
V[𝐿+ 𝑀]

The coefficient matrix on the LHS is called the Padé matrix. 
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HE Algorithm: Holomorphically embedded PBE’s

• Load bus: 

$𝑌)efghij𝑉e(𝛼)
m

e+,

=
𝛼𝑆)∗

𝑉)
∗(𝛼∗) − 𝛼𝑌)jopif𝑉)(𝛼), 𝑖 ∈ 𝑃𝑄

• Generator bus: 

$𝑌)efghij𝑉e 𝛼
m

e+,

=
𝛼𝑃) − 𝑗𝑄) 𝛼
𝑉)
∗ 𝛼∗ − 𝛼𝑌)jopif𝑉) 𝛼

𝑉) 𝛼 𝑉)∗ 𝛼∗ = 1 + 𝛼 𝑉)
uv C

− 1

, 𝑖 ∈ 𝑃𝑉

• Slack bus: 
𝑉uwxye 𝛼 = 1 + 𝛼 𝑉)

uv − 1 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘
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HE Algorithm: Germ Solution

The germ solution is obtained when α = 0.

∑ 𝑌)e↓��x;u𝑉e 0 = 0, 𝑖 ∈ 𝑃𝑄m
e+,

∑ 𝑌)e↓��x;u𝑉e 0 = −𝑗𝑄)[0]𝑊)∗[0], 𝑖 ∈ 𝑃𝑉m
e+,

𝑉) 0 𝑉)∗ 0 = 1, 𝑖 ∈ 𝑃𝑉
𝑉uwxye 0 = 1, 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘

yields
�
𝑉) 0 = 1, 𝑖 ∈ 𝑃𝑄 ∪ 𝑃𝑉 ∪ 𝑠𝑙𝑎𝑐𝑘

𝑊� 0 = 1, 𝑗 ∈ 𝑃𝑄 ∪ 𝑃𝑉
𝑄e 0 = 0, 𝑘𝜖𝑃𝑉
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HE Algorithm: General Recursive Relation

• Load bus: 

$𝑌)efghij𝑉e 𝑛
m

e+,

= 𝑆)∗𝑊)∗ 𝑛 − 1 − 𝑌)jopif𝑉) 𝑛 − 1 , 𝑖 ∈ 𝑃𝑄

• Slack bus: 

𝑉uwxye 𝑛 = �
1, 𝑛 = 0

𝑉)
uv − 1, 𝑛 = 1
0, 𝑛 = 2,3,4,…

, 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘
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HE Algorithm: General Recursive Relation (con’d)

• Generator bus: 

$𝑌)efghij𝑉e[𝑛]
m

e+>

= 𝑃)𝑊)
∗ 𝑛 − 1 − 𝑗($𝑄) 𝑙 𝑊)

∗[𝑛 − 𝑙]
;

w+,

) − 𝑌)jopif𝑉) 𝑛 − 1

𝑉)↓��xw 𝑛 =

1, 𝑛 = 0
𝑉)
uv C

− 1
2 , 𝑛 = 1

−
1
2
$𝑉e 𝑙 𝑉e∗ 𝑛 − 𝑙
;I>

w+>

, 𝑛 = 2,3,4,…

, 𝑖 ∈ 𝑃𝑉
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HE Algorithm: Matrix Equation

• Take the three-bus system as an example, the matrix equation to 
calculate the coefficients for the nth (n = 0, 1, 2, 3,…) term is:

