
 

 

Investigation of Chip Production Rate as an Indicator of Micromilling Tool Wear 

by 

Anuj Kishorkumar Bajaj 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment 

of the Requirements of the Degree 

Master of Science 

 

 

 

 

 

 

Approved November 2015 by the 

Graduate Supervisory committee: 

 

Angela Sodemann, Chair 

Jennifer Bekki 

Keng Hsu 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

December 2015 



   

i 

 

ABSTRACT 

The demand for miniaturized components with feature sizes as small as tens of 

microns and tolerances as small as 0.1 microns is on the rise in the fields of aerospace, 

electronics, optics and biomedical engineering. Micromilling has proven to be a process 

capable of generating the required accuracy for these features and is an alternative to 

various non-mechanical micro-manufacturing processes which are limited in terms of 

cost and productivity, especially at the micro-meso scale. The micromilling process is 

on the surface, a miniaturized version of conventional milling, hence inheriting its 

benefits. However, the reduction in scale by a few magnitudes makes the process 

peculiar and unique; and the macro-scale theories have failed to successfully explain 

the micromilling process and its machining parameters. One such characteristic is the 

unpredictable nature of tool wear and breakage. There is a large cost benefit that can be 

realized by improving tool life. Workpiece rejection can also be reduced by successfully 

monitoring the condition of the tool to avoid issues. Many researchers have developed 

Tool Condition Monitoring and Tool Wear Modeling systems to address the issue of 

tool wear, and to obtain new knowledge. In this research, a tool wear modeling effort 

is undertaken with a new approach. A new tool wear signature is used for real-time data 

collection and modeling of tool wear. A theoretical correlation between the number of 

metal chips produced during machining and the condition of the tool is introduced. 

Experimentally, it is found that the number of chips produced drops with respect to the 

feedrate of the cutting process i.e. when the uncut chip thickness is below the theoretical 

minimum chip thickness. 
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1 INTRODUCTION 

Small metallic parts with feature sizes less than 1mm and tolerances as small as 

0.1 micron are in demand across many industries such as the biomedical, defense, 

electronics, optical technologies and aerospace industries. Many micro-manufacturing 

processes have been developed to meet the demand and the benefits of miniaturization. 

Non-mechanical processes include micro-electro discharge machining (EDM), laser-

cutting, micro-etching, electron beam machining, while mechanical micro-

manufacturing include micro-turning and micromilling. Micromilling has been used to 

develop biomedical devices such as micro-scale piercings for implants on living tissue 

[1]. Micromilling is also used in the fabrication of micro-acoustic lenses for ultrasound 

transducers [2]. Processes such as X-ray lithography and micromilling are used for the 

fabrication of Bio-mems devices [3]. Figure 1 shows the broad classification of the 

micro-manufacturing processes. 

 

Figure 1: Classification of micro-manufacturing operations 

Among the various micro-manufacturing processes, the non-mechanical 

processes are limited by various constraints. There is a fundamental limitation on the 

machinability of certain materials based on their chemical and electrical properties. 
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Processes such as micro-EDM and micro-ECM have very low material removal rates 

in comparison to the mechanical micro-machining processes [4]. Although mechanical 

micro-machining processes do not have the minimum unit removal capability of the 

non-mechanical processes, they are capable of higher machining speeds, are 

comparatively low cost and provide high flexibility and little restriction on material 

machinability. Mechanical micro-machining processes are capable of meeting the 

accuracy and tolerance requirements at the micro-meso scale, with workpiece sizes 

above 500μm [5]. Sandia Laboratories [6], believe that the requirement to fill the gap 

between the nano/micro-scale and the macro-scale is becoming increasingly important, 

a space which mechanical micro-machining can economically fill. 

Micromilling has been developed as a scaled-down version of the conventional 

milling process. Microturning and micro-drilling have fewer applications and 

capabilities as compared to micromilling. Micromilling has the ability to generate 

features on planar surfaces as well as contoured workpieces. It is cost effective and is 

widely used due to its mass production capabilities [5], [7]. 

In this Chapter, section 1.1 describes the problem statement for the research. 

Section 1.2 explores literature regarding micromilling tool wear modeling systems and 

measurement approaches. Sections 1.3 and 1.4 outline the research objectives and the 

hypothesis for this thesis. 

1.1 PROBLEM STATEMENT 

The process of micromilling is relatively new and has not been extensively 

researched as compared to the conventional macro-scale milling. Many aspects of 

micromilling require extensive research in order to better understand the process and 
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improve its productivity. Some of the research areas are micro-tool development, 

precision machine tool development, chip formation process, tool materials and 

metrology and tool wear and breakage.  

The process of micromilling uses micro end mills as the cutting tools, which are 

relatively expensive due to the precision manufacturing processes required to produce 

them. Thus, the cost of the cutting tool increases with decreasing tool size. In some 

cases, the cutting tools require special treatment in order to machine abrasive or 

extremely hard metals, such as diamond coatings, making the tools extremely costly. A 

commercially available tungsten-carbide micro-end mill of 200 µm diameter currently 

can cost $30 USD per tool. The cost of the process also increases due to the need of a 

precision machine tool to meet the accuracy and tolerance requirement of the parts that 

would be machined. 

Micro end mills have a diameter of 1mm and can be as small as 50μm. 

Therefore, the spindle speed required is very high, in order to achieve the necessary 

cutting speed and develop enough cutting force. The process also requires high 

feedrates to successfully produce a cut [8]. The tools are small and have significantly 

lower strength compared to a macro-size tool; this makes tool wear and breakage a very 

severe problem. Thus, tool wear in micromilling is an important area of research. Chae 

et al. [5] suggest that tool wear and breakage caused by the inherently high cutting 

forces and small tool size, is a major challenge in micromilling. 

This problem of tool wear and breakage is aggravated as tool life is extremely 

short and unpredictable. These tools cannot be re-sharpened and do not have the 

possibility of using cutting inserts, making them single-time use tools. Machining with 

a worn tool leads to poor workpiece surface finish and dimensional accuracy. There is 
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a large cost benefit that can be availed by monitoring and predicting tool wear to 

improve tool life and lower rejection of workpieces. These factors have made tool wear 

a crucial area of interest and research. The pursuit of this research area has led to 

development of Tool Condition Monitoring (TCM) and Tool Wear Modeling (TWM) 

systems for understanding, monitoring, predicting, and improving tool condition during 

machining [7], [8]. 

1.2 MICROMILLING TOOL WEAR MODELING 

Based on the objective of the tool wear research, the system developed by a 

researcher is either a TCM system or a TWM system. TCM systems aim mainly to 

accurately predict the condition of the tool during machining, based upon a tool wear 

model either provided a-priori or obtained through a machine learning process. These 

systems inherently need to work ‘online’ which means that the data collection and 

analysis take place in real-time, during the cutting process. The input into the system is 

an ‘indirect’ measurement on the tool, such as cutting force or acoustic emissions, and 

the output is the predicted or estimated state of wear of the tool. These systems can then 

be used to implement adaptive control and reduce accuracy errors to improve 

productivity. This information is also used to predict and classify the state of the tool 

as new, used or worn. Many systems of this type have been researched, and are 

discussed here in Chapter 2. 

The aim of TWM systems is to generate or develop a model of tool wear. Some 

modeling efforts are done by computer simulation along with, or followed by 

experimentation. The data that is obtained is used to understand the impact of the 

cutting process parameters such as spindle speed, feedrate, or depth of cut on the tool 

life and wear. The input to a TWM system is a ‘direct’ measure of the tool, such as the 
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measurement of the tool under a microscope, and the output is a tool cutting model as 

a function of cutting parameters. The measurements performed on the tools and 

workpieces are often done using expensive equipment such as scanning electron 

microscope, which are not readily accessible. Table 1 shows a breakdown of TWM and 

TCM systems, their purpose and their features. 

Table 1: Breakdown of Tool wear research systems 

 Online System Offline System 

Tool Condition 

Monitoring 

 Used for monitoring 

 Use ‘indirect’ signatures 

and complex algorithms 

N/A 

Tool Wear Modeling 
Area of research of this 

work 

 Have predictive capability 

 Use ‘direct’ methods and 

expensive equipment 

 

1.3 RESEARCH OBJECTIVES 

The macro-scale mechanical machining processes have been widely studied. 

These processes also have established equations, process constants and experimental 

data to determine optimum machining parameters and tool life. This data is summarized 

in the widely-used Machinery’s Handbook [9]. However, it is widely recognized that 

the information from the Machinery’s Handbook does not apply at the microscale; for 

example, recommendations from the Machinery’s Handbook would recommend a 

spindle speed of about 1,000,000 rpm for cutting Al 6061 with a 100 micron-diameter 

micro end mill.  Accurate knowledge of feeds and speeds is currently not available for 

micromilling. On the other hand, information obtained from tool wear modeling is used 

to evaluate and develop tool wear models which can establish fundamental governing 

mechanics of the process, and parameters used during machining. 
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The experiments that are performed on offline TWM are extremely tedious. To 

obtain enough data, one must repeatedly pause machining to observe the tool condition 

and workpiece under a microscope. Chae et al. [5], recommended that “Developing 

new inspection and testing techniques will have a significant impact”. An online tool 

wear modeling system would eliminate the need for expensive tool inspection 

equipment and would be able to obtain data in real-time and very efficiently.  This thesis 

proposes the indirect tool wear signature of chip production rate as a means to create 

an online tool wear modeling system.  To this end, this thesis aims at achieving three 

main objectives: 

 Objective 1: To develop a prototype Online Tool Wear Modeling system that 

utilizes chip production rate as an indirect signature. 

 Objective 2: To evaluate the effectiveness of the prototype device to measure chip 

production rate. 

 Objective 3: To provide an empirical proof-of-concept for chip production rate as 

an indirect signature of tool wear. 

1.4 HYPOTHESIS 

In micromilling, the reduction in scale by several magnitudes has resulted in 

and amplified various effects, which are not observed, or are not dominant in the 

conventional macro-scale. These are broadly termed as ‘scale-effects’. These effects 

are explained in Chapter 2 in detail. The concept of a minimum uncut chip thickness 

(MCT) is one such scale-effect, and has been considered a critical parameter for metal 

cutting in micromilling. The significance of this parameter is that below the MCT 

threshold, metal cutting does not take place. In other words, chip formation does not 

occur when the cutting tooth of the tool passes over the workpiece when in violation of 



   

7 

 

the threshold. To stay above this MCT, there has to be enough thickness of uncut metal 

when one cutting tooth starts cutting. This is achieved by keeping a sufficiently high 

feedrate. 

The MCT of a tool depends on another tool geometry parameter which is its 

cutting edge radius. The MCT value increases with increasing cutting edge radius. The 

cutting edge radius changes with change in tool condition. It generally tends to increase, 

making the tool blunt or worn as cutting progresses. Hence, with enough wear of the 

tool, the feedrate of the cutting process is not sufficient and the MCT threshold is 

crossed. Theoretically, a sharp, sudden decrease in the chip production rate should be 

observed at a particular amount of tool wear. This is visually seen in Figure 2, where 

Kim et al. [10] presented a theoretical graph showing a relation between expected chip 

formation and feed per tooth. The graph also shows that the effect is dominant in tools 

with small diameters i.e. micro cutting tools. 

 

Figure 2: Feed per tooth and Minimum Chip Thickness [10] 

The cutting tool that is commonly used for micromilling is a 2-flute micro end 

mill, which has two cutting teeth. When cutting at a sufficient feedrate, it can be 

assumed that the operation is taking place above the minimum chip thickness. At this 
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condition, it is expected that exactly one chip will be produced at each tooth pass. This 

is illustrated in Figure 3, which shows a simulation performed by Kim et al. [11]. In a 

condition where the MCT threshold is violated, one cutting tooth will slip and not cut 

the workpiece, thereby not generating a chip. But, due to a constant velocity in the 

cutting direction, the second cutting tooth should be above the MCT threshold, and 

hence will cut the workpiece. In this condition, it can be hypothesized that the chip 

production rate will be halved. 

 

Figure 3: Chip formation analysis in micromilling shown in its various stages [11] 

The TWM system developed in this thesis looks to leverage this relationship 

between cutting edge radius, feedrate, and chip production rate to model tool wear 

online (without interruption of the cutting process). The hypothesis can be stated as: 

During micromilling, if the cutting edge radius of the micro end mill wears so that the 

uncut chip thickness drops below the minimum chip thickness, the number of chips 

produced per unit time will drop by approximately half as compared to when the tool 

is new. 
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This hypothesis can be tested and will require development of a new online TWM 

system. 

