
Covering Arrays:

Generation and Post-optimization

by

Rushang Vinod Karia

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2015 by the
Graduate Supervisory Committee:

Charles Colbourn, Chair
Andrea Richa
Violet Syrotiuk

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial objects

that guarantee that every interaction is tested at least once.

In the absence of direct constructions, forming small covering arrays is generally

an expensive computational task. Algorithms to generate covering arrays have been

extensively studied yet no single algorithm provides the smallest solution. More

recently research has been directed towards a new technique called post-optimization.

These algorithms take an existing covering array and attempt to reduce its size.

This thesis presents a new idea for post-optimization by representing covering

arrays as graphs. Some properties of these graphs are established and the results are

contrasted with existing post-optimization algorithms. The idea is then generalized to

close variants of covering arrays with surprising results which in some cases reduce

the size by 30%. Applications of the method to generation and test prioritization are

studied and some interesting results are reported.

i

ACKNOWLEDGMENTS

This thesis would have not been possible without the help of several people.

Firstly, I would like to thank my advisor, Charles Colbourn for his constant advice and

suggestions. Thank you to my committee members, Violet Syrotiuk and Andrea Richa

for their time. Thanks to Charles Colbourn and Violet Syrotiuk for going through

multiple revisions of this thesis and pointing out several typing errors that I missed. I

would like to thank my parents and my sister for their love. You made me feel that I

never left the country. Finally, I want to thank my companion, friend and shoulder to

fall back on – Shrijal. This journey would have not been half as great without you.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Thesis Overview. 2

2 DEFINITIONS . 3

2.1 Covering Arrays . 3

2.1.1 Known Bounds . 4

2.2 Quilting Arrays . 5

2.2.1 Application of Quilting Arrays . 6

2.3 Graphs . 7

3 RELATED WORK . 9

3.1 Construction Techniques for Covering Arrays . 9

3.1.1 Construction Techniques for Quilting Arrays 10

3.2 Post-optimization of Covering Arrays . 11

3.3 Graph Coloring Methods . 14

4 RECOLORING FOR COVERING AND QUILTING ARRAYS 16

4.1 Recoloring for Covering Arrays . 16

4.1.1 Finding the Private Interactions . 18

4.1.2 Generating the Row Set to Post-optimize 20

4.1.3 Choice of the Coloring Algorithm . 24

4.1.4 Example: Post-optimization on CA(6; 2, 4, 2) 25

4.2 Recoloring for Quilting Arrays . 25

iii

CHAPTER Page

4.3 Results of Post-optimization of Covering and Quilting Arrays

Using Recoloring . 26

4.4 Graph Analysis . 30

4.4.1 Bounding the Clique Number of the Graph 33

4.5 Exact Coloring to Analyze the Success of Post-optimization 37

5 ADDITIONAL APPLICATIONS OF RECOLORING 41

5.1 Reducing Coverage by a Controlled Percentage 41

5.2 Generation of Covering and Quilting Arrays Using Recoloring 44

6 CONCLUSION . 47

6.1 Contribution . 47

6.2 Future Work . 48

REFERENCES . 49

iv

LIST OF TABLES

Table Page

1 CA(5;2,4,2) . 4

2 CA(6;2,4,2) . 4

3 PCA(4;2,4,2) . 4

4 Q3
3-QA(15; 3, 6, 3) . 6

5 An Illustration of RandomPostOpt . 12

6 CA(6;2,4,2) . 25

7 Post-optimization of Covering Arrays Using Recoloring . 28

8 Post-optimization of Qt
w-QA(N ; t, k, 3) Using Recoloring 30

9 Lexical Ordering for the Columns When k = 5 and t = 2 34

10 Lexical Ordering for the Columns When v = 3 and t = 2 34

11 An Example Where a 2-coloring without Reordering Exists Only When 3

Rows are Selected . 39

12 Results of Exact Coloring . 40

13 PriortizeOpt on a CA(26; 4, 6, 2) with Best= 21 . 43

14 PriortizeOpt on a CA(140; 5, 17, 2) with Best= 104 . 43

15 PriortizeOpt on a CA(1460; 4, 8, 5) with Best= 1212 . 43

16 Covering Arrays Generated Using Recoloring . 45

17 Quilting Arrays Qt
w-QA(N ; t, k, 4) Generated Using Recoloring 46

18 Quilting Arrays Qt
w-QA(N ; t, k, 5) Generated Using Recoloring 46

19 Quilting Arrays Qt
w-QA(N ; t, k, 6) Generated Using Recoloring 46

20 Quilting Arrays Qt
w-QA(N ; 6, k, 6) Generated Using Recoloring 46

v

LIST OF FIGURES

Figure Page

1 A Vertex Coloring of the Petersen Graph . 7

2 Different Colorings of the Complete Bipartite Graph K3,3 15

3 An Interaction Group Graph for Three Rows R = {a, b, c} 22

4 Recoloring of R = {3, 4, 5} on CA(6; 2, 4, 2) . 26

5 Average Number of Vertices in the Covering Array Graph 31

6 Performance of DSATUR Coloring . 32

vi

Chapter 1

INTRODUCTION

The field of software testing continues to gain significance as the cost associated

with faulty software continues to rise. Extensive research has been performed to

reduce the cost of testing while taking into consideration the constraints imposed

by the problem. Interaction testing involves testing specific subsets of components

exhaustively. From a combinatorial perspective the problem is to find a covering array

with the minimum number of rows. The number of rows is then considered the size of

the test suite.

However, generation of covering arrays is by no means an easy task. Covering

arrays have been studied extensively [19, 2, 15, 9, 16, 8, 3, 22, 24] and different

techniques have been applied for their construction. Despite these efforts, the problem

and its computational hardness in general remains open. To date, most of the work has

concentrated on generating covering arrays from scratch. Techniques such as simulated

annealing [24] appear to do well for smaller arrays, often beating greedy methods.

However as the parameters become larger, the time required by the current state-of-art

simulated annealing algorithms increases exponentially. Greedy methods [2, 15, 9] in

general are faster but often yield low quality solutions. Many combinatorial design

techniques [8] exploit the structure of covering arrays and other designs recursively to

produce infinite families of covering arrays. However, the quality of these solutions

depends on the quality of the ingredients and the construction.

More recently, [20] investigated post-optimization of covering arrays. Post-

optimization attempts to reduce rows in an existing covering array by exploiting

1

certain redundancies in the covering array while maintaining coverage at every step

of the process. The published results improve over several best-known results at the

time and produced competitive results for several others using low quality solutions as

the initial seed. Their research establishes that post-optimization is a viable technique

since one may now start with a greedy solution which can be quickly obtained and

then a post-optimizer can improve the solution.

1.1 Thesis Overview

This thesis explores a new idea by representing post-optimization of covering arrays

as a vertex coloring problem. The idea is directly applicable to variants of covering

arrays called quilting arrays and performs post-optimization successfully, in some

cases reducing the number of rows by 30%.

Chapter 2 provides formal definitions of the terms used in this thesis. Chapter 3

surveys literature of existing post-optimization and generation techniques.

Chapter 4 introduces the new post-optimization method. The post-optimization

method is explained and extended to work on quilting arrays and results are provided.

Further, a bound on the clique number of the formed graphs is found for a specific

family of covering arrays. Finally, the chapter concludes by analyzing factors under

which post-optimization would be successful with limited effort.

Chapter 5 discusses the use of the proposed idea in applications other than post-

optimization. Specifically, the generation of covering arrays, quilting arrays and

providing test prioritization are discussed.

Chapter 6 concludes this thesis by listing the contributions made more formally

and raises some interesting questions that could warrant future work.

2

Chapter 2

DEFINITIONS

This chapter formally describes the terms used throughout the rest of this thesis.

Section 2.1 defines covering arrays. Section 2.2 defines quilting arrays - a generalization

of covering arrays. Finally, Section 2.3 describes graphs.

2.1 Covering Arrays

Let A = (aij) be an N × k array with entries from an alphabet Σ of size v. Let

N be the number of rows and k be the number of columns of the array. We assume

that the alphabet Σ ≡ {0, 1, 2, ..., v− 1}, the rows are indexed by {0, 1, ..., N − 1} and

the columns by {0, 1,, k − 1}. Let t be a positive integer such that k ≥ t. Then a

t-way interaction is a t-tuple {(ci, vi) : 0 ≤ i < t} where ci ∈ {0, 1, ..., k − 1}, vi ∈ Σ

and ci 6= cj. Let = be the set of all
(
k
t

)
× vt t-way interactions. Array A is a covering

array, CAλ(N ; t, k, v), of strength t and order λ when every t-way interaction τ ∈ =

appears at least λ times in the covering array. Generally, λ = 1 and the notation is

CA(N ; t, k, v). For given values of t, k and v the minimum number of rows required

for a covering array to exist is the covering array number ; CAN(t, k, v).

Tables 1 and 2 are examples of a 2-covering array. The former is an optimal

covering array since its size is equal to CAN(2, 4, 2) = 5. The ? symbols are referred

to as flexible positions or don’t cares. Such positions can take on any value without

breaking coverage. The presence of flexible positions does not imply sub-optimality of

a covering array.

