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ABSTRACT 
 

Epilepsy is a group of disorders that cause seizures in approximately 2.2 million 

people in the United States. Over 30% of these patients have epilepsies that do not 

respond to treatment with anti-epileptic drugs. For this population, focal resection surgery 

could offer long-term seizure freedom. Surgery candidates undergo a myriad of tests and 

monitoring to determine where and when seizures occur. The “gold standard” method for 

focus identification involves the placement of electrocorticography (ECoG) grids in the 

sub-dural space, followed by continual monitoring and visual inspection of the patient’s 

cortical activity. This process, however, is highly subjective and uses dated technology. 

Multiple studies were performed to investigate how the evaluation process could benefit 

from an algorithmic adjust using current ECoG technology, and how the use of new 

microECoG technology could further improve the process.  

Computational algorithms can quickly and objectively find signal characteristics 

that may not be detectable with visual inspection, but many assume the data are 

stationary and/or linear, which biological data are not. An empirical mode decomposition 

(EMD) based algorithm was developed to detect potential seizures and tested on data 

collected from eight patients undergoing monitoring for focal resection surgery. EMD 

does not require linearity or stationarity and is data driven. The results suggest that a 

biological data driven algorithm could serve as a useful tool to objectively identify 

changes in cortical activity associated with seizures. 

Next, the use of microECoG technology was investigated. Though both ECoG 

and microECoG grids are composed of electrodes resting on the surface of the cortex, 

changing the diameter of the electrodes creates non-trivial changes in the physics of the 
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electrode-tissue interface that need to be accounted for. Experimenting with different 

recording configurations showed that proper grounding, referencing, and amplification 

are critical to obtain high quality neural signals from microECoG grids. 

Finally, the relationship between data collected from the cortical surface with 

micro and macro electrodes was studied. Simultaneous recordings of the two electrode 

types showed differences in power spectra that suggest the inclusion of activity, possibly 

from deep structures, by macroelectrodes that is not accessible by microelectrodes. 
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CHAPTER 1 

INTRODUCTION 

Focal resection surgery can offer long-term control of seizures for people with 

treatment resistant epilepsy. Successful surgery relies on the accurate identification of 

where and when seizures originate. Currently, the identification process involves the sub-

cranial implantation of large electrocorticography (ECoG) grids, followed by continual 

monitoring and visual inspection of cortical activity. Despite modern knowledge and 

technology that provide opportunities to improve the process, this “gold standard” 

method has remained largely unchanged since the technique was developed in the 1930’s 

(Almeida, Martinez, & Feindel, 2005; Penfield, 1939; Tripathi et al., 2010). 

The neocortex is arranged in a columnar structure. Cortical columns are 300-600 

µm in diameter and are composed of heavily interconnected neurons running 

perpendicular to the cortical surface throughout the brain (Hubel, Wiesel, & Stryker, 

1977; V. B. Mountcastle, 1997; V. Mountcastle, 1978). The individual neurons within 

cortical columns share common receptive fields and form small, functional units. Seizure 

activity has also been observed at spatial scales similar in size to a cortical column (Stead 

et al., 2010). Although ECoG offers better specificity than electroencephalography 

(EEG), standard clinical ECoG electrodes (diameter >1mm) are large and record signals 

from as much as 20 mm away (Menon et al., 1996). This size inconsistency means that a 

single ECoG electrode is recording from multiple cortical columns simultaneously, 

leading to spatial signal averaging and compromised specificity of the recordings. 

Identification accuracy is further complicated by the interpretation of cortical signals. An 

epileptologist reviews a patient’s data and determines where and when a seizure occurs 
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based on visual inspection. This process is highly subjective. As data collection methods 

move towards improving specificity through increasing sampling frequencies and number 

of electrodes, these issues will continue to grow. Applying engineering concepts could 

help manage these concerns. To investigate this possibility, studies involving the 

recording and analysis of electrophysiological signals during the surgical evaluation 

process have been performed. 

First, as described in Chapter 3, a computational algorithm based on empirical 

mode decomposition (EMD) that identifies changes in signal complexity was developed. 

EMD is a sifting algorithm that is data driven and does not rely on prior assumptions of 

linearity or stationarity. The sifting process produces intrinsic mode functions (IMFs), 

with the number of IMFs generated dependent on the complexity of the waveform. When 

EMD was windowed over the data, seizures were indicated by changes in the number of 

IMFs produced. A reliable computational method for detecting seizures could reduce the 

amount of time required to review a patient’s data and will provide objective, repeatable 

results. 

The EMD based algorithm was tested on seizure and non-seizure data clips from 

eight patients admitted to the pediatric epilepsy monitoring unit at Phoenix Children’s 

Hospital (PCH) for pre-surgical monitoring of treatment resistant epilepsy. The algorithm 

identified seizures based on changes in signal complexity, but performed notably better 

on some patients than others. Specifically, when a patient’s seizures originated from 

mesial structures, and subsequently localized to depth electrodes, the algorithm did not 

perform well.  
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Chapter 4 addresses the use of microelectrodes (diameter <1 mm) in cortical 

interfacing and the implications of reducing the electrode diameter. Critical aspects of the 

recording system, including electrode grid design, surgical placement, amplification, and 

recording are presented. By recording microelectrodes under different system 

configurations, the effects of poor grounding, referencing and amplification were tested. 

The resulting signals and power spectra confirm that high quality signals can be 

recorded with microECoG grids. These signals, however, are vulnerable to noise and are 

easily contaminated if proper referencing, grounding, shielding and amplification are not 

performed. 

The last study, presented in Chapter 5, aimed to investigate how signals are 

spatially averaged by macroelectrodes by trying to reconstruct a macroelectrode signal 

from 24 microelectrode signals surrounding it. To this end, a specialized electrode grid 

that combined micro and macro electrodes by surrounding individual macroelectrodes 

with consecutive circles of microelectrodes was designed and tested. All electrodes were 

recorded with the same system at a sampling frequency of 12.2 kHz for 10 minutes. 

The custom grid was used to record from a patient with a cortical lesion 

immediately posterior to the central sulcus, undergoing surgical evaluation for treatment 

resistant epilepsy. Three groups of electrodes were simultaneously recorded; one of 

which was positioned over the cortical lesion. A spatially weighted contribution equation 

was developed to combine the microelectrode signals for comparison to the surrounding 

macroelectrode. Time and frequency analysis of the macroelectrode signals and the 

corresponding spatially weighted microelectrode signals showed moderate relationships. 

The correlation coefficient was lowest for the group of electrodes located over the 
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cortical lesion. Coherence values were higher in low frequency bands. Considering the 

larger volume of cortex from which macroelectrodes record signals, when compared to 

microelectrodes, the increased power likely arises from deep cortical structures. 

Additional data, ideally incorporating recordings from depth electrodes, could help to 

validate this concept. 

Diagnoses have been based on visual inspection of recordings from large ECoG 

grids for decades without substantial change or improvement. Better sensitivity and 

specificity during the recording and analysis process is possible. The use of 

computational algorithms to aid in the data review process could serve as an objective 

point of standardization across centers while also reducing the amount of time spent 

reviewing data and revealing previously overlooked foci.  This could lead to an increase 

in the number of patients deemed candidates for surgery and improve surgical outcomes. 

Further, the signals recorded with microelectrodes likely represent local synaptic activity 

and could fill a knowledge gap between single neuron activity recorded with penetrating 

electrodes and gross activity recorded with clinical ECoG in humans. This could help 

answer a variety of questions such as how interictal activity relates to seizure activity or 

how seizures manifest on a sub-millimeter scale (Staley, Hellier, & Dudek, 2005). 

Reducing the spatial averaging of signals could also lead to the identification of smaller 

epileptic foci and therefore smaller resection areas. Overall, any of these changes have 

the potential to improve patient care and could possibly lead to a better long-term quality 

of life. 
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CHAPTER 2 

BACKGROUND 

Epilepsy 

Epilepsy refers to a continuum of neurological disorders that cause an increased 

likelihood of seizures that affects men and women of all ages. A person is said to have 

epilepsy when he or she has at least one seizure (Fisher et al., 2005). It is estimated that 1 

in 26 people in the United States will be diagnosed with epilepsy at some point in their 

lifetime (England, Liverman, Schultz, & Strawbridge, 2012). That means that, at any one 

time, there are approximately 2.2 million people in the United States living with epilepsy 

(England et al., 2012). There are multiple types of epilepsy with many different causes 

that result in a variety of seizures. 

Etiologies. More than 25 etiologies are associated with epilepsy and are separated 

into three general groups; genetic, structural and metabolic, and unknown causes (Berg et 

al., 2010; England et al., 2012). 

Genetic. Genetic epilepsies are caused by a defect at either the chromosomal or 

molecular level, but are not necessarily inherited (Berg et al., 2010). Most genetic 

epilepsies are caused by mutations that affect the production of protein used in ion 

channels but others can cause issues with structural development of the brain (Abad, 

Sanmartí Vilaplana, & Serratosa, 2007). 

Structural and metabolic. Structural abnormalities can be acquired through 

stroke, traumatic brain injury or infection, or caused by genetic and developmental issues. 

Epilepsy caused by infection of the central nervous system are especially prevalent in 

developing countries. Common seizure-causing infections include bacterial meningitis, 
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viral encephalitis, cerebral malaria, tuberculosis, HIV, neurocysticercosis and cerebral 

toxoplasmosis.  

Cases of lesional epilepsy are also considered structural and metabolic. The most 

common of which is hippocampal sclerosis, a developmental abnormality. Others include 

tubular sclerosis and hypothalamic hamartomas. A patient with a structural abnormality is 

1.5 times more likely to have seizures that cannot be controlled with anti-epileptic drugs 

(AEDs) than patients with other etiologies (P Kwan & Brodie, 2000). However, the 

presence of a structural abnormality improves the chance of seizure freedom from 

resection surgery. 

Metabolic issues can disrupt the brain’s energy metabolism, electrolytes, 

osmolality, or acid-base balance and cause seizure activity. Metabolic epilepsies could 

also impact the way anti-epileptic drugs are processed which could lead to further 

complications (O’Brien, 1998). 

Unknown. Unknown epilepsies was previously referred to as “cryptogenetic”. As 

many as one-third of all epilepsy cases have causes that are unknown. 

Seizures. A seizure is considered an abnormal, synchronous firing of a group of 

neurons in the brain. Seizures fall into one of two categories; generalized or partial.  

Generalized. Generalized seizures are those that have sudden, bilateral 

involvement of either cortical or subcortical structures in the brain (Berg et al., 2010). 

There are several types of generalized seizures. Clonic seizures have rapid contraction 

and relaxation of muscles. Tonic seizures cause a significant increase in muscle tone, 

while convulsive, or tonic-clonic seizures involve both presentations; stiffening of 

muscles (tonic) and abrupt, jerking movements caused by the contraction and relaxation 
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of muscles (clonic). Atonic seizures or “drop seizures” cause sudden loss of muscle tone. 

Finally, myoclonic seizures involve sudden, brief jerks that are more localized than those 

associated with clonic seizures. Finally, absence seizures are generally associated with an 

altered state of awareness where the patient may stare blankly into space. 

Partial/Focal. Unlike generalized seizures, partial seizures are localized to one 

area, though they may spread. Simple partial seizures involve activity that originates from 

a focal area in one hemisphere of the brain during which consciousness is not affected. If 

the simple seizure spreads, it is considered secondarily generalized. A complex partial 

seizure also starts in a localized area but does impact the patient’s consciousness. 

Unclassified. Some seizure manifestations, such as certain neonatal seizures, do 

not fall into the categories listed above and are there for considered part of an 

unclassified group. Seizures may be unclassified due to insufficient knowledge or data 

(Penry, 1981).  

Status epilepticus. The length and severity of a seizure can vary. Most seizures do 

not last more than two minutes (Dobesberger et al., 2015; Shinnar, Berg, Moshe, & 

Shinnar, 2001). If a patient has a seizure lasting more than five minutes or multiple 

occurring in such rapid succession that normal consciousness is not regained between 

seizures, the patient is said to be in status epilepticus (Penry, 1981).  Status epilepticus is 

dangerous and is associated with increased incidence of permanent brain damage and 

sometimes death. When available, medical intervention in the form of anti-epileptic drugs 

(AEDs) is used to interrupt status epilepticus. 
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Treatments.  

Anti-epileptic drugs. The most common form of treatment for epilepsy is anti-

epileptic drugs (AEDs).  There are approximately 26 AEDs available with modes of 

action including membrane stabilization, reduction of neurotransmitter release or 

increasing GABA-mediated inhibition (Howard et al., 2011). The correlation between 

mode of action and resulting clinical activity is not completely understood and many 

AEDs have secondary actions and side effects. Monotherapy is generally advised, though 

combination therapy may be beneficial for some patients (Howard et al., 2011).   

Treatment resistant epilepsy. Although doctors are able to control many patients’ 

seizures with AEDs, over one third of patients with epilepsy are treatment resistant (P 

Kwan & Brodie, 2000).  For these patients, other options need to be considered. 

Treatment resistant epilepsy, also referred to as refractory or drug-resistant epilepsy, is 

considered the failure to gain control of seizures after two appropriately prescribed AED 

trials of adequate length (Patrick Kwan et al., 2010). The chances of a patient gaining 

control of seizures from a third AED, if they have already failed to respond to two others, 

is between 1% and 3% (P Kwan & Brodie, 2000). 

Dietary regimes. Common dietary plans include the ketogenic, modified Atkins 

and low glycemic index diets.  The ketogenic diet has been used since the 1920’s and 

involves a high fat, low carbohydrate diet and is meant to mimic fasting. The exact 

therapeutic mechanism of the ketogenic diet is not known, but is thought to involve the 

increase of ketones in the body or the stabilization of blood sugar. The ketogenic diet is 

effective for a range of treatment-resistant epilepsies, with more than 50% of patients on 

the diet experiencing greater than 50% reduction in seizures, but is difficult to maintain 
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and has side effects (Lefevre & Aronson, 2000). Other dietary plans include the modified 

Atkins diet, which is less restrictive but still causes ketosis and the low glycemic index 

diet, which targets blood sugar stabilization (Kossoff et al., 2006; Muzykewicz et al., 

2009). 

Surgery. Surgery is an option that can offer long-term control of seizures in 

patients with treatment resistant epilepsy. There are two types of surgical approaches for 

treating epilepsy; resection and disconnection.  

Resection surgery involves removing the seizure focus, i.e. the area of the brain 

from which seizures originate and is particularly successful for those who have mesial 

temporal epilepsy with hippocampal sclerosis, a hypothalamic hamartoma with gelastic 

seizures, hemiconvulsion and hemiplegia, or Rasmussen syndrome (Berg et al., 2010). 