1.5 THESIS OVERVIEW 

Chapter 1 touched on the problem of tool wear in micromilling and the various 

systems used by researchers for monitoring and predicting tool condition. The 

objectives and the research hypothesis were also stated. In Chapter 2, the background 

concepts such as micromilling scale effects, minimum chip thickness and its impact on 

machining parameters are discussed. The use of machine vision in manufacturing is 

also touched upon. In Chapter 3, the concept, sub-system development and system 

integration for the Tool Wear Modelling (TWM) system are described. The governing 

equations for the system are also derived. An image processing algorithm is also 

described. Chapter 4 defines the variables of the TWM system, the experimental design, 

and how the experiment results will evaluate the hypothesis. The equipment and 

procedure used for the experiments are also briefly described. Chapter 5 records the 

results and the data analysis for all the experiments. Chapter 6 presents the evaluation 

of the hypothesis and the conclusions to the objectives of the thesis. Chapter 7 outlines 

future work and opportunities for the research going forward. References and 

Appendices follow.  
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2 LITERATURE REVIEW 

This Chapter explains the concepts necessary to understand the micromilling 

process and the stated hypothesis. Section 2.1 touches upon the background concepts 

such as the differences between the macro-scale and the micro-scale in mechanical 

machining, the minimum chip thickness effect of micromilling and the use of machine 

vision systems in manufacturing. Section 2.2 presents the various forms and definitions 

of tool wear in micro end mills. Section 2.3 outlines the various tool condition 

monitoring and tool wear modeling efforts pursued by various researchers and the 

results they obtained. 

2.1 BACKGROUND CONCEPTS 

2.1.1 Macro vs micro-scale milling 

Metal cutting processes at the macro-level have been researched for many years. 

That has provided the background information and theories of metal cutting. The result 

of these theories and models was the improvement in tool design, tool life, optimization 

of machining parameters such as spindle speed, depth of cut and feedrate for various 

metal-cutting processes. Merchant [12], [13] established a theory for orthogonal 

cutting. This theory included the derivation of a cutting-force model which made 

possible the calculation of ground-truth parameters such as the coefficient of friction, 

shear stain, the work done and so on. Merchant was able to establish force relations and 

generate a condensed diagram called the ‘Merchant circle’, shown in Figure 4. 

Some assumptions were made prior to deriving this theory. It was assumed that 

the tool has a fully sharp cutting edge, meaning there is no curvature at the cutting tip 

of the tool; the cutting edge radius is neglected. Such assumptions have proven to work 
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well in macro-scale machining. However, when the equations derived from these 

theories are applied to the microscale, the results obtained are unrealistic. 

 

Figure 4: Cutting force diagram at shear plane for macro-milling [12] 

Hence, this assumption fails to be valid at the microscale [14], [15]. The tool 

cutting edge radius in the case of micromachining is comparable to the grain size of the 

material being machined and sometimes, comparable or even greater than the uncut 

chip thickness, which is not the case for the macro-scale. Due to this, it is not accurate 

to neglect the tool cutting edge radius, or assume a positive tool rake angle. Two aspects 

need to be taken into account due to this:  

(1) The clearance face of the cutting tool rubs on the workpiece due to elastic recovery 

of the workpiece  

(2) The rake angle of the tool is effectively negative, hence stresses along the rake face 

at the interface will be large [16]. This is illustrated in Figure 5. 
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Figure 5: Difference between the macro and micro-scale (edited for labeling) [16] 

2.1.2 Minimum Chip Thickness effect 

The concept of minimum chip thickness was touched upon in Chapter 1. Many 

researchers have developed cutting models that incorporate the curved nature of the 

cutting edge, and defined the parameter of minimum chip thickness. Ikawa et al. [17] 

classified the minimum thickness of cut or minimum chip thickness (MCT) as the most 

critical parameter in micromachining. Their theory incorporated a round-edged tool and 

they defined MCT as the critical value of thickness below which no stable chip 

formation would take place. Aramcharoen and Mativenga [16] have termed this 

phenomenon as one of the many characteristics of the micro scale referred to as “size-

effects”. According to them, when Uncut Chip Thickness (UCT) is below the MCT 

threshold, the tool begins to rub on the surface of the workpiece rather than creating a 

metal shearing plane. Thus, no cutting takes place and no chip is formed. This ‘rubbing’ 

of the tool is generally referred to as ‘ploughing’. The workpiece material is compressed 

and then recovers after the tool passes. This is an ‘elastic recovery’ of the workpiece 

material. Only with UCT larger than MCT, chip formation is possible. 

Figure 6 shows the effect of uncut chip thickness on chip formation at the 

microscale. It shows chip formation and material removal in the case of a large uncut 

chip thickness and shows elastic recovery for the case of low uncut chip thickness.  
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`  

Figure 6: Chip formation in relation to the Minimum Chip Thickness threshold [16] 

Several studies have worked towards establishing new models for micromilling 

in order to understand the mechanics of the process more accurately. Kim et al. [18] 

derived a theoretical orthogonal cutting model, taking into account the elastic recovery 

of the workpiece and the rounded cutting edge of the tool. Their orthogonal model is 

divided into 4 regions, as shown in Figure 7. 

The first and the second region are two shear planes formed due to the round 

cutting edge. The third region is the friction region along the rake face of the tool and 

the fourth is the friction region along the clearance face of the tool and the newly formed 

surface of the workpiece. The incorporation of 4 zones gives a more realistic estimate 

for calculating cutting force and thrust forces.  This “round edge model”, as shown in 

Figure 7, explained experimental results for micromachining much better than the 

conventional merchant model. 
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Figure 7: A round-edge orthogonal cutting model [18] 

Kim et al. [10] created a theoretical model to account for the lack of formation 

of chips on each pass of a cutting tooth, especially at lower feedrates. They defined the 

ideal chip thickness as hi and the actual chip thickness as ha; the difference being the 

deflection of the tool when engaging the workpiece. What is found is that when the 

Uncut chip thickness is sufficiently high, shown as actual engagement ha and feed per 

tooth h, in Figure 8 (a), each cutting pass produces a chip and the cutting is termed as a 

“steady cutting regime”. Figure 8 (b) shows the condition where the feed per tooth h is 

much smaller, after the first cutting pass n=0, the cutting pass n=1 takes place in the 

non-cutting zone. This is the theoretical prediction based on the round-edged cutting 

model which show that the feedrate per tooth of the tool is significant in determining 

the chance of production of a chip. Similar studies have been done to derive and 

establish theories of micromachining and chip formation [11], [19]. It was found that 

as the tool wears out, the minimum feed per tooth required increases which should cause 

intermittent chip formation. 
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Figure 8: Comparison of impact of slow feedrate on cutting [10] 

The value of Minimum Chip thickness is not a constant for all cases. The value 

of the MCT varies based on the cutting edge radius of the tool used and also on the type 

of workpiece material being machined. Kim et al. [10] experimentally found the MCT 

to be 22-25% of the cutting edge radius for a micro end mill of 600μm diameter and 

cutting edge radius of 3μm. In [20], Yuan et al. experimentally observed a similar result. 

It is concluded that the minimum chip thickness is approximately 25-30% of the cutting 

edge radius. The workpieces used in these studies were brass and aluminum, and brass 

is a candidate material for this research work. Therefore, the minimum chip thickness 

(tc) is approximated to be 30% of the cutting edge radius (Re) of the tool. This is shown 

mathematically in Eqn. (1). 

 𝑡𝑐 ≈ 0.3 × 𝑅𝑒 (1) 

2.1.3 Machine Vision in Manufacturing 

Computer vision or machine vision has become popular with many successful 

industrial applications. Its capabilities make it a powerful tool and hence can be used 

for multiple applications. Industries such as manufacturing, automotive, biomedical 

have successfully used machine vision for activities such as object recognition, defect 

recognition, welding, dispensing etc. [21]. Golnabi et al. [22] described the design 

process for industrial machine vision systems and their applications. Some key aspects 

to consider in the design of these systems are surrounding scene considerations, system 
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consideration, followed by development of image acquisition, image pre-processing 

and processing algorithm generation. They mention the possibility of using machine-

vision system for offline inspection of cutting tools. Kurada et al [23] reviewed the 

application of machine vision for Tool Wear Modelling as an offline direct sensor. They 

reviewed various needs of the system such as type of lighting and digital image 

processing algorithms. The study focuses on inspection techniques for flank wear and 

crater wear of cutting tools based on surface texture information for determining tool 

condition. Their conclusion is that more research is needed for online application of 

machine-vision in industrial environments. 

2.2 TOOL WEAR DEFINITIONS 

It is necessary to clearly define tool wear of micro end mills in order to better 

understand the tool wear characteristics. Many changes can take place in a micro-

endmill after machining begins, such as loss of material due to chipping, deposition of 

workpiece material (built up edge), fractures and crack formation and changes in tool 

dimensions [24].  Researchers have proposed many different definitions of tool wear 

based on these different types of changes in a tool.  

Zhu et al. and Tansel et al. stated some broad definitions for tool wear in 

micromilling. Zhu et al. [25] defined wear as “the change of shape of the tool from its 

original shape during cutting”, while Tansel et al. [26] have said that, “Any difference 

between a new and a used tool will be referred to as ‘Wear’”.  

The different changes that occur in a tool lead to more specific tool wear 

definitions. Wear on the relief surface or clearance surface of the tool is called flank 

wear. It causes formation of a ‘wearland’. Rubbing of this wearland on the freshly 

machined surface causes dimensional inaccuracy and poor surface finish. Flank wear is 
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common in all cutting processes and due to a significantly round cutting edge, the 

clearance surface tends to significantly rub on the machined surface. Figure 9 illustrates 

flank wear in various stages of a tool’s life. 

 

 

Figure 9: The progression of flank wear of the end mill [39] 

Wear occurring on the rake face is generally in the form of chipping of the tool, 

and is termed as ‘crater wear’. It reduces the cutting lip angle, and weakens the cutting 

teeth. As micro end mills are extremely small and weaker than the macro tools, its life 

is adversely affected by crater wear. Due to the higher stresses and cutting forces in 

microscale machining, sudden and abrupt breakage of the tool is common. Tansel et al. 

[26] explored the reasons for breakage, and came to the conclusion that tool breakage 

mainly occurs due to chip clogging, which causes increase in cutting force requirement. 

Other reasons mentioned include fatigue breakage due to increase in the tool cutting 

edge radius which increases the cutting force, and deflections in the tool due to 

vibrations. 

Another type of wear in micro end mills is the cutting edge wear or ‘edge wear’. 

This causes a change to the cutting-edge radius of the endmill. Micromilling cutting 

studies have focused on incorporating the round-edge model to understand the 

mechanics of cutting. This means cutting edge radius and edge wear are important 
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factors in governing the cutting forces and the thrust force acting on the tool. This in-

turn governs the cutting parameters of the process.  

A large edge radius increases the tool lip angle causing an effective negative 

rake angle and small clearance angle [16]. This suggests that an increase in the cutting 

edge radius results in increased flank wear. Therefore, the extent of flank wear is 

dependent on the cutting edge radius condition. Additionally, a change in the cutting 

edge substantially increases the forces due to increase in ploughing, friction and elastic 

recovery of the material. Wang et al. stated the reason for increase in this as the reduced 

ratio of the uncut chip thickness to the cutting edge radius [11]. This causes faster and 

less predictable tool breakage [26]. Cutting edge radius also has a direct effect on the 

chip formation process because of the minimum chip thickness effect. 

 

Figure 10: A worn cutting edge radius and the measurement method [13] 

Unlike the macro tool, flank wear contributes very little to change in tool 

geometry in micro end mills [27]. Flank wear is measured in terms of the wear land 

area, and is used frequently in macroscale tool wear studies. However, in micromilling, 

measurement of the flank wear land is extremely difficult [28]. The cutting edge radius 

can be measured easily and more consistently. For these reasons, the cutting edge radius 
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wear is a more meaningful measure of tool wear for microscale tool wear studies. The 

experiments in this thesis will use this measure to classify tool condition. 

2.3 TWM AND TCM SYSTEMS 

Chapter 1 introduced TCM and TWM systems and their applications. These 

systems use various tool wear sensors. These sensors are required to be reliable, 

accurate and not interfere with the machining process. At the same time the data should 

provide strong correlation with the changing tool condition. There are two types of 

sensing methods, indirect and direct.  

 ‘Indirect’ means that the parameter being measured can be correlated to tool 

wear, but does not reflect the ground truth of the tool or is not a parameter that can be 

measured on the tool. Cutting force measurements, acoustic emissions (AE), and 

vibration measurements are some examples of these measures. The downfall of this 

type of sensing is that indirect measures can sometimes be influenced by non-wear 

related phenomenon. Tool runout, spindle vibrations, and external conditions can 

adversely affect the AE sensing and cutting force sensing, which in-turn affects the 

effectiveness and capability of the TCM system.  