3

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0

Table 1: CA(5;2,4,2)

0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 0
? ? 0 0
? ? 1 1

Table 2: CA(6;2,4,2)

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

Table 3: PCA(4;2,4,2)

Table 3 represents a partial CA(5; 2, 4, 2) since the 2-way interactions

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} × {(0, 0)}1 do not appear in the partial

covering array. In fact, Table 3 is formed by deleting the last row from Table 1.

2.1.1 Known Bounds

Determining CAN(t, k, v) appears to be a hard problem and in spite of extensive

research only few bounds are known. Obviously CAN(t, k, v) ≥ vt. Bounds for trivial

cases are easy, CAN(1, k, v) = v and CAN(t, k, 1) = 1. When CAN(t, k, v) = vt, every

t-way interaction appears exactly once and the array is also known as an orthogonal

array (OA).

Only for t = v = 2 is the covering array number determined [12, 13].

CAN(2, k, 2) = min n :
(

n− 1

bn/2c − 1

)
≥ k (2.1)

For arbitrary v, t it is known that CAN grows logarithmically as a function of k

[10].

CAN(t, k, v) = Θ(logk) (2.2)

1(a, b)× (c, d) = 2–way interaction{(a, c), (b, d)}

4

Due to the difficulty in determining the covering array number, most construction

methods focus on producing good upper bounds but provide no guarantees on the

optimality of the solution.

2.2 Quilting Arrays

A relaxation of the coverage property of a covering array so that certain t-way

interactions need not appear in the array is specified in [7]. These arrays are called

quilting arrays. They define the species S of a t-way interaction to be the multiset

{vi : 0 ≤ i ≤ t− 1} and vi ∈ Σ. A family of a species is its orbit under the action of

the symmetric group on v symbols. Hence, a family is a partition of t into at most v

parts.

Define Qt
w to be a membership function:

∑
0≤i≤v−1

σi = t (2.3)

∑
0≤i,j≤v−1

i 6=j

σiσj ≥ w (2.4)

where

σi = m(i)− the multiplicity of i in the family {vi : 0 ≤ i ≤ t− 1}

w ≥ 0.

Let F be the families satisfying Qt
w and let S be the set of all species composed

in F . Lets = be the set of all
(
k
t

)
× S t-way interactions. Let A = (aij) be an N × k

array. A is a quilting array, Qt
w-QA(N ; t, k, v), of strength t and weight w if every

interaction τ ∈ = appears at least once in A.

5

A further generalization is provided in [6]. Let Qt
Ψ be a membership function where

Ψ is a set of weights ψ ∈ N. Let F ′ be the set of all families satisfying exactly one

Qt
ψ with ψ ∈ Ψ so that Equation 2.4 is met with strict equality. A is a quilting array,

Qt
Ψ-QA(N ; t, k, v), of strength t and weights Ψ if every interaction τ ′ ∈ =′ appears at

least once in A.

2 1 0 2 0 1
1 0 2 1 2 0
1 2 1 2 0 0
0 2 1 0 1 2
0 1 0 1 2 2
2 0 1 1 0 2
2 2 0 1 1 0
0 0 1 2 2 1
1 2 0 0 2 1
2 0 2 0 1 1
0 1 2 2 1 0
1 0 0 2 1 2
2 1 1 0 2 0
0 2 2 1 0 1
1 1 2 0 0 2

Table 4: Q3
3-QA(15; 3, 6, 3)

Table 4 gives an example of a quilting array. The membership function Q3
3 implies

that only the family {0, 1, 2} needs to be covered. Hence, the species that must be

covered at least once in the quilting array are 012, 021, 102, 120, 201 and 210 while the

other species may or may not appear.

Definition 1. A quilting array Qt
0-QA(N ; t, k, v) is a CA(N ; t, k, v).

2.2.1 Application of Quilting Arrays

Quilting arrays are used in recursive constructions for covering arrays. A construc-

tion using quilting arrays and hash families as the ingredients [7] yields less duplication

6

Figure 1: A Vertex Coloring of the Petersen Graph

than other constructions, ultimately leading to a solution with a fewer number of rows

than the latter. It is important that the quilting array used be small since the number

of rows of the resultant covering array depends on it.

2.3 Graphs

Let G = (V,E) be a simple graph where V is the vertex set and E is the edge

set of the graph E ⊆ [V]2. Let the degree of a vertex v, d(v) be the total number

of edges incident to it. Two vertices u and v are adjacent if edge uv ∈ E. Let the

neighborhood of v, N(v) be the set of all vertices adjacent to v. G is a complete graph

K |V | if ∀v ∈ V : N(v) = V \ v. G contains a clique of size r if Kr ⊆ G. The clique

number ω(G) is the largest number ω such that Kω ⊆ G.

A proper vertex coloring of G is an assignment of colors c : V → C such that no

two adjacent vertices are assigned the same color. A graph is k-colorable if there exists

a proper vertex coloring using k colors. The chromatic number of a graph χ(G) is the

minimum number of colors required to color G properly. A graph is k-colorable if and

only if χ(G) ≤ k. Figure 1 shows a 3-coloring of the Petersen graph. The chromatic

7

number of the Petersen graph is 3 and hence it cannot be colored with fewer than 3

colors.

8

Chapter 3

RELATED WORK

This chapter surveys existing literature on the construction and post-optimization

of covering arrays. Section 3.1 details methods for construction of covering arrays and

quilting arrays. Section 3.2 reviews existing methods for post-optimization of covering

arrays. Finally, Section 3.3 lists some well known graph coloring algorithms.

3.1 Construction Techniques for Covering Arrays

Due to the importance of covering arrays in fields such as software testing and

cryptography, to name a few, a large body of work exists for solving the covering

array number problem. Brute force, greedy [2, 15, 9], heuristic techniques such as

simulated annealing [24] and tabu search [22], evolution based techniques such as

genetic algorithms have been used for the construction of covering arrays. Due to their

close relation to orthogonal arrays, techniques from number theory and design theory

which primarily compose recursive and direct constructions [8] exist to construct

covering arrays.

Brute force methods are feasible only for the smallest of instances since the work

done is proportional to O(kvN). Greedy methods typically focus on obtaining good

solutions quickly. For example, the density algorithm [2], greedily picks the interactions

by assigning weights to the factors. This is useful even if the solution is not optimal

since the more important tests are identified and can be run first. Another greedy

method, IPOG-F [9] differs from other methods in that it adds a column to a seed

9

covering array while introducing few new rows. Generally, greedy methods do not

change a decision once made and hence often introduce duplication of coverage.

Heuristic techniques such as simulated annealing [24] and tabu search [22] suc-

cessfully limit duplication but the time to convergence is often impractical except

for smaller examples. Roux–type constructions [23, 8] rely on ‘copy-pasting’ covering

arrays to obtain another covering array with a greater number of columns and perhaps

rows. Direct constructions such as the starter vector method [16] do not rely on

any computation to construct the covering array but instead rely on mathematical

properties of the ingredients. Techniques that use a combination of combinatorial

constructions and heuristic methods [3] to construct a covering array have also been

researched. A more complete survey on all methods used to construct covering arrays

can be found in [14]. A survey on combinatorial constructions can be found in [4]. A

survey of commercial tools and the techniques they use to construct covering arrays

can be found in [11]. However, despite the diversity of the techniques employed, no

single method can always obtain the best results.

3.1.1 Construction Techniques for Quilting Arrays

Quilting arrays are a relatively new topic and as such there is not much literature

surrounding them. Some recursive constructions appear in [7] but most are primarily

formed by post-optimization of covering arrays. Since quilting arrays contain a subset

of the interactions of a covering array with the same parameters, it is relatively easy

to modify any existing covering array construction method to generate quilting arrays.

10

3.2 Post-optimization of Covering Arrays

Due to the difficulty in finding good recursive constructions and efficient heuristic

algorithms to construct covering arrays, [20] proposed that one could ideally attempt

to reduce the rows of an already constructed covering array. With respect to this

problem, a good post-optimization method should

1. Take time inversely proportional to the redundancy for producing improvements.

2. Not get stuck in local optima.

3. Be applicable to related problems.

4. Preserve the characteristics of the input at every iteration.

Redundancy in this context means the characteristic that the post-optimizer uses to

try to improve the array. An obvious choice is the total number of flexible symbols

in the array but other measures could be used. A post-optimization method should

be flexible to be extended to work with similar efficiency on related problems. For

example the existing post-optimization method cannot work on a partial covering

array and hence cannot be used as a part of a construction framework but it is

widely applicable to other related problems such as hash families. Perhaps the most

important criterion is that the method must preserve the input so that if the method

were abruptly stopped the array would retain its input characteristics.

The existing post-optimization method (referred here as RandomPostOp) is now

discussed in detail. RandomPostOp improves an existing covering array by exploiting

flexible symbols in the covering array. A flexible set F is a set consisting of entries

(r, c) where r is the row index and c is the column index. An element is added to F if

and only if arc = ?. As a convention the flexible symbols are marked in a bottom-up

11

Row 0 a b c d e
Row 1 ? f ? g h

Row x ...

Row N-1 p ? q ? ?

=⇒

Row 0 a b c d e
Row 1 p f q g h

Row x ...