1 0 0
0 1 0
𝐺C> −𝐵C> 0

0 0 0
0 0 0

−𝐵CC 𝐺C� −𝐵C�
𝐵C> 𝐺C> 1
𝐺�> −𝐵�> 0
𝐵�> 𝐺�> 0

𝐺CC 𝐵C� 𝐺C�
−𝐵�C 𝐺�� −𝐵��
𝐺�C 𝐵�� 𝐺��

𝑉>� 𝑛
𝑉>) 𝑛
𝑄C 𝑛
𝑉C) 𝑛
𝑉�� 𝑛
𝑉�) 𝑛

=

𝛿;, + 𝛿;> 𝑉uwxye − 1
0

𝑟𝑒 𝑃C𝑊C
∗ 𝑛 − 1 − 𝑗 $ 𝑄C 𝑙 𝑊C

∗ 𝑛 − 𝑙
;I>

w+>

− 𝑌Cjopif𝑉C 𝑛 − 1

𝑖𝑚 𝑃C𝑊C
∗ 𝑛 − 1 − 𝑗 $𝑄C 𝑙 𝑊C

∗ 𝑛− 𝑙
;I>

w+>

− 𝑌Cjopif𝑉C 𝑛 − 1

𝑟𝑒 𝑆�∗𝑊�
∗ 𝑛− 1 − 𝑌�jopif𝑉� 𝑛 − 1

𝑖𝑚 𝑆�∗𝑊�
∗ 𝑛− 1 −𝑌�jopif𝑉� 𝑛 − 1

−

0
0
𝐺CC
𝐵CC
𝐺�C
𝐵�C

𝑉C↓��xw 𝑛
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Modified HE Algorithm: Holomorphically Embedded PBE’s

• The basic embedding formula is:

$𝑌)efghij𝑉e(𝛼)
m

e+,
=

𝛼𝑆)∗

𝑉)∗(𝛼∗)
− 𝛼𝑌)jopif𝑉)(𝛼), 𝑖 ∈ 𝑃𝑄

• What if the embedding formula becomes:

$𝑌)efghij𝑉e(𝛼)
m

e+,
=

𝛼C𝑆)∗

𝑉)∗(𝛼∗)
− 𝛼C𝑌)jopif𝑉)(𝛼), 𝑖 ∈ 𝑃𝑄

• What will happen if we have components of both α and α2?
• To examine if the HE algorithm can get a better numerical 

performance by including the component α2, a modified formula 
βα+(1- β)α2 is used to replace α in the basic embedded PBE’s.

• The study parameter β ranges from 0 to 1.0.
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Modified HE Algorithm: Three-winding Transformer

• The conversion of the equivalent circuit of three-winding transformer 
is:

Given impedances between any 
two buses (Zij, Zjk, Zik), the 
impedances between every two 
buses in the converted wye 
model can be calculated as:

𝑍) =
𝑍)� + 𝑍)e − 𝑍�e

2

𝑍� =
𝑍)� + 𝑍�e − 𝑍)e

2

𝑍e =
𝑍)e + 𝑍�e − 𝑍)�

2
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Modified HE Algorithm: Phase-shifting Transformer

The modified bus admittance submatrix, 
𝑌�)efghij
� , becomes:

𝑌�)efghij
� =

𝐴𝑦 −𝐴𝑦∠𝜃u�)��
−𝐴𝑦∠ − 𝜃u�)�� 𝐴𝑦

In the modified HE algorithm, 𝑌�)efghij
� is 

divided into two parts as follows:
𝑌�)efghij
� 	 = 𝑌�)efghij 	+ 𝑌�)epij��

where
𝑌�)epij��

=
0 𝐴𝑦 − 𝐴𝑦∠𝜃u�)��

𝐴𝑦 − 𝐴𝑦∠ − 𝜃u�)�� 0

22
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Modified HE Algorithm: Holomorphically Embedded PBE’s