Disconnection surgery was introduced in 1961 and is an alternative to resection 

surgery when seizures occur in areas of eloquent cortex, where removing tissue could 

have a detrimental impact on the patient’s daily life (Geschwind & Kaplan, 1962). The 

goal of disconnection surgery is to break the pathway of activity associated with seizures 

such that the extent of spread is limited. Modern disconnection surgery includes multiple 

subpial transection (MST), corpus callosotomy (CCS) and modified functional 

hemispherectomy (DFH) (Shimizu & Maehara, 2000).  

Surgical evaluation. Surgical candidates undergo a series of tests and procedures 

to determine where the seizures are coming from and the likely-hood of seizure freedom 

from surgery. This process is broken down into two phases; Phase I and Phase II. 

Phase I evaluation typically includes anatomical and functional imaging such as 

CT, PET and MRI scans, neuropsychology evaluation and video electroencephalography 
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(EEG) monitoring to get information on the patient’s general brain function, and to 

lateralize and locate seizure foci (Cross et al., 2006). While EEG has the benefit of being 

non-invasive, the epi-cranial placement of the electrodes significantly distorts waveforms 

and often prevents precise localization of seizure onset. The information gained does, 

however, provide information to help epileptologists determine candidacy for Phase II 

evaluation and to identify a general area of seizure onset to target for electrode placement 

during Phase II tests. 

In the event that the EEG and imaging data are discordant or more information is 

needed, the patient is referred for Phase II evaluation. In Phase II, subdural 

electrocorticography (ECoG) grids and/or depth electrodes, for certain deep foci, are 

placed in the region of the brain thought to be the seizure onset zone. After the initial 

surgery, the patient will enter the Epilepsy Monitoring Unit (EMU) where cortical 

activity and video will continuously be recorded. The monitoring period serves two 

purposes; identifying where and when seizures originate and determining how the foci 

are positioned with respect to other cortical structures. These objectives are accomplished 

through continual recording of cortical activity and mapping via bipolar stimulation of 

electrodes. In order to proceed with the surgical resection, the clinical team needs to be 

confident that the patient has focal seizures that do not occur in areas of eloquent cortex 

(Snead III, 2001). That is, that removing that area of the brain will not impact critical 

daily functions such as moving or speaking, and that the patient will be seizure-free after 

the resection. If a patient’s seizures are coming from eloquent cortex, i.e. an area of the 

brain needed for critical daily functions such as speech or movement, the patient may not 

be a surgical candidate. 
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Surgical outcomes. Outcomes of resection surgeries vary and depend on a number 

of factors that could include the extent of resection and the presence of particular 

pathologies. Between 54.7% and 79.4% of patients are seizure free in the first two years 

post-surgery, but the chance of continued seizure freedom 10 years after resection 

surgery drops to only 33% (Spencer, et al., 2005; Bulacio, et al., 2012). Disconnection 

surgery is less likely to provide seizure freedom than resection surgery. Patients who 

undergo disconnection surgery do, however, show variable levels of improvement of 

cognitive function and speech, with notable decreases in the number of drop attacks 

suffered (Shimizu & Maehara, 2000). 

Neuromodulation. Neuromodulation refers to the attempt to alter the endogenous 

function of an individual neuron or a group of neurons. This is often done by inducing 

electrical stimulation. Neuromodulation methods to treat epilepsy include deep brain 

stimulation (DBS), vagus nerve stimulation (VNS), and responsive stimulation.  

Deep brain stimulation. DBS uses long depth electrodes to target subcortical 

structures and periodically emit an electrical pulse. Though the precise mechanistic 

underpinnings of DBS is not fully understood, stimulation seems to disrupt or block 

unregulated activity associated with seizures (Halpern, Samadani, Litt, Jaggi, & Baltuch, 

2008). Structures targeted by DBS include the thalamus, subthalamic nucleus, 

cerebellum, hippocampus, caudate nucleus and mammillary nuclei (Halpern et al., 2008). 

Results of DBS vary depending on the structure stimulated and seem to improve with 

time. Dramatic improvements reported are approximately 93% reduction in seizure 

frequency (Halpern et al., 2008).   



 12 

Vagus nerve stimulation. The vagus nerve is a large nerve that transports signals 

between the chest and stomach and the brain. VNS involves the implantation of a 

programmable stimulation device that sends electrical shocks to the vagus nerve. 

Approximately 35% of patients respond (> 50% seizure reduction) and very few (3.4%) 

see full control (>90% seizure reduction) of their seizures (Galbarriatu et al., 2015). 

Responsive stimulation. Responsive stimulation is a closed-loop approach to 

using electrical stimulation to modulate seizure activity. ECoG electrodes are placed over 

the seizure focus and records activity and a stimulating depth electrode emits a pulse 

when the activity is thought to be associated with the patient’s seizures, based on a 

detection algorithm. Devices can be adjusted by physicians as needed for optimal control 

of seizures. Patients reported between 35% and 43% decreases in frequency and severity 

of seizures while using the responsive stimulation therapy (F.T., M.J., & R.E., 2008).  

Biological Signals: Composition, Scale and Characteristics 

Cortical layers. The neocortex is horizontally divided into six layers, each with 

their own cytoarchitecture. The thickness of the cortex itself varies in different areas of 

the brain, but is about 2.3 mm on average. Layer I is sparsely populated with cell bodies 

and consists mainly of axonal and dendritic terminations, and primarily functions as a 

hub for connections between distal dendrites and cortical and thalamic inputs (Douglas & 

Martin, 2004; Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008). Layers II and III are 

frequently grouped together and also receive some subcortical inputs. Layer II consists of 

densely packed granule cells and layer III is predominately pyramidal cells. Together, 

they receive sensory and motor inputs from other parts of the cortex. Layer IV is a thin 

layer consisting of stellate and granule cells that receive inputs from the thalamus and 
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project to layers II/III (Miller, Pinto, & Simons, 2001; Ray et al., 2008). Layer V is 

primarily pyramidal cells with non-pyramidal cells sparsely present that largely receive 

cortico-cortical inputs and project to various subcortical structures. Layer VI is mostly 

closely packed spindle-shaped cells interspersed with fiber bundles with some pyramidal 

cells that take part in thalamic and reciprocal cortico-cortical interactions (Thomson & 

Lamy, 2007).  

Cortical columns. Cortical columns consist of many chains of heavily 

interconnected neurons that run vertically through layers II-VI of the neocortex (V. B. 

Mountcastle, 1997; V. Mountcastle, 1978). Each chain contains all major cortical neural 

cell types and are bound to other chains via short, horizontal connections (V. B. 

Mountcastle, 1997; V. Mountcastle, 1978). Cortical columns are between 300 and 600 

µm in diameter and act as small, computational units that transmit and receive 

information (V. B. Mountcastle, 1997; V. Mountcastle, 1978). 

Local field potentials. Local field potentials (LFP) are multi-unit neural signals 

that are composed of all ionic processes in an area of the brain (Buzsáki, Anastassiou, & 

Koch, 2012). The spatial and temporal extent of LFPs is debated. LFP oscillations occur 

over the course of seconds and generally between 1 and 300 Hz (Buzsáki et al., 2012; 

Schendel et al., 2013). Although some studies indicate an LFP spatial resolution in the 

millimeter range, others have suggested areas as small as 250 micrometers (Kajikawa & 

Schoeder, 2012). 

The precise biophysics and neural circuitry underlying the generation of LFPs is 

still not fully understood, but they likely arise from many signal generators of various 

shapes, sizes and locations, and propagate through the brain by some combination of 
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volume conduction, ephaptic, and synaptic mechanisms (Anastassiou, Perin, Markram, & 

Koch, 2011; Hales & Pockett, 2014). Regardless of the underlying mechanisms, it is clear 

that LFPs carry substantial information related to cortical processes such as movement  

and speech, and likely pathologies such as epilepsy (S. S. Kellis, House, Thomson, 

Brown, & Greger, 2009; S. Kellis et al., 2015; Leuthardt, Freudenberg, Bundy, & Roland, 

2009; Stead et al., 2010)  

Electrocorticography  

Electrocorticography (ECoG) is a method of measuring electrical signals of the 

brain using surgically placed sub-cranial grids and strips. Surface ECoG measures the 

difference between electric currents released by dipoles in the brain and a ground, or 

reference electrode (Buzsáki et al., 2012).  

Geometry. ECoG grids consist of platinum-iridium or stainless steel wires that 

terminate to discs in silicon bedding. Dimensions of clinical ECoG grids vary. Common 

layouts include 64 electrodes arranged in an 8x8 square or 20 electrodes in a 4x5 

rectangle. Strips may have a 1x4 or 1x6 electrode arrangement. Typical electrodes in 

grids and strips are between 4 and 5 mm in diameter, with an exposed contact diameter of 

2 to 3 mm and 10 mm between electrodes, center to center. Reference and ground 

electrodes are usually not included in a clinical electrode grid, and are separate, 

abbreviated strips. 

Depth electrodes are long, needle like probes that penetrate the cortex and are 

used to record from deep structures suspected of contributing to seizure activity. A 

typical depth electrode consists of a 1.3 mm diameter polyurethane shaft with four, six or 

eight platinum/iridium contacts 2.3 mm long space 5 or 10 mm apart, center to center. 



 15 

Placement. ECoG electrodes are surgically implanted below the skull via a large 

craniotomy (Hill et al., 2012). Grids and strips can be placed epi-durally, though sub-

dural placement is more common as the dura decreases signal quality. This placement 

reduces their vulnerability to movement artifacts and increases the spatial resolution 

compared to EEG, while their estimated duration of functional life and stability is 

increased compared to penetrating electrodes, which initiate a complicated foreign body 

response (S. S. Kellis et al., 2009; Schalk & Leuthardt, 2011). Following placement, the 

dura and skull flaps are re-positioned and the recording tails are brought through the skin, 

creating small trans-cutaneous holes. 

Depth electrodes are stereotactically inserted perpendicular to the cortical surface 

into medial structures such as the amygdala and hippocampus. Similar to surface grids, 

the recording tails of the depth electrodes are brought through the skin for percutaneous 

connection. 

Recording. ECoG, as it is used in clinical applications such as epilepsy 

monitoring, is a multi-unit recording method with signals as high as 100 µm and is 

typically sampled at 250 or 500 Hz, though research applications may use higher rates. 

Clinical ECoG cannot differentiate signals produced by individual neurons. Waveforms 

recorded with ECoG represent general fluctuations in the spatial and temporal summation 

of ionic processes generated by a group of active neurons in the same area (Buzsáki et al., 

2012). The precise composition of the dipoles recorded by ECoG electrodes is debated 

but seems to depend on the type, density, orientation, size and synaptic organization of 

neurons within the electrode’s recording radius (Ray et al., 2008). A significant 

component of ECoG signals is likely activity from pyramidal cells in layer V of the 
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cortex. Pyramidal cells have extensive dendritic arborization, including apical dendrites 

that run in parallel for relatively long distances, thus increasing the chance of obtaining 

the spatial and temporal summation needed to generate a signal large enough to be 

recorded by an ECoG electrode (Ferree, Clay, & Tucker, 2001). 

Engineering Approaches  

Diagnoses have been based on visual inspection of recordings from large ECoG 

grids for decades without substantial change or improvement.  Better sensitivity and 

specificity during the recording and analysis process is possible. 

Mathematical approaches to detecting seizures. Computational algorithms may 

be able to improve the sensitivity and specificity of seizure detection. Further, they could 

objectively identify where and when a seizure starts on a smaller spatial and temporal 

scale than visual inspection (Lehmkuhle et al., 2009; Lodder & van Putten, 2013). 

Despite a number of attempts and reasonable accuracy of some of the computational 

algorithms developed, visual inspection has remained the method of choice for 

epileptologists (Lodder & van Putten, 2013). This could be due to a variety of reasons.  

The time-varying dynamics of neural signals and high levels of inter and intra patient 

variability make quantification and detection of seizures difficult (Haas, Frei, & Osorio, 

2007). Many of the algorithms used assume that the signal is stationary and/or linear and 

are therefore ill-suited for and cannot fully describe the complexity of the biological 

signals they are meant to analyze (Lehnertz, 2008; Oweis & Abdulhay, 2011). That is, the 

algorithms assume that the signal’s parameters, such as variance or standard deviation, 

will not change over time and that a constant slope will be maintained. Others require a 

priori knowledge of the signal to correctly choose the most appropriate inputs for the 
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algorithm or assume that the signal is composed of specific waveforms such as sinusoids 

or particular wavelet functions. A clinically useful algorithm will be robust enough to 

work well on all variations of biological signals that may be associated with seizure and 

non-seizure activity, without a priori knowledge about the signal or assumptions that the 

signals are stationary or linear. 

Fourier Transform. The Fourier transform breaks a signal into its component 

frequencies. It assumes that the original signal is linear, stationary, and composed of 

sinusoids (Fourier, 1822). One of the first attempts to mathematically detect seizures was 

based on the relatively simple Fast Fourier Transform (FFT) and used phase and 

coherence calculations to find small time differences between waveforms on different 

channels (Gotman, 1983).  Though it was originally thought the patient’s seizures were 

generalized, the time differences found suggested the presence of an epileptic focus 

(Gotman, 1983). Though the Fourier transform is a useful tool in many aspects, 

biological signals, such as ECoG data, is not linear, stationary, or composed of sinusoids.  

Thus, the use of FFT for the analysis of biological data is not ideal. 

Wavelets. Similar to the Fourier transform, the wavelet transform assumes the 

signal is composed of specific elements (Haar, 1911). Wavelet transforms decompose 

signals into components based on how well they match a pre-selected wavelet function, 

referred to as the “mother wavelet”. While the mother wavelet can be scaled in amplitude 

and frequency to better capture the shape of the waveform being analyzed, the user must 

know what the signal looks like in order to choose the correct mother wavelet. The 

wavelet transformation has been used as the basis for many seizure detection algorithms  
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(Fathima, Bedeeuzzaman, Farooq, & Khan, 2011; Rosso, Blanco, & Rabinowicz, 2003; 

Samar, Bopardikar, Rao, & Swartz, 1999; Schiff, 1994). Similar to the Fourier transform, 

the wavelet transform is a useful tool, but is not well suited for the analysis of biological 

data. 

Empirical mode decomposition (EMD). Empirical mode decomposition (EMD) 

is an adaptive sifting algorithm that iteratively breaks down complex waveforms into 

simpler, component waveforms. EMD does not require the prior assumption of 

stationarity or linearity of the signal and is fully data driven, making it well suited for the 

analysis of biological data (N. E. Huang et al., 1998; Norden E Huang, 2005).  EMD 

breaks down a signal into intrinsic mode functions (IMF) which are modes of oscillation 

whose number of zero crossings and extrema differ at most by one and whose envelope 

mean crosses zero at some point (N. E. Huang et al., 1998). IMFs have variable 

amplitude and frequency with respect to time and the final number of IMFs depends on 

the complexity of the original signal.  The ability of the EMD algorithm to detect a 

seizure is based on changes in the complexity of cortical activity, with regard to 

amplitude and frequency, during a seizure when compared to a non-seizure state. 