Row N-1 ? ? ? ? ?

Table 5: An Illustration of RandomPostOpt

manner. This may not create the largest flexible set, but the problem of existence of

a flexible set of size l is known to be NP-complete [20].

For example, a flexible set for the covering array in Table 2 is F =

{(4, 0), (4, 1), (5, 0), (5, 1)}. If all the entries of a row are present in the flexible

set, then that row is not needed and can be deleted from the covering array while

preserving coverage. Assigning any valid symbol to an entry in the flexible set could

yield a new flexible set whilst also changing the covering array. This is the basic idea

of RandomPostOpt. The method tries to change the flexible set so that all entries of

a row appear in the set. The row is then deleted and the process is repeated. This

places particular importance of selecting a candidate row to delete. RandomPostOp

selects a row with the largest number of flexible symbols as the candidate row. For

each of the valid entries of that row (entries not in the flexible set for that row) it

tries to determine if there are other entries that are flexible. If so, then it assigns

the symbol at the entry of the candidate row to the flexible entry or it may assign

a random symbol (the latter empirically performs better). If there are several such

entries then it chooses one at random. The consequence is that interactions covered by

the candidate row might now be covered elsewhere, increasing the number of flexible

symbols in the candidate row. The process is repeated until the candidate row is

improved or until a specific number of iterations.

12

Table 5 illustrates an iteration of RandomPostOpt. The last row has 3 flexible

symbols and is chosen as a candidate row to remove. The flexible set for the array is

F = {(1, 0), (1, 2), (N − 1, 1), (N − 1, 3), ...}. The entries of Row N − 1 that are not

in F are {(N − 1, 0), (N − 1, 2)} which cover a unique interaction. The method now

replaces the symbols at those entries at other valid entries in F . This causes the entire

candidate row to be in F thus implying that it can be deleted. When RandomPostOp

runs into local optima a new strategy is adopted. The flexible set is populated with

valid symbols and the rows of the covering array are permuted. This leads to the

formation of a new flexible set.

Algorithm 1: RandomPostOpt
input : A covering array; CA(N ; t, k, v)
output : A covering array; CA(N ′; t, k, v) where N ′ ≤ N

begin
while time limit not expired do

if local optima then
permute the covering array

end
else

F ⇐ compute flexible set
removeRows(F)
rc ⇐ select candidate row from F
Erc ⇐ set of all entries of rc
F ′′ ⇐ Erc \ F (rc)
Replace symbols in F where entries in F ′′ have the same column
randomly

end
end

end

RandomPostOpt, while performing well, suffers from two major drawbacks. The

first is that it only uses flexible symbols to improve the array and does not alter symbols

that are necessary. Many covering arrays constructed using simulated annealing or tabu

13

search work to limit the size of the flexible set making it very hard for RandomPostOpt

to improve such arrays. Another drawback is that RandomPostOpt cannot be used

as a part of a generative method since usually the flexible set is very small unless

the covering array reaches a considerable percentage of coverage. Typically when a

covering array gets too large it is sometimes feasible to reduce some rows possibly

creating a partial array. It is desirable to remove many rows while reducing the

coverage by a controllable percentage. Due to the element of randomness employed

by RandomPostOpt this is not feasible without significant computation.

Algorithm 1 represents pseudo-code for a very basic version of RandomPostOpt.

The method is easily extended to quilting arrays and k-restriction problems by changing

the way the flexible set is computed.

3.3 Graph Coloring Methods

Graph coloring is a hard computational problem. Except when k = 1 and k = 2 it

is NP-complete to decide if a graph admits a k-coloring. Computing the chromatic

number is NP-hard and unless P = NP approximating the chromatic number to

within n1−ε for ε > 0 is not efficiently solvable [26]. As such, existing research focuses

on greedy, heuristic and distributed methods to solve the problem. See [17] for a

comprehensive survey of graph coloring algorithms.

Greedy algorithms generally color vertices in a certain order. For example largest

degree first coloring [25] colors the vertices based on the non-increasing degree of

vertices. Another popular greedy coloring algorithm, DSATUR [1], chooses the next

vertex which has the maximum number of differently colored neighbors. The initial

ordering of vertices is the same as that of the largest degree first coloring.

14

(a) An optimal coloring of K3,3 (b) A sub-optimal coloring of K3,3

Figure 2: Different Colorings of the Complete Bipartite Graph K3,3

Greedy algorithms are generally fast but perform poorly since they do not assign

a different color to an already colored vertex. Figure 2 illustrates the importance of

the order of vertices on the coloring output by largest degree first coloring on the

complete bipartite graph K3,3 whose χ(K3,3) = 2. Assuming ties are broken randomly

the method may produce different orders of vertices. Figure 2a is colored using the

sequence 123456 and this yields an optimal coloring while Figure 2b is colored using

the sequence 142536 and this requires more colors than the optimal. Other greedy

techniques such as DSATUR try to dynamically order the vertices during coloring

but in general have similar shortcomings. Local search techniques typically work

using iterative improvement in that they choose a move minimizing a particular cost

function. Typically larger cost moves are allowed when the method converges to a

local optima. They generally produce better colorings but require a considerable

amount of computation in terms of both time and space.

15

Chapter 4

RECOLORING FOR COVERING AND QUILTING ARRAYS

This chapter introduces the Recoloring technique for post-optimization. Due to

the modular nature of the idea different variations are examined and contrasted with

some results improving the best known cases by 30%. Furthermore, given sufficient

computation time Recoloring can produce the optimal solution. Section 4.4 studies

the structure of the graphs formed and bounds the clique number for a certain family

of graphs. Since it is difficult to obtain a deterministic bound on the improvement

possible by post-optimization on any given array, we try to highlight some key factors

for post-optimization to be successful.

4.1 Recoloring for Covering Arrays

To the best of our knowledge, the only work that represents covering arrays as

graphs is [19, 18]. We follow a different approach here. Let τ be a t-way interaction

and < = {0, 1, ..., N − 1} be a set of row indices. Row r covers the t-way interaction

τ ≡ {(ci, vi) : 0 ≤ i < t} if arci = vi i.e. for every column ci of the interaction, the

entry in the row indexed by r is vi. Let R(τ) be the set of all rows covering τ . Note

that R ⊆ <. A t-way interaction τ is private to R if for any R′ = < \ R, R′(τ) = ∅.

Let ℘(R) be a set of interactions that are private to R. Form a graph G with

a vertex for each interaction τ ∈ ℘(R). Any two vertices a ≡ {(ci, vi) : 0 ≤ i < t}

and b ≡ {(c′i, v′i) : 0 ≤ i < t} are connected by an edge if ci = c′j but vi 6= v′j for any

i, j satisfying 0 ≤ i, j < t. Thus an edge is placed between two interactions if and

16

only if they have at least one column in common and have different symbols in that

column. It follows that such interactions cannot appear in the same row. Thus, the

chromatic number χ(G) of G is precisely the number of rows required to form G. If

the computed chromatic number α(G) < |R| then the coloring can be used to remove

|R| − α(G) rows of the covering array while covering all the interactions in ℘(R).

Algorithm 2: RecolorPostOpt
input : A covering array CA(N ; t, k, v)
output : A covering array CA(N ′; t, k, v) where N ′ ≤ N

1 begin
2 while time limit not expired do
3 R ⇐ getRowSet()
4 P ⇐ computePrivateInteractions(R)
5 Form graph G
6 α(G)⇐ getProperVertexColoring(G)
7 if α(G).size() ≤ R.size() then
8 for every colored group g ∈ α(G) do
9 replaceRow ⇐ R[g]

10 for every interaction τ ∈ g do
11 CA[replaceRow][τci]⇐ τvi
12 end
13 end

14 for i = α(G).size() to R.size() do
15 deleteRow(R[i])
16 end
17 end
18 end
19 end

Algorithm 2 illustrates post-optimization using Recoloring. Lines 3 and 6 are

generic modules which affect the performance of the method. Recoloring starts by

choosing a set of rows for post-optimization. The private interactions of that set of

rows are computed and a graph is formed. A coloring of the graph is then computed

and each color class forms a new row. Thus, all the interactions are redistributed

17

among the rows. If the total number of color classes is less than the number of rows

selected then some rows are not assigned any interaction and can be safely deleted

from the covering array.

4.1.1 Finding the Private Interactions

Forming the graph involves O(V 2t) comparisons between all vertices (interactions).

As such, the time taken to form the graph can be restrictive when the graph grows

beyond a certain size. One could maintain an adjacency matrix where every interaction

would be linked to all interactions it could have edges with. This would reduce

additional lookup but since an entry for every interaction needs to be maintained

the space requirements are Ω(
(
k
t

)
vt) which is impractical. This places particular

importance on finding the private interactions quickly to keep the iteration time

scalable.

We compute the private interactions using two approaches. The first approach

adds all the
(
k
t

)
t-way interactions covered by every row in R to P(R). Note that

P(R) is not a multiset. Thus interactions covered by two or more rows appear as one

interaction in the set of private interactions. Flexible symbols are not considered to

participate in any t-way interaction. Now for all remaining N \R rows, we check if

any of the
(
k
t

)
interactions are already in P(R) and remove those interactions from

the set of private interactions. This approach requires O(N
(
k
t

)
) work for any |R| > 0.