A direct measure of tool wear is a tool wear signature which is directly related 

to the machining process. This measure is not affected by external conditions and hence 

can provide consistent information for a TWM system. Direct measures for TWM 

systems have been used at the macro-scale. The use of machine-vision based system to 

obtain images of the tool flank surface is shown in [23]. The use of proximity sensors, 

radioactive sensors is also documented. However, the viability of these methods at the 

micro-scale are yet to be explored. 
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2.3.1 TCM Systems 

Some of the sensing equipment used by TCM systems are dynamometers for 

cutting force measurements, microphones for acoustic emission (AE) measurements 

and accelerometers for vibration sensing. Many algorithms have been used to gather 

the data from these sensors and generate a predictive capability for the TCM system via 

the process of machine learning. The limitations seen in current tool condition 

classification system is the lack of tool condition classification resolution. Resolution 

can be defined as the number of distinct tool conditions that can be accurately predicted 

allowing for multi-category classification. TCM systems rely on the predictive 

capability of the classifiers and algorithms to provide accurate results and have so far 

seen a maximum of three pre-defined states of tool: new tool (initial wear), used tool 

(wear progression) and worn (accelerated wear), being accurately predicted. The graph 

formed from this pre-defined criterion is referred by the researchers as Taylor’s tool 

life curve. 

2.3.1.1 Acoustic Emissions 

Acoustic emissions are produced during cutting due to the plastic deformation 

of the shear plane, friction at the rake face and metal deformation at the flank face. 

Hence, changes in the AE signal can give an indirect indication of change in the 

condition of the tool. Jemielniak et al. [29], [30]. Observed that during cutting, AE 

signals are stronger in the beginning, weaker in the middle of the cut and often rise at 

the end. There are ‘bursts’ in the signal that occurred at the tooth passing frequency of 

the tool. AE signal amplitude is also found to increase dramatically as tool wear 

progresses [31]. When the data is transformed to the frequency domain from the time 

domain, the energy at certain frequencies is seen as peaks as shown in Figure 11. The 
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AE signals move to higher frequencies and lower energy levels with wear progression. 

AE signals also vary in amplitude with different feedrates [32]. 

 

Figure 11: Frequency domain energy at different cutting passes [31] 

Many other AE-based studies [28], [33]–[37] have shown similar trend of low 

to high shift of AErms values with a reduction midway through the cutting process was 

observed. Prakash et al. [34] attributed this trend to the small forces needed for chip 

formation while the tool is sharp. The reduction in the AErms values midway into the 

cut is attributed to the formation of build-up edge leading to inefficient machining. In 

the time domain, the AE
rms

 values increase with time. In the frequency domain, the 

energy levels at various frequencies is found to rise with each pass. The higher 

bandwidth of AE sensors allows measurement of signals correctly at high tooth pass 

frequency, which is ideal for the high spindle speeds in micromilling. These studies 

have reported a strong association between AE signals and tool wear progression. 

2.3.1.2 Cutting forces 

Cutting forces vary during the micromilling process and are an indicator of the 

tool condition. Cutting forces depend on factors such as tool cutting edge radius, tool 

geometry, shear angle, thrust force and tool helix start and stop angles [38]. The cutting 

forces are resolved into categories and attributed to the cutting or ploughing. The 
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ploughing and sliding force components are found to be higher when the uncut chip 

thickness is small. As this parameter is closely related to the cutting edge radius of the 

tool, cutting forces are an indirect indicator of the tool condition. Cutting forces have 

been found to increase in magnitude with increase in tool wear.  

Zhu et al. [25] found that the cutting force signal magnitude is generally low 

and stationary with periodic impulses, as illustrated in Figure 12. Thus, effective signal 

processing and feature selection algorithms are required to eliminate noise. Figure 12 

shows the relatively similar magnitudes of noise and the actual cutting force signal. 

The next section explains some algorithms that use this data to predict the tool 

condition. 

 

 

Figure 12: Force signal and noise component [25] 

2.3.1.3 Algorithms 

Among the two indirect tool wear signatures, AE signals have been found to be 

better than cutting force signals in several aspects: AE signals propagate at higher 
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frequencies than the characteristic frequencies attributed to machining. Hence, there is 

a much smaller noise component in the signal. AE sensors are also capable of capturing 

high-frequency vibrations due to availability of larger bandwidth in comparison to a 

Force sensor. Thus, a force sensor alone will not yield desired tool classification levels. 

Therefore, many studies have used a combination of the two sensors to collect more 

information. Many algorithms have been employed along with the use of single sensor 

or multi-sensor systems such as neural networks (NN) or hierarchical algorithms which 

have achieved varied levels of success in tool condition classification. 

Kunpeng et al. [25] used wavelet analysis to obtain signal features for analysis 

from force signal data. A continuous Hidden Markov Model (HMM) was used to obtain 

a three-category tool condition classification by using flank wear as the defining 

criterion. They obtained an average classification success of 92.5% and 90.5% for 

machining of copper and steel respectively. In [39], Zhu et al. performed singularity 

analysis of the cutting force waveforms & the statistical analysis of the sudden shift in 

the mean value of the signal for their TCM. The assumption in this study is that the 

force waveforms generated are different for a sharp and a worn tool. They obtained 86-

96% tool classification on a three-category scale defined using flank wear. 

In [35], the same HMM algorithm was used by Lu and Wan, but data was 

obtained from an AE sensor instead. The resolution of classification was two level; 

sharp and worn. Signal features corresponding to the fifth tool pass were considered as 

worn tool, correlating to a flank wear of 38µm for a 700µm tool. They calculated a 

scatter index using a class-mean scatter criterion, which indicated the correlation of the 

signal features (SFs) to the tool condition. They obtained a 90-92% success in tool 

condition classification. Ren et al. [33] used Type-2 fuzzy logic to analyze AE signal 
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data. Different tool condition states were defined based on the AErms signal features, 

and selected signal features were integrated using a Type-2 TSK fuzzy approach to 

obtain a tool life estimate and the tool condition using a flank wear criterion. This 

approach enables them to estimate the tool life as well as the error of the estimation, as 

shown in Figure 13. The system predicted the tool state very well until 50% of tool life. 

However, the uncertainty in prediction increased in the latter stages of the tool life. 

Yen et al. [31], [32] used AE sensors to obtain data during machining. They 

achieved accuracy of 100% for sharp tool classification and 80% to 95% for a worn 

tool classification. Jemielniak et al. [29] used AE sensor and Force dynamometers 

combined. The AE signals and force signals were compared to the physical condition 

of the tool at different time points of machining with the tool. In another study [30], 

they used data from AE sensors and Force dynamometers and used a hierarchical 

algorithm for their TCM system. 

In the first stage of the algorithm, the tool wear is estimated separately for each 

signal feature and in the next stage, the results are integrated into the final tool condition 

evaluation. They concluded that signal features originating from different sources and 

more in number would eliminate the errors and give a better tool condition 

classification. Many more studies have been performed by Tansel, et al. [26],[37], [40]. 

In a subsequent research work [41], these researchers performed a similar study on non-

metal workpieces. 

The current TCM systems reviewed have seen good success in top level 

classification; a simple differentiation between a sharp and a worn tool. However, there 

is a significant dearth in the resolution of tool condition classification that can be 

obtained. 
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Figure 13: Tool life estimation [30] 

2.3.2 TWM systems 

All current TWM modelling efforts are performed offline by the use of Finite 

Element Analysis softwares for virtual modeling, and ‘direct signature’ sensing 

equipment such as scanning electron microscopes (SEMs) to observe and record the 

physical truth of the tool. Just like sensor fusion techniques in TCM systems, TWM 

system studies have sometimes performed both simulations and experiments to draw 

inferences on tool wear mechanics. The scope of these studies are generally narrowed 

down to some specific cases or applications and workpiece materials. 

Some TWM studies have focused on analyzing the effects of different tool 

coatings and their effect on tool wear. In [42], Kumar et al. explored the performance 

of different tool coatings in laser-assisted micromilling of hard metals. They concluded 

that coated tools performed better and were capable of withstanding the elevated 

temperatures of the laser-assisted process. Li et al. [27] performed finite element 

modeling of a cutting tool by application of cutting forces, and compared the results to 

experimental modeling of the cutting process to optimize tool geometry and tool design 

of 2-flute square end mills for maximum tool performance. The parameters in question 

were tool helix angle and the cutting edge rake angle. Cutting tools with negative rake 
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angle and smaller helix angles performed better. Hamaguchi [43] performed studies on 

workpiece quality and tool wear of 2-flute ball end mills and the effect of tool tilting 

angle on tool wear. They used force signals to compare changes in cutting force to 

correlate the data with flank wear measurements made under an SEM microscope. 

Most TWM studies involve performing experiments and the offline nature 

requires repeated measurements of the micro end mill under the microscope. The data 

is crucial to explore the process of micromilling under different conditions. This TWM 

system aims to establish a completely online method of this procedure by making an 

effort to establish the system and evaluate the hypothesis of the indirect signature that 

is proposed. 
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3 TOOL WEAR MODELING SYSTEM DESIGN 

This Chapter describes the concept, development, and design of the Tool Wear 

Modeling (TWM) system which will be used to evaluate the hypothesis. Section 3.1 

touches upon the development methodology and the high-level system and sub-system 

requirements and layout. Section 3.2 describes in detail the design and development 

activities of these sub-systems. This section both reports and expands upon work that 

was previously performed by a Capstone team of students at Arizona State University 

who implemented several of the required sub-systems as a senior design project.  

Section 3.3 discusses the system characteristics and the parameters that determine its 

operation. Section 3.4 describes the algorithms implemented for the working of the 

system. 

3.1 DEVELOPMENT METHODOLOGY 

In order to achieve the objectives and successfully evaluate the hypothesis, the 

system needs to collect the chips produced and return the chip count, or number of chips 

produced per unit time, in real-time. In order to accomplish this, the system needs a live 

chip extraction system. The variable of interest for the system is the chip count. In order 

to count the chips, a machine-vision system is implemented. However, in micromilling 

the expected number of chips produced per second is very large due to the requirement 

of high spindle speeds. Also, imaging systems require a steady field of view with 

consistent lighting conditions for imaging the chips. Hence, a motion and adhesion sub-

system is needed to bridge the imaging and the extraction of chips. 

If successful, the system will be able to extract chips in real-time and return a 

graph of the chip count vs time or chip count vs feedrate as needed. Figure 14 shows 
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the concept of the system, with labelling showing the different sub-systems. Our 

research group filed a design patent for this chip counting system [44].  

 

Figure 14: A concept overview of the chip collection and counting system [44] 

3.1.1 Sub-system Requirements 

As explained previously, the TWM system is classified into three functioning sub-

systems. These sub-systems have the following requirements.  

Pneumatic sub-system:  

 Successfully extract all the chips being produced during the micromilling process 

 Convey the chips to the motion and adhesion sub-system without any clogging and 

with minimal loss of chips 

Motion and Adhesion sub-system: 

 Successfully collect the chips conveyed from the chip conveying system with 

minimal loss 

 Convey the chips to allow for quick image-processing and low system latency 

 Generate a stable field of view for high-quality imaging 
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Image acquisition and processing sub-system: 

 Capture a sharp and consistent image 

 Pre-process and post-process the image to obtain an accurate chip count 

 Provide the chip count in the form of a graph with respect to time 

The proposed system can have some limitations. One problem is that it is 

difficult to effectively predict beforehand, any loss of chips from the system. It is also 

difficult to predict the flow of each individual chip in the system due to a large number 

of influencing factors. 

3.2 SUB-SYSTEM DESIGN 

3.2.1 Pneumatic sub-system 

The pneumatic sub-system consists of five components: (1) a ‘suction skirt’ 

fitted around the micro-endmill, (2) a vacuum-based material conveying suction pump, 

(3) a suction tube connecting the skirt to the vacuum pump, and (4) a ‘nozzle’ which 

disperses the chips from the vacuum pump to the motion and adhesion sub-system.  The 

system variables of this sub-system are: (1) Supply air pressure and the resulting flow, 

and (2) Length of suction tube.  

Suction skirt: 

The suction skirt creates a closed suction volume around the micro end mill. 