Microelectrocorticography. Similar to ECoG, micro-electrocorticography 

(microECoG) grids are composed of electrodes that measure differences between dipoles 

in the brain and a reference electrode. The size of the electrodes (diameter <1 mm) and 

subsequently the number of dipoles recorded by an individual electrode, however, is 

significantly smaller than that of a clinical ECoG grid electrode. Each microelectrode 

records from a cortical volume on the sub-millimeter scale (Schalk & Leuthardt, 2011).  

At this scale, microECoG can record “local field potential-like” signals produced by time 
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evolving ionic activity in small neuronal populations, and individual cortical columns or 

neurons (S. S. Kellis et al., 2009; Khodagholy et al., 2014).  This means that, compared to 

clinical ECoG, the specificity of the recordings is improved because there is less spatial 

averaging and the sensitivity is increased because fewer ionic processes are superimposed 

to produce the signal recorded.  It has been shown that microECoG arrays do improve 

recording specificity by offering better spatial resolution than clinical ECoG grids (S. S. 

Kellis et al., 2009).  

Geometry. MicroECoG grids are frequently custom designs. Microelectrodes are 

sub-millimeter in diameter and are either placed in the interelectrode space of a clinical 

grid or arranged in a manner to study a particular question of interest. Due to their high 

impedance and small recording area, the interelectrode spacing is typically much smaller 

than that of clinical ECoG grids. Interelectrode spacing of 1 mm produces an 

approximate 90% correlation between neighboring electrodes, though large interelectrode 

spacing could allow activity to go undetected (S. S. Kellis et al., 2009; C. a. Schevon et 

al., 2009). 

Placement. Like clinical ECoG, microECoG grids are placed below the skull, but 

do not penetrate the cortical surface. Most often, microelectrodes are either added to the 

inter-electrode spacing of a clinical ECoG grid, or positioned into a separate stand-alone 

grid. The small form factor of microelectrodes and grids typically allow their placement 

within the margins of the craniotomy performed for clinical purposes. Microelectrodes 

that are to be placed underneath the intact bone flap are more difficult due to the 

protrusion of the microelectrodes from the silicon bedding, towards the surface of the 

brain. In these situations, the electrodes are placed through a combination of strategies 
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including slight retraction of the brain as well as copious irrigation underneath the 

grid/microelectrode to "float" the electrodes in place. 

Recording. Though similar to clinical ECoG in many aspects, microelectrodes 

have significantly higher impedance. Impedance is the resistance created by a circuit 

when a current is applied to it and changes based on the frequency of the signal being 

generated. The change in impedance affects many aspects of the recording system used 

and the signals it records. High resistance at the electrode-tissue interface means that the 

recording radius of a microelectrode is significantly smaller than that of a clinical ECoG 

electrode, which is low impedance. A smaller recording radius indicates less spatial 

summation of neuronal activity taking place and therefore smaller signal amplitudes 

recorded that are highly susceptible to noise contamination. To mitigate noise issues, 

proper referencing, grounding, shielding and head-stage level amplification are needed. 

Microelectrodes record surface LFPs and possibly APs, both of which have broad 

and likely over lapping temporal scales (Khodagholy et al., 2014). To ensure high fidelity 

and avoid aliasing of signals, microECoG is typically recorded at a higher frequency than 

clinical ECoG; multiple kilohertz. 
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CHAPTER 3 

AN ALGORITHMIC ADJUNCT TO VISUAL INSPECTION: USING 

EMPIRICAL MODE DECOMPOSITION TO DETECT SEIZURES 

Introduction 

It is estimated that 1 in 26 people in the United States will be diagnosed with 

epilepsy at some point in their lifetime (England et al., 2012).  Although many patients’ 

seizures can be controlled with anti-epileptic drugs, estimates suggest that 22.5% of 

patients with epilepsy are drug-resistant (Patrick Kwan, Schachter, & Brodie, 2011).  For 

these patients, epilepsy surgery utilizing either focal resection or neuromodulation may 

be an effective treatment.  Surgical candidates undergo a series of tests and procedures, 

typically including anatomical and functional imaging and video electroencephalography 

(EEG) monitoring to lateralize and locate a seizure focus.  In the event that the data is 

discordant, surface electrocorticography (ECoG) grids or depth electrodes for certain 

deep foci are placed in the region of the brain thought to be the seizure onset zone.  The 

current “gold-standard” for the evaluation of a patient’s cortical activity is visual 

inspection by an epileptologist.  This process is time consuming, subjective and lacks 

specificity and sensitivity (Binder & Haut, 2013).  The use of a computational algorithm 

to help with the evaluation process could mitigate some of these concerns. 

The inherent subjectivity in the interpretation of EEG signals has been 

acknowledged for over 50 years, yet little has been achieved to improve the process 

(Gerber et al., 2008; Houfek & Ellingson, 1959).  High levels of inter and intra-rater 

variability are confounded by a lack of standardization in the evaluation process across 

centers (Gerber et al., 2008).   While standardizing terminology and training programs 
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may be difficult to establish, using a computational algorithm as a point of 

standardization for the evaluation procedures would have the added benefit of producing 

objective, quantitative results that could be compared across centers (Lehmkuhle et al., 

2009; Lodder & van Putten, 2013). 

Surgical outcomes vary and seem to depend on a number of factors such as the 

extent of resection and the presence of particular pathologies, i.e. hippocampal sclerosis, 

tumors, etc. (Bergen, 2006).  Patients have between a 54.7% to 79.4% chance of seizure 

freedom for 2 years following surgery (Bergen, 2006).  The chance of continued seizure 

freedom drops significantly, to 33%, at 10 years post-resection (Bulacio et al., 2012).  

The continuation or reoccurrence of seizures following resection surgery is generally 

attributed to incomplete resection of the epileptic focus, the development of new, second 

foci, or some underlying epileptogenic network that is not yet understood (Bergen, 2006; 

Bulacio et al., 2012).  All of which indicate outcomes can be improved. 

There may be a micro-scale epileptogenic environment that relates to seizure 

generation and propagation which cannot be detected with standard clinical electrodes (C. 

a. Schevon et al., 2009; Stead et al., 2010; Worrell et al., 2008).  Recording micro-scale 

activity with the same coverage as clinical ECoG grids would require many 

microelectrodes, different equipment, and higher sampling rates than what are used in 

clinical recordings today.  Though this would improve the sensitivity and specificity of 

recordings, it would also significantly increase the amount of data that needs to be 

reviewed and therefore the time it takes for epileptologists to review it.  Even with 

today’s recording technology, computational algorithms may detect subtleties that cannot 

be seen in visual inspection (Gotman, 1983; Lodder & van Putten, 2013; Schindler, 
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Leung, Elger, & Lehnertz, 2007).  Considering the improvements to electrophysiologic 

technology, it is easy to appreciate that computational algorithms may be useful now, but 

will become more standard in the future. 

Computational algorithms have seen some success in assessing seizure activity, 

but none have been adopted into the clinical evaluation process.  Many studies focus on 

the prediction of seizure events using complex mathematics (Aschenbrenner-Scheibe et 

al., 2003; Iasemidis, 2003; Mormann, Andrzejak, Elger, & Lehnertz, 2007; Pardalos et 

al., 2004).  It is worth noting that the goal of this work, however, is not to predict, but 

rather to detect seizure events.  One of the first attempts to detect seizures by quantifying 

differences in seizure and non-seizure data was based on the relatively simple Fast 

Fourier Transforms (FFT) and used phase and coherence calculations to detect small time 

differences between waveforms on different channels (Gotman, 1983).  The related 

wavelet transformation, which attempts to match recorded signals with a pre-selected 

wavelet function, has been used as the basis for many seizure detection algorithms.  

Results from one analysis using changes in power paired with wavelet analysis reports 

100% sensitivity and specificity but was limited to recordings from depth electrodes only 

from patients with mesial temporal foci (Osorio, Frei, & Wilkinson, 1998).  Other 

wavelet methods reported sensitivities ranging from 64% to 88%, depending on the 

wavelet function used (Gutiérrez, Alcántara, & Medina, 2001). 

These frequency and power based algorithms, however, are not designed for use 

on biological signals.  Biological signals, especially those involved with seizure events, 

have highly complex dynamics and are neither linear nor stationary (Bergey & 

Franaszczuk, 2001; Lodder & van Putten, 2013).  Yet, many mathematical algorithms 
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used to analyze biological signals, such as FFT and wavelet transforms, assume that the 

signal is linear and/or stationary and that the signals are composed of specific elements; 

sinusoids and wavelet functions, respectively (Fourier, 1822; Haar, 1911; Norden E 

Huang, 2005).  A clinically useful algorithm will be robust enough to work well on all 

variations of biological signals that may be associated with seizure and non-seizure 

activity, without a priori knowledge about the signal or assumptions that the signals are 

stationary or linear. 

Unlike other algorithms, EMD is data driven and does not rely on a priori 

assumptions of linearity or stationarity; i.e. EMD does not assume that the signal 

maintains a constant slope or the same mean and variance over time (N. E. Huang et al., 

1998; Norden E Huang, 2005).  Recognition that its attributes make EMD well suited for 

the analysis of biological signals has led to its use in seizure detection algorithms 

(Bizopoulos, Tsalikakis, Tzallas, Koutsouris, & Fotiadis, 2013; Li, Zhou, Yuan, Geng, & 

Cai, 2013; Orosco, Laciar, Correa, Torres, & Graffigna, 2009; Pachori & Bajaj, 2011).  

One study using EMD and higher order statistics reported 56.41% sensitivity and 75.86% 

specificity while another paired EMD with machine learning and achieved 100% 

specificity and sensitivity (Alam & Bhuiyan, 2013; Orosco et al., 2009). 

Previous studies used EMD as a pre-processing tool where EMD breaks down a 

signal into multiple component signals, which are then manipulated with complex 

analyses.  Here, it was noted that the number of resulting component signals is a measure 

of how complex the original signal is and that signal complexity changes during seizures 

(Bergey & Franaszczuk, 2001).  By applying EMD iteratively to each data clip and 

counting the number of component signals produced, changes in the signal complexity 
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associated with seizure activity are tracked over time without the need for sophisticated 

calculations.  Though the algorithm presented here is highly iterative, it is mathematically 

simple.  It is hypothesized that this EMD based algorithm could serve as an early 

screening method for seizure detection and facilitate confirmatory clinical observations. 

Materials and Methods 

Patients. The Phoenix Children’s Hospital and Arizona State University 

Institutional Review Boards approved this study, with a waiver of consent.  All data and 

information were collected after the patient left the hospital and was de-identified prior to 

use. 

ECoG data from eight patients admitted to the pediatric epilepsy monitoring unit 

(PEMU) at Phoenix Children’s Hospital (PCH) (Phoenix, AZ, USA) were collected.  The 

placement of subdural grids and subsequent monitoring was performed as standard of 

care for Phase II evaluation of children with treatment resistant epilepsy to localize a 

seizure focus and determine the suitability for respective surgery.  The data were 

recorded with an XLTEK EMU128FS (Natus Medical Incorporated, San Carlos, CA,  

USA) at a sampling frequency of 500 Hz.  The data were visually reviewed and annotated 

to identify seizure onset times and locations by epileptologists, per clinical standard of 

care. 

Datasets. The recorded data were broken down into 136 ten-minute long clips. 

There were 68 seizure clips that were centered on a clinically determined seizure onset 

times, and 68 associated non-seizure clips. To avoid biasing the data towards a particular 

patient, no more than 15 seizure clips were extracted for each patient. For all but 12 

seizures, the non-seizure data clips were taken 40-30 minutes prior to each seizure onset 
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time. In these 12 instances, because data 40-30 minutes prior to the seizure were not 

available, the non-seizure clips were extracted from non-seizure time epochs as allowed 

by the data recordings.   

Analysis. All analyses were performed using MATLAB (MathWorks 

Incorporated, Natick, MA, USA).  Prior to applying EMD, the signals for each grid were 

common average re-referenced (CAR) (Ludwig et al., 2009).  

Empirical mode decomposition. Empirical mode decomposition (EMD is an 

algorithm that was developed to iteratively decompose complex waveforms into intrinsic 

mode functions (IMF).  IMFs are oscillatory signals with variable amplitude and 

frequency as functions of time (Norden E Huang, 2005).  EMD is data driven and will 

continue to decompose the signal into IMFs until the signal becomes monotonic or falls 

below a user-defined threshold. Therefore, the number of IMFs produced by EMD 

depends on the amount of complexity with respect to frequency and amplitude in the 

signal.  EMD assumes that the data consist of at least one maximum and one minimum, 

the characteristic time scale is defined by the time difference between the extrema and 

that if the data lack extrema, differentiation could reveal maxima and minima (N. E. 

Huang et al., 1998).  EMD is typically applied in conjunction with the Hilbert Spectral 

Analysis in the Hilbert-Huang Transform (HHT) and is used to study nonlinear and 

nonstationary wave dynamics.  EMD is well qualified for the analysis of biological data 

because it does not require stationarity or linearity of the signal, is data driven and does 

not assume that the signal consists of defined components such as sinusoids or wavelets, 

and does not need prior knowledge of the signal (Fourier, 1822; Haar, 1911; Norden E 

Huang, 2005). 
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To begin the decomposition process, local maxima and local minima are 

connected with two cubic spline interpolations to generate maxima and minima 

envelopes of the primary data, 𝑥! 𝑡 .  The mean of these envelopes, 𝒎!, is then 

calculated and subtracted from the primary data (Figure 3.1). 

𝒉! = 𝑥! 𝑡 −𝒎!     (3.1) 

The resulting vector, 𝒉!, represents the first potential IMF of the decomposition process.  

𝒉! is considered an IMF if :  

(1) The number of extrema and zero crossings in 𝒉! differ at most by one 

(2) The mean of the envelopes of 𝒉! is zero at any point. 

If 𝒉! does not meet the IMF criteria above, 𝒉! is re-processed until it becomes an IMF.  

𝒉! = 𝒉 !!! −𝒎!     (3.2) 

where 𝑗 = 𝑗 + 1, or six consecutive iterations occur in which 𝒉!has the same number of 

zero crossings and extrema, and the two values differ at most by one for six consecutive 

iterations.  Then, 

𝑰𝑴𝑭! = 𝒉!        (3.3) 

where 𝑘 = 1  , 2…. .  𝑰𝑴𝑭! is then subtracted from the primary data leaving residual data, 

𝑅! 𝑡 = 𝑥! 𝑡 − 𝑰𝑴𝑭!                                      (3.4) 

The decomposition is considered complete when the residual, 𝑅! 𝑡 , is “less than the 

predetermined value of substantial consequence” or becomes monotonic (Norden E 

Huang, 2005).  If the residual data exceeds this value of substantial consequence, the  
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residual data becomes the primary data and is reintroduced into the beginning of the 

EMD process (Figure 3.1 D). 