Pseudo-code for computing the private interactions appears in Algorithm 3.

Frequently the total work done can be reduced by making some observations. In

any given column in a covering array, two rows may have the same symbol with

probability 1
v
. We exploit this fact and use it to modify our definition of a private

18

Algorithm 3: computePrivateInteractions
input : A covering array CA(N ; t, k, v); A set of rows R ∈ N
output : Private interactions of the set of rows P(R)
begin
P(R)⇐ ∅

forall the column tuples c ∈
(
k
t

)
do

forall the rows r ∈ R do
I ⇐ formInteraction(r, c)
P(R)⇐ P(R) ∪ I

end

forall the rows r′ ∈ N \R do
I ′ ⇐ formInteraction(r′, c)

if P(R) contains I ′ then
P(R)⇐ P(R)− I ′

if P(R) = ∅ then
break

end
end

end
end

end

interaction. Let N (T) be the set of all rows covering the set of interactions T . It

follows that T is private to N . Now, let R be a set of rows such that N ⊂ R. Recall

that a set of interactions is private to R if and only if N (T) ⊆ R. Thus, T is private

to R. We tighten the definition here. A set of interactions T is private to a set of rows

R if and only if N (T) = R. Let Γ(R) be the set of such interactions. This implies that

only interactions covered by all rows in R can appear as private interactions. However

the new definition does not allow recoloring to work correctly. For example if two

rows are selected then the private interaction set formed contains only interactions

that are common to both rows. Any interaction private to a single row is not included

causing these interactions to be lost. The old definition can be easily expressed in

19

terms of the new definition. Without loss of generality,

P(R) =
⋃
∀x∈2R

Γ(x) (4.1)

where 2R is the power set of R.

Thus P(a, b, c) = Γ(a) ∪ ΓP (b) ∪ ΓP (c) ∪ ΓP (a, b) ∪ ... ∪ Γ(a, b, c). The advantage of

finding the private interactions in this way is that significant computation is avoided.

Whenever the private interactions of two or more rows need to be found we only

consider the columns where all the rows share a common symbol. If all the rows have

less than t such columns then they cannot have any private interaction. Empirically

this method outperforms the former method when |R| ≤ 4. Computation of the

private interactions using this technique is described in Algorithm 4.

The advantage of using Algorithm 4 is that for every column tuple c at most one

interaction is added to the private interaction set. This often helps the loop at line 10

to exit earlier. Since the power sets are being generated, this method is only practical

for small values of |R|. Further, for R ∈ 2R, |R| > 1 not all
(
k
t

)
column tuples are

checked. In fact, the number of common symbols between any two rows is strictly

less than the total number of columns of the array unless all rows are the same which

implies that except for the first row, all others rows may be deleted.

4.1.2 Generating the Row Set to Post-optimize

Both the choice of rows and the coloring algorithm are mutually dependent on

each other. A good choice of rows can yield an easier to color graph while a good

coloring can rearrange the rows so that further row choices are easier to determine.

We describe heuristics for choosing the rows first.

20

Algorithm 4: powerSetPrivateInteractions
input : A covering array CA(N ; t, k, v); A set of rows R ∈ N
output : Private interactions of the set of rows P(R)

1 begin
2 P(R)⇐ ∅
3 forall the rowsets R ∈ 2R \ ∅ do
4 P ′(R)⇐ ∅
5 k′[]⇐ set of common entries of R
6 if k′.size() ≥ t then
7 forall the column tuples c ∈

(
k′

t

)
do

8 I ⇐ formInteraction(R[0], c)
9 P ′(R)⇐ P ′(R) ∪ I

10 forall the rows r′ ∈ N \ R do
11 I ′ ⇐ formInteraction(r′, c)

12 if P ′(R) contains I ′ then
13 P ′(R)⇐ P ′(R)− I ′

14 if P ′(R) = ∅ then
15 break
16 end
17 end
18 end
19 end
20 end

21 P(R) = P(R) ∪ P ′(R)

22 end
23 end

21

Figure 3: An Interaction Group Graph for Three Rows R = {a, b, c}

The best choice is to select rows in such a way that post-optimization is successful in

the first iteration. However this is almost always not the case except when possibly the

covering array is far from optimal. In such scenarios a good set of rows would be one

which would either keep the size of the graph small and/or admit a coloring such that

the size of the smallest color class is smaller than the number of private interactions

of the smallest row. This effectively reduces the number of private interactions of that

row. As such one could generate a new row set with the smallest row and hope to

reduce its size even further until it is not assigned any interaction.

We now analyze conditions where the graph size is small. Unless specified, graph

size in this context refers to the total number of edges of the graph. The goal is to

keep the graph size as small as possible. We use the modified definition of a private

interaction as defined in section 4.1.1. Let R be a set of rows. A unique interaction

is an interaction that is private to exactly one row in R. Let µ(r) be the set of all

interactions unique to r. A common interaction is an interaction that is private to

two or more rows. For any set of rows R, define an interaction group graph GI(V,E)

where V = 2R \ ∅. An edge exists between two vertices u and v, u 6= v, if u 6⊂ v

22

or u 6⊃ v. This implies that any interaction of Γ(u) may have an edge with any

interaction in Γ(v) if and only if the edge uv exists in GI . Note that when every

vertex u is substituted by Γ(u) we recover the interaction graph for recoloring. Any

vertex in the interaction graph does not have an edge with any other vertex if the

corresponding interaction groups have no edge in the interaction group graph but the

converse is not true. A simple example is two rows each having one private interaction

with a common column and the same symbol in that column. These vertices have an

edge in the interaction group graph but no edge in the interaction graph.

Based on the interaction group graph in Figure 3, it is desirable to find rows whose

private interactions are in Γ(a, b, c) since the vertices can have no edges with any of

the other vertices of the graph. In general it is desirable to find sets of rows which

have more common interactions than unique interactions. This is computationally

expensive and as the number of rows increases the total number of common interactions

is generally very small compared to the unique interactions.

We consider a greedy heuristic. Maintain a count of the unique interactions of

each row. Choose the row with the fewest number of unique interactions and add it

to the set. Form the interaction graph and color it. If recoloring is successful then

the set of rows is cleared else select the next row which has the fewest number of

private interactions and repeat the process. We clear the set if either an improvement

is found or the number of vertices becomes large enough that the coloring method

fails with a high probability. The number of vertices is empirically determined.

The greedy method suffers from a problem of symmetry. If the coloring used the

same number of colors as the rows selected then the counts of the unique interactions

remain more or less the same leading to the same row set being selected. We

circumvent this problem by employing two different strategies; (i) We color the graph

23

using different vertex orderings until a sufficient unbalance is found or (ii) randomly

selecting row sets instead of greedily. This often changes the configuration of the

covering array. Our experiments show that this is often sufficient to escape local

optima.

4.1.3 Choice of the Coloring Algorithm

The coloring algorithm plays an important part in determining the success of

post-optimization. For any given choice of R rows it is clear that χ(G) ≤ |R| since we

can form a graph and simply assign all private interactions of each row the same color.

Therefore, a good coloring algorithm is one which either produces a coloring with

fewer colors (if one exists) or uses at most |R| colors and does so quickly. When the

computed chromatic number α(G) = |R|, the interactions can be redistributed in a

way so as to be useful in other iterations. A good example is that if the color classes are

as unbalanced as possible. All interactions Γ(a),Γ(a, b),Γ(a, c) and Γ(a, b, c) in figure

3 can be assigned a single color class. However Γ(a, b),Γ(a, c) and Γ(a, b, c) could be

assigned a different color but doing so would balance the color classes. One would need

to equip each interaction with a group tag in order for the coloring algorithm to utilize

the information. This would require the power set method for computing the private

interactions. We follow a simpler approach. If DSATUR fails to produce a balanced

coloring we change the ordering of a few vertices and reinvoke DSATUR. This appears

to perform reasonably well for smaller graphs. For larger graphs, DSATUR fails to

produce a valid (α(G) ≤ |R|) coloring frequently.

24

Row/Column 0 1 2 3
0 0 0 1 0
1 0 1 0 1
2 1 0 0 1
3 1 1 1 0
4 ? ? 0 0
5 ? ? 1 1

Table 6: CA(6;2,4,2)

4.1.4 Example: Post-optimization on CA(6; 2, 4, 2)

We now walk through an iteration of Recoloring on a simple instance produced by

the IPOG-F method (See Table 6). By equation 2.1 we know CAN(2, 4, 2) = 5.

Let R = {3, 4, 5}.

The private interactions of R are computed and the graph is colored with 2 colors.

Since the total number of color classes is less than the total number of rows selected

we can delete 1 row. Figure 4d shows the coloring of the graph. The first color class

is placed in the third row while the second color class forms the last row.

4.2 Recoloring for Quilting Arrays

Recoloring for quilting arrays is the same as for covering arrays except that one

additional step is needed in the computation of the private interactions. Before an

interaction is added to the private interaction set it must satisfy the membership

function Qt
Ψ of the quilting array. Some families that do not satisfy the membership

function may be implicitly formed for some given column tuple. Thus this check is

necessary for correctness. The rest of the procedure remains the same.