The skirt is fit to the bottom of a tool registration device and provides a physical 

containment for the chips produced. The skirt has a suction hole to which the suction 

tube connects. The size of the suction hole on the inlet skirt is large enough to allow for 

a high static vacuum and vacuum flow at the suction point. However, its size had to be 

limited to not damage the structural integrity of the suction skirt. 
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The suction skirt is positioned such that the skirt is approximately 0.5 to 1 mm 

above the tool tip. This provides a recess for atmospheric pressure air to flow into the 

area, which is necessary for suction of the chips. The suction skirt has the following 

dimensions: 

Outer Diameter = 20 mm; Height = 6 mm; Vacuum Hole = 3.175 mm  

 

Figure 15: (L to R): Front view and side view of the skirt and suction tube 

Vacuum Pump: 

Clogging and uneven dislodging of chips could cause erroneous results of chip 

count. Therefore, the vacuum pump is selected such that there is little possibility of 

clogging of chips. This vacuum pump operates on Venturi principle based suction 

generation, and has no internal moving parts. Pressurized air is input into an annular 

ring in the pump body. This air is ejected through nozzles on the internal side of the 

body which accelerates the air to supersonic velocity. This creates a vacuum resulting 

in suction on the inlet side. The input pressure helps regulate the transfer speed of solid 

material from inlet to outlet. The choice of such a pump is based on factors like required 

static vacuum pressure, velocity requirement and size of the material being transported. 

Based on this, the pump procured was the 'Vaccon DF 1-3' Venturi suction pump. A 

picture of this pump is shown in Figure 16. 
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The pump provides a maximum static vacuum of approximately 12" Hg (400 

mbar) at 100 psi (7 bar) supply pressure. The air consumption is approximately 100 

lpm (litres per minute), which is also the vacuum flow of the pump at that pressure. 

Compared to other variants, this pump provides the highest static vacuum and lowest 

vacuum flow at a given air supply pressure. This means it produces low velocities and 

large suction, which is desirable. More performance data pertaining to the pump is listed 

in Appendix A. 

 

Figure 16: Vacuum Pump & outlet nozzle for chip suction 

Inlet Tubing:  

The suction tube connects the vacuum pump with the skirt. This tube provides 

a transportation path for the metal chips. The tube is required to not develop kinks or 

deformations as they can cause suction pressure drop. Wear and tear of the inside walls 

of the tube and a tendency to developing static electricity are undesirable. The tube 

material selected is polyethylene, which was selected by running trials with other 

candidate materials. The diameter of the inlet tubing is 3.175 mm or 1/8th inch inner 

diameter. This was dictated by the inlet opening of the suction pump. It is much bigger 

than the expected size of metal chips. The vacuum flow available at the operating 
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pressure range of 40-100 psi ensures a very high air transport velocity into the pump, 

which reduces system latency. 

Outlet nozzle: 

The nozzle disperses chips from the pump onto an adhesive surface, which is a 

part of the motion and adhesion sub-system.  The function of the nozzle is to prevent 

chips from being lost and to evenly disperse chips across the width and within the 

confines of the adhesive material. The outlet nozzle diameter was dictated by the outer 

diameter of the pump outlet, and the width of adhesive tape available in the market. The 

inner diameter is 12.7 mm (1/2”). This relationship in tubing diameters is important in 

order to increase the air velocity where the chips are being pulled into the air stream, 

which will help prevent loss of chips due to spindle scatter and not cause the chips to 

stagnate or clog. Decreasing the air velocity where the chips are being pushed out of 

the air stream onto the adhesive material will prevent loss of chips due to dispersion. A 

four-fold increase in the tubing diameter ensures a sixteen-fold decrease in velocity at 

the outlet. A hood/ cover is attached at the bottom end of this exit nozzle. The function 

of this is to avoid any effects from external air circulation. 

Air flow and pressure: 

The pneumatic system is driven by a single pressured line that provides 

pressurized air for the vacuum pump and air bearings of the spindle. The static vacuum 

generated by the pump increases almost linearly in relation to the pressure of supply 

air. The vacuum flow varies in an inverse exponential manner with increasing supply 

pressure, and remains constant at a maximum of approximately 100 lpm after 30 psi of 

supply pressure. For initial experiments, the pressure is set to be the maximum rated 
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pressure, 100 psi. In the latter experiments, air flow at different pressures was tested to 

determine the optimum pressure. 

3.2.2 Motion and Adhesion sub-system 

The motion and adhesion sub-system consists of a conveyor belt that is used as 

the base to move a strip of adhesive material under the nozzle and past the imaging 

system. Other components are an adhesive tape roll, a roller wheel to source the 

adhesive material from, and another roller wheel to collect the adhesive tape and 

remove it from the belt. Important design considerations for this sub-system include: 

control of belt speed, choice of adhesive material, positions of the rollers for the tape, 

belt color and reflectivity, and torque of the motor providing tension in the tape at the 

collection roller. 

A conveyor belt for this purpose was donated by Misumi, Inc.  The conveyor 

belt is a variable-speed belt with a range of 1.3 to 34.5 m/min. The belt is of white matte 

(non-glossy) color which would prevent direct reflections off of the belt, as well as 

provide contrast to the darker-colored metal chips. The speed of the belt is controlled 

by an analog voltage input, varied using a microcontroller. The belt motor is equipped 

with an encoder to read out the belt speed. It is crucial to know and set a desired belt 

speed in order to predict the number of chips expected per picture captured by the 

imaging sub-system. The output of the encoder and the input to the speed control are 

both wired to a PSoC microcontroller.  The PSoC is connected and operated by the 

same computer that also operates the imaging sub-system. 

There were two candidate adhesive materials. One was a transparent double-

sided tape obtained from ‘McMaster-Carr’, and the other was a 3M heavy-duty wall 

mounting tape; both the tapes being 1 inch in width. After initial experimentation, the 



   

34 

 

opaque white tape is chosen for the system, as it has a much smoother surface which 

provides better image quality. It is also less prone to wrinkles and folds as it is much 

thicker than the transparent tape.  

The tape is positioned on the roller in a manner to allow the weaker adhesive 

side to roll on the surface of the belt, which allows easy removal from the belt after 

imaging is performed. The stronger adhesive side faces the nozzle to capture chips 

being released. Also, the tape roll is positioned such that it is rolled off parallel to the 

belt surface in order to avoid creases on the tape.  

The tape is peeled off the belt on the other end by a 12V DC motor driven roller 

wheel. The motor torque estimation was performed experimentally by using a spring 

with a known spring constant, wherein one end of the spring was attached to the tape 

on the belt and the other held stationary. The deflection of the spring before the tape 

started to peel off provided an estimate of the adhesion force.  This motor is also 

controlled using the same PSoC in order for the belt and roller to operate at the same 

linear speed. 

This selection of the components in the motion and adhesion sub-system was 

influenced by the pneumatic sub-system, which is downstream. The belt color and the 

color of the opaque tape are white as the workpiece material chosen for the experiments 

is brass, which stands out more visually against a white background than against a black 

background. Commercially and economically available adhesive tapes have a width of 

1 inch, which is larger than the outlet diameter of the nozzle (0.5 inches). The belt speed 

is determined based on the chip production rate of micromilling. The choice of this 

parameter however, also depends on the capability and/or limitation of the camera in 
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terms of its framerate and resolution, which are constrained by cost. The details of 

selection of the optimum belt speed is given in Chapter 4. 

 

Figure 17: Picture showing the motion and adhesion sub-system 

3.2.3 Image acquisition and processing sub-system 

The image acquisition and processing sub-system consists of two components: 

(1) an image acquisition device (USB microscope) and (2) image processing algorithm 

running on MATLAB®. The camera is mounted on an adjustable mounting bracket to 

allow for greater functionality of the camera in terms of setting the correct working 

distance (WD) and field of view (FOV). The image acquisition device selected is a USB 

microscope. A regular digital camera lacks sufficient magnification to observe the 

chips, making the USB microscope more desirable for this purpose. The selection of 

the USB microscope is influenced by three main factors: the chip size, number of chips 

expected per frame and size of adhesive tape. These parameters affect the resolution, 

magnification, framerate and lighting requirements of the microscope. The camera 

Outlet 
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requires enough resolution to identify each chip uniquely. The resolution also cannot 

be very large as it would make the system computationally slow.  

The chip production rate, or number of chips produced depends on the cutting 

tool spindle speed, N. The camera should be able to image the maximum number of 

chips produced, i.e. when the MCT threshold is not violated. Another requirement is 

the FOV setting of the camera. The size of the adhesive tape dictates this setting. The 

camera must be able to image all the chips across the full dimensions of the adhesive 

tape. Therefore, to calculate the minimum resolution requirement of the camera, the 

maximum chip size is calculated and a square box of the largest dimension of the chip 

is considered as the area of an image a chip will occupy. 

The system is designed such that one chip must occupy an 8-neighbourhood of 

pixels (3 pixels in each direction). Another condition that is taken into account is to 

preferably have these chips, a minimum of an 8-neighbourhood of pixels away from 

each other in order to reduce the likelihood of chip overlap. This means that a single 

chip must occupy 81 square pixels to assure identification of each chip separately. This 

is shown in Figure 18, where the yellow chip will occupy the full yellow grid, and the 

red area is the area that it should preferably occupy.  
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Figure 18: A pixel grid showing the metal chip and the 81-pixel neighborhood 

However, it would be incorrect to assume that the density and orientation of the 

chips on the conveyor belt will be even on the entire frame. It is possible that chips will 

be laid over one another. Hence, a much larger pixel-area requirement per chip is 

needed to be able to identify each individual chip successfully. These parameters then 

dictate the minimum required framerate capability of the camera. The framerate has to 

be large if the number of chips imaged per frame is small. This factor is found to dictate 

the operating speed of the conveyor belt while running the TWM setup. These equations 

and relations are derived in Section 3.3.  

The choice of lighting for the experiment is crucial and it influences the 

subsequent step of image processing. The initial concept for image acquisition used a 

strobe light to provide repeated bursts of light at a set frequency. The idea was to be 

able to run the belt at a set constant speed and based on the requirement of frames per 

second, the strobe light would flash at a set frequency. This would eliminate the 

problem of image blurring due to a moving belt. However, a digital video device 

refreshes the image row by row rather than frame by frame. Thus, images taken under 

the strobe light sometimes end up being part-lit and part-dark as shown in Figure 19. 

Countering this would increase the framerate requirement of the microscope, making it 

too expensive. 

Therefore, the light chosen is a 1000W flood light. This bright and powerful 

light provides consistent high contrast images. However, for the system to work 

properly, the belt is stopped at specific instances to grab a still frame and avoid image 

blurring. The light is also placed such that it is looking almost vertically down on the 
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belt to avoid shadows of the chips degrading the image. The rest of the room is kept 

dark to not interfere and have better control over the lighting conditions in the room. 

 

Figure 19:Images taken using a strobe light; highlighting both possibilities 

3.3 SYSTEM OPERATING PARAMETER SELECTION 

Figure 19 shows the working of the TCM system in a system breakout. The 

system is characterized by deriving governing equations for the operating variables 

such as belt speed, air supply pressure and so on. These equations are used to control 

the variables in order to obtain desired and predictable performance from the system. 

The functioning of the system is then decided as an optimization problem of the 

variables to obtain the desired operating point. 

Due to the small size of cutting tools, the spindle speed (N) for micromilling is 

generally kept high to meet the cutting speed requirements and develop the necessary 

cutting forces. The cutting speed can be as high as 80,000 rpm in the spindle available. 

The cutting tools used are two-flute micro end mills, which have 2 cutting teeth (n). 

The maximum chip production rate (Cr) in the process is determined by Eqn. 

(2). At the spindle speed of 80,000 rpm, 2,666 chips are produced per second. 
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𝐶𝑟 =

𝑛𝑁

60
 

(2) 

 

Figure 20: Sub-system work-flow of the system: Green (Pneumatic), Red (Imaging), Blue (Motion) 

The size of chips formed in the cutting process depends on axial depth of cut 

(d), feedrate (f), and the diameter of the cutting tool (D). A chip can have a maximum 

length (L) equal to an entire single pass of a cutting tooth. This is reflected in Eqn. (3).  

 
𝐿 =  

𝜋𝐷

2
 

(3) 

The relationship in Eqn. (3) is prone to vary based on the physical properties of 

the workpiece such as hardness, ductility etc. A study on chip morphology found that 

the average chip formed when cutting with a 150 μm tool was found have 11 ‘segments’ 

of 5μm and hence the chip size was 55 μm [11]. The chips produced are picked up by 

the pneumatic conveying sub-system and are dispersed on the adhesive tape. 