𝑥!!! 𝑡 = 𝑅! 𝑡         (3.5) 

For this analysis, the process was stopped when the residual fell below a mean peak-to-

peak amplitude of 20 µV or a frequency of 2 Hz.  These stopping criteria were used to 

ensure that biological data above the noise floor of the amplifier was being analyzed. 

Seizure detection. EMD was applied to each data clip and each electrode 

separately.  EMD analysis was performed using a sliding window of 5 s in length, with a 

step size of 3 s.  The number of IMFs resulting from EMD in each 5 s window was then 

tabulated to produce a time evolving IMF trace for each electrode (Figure 3.1 C).  Two 

thresholds were established, one for each individual electrode and one for the population 

of all electrodes (Figure 3.1 C & D).  Electrographic events were identified by 

considering changes in the number of IMFs generated for each individual electrode.  

Potential seizures were marked based on patterns in increases in the number of IMFs 

across the population of all electrodes in a given clip. 

To determine an individual electrode threshold, the mean and mode of the number 

of IMFs per 5 s window were calculated.  The larger of the two measures served as a 

threshold.  Next, windows that contained more IMFs than the threshold were found.  

When a number of IMFs per window was greater than the threshold, persisted for at least 

four consecutive windows (14 s) and occurred fewer than 40 times (2 mins and 2 s) in the 

data clip, an electrographic event was marked for that electrode.  If a particular number of 

IMFs per window was greater than the threshold, but occurred more than 40 times during 

the 10 min clip, it was considered part of the general activity recorded and became the 
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new threshold for that electrode instead of an electrographic event.  The onset time of an 

electrographic event on an electrode was noted as the median time of the first of the four 

consecutive windows containing the elevated number of IMFs.  Electrographic events 

that occurred more than 1 min apart were considered separate events. 

An electrographic event on a single electrode is unlikely to represent seizure 

activity. Therefore temporal clustering of electrographic events across many electrodes 

was used to detect potential seizure activity. If the number of electrodes on which 

electrographic events occurred within 30 s of each other exceeded the population 

threshold of seven, then a potential seizure was considered detected.  The middle of the 

30 s window in which the threshold was crossed was marked as the potential seizure 

onset time.  A population threshold of seven was used after multiple numbers were tested 

during the development of the algorithm as an informal optimization method.  Onsets 

separated by more than 5 min were considered to be separate potential seizure detections. 

Seizure times used were taken from notes made by the epileptologist during the 

visual review process, without a prompt to mark precise onset times.  Therefore, a broad 

timeframe of +/-5 min of the seizure time noted was used to classify potential seizure 

onsets as detected by the EMD based algorithm as true positives.  Potential seizures 

detected by the EMD algorithm in non-seizure clips were considered false positives.  

When multiple potential seizures were detected in a clip by the EMD based algorithm, 

the clip was labeled a true positive and the potential seizure onset time closest to the 

clinically determined onset time was used in the remainder of the analyses. 
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Statistical analysis. The two-sample Kolmogorov-Smirnov (KS) test was used to 

demonstrate that there was a significant difference between the number of IMFs that 

occurred during a potential seizure and the number of IMFs that occurred during non-

seizure activity for the same patient.  The comparison was made between 2 mins of data 

from seizure and non-seizure clips from the same patient.  The 2 mins of data from 

seizure clips began at the potential seizure onset time and was averaged across the 

electrodes involved in the seizure for that clip.  Non-seizure data were taken from the 

center of each non-seizure clip and averaged across all electrodes. 

To determine the performance of EMD at seizure detection, sensitivity and 

specificity calculations were performed based on the true positive and false negative 

labeling of each clip.  Rates were determined on a patient-by-patient and overall patient 

population basis. 

 



 31 

 



 32 

Figure 3.1. Algorithm flow diagram. A graphical representation of the windowed EMD 

algorithm and thresholds.  The raw data that is broken down into 10 min clips, then 

denoised using common average re-referencing.  EMD is then applied to a 5 s window of 

data 𝑥! 𝑡  (black).  Maximum and minimum envelopes (green) and the mean of the 

envelopes 𝒎! (red) are calculated, then the average (red) is subtracted from the data 

(black).  If the difference 𝒉! (blue) meets the criteria of an IMF, it is then subtracted from 

the original data (black) leaving residual data.  If the difference does not result in an IMF, 

the difference is enveloped and the process repeats until an IMF is created (process not 

show in figure).  The residual data is then set as the data (Equation 3.5) and the 

decomposition proceeds.  The process continues until the average peak to peak amplitude 

of the residual data falls below 20 mV or the average frequency is below 2 Hz.  The 

number of IMFs produced from EMD are then tabulated to determine the individual 

electrode threshold (green dashed line).  Finally, threshold crossings on all electrodes 

within a 10 min data clip are evaluated.  When seven or more population threshold 

crossings occur within the same 30 s, a potential electrographic event onset (blue dashed 

line) is marked as the middle of that 30 s window. 

 

Results 

Data from eight patients with varying ages, grid locations and etiologies when 

undergoing ECoG monitoring for treatment resistant epilepsy were collected.  Table 1 

summarizes the clinical data pertaining to the patients.  For all tables and figures, patients 

highlighted in grey had seizure onset zones localized to depth electrodes by the reviewing 

epileptologist. 
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Table 3.1   
Patient Information 

 
Patient #           

(age-gender) Pathology  Implant Location  
Seizure Onset  

Zone 

        
 
 
 
 
 

1  14 years 
female 

Dysembryoblastic 
Neuroepithelial Tumor & 
Focal Cortical Dysplasia 

Palmini Type IIIB 
 

Surface:  Left posterior 
temporal with occipital and 

parietal coverage 
Depth:  Sub-temporal 

 
 
 

 Left temporal 

       

 
2  15 years 

male 
Focal Cortical Dysplasia 

Palmini Type IIA  

Surface:  Interhemispheric 
fissure (double-sided), left 
occipital, superior parietal 

and lateral temporal 
 

Left/midline 
occipital 

       

 
3  17 years 

male 
Focal Cortical Dysplasia 

Palmini Type IIA  

Surface:  Interhemispheric 
fissure (double-sided), left 

convexity (front and 
temporal) 

Depth: Mesial Frontal 

 
Left hemispheric 
(depth electrode) 

       

 
4  14 years 

male 
No resection 

  

Surface:  Left angular gyrus, 
orbitofrontal and sub-

temporal 
Depth:  Insular regions 

 

Left posterior 
insula/post-central 

gyrus (depth 
electrode) 

      

 
5  20 years 

male Ammon’s Horn Sclerosis  

Surface:  Left convexity 
(frontal and temporal), 

temporal (anterior, mid and 
posterior) and superior 

frontal 

 
Left mesial 
temporal 

       

 
6  2 years 

male 

Low-Grade Glioma & 
Focal Cortical Dysplasia 

Palmini Type IIIB 
 

 

Surface:  Centered on left 
Sylvian fissure, sub-temporal 

Depth:  Mesial temporal 
 

 

Multifocal in left 
hemisphere (depth 

electrode) 
       

 
7  9 years 

male 
Focal Cortical Dysplasia 

Palmini Type IIA  

Surface:  Right temporal, 
sub-temporal and 

orbitofrontal 
Depth: Insular regions and 

hippocampus 

 

Right sub-temporal 
and some lateral 

temporal 

       

 
8  14 years 

male 
Focal Cortical Dysplasia 

Palmini Type IIIB  

Surface:  Interhemispheric 
fissure, left central cortex 
Depth:  Mesial left central 

cortex 
 

High left central 
midline (depth 

electrode) 
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The EMD based algorithm was able to detect events on individual electrodes from 

seizure clips from each patient, despite variations in electrographic morphology (Figure 

3.2).   

 

 

Figure 3.2. Electrographic data and IMFs resulting from windowed EMD of seizure 

clips. Examples of single electrode electrographic data and the number of IMFs resulting 

from EMD on seizure clips from each patient.  The solid red line marks the seizure onset 

time noted by the reviewing epileptologist. The dashed blue line marks the onset of the 

electrographic event as detected with EMD.  Patients highlighted in grey had clinically 

determined seizure onset zones localized to depth electrodes. 
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A total of 2064 electrographic events were detected on the 787 electrodes used to 

record from the eight patients studied during the 68 seizure clips (Table 3.2). 

 

Table 3.2   

EMD Threshold Results from Seizure Clips 

   
Electrographic Events Potential Seizures 

Patient Electrodes Seizure 
Clips Total Mean Abs 

Offset (s) 
Offset 
SD (s) Total Mean Abs 

Offset (s) 
Offset 
SD (s) 

P1 98 5 228 70.17 21.41 5 9.60 6.50 

P2 118 3 95 80.77 52.12 3 87.00 81.00 

P3 120 6 206 67.46 56.42 6 120.50 57.47 

P4 94 10 111 66.73 59.20 4 5.25 1.50 

P5 89 13 517 53.88 57.41 13 25.38 24.05 

P6 88 10 299 70.61 61.23 6 61.50 30.99 

P7 90 15 476 98.72 23.97 14 18.00 12.17 

P8 90 6 132 67.75 34.20 3 20.00 4.58 

*SD = standard deviation; Abs = absolute value 

 

Fewer  (n = 784) electrographic events detected in the 68 non-seizure clips (Figure 3.3 

and Table 3.3).  A breakdown of the events detected per patient during seizure clips and 

how they related to clinical marks is given in Table 3.2.  The mean number of 

electrographic events detected per seizure clip ranged from 11.1 for Patient 4 to 45.6 for 

Patient 1 (Figure 3.4).  The mean of the absolute values of all offset times between the 

clinically determined seizure onset time and the time of electrographic events detected 
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was 72.93 s SD ± 44.92 s (Table 3.2).  The mean of the absolute values of the time 

differences between potential seizures detected with EMD and the clinically noted onset 

time was 43.34 s SD ± 27.28 s (Table 3.2).  Of the 54 potential seizures detected by EMD 

in seizure clips, 19 were detected before the clinically noted seizure onset time. 

 

 

Figure 3.3. Electrographic data and IMFs resulting from windowed EMD of non-seizure 

clips. Examples of single electrode electrographic data and the number of IMFs resulting 

from EMD on non-seizure clips from each patient.  Patients highlighted in grey had 

clinically determined seizure onset zones localized to depth electrodes. 
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Table 3.3   

EMD Threshold Results from Non-Seizure Clips 

 

Most (91.13%) of the electrographic events detected were on surface electrodes.   

Of the 787 electrodes used to record from the eight patients studied, 96 (12.2%) were 

depth electrodes, yet only 8.87% of the 2064 electrographic events detected were on 

depth electrodes.  There were no potential seizure onsets detected by the EMD based 

algorithm that only included electrographic events detected on depth electrodes. 

Clinically determined mesial onsets accounted for 12 of the 14 false negative 

classifications. There were a total of 45 seizures analyzed that were localized to surface 

electrodes by the epileptologists. The EMD based algorithm detected 95.56% of these 

seizures.  The algorithm detected 52.17% of seizures localized to depth electrodes. 

Seizure onsets localized to surface electrodes by visual inspection gave a more 

Patient Electrodes Non-Seizure 
Clips 

Total 
Electrographic 

Events 

Total   Potential 
Onsets 

P1 98 5 28 0 

P2 118 3 55 2 

P3 120 6 103 4 

P4 94 10 32 0 

P5 89 13 108 2 

P6 88 10 103 5 

P7 90 15 257 6 

P8 90 6 30 0 
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pronounced detection result by the EMD based algorithm than seizures with clinically 

determined mesial onsets (Figure 3.4 and 3.5). 

Potential seizure onsets were found in 54 of the 68 seizure clips analyzed, 

resulting in an EMD sensitivity of 79.41%. Of the 14 false negative clips (seizure clips in 

which the EMD based algorithm failed to detect a seizure detected by the epileptologist), 

12 clips contained data from seizures for which the epileptologist listed depth electrodes 

as the onset location.  Potential seizures were detected in 14 of the 68 non-seizure clips 

by the EMD based algorithm.  The overall specificity of the EMD based algorithm was 

79.41%, with a mean false positive rate of 1.24 FP/hr.  Examples of non-seizure results 

can be found in the (Figure 3.6 and 3.7). The patient-by-patient specificity and sensitivity 

information is shown in Table 3.4.  With the exception of the 14 seizure clips in which 

the EMD based algorithm failed to detect a seizure, the number of IMFs per window 

associated with the potential seizures was significantly different from the number of 

IMFs per window from non-seizure activity (Table 3.4). 



 39 

  

Figure 3.4. Electrode threshold crossings in all seizure clips from P1, P2, P3, and P4. 

Electrode threshold crossings were more common on surface electrodes compared to 

depth electrodes.  All threshold crossings for all patients (n = 8) during all seizure clips 

analyzed (n = 68) are shown relative to the clinically determined onset time, denoted by 

the red vertical line. The different symbols and line types correspond with the different 

seizure clips. The seizure onset zone was localized to depth electrodes for P3 and P4. 
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Figure 3.5. Electrode threshold crossings in all seizure clips form P5, P6, P7, and P8. 

Electrode threshold crossings were more common on surface electrodes compared to 

depth electrodes.  All threshold crossings for all patients (n = 8) during all seizure clips 

analyzed (n = 68) are shown relative to the clinically determined onset time, denoted by 

the red vertical line. The different symbols and line types correspond with the different 

seizure clips. The seizure onset zone was localized to depth electrodes for P6 and P8. 
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Figure 3.6.  Electrode threshold crossings in all non-seizure clips from P1, P2, P3, and 

P4. All threshold crossings for each patient during all (n = 68) non-seizure clips 

(designated by the different symbols) analyzed are shown. P3 and P4 had seizures that 

were localized to depth electrodes by the reviewing epileptologist. 
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Figure 3.7. Electrode threshold crossings in all non-seizure clips from P5, P6, P7, and P8. 

All threshold crossings for each patient during all (n = 68) non-seizure clips (designated 

by the different symbols) analyzed are shown. P6 and P8 had seizures that were localized 

to depth electrodes by the reviewing epileptologist. 
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Figure 3.8. Population thresholds of single seizure clips. EMD detected onsets across all 

electrodes and the resulting population threshold to find seizure candidates. The solid red 

line marks the seizure onset time noted by the reviewing epileptologist. The dashed blue 

line marks the EMD detected seizure onset time which is considered when the number of 

IMFs per window is greater than the individual electrode threshold on at least seven 

electrodes in the same 30 s period.  Patients highlighted in grey had clinically determined 

seizure onset zones localized to depth electrodes. 

 

EMD performed better on data from some patients than others.  This was apparent at the 

population level (Table 3.2) as well as the electrographic event level (Figure 3.8).  The 

mean number of electrographic events per seizure clip ranged from 11.1 for P4 to 45.6 

for P1.  This matched the order of sensitivity levels of EMD at seizure detection (a result 
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of the population threshold), with P4 having the lowest mean sensitivity of 40.00% and 

P1 having 100.00% (Table 3.4). 