25

Interaction Group Label
{(0, 1), (1, 1)} Γ(3) 0
{(0, 1), (2, 1)} Γ(3) 1
{(0, 1), (3, 0)} Γ(3) 2
{(1, 1), (2, 1)} Γ(3) 3
{(1, 1), (3, 0)} Γ(3) 4
{(2, 0), (3, 0)} Γ(4) 5
{(2, 1), (3, 1)} Γ(5) 6

(a) Private Interactions

=⇒

(b) The graph G of the private interactions

⇓

0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1
1 1 0 0

(c) Post-optimized CA(5; 2, 4, 2)

⇐=

(d) A coloring of G

Figure 4: Recoloring of R = {3, 4, 5} on CA(6; 2, 4, 2)

4.3 Results of Post-optimization of Covering and Quilting Arrays Using Recoloring

We now analyze results produced by applying recoloring on covering arrays formed

by IPOG-F. Recoloring is able to produce competitive results for several covering

arrays and improved upon some previously best known bounds. Improvements in

quilting arrays are more successful partially because the graphs of quilting arrays were

comparatively easier to color. The program was run on an Intel i7-4790K processor

with 8 cores each clocked at 4.4GHz and 16GB of RAM. Each of the cores was utilized

by the program. The time limit for each instance varied with the size of the covering

array but the maximum time allotted was 48 hours.

26

CA(2, k, 3)

k Best Known NIST RandomPostOpt RecolorPostOpt
5 11 13 11 11
6 12 15 12 12

CA(2, k, 4)

k Best Known NIST RandomPostOpt RecolorPostOpt
7 21 27 22 22

CA(3, k, 2)

k Best Known NIST RandomPostOpt RecolorPostOpt
5 10 11 10 10

CA(3, k, 3)

k Best Known NIST RandomPostOpt RecolorPostOpt
6 33 49 33 33
7 39 52 44 44
8 42 56 50 49
9 45 62 53 54
10 45 66 56 56

CA(4, k, 2)

k Best Known NIST RandomPostOpt RecolorPostOpt
6 21 26 24 21

CA(4, k, 3)

k Best Known NIST RandomPostOpt RecolorPostOpt
6 111 140 121 117
7 123 164 131 139
8 135 188 164 162
9 135 211 180 186

CA(4, k, 4)

k Best Known NIST RandomPostOpt RecolorPostOpt
7 412 530 464 447

CA(4, k, 5)

k Best Known NIST RandomPostOpt RecolorPostOpt
8 1212 1460 1247 1204

CA(5, k, 2)

k Best Known NIST RandomPostOpt RecolorPostOpt
7 42 57 48 42

27

CA(5, k, 3)

k Best Known NIST RandomPostOpt RecolorPostOpt
7 351 467 394 387
8 405 557 475 471
9 405 652 560 561

CA(6, k, 3)

k Best Known NIST RandomPostOpt RecolorPostOpt
8 1134 1490 1263 1253

CA(6, k, 4)

k Best Known NIST RandomPostOpt RecolorPostOpt
8 7180 8579 7243 7221

Table 7: Post-optimization of Covering Arrays Using Recoloring

Table 7 lists results produced by performing post-optimization on the covering

arrays produced by IPOG-F. The best known results mentioned here are those that are

found in [5]. Covering arrays produced by IPOG-F can be found at [21]. Recoloring

succeeded in improving the bound of CAN(4, 8, 5) = 1212 to CAN(4, 8, 5) = 1204.

For the rest of the results, it either is competitive or better than the original post-

optimization method.

As the size of the covering array increases in terms of the parameters, the coloring

method experiences a higher failure rate directly reducing the efficiency of Recoloring.

When k > 10 Recoloring has a very low success rate and seldom improves upon

the randomized post-optimization method. Another important caveat is that while

Recoloring does not tend to get stuck in local optima (given a good coloring method)

the time taken per iteration of Recoloring is significantly larger due to additional time

required to form the graph. As such, RandomPostOpt often runs and converges to a

local optima very quickly and Recoloring catches up much later. Our experiments

demonstrate that for CA(4, 7, 4) the ratio of time taken by Recoloring compared to

28

randomized post-optimzation is as large as 5 : 1. Once RandomPostOpt converges

to a local optimum, Recoloring improves upon the results. In order to reduce the

randomness we ran 100 seperate instances of RandomPostOpt to improve IPOG-

F(530; 4, 7, 4). RandomPostOpt converges to 467± 5. Recoloring on the other hand

significantly improves the result to 447 before the time limit ran out. Another striking

instance is IPOG-F(8579; 6, 8, 4). Recoloring managed to improve the covering array

to 7221 rows while RandomPostOpt converged at around 7243.

Recoloring in its current implementation does not seem to be effective for larger

covering array instances. This is attributed to the coloring method which does

extremely poorly even for a very small selection of rows in those cases. The heuristic

methods that were tried improved the success rate but often took an excessive amount

of time leading to a very limited number of iterations being executed. Nevertheless, it

is surprising that Recoloring performs reasonably even with a poor coloring method.

The covering arrays that were used in the examples so far are small enough that

the best known bounds known for them are quite difficult to improve even by heuristic

methods. Quilting Arrays on the other hand have been produced by RandomPostOpt.

Thus it appears worthwhile to compare RandomPostOpt and Recoloring on small

Quilting Arrays. Recoloring improves upon several of the bounds sometimes producing

an improvement as high as 30%. Even more surprising is that the bounds produced

by RandomPostOpt used the best known covering arrays as the initial seeds while

Recoloring used the IPOG-F examples which had a significantly larger number of rows.

The quilting array improvements show the true strength of Recoloring to obtain a high

quality solution even with a poor coloring method. Naturally, a better coloring method

would yield even better or equal arrays. Table 8 lists some of the improvements found

by Recoloring for quilting arrays where k > t+ 1. Each entry represents the size of

29

the quilting array that was formed by post-optimizing the corresponding CA(t, k, 3)

generated by the IPOG-F method along with difference with the currently best known

result as stated in [7].

k Q3
2 Q3

3 Q4
3 Q4

4 Q4
5 Q5

4 Q5
6 Q5

7 Q5
8 Q6

5 Q6
8 Q6

9 Q6
11 Q6

12

6 35 15 108 86 60 - - - - - - - - -
+2 +0 +0 -22 -24 - - - - - - - - -

7 42 21 110 107 83 348 339 286 172 - - - - -
+2 +0 -10 -4 -1 +0 -6 -2 -4 - - - - -

8 47 21 138 125 99 402 402 365 242 1149 1146 1203 860 374
+5 -3 +0 -7 -5 +0 +0 +17 -3 +0 +0 +98 -18 -2

9 50 24 156 151 115 480 480 442 291 1428 1428 1421 1288 517
+5 +0 +0 +3 -2 +0 +0 -20 -11 +0 +0 -1 +193 -9

Table 8: Post-optimization of Qt
w-QA(N ; t, k, 3) Using Recoloring

Perhaps the most important reason that Recoloring fails to improve some of the

quilting arrays is the structure of the seed covering array used. A constant row of a

covering array is a row where all columns have the same symbol. Naturally, a quilting

array with weight > 0 does not need any such row and these can be deleted without

forming a graph. The IPOG-F examples do not usually have constant rows while

RandomPostOpt used covering arrays having at least one constant row in most of the

cases. This leads to another important consideration of the structure of the initial

covering array used in forming a quilting array.

4.4 Graph Analysis

In this section we provide some statistics about the graphs formed. We list the

average number of vertices per selection of rows for different values of t and v. We

30

analyze the success rate of the coloring algorithm in terms of the size of the graph

and also prove that for t = 2 the clique number of the graph is at most vt.

Figure 5: Average Number of Vertices in the Covering Array Graph

Figure 5 plots the average number of vertices of a graph formed by the selec-

tion of a specific number of rows. Even though there are much larger instances,

BestKnown(52; 5, 8, 2) has the largest graph size hinting that as an instance gets

closer to best known the graph becomes larger and possibly more complex creating

problems for the coloring method.

Figure 6 contrasts the performance of the coloring method based on the number

of rows selected for different covering arrays. Success in this context means that the

31

Figure 6: Performance of DSATUR Coloring

coloring method used no more colors than the total number of rows selected. An

important observation is that a larger graph is not necessarily difficult to color. The

average number of vertices for BestKnown(52; 5, 8, 2) is greater than that for IPOG-

F(13; 2, 5, 3) or IPOG-F(66; 3, 10, 3) for the same number of rows yet the coloring is

worse for the latter instances. This is because the graph size for the latter cover a

greater percentage of the total interactions leading to a much higher average edge

density. For example, for four rows the graph sizes for BestKnown(52; 5, 8, 2) and

IPOG-F(13; 2, 5, 3) are 65 and 24 respectively. However, they represent 3.6% and 30%

32

of the total number of interactions possible. Thus, the complexity of the latter is in

practice much more than that of the former.