Combining the belt speed, chip dispersion area, and chip production rate gives an 

“expected” number of chips per image which can be compared with the actual count 

obtained.  
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For the imaging sub-system, the USB microscope has a resolution of 1.3 MP 

(1280 x 1024) and a frame rate of 15 frames per second. However, the bottleneck of the 

imaging sub-system is the time it takes for the computer to process the image. This sub-

system depends on some other variables that determine its operating point viz. size of 

the chips and chip production rate. The chip production rate can be a deciding factor in 

determining the minimum framerate. However, since it is not required to capture every 

frame, this is not a constraint. The field of view (FOV) is dictated by the width of the 

adhesive tape. It is possible to adjust the working distance (WD) and the magnification 

of the microscope to comply with this constraint. However, the relatively low resolution 

of the microscope puts a limit on how big the working distance can be. Hence these 

operating variables are interdependent, as shown in Figure 21 

The Field of view available in the X and Y directions can be taken as FOVx and 

FOVy. The adhesive tape is 1 inch or 25.4 mm in width.  Thus, FOVy = 25.4 mm and 

FOVx = 25.4 x (1280/1024) = 31.75 mm 

 

 

Figure 21: The variables of the Imaging sub-system 
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By using the FOV and resolution information, the dimension for each pixel is 

calculated to be 24.8 x 24.8 μm. It was pre-determined to perform experiments with 

micro end mills of 200 μm. Wang et al. [11] found the average length of chip (L) 

produced by a 150 µm tool is 55 µm. Therefore, we assume an average chip size larger 

than that. Thus, the theoretical maximum number of chips that can be fit per frame (Nf) 

is given in Eqn. (4), which in this case comes to approximately 200,000. 

 
𝑁𝑓 =

(𝐹𝑂𝑉𝑥 × 𝐹𝑂𝑉𝑦)

𝐿2
 (4) 

However, as discussed before, it is a minimum requirement for a chip to occupy 

81 pixels (9 pixels in each direction) to identify each chip separately. This is defined as 

the chip area. Hence, the maximum number of chips per frame comes to approximately 

16,000 which is calculated using Eqn. (5) 

 
𝑁𝑓 =  

(𝐹𝑂𝑉𝑥 × 𝐹𝑂𝑉𝑦)

𝐶ℎ𝑖𝑝 𝐴𝑟𝑒𝑎
 (5) 

The theoretical value of 16,000 chips per frame may not be possible in practice, due to 

the stochastic nature of chip dispersion. Also, it takes a minimum of 5 seconds to 

generate approximately 16,000 chips. The sampling rate of the TWM system needs to 

be much higher than that. Thus, the actual number of chips that can be successfully 

imaged will be determined experimentally by keeping image quality and sampling rate 

requirements in mind. This however means that the USB microscope is capable of the 

task and will not be a bottleneck on the system. 

The motion and adhesion sub-system has a conveyor belt with a speed (V) range 

of 21.6 mm/s to 576 mm/s. Since the outlet nozzle diameter is 12.7 mm, it can take a 

maximum of 0.58 seconds to pass over the nozzle. The size of the image in this direction 
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is FOVx, which is 31.75 mm. Hence at the slowest speed, the number of chips per image 

(Nf) is equal to 4,000 chips per image. This is calculated using Eqn. (6).  

 
𝑁𝑓 =  

(𝐹𝑂𝑉𝑥 × 𝐶𝑟)

𝑉
 (6) 

 

Figure 22: The variables of the motion and adhesion sub-system 

However, the belt speed selection is influenced by other requirements such as 

tape adhesion and the cost of the tape, as shown in Figure 22. The belt speed has to be 

large enough in order to generate the required force to overcome the adhesion of the 

tape and roll it on smoothly. The sampling rate of the system depends on the belt speed 

setting. A faster belt implies a higher sampling rate. However, a belt speed too fast will 

consume adhesive tape much faster which proves costly. The belt speed is chosen in 

order to account for these considerations, as it is a crucial variable that determines the 

performance of the system in terms of the sampling rate, chips per frame and the cost 

of experimentation. The selection calculation is shown in Chapter 4. 
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3.4 ALGORITHMS 

The sub-systems are required to capture a frame when the belt stops, and process 

that image. Hence algorithms are designed to provide communication between the 

motion and adhesion and image acquisition and processing sub-systems. The algorithm 

and the logic diagrams are given in the following sub-sections. The actual code and 

scripts are given in Appendix B and C. 

3.4.1 Motion sub-system controller algorithm 

The motion and adhesion sub-system is required to run at a set speed and have 

a stop-start running cycle. The imaging sub-system takes a picture while the belt is in a 

stop condition. The belt speed setting is limited by the requirement of a sufficiently 

high sampling rate, but also by the cost of adhesive tape. The belt also has to traverse a 

minimum length between stops; the length being equal to the distance between the 

nozzle opening and the camera’s frame.  

The PSoC provides the capability for PWM –based control of the two motors: 

the conveyor belt motor and the adhesive tape roll motor. This is programmed in the 

PSoC creator environment. PWM blocks for the two motors are created to define the 

variables. The pin connections define the I/Os of the system. The logic of the code 

development is shown in the flowchart in Figure 23. 
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Figure 23: Flowchart of the logic diagram for the PSoC controller 

3.4.2 Image processing algorithm  

The imaging sub-system algorithm is developed using the Matlab image 

acquisition toolbox and the image processing toolbox. Initial testing for the algorithm 

was done using different sized chips such as those produced from a 1mm facing tool 

and also from the tool of choice, a 200μm tool as shown in Figure 19 in section 3.2. 

After choosing the preferred lighting and adhesive tape and using only the chips 

produced by the 200μm tool, the image processing algorithm was modified.  

The first step of the image processing algorithm is to convert the captured color 

image to grayscale. A color image consists of much more data, with three 8-bit values 

per pixel, representing the R, G and B components in a 3-D matrix. It is not possible to 

convert this 3-D matrix directly into a 2-D binary scale matrix. Matlab provides 

maximum image processing capabilities in the binary format. The image is therefore 

converted to an 8-bit grayscale image with a minimum intensity of 0 representing the 

color black and maximum of 255 representing white. After conversion, the image 

shows that while the background is lighter and the chips are darker in comparison, there 

are some chips that are very bright as they are reflecting light directly at the camera due 
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to their lustrous nature. Therefore, the next step is the global thresholding of the image 

histogram. Thresholding leads to definition of a maximum or minimum intensity limit 

of all pixels in the image. The belt is found to have an intensity varying from 120 to 

150 on the 0-255 scale, while the lustrous chips have an intensity of at least 180 or 

more. Thresholding operation blackens the lustrous chips by setting all values above 

180 equal to 0. 

After thresholding, the image is cropped. This is done in order to eliminate the 

outside borders of the image. The microscope when operated at the required WD and 

magnification leads to uneven focusing of the image. The center of the image remains 

sharply in focus whereas the edges of the image appear blurred. The contrast between 

a chip and the belt color in this blurred region is extremely low, meaning some parts of 

the tape and some chips are undistinguishable. This leads to a lot of image noise upon 

application of image segmentation operations. Image re-sharpening algorithms in 

Matlab are also not suitable for this application as they work by changing the contrast 

of the image to make the low values lower and the high values higher. With insufficient 

contrast, this leads to wrong results. To evaluate the image, we can find the total number 

of chips in that given area which will indicate the total number of chips in the entire 

image, assuming an even spread of chips across the field of view. 

The image’s grayscale threshold is calculated next in order to obtain a black and 

white image. The black and white image is a binary image, meaning the 0-255 values 

get converted into either 0 or 1 based on whether they are below or above the threshold, 

0 for black and 1 for white. A negative of this image is then obtained. 
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The black and white images are found to have some pixelated errors or noise, 

especially in the image corners. These are generally single pixels, much smaller than 

the chips. Hence a morphological ‘cleaning’ operation is performed which removes 

these single pixels. The noise or errors which are bigger than a single pixel are tougher 

to deal with. However, this noise is found to generally be much more condensed in 

terms of its spread on the frame in comparison to the chips. Also, sometimes the metal 

chips have uneven lighting on their surface. A part of the chip might be better lit than 

the rest. Therefore, the metal chip pixels are sometimes converted into black or white, 

which reduces the number of pixels representing one chip. For these reasons, an image 

dilation operation is performed.  

A dilation operation uses a structuring element of pre-defined shape and places 

this element on the picture, pixel-by-pixel. Any object smaller than the size of the 

structural element get enlarged to fit the size of the element. A square of 2 pixels by 2 

pixels was chosen. Hence any chips that are smaller than 4 pixels are enlarged, and the 

cluster of noise gets aggregated into bigger chunks.  

At this point, the image is of sufficient quality to perform the final step, which 

is a connected component command used to calculate the number of chips seen in the 

image. This command simply counts the number of connected components (represented 

by chips) in the frame. This returns the number of chips which is then plotted. As these 

images are taken in and processed chronologically, we can obtain a graph of chips vs 

time. A flowchart representing the logic of the image acquisition and processing 

algorithm is shown in Figure 24. Following this, a set of images are given that illustrate 

the step by step transformations performed on the actual images. This process takes 

place for every image that is captured. 
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Figure 24: A logic flowchart of the image processing algorithm 

Image 24 (a) is a typical picture that is captured by the microscope from the 

adhesive tape. The metal chips are a slightly darker golden color than the lighter belt, 

or are shining due to luster. Image 24 (b) is a grayscale conversion of the image. Image 

24 (c) represents the crop and threshold transformation applied on the image. The metal 

chips are now seen as black specks on a light gray background. Image 24 (d) shows the 

black and white version of the image, which is converted to its negative in image 24 (e) 

for better viewing. After applying the morphological operations such as cleaning, and 

image dilation, we obtain image 24 (f). It is seen that the metal chips are visibly clearer, 

and the noise seen in the top left corner is slightly aggregated. A simple counting 

operation returns the chip count which for this case, is 440. 
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                            (a)                                                                 (b) 

 

                            (c)                                                                 (d) 

  

                               (e)                                                                (f)  

Figure 25: Series of images showing the various image processing steps (L to R), (T to B) 
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4 EXPERIMENT DESIGN AND PLAN 

This Chapter describes the experimental plan and design to evaluate the 

hypothesis. Section 4.1 outlines the experiment variables. Section 4.2 describes the 

design of two experiments that are performed and the expected result from the 

experiments. Section 4.3 lists the various equipment used in the experiment. 

4.1 EXPERIMENT VARIABLES 

Independent variables: 

These are the variables that will be varied during the experiments. 

1. Feedrate (F): 

The feedrate of a cutting tool is the velocity with which it is advanced against 

the workpiece. In micromilling, this variable is crucial for determining the possibility 

of producing a cut, and hence will be varied to test the hypothesis. This variable is 

calculated in terms of linear distance per time, based on the minimum feed value using 

Eqn. (7), and fed to the machine tool in millimeters per second.  

 𝐹 ≥ 0.3 × 𝑟𝑒 ∗ 𝑛 ∗ 𝑁 (7) 

2. Cutting time (t): 

The cutting time is the amount of time that a tool has been in contact with the 

workpiece while actively cutting. As the cutting time increases, the amount of tool wear 

will increase as well. The value of cutting time will increase therefore increase 

continuously as cutting progresses in all experiments. By varying the cutting time of a 

single tool, the amount of tool wear is indirectly varied.  

Control Variables: 

These are variables that are chosen before the experiments and kept constant.  



   

50 

 

1. Tool Diameter: (D) 

The tool diameter choices have varied in previously-published micromilling 

research. The minimum tool size available commercially is 25 μm in diameter. The 

maximum tool diameter is undefined due to the ambiguity and lack of a clear definition 

of what can be regarded as micro-scale milling, although the maximum is generally 

taken to be around 1mm. Tools of 2 mm diameter are often used for facing operations 

on the workpiece. For the experiments, we have chosen to use a 200 μm tool. The tool 

is large enough to resist random tool breakages, and small enough to truly test the 

micro-scale effects. 

2. Number of cutting teeth: (n) 

A variety of end mills such as D-type, ∆-type and 4-flute tools have been used 

in some research works [45]. The most common, however, are 2-flute end mills. They 

are also of two types, ball end and square end mills. They are categorized by flute-

length as stub-length and standard-length tools. A 2-flute stub length endmill is suitable 

for the purpose of these experiments as ball end mills are suited for machining in full 

3-dimensions, while we will be cutting in only 2.5-dimensions, and standard length 

tools are useful for deeper cuts.  

3. Spindle Speed: (N) 

Unlike the macro-scale, the spindle speed cannot be estimated using The 

Machinery’s Handbook [9]. The calculations based on the handbook would suggest 

extremely large speeds. In current systems, the speed is dictated by the spindle 

capabilities rather than the calculated values. The top speed of the spindle is 80,000 

rpm, which will be set constant during experiments. 