 

Table 3.4   

EMD Seizure Detection 

Patient Seizure 
Clips TP FN 

Non-
Seizure 
Clips 

FP TN Sensitivity 
(%) 

Specificity 
(%) 

Mean       
P-Value 

P1 5 5 0 5 0 5 100.00 100.00 1.40x10-6 

P2 3 3 0 3 1 2 100.00 67.00 7.08x10-6 

P3 6 6 0 6 3 3 100.00 50.00 1.07x10-5 

P4 10 4 6 10 0 10 40.00 100.00 1.88x10-14 

P5 13 13 0 13 1 12 100.00 92.00 8.94x10-5 

P6 10 6 4 10 3 7 60.00 70.00 2.21x10-4 

P7 15 14 1 15 6 9 93.00 60.00 3.23x10-5 

P8 6 3 3 6 0 6 50.00 100.00 3.97x10-8 

TP = true positive; FN = false negative; FP = false positive; TN = true negative 

 

The mean number of IMFs per window that occurred in electrographic events 

involved with a potential seizure detected in a seizure clip was compared to the mean 

number of IMFs across all electrodes in non-seizure clips.  For all true-positive seizure 

detections (n=54 out of 68), the differences in the comparisons were significant for all 

seizure clips, at a 99.5% confidence level. 

Discussion 

 Algorithms for biological signals. The findings demonstrate that an EMD based 

algorithm could be used as a seizure detection tool.  Unlike other algorithms, the method 
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presented here is data driven, does not require that the signal is linear or stationary, does 

not need a priori knowledge of the signal and is mathematically simple.  Though EMD 

does assume that the signal consists of oscillatory modes, i.e. waveforms that satisfy the 

criteria of an IMF, this is a less strict assumption than Fourier transforms assuming a 

signal consists of sinusoids and wavelet transforms assuming the signal contains a 

specific wavelet waveform. Using an EMD based algorithm to mark potential seizures 

prior to the visual review process may reduce the amount of data an epileptologist needs 

to review and therefore the amount of time spent reviewing those data.  Further, the 

potential seizures would objectively and quantitatively be identified.  This could help to 

decrease the amount of intra- and inter-rater variability and to standardize the review 

process by providing data that could easily be compared across centers (Binder & Haut, 

2013; Gerber et al., 2008).  Beyond the PEMU, this sort of algorithm could be even more 

useful in the evaluation of critically ill patients undergoing monitoring in the intensive 

care unit, where non-convulsive seizures are common and immediate treatment is critical 

(Gerber et al., 2008). 

Differences between the clinically noted seizure times and the start of potential 

seizures detected by the EMD based algorithm had high standard deviations.  This likely 

reflects multiple sources of variance. The EMD based detection algorithm has its own 

inherent variance as do each of the reviewing epileptologists. Additionally, the reviewing 

epileptologists were not requested to mark the precise beginning of seizures, and may 

have been marking times that reflect a general timeframe of interest before or during the 

seizure. 
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When compared to seizure onsets detected with visual inspection, the EMD based 

algorithm was able to detect clinically marked seizures that were not obvious from 

electrocorticography data (Figure 3.2).  It also found potential seizures in non-seizure 

data (Figure 3.9 and 3.10).  While some false positive detections appear to be due to 

general noise that happened to temporally align, others have compelling electrographic 

waveforms that suggest seizure activity that was not marked during visual inspection 

(Figure 3.10).  These false-positive detections may have been missed, but could also be a 

result of the patient having highly stereotyped seizures in which case the epileptologist 

reviewed all seizures but stopped marking them after they had sufficient data to base a 

diagnosis. 
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Figure 3.9. Population thresholds of single non-seizure clips. EMD detected onsets across 

all electrodes and the resulting population threshold to find seizure candidates. The 

dashed blue line marks the EMD detected seizure onset time which is considered when 

the number of IMFs per window is greater than the individual electrode threshold on at 

least seven electrodes in the same 30 s period.  Patients highlighted in grey had clinically 

determined seizure onset zones localized to depth electrodes. 
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Figure 3.10. False positive detection comparison. Examples of false positives potential 

seizures detected with the EMD based algorithm and electrographic data from one 

electrode that crossed the threshold during the potential seizure.  The dashed blue line 

marks the threshold crossing. 

 

IMFs. Signals analyzed in this study showed a change in complexity at seizure 

onset.  The number of IMFs produced by EMD increased at the beginning of a seizure, 

when compared to non-seizure activity on the same electrode. Since the number of IMFs 

is a result of the amount of variation in the frequency and amplitude content of the signal, 

this suggests that there was a significant change in the signal complexity during potential  
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seizures when compared to non-seizure activity. Similar changes in signal complexity 

associated with seizure activity have been measured based on signal energy (Bergey & 

Franaszczuk, 2001). 

IMFs have physical meanings in other applications (Norden E Huang, 2005) and 

features of IMFs, such as mean frequencies and energy content, have been used in seizure 

detection (Alam & Bhuiyan, 2013).  It is possible that, considering the structure that is 

apparent in the IMFs created by EMD (Figure 3.1), there is some relevant biological 

meaning in the IMFs that could be useful in seizure detection or studies of 

epileptogenesis. 

Depth electrodes. The EMD based algorithm used here performed notably better 

on some patient’s data than others.  This does not appear to be associated with differences 

in grid location or etiology, but rather the type of electrode to which the seizure onset was 

localized.  Specifically, the algorithm detected 43 of the 45 seizures that were localized to 

cortical surface electrodes during visual inspection, but only 12 of the 23 seizures on 

depth electrodes. Tissue, signal and electrode differences could account for the change in 

detection efficacy observed. 

  Depth electrodes record activity from deep areas of cortex that is fundamentally 

different from the activity recorded by surface electrodes (Buzsáki et al., 2012; Zumsteg 

& Wieser, 2000).  Others have noted differences in patterns, duration and frequency of 

high-frequency oscillations (HFOs) recorded from the cortical surface that were not 

present in HFOs recorded on depth electrodes (Jirsch et al., 2006).  It is possible that 

there are underlying differences in seizure activity originating from mesial areas when 

compared to neocortical locations.  Such differences may account for the presence or 
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absence of complexity changes detected with the EMD based algorithm.  Some seizures 

that started on depth electrodes were successfully detected with the EMD based 

algorithm.  This could be an indication of the extent to which the seizure activity spreads 

or generalizes. 

 Conclusion. Algorithmic adjuncts to visual inspection could help to objectively 

identify changes in cortical activity that may be associated with seizures. It is important, 

however, that these algorithms employ methods that are appropriate for use on biological 

data. EMD does not assume linearity, stationarity, or signal composition and is data 

driven. Further investigation and re-parameterization of the EMD based algorithm 

developed and tested here could improve the sensitivity and specificity of the method, as 

well as elucidate additional applications for the algorithm, such as studying the 

propagation of seizure activity. Ultimately, to be accepted into clinical use, any algorithm 

will need to be extensively tested and validated as well as highly specific, sensitive, and 

robust. 
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CHAPTER 4 

OBTAINING HIGH QUALITY SIGNALS FROM MICROELECTRODES 

Introduction 

Electrocorticography (ECoG) was developed in the 1930’s as a method to localize 

seizure activity (Almeida et al., 2005; Penfield, 1939). The design and technique of 

ECoG has remained essentially unchanged since its introduction and is still a critical part 

of pre-surgical monitoring for patients with treatment resistant epilepsy. Our 

understanding of the structure of the cortex, however, has changed since ECoG was 

introduced.  

The neocortex is composed of columnar structures made of highly interconnected, 

vertically arranged neurons that act as small functional units and have diameters of 300 to 

600 µm (Hubel et al., 1977; V. B. Mountcastle, 1997; V. Mountcastle, 1978). Yet, a 

clinical ECoG electrode records from approximately 20 mm (Menon et al., 1996). The 

size discrepancy between the scale of cortical computational units and the current clinical 

recording methods represents an opportunity to improve the specificity of 

electrophysiological recordings from the cortex. Recognition of this possibility has 

increased interest in the use of microECoG grids (electrode diameter < 1mm). 

Microelectrodes record local field (LFP) and possibly even action potentials (AP) 

with amplitudes too small to be detected by larger macroelectrodes (diameter >1mm) 

(Buzsáki et al., 2012; Khodagholy et al., 2014). The precise biophysics and neural 

circuitry underlying the generation of LFPs is still unknown. Single impulse signals from 

micro-stimulation transmit through neural tissue by volume conduction so that neural 

tissue can be modeled as an isotropic resistive medium (Logothetis, Kayser, & 
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Oeltermann, 2007). However, endogenous LFPs arise from many signal generators and 

propagate through highly tortuous neural tissue likely by volume conduction, ephaptic, 

and synaptic mechanisms (Anastassiou et al., 2011; Hales & Pockett, 2014). Regardless 

of the underlying mechanisms, it is clear that microelectrodes offer improved spatial 

resolution compared to standard clinical ECoG grids and can detect distinct, functionally 

and clinically relevant cortical activity (S. S. Kellis et al., 2009; S. Kellis et al., 2010, 

2015; Khodagholy et al., 2014; Leuthardt et al., 2009; Pesaran, Pezaris, Sahani, Mitra, & 

Andersen, 2002; C. a. Schevon et al., 2009; Stead et al., 2010; Wang et al., 2009).  

Similar to ECoG grids, microECoG grids are implanted in the subdural space with 

a pigtail connector routed through the craniotomy, allowing a percutaneous interface to 

an external amplification and recording system. However, microECoG cannot be treated 

like ECoG because the change in electrode size has non-trivial implications on the signals 

recorded and, subsequently, the equipment needed to record them with high fidelity. 

Impedance is the amount of resistance generated by a circuit to a current when a 

voltage is applied to that circuit and varies with frequency. In concert with the electrode 

diameter, the electrode impedance determines the volume of cortical tissue from which 

an electrode records signals. Generally, a small electrode, such as a microelectrode, has 

much higher impedance (~105 Ω at 1 kHz), records from a smaller volume of tissue and  

can detect cortical signals of smaller amplitudes than a clinical macroelectrode 

(impedance ~101 Ω at 1 kHz) which records from a large volume of cortex (~20 mm in 

any direction) (Menon et al., 1996; C. A. Schevon et al., 2008; Stacey, Kellis, Patel, 

Greger, & Butson, 2012; Stead et al., 2010).  
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The particulars of the recording method used become important when recording 

with microelectrodes where the signals are highly susceptible to noise contamination. 

ECoG and microECoG recordings use a reference and ground electrode, i.e. pseudo-

differential recording. The goal of using a reference is to optimize noise removal at the 

amplifier using common mode rejection (CMR). To do this, reference electrodes should 

be lower impedance than and located close to the recording electrode(s) they are coupled 

with. Further, the wires should travel along the same path through space so they are 

exposed to the same electromagnetic field noise. The voltage recorded using pseudo-

differential recording is the difference between the reference and signal electrode, both of 

which are tied to a common ground, however, the reference is shared between multiple 

recording electrodes. Pseudo-differential recording combines the advantages of single-

ended and differential recording. Single-ended recording is the simplest method and uses 

only one electrode. Each signal recorded is tied to a common system ground that is used 

for CMR at the amplifier. In differential recording, the signal recorded is the voltage 

difference between a reference and signal electrode that are both tied to the same ground. 

While differential recording is ideal and is useful where electrical noise is present, it 

requires twice as many electrodes as single-ended recording and becomes impractical in 

high channel count recordings.  

High impedance electrodes also necessitate changes in the specifications and 

position of the amplifier. To minimize the amount of 50/60 Hz noise, microphonics and 

other interferers picked up by the wires, the distance between the recording electrode(s) 

and the amplifier should be minimized (Harrison, 2008). This is typically accomplished 

with two amplifiers, the first of which, referred to as the head-stage, is physically small, 
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positioned as close as possible to the recording site, have a high input impedance, 

common-mode rejection ratio (CMRR) and dynamic range, low input-referred noise and 

dc input current, and the ability to block dc offsets. The CMRR refers to how much of the 

signal common to both the reference (or ground) and signal electrode is removed during 

CMR. The input-referred noise, which includes all of the voltage and current sources 

within the amplifier itself that generate noise, should be low enough to capture the 

smallest amplitudes of an LFP and have a dynamic range large enough to record the full 

range of an LFP (Harrison, 2008). DC offsets present at the electrode-tissue interface 

need to be blocked to prevent input voltages that exceed output capabilities (Harrison, 

2008; Mohseni & Najafi, 2004). Further, input current multiplies with the electrode-tissue 

impedance and generates a voltage that causes an error between the real and acquired 

signal and increases the offset error for the circuit. To minimize this offset, the DC input 

current from the amplifier should be negligible. Finally, to maximize voltage transfer, the 

transfer function across the voltage divider created by the electrode and amplifier should 

be maximized (Stacey et al., 2012). The transfer function is defined by the ratio of the 

output to input voltage of the voltage divider and is ideally unity (Stacey et al., 2012). In 

electrophysiology, maximum voltage transfer is achieved by having significantly higher 

impedance at the amplifier compared to the electrode, thus creating a large voltage drop 

across the amplifier compared to the voltage drop across the electrode and recorded 

signals as close as possible to the original signal (Harrison, 2008; Nelson, Pouget, Nilsen, 

Patten, & Schall, 2008; Stacey et al., 2012). If the electrode impedance is not negligible 

compared to the amplifier input impedance, frequency-dependent attenuation and phase-

shifts may result (Nelson et al., 2008). It is important to note that recording from 
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microelectrodes with a clinical system can lead to significant waveform distortion, noise 

introduction and ultimately confused interpretation of signals due to the mismatch of 

impedances between the electrodes and amplifier (Stacey et al., 2013, 2012). 

Ideally, wires exiting the head-stage amplifier should be bundled together, with 

the ground wire, into a single cable, to ensure that they traverse the same path through 

space and are exposed to the same noise as they travel to the second-stage amplifier, 

which performs a second round of CMR and increases the gain of the signals. For 

electrophysiological recordings, a ground does not refer to earth-ground. Ground refers to 

a patient-based, low impedance electrode used to record broadband noise from the brain 

and placed further from the recording electrode(s) than the reference electrode. A patient-

based ground electrically isolates the electrodes and the patient from earth ground. 

