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ABSTRACT

Resource allocation in communication networks aims to assign various resources

such as power, bandwidth and load in a fair and economic fashion so that the networks

can be better utilized and shared by the communicating entities. The design of efficient

resource-allocation algorithms is, however, becoming more and more challenging due

to the precipitously increasing scale of the networks. This thesis strives to understand

how to design such low-complexity algorithms with performance guarantees.

In the first part, the link scheduling problem in wireless ad hoc networks is

considered. The scheduler is charge of finding a set of wireless data links to activate

at each time slot with the considerations of wireless interference, traffic dynamics,

network topology and quality-of-service (QoS) requirements. Two different yet essential

scenarios are investigated: the first one is when each packet has a specific deadline

after which it will be discarded; the second is when each packet traverses the network

in multiple hops instead of leaving the network after a one-hop transmission. In both

scenarios the links need to be carefully scheduled to avoid starvation of users and

congestion on links. One greedy algorithm is analyzed in each of the two scenarios

and performance guarantees in terms of throughput of the networks are derived.

In the second part, the load-balancing problem in parallel computing is studied.

Tasks arrive in batches and the duty of the load balancer is to place the tasks on

the machines such that minimum queueing delay is incurred. Due to the huge size

of modern data centers, sampling the status of all machines may result in significant

overhead. Consequently, an algorithm based on limited queue information at the

machines is examined and its asymptotic delay performance is characterized and it

is shown that the proposed algorithm achieves the same delay with remarkably less

sampling overhead compared to the well-known power-of-two-choices algorithm.
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Two messages of the thesis are the following: greedy algorithms can work well in a

stochastic setting; the fluid model can be useful in “derandomizing” the system and

reveal the nature of the algorithm.
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Chapter 1

INTRODUCTION

Over the past decades, stochastic modeling has been successfully adopted to

analyze various computing and communication networks for performance evaluation.

Researchers developed optimal or near-optimal scheduling or routing algorithms in

terms of throughput, delay and other metrics in various scenarios based on the

stochastic models. However, in practice, many of the algorithms are seldom used

due to their computational complexity or communication overhead. Instead, many

heuristic algorithms are preferred in reality based on their empirical good performance

and low complexity, and are becoming even more attractive for large scale computing

and communication systems. These heuristic algorithms are often difficult to analyze

in the stochastic settings, so the gap between theory and application for the low-

complexity greedy algorithms needs to be filled in order to understand the systems

and to provide performance guarantee.

In Chapter 2 we consider the stability of the longest-queue-first (LQF) scheduling

policy in wireless networks with multihop traffic under the one-hop interference model.

Although it is well known that the back-pressure algorithm achieves the maximal

stability, its computational complexity is prohibitively high. So instead we consider

LQF, a low-complexity scheduling algorithm which has been shown to have near-

optimal throughput performance in many networks with single-hop traffic flows. We

are interested in the performance of LQF for multihop traffic flows, in which scenario

the coupling between queues due to multihop traffic flows makes the local-pooling-

factor analysis difficult to perform. Using the fluid-limit techniques, we show that

1



LQF achieves the maximal stability for linear networks with multihop traffic and a

single destination on the boundary of the network under the one-hop interference

model.

In Chapter 3 we consider the problem of scheduling real-time traffic in wireless

networks. We consider ad hoc wireless networks with general conflict graph–based

interference model and single-hop traffic. Each packet is associated with a deadline

and will be dropped if it is not transmitted before the deadline. The number of packet

arrivals in each time slot and the maximum delay before the deadline are independent

and identically distributed across time. We require a minimum fraction of packets to

be delivered. At each link, we assume the link keeps track of the difference between

the minimum number of packets that need to be delivered so far and the number of

packets that are actually delivered, which we call the deficit. The largest-deficit-first

(LDF) policy schedules links in descending order according to their deficit values,

which is a variation of the longest-queue-first (LQF) policy for non-real-time traffic.

We prove that the efficiency ratio of LDF, which is the fraction of the throughput

region that LDF can achieve for given traffic distributions, can be lower bounded by a

quantity that we call the real-time local-pooling factor (R-LPF). We further prove

that a lower bound on the R-LPF can be related to the weighted sum of the service

rates, with a special case of 1/(β + 1) by considering the uniform weight, where β is

the interference degree of the conflict graph. We also propose a heuristic consensus

algorithm that can be used to obtain a good weight vector for such lower bounds for

given network topology.

In Chapter 4 we consider the randomized load-balancing problem with large number

of servers. In many computing and networking applications, arriving tasks have to be

routed to one of many servers, with the goal of minimizing queueing delays. When

2



the number of processors is very large, a popular routing algorithm works as follows:

select two servers at random and route an arriving task to the least loaded of the two.

It is well-known that this algorithm dramatically reduces queueing delays compared

to an algorithm which routes to a single randomly selected server. In recent cloud

computing applications, it has been observed that even sampling two queues per

arriving task can be expensive and can even increase delays due to messaging overhead.

So there is an interest in reducing the number of sampled queues per arriving task.

We show that the number of sampled queues can be dramatically reduced by using

the fact that tasks arrive in batches (called jobs). In particular, we sample a subset

of the queues such that the size of the subset is slightly larger than the batch size

(thus, on average, we only sample slightly more than one queue per task). Once a

random subset of the queues is sampled, we propose a new load balancing method

called batch-filling to attempt to equalize the load among the sampled servers. We

show that our algorithm dramatically reduces the sample complexity compared to

previously proposed algorithms.

3



Chapter 2

LINK SCHEDULING IN WIRELESS NETWORKS WITH MULTIHOP TRAFFIC

2.1 Background

The scheduling problem in wireless networks with multihop traffic has gained

significant attention over the last few decades. One fundamental goal of the design of

scheduling policies, among many