• Load bus: 
$𝑌)efghij𝑉e 𝛼
m

e+,

=
𝛽𝛼 + 1 −𝛽 𝛼C 𝑆)∗

𝑉)∗ 𝛼∗
− 𝛽𝛼 + 1− 𝛽 𝛼C 𝑌)jopif𝑉) 𝛼 − 𝛽𝛼 + 1− 𝛽 𝛼C $ 𝑌)epij��𝑉e 𝛼

m

e+,

, 𝑖 ∈ 𝑃𝑄

• Generator bus: 
$𝑌)efghij 𝑉e 𝛼
m

e+,

=
𝛽𝛼 + 1− 𝛽 𝛼C 𝑃) − 𝑗𝑄) 𝛼

𝑉)∗ 𝛼∗
− 𝛽𝛼 + 1− 𝛽 𝛼C 𝑌)jopif𝑉) 𝛼 − 𝛽𝛼 + 1− 𝛽 𝛼C $ 𝑌)epij��𝑉e 𝛼

m

e+,

𝑉) 𝛼 𝑉)∗ 𝛼∗ = 1 + 𝛽𝛼 + 1 − 𝛽 𝛼C 𝑉)
uv C

− 1 , 𝑖 ∈ 𝑃𝑉 

• Slack bus: 
𝑉uwxye 𝛼 = 1+ 𝛽𝛼 + 1− 𝛽 𝛼C 𝑉)

uv − 1 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘

• The germ solution is the same as that of the basic HE algorithm.
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Modified HE Algorithm: General Recursive Relation

• Load bus: 

$𝑌)efghij𝑉e 𝑛
m

e+,
= 𝛽𝑆)∗𝑊)∗ 𝑛 − 1 + 1 − 𝛽 𝑆)∗𝑊)∗ 𝑛 − 2 − 𝛽𝑌)jopif𝑉) 𝑛 − 1 − 1 − 𝛽 𝑌)jopif𝑉) 𝑛 − 2

− (1 − 𝛽)$ 𝑌)epij��𝑉e 𝑛 − 2
m

e+,

− 𝛽$𝑌)epij��𝑉e 𝑛 − 1
m

e+,

, 𝑖 ∈ 𝑃𝑄

• Slack bus: 

𝑉uwxye 𝑛 =

1, 𝑛 = 0
𝛽 𝑉)

uv − 1 , 𝑛 = 1
1 − 𝛽 𝑉)

uv − 1 ,𝑛 = 2
0, 𝑛 = 3,4,5,…

, 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘
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Modified HE Algorithm: General Recursive Relation (con’d)

• Generator bus: 

$𝑌)efghij𝑉e[𝑛]
m

e+>
= 𝛽𝑃)𝑊)

∗ 𝑛− 1 − 1−𝛽 𝑃)𝑊)
∗ 𝑛− 2 − 𝛽𝑌)jopif𝑉) 𝑛− 1 − 1− 𝛽 𝑌)jopif𝑉) 𝑛− 2

− 𝑗 $𝑄) 𝑙 𝑊)
∗ 𝑛− 𝑙

;

w+,

− (1 − 𝛽)$ 𝑌)epij��𝑉e 𝑛− 2
m

e+,

− 𝛽$ 𝑌)epij��𝑉e 𝑛− 1
m

e+,

, 𝑖 ∈ 𝑃𝑉

𝑉)↓��xw 𝑛 =

1, 𝑛 = 0
𝛽( 𝑉)

uv C − 1)
2

, 𝑛 = 1

1− 𝛽 ( 𝑉)
uv C − 1) − 𝑉) 1 𝑉)∗ 1

2
, 𝑛 = 2

−
1
2
$𝑉) 𝑙 𝑉)∗ 𝑛− 𝑙 ,𝑛 = 3,4,5, …
;I>

w+>

, 𝑖 ∈ 𝑃𝑉
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Modified HE Algorithm: Matrix Equation

The equation to compute the coefficients of α1 term (the first order) is 
given as:

1 0 0
0 1 0
𝐺C> −𝐵C> 0

0 0 0
0 0 0

−𝐵CC 𝐺C� −𝐵C�
𝐵C> 𝐺C> 1
𝐺�> −𝐵�> 0
𝐵�> 𝐺�> 0

𝐺CC 𝐵C� 𝐺C�
−𝐵�C 𝐺�� −𝐵��
𝐺�C 𝐵�� 𝐺��

𝑉>� 1
𝑉>) 1
𝑄C 1
𝑉C) 1
𝑉�� 1
𝑉�) 1

= −𝛽

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 𝐺C�pij�� −𝐵C�pij��

0 0 0
0 0 𝐺�Cpij��
0 0 𝐵C�pij��

0 𝐵C�pij�� 𝐺C�pij��
−𝐵C�pij�� 0 0
𝐺�Cpij�� 0 0

𝑉>� 0
𝑉>) 0
𝑉C� 0
𝑉C) 0
𝑉�� 0
𝑉�) 0

−

0
0
𝐺CC
𝐵CC
𝐺�C
𝐵�C

𝑉C↓��xw 0

+

𝛽 𝑉uwxye − 1
0

𝑟𝑒 𝛽𝑃C𝑊C
∗ 0 − 𝛽𝑌Cjopif𝑉C 0

𝑖𝑚 𝛽𝑃C𝑊C
∗ 0 −𝛽𝑌Cjopif𝑉C 0

𝑟𝑒 𝛽𝑆�∗𝑊�
∗ 0 − 𝛽𝑌�jopif𝑉� 0

𝑖𝑚 𝛽𝑆�∗𝑊�
∗ 0 − 𝛽𝑌�jopif𝑉� 0

, 𝑛 = 1

26
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– Model of Phase-shifting Transformer
– Modified Holomorphically Embedded Power Balance Equations
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Simulation

• Simulation tests are run by varying the value of the study parameter 
β in βα+(1- β)α2 on (0,1] on the three-bus,  the IEEE 14-bus, 118-
bus, 300-bus and the ERCOT systems.

• The metrics for numerical performance are:
– Number of terms required to get a converged solution.
– Condition numbers of the Padé matrices built from the 

coefficients of the V and Q power series. 
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Simulation: Convergence Criteria

• The tolerance of the largest deviation of consecutive Padé
approximant values for the bus voltage magnitude (namely Δ|V|) is 
empirically chosen as 10-4 per unit value. 

• The tolerance of the largest power mismatch among all buses is 
0.1 MW/MVAR or 10-3 per unit value for ΔP and ΔQ, respectively.
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Simulation Results: Three-bus System

• The required number of terms to get a converged solution decreases 
from 17 to 9 terms as the embedding formula changes from α2 to α. 

• The discontinuities on the orange and blue curves correspond to those 
on the purple curve.
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• When the value of β is 
between 0.90~0.94, the 
number of terms needed 
decreases to 7, which is 
fewer than the number 
required at β = 1.0. 
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Simulation Results: IEEE 14-bus System

• The flat segment on the 
purple curve is at β = 
0.96~1.0.

• There are several jump 
points on the “number of 
terms” curve which 
correspond to jumps on the 
condition numbers curves.
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• The number of terms needed to converge decreases as the value of the 
study parameter β increases.

• The embedding formula α gives the optimal numerical performance.
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Simulation Results: IEEE 118-bus System

• Compared to the 
numerical performance 
at β = 1, the numerical 
performance is better 
when the value of the 
study parameter β = 
0.84~0.92. 
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• The overall trend is: the numerical performance becomes better with 
the increase of β value.

• It can be observed that condV and condQ tend to decrease as the 
number of terms required decreases, and increases as the number of 
terms required increases. 
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• This shows the existence of 
an alternative embedding 
formula, which is capable of 
giving a converged solution 
for the system with the 
same number of terms of  
the power series of V(α). 

• The condition numbers of the Padé matrix constructed from Q power series 
are larger than those of the V power series.

• The number of terms required to get the converged solution remains the 
same in the range: β = 0.92~1.0. 
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Simulation Results: ERCOT System

• The solution obtained from the HE algorithm with embedding formula 
α alone was also validated against the result from PowerWorld.

Tools Using MATPOWER Using PowerWorld

The largest absolute 

difference on

PU Volt Angle (Deg) PU Volt Angle (Deg)

4.45E-06 5.34E-04 4.44E-04 6.65E-01
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Table 1 Result Comparison between HE Method with α embedding 
and NR Method Using MATPOWER and PowerWorld

• However, the HE algorithm did not obtain a converged solution when a 
nonzero α2 was introduced into the embedding formula. 

• Instead, significant oscillations occurred on the maximum real and 
reactive bus power mismatches as well as on the largest voltage 
magnitude deviation.
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Conclusions

• As the value of β approaches 1.0, fewer terms are generally required for 
convergence.