The second stage amplifier should have a high CMRR with which it performs 

CMR between the output signal of the head-stage amplifier and that recorded on the 

ground electrode. To record APs and LFPs, the second stage amplifier should have the 

ability to amplify signals between 10 and 5,000 Hz (Harrison, 2008). Recall the Nyquist 

Theory to avoid under sampling and aliasing. Nyquist theory states that the highest 

frequency that can be resolved is half the sampling frequency used to record the data 

(Nyquist, 2002). The amplifier must also accommodate potentials on the order of 

hundreds of millivolts. If the amplifier does not have a sufficient voltage range, saturation 

and loss of information can occur. Lastly, the amount of noise an amplifier adds to the 

recorded signal, or the noise floor, should be below the amplitude of the 

electrophysiological signals recorded; hundreds of nano-Volts (Schalk & Leuthardt, 

2011). 
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Shielding can further improve signal quality. Shielding reduces the amount of 

electromagnetic noise picked up by the wires as they travel through space by insulating 

each wire individually then wrapping all of the insulated wires together in a conductive 

layer. Reference and ground electrodes are tied to the conductive layer, effectively 

creating a signal that contains all system noise that may have been picked up on the 

recording electrodes. CMR can then remove noise from the recorded signal in a single 

stage of amplification. Shielding adds considerable bulk to the overall size of the wire 

bundle and reduces the number of wires and thus, electrodes that can practically be used. 

Finally, the recorded signals are digitized. Many systems combine the second-

stage amplifier and a digitizer into a single piece of equipment. Once a signal has been 

digitized, it can be sent significant distances without the risk of noise contamination. The 

resolution of the analog to digital conversion and the resulting data file size depends on 

the bit depth of the converter. The bit depth refers to the number of bits used to represent 

a sample. Electrophysiological signals recorded with microelectrodes attenuate as 

frequency increases so a bit depth of at least 16-bit should be used to ensure adequate 

resolution (Schalk & Leuthardt, 2011). 

A number of critical aspects need to be considered when designing and recording 

from microECoG grids. Here, these considerations are presented in a step-by-step 

description of how to obtain high quality signals from microelectrodes and experiments 

are performed to show the importance of these aspects.   
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Protocol 

Procedures involving subjects have been approved by the Institutional Review 

Board at Phoenix Children’s Hospital. 

Grid design. 

Electrode diameter. Choose an electrode diameter. An electrode that records from 

a volume of tissue similar in scale to that of the cortical process being studied should be 

considered to avoid volume conduction and spatial averaging of signals. Note that the 

electrode diameter affects the impedance of the electrode, which in turn affects other 

system components. 

Choose an electrode diameter. An electrode that records from a volume of tissue 

similar in scale to that of the cortical process being studied should be considered to avoid 

volume conduction and spatial averaging of signals. Note that the electrode diameter 

affects the impedance of the electrode, which in turn affects other system components. 

Determine desired inter-electrode spacing. Ideally, an electrode grid will capture 

all of the cortical signals within its recording radius while each electrode within the grid 

records unique signals. Too large of an inter-electrode spacing can allow important 

signals to go unrecorded while too small of a space results in oversampling and high 

correlation between the signals recorded on the electrodes (S. Kellis et al., 2015; 

Khodagholy et al., 2014; Rubehn, Bosman, Oostenveld, Fries, & Stieglitz, 2009; Stead et 

al., 2010). Note that the ideal inter-electrode spacing will change with electrode diameter 

and application. 
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Position at least one low impedance reference electrode within the same grid and 

in close proximity to the recording electrodes it is coupled with. Specify wire routing 

such that reference electrodes are connected to consistent locations on the grid pigtails, 

which correspond to the reference input on the head-stage (described in 2, below) that 

will be used. When multiple references are included, assign recording electrodes to each 

based on spatial proximity. 

Consider ground electrode location and wiring. Having a ground electrode within 

the grid and routing the ground wire through the head-stage and to the second stage 

amplifier in the same cable as the recording and reference electrodes is preferable as it 

ensures the wires traverse the same path through space and will be subject to the same 

noise. A less desirable, but functional method would use an off-grid ground that is 

brought into either head-stage or second stage amplifier separately. 

Head-stage. Design or purchase pigtail connectors that enable head-stage level 

amplification. The amplifier used in the head-stage should have low input-referred noise 

(ideally <1µVrms), a large dynamic range (at least +/- tens of mV), negligible DC input 

current, the ability to block DC offsets (typically around 1-2V), a high CMRR, and an 

input impedance that is significantly higher than the electrodes (at least 1 GΩ) (Nelson et 

al., 2008; Stacey et al., 2012). Test each input on the head-stage using a signal generator 

and the recording system. 

Obtain a channel map. Be sure that the layout of the inputs on the head-stage is 

correct, especially that the reference and ground input locations match the pigtail contact 

wired to those electrodes. 
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Equipment positioning. Work with nurses and other care providers to determine 

a location that will not interfere with the administration of care but will allow access to 

the equipment when needed. Position large, high voltage equipment away from the 

patient when possible. The amplifier will need to be close to the patient. Extra care 

should be taken to secure the amplifier where it is out of the way and cannot fall or be 

knocked over, will have plenty of slack in the cables connected to the patient and can be 

accessed safely and easily as needed.  Consider the location of outlets and where cords 

will run as well. 

Surgical placement. Obtain informed consent from the patient and/or legal 

guardians prior to placing microECoG grids. If the patient is a child and over 8 years old, 

assent should also be obtained. 

Identify the desired cortical location to place the microECoG grid. Following the 

cranial exposure, intraoperative electrocorticography through macroelectrodes can 

provide insight as to the location of potential sites of interest for monitoring and 

evaluation with microECoG grid(s). 

Position the microECoG grid. Preferably, enough cranial exposure needs to be 

obtained to allow for direct visualization and then placement of the microECoG grid(s) 

onto the surface of the brain in the area of interest. Most often, the craniotomy is of 

sufficient size to directly visualize all of the electrodes. Microelectrodes that are to be 

placed underneath the intact bone flap are more difficult due to the protrusion of the 

microelectrodes from the silicon bedding, towards the surface of the brain. In these 

situations, the electrodes are placed through a combination of strategies including slight 
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retraction of the brain as well as copious irrigation underneath the grid/microelectrode to 

"float" the electrodes in place. 

Recording. Configure the second stage amplifier. Specify: 

• Number of channels that will be recorded 

• Sampling frequency. If the equipment used has built in filter levels, be sure 

that the sampling frequency is high enough that the filters do not occlude 

meaningful electrophysiological frequencies and that the filters are also set 

properly. 

• Single ended or differential recording 

• Referencing mode, i.e. is there one reference that will be shared across all 

electrodes or are their multiple references that will be used for local channels? 

• Grounding mode, i.e. is the connection to the ground electrode coming in 

through the head-stage or through a separate connection? 

• Coupling. AC coupling will block the DC portion of the signal. DC coupling 

will allow both AC and DC to pass. 

Work with a certified technologist (REEGT) to have the head-stages corrected to 

the microECoG grid pigtails. Plug the opposite end of the cable into the second-stage 

amplifier. Check all connections to be sure pigtails and plugs are seated properly then 

turn the second-stage amplifier on. 

Begin recording. Assign a code that does not include identifying information 

under which all data and information collected from the patient with be kept. Visually 

check the signals being recorded. If possible, extract a short time segment of data and 
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create a power spectrum to confirm the visual inspection. Check head-stage, second-stage 

amplifier and ground connections if signals are not acceptable. 

Example protocol. 

Grid design. A standard 8x8 clinical ECoG grid with macroelectrodes of 3 mm 

exposed contact diameter, was modified to include 120 microelectrodes, each 75 µm in 

diameter with approximate impedances of 105 Ω at 1 kHz (Figure 4.1) (S. Kellis, Greger, 

Hanrahan, House, & Brown, 2011). 

Reference electrodes were 3 mm in diameter with an impedance of approximately 

101 Ω at 1 kHz and were added to the sides of the standard 8x8 grid. Microelectrodes 

were wired to contacts on separate pigtails than the clinical macroelectrodes. Each 

reference electrode was then wired to the 17th contact position of four microelectrode 

pigtails. The specific pigtail each reference was wired to was based on that electrode’s 

spatial proximity to the microelectrodes wired to the same tail. 
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Figure 4.1. Joint macro and microECoG grid. A standard 8x8 clinical ECoG grid was 

modified to incorporate 120 microelectrodes. Reference 1 (R1) is on the left and 

reference 2 (R2) is on the right. Electrodes 19, 22, 36, 43 and 46 are surrounded by 24 

microelectrodes, each. Microelectrodes around electrodes 19 and 22 and half of those 

around electrode 36 terminate to a pigtails with R1 as a reference. The remaining 

microelectrodes use R2 as a reference. The microelectrodes used to generate Figure 4.2 

are highlighted. Figure 4.2 A was recorded on the green microelectrode. Figure 4.2 B was 

the orange microelectrode. Figure 4.2 C was created with the blue microelectrode and 

Figure 4.2 D is based on the red microelectrode. 

 

Head-stage amplifier. The second-stage amplifier used in this experimental 

protocol splits the 128 recording channels into banks of 16 and has additional reference 

and ground pins for each bank. To utilize all recording channels available and minimize 

the distance between the recording electrodes and the first stage of amplification, head-

stage amplifiers were designed using 17 contact GATE-LOK pigtail connectors (PMT 
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Corporation, Chanhassen, MN USA) and AD8244 unity gain buffer amplifiers (Analog 

Devices, Norwood, MA USA). The low noise buffers can handle input voltages between 

0 to 4 V, have an input impedance of 10 ΤΩ, negligible DC input current of 2 pA, a 

dynamic frequency range up to 3 MHz, a maximum offset of 3 µV/oC and a high CMRR 

indicated by a total system error of only 0.03%. The 17th contact position in the pigtail 

connectors is for the reference. 

Second stage of amplification. A PZ5 NeuroDigitizer (Tucker Davis 

Technologies, Alachua, FL USA) was used as a second stage amplifier. The amplifier has 

an input range of +/- 500 mV, input noise of 0.75 µVrms and input impedance of 1 GΩ. 

PZ5 also contains a digitizer with 28-bit resolution. The second-stage amplifier was 

configured for DC-coupled recordings using local referencing, an off-grid (‘external’) 

ground, 6.1 kHz sampling frequency and the anti-aliasing filter was set to 45% of the 

sampling frequency. 

Grounding. The off-grid, or external ground was a low impedance (~101 Ω at 1 

kHz) macroelectrode (3 mm exposed contact diameter) that was placed away from the 

recording grid during surgery by sliding it beyond the cranial exposure. 

Recording. To demonstrate the importance of the components described above, 

each 16-channel bank of microelectrodes was recorded under different configurations for 

10 minutes (Figure 4.2). 

Bank A configuration. Microelectrodes and a grid-based reference electrode were 

connected to a head-stage amplifier. The wires exiting the head-stage were bundled 

together into a single cable, which was then connected to the second-stage amplifier 

through a mini-DB26 connector. No ground electrode was used (Figure 4.2 A). 
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Bank B configuration. Microelectrodes were connected to a head-stage amplifier, 

but no reference electrode was used. The wires exiting the head-stage were bundled 

together into a single cable, which was then connected to the second-stage amplifier 

through a mini-DB26 connector. The second-stage amplifier was set to accept an external 

ground, which was attached to a stand-alone macroelectrode (3 mm exposed contact 

diameter) that was slid beyond the cranial exposure during surgery (Figure 4.2 B). 

Bank C configuration. Microelectrodes and a grid-based reference electrode were 

connected to a passive (no CMR performed) pigtail connector. The wires exiting the 

connector were bundled together into a single cable, which was then connected to the 

second-stage amplifier through a mini-DB26 connector. No head-stage amplifier was 

used. The second-stage amplifier was set to accept an external ground, which was 

attached to a stand-alone macroelectrode (3 mm exposed contact diameter) that was slid 

beyond the cranial exposure during surgery (Figure 4.2 C). 

Bank D configuration. Microelectrodes and a grid-based reference electrode were 

connected to a head-stage amplifier. The wires exiting the head-stage were bundled 

together into a single cable, which was then connected to the second-stage amplifier 

through a mini-DB26 connector. The second-stage amplifier was set to accept an external 

ground, which was attached to a stand-alone macroelectrode (3 mm exposed contact 

diameter) that was slid beyond the cranial exposure during surgery (Figure 4.2 D). 

Results 

This section illustrates the signal quality that can be obtained from subdural 

microECoG grids implanted in patients with epilepsy, when the above steps are followed. 

To demonstrate the importance of good recording practices, signals were recorded under 
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multiple configurations. All analyses were performed using MATLAB (MathWorks 

Incorporated, Natick, MA, USA). Data were high-pass filtered at 3 Hz using a fifth order 

Butterworth filter to remove DC offsets. No other filtering or pre-processing was done. 

Despite proper use of a reference electrode and head-stage level amplification, the 

absence of a good ground electrode generated significant levels of noise that 

overshadowed the actual signal recorded (Figure 4.2 A). Removing the head-stage level 

amplifier had similar effects on signal quality as removing the reference electrode (Figure 

4.2 B-C). Signal quality was improved compared to the missing ground configuration, 

but there is still a clear peak at 60 Hz in the spectrum, indicating noise contamination. 

Using a reference embedded in the microECoG grid, head-stage level amplification, and 

a distant patient based ground, a clean signal with little or no noise contamination was 

recorded (Figure 4.2 D).  
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Figure 4.2. Example recording configurations and resulting signals. The images on the 

left show the recording configuration used to collect the 30 s data shown on the right. The 

small, light blue triangle represents the head-stage level amplification. The large, dark 

blue triangle is the second stage of amplification. The orange line represents the reference 

electrode wire and the green line is the ground electrode wire. Below each signal is the 

corresponding log-log spectrum. (A) shows the results of not using a ground electrode 

(B) shows signals recorded without a reference electrode (C) was recorded without a 

head-stage and (D) had all necessary components to record high quality signals. The 

signals shown in (B-D) were recorded at the same time. Due to equipment constraints, the 

data shown in (A) were recorded during a different time epoch. 

 

Discussion 

Current techniques used for cortical surface recordings use dated technology. 

Activity recorded with macroelectrodes is some sort of spatial summation of underlying 

processes. The large scale over which signals are combined obscures functionally and 

clinically relevant cortical functions.  

To capture the full utility of microelectrodes it is important to record from them 

properly. Despite their similarities, the difference in impedance of microelectrodes and 

macroelectrodes necessitates changes in the recording system. High quality signals can be 

obtained with proper grid design, referencing, grounding and amplification. Shielding 

may also be useful in low channel count recordings. 

Microelectrodes are exciting tools that can record a range of useful signals (S. 