4. Belt speed (V): 
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The belt speed depends on the chip production rate of the process and the 

number of data samples desired. This variable will be kept constant for all the 

experiments. The cutting time per pass for all the experiments is expected to be a 

minimum of 8 seconds as the workpiece is 25.4 mm long and the maximum feedrate 

we will use is 3.2 mm/s. A faster belt will allow a higher sampling rate, but it will 

consume adhesive tape much faster as well. Figure 22 of section 3.3, shows that the 

four factors that will affect belt speed selection are chip production rate, tape cost, tape 

adhesion and required sampling per cutting pass. The sampling rate is the critical 

requirement.    

Experience using the imaging system suggested that a time of 1.2 seconds is 

needed to have the belt come to a halt, and for the computer to capture the image and 

process it. Therefore, the belt travel time for the distance from the nozzle outlet to the 

center of the camera is minimized to 0.8 seconds, by setting the belt speed as 139 mm/s. 

This yields a minimum of 4 pictures per cutting tool pass at a high feedrate and also 

consumes the tape economically. The sampling time will be 2 seconds.  

5. Depth of cut (z): 

The cutting tool in use is a stub length cutting tool, which has a shorter flute 

length. A shorter flute length reduces tool deflection and increases tool strength. They 

are therefore suitable for operation involving small depths of cut. However, the depth 

of cut is kept large enough to negate the effects from any irregularities in the workpiece 

surface. 

6. Workpiece material: 

The choice of workpiece material affects the progression of wear of a cutting 

tool. Materials that are hard can consume a tool in a very short period of time and hence 
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the tool life is much more unpredictable. For experiments, we have chosen brass which 

is considered to be easily machinable. 

Dependent variables: 

Dependent variables are those that will change during the experiments and will 

be measured in the experiments 

1. Chip count: 

The chip count is the variable of interest for the TWM system. This variable is 

expected to change during experiments and will be measured at a defined sampling rate 

by the system. The sampling rate of the system at the decided belt speed is 2 seconds 

(0.9 seconds belt moving time + 1.1 seconds idle time). 

State Variables: 

1. Minimum feed: (Fmin)  

This variable can neither be modified nor controlled, but is expected to change 

during the cutting process. The minimum feed is a critical state variable. It has a lower 

limit that has to be maintained at the start of every experiment due to the Minimum 

Chip thickness effect. This factor is dependent on the tool flutes (n), spindle speed (N) 

and the uncut chip thickness. The initial feedrate (independent variable) is selected 

based on this value. The minimum feed is Fmin from the cutting edge radius re using 

Eqn. (8). 

 𝐹𝑚𝑖𝑛 = 0.3 × 𝑟𝑒 (8) 

 

2. Cutting edge radius: (re) 

The cutting edge radius of the tool depends on and varies with changing tool 

condition. This is measured ‘offline’ using an optical microscope before and after the 
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cutting operation. The cutting edge radii for new tools have some variability from tool 

to tool. The two cutting teeth of the same tool can also be slightly different. 

All the process parameters and their values are summarized in Table 2. 

Table 2: Parameter values for the experiments 

Parameter (Symbol) Values / Description 

Spindle speed, (N)  80,000 rpm 

Axial depth of cut (z) 40 µm 

Tool diameter (D) 200 µm 

No. of teeth (n) 2 

Min. Feed (Depends on cutting edge 

radius) 

1.6 mm/s (Assuming 2 µm edge 

radius) 

Belt speed (V) 139 mm/s 

Air supply pressure (P) 100-40 Psi 

Workpiece material Brass 

 

4.2 EXPERIMENTAL DESIGN 

In order to evaluate the hypothesis, micromilling cutting needs to take place in 

two conditions: above and below the minimum chip thickness. Two sets of experiments 

were designed. The system variables are kept constant for these experiments, and 

independent variables are varied. 

4.2.1 Type-1 experiment 

The Type-1 experiment has been designed to be a multi-level single factor 

experiment. The feedrate and the cutting time are both varied. The cutting edge radius 

of the new tool is first measured as shown in Figure 28, and using Eqn. (1), the 

minimum feedrate is calculated. Five levels of feedrate are chosen. This will give 

information over a large range of feedrates and will make the results more significant. 

The rest of the process variables are held constant. The feeds and corresponding 

feedrates are shown in Table 3. 
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Table 3: The feeds and feedrates selected for all Type-1 experiments. 

 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 

Feed per tooth (µm/tooth) 1.2 1.0 0.8 0.6 0.4 

Feedrate (mm/s) 3.2 2.67 2.13 1.6 1.06 

 

 During the cutting experiment, the tool wear increases as the cutting time 

increases and hence the cutting edge radius is expected to change continuously. Each 

cutting run would have to be done using a new cutting tool in order to negate this effect. 

However, doing so would increase the cost of experiments, and could induce random 

error due to a variation in tool construction, mounting, process etc. Experience shows 

that the since the workpiece material is brass, rapid tool wear is not expected as it is a 

comparatively soft material. This allows the assumption that the cutting edge radius is 

not significantly decreased for the six experimental runs. 

 

Figure 26: Illustration of hypothetical Type-1 experiment results  

The expected graph of results for the experiment is illustrated in Figure 26. 

From Pass 4 onwards, the feedrate will be below the theoretical minimum chip 

thickness and hence the chip count is expected to drop after that pass. The experiment 

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Type-1 experiment

Chip Count Cutting edge radius Feedrate
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will provide a relation between chip count and feedrate. This will help evaluate the 

mathematical relationship between the feedrate and minimum chip thickness. Some 

variance is expected in the values of the chip count, which is illustrated with error bars. 

4.2.2 Type-2 experiment 

The Type-2 experiment is designed by keeping the feedrate constant and 

increasing the cutting time. The cutting tool will cut parallel linear paths of equal cutting 

length for a long period of time. The chip count is recorded continuously during cutting 

and cutting is continued until a drop in the chip count is observed. At this point, the 

cutting is stopped and the cutting edge radius will be recorded. 

The expected graph of results for the experiment is illustrated in Figure 27. This 

experiment will provide a relation between chip count and cutting time. This will help 

evaluate the hypothesis by checking whether or not the cutting was taking place above 

or below the MCT threshold. Once again, some variance is expected in the values of 

the chip count, which is also illustrated with error bars. The cutting edge radius increase 

might not be linear.  

 

Figure 27: Illustration of hypothetical Type-2 experiment results 

Time

Type-2 Experiment

Feedrate Chip Count Cutting edge radius
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To evaluate the success of the system in getting a correct chip count, the 

expected number of chips per frame captured is calculated. This depends on the spindle 

speed of the cutting tool which defines the number of chips produced, the field of view 

of the camera which defines the area captured, and the belt speed which defines the 

number of chips per area. The belt speed is chosen to be 139 mm/s. By using Eqns. (2), 

(4) and (5), calculation is performed as given below: 

 Number of chips produced per second (hypothesized) = 2,666 

 Field of view of camera in the belt motion direction = 31.75 mm 

 Speed of the belt = 139 mm/s 

 Chips expected per frame = (2666/139) *31.75 ≈ 600 

The image needs to be cropped due to unequal focus across the field of view; the edges 

of the image are out of focus when the center of the image is in focus. It is assumed that 

the chip distribution will be more or less even across the image. The area cropped 

reduces the total field of view by 420 pixels in the x direction and 300 pixels in the y 

direction. Therefore, the analyzed area of each image is reduced to approximately 52%. 

Based on this, the expected chip count per frame for both the experiments will be 

approximately 310. 

4.3 EXPERIMENT EQUIPMENT AND PROCEDURE 

The following is a list of equipment and external apparatus used for the 

experimental evaluation of the hypothesis. The procedure for performing the 

experiment follows. 

1. Machine-Tool: The cutting tests are performed on a micro/meso scale precision 

cutting machine tool. The machine uses Beckhoff CPU, drivers and servo-motors. 
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The software used to interface with the machine was TwinCAT3, which is a Visual 

Studio integrated software which allows for PC-based real-time control of the 

machine. A PC-based control allows for future integration of applications such as 

Matlab and LabView into the system. 

2. Tool observation microscope: The new cutting tools are observed under the Nikon 

MA100 inverted optical microscope. This microscope can capture digital images of 

the tool and allow measurement of the cutting edge radius of the tool. Figure 28 

shows a picture of the tool from the bottom and the measurement of its cutting edge 

radius. 

 

Figure 28: (L to R) A picture of the micro endmill, and the measurement of the cutting edge radius 

Procedure: 

1. The Machine-Tool is switched on and the 200 µm tool is inserted into the spindle. 

This spindle is brought to its home position, which is slightly above the workpiece 

to allow for tool touch-off. 

2. The sub-systems of the TWM system are switched on. Power supply to the lighting 

system, the motion and adhesion system is turned on and the PSoC and USB 
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microscope are initialized on a PC. Power to the PSoC is turned off, which causes 

the belt to remain stationary, which otherwise would start consuming the adhesive 

tape. 

3. The air-supply to the suction pump is turned on. This also supplies the air to the 

spindle of the machine-tool. 

4. Tool registration is performed by slowly plunging the tool into the workpiece till 

electrical continuity is obtained upon touch-off. The desired axial depth of cut is set 

and the tool is in a ready position. 

5. The PSoC power is turned on, and the cutting is simultaneously started. The system 

runs automatically. After the channel is fully cut, the belt is stopped and the image 

data that is recorded is saved. The used adhesive tape is discarded, and the tool is 

brought to its next ready-position. The procedure is repeated for the required runs. 
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5 EXPERIMENTAL RESULTS AND ANALYISIS 

This Chapter describes the results from the experiments and their analysis. 

Section 5.1 shows the results of the first set of experiments performed. Section 5.2 

describes the investigation of the variance in the data obtained from these experiments. 

Section 5.3 presents the results and analysis of the final experiment performed and the 

analysis of the data obtained.  

5.1 FIRST SET OF EXPERIMENTS 

The first set of experiments consists of two experiments: A Type-1 experiment, 

in which both feedrate and cutting time are independent variables, followed by a Type-

2 experiment, in which cutting time is the only independent variable.  

5.1.1 Type-1 experiment 

Table 4 shows the raw data obtained from the Type-1 experiment. The missing 

readings in this experiment are due to a shorter cutting time in the first three feedrates. 

The faster feedrates lead to lower number of captured images per cutting tool pass. 

Therefore, the data collection i.e. number of images in the slower feedrates was 

restricted to have the same number of observations as the faster feedrates. 

Table 4: Chip counts for experiment Type-1 

 

Feed 

Rates 

3.2 mm/s 2.67 mm/s 2.13 mm/s 1.6 mm/s 1.06 mm/s 

Count 1 224 193 333 290 124 

Count 2 236 227 282 232 206 

Count 3 201 248 278 273 147 

Count 4 230 205 295 289 195 

Count 5 - - - 253 168 

Mean 222.75 218.25 297 267.4 168 

Std Dev 15.3 24.32 25.07 24.84 33.72 
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A box-plot shown in Figure 29 represents the data from the Type-1 experiment. 

The whiskers represent the maximum and minimum observed values; the orange blocks 

represent the range from the 25th to the 50th percentile, and the green block represents 

the 50th to 75th percentile.  

 

Figure 29: Box plot for the first Type-1 experiment 

A single-factor ANOVA analysis is used to analyze the data. This will help 

determine whether or not the chip counts obtained by using the different levels of 

feedrate have a statistically significant difference. The null hypothesis is that the chip 

count averages for these treatments are equal; the alternate hypothesis is that the chip 

count averages are significantly different, as shown in Eqn. (9).  

 𝐻0: 𝜇1 =  𝜇2 =  𝜇3 =  𝜇4 =  𝜇5 

𝐻1: 𝜇1 ≠  𝜇2 ≠  𝜇3  ≠  𝜇4  ≠  𝜇5 
(9) 

The results of the ANOVA are shown in Table 5. 

At (α = 0.05) 95% confidence, the Fcrit value is 2.964, meaning that there is a 

statistically significant difference in the chip count caused by the different feedrates. 
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The ANOVA robustness tests such as the normal probability plot and plot of residuals 

over time, are shown in the Appendix D.  