• As the number of power series terms required to converge to a solution 
increases, condV and condQ also increase. 

• The Padé matrix built from Q power series coefficients is more poorly 
conditioned for larger systems.

• Even though the optimal value of β is system dependent, it seems to lie 
between 0.8~1.0 based on the observation on the three-bus, the IEEE 14-
bus, 118-bus and 300-bus systems. 

• Nevertheless, the modified HE algorithm presented here, when 
incorporating a nonzero α2 component in the embedding formula, was 
unable to obtain a converged solution for the ERCOT system. 

• The original α-only embedding formula presented in this work, seems to be 
a good choice for the embedding formulation when numerical performance 
and simplicity are considered.
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Contribution

• Generated sparse-based MATLAB code capable of reading PSS/E 
format data.

• The sparsity-based code was further generalized to include a study 
parameter β to study α-embeddings of the form βα + (1-β)α2.

• Implemented models of three-winding transformer and phase-
shifting transformer.

• Tested the algorithm on ERCOT system.
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Future Work

• Detection of islands and isolated (or out-of-service) bus in the data 
file

• DC line Model
• Further improvement on the bus-type switching subroutine
• Multiple-precision based algorithm in C programming
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Thank you

Questions?
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Execution Time Comparison

System Case value of β Embedding 
formula

Number of 
terms needed

Execution 
time(s)

Three-bus 
System

base 1.00 α 9 0.0045
optimal 0.93 0.93α+0.07α2 7 0.0032
worst 0.001 α2 17 0.0252

IEEE 14-bus 
System

base 1.00 α 7 0.0079
optimal 0.94 0.94α+0.06α2 7 0.0078
worst 0.25 0.25α+0.75α2 11 0.0262

IEEE 118-bus 
System

base 1.00 α 9 0.1570
optimal 0.85 0.85α+0.15α2 7 0.0978
worst 0.09 0.09α+0.91α2 17 0.5166

IEEE 300-bus 
System

base 1.00 α 15 1.0093
optimal 0.95 0.95α+0.05α2 15 0.8178
worst 0.22 0.22α+0.78α2 29 3.3610

Table of Execution Time Comparison Among Different Systems with Various Embedding Formulae



HE Algorithm: Holomorphic Function

• The complex conjugate of the voltage function V(α) can be 
expressed by two forms:
Form1: 𝑉∗ 𝛼∗ = 𝑉∗ 0 + 𝑉∗ 1 𝛼 +⋯𝑉∗ 𝑛 𝛼;

Form2: 𝑉∗ 𝛼 = 𝑉∗ 0 + 𝑉∗ 1 𝛼∗ +⋯𝑉∗ 𝑛 𝛼∗ ;

• A holomorphic function must satisfy Cauchy-Riemann conditions
• An equivalent condition is that the Wirtinger derivative of the function 

f(α) with respect to the complex conjugate of α is zero, which is 
expressed as:

𝜕𝑓(𝛼)
𝜕𝛼∗ = 0

• Thus Form1 is used in the HE algorithm.

Go back
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HE Algorithm: Padé Approximation

• The original power series 𝑐 , 𝛼 is represented by the continued 
fractions:

𝑐 , 𝛼 = 𝑐 , 0 + J
y � , = �

  ¡ ¢ £ �
  ¤ ¢ £⋯
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• The rational function is generated using a three-term recursion 
relation [11] as follows:

𝐴, 𝛼 = 𝑐(,) 0 ,
𝐴> 𝛼 = 𝑐(,) 0 𝑐(>) 0 + 𝛼,

𝐴) 𝛼 = 𝑐 ) 0 𝐴)I>(𝛼) + 𝛼𝐴)IC(𝛼), 𝑖 = 2,3,4,…
𝐵, 𝛼 = 1,

𝐵> 𝛼 = 𝑐(>) 0 ,
𝐵� 𝛼 = 𝑐 � 0 𝐵�I>(𝛼) + 𝛼𝐵)IC(𝛼), 𝑗 = 2,3,4, …

• Then the Padé Approximant can be expressed as:
𝑓(𝛼)[[/[] =

𝐴C[(𝛼)
𝐵C[(𝛼)