4.4.1 Bounding the Clique Number of the Graph

Knowing a bound on the clique number of the covering array graph serves two

purposes. First, it is sufficient to say that post-optimization using rows as the vertices

(two rows are connected by an edge if they have at least one pair of interactions having

an edge in the interaction graph) is infeasible since the clique number in this case

is arbitrarily large and thus is the chromatic number. Second, it implies that the

covering array admits some structure which could be exploited.

We now bound the clique number of all families of covering arrays with strength 2.

Let I be the set of all
(
k
t

)
× vt t-way interactions of the covering array. Form a graph

G using I. Call this graph the covering array graph CAG. Without loss of generality,

we assume that the t-column tuples {c0, c1, ..., ct−1} are lexicographically ordered such

that ci < cj whenever i < j. The symbols are assumed to be represented as strings

in the base v. Tables 9 and 10 illustrate the orderings of the columns and symbols

respectively. Recall that an edge is placed between two interactions if and only if they

have a column in common but distinct symbols at those columns. Let a column group

refer to a specific t-column tuple. Each column forms vt interactions and there are(
k
t

)
such column groups. We assume that the parameters t, k and v are non-trivial.

Lemma 1. A covering array graph CAG has a clique of size vt for any t, k and v.

Proof. Let C be a column group forming vt interactions. Each vt interaction has all t

33

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4

...
2 3 4

Table 9: Lexical Ordering for
the Columns When k = 5 and
t = 2

0 0
0 1
0 2
1 0
1 1
...

2 2

Table 10: Lexical Ordering for
the Columns When v = 3 and
t = 2

columns in common but at least one symbol different. Thus, each interaction forms

an edge with every interaction within the same column group C.

Lemma 2. Any two column groups C and C ′ with C 6= C ′, may have at most t− 1

columns in common.

Theorem 1. For t = 2, any sub-graph of the covering array graph for CA(N ; 2, k, v)

cannot have a clique of size greater than vt.

Proof. We prove the result by using the interaction group graphs and bounding the

size of maximal cliques. Note that a maximal clique is the largest clique that cannot

be extended by the addition of any other vertex. We then prove that when the clique

size is vt no other vertex can be added to it, i.e., it is maximal.

For the sake of convenience note that each of the vt symbol tuples has exactly

v occurrences of the same symbol in any given column. We group the symbols on

any one column and there are v such groups. Similarly, the column groups may be

arranged in groups of size k − 1.

Case 1. A clique of size greater than vt does not exist between any two column

groups having no columns in common.

34

A clique of size vt exists within any single column group. However, if two column

groups have no columns in common then none of the vertices between the columns

can have edges between them. The graph is then a disjoint graph with 2 cliques of

size of vt.

Case 2. A clique of size vt exists between any two column groups sharing exactly one

column.

Select any column group c. Select all the interactions with the same symbol on

the common column. There are v such interactions which form a clique of size v since

they belong to the same column group c. Interactions in the other column groups need

to have different symbols in-order to have edges with the interactions in the selected

column group. There are vt − v such interactions. Select all vt − v interactions of

the second column group. These form a clique of size vt − v since they belong to the

same column group and also have edges with all the vertices in the select column

group. Thus the size of the clique is vt. A clique of size vt + 1 or larger is not possible

since if vt − v + c where c > 0 interactions are selected from the second column group

then there is at least one interaction with the same symbol between both the column

groups.

Similarly, selecting all vt vertices from the first column group and any one from

the other cannot form a clique of size vt since the interaction selected has the same

symbol with v of the interactions in the first column group (thus this interaction forms

a clique of size vt − v).

Case 3. A clique of size vt exists between any 2 < l ≤ v column groups sharing

exactly one column between all column groups.

35

Case 2 is now generalized for l column groups. The generalization is simple. Select

v interactions from each of the column groups. Fix a symbol for the first column group.

There are v such interactions. Now select a different symbol for the second column

group. There are v such interactions and these have an edge with the interactions

in the first group. This process is repeated v times. This leads to clique of size vt.

Now suppose v + 1 vertices were selected from the second group. It then follows that

selecting interactions from other groups cannot lead to clique of size vt since at least

one of the interactions in the other groups could not have an edge with the additional

vertex in the second group.

Similarly, when v + 1 column groups are selected a clique of size greater than vt

cannot be formed. Consider the case where a clique of size vt is formed with the first

v column groups, then any vertex from the last group cannot have v edges with the

remaining interactions. Any other way to select the vertices also yields a clique of size

less than vt.

Case 4. A maximal clique of size no more than (v − 1)2 + (v − 1) + 1 exists between

column groups with more than one column in between them.

This case deals with column groups where there are more than one column groups

in common. An example is (0,1), (0,2) and (1,2) where not all column groups have

the same column in common. In general, the largest possible selection of such column

groups is when the groups are (i, i+ 1), (i, i+ 2) and (i+ 1, i+ 2). Any other selection

reduces to case 2 since any other selection does not form a clique greater than or

equal to three in the column graph. Without loss of generality, select (i+ 1, i+ 2) as

the first group to consider. Fix the first column to one symbol. (v − 1) symbols may

be fixed with its common column so that they form a clique of size v. Do the same

for the second column and the other group. We now have a graph with 2 disjoint

36

cliques of size v. Connect the graph by fixing the first column of the second group to

a symbol and using the remain (v − 1) symbols for the other group. We claim this

forms a clique of size (v − 1)2 + (v − 1) + 1. There are (v − 1) vertices in the second

group. We fix the other column of all these vertices to a symbol. The third group also

has (v − 1) vertices. However, we fix (v − 1) symbols to the other column for each of

the existing (v − 1) vertices thus creating (v − 1)2 vertices. It is easy to see that a

clique of size (v − 1)2 + (v − 1) + 1 is formed. Now take any other interaction from

these three groups that do not belong to the graph. The addition of any interaction

does not increase the size of the clique since there would be at least one vertex in the

graph which would not have an edge with the new interaction.

All possible ways to form graphs can be handled by the cases above. Thus, no

clique of size greater than vt exists in a covering array when t = 2.

4.5 Exact Coloring to Analyze the Success of Post-optimization

An interesting question to ask is when to post-optimize. It makes less sense to

post-optimize an array which is very close to the best known or is in fact optimal.

Certainly, indicators that would gauge the extent to which post-optimization would

be successful are desirable. One possible indicator is the presence of many flexible

positions in the covering array. Perhaps a more useful indicator is the minimum number

of rows required to produce an improvement. Since the greedy coloring methods do

not compute the true chromatic number we cannot be sure if a certain selection of R

rows admits an improvement or not. An alternative is to use exact vertex coloring in

place of greedy coloring. This would be impractical from a post-optimization point of

view but can be very useful from an analysis point of view.

37

Algorithm 5: Recolor with Exact Coloring
input : A covering array CA(N ; t, k, v)
output : A map X : x⇒ {true, false}
begin

X ⇐ ∅
for numRows = 2 to N do

improved⇐ false

R⇐ all
(

N
numRows

)
pairs of rows

forall the pairs of rows r ∈ R do
P(r)⇐ computePrivateInteractions()
Form graph G
χ(G)⇐ exactVertexColoring(G)
if χ(G) < |r| then

improved⇐ true
rearrangeAndDeleteRows()

end
end
Add (numRows, improved) to X

end
end

Algorithm 5 represents an exact coloring based implementation of Recoloring. A

few differences from the original method are that we generate all row-sets possible

except those of cardinality one and not according to any heuristic. Next, we use an

exact coloring method to get the true chromatic number. Finally and perhaps more

importantly, we only rearrange the rows when the chromatic number is strictly lesser

than the number of rows selected. This is because we need not worry about local

optima when the coloring method returns the chromatic number since if we colored

all rows then the chromatic number would be the covering array number.

Since we do not reorder rows when there is no improvement, it is possible that

some permutation πr1πr2πr3 ...πrn exists that reordering the interactions may lead to

an improvement. We provide a simple example in which we consider three rows a, b

38

a a a - - - ab ab ab - - - a a a
- b b b - b ab ab ab - - - - - -
- - - - - c c c c - - - c c c

Table 11: An Example Where a 2-coloring without Reordering Exists Only When 3
Rows are Selected

and c and their interactions as shown in Table 11. Without loss of generality, let

t = 3 and further let the longest contiguous sequence of characters represent private

interaction(s). Entries labeled a belong to Γ(a) and so forth. Selecting any pair of

rows does not yield a 1-coloring, however if rows a and b were colored such that the

interactions representing columns 5 through 8 in b are now rearranged in a then rows

b, c admit one coloring. Such an improvement depends on rearranging the interactions

which the current implementation does not account for. However, when the method

considers row sets of cardinality three it will report the improvement. Thus Algorithm

5 occasionally provides overestimates of the number of rows actually required. To

circumvent this overestimation, the method would need to rearrange the interactions

in such a way that later row sets may be able to produce an improvement. This is

difficult to achieve and thus the simplistic method is much more convenient to use.

We now analyze some results on using exact coloring on some instances. Table

12 lists some analysis of small covering arrays. Performing exact coloring on large

instances is not feasible due to the amount of time required iterating over all possible

row sets. In general, one can observe that as the size of covering array approaches

the best known instance the number of rows required to produce an improvement

increases sometimes requiring as much as 40% of the rows of the covering array. This

is significant since it implies that unless the coloring method can produce a successful

coloring on larger graphs the extent to which Recoloring can post-optimize is limited.