Table 5: Single-factor ANOVA for type-1 experiment 

Source of Variation SS DOF MS F P-value 

Between Feedrate 44715.89 4 11178.97 16.695 1.01E-05 

Error (Within Feedrate) 11382.7 17 669.5706   

Total 56098.59 21    

 

A contrast test is then performed in order to evaluate the data with a more 

realistic null hypothesis. Since it is known that the two runs with the highest feedrates 

take place above the theoretical minimum chip thickness and that the runs with the 

lowest two feedrates take place below the theoretical minimum chip thickness, a 

comparative t-test can be performed to find significant difference between the feedrates 

above the minimum chip thickness and the feedrates below the minimum chip 

thickness, if any. The null and alternate hypotheses are given in Eq. (), where µi is the 

mean for the ith feedrate level 

 𝐻0: 𝜇1 + 𝜇2 =  𝜇4 +  𝜇5 

𝐻1: 𝜇1 + 𝜇2 ≠  𝜇4 + 𝜇5 
(10) 

Contrasts are coefficients to these means; in this case the contrasts are: c1, c2 = +1; c3 

= 0; c4, c5 = -1.  

The contrast of interest can be written as: 

 𝐶 = 𝑐1𝜇1 + 𝑐2𝜇2 − 𝑐4𝜇4 −  𝑐5𝜇5 (11) 

The variance for C is: 

 

𝑉(𝐶) =  
𝜎2

𝑛
∑ 𝐶𝑖

2

5

1

 (12) 
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Then the value t0 is calculated as: 

 
𝑡0 =  

𝐶

𝑉(𝐶)
 

(13) 

 

The value of t0 obtained for the data in Table 4 is 0.254. The t-critical value at 95% 

confidence is 1.74. This means that we fail to reject the null hypothesis, meaning that 

for the comparison of interest, there is no significant difference in the chip count when 

cutting above or below the theoretical MCT. 

5.1.2 Type-2 Experiment 

Table 6 shows the raw data of the type-2 experiment. The process parameters 

used for micromilling were the same as shown in Chapter 4. The two missing readings 

in Table 6 are due to extremely inferior quality of image in those cases. A time-series 

plot, as shown in Figure 30 represents the data from the Type-2 experiment. A moving 

average of the fourth interval is used to observe any trends seen in the data. The 

descriptive statistics are given in Table 7. 

Table 6: Chip counts obtained for experiment Type-2 

 Pass 1 2 3 4 5 6 7  8 9 10 11 

Count 1 175 220 199 199 169 213 283 242 237 239 243 

Count 2 302 205 286 200 188 321 258 299 201 278 304 

Count 3 227 195 269 158 199 281 188 206 213 314 346 

Count 4 262 149 230 190 207 306 181 347 285 331 246 

Count 5 191 191  - 161 299 -  292 282 366 196 351 

 

Table 7: Descriptive statistics for Type-2 experiment 

Chip Count Mean Std Dev Median Range Min Max 

Raw 243.77 57.08 237 317 149 366 

Moving average 

(Int=4) 
242.16 38.5 245.75 142.25 169.5 311.75 
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Figure 30: Time/Pass vs Chip count plot of the Type-2 experiment 

What is observed here is a large standard deviation in the observed chip count. 

This is seen over the range of the experiment, as the standard deviation for the raw data 

is as high as 57, when the means is 243. The chip count in this experiment has not 

dropped; in fact, it shows a slight upward trend. Even if the chip count were to fall to 

half the number, it would be hard to distinguish between the two sets of data due to the 

large standard deviation.  

This variance is also observed between succeeding values within the same pass, 

or consecutive passes. For instance, the minimum chip count of 149 appears in Pass 2, 

and a larger number of 286 is seen in Pass 3. A moving average of the fourth interval 

is used to detect any trends in the data. The plot shows a continuously varying chip 

count and fails to reveal the expected trend in the data.  

In both the experiments, the data appears to contradict the expected trend in chip 

count described in Chapter 4. However, it is difficult to draw a conclusion in regard of 
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the chip production and the underlying cutting mechanics due to such a large variance 

in the data. The variance can also be caused due to errors caused by some operating 

parameters set in the TWM system. Therefore, experiments are performed in order to 

investigative the variance before performing any hypothesis evaluation experiments. 

These are described in the next section. 

5.2 INVESTIGATING THE VARIANCE 

The investigation of the data first focused on the variance that could be 

potentially caused by the TWM system itself. Some possible reasons are identified 

below, and a designed experiment was performed to analyze the variance. 

 The metal chips could get stuck or clogged in the chip suction system, which can 

be later dislodged onto the adhesive tape, causing ejection of chips at an erratic rate. 

In order to reduce this possibility, the travel distance or ‘length of the inlet tube’ 

need to be shortened. This impact of this variable would be tested by employing the 

originally used long inlet tubing (0.9 m) and using a shorter tube (0.45 m).   

 The medium of transport for the metal chips is air. The suction force for the vacuum 

pump is generated by compressed air. There is a possibility that the air flow in the 

system is turbulent, which causes the metal chips to travel at uneven rates. This is 

tested as a separate experiment to analyze the air flow out from the pump, which is 

named “Variance test-1”.  

 The chips could be exiting the system at a very high velocity from the nozzle. This 

could possibly cause an unknown and varying amount of chips to be lost. The 

variable that would be tested is the ‘Supply pressure’ into the pump, by using a 

lower supply pressure which would lower the vacuum flow in the pump. 
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 The last factor taken into consideration is the length of the workpiece. The original 

workpiece is short compared to the size of the hood. This might cause an improper 

suction closure for large parts of the cutting operation. A longer workpiece could 

be used to investigate this potential source of variance. A longer workpiece would 

also provide a larger set of readings. The short workpiece is 1 inch in length, and 

the long workpiece will be 4 inches in length 

5.2.1 Variance test 1: Air flow 

Two of the critical factors that are under question relate to the possibility of air 

flow fluctuations and the high air exit velocity. To analyze this, the vacuum pump is 

connected to an air flow sensor. Pressurized air is supplied to the pump at different 

pressures and the readings obtained from the sensor are recorded using an oscilloscope. 

The test is performed at 100 psi, 50 psi, 40 psi, 30 psi, 20 psi and 10 psi.  

 

Figure 31: The scatter plot for air speed readings in time (50 psi) 
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Figure 32: A histogram plot showing the dominant air flow reading (50 psi) 

Figure 31 shows the data obtained from the air flow sensor for the test 

performed at 50 psi. Similar results are obtained for the other inlet pressure tests. Figure 

32 shows a histogram which gives an idea of the distribution of the air flow values 

obtained. We see a normal distribution with a large variance in the air flow. This can 

be expected if the air flow is turbulent in nature. To analyze whether or not the air speed 

variation is the cause of the variation seen in the chip count, statistical analysis is done. 

Statistical analysis: 

The sampling rate of the air flow sensor is 2 milliseconds. This sampling rate is much 

higher compared to the time it takes the tape to travel the distance of one image FOV, 

which is 31.75mm. At the given belt speed, it would take the tape 220 milliseconds to 

travel the distance FOVx. Therefore, the data is grouped into time intervals of 220 

milliseconds. The variance and mean within each of these groups is calculated. Finally, 

a pooled variance is calculated to obtain the value for the mean air flow and variance 

which affects every succeeding images. Table 8 summarizes that data. 
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Table 8: Results of descriptive statistics for the air flow tests 

Air flow (psi) 100 50 40 30 20 10 

Pooled mean (V) 8.046 5.966 5.97 5.851 5.526 4.606 

Pooled Std Dev (V) 1.48 1.11 0.95 0.88 0.87 0.61 

 

The data shows a proportionally steady rise in the exit air flow reading and the 

variance associated with it with respect to the input supply pressure. However, what is 

also revealed by the data is that the mean air flow reading for each picture time is similar 

and has very little variance among those values. This is illustrated in Table 9, where a 

list of the mean airflow over a picture time is shown. This data proves that despite 

varying, the air flow over a ‘picture time’ (220 ms) remains the same. Hence, the 

variation would be within pictures and not between pictures. This shows that the 

variance in the air flow happens at a much higher frequency than the frequency of 

variation of the number of chips seen in the experiment results between pictures. 

Table 9: Table showing the mean airflow over a 'Picture-time' (20 psi) 

Picture # 1 2 3 4 5 6 7 8 9 10 

Mean 5.5 5.44 5.44 5.47 5.40 5.48 5.51 5.54 5.47 5.64 

Picture # 11 12 13 14 15 16 17 18 19 20 

Mean 5.59 5.57 5.49 5.64 5.53 5.53 5.51 5.54 5.6 5.55 

   

5.2.2 Variance test-2: Designed experiment 

After ruling out the effect of the air flow variation, a two-factor full-factorial 

experiment was designed to test the effect on chip number variance of the change in 

length of the workpiece and the length of the inlet tube. Table 10 shows the chip count 

data obtained. 

Table 10: Chip count for the variance experiment 
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Run type WP(L) / 

Tube(S) 

WP(L) / 

Tube(L) 

WP(S) / 

Tube(S) 

WP(S) / 

Tube(L) 

Count 1 228 221 368 206 

Count 2 257 602 274 189 

Count 3 489 279 135 141 

Count 4 312 515 164 175 

Count 5 351 493 158 130 

Count 6 548 574 213 231 

Count 7 469 701 230 351 

Count 8 323 595 149 241 

Count 9 424 233 182 285 

Count 10 273 457 225 158 

Mean 367.4 467 209.8 210.7 

Std Dev 174.37 168.16 70.43 68.67 

Q1 282.75 323.5 159.5 162.25 

Median 337 504 197.5 197.5 

Q3 457.75 589.75 228.75 238.5 

 

 

 

Figure 33: Box plot for the variance experiment data 

Table 11 shows the ANOVA results on the data. The null and the alternate 

hypothesis are stated as shown in Eqn. (14), where τ is the error or variance caused by 
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the workpiece change and ß is the error or change due to the change in the tube, and i 

and j represent the row and column number. 

Table 11: Two-factor ANOVA for the variance experiment 

Source of Variation SS DOF MS F0 P-value 

Workpiece 428283 1 428283 34.38689 1.06E-06 

Tube length 25250.62 1 25250.62 2.027375 0.163098 

Interaction 24354.23 1 24354.23 1.955403 0.170561 

Error 448374.1 36 12454.84   

Total 926262 39    

 

 𝐻0: (𝜏𝛽)𝑖𝑗 = 0 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 (𝜏𝛽)𝑖𝑗 ≠ 0 
(14) 

The F-critical value for this experiment is 4.1132. Upon comparing to the F0 

values, this means that a change in workpiece length has a significant effect on the value 

of chip count obtained. The length of the tube on the other hand, seems to have a very 

small effect on the final chip count. 

Upon comparing the individual data, it is found that the run with the long 

workpiece and a short tube has a mean value much closer to the expected number of 

chips. The variance shows a trend of increasing with an increased mean.  

The mean for the long workpiece & short tube is found to be closer to the 

expected chip count. From the air speed simulation, it was found that the variance in 

the flow is not responsible for the variance. However, using 40 psi supply pressure 

reduces the air speed at the exit. This would help reduce any loss of chips happening at 

the exit. Therefore, the final experiment that will be performed will use a long 

workpiece and a short tube with a 40 psi suction supply pressure. 
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5.3 FINAL EXPERIMENT 

The final experiment performed was a Type-1 experiment (varying feedrate 

with increasing cutting time). Based on the variance experiment, it was determined that 

the experiment will be performed with a long workpiece, a short inlet tube and at 40 psi 

pressure. This experiment is expected to have a lower variance as compared to the 

previous experiments due to the reduced pressure.  

The analysis of the data follows the same flow as the previous type-1 

experiment. The raw data and the descriptive statistics are given in Table 12. An 

ANOVA is then performed on the data to quantify the effect of the changing feedrates. 

The null and alternate hypothesis for this test are the same as stated in Eqn. (9). 

Table 12: Chip count for second Type-1 experiment 

Feedrate (mm/s) 3.2  2.67  2.13 1.6  1.06 

Count 1 207 228 197 162 211 

Count 2 427 244 164 200 186 

Count 3 378 377 182 147 219 

Count 4 473 146 178 242 283 

Count 5 269 249 260 167 186 

Count 6 424 201 331 226 192 

Count 7 377 172 323 247 141 

Count 8 356 162 248 221 185 

Count 9 146 358 319 275 162 

Count 10 157 340 192 240 193 

Mean 321.4 247.7 239.4 212.7 195.8 

Std Dev 118.2 83.9 65.8 42.2 37.8 

Q1 222.5 179.25 184.5 175.25 185.25 

Median 366.5 236 222.5 223.5 189 

Q3 412.5 317.25 304.25 241.5 275 

 

A box plot for this data is shown in Figure 34 to visualize the data.  



   

71 

 

 

Figure 34: Box plot representation for the final experiment 

 

Table 13: Single factor ANOVA Table of Type-2 experiment 

Source of variation SS DOF MS F0 P-value 

Changing feedrate 93267.4 4 23316.9 4.0813 0.0066 

Error (within treatments) 257087 45 5713.04   

Total 350354 49 7150.08   

The F-critical value, at 95% confidence for this test is 2.578. Since F0 > F critical, it 

means that there is a statistically significant difference in the chip numbers caused by 

the changing feedrates. 