Kellis et al., 2015; Khodagholy et al., 2014; Leuthardt et al., 2009; Rubehn et al., 2009; 



 68 

Stead et al., 2010). The increased impedance of microelectrodes, when compared to 

macroelectrodes, significantly reduces the recording radius and thus the number of ionic 

processes underlying the LFP signal recorded. The spatial extent of electrophysiology 

recorded on microelectrodes matches the scale of fundamental computational units of the 

brain (Stead et al., 2010). Our understanding of the exact components and interactions 

that generate these signals and how they relate to high-level cortical function and 

processing continues to grow (S. Kellis et al., 2010; Schalk, 2015; C. A. Schevon et al., 

2008). The microelectrode LFP can probe the knowledge gap between single unit 

recordings and broad activity seen on macroelectrodes and could fuel new scientific 

inquiries into the underlying mechanisms of cortical function and disorders.  
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CHAPTER 5 

CORTICAL AND ELECTROGRAPHIC SCALES 

Introduction 

Electrocorticography (ECoG) was developed in the 1930’s as a method to localize 

seizures in patients with treatment resistant epilepsy and is still a prominent part of the 

evaluation process used today. ECoG electrodes are typically arranged in a grid that is 

placed in the sub-dural space over the area of the brain thought to house the seizure onset 

zone. Following the placement surgery, patients will then enter the Epilepsy Monitoring 

Unit (EMU) for up to two weeks of tests and observation.  The current “gold-standard” 

for the evaluation of a patient’s cortical activity is visual inspection of the ECoG data by 

an epileptologist.  In order to proceed with the surgical resection, the clinical team needs 

to be confident that the patient has focal seizures that do not occur in areas of eloquent 

cortex (Snead, 2001).  That is, that removing the identified area of the brain will not 

impact critical daily functions such as moving or speaking, and that the patient will be 

seizure-free after the resection. 

A typical ECoG electrode is 4-5 mm in overall diameter, with a recording contact 

surface of 2-3 mm in diameter. A grid or strip may contain as many as 64 electrodes 

spaced 10 mm apart, center-to-center. ECoG arrays are placed below the skull, but do not 

penetrate the cortical surface.  Thus their vulnerability to movement artifacts is reduced 

and spatial resolution is increased compared to EEG, while their estimated duration of 

functional life and stability is increased compared to penetrating electrodes, which initiate 

a complicated foreign body response (S. S. Kellis et al., 2009; Schalk & Leuthardt, 2011). 

Sampling frequencies are typically 250-500 Hz, depending on the institution. 
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Despite ECoG’s widespread and efficacious use, the technique has not kept pace 

with our growing understanding of cortical form and function. The neocortex is 

composed of heavily interconnected, vertically arranged columns, that act as the basic 

unit of operation and are an order of magnitude smaller and range between 300 and 600 

µm in diameter (V. B. Mountcastle, 1997; V. Mountcastle, 1978). Functionally and 

clinically relevant cortical activity has been recorded at spatial scales similar to individual 

cortical columns (S. S. Kellis et al., 2009; Schmidt et al., 1996; Stead et al., 2010).  Yet, a 

macroelectrode records gross surface field potentials that are composed of some sort of 

spatial average of simultaneous ionic processes within its recording area; as much as 20 

mm in any one direction (Buzsáki et al., 2012; Menon et al., 1996). Thus, a 

macroelectrode simultaneously records signals from multiple locations containing micro 

scale activity and in doing so, obscures the individual waveforms or fails to record them 

altogether. 

Microelectrodes (diameter <1mm) arranged in a high-density grid, i.e. 

microECoG grids, can provide better specificity and sensitivity than clinical ECoG grids, 

which use macroelectrodes. Similar to ECoG grids, microECoG grids are placed in the 

sub-dural space but do not penetrate the cortical surface. Unlike ECoG grids, the 

microelectrodes used in microECoG grids have a high impedance which significantly 

decreases the amount of cortical volume within the electrodes’ recording radius; each 

microelectrode records from a cortical volume on the sub-millimeter scale and can 

decipher cortical activity that occurs at amplitudes too small to be detected with 

macroelectrodes (Schalk & Leuthardt, 2011; C. A. Schevon et al., 2008; Stead et al., 

2010). Microelectrodes record signals produced by time evolving activity in small 
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neuronal populations, individual cortical columns (i.e. local field potentials (LFPs)) or 

even individual neurons near the microelectrode (i.e. action potentials (APs)) (S. S. Kellis 

et al., 2009; Khodagholy et al., 2014; Stead et al., 2010). The precise biophysics and 

neural circuitry that create LFPs is still unknown. Micro-stimulation models suggest that 

single impulse signals transmit through neural tissue by volume conduction and that 

neural tissue can subsequently be modeled as an isotropic resistive medium (Logothetis et 

al., 2007). However, endogenous LFPs arise from many signal generators and propagate 

through complex neural tissue, likely by a combination of volume conduction, ephaptic, 

and synaptic mechanisms (Anastassiou et al., 2011; Hales & Pockett, 2014). Regardless 

of the exact neural mechanisms, compared to clinical macroelectrodes, the specificity of 

the recordings is improved because there is less spatial averaging and the sensitivity is 

increased because fewer ionic processes are superimposed to produce the signal recorded.  

Clinical diagnosis, knowledge and understanding of epilepsy have been 

predicated on two extremes for decades; signals collected from individual neurons from 

animal models of in vitro tissue preparations, or massive neuronal populations, as 

recorded with macroelectrodes. By providing access to local field potentials, 

microelectrodes could serve as a useful tool to bridge the recording gap between single 

unit activity and macroelectrode waveforms and provide critical information needed to 

further our understanding of the biophysical underpinnings of epileptogenesis and 

cortical function in general. An important step in that process will be developing an 

understanding of how the signals recorded on microECoG grids relate to those from 

other, well-established recording modalities. Although studies have simultaneously 

recorded from macro and microelectrodes, a better understanding of what is recorded by 
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microelectrodes and how it is physiologically relevant is needed before they will be 

widely used in the clinical environment. 

The present study aimed to investigate the relationship between signals recorded 

on macro and microelectrodes. To this end, a novel grid was designed that incorporated 

120 microelectrodes, each 75 µm in diameter, with a standard 8x8 clinical ECoG grid (64 

macroelectrodes, each with an exposed contact diameter of 3 mm). The microelectrodes 

were arranged in consecutive circles of 8 and 16 electrodes around each of 5 

macroelectrodes. It was hypothesized that the signals recorded on the microelectrodes 

could be combined using a spatially weighted average to generate a signal similar to that 

of the corresponding macroelectrode. 

Materials and Methods 

Patients. The Phoenix Children’s Hospital Institutional Review Board approved 

this study and informed consent was received from the patient’s parents. 

Data from one patient admitted to the pediatric epilepsy monitoring unit (PEMU) 

at Phoenix Children’s Hospital (PCH) (Phoenix, AZ USA) were collected.  The 

placement of sub-dural grids and subsequent monitoring was performed as standard of 

care for Phase II evaluation of treatment resistant epilepsy to localize the seizure focus 

and determine suitability for resection surgery. One grid used combined micro and 

macroelectrodes, which terminated to separate transcutaneous pigtails. The grid was 

specifically designed to be clinically indiscernible, meaning the macroelectrodes were 

recorded for the duration of the needed evaluation, without interruption, on the clinical 

recording system and the microelectrodes were recorded on the research system. When 

the epileptologists had collected sufficient data, permission was granted to bring one 
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clinical pigtail into the research recording system such that 16 macroelectrodes 

(macroelectrodes 33 - 48) were recorded concurrent with 112 microelectrodes. 

Grid design. An ECoG grid containing standard clinical macroelectrodes and 

microelectrodes was designed and manufactured by PMT Corporation (Chanhassen, MN 

USA) (Figure 5.1). 

Data acquisition. When sufficient data to localize seizure onset had been 

collected, one pigtail associated with clinical macroelectrodes 33 – 48 was brought into 

the PZ5 NeuroDigitizer and RZ system (Tucker Davis Technologies, Alachua, FL USA). 

The macroelectrodes and remaining 112 microelectrodes were recorded at 12.2 kHz for 

approximately 30 minutes. Raw data were visually inspected. A 10 minute segment that 

was free of high-amplitude activity was isolated and used in the rest of the analysis. 

Analysis. All analyses were performed using MATLAB (MathWorks 

Incorporated, Natick, MA USA). Data were bandpass filtered between 2 and 2000 Hz 

with a third order Butterworth filter. 
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Figure 5.1. Joint macro and micro ECoG grid design. The grid was based on a standard 

clinical grid with 64 macroelectrodes that were 5.08 mm in overall diameter with an 

exposed contact diameter of 3 mm and an inter-electrode spacing of 10 mm, center to 

center, arranged in a standard 8x8 pattern.  Surrounding each of five macroelectrodes (19, 

22, 36, 43, and 46) were 24 microelectrodes, 75 µm in diameter.  The microelectrodes 

were arranged in two concentric circles.  Eight microelectrodes equally spaced at 45 

degrees center to center made up the inner circle that was 7 mm in diameter; 2 mm from 

the outer edge of the contact area of the macroelectrode. The outer circle was 11 mm in 

diameter and consisted of 16 microelectrodes equally spaced with 22.5 degrees center-to-

center separation.  Two additional macroelectrodes (R1 and R2), 3 mm in contact 

diameter, were added on opposing sides of the standard 8x8 grid to serve as reference  
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electrodes for the microelectrodes.  One reference electrode was routed to each of the 

microelectrode pigtails. Macroelectrodes and microelectrodes terminated to separate 

pigtails. 

Spatially weighted contribution. Following the preprocessing steps outlined 

above, the signals collected from the microelectrodes surrounding a given macroelectrode 

were combined into a single signal based on the linear distance from the center of the 

microelectrode to the center of the macroelectrode. This assignment was performed for 

each of the 24 microelectrodes surrounding a single macroelectrode.  Equation 5.1 

summarizes this approach. 

𝑀! 𝑡 =
!

!!,!(!)!
! !!

!!,!(!)!
!

!
            (5.1) 

Here, 𝑀!(𝑡) is the signal recorded from macroelectrode 𝑖, with 𝑖 = 1,2… ,𝑛.  Where 𝑛 is 

the number of macroECoG electrodes surrounded by microelectrodes.  𝑚!,!(𝑡)! is the 

amplitude, in volts, of the signal recorded on microelectrode 𝑗 from the first circle 

surrounding macroECoG electrode 𝑖, with 𝑗 = 1,2… , 𝑏, and 𝑚!,!(𝑡)! is the amplitude of 

the signal, in volts, recorded on microelectrode 𝑘 from the second circle surrounding 

macroECoG electrode 𝑖, with 𝑘 = 1,2… ,𝑑.  𝑎, 𝑏, 𝑐, 𝑑 and 𝑓 are scaling variables.  For 

this study, 𝑛 = 3, 𝑎 = 5.5/3.5, 𝑏 = 8, 𝑐 = 1, 𝑑 = 16 and 𝑓 = 2. 

 Time domain analysis. Signal similarities were studied by calculating the 

correlation coefficients for each spatially weighted microelectrode signal and 

corresponding macroelectrode signal set based on the bandpass filtered data. Next, to 

monitor the similarities over time, the correlation coefficient was calculated in 1 s 

windows over the 10 minute data set. The windowed correlation coefficient calculations 
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were performed to each macro/micro grouping individually, then the three groups were 

averaged together and the standard error was calculated. A third-degree polynomial was 

used to calculate a trend line to show changes in the amount of correlation over time.  

To visualize raw waveforms, a third order Butterworth notch filter was applied to 

both the bandpassed macroelectrode and spatially weighted microelectrode signals to 

remove 55-65 Hz frequencies before plotting. 

 Frequency domain analysis. The frequency content of the bandpass filtered 

macroelectrode signal was compared to that of the corresponding spatially weighted 

microelectrode signal. Power spectral analysis was performed using a ninth order power 

spectrum and an FFT length of 214, with 95% confidence intervals. Magnitude-squared 

coherence estimates were also performed, using an FFT length of 214, for each signal set. 

Finally, the average coherence values and the standard error across the three signal sets 

were calculated. 

Results 

 Data from one patient undergoing monitoring for treatment-resistant epilepsy 

were collected using a custom ECoG grid that combined macro and microelectrodes. 

The spatially weighted contribution method was able to generate signals that 

matched some portions of the corresponding macroelectrode signals, but did not perform 

well across the full dataset (Figure 5.2). 
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Figure 5.2. Joint macro and microECoG grid placement and resulting signals 

macroelectrode signals with corresponding spatially weighted microelectrode signals. 

(Left) The grid straddled the central sulcus and a cortical lesion, outlined in green, 

immediately posterior to the sulcus on the left side of the patient’s brain. Macroelectrode 

46 and the 24 corresponding microelectrodes, referred to as E46, were positioned directly 

over the lesion. (Right) A 10 minute segment of the spatially weighted microelectrode 

signal (red) is plotted with the corresponding macroelectrode signal (blue), after bandpass 

(2 - 2000 Hz) and notch (55 – 65 Hz) filtering. A 5 s sample is displayed to show detail. 
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The average correlation coefficient across the three signal sets (E36, E43 and 

E46) was variable across the full 10 minute data segment and did not have prominent 

trends (Figure 5.3).  

 

 

Figure 5.3. Average windowed correlation coefficient. The average correlation 

coefficient for 1 s of data windowed across time the full 10 min data segment is in dark 

green and the standard error shown is in light green. A trend line using a third degree 

polynomial least squares fit is shown with a dashed red line (p(x) =  -0.0006x + 0.3654). 

 

The spatially weighted microelectrode signal generated by the microelectrodes 

around macroelectrode 36 correlated with the macroelectrode signal better than the other 

signal sets while the correlation between macroelectrode 46 and the spatially weighted 

microelectrode signal was the lowest of the three sets analyzed (r (E36) = 0.5382, r (E43) 

= 0.2817, r (E46) = 0.2587, N = 7324247, p = 0.05). 
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 The frequency content within the spatially weighted microelectrode signal and the 

corresponding macroelectrode signal had a stronger relationship in frequencies below 200 

Hz for all signal sets (E36, E43 and E46) (Figure 5.4). The frequency contents of the E36 

signal set had the most robust relationship below 200 Hz while E46 was the least related.   

 

 

Figure 5.4. Frequency domain comparison between macroelectrodes and the 

corresponding spatially weighted microelectrode signals. (A) The log-log power 

spectrums of macroelectrodes 36, 43 and 46 shown in blue, with the corresponding 

spatially weighted microelectrode signal log-log power spectrum shown in red. 95% 

confidence intervals for the macroelectrode signal and the spatially weight 

microelectrode signal is shown in light blue and red, respectively. (B) The magnitude-
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squared coherence estimates for each macro/spatially weighted microelectrode signal set 

between 2 and 2000 Hz. (C) The average magnitude-squared coherence across all three 

signal sets (E36, E43, E46) within the bandpass filter frequency range (2-2000 Hz) 

shown in dark green, with the standard error shown in light green. 

 

Discussion  

Time domain. Raw signals show that portions of the macroelectrode waveforms 

are modeled well by the spatially weighted contribution microelectrode signal while other 

parts are not (Figure 5.2). The differences between the calculated signals and the 

macroelectrode signals did not appear to be due to a single event or cluster of events, as 

evidenced by the variable average windowed correlation coefficients across the full 10 

minutes data segment and the low coefficients of the trend line generated  (Figure 5.3).  