39

CAIPOG−F (13; 2, 5, 3) CAN = 11

Row Set size Resulting Covering Array
2 13
3 11
4 11

CAIPOG−F (15; 2, 6, 3) CAN = 12

Row Set size Resulting Covering Array
2 15
3 13
4 13
5 12
6 12

CAIPOG−F (52; 3, 7, 3) Best Known = 39

Row Set size Resulting Covering Array
2 47
3 43
4 42

Table 12: Results of Exact Coloring

The results in Table 12 depend on the initial structure of the covering array

and may yield different results for the same covering array produced by different

methods. Another observation is that when the covering array is far from optimal,

many improvements can be found over the same size of the row set.

40

Chapter 5

ADDITIONAL APPLICATIONS OF RECOLORING

We now state additional applications of Recoloring. Section 5.1 discusses an

application where Recoloring may be allowed to break coverage by a certain amount.

Section 5.2 discusses the use of Recoloring as a method for constructing covering and

quilting arrays.

5.1 Reducing Coverage by a Controlled Percentage

In industrial applications where time-to-market is a critical factor for success, the

cost to exercise all tests in the covering array is prohibitive. Generally it is tolerable

to lose some percentage of coverage provided that important tests are not discarded

from the covering array. The approach to covering important tests is called test

prioritization. Currently, greedy methods can produce such arrays but they often

need to recompute the array from scratch if the set of important tests changes, or add

redundant tests covering only the newly added tests. Recoloring can be adjusted to

maximize the number of rows removed while retaining the minimum level of coverage

and important tests. A naive implementation of Recoloring is specified in Algorithm

6. Certain heuristics could be used to improve the results even further.

Briefly, the algorithm post-optimizes using Recoloring procedure until it fails to

produce an improvement for a certain number of iterations. It then tries to remove

certain interactions (breaking coverage) such that the number of rows is reduced. It

might be possible that the number of rows might not be reduced in spite of removing

41

Algorithm 6: recolorWithTestPrioritization
input : A covering array CA(N ; t, k, v)

A set of required interactions ∆
A minimum required coverage percent Θ

output : A covering array CA(N ′; t, k, v) with coverage c ≥ Θ and N ′ ≤ N
begin

localOptimaLimit⇐ K
failedCount⇐ 0
coverage⇐ 100
NUM_TRIALS ⇐ C

while time limit not expired and coverage ≥ Θ do
status⇐ recolor()
if status = REDUCED then

failedCount⇐ 0
end
else

failedCount+ +
end

if failedCount = localOptimalLimit then
trial⇐ 0
status⇐ FAILED
while status 6= REDUCED and trial < NUM_TRIALS do

Remove interactions τ 6∈ ∆ such that c ≥ Θ from the graph G
coverage⇐ newCoverage status⇐ recolor()

if status 6= REDUCED then
Add back the removed interactions
coverage⇐ OldCoverage

end
end
if trials = NUM_TRIALS then

Remove interactions τ 6∈ ∆ such that c ≥ Θ from the graph G
coverage⇐ newCoverage recolor()

end
end

end
end

42

Percent Coverage Rows
100.00 26
100.00 21
96.67 20
92.50 19
88.75 18

Table 13: PriortizeOpt on a
CA(26; 4, 6, 2) with Best= 21

Percent Coverage Rows
100.00 140
99.00 90
98.00 88
96.00 71
94.00 62
92.00 56
90.00 52

Table 14: PriortizeOpt on a
CA(140; 5, 17, 2) with Best= 104

Percent Coverage Rows
100.00 1460
100.00 1382
99.97 1381
99.93 1380
99.93 1379
99.93 1378
99.93 1377
99.01 1325
98.95 1324
98.93 1323
98.00 1288
97.98 1287
97.02 1259
96.99 1258
95.59 1212
94.47 1175

Table 15: PriortizeOpt on a
CA(1460; 4, 8, 5) with Best= 1212

interactions. The method still removes interactions in this case as long as the minimum

coverage requirements are met.

Tables 13, 14, and 15 represent some results that were produced using Recoloring

to provide test prioritization. Post-optimization was allowed to run for a specified

amount of time after which recoloring was permitted to remove interactions. For a

better view of the results we only consider reduction with respect to the best known

covering array. For CA(26; 4, 6, 2), prioritizedRecoloring deleted 10% of the rows losing

7.5% coverage in the process. While this may not appear worthwhile, a more striking

example is CA(140; 5, 17, 2) where prioritizedRecoloring removed 50% of the rows

while losing only 10% coverage in the process. This highlights the power of recoloring

to provide test prioritization. As the instances get more complex (as systems get

larger), the percent of coverage by deleting a row is negligible and a significant saving

43

can be obtained. It is important to note that the above examples did not enforce any

interaction to never be deleted but this could have just as easily be enforced.

5.2 Generation of Covering and Quilting Arrays Using Recoloring

Recoloring can also be used in the generation of covering arrays. To do so form

the covering array graph CAG (the graph formed using all interactions) and choose

any sub-graph. Recolor this sub-graph and choose the n largest color classes where n

is the number of rows to be added at each iteration. While one may not expect the

generation technique to compete with the likes of simulated annealing, it does offer

an interesting solution. The ability to generate n rows at a time allows recoloring to

generate a covering array relatively quickly. The current state-of-art methods focus

on adding one row at-a-time causing scalability issues. Other maximum independent

set problems such as vertex cover could be used to substitute the coloring algorithm.

Naturally, an optimization in the selection of the sub-graph may yield even better

results. Algorithm 7 describes a naive way of generating a covering or quilting array

using recoloring. The algorithm randomly selects a sub-graph of the covering array

graph and colors it. The largest color classes form the rows of the covering array and

the process is repeated until the covering array graph is not empty.

Tables 16, 17, 18, 19 and 20 give arrays generated using recoloring. The quilting

arrays now serve as the current bounds since no quilting arrays for v > 3 had yet been

computed. The generation method was slightly modified so that post-optimization

was used within the process. These results mainly demonstrate the capability of

recoloring as a generation method. The quality of the solutions could be improved by

increasing the computing power.

44

Algorithm 7: recolorGenerateCoveringArray
input : A set of parameters t, k, v, w
output : A covering or quilting array of the given parameters
begin
G ⇐ generate CAG
p⇐ probability to post-optimize
n⇐ # of rows to be generated at each iteration

while CAG 6= ∅ do
G ′ ⇐ subgraph(G)
α(G ′)⇐ getProperVertexColoring()
Form new rows with the n largest color classes
Remove all vertices of the n largest color classes from CAG
Apply post-optimization with probability p

end
end

t k v Best IPOG-F Recoloring
2 600 6 115 164 183
4 9 5 1245 1638 1542
5 17 2 104 183 164
5 9 5 6634 8629 7868
6 9 5 35680 41210 39026