Once again, a contrast test is performed on the data. Eqns. (11), (12) and (13) are used 

to perform the test. The null and alternate hypothesis are the same as in Eqn. (10). 

The value of t0 for this test was found to be 6.714. The t-critical value at 95% 

confidence for this test is 1.68. Therefore, t0 > t-critical value for this test; which means 

that the cumulative data above and below the theoretical minimum chip thickness of 

the tool are significantly different. 
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However, when the means are compared directly, the drop in chips even though 

significant, is not close to being half. The drop in chips is approximately 70%. The 

implications of this result on the hypothesis is discussed in the next Chapter. 
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6 DISCUSSION AND CONCLUSION 

This Chapter draws inferences from the work done in the thesis. Section 6.1 

discusses the accomplishments of the thesis work as compared to the objectives that 

were undertaken at the start. Section 6.2 evaluates the hypothesis that was defined in 

the first Chapter and tries to draw meaningful conclusions from the data.  

6.1 ACCOMPLISHMENT OF THE OBJECTIVES 

The research work in this thesis addresses the problem of tool wear in 

micromilling. The work also hypothesizes, develops and analyses an online tool wear 

modeling system for micromilling.  

Objective 1: To develop a prototype Online Tool Wear Modeling system that utilizes 

chip production rate as an indirect signature. 

 A promising online TWM system has been developed that successfully counts chips 

without interrupting the micromilling process. 

 Key sub-systems such as the Pneumatic sub-system and motion and adhesion 

systems have been developed, and new knowledge about the impact of their 

operating variables has been established. 

 The image acquisition and processing sub-system has been developed and tested. A 

robust image processing algorithm and the sequence of operations have been 

established after multiple iterations. 

Objective 2: To evaluate the effectiveness of the prototype device to measure chip 

production rate. 

 Key governing equations for the system have been established as shown in Chapter 

3.  
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 A variance analysis experiment was performed to evaluate the system. The 

knowledge obtained gave insight into the challenges faced and the future work 

required for the system. 

Objective 3: To provide an empirical proof-of-concept for chip production rate as an 

indirect signature of tool wear. 

 The data obtained makes it hard to draw decisive conclusions on the hypothesis. 

 More experiments with multiple other factors will have to performed to establish a 

relationship between chip production rate and the tool wear.  

 Better understanding of the mechanics of chip production, and the effects of 

machining parameters might be needed to evaluate the hypothesis. The final 

experiment showed that there is a difference between the chip numbers above and 

below the minimum chip thickness. 

6.2 DISCUSSION ON THE DATA  

The original primary hypothesis of this work was stated as follows: 

 “During micromilling, if the cutting edge radius of the micro end mill wears so 

that the uncut chip thickness drops below the minimum chip thickness, the number of 

chips produced per unit time will drop by approximately half as compared to when the 

tool is new.” 

The final type-1 experiment showed a decrease in the average number of chips 

between the runs that were above and below the theoretical MCT. However, it also 

appears that the mean of the number of chips drops steadily with every stepped 

reduction in feedrate, regardless of the MCT threshold. The drop in the number of chips 
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is also not at around 50% of the initial readings which were taken with a new tool; the 

mean of the slower feedrates is around 70% of the runs above the MCT threshold. 

 

Primary conclusions from each experiment are given in Table 14. 

Table 14: A summary of the conclusions  from the experiments 

Experiment Conclusions / Discussion 

Type – 1 experiment 

(1) 

The data does reveal a significant difference in chip 

number between the various levels of feedrate. However, 

the contrast test shows no difference despite cutting 

above and below the theoretical MCT. 

Type – 2 experiment 

The data reveals a large variance in consecutive readings 

of chip count. After cutting for a large number of passes, 

the chip count doesn’t fall. 

Variance experiment 

The experiments and simulations reveal that a reduction 

in air supply pressure reduces the air exit velocity, while 

still providing sufficient suction. The length of the 

workpiece shows a significant effect on the mean chip 

count, whereas the length of the suction tube doesn’t 

affect the outcome 

Type – 1 experiment 

(2) 

The data shows a significant difference between the 

various levels of feedrate. The contrast test also confirms 

a difference in the count between cutting above and below 

theoretical MCT.  

 

However, a large variance is seen in the readings. There is also an overlap of 

the minimum and maximum values between runs where the expectation is that of a 

large gap between the readings. Various causes of the variance were investigated and 

identified, however, the final experiment reveals that some sources of variance still 
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remain. This makes it difficult to draw a decisive conclusion despite showing a 

statistically significant difference. 

The next Chapter on future work discusses what measures can help identify and 

reduce the variance caused due to the TWM setup, and perform further experiments to 

re-evaluate the hypothesis 
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7 FUTURE WORK 

The study done and the experimental efforts have revealed the requirement for 

additional experiments in order to obtain a better understanding of chip formation and 

thereby, an understanding of the process.  

7.1 TOOL WEAR MODELING 

In Chapter 1, the hypothesis proposed a relation of the minimum chip thickness 

requirement and the feedrate requirement of micromilling to the number of chips 

produced. Chapter 4 discussed the results that would be expected theoretically if this 

hypothesis was correct. However, the results obtained have seen large variation in the 

chip count obtained even in successive readings of the values. For experiment Type-2, 

the variance stays large enough which makes it difficult to draw a statistically 

significant conclusion. The Type-1 experiment shows a statistical difference between 

the various levels of federate. However, there was no sudden drop in the chip number 

as was expected. Further experimentation on the system variables are required to 

analyze the high variance in chip count. The second phase would involve a study of 

experiments with different workpiece materials and its effects. 

 Offline experiment: This experiment hypothesizes the start-stop motion of the belt 

as the cause for the high variance obtained. The belt’s acceleration time, 

deceleration time and the backlash of the belt can potentially lead to stationary areas 

of the tape being photographed. An experiment where the pictures are taken after 

the cutting test is complete will permit running the belt at a constant speed. 

Analyzing the data for this experiment can rule-out or establish this as a cause for 

the variance 
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 Filter experiment: This experiment hypothesizes a variable loss of chips at the exit 

nozzle as a cause for the high variance. This experiment will involve a much larger 

change in the setup. It hypothesizes the use of a moving filter material instead of a 

sticky tape which will capture all the chips. This will require extensive testing to 

check the image quality that is obtained from a variety of filter types. The image 

processing algorithm will have to be altered accordingly as a change in the 

background can lead to vastly different results. 

If the results from the above experiments fail in explaining the variance, further 

study will be necessary in order to understand the chip formation mechanics in 

micromilling. 

7.2 TOOL WEAR MEASUREMENTS 

In Chapter 2, we have argued that the cutting edge radius is a better measure of 

tool wear in micromilling using current equipment such as optical microscopes or SEM 

microscopes. This process is done offline and to develop this TWM system further, an 

online system is needed. The current measurement methods of the cutting edge radius 

provide the measurement of the bottom view of the tool as seen in Chapter 5. The 

cutting edge of the tool extends along the entire profile of the tool. Another reason why 

the cutting edge radius is a better measure is because flank wear has a lot of ambiguity 

associated with it when the ‘wear land’ is measured. This can cause inconsistent 

measurements which are subject to human error. These measuring methods also require 

repeated removal of the tool from the spindle at various stages of machining and taking 

physical measurements. 
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A new method of measuring wear is being proposed. The requirement for 

obtaining reliable and repeatable measurements is ‘unrolling’ the cutting surface of the 

tool. This is possible by generating an impression of the flutes of the tool onto a 

cellulose acetate tape. This procedure requires the use of the precise axes of the machine 

tool and the frictionless bearings of the spindle; and hence can be automated. The 

common parameters of the tool such as the cutting edge radius can be extracted from 

the radius of curvature of the bottom of the trough and can be observed along the entire 

flute length. Flank wear can also be recorded by the impression produced by the flank 

surface while rolling the tool. In addition, other surface data such as crater wear can 

also be obtained. 
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APPENDIX A 

PERFORMANCE GRAPHS FOR VACCON DF 1-3 PUMP 
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APPENDIX B 

ALGORITHM FOR OPERATION OF THE MOTION SYSTEM 
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The following algorithm is used for the control of the two motors of the motion and 

adhesion sub-system 

#include <project.h> 

int main() 

{ 

    // Define the ON-time based on distance between the 

nozzle and the microscope and speed 

    int Drive_Time=800; 

    // Define the OFF-time based on time taken for the 

belt to stop fully and the image capture time 

    int Picture_Time=1200; 

    int Drive_Speed=100; 

    // Define variable to be sent as a Image trigger 

    uint8 send=2; 

    Tape_Roll_Motor_Start(); 

    UART_1_Start(); 

    Conveyor_Motor_Start(); 

    for(;;) 

    { 

      // Define speeds for the conveyor and tape roll 

motor 

      Conveyor_Motor_WriteCompare(20); 

      Tape_Roll_Motor_WriteCompare(91); 

      CyDelay(Drive_Time); 

      // Send the image trigger     

      UART_1_UartPutChar(send); 

      // Stop the belt and the tape roll motor 

      Conveyor_Motor_WriteCompare(0); 

      Tape_Roll_Motor_WriteCompare(0); 

      // Wait for the picture to be taken 

      CyDelay(Picture_Time); 

    } 

} 

 

/* [] END OF FILE */ 
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APPENDIX C 

MATLAB SCRIPT FOR IMAGING SYSTEM 
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The following MATLAB Script is used for the imaging sub-system 

clear all 

clc 

%Generate a video object using the USB microscope% 

vid=videoinput('winvideo',1,'RGB24_1280x1024'); 

%Start infinite frame acquisition allowing long standby% 

set(vid,'TriggerRepeat',Inf); 

%Start video - USB microscope% 

start(vid); 

%Define communication port to PSoC% 

SerPSoC=serial('COM3'); 

set(SerPSoC,'BaudRate',9600,'DataBits',8,'Parity','none',

'StopBits',1,'FlowControl','none'); 

%Open communication with PSoC% 

fopen(SerPSoC); 

%Pre-define structuring element for image processing% 

Se = strel('square',2); 

%Define loop variables% 

i=1; 

a=0; 

while (i<11) %Number depends on number of frames needed 

per run% 

  while (a==0) 

      %Wait for non-zero value (trigger)% 

      a=fread(SerPSoC,1,'uint8');   

  end 

  %Trigger has been received, so take a picture% 

   a=fread(SerPSoC,1,'uint8'); 

   %Pause for belt to come to a complete halt% 

   pause(0.5); 

   %Take picture% 

   data=getdata(vid,1); 

   %Save picture for future reference% 

   figure;imshow(data) 

   B = rgb2gray(data); %Convert to grayscale% 

   B(B>160)=0; %Blacken lusturous chips% 

   %Crop image to obtain ROI% 

   B2 = imcrop(B,[140,140,850,700]); 

   B2(B2<130)=0; %Blacken all chips% 

   lvl = graythresh(B2); 

   C = im2bw(B2,lvl); %Convert to black & white 

   D = imcomplement(C); %Obtain negative% 

   E = bwmorph(D,'clean'); %Remove noise% 

   F = imdilate(E,Se); %Thicken chips%  

   CC = bwconncomp(I,8); %Obtain count% 

   %Plot of chips vs frame number% 

   plot(time,CC.NumObjects,'-o'); 
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   hold on  

   a=0; 

   i=i+1; 

   flushdata(vid); %Clear memory% 

   toc 

end 

stop(vid) %Close video% 

fclose(SerPSoC) %Stop communication% 

delete(SerPSoC) %Delete communication port% 

clear SerPSoC  
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APPENDIX D 

ANOVA ROBUSTNESS TEST FOR FIRST TYPE-1 TEST 
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The following are the ANOVA robustness test plots for the first type-1 test 

 

 

Barring a single outlier, the residuals follow a normal distribution. This is seen by a 

simple ‘fat-pencil’ test. 
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APPENDIX E 

ANOVA ROBUSTNESS TEST FOR FIRST TYPE-1 TEST 

  



   

94 

 

The following are the ANOVA robustness test plots for the second type-1 test 

 

 

The normal Probability plot shows that the residuals exhibit a normal 

distribution. The Figure below shows the plot of residuals vs run order. The run order 

plot reveals that there is a correlation between residual and run-order. This is expected, 

as the random experiment order was such that the lower feedrates were performed later. 

The variance has been observed to be lower for the slower feedrates, where chip count 

was found to be lower; meaning that the variance is acting as a percentage of the mean.  
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