Frequency domain. The spatially weighted contribution model was able to 

somewhat simulate the low-frequency content of the macroelectrode signal (coherence  = 

0.15 – 0.4). However, frequencies above 200 Hz could not be reproduced. There could be 

a number of contributing factors to this result. High frequency signals have low 

amplitudes and the power of these signals recorded by electrodes may be more 

susceptible to changes such as the spatial integration of additional signal generators. 

While high frequency activity on microelectrodes is likely a direct result of an increase 

action potential activity in the neuronal population near that microelectrode, high 

frequency activity on macroelectrodes is more ambiguous. An increase in the synchrony 

of activity within a macroelectrode’s recording area could produce a substantial increase 

in power that cannot be replicated by an increase in neuronal activity detected on a 
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microelectrode (Ray et al., 2008). Furthermore, the macroelectrodes likely record from 

deeper portions of cortex than the microelectrodes and the relationship between surface 

and subsurface high gamma (80-170Hz) activity quickly deteriorates with increasing 

depth (Watanabe et al., 2012). Though the frequency discrepancy observed here was 

slightly higher than high gamma, it likely follows a similar trend. 

Spatial location. The coherence between the signal generated with the spatially 

weighted contribution method and the signal from macroelectrode 46 was notably worse 

than the other two signal sets. This could be due to spatial location with respect to the 

patient’s cortical lesion. E46 was positioned over the lesion and seizure focus while the 

other two groups were over non-focal areas. The seizure focus was localized to mesial 

aspects of the lesion based on depth electrode recordings evaluated by an epileptologist. 

It is possible that the added discrepancy found between electrode 46 and the spatially 

weighted microelectrode signal is due, in some part, to epileptogenic activity originating 

from mesial structures that cannot be recorded by the microelectrodes due to their high 

impedance and small recording radius. 

 Conclusion. The intent of this study was to elucidate relationships between 

signals recorded on macro and microelectrodes in an ECoG grid. It is likely that full 

reconstruction of a macroelectrode signal based on the microelectrode signals collected 

from the cortical surface around it is not possible. The physical recording constraints (i.e. 

microelectrode recordings could not be collected from the cortical surface directly below 

by the macroelectrode) were recognized before data collection began. It is conceivable 

that this did play a role in the low correlation and coherence values calculated, but other 

factors such as the electrode impedance and therefore the electrode recording radii and 
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the spatial location of the electrodes with respect to the patient’s cortical lesion were 

likely also contributing factors to the deviation. Thus far, analysis is limited to data 

collected from one patient. Additional data recorded from similar grids is needed to 

further investigate these postulations. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Despite ECoG’s widespread and efficacious use, the recording and analysis 

techniques it is used for have not kept pace with our growing understanding of cortical 

form and function. The work described in this document focuses on applying engineering 

concepts and design practices to the use of ECoG in the surgical evaluation of patients 

with treatment resistant epilepsy. Specifically, the use of a computational algorithm to 

objectively identify seizure onsets recorded on clinical electrodes, equipment and design 

considerations to acquire high quality signals from microelectrodes, and the relationship 

between signals recorded on macro and microelectrodes was studied. 

Algorithmic adjuncts to visual inspection 

Visual inspection of ECoG data has remained the method of choice for clinicians 

for over 65 years (Almeida et al., 2005; Binder & Haut, 2013; Penfield, 1939). While 

there is no substitute for the highly trained human in the interpretation of ECoG data, the 

process is time consuming and subjective. Trends are moving towards improving the 

specificity and sensitivity of ECoG recordings via increasing the number of electrodes 

and sampling rate used. It is likely that the use of computational adjuncts could not only 

help to objectify and speed up the process now, but will become a necessity in the future.  

Computational algorithms can quickly and objectively find signal characteristics 

that cannot be detected with visual inspection. However, it is important that the algorithm 

used is appropriate for the analysis of biological signals; it should not assume that the 

signal is linear, stationary or composed of specific functions and should not require prior 

knowledge of the signal’s shape. Empirical mode decomposition (EMD) is a data driven 
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algorithm that iteratively breaks complex signals into simpler component signals with 

varying amplitude and frequency relative to time.  

The EMD based algorithm developed here identified potential seizures based on 

changes in the complexity of ECoG signals. The results suggest that a biological data 

driven algorithm could serve as a useful tool to objectively identify changes in cortical 

activity associated with seizures. However, detection algorithms may need to be adapted 

to different electrode types or particular neural structures. 

Implications of Microelectrocorticography in Cortical Interfacing 

ECoG has been effectively used to study and diagnose neurological 

pathophysiology for decades (Almeida et al., 2005; Penfield, 1939; Tripathi et al., 2010). 

Since its introduction, however, our knowledge of the scale at which the brain processes 

information and technological capabilities to record neural activity have changed 

(Buzsáki et al., 2012; S. Kellis et al., 2015; V. B. Mountcastle, 1997; V. Mountcastle, 

1978). A signal recorded by a clinical ECoG electrode (macroelectrode; diameter > 1 

mm) represents some spatial summation of electrophysiological activity from the highly 

complex neural circuitry occurring within that electrode’s recording radius. Studies have 

shown that using microelectrodes (<1 mm in diameter) can improve the spatial specificity 

of ECoG recordings and have generated interest in the potential benefits of microECoG 

in clinical diagnostic and therapy situations (S. S. Kellis et al., 2009; Schalk & Leuthardt, 

2011; Stead et al., 2010). 

Though both ECoG and microECoG grids are composed of electrodes resting on 

the surface of the cerebral cortex, altering the diameter of the electrodes creates non-

trivial changes in the physics of the electrode-tissue interface that impact multiple aspects 
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of the recording system. Specifically, microelectrodes have higher impedances than the 

macroelectrodes currently used in clinical ECoG grids. Using higher impedance 

electrodes improves spatial specificity of the recordings because the signals are recorded 

from a smaller volume of cortex, but it also means that the signals are lower in amplitude, 

and more susceptible to noise contamination than those recorded with macroelectrodes. 

Critical aspects of the design and recording process were outlined and the experiments 

performed showed that proper grounding, referencing, and amplification are critical to 

obtain high quality neural signals from mircoECoG grids. 

Microelectrodes record a range of functionally and diagnostically relevant signals 

(S. Kellis et al., 2015; Khodagholy et al., 2014; Leuthardt et al., 2009; Rubehn et al., 

2009; Stead et al., 2010). Our understanding of the exact components and interactions 

that generate these signals and how they relate to high-level cortical function and 

processing continues to grow (S. Kellis et al., 2010; Schalk, 2015; C. A. Schevon et al., 

2008; Stead et al., 2010). The spatial extent of electrophysiology recorded on 

microelectrodes matches the scale of a cortical column, the fundamental computational 

units of the brain, but there is still uncertainty regarding the significance of the micro-

morphology observed on microECoG recordings (Stead, et al., 2010). A better 

understanding of what is recorded by microECoG and how it is physiologically relevant 

is needed before they will be widely used in the clinical environment. 

To probe the relationship between signals recorded on surface macroelectrodes 

and microelectrodes, a custom grid containing five center-surround electrode sets was 

designed and used to record from a patient undergoing monitoring for treatment resistant 

epilepsy. Microelectrode signals were combined using a spatially weight contribution 
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method to generate a signal that was then compared to the corresponding macroelectrode 

signal. Time and frequency analysis of the signals show that there may be some 

relationship between the microelectrode aggregate and the macroelectrode signals, but 

there was still significant portions of the macroelectrode signal that were unaccounted 

for. This was particularly true in frequencies above 200 Hz. The findings suggest that the 

macroelectrode is recording activity not accessible by the microelectrodes, likely either 

from deep structures or a product of the spatial integration performed by the 

macroelectrode. Further testing and analysis, possibly involving the simultaneous 

recording of surface and depth electrodes is needed to fully parse the relationship. 

Future Work 

 EMD based algorithm. There are, without question, many directions the EMD 

based algorithm could be taken next. Parameters used to apply the algorithm, such as 

window and step size, as well as those involved with the thresholds used to define an 

algorithmically identified seizure candidate, will be revisited. Formal parameter 

optimization, using methods such as machine learning algorithms, should help to improve 

the specificity and sensitivity of the algorithm. Ideally, a new set of parameters will make 

the algorithm robust and applicable to all electrode and cortical structure types, but it is 

possible that further analysis will show that multiple algorithms are needed to optimize 

detection efficacy in different cortical or sub-cortical areas. 

 Once parameter optimization is complete, the usefulness of the EMD based 

algorithm in other aspects of seizure analysis, such as spatiotemporal propagation, can be 

studied. Epileptologists will be asked to do a thorough review of the data and identify 

when a seizure starts and to list, in order, the first five electrodes involved with the 
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seizure activity found.  They will also be asked to review any data clips in which false-

positive detections were made. This sort of analysis could lead to a better understanding 

of the EMD based algorithm’s potential usefulness as a seizure detection tool and could 

help study the complexity associated with different types of seizures or cortical 

structures. 

 The EMD based algorithm may also prove effective on other electrode types such 

as EEG and microelectrodes. If the algorithm presents spatially specific results from 

ECoG grids, it could improve the localization of seizure activity with EEG, which could 

help guide the placement of ECoG grids. Further, sub-clinical seizures or those suffered 

by comatose patients that do not manifest physically may also be detectable. Applying 

the EMD based algorithm to microECoG data could aid in the understanding of the 

relationship between the micromorphology of waveforms observed by others on 

microECoG grids and the classical waveforms associated with seizure activity on clinical 

ECoG grids. 

 Finally, the physiological relevance of IMFs will be studied. Others have linked 

IMFs to physical entities, but it is unknown if the same is true regarding cortical 

dynamics. If the IMF waveforms are meaningful, it could provide insight into the 

network dynamics of cortical function and epileptogenesis. 

Cortical and electrographic scales. The relationship between signals recorded 

on electrodes is not only important to show the implications of new types of electrodes in 

cortical interfacing, but could also provide significant insight about the scales and 

network dynamics of cortical processing and the spread of pathological conditions. Thus 
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far, data from one patient has been collected using the specialized grid design. To 

investigate the initial findings further, additional grids will used to record from patients. 

Additionally, based on the results obtained here, a logical and relatively 

straightforward next step is to simultaneously record depth electrodes with microECoG 

and macroECoG grids at a high sampling rate (6-12 kHz) from multiple patients to obtain 

a more complete data set that accounts for activity from multiple depths. This sort of 

recording could also give insight into the types of signals recorded with depth electrodes 

and even why the EMD based algorithm developed here did not perform well on signals 

recorded with them. A more advanced approach that may prove useful would incorporate 

depth electrodes that have multiple recording sights along the shank to probe a variety of 

cortical depths and possibly even a shallow penetrating array such as the Utah array to 

account for more superficial cortical layers. Obviously, the number of recording channels 

rises quickly in this sort of recording scheme so equipment and electrode design will be a 

critical aspect of the approach. 

Conclusion 

The amalgamation of engineering and medicine holds exciting potential and great 

challenges. It is important that engineers recognize the level of complexity of the human 

body and brain and work to develop devices and methods appropriately. Ultimately, 

when done correctly, applying engineering insights and innovation in the clinical realm 

could bring about novel ways to improve patient care. 

The work described here focuses on two potential improvements to the Phase II 

evaluation process for focal resection surgery; using a computational algorithm to 

objectify the visual review process and recording from microECoG grids to improve 
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spatial resolution. While some feasible benefits have been highlighted throughout this 

document, there is the potential of broader impacts on the field of epilepsy and clinical 

decision making that can be realized through these sorts of approaches. 

Objectivity. The success of focal resection surgery relies on our ability to 

accurately identify not only the location of a seizure focus, but also the extent of 

epileptogenic tissue. The identification process, however, is highly subjective and relies 

heavily on the visual inspection of cortical activity in both Phase I and Phase II 

evaluations. Using computational analysis methods could help to objectify the process. 

Phase I involves measures such as scalp electroencephalography (EEG) 

recordings and imaging. If there is not a clear indication of cortical malformation in the 

imaging data, the decision of what type (grid, strip or depth) of sub-cranial electrodes to 

use and where to place them is determined by the visual inspection of EEG recordings 

alone. Poor focus identification with EEG can result in incomplete or lack of coverage of 

the seizure focus with ECoG grids. Incomplete focus coverage creates a situation referred 

to as edge effect, which is challenging because the full extent of epileptogenic tissue 

cannot be deduced. The presence of an edge effect could then impact the extent of 

resection performed and create the potential for lack of seizure freedom following 

resection. Developing computational analysis methods could help to objectively 

determine where and when seizures start. Ideally, when applied to EEG data, such 

methods will enable clinicians to make better informed and objective decisions regarding 

the type and placement of sub-cranial electrodes, which will ultimately improve 

localization capabilities with ECoG. Perhaps further work would create three-
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dimensional localization capabilities with EEG data that could obviate the need for sub-

cranial electrodes in some patients.  

Further, if microECoG grids begin to be used in clinical evaluation, accurate 

localization will be particularly important. MicroECoG can improve the spatial resolution 

of recordings. This improved spatial resolution could be especially useful in cases of 

small foci, foci in close proximity to eloquent cortex or disconnection surgeries, where 

delineation between healthy and epileptogenic tissue is critical. However, within current 

channel count restrictions and recording capabilities, the smaller electrode size used in 

microECoG grids creates a trade-off between spatial resolution and coverage. Thus, to 

maximize the utility of microECoG grids, we must be able to identify, with high, 

objective certainty, where they need to be placed based on Phase I analysis methods.  

Databases. One of the biggest challenges in the treatment of epilepsy is the 

idiosyncratic nature of the disorders that give rise to seizures. While analysis methods 

may be useful in seizure detection for individuals, a broader impact on the field is likely 

to be realized through the concurrent analysis of data from many patients, i.e. a “big data” 

approach. The analysis of data from many patients will help to highlight trends and 

commonalities that may not be obvious in small patient populations. This sort of 

approach could aide in our understanding of the efficacy of monitoring methods, 

probability of success of particular treatment modalities, and less frequency scenarios 

such as SUDEP, as well as the identification of acute and disease progression related 

biomarkers. If incorporated with other biological metrics and outcomes, relationships and 

indicators may also be found that are not based on cortical activity alone, but instead on a 

system, or whole patient level. Considering the amount of data this will involve, 
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computational algorithms will be critical for developing quantitative metrics that can be 

easily compared and span multiple data formats and collection platforms. 

Beyond epilepsy. To this point, methods for improving the evaluation of epilepsy 

has been discussed, but the computational and signal processing techniques used to study 

epilepsy could also be applied to other fields. The EEG correlates of Autism, depression, 

Alzheimer’s diseases and many other disorders are being investigated and could benefit 

from objective, quantitative analysis methods. Further, both microECoG and 

computational approaches could be useful in studying phenomena such as cortical 

spreading depression (CSD) that may be associated with cortical insults such as traumatic 

brain injury, stroke and migraines. 
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