Table 16: Covering Arrays Generated Using Recoloring

45

k
Q

4 3
Q

4 4
Q

4 5
Q

4 6
Q

5 4
Q

5 6
Q

5 7
Q

5 8
Q

5 9
Q

6 5
Q

6 8
Q

6 9
Q

6 1
1

Q
6 1
2

Q
6 1
3

7
41

2
39

2
36

0
12

8
16

86
16

28
15

01
10

76
61

4
-

-
-

-
-

-
8

50
4

48
1

43
6

16
3

20
28

19
98

19
23

15
10

85
1

79
28

78
31

76
60

70
10

49
83

21
46

9
50

4
50

4
48

7
20

3
20

28
20

27
20

16
18

95
11

11
81

24
81

24
81

24
79

46
65

17
36

71
10

-
-

-
-

-
-

-
-

-
81

72
81

72
81

72
81

48
75

25
57

32
11

-
-

-
-

-
-

31
52

-
-

-
-

-
-

-
-

Ta
bl
e
17

:
Q
ui
lt
in
g
A
rr
ay

s
Q
t w
-Q

A
(N

;t
,k
,4

)
G
en
er
at
ed

U
si
ng

R
ec
ol
or
in
g

k
Q

4 3
Q

4 4
Q

4 5
Q

4 6
Q

5 4
Q

5 6
Q

5 7
Q

5 8
Q

5 9
Q

5 1
0

Q
6 5

Q
6 8

Q
6 9

Q
6 1
1

Q
6 1
2

Q
6 1
3

Q
6 1
4

7
90

9
90

9
89

9
36

6
55

68
54

66
52

44
42

47
30

15
-

-
-

-
-

-
-

-
8

12
07

12
00

11
57

50
5

62
02

61
71

60
07

53
04

40
55

11
19

24
99

9
24

98
9

24
95

1
24

68
0

22
57

3
18

60
9

70
10

9
12

40
12

40
12

40
-

66
17

66
14

65
90

62
71

49
52

15
67

35
62

9
35

62
7

35
61

0
35

33
6

32
90

2
28

61
4

18
03

0
10

-
-

-
-

-
-

-
-

-
-

43
33

7
43

33
6

43
33

4
43

16
4

41
46

4
38

21
8

28
89

2
13

-
-

-
18

59
-

-
-

-
-

-
-

-
-

-
-

-
-

Ta
bl
e
18

:
Q
ui
lt
in
g
A
rr
ay

s
Q
t w
-Q

A
(N

;t
,k
,5

)
G
en
er
at
ed

U
si
ng

R
ec
ol
or
in
g

k
Q

4 3
Q

4 4
Q

4 5
Q

4 6
Q

5 4
Q

5 6
Q

5 7
Q

5 8
Q

5 9
Q

5 1
0

7
18

38
18

38
18

32
82

8
17

02
8

16
97

7
16

96
8

13
75

4
11

48
2

-
8

19
74

19
69

19
64

12
41

20
09

5
20

23
2

19
61

5
17

77
9

15
37

4
94

68
9

27
68

27
64

27
54

16
41

21
67

9
21

60
7

21
55

6
20

55
6

18
50

6
14

85
8

10
-

36
58

-
-

-
-

-
-

-
-

Ta
bl
e
19

:
Q
ui
lt
in
g
A
rr
ay

s
Q
t w
-Q

A
(N

;t
,k
,6

)
G
en
er
at
ed

U
si
ng

R
ec
ol
or
in
g

k
Q

6 5
Q

6 8
Q

6 9
Q

6 1
1

Q
6 1
2

Q
6 1
3

Q
6 1
4

Q
6 1
5

8
70

77
7

70
76

7
70

72
6

70
37

8
67

51
8

62
58

6
38

33
1

29
28

9
9

12
99

66
12

99
36

12
96

27
12

86
76

12
43

75
12

09
20

12
17

88
11

30
40

10
13

17
43

13
17

42
13

17
30

13
15

71
12

99
55

12
69

99
-

-

Ta
bl
e
20

:
Q
ui
lt
in
g
A
rr
ay

s
Q
t w
-Q

A
(N

;6
,k
,6

)
G
en
er
at
ed

U
si
ng

R
ec
ol
or
in
g

46

Chapter 6

CONCLUSION

6.1 Contribution

The primary contribution of this thesis is the introduction of a new idea to effectively

post-optimize covering and quilting arrays. Recoloring has a smaller likelihood of

converging to a local optimum than its counterparts since recoloring does not require

flexible symbols in post-optimization. In fact, the chromatic number of the covering

array graph is the covering array number. Thus given enough computational time,

Recoloring can find an optimal covering array. The method is competitive and often

outperforms the existing algorithms for smaller instances.

Several new bounds for quilting arrays were computed. Recursive constructions

exist which use quilting arrays to produce covering arrays. A reduction of a few rows

in the seed quilting array can lead to a large decrease in the size of the resultant array.

These new bounds can certainly improve bounds on existing results.

Another surprising application of Recoloring towards test prioritization was demon-

strated wherein Recoloring could reduce the cost by more than half while still retaining

a significant proportion of coverage. Finally, a scalable and fast generation technique

which can generate more than one row at a time was described.

An important theoretical aspect of any post-optimization algorithm is the ability

to anticipate the likelihood of success. This reduces unnecessary work performed by a

post-optimizer. The analysis for post-optimization metrics performed in this thesis

47

can provide valuable pointers towards the choice of the coloring method and the rows

to select.

Finally, by bounding the clique number, one can justify that using the interaction

graph is more suitable for post-optimization than another graph with a possibly

arbitrarily large clique number.

6.2 Future Work

Based on observations, it is likely that the clique number of the covering array for

general t, k and v is vt. This thesis proved the case for t = 2. It would be interesting

to generalize the proof. This could lead to interesting insight about the structure of

the covering array and perhaps help in finding embedded designs in covering arrays.

Exact coloring showed that the scalability of the method heavily depends on the

coloring algorithm. The results produced by a poor coloring method are competitive

enough to warrant the use of heuristic coloring methods.

Recoloring could be extended to other problems similar to covering arrays. One

close relative is mixed covering arrays which generalize the set of symbols such that

each column gets its own set. In general recoloring could be adapted to several

k-restriction problems.

The application of recoloring indicates a close relation between covering arrays and

the maximum independent set problem. Perhaps another approach could be explored

and more details about the covering array graph could be unveiled.

48

REFERENCES

[1] D. Brelaz. “New methods to color the vertices of a graph”. In: A.C.M 7 (1979),
pp. 494–498.

[2] R. C. Bryce and C. J. Colbourn. “The density algorithm for pairwise interaction
testing”. In: Software Testing, Verification and Reliability 17.3 (2007), pp. 159–
182.

[3] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. “Augmenting simulated
annealing to build interaction test suites”. In: Software Reliability Engineering,
2003. ISSRE 2003. 14th International Symposium on. Nov. 2003, pp. 394–405.

[4] C. J. Colbourn. “Combinatorial aspects of covering arrays”. In: Le Matematiche
59.1,2 (2006), pp. 125–172.

[5] C. J. Colbourn. “Covering array tables”. In: (2005). [Online; Accessed: 1st October
2015]. url: http://www.public.asu.edu/~ccolbou/src/tabby/catable.html.

[6] C. J. Colbourn. “Covering arrays, augmentation, and quilting arrays”. In: Discrete
Mathematics, Algorithms and Applications 06.03 (2014), p. 1450034.

[7] C. J. Colbourn and J. Zhou. “Improving two recursive constructions for covering
arrays”. In: Journal of Statistical Theory and Practice 6.1 (2012), pp. 30–47.

[8] C. J. Colbourn et al. “Roux-type constructions for covering arrays of strengths
three and four”. In: Designs, Codes and Cryptography 41.1 (2006), pp. 33–57.
issn: 0925-1022.

[9] M. A. Forbes et al. “Refining the in-parameter-order strategy for constructing
covering arrays”. In: Journal of Research of the National Institute of Standards
and Technology 113.5 (Sept. 2008).

[10] A. P. Godbole, D. E. Skipper, and R. A. Sunley. “t-Covering arrays: Upper
bounds and poisson approximations”. In: Combinatorics, Probability and Com-
puting 5 (June 1996), pp. 105–117.

[11] M. Grindal, J. Offutt, and S. F. Andler. “Combination testing strategies: A
survey”. In: Software Testing, Verification and Reliability 15.3 (2005), pp. 167–
199.

49

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

[12] G. O. H. Katona. “Two applications (for search theory and truth functions)
of sperner type theorems”. In: Periodica Mathematica Hungarica 3.1-2 (1973),
pp. 19–26.

[13] D. J. Kleitman and J. Spencer. “Families of k-independent sets”. In: Discrete
Math 6 (1973), pp. 255–262.

[14] V. V. Kuliamin and A. A. Petukhov. “A survey of methods for constructing
covering arrays”. In: Programming and Computer Software 37.3 (2011), pp. 121–
146.

[15] Y. Lei et al. “IPOG: A general strategy for t-way software testing”. In: In
Proceedings of the International Conference on engineering of Computer-Based
Systems (eCBS. 2007, pp. 549–556.

[16] J. R. Lobb et al. “Cover starters for covering arrays of strength two”. In: Discrete
Mathematics 312.5 (2012), pp. 943–956.

[17] E. Malaguti and P. Toth. “A survey on vertex coloring problems”. In: Interna-
tional Transactions in Operational Research 17.1 (2010), pp. 1–34.

[18] E. Maltais. “Covering arrays avoiding forbidden edges and edge clique covers”.
MA thesis. University of Ottawa, 2009.

[19] K. Meagher. “Covering arrays on graphs: Qualitative independence Graphs and
extremal set partition theory”. PhD thesis. University of Ottawa, 2005.

[20] P. Nayeri. “Post-Optimization: Necessity analysis for combinatorial arrays”. PhD
thesis. Arizona State University, 2011.

[21] NIST. “Covering arrays generated by IPOG-F”. In: (2008). [Online]. url: http:
//math.nist.gov/coveringarrays/ipof/ipof-results.html.

[22] K. J. Nurmela. “Upper bounds for covering arrays by tabu search”. In: Dis-
crete Applied Mathematics 138.1–2 (2004). Optimal Discrete Structures and
Algorithms, pp. 143–152.

[23] G. Roux. “k-propriétés dans des tableaux de n colonnes; cas particulier de la
k-surjectivité et de la k-permutivité”. PhD thesis. University of Paris, 1987.

[24] J. Torres-Jimenez and E. Rodriguez-Tello. “New bounds for binary covering
arrays using simulated annealing”. In: Information Sciences 185.1 (2012), pp. 137–
152.

50

http://math.nist.gov/coveringarrays/ipof/ipof-results.html
http://math.nist.gov/coveringarrays/ipof/ipof-results.html

[25] D. J. A. Welsh and M. B. Powell. “An upper bound for the chromatic number of
a graph and its application to timetabling problems”. In: The Computer Journal
10.1 (1967), pp. 85–86.

[26] D. Zuckerman. “Linear degree extractors and the inapproximability of max
clique and chromatic number”. In: Theory of Computing 3.6 (2007), pp. 103–128.

51

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 DEFINITIONS
	3 RELATED WORK
	4 RECOLORING FOR COVERING AND QUILTING ARRAYS
	5 ADDITIONAL APPLICATIONS OF RECOLORING
	6 CONCLUSION
	References