, 𝑓(𝛼)[([=>)/[] =
𝐴C[=>(𝛼)
𝐵C[=>(𝛼)

HE Algorithm: Padé Approximation (con’d)

Go back

[11] C. G. Small, “Expansions and Asymptotics for Statistics,” Chapman and 
Hall/CRC Publications, May 2010, pp. 85-88.
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Modified HE Algorithm: Matrix Equation (con’d)

The equation to compute the coefficients of higher-order (n = 2,3,4,…) terms is 
given as:

1 0 0
0 1 0
𝐺C> −𝐵C> 0

0 0 0
0 0 0

−𝐵CC 𝐺C� −𝐵C�
𝐵C> 𝐺C> 1
𝐺�> −𝐵�> 0
𝐵�> 𝐺�> 0

𝐺CC 𝐵C� 𝐺C�
−𝐵�C 𝐺�� −𝐵��
𝐺�C 𝐵�� 𝐺��

𝑉>� 𝑛
𝑉>) 𝑛
𝑄C 𝑛
𝑉C) 𝑛
𝑉�� 𝑛
𝑉�) 𝑛

= −𝛽

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 𝐺C�pij�� −𝐵C�pij��

0 0 0
0 0 𝐺�Cpij��
0 0 𝐵C�pij��

0 𝐵C�pij�� 𝐺C�pij��
−𝐵C�pij�� 0 0
𝐺�Cpij�� 0 0

𝑉>� 𝑛 − 1
𝑉>) 𝑛 − 1
𝑉C� 𝑛 − 1
𝑉C) 𝑛 −1
𝑉�� 𝑛 − 1
𝑉�) 𝑛 −1

− (1

− 𝛽)

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 𝐺C�pij�� −𝐵C�pij��

0 0 0
0 0 𝐺�Cpij��
0 0 𝐵C�pij��

0 𝐵C�pij�� 𝐺C�pij��
−𝐵C�pij�� 0 0
𝐺�Cpij�� 0 0

𝑉>� 𝑛− 2
𝑉>) 𝑛 −2
𝑉C� 𝑛 −2
𝑉C) 𝑛 − 2
𝑉�� 𝑛 −2
𝑉�) 𝑛 − 2

−

0
0
𝐺CC
𝐵CC
𝐺�C
𝐵�C

𝑉C� 𝑛 +

𝛿;C 1 − 𝛽 𝑉uwxye− 1
0

𝑟𝑒 𝑘𝑛𝑜𝑤𝑛1 𝑛
𝑖𝑚 𝑘𝑛𝑜𝑤𝑛1 𝑛
𝑟𝑒 𝑘𝑛𝑜𝑤𝑛2 𝑛
𝑖𝑚 𝑘𝑛𝑜𝑤𝑛2 𝑛

,𝑛 = 2,3,4, …

𝑘𝑛𝑜𝑤𝑛1 𝑛
= 𝛽𝑃C𝑊C

∗ 𝑛− 1 + 1 − 𝛽 𝑃C𝑊C
∗ 𝑛− 2

−𝛽𝑌Cjopif𝑉C 𝑛 − 1 − 1 −𝛽 𝑌Cjopif𝑉C 𝑛− 2

− 𝑗 $𝑄C 𝑙 𝑊C
∗ 𝑛 − 𝑙

;I>

w+>

, 𝑛 = 2,3,4, …

𝑘𝑛𝑜𝑤𝑛2 𝑛
= 𝛽𝑆�∗𝑊�

∗ 𝑛 − 1 + 1 −𝛽 𝑆�∗𝑊�
∗ 𝑛 − 2

−𝛽𝑌�jopif𝑉� 𝑛 −1 − 1 − 𝛽 𝑌�jopif𝑉� 𝑛 − 2 ,𝑛
= 2,3,4, …

𝑊 𝑛 = −
∑ 𝑉 𝑙 𝑊[𝑛− 𝑙];
w+>

𝑉[0]

Go back
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Bus-type Switching

Go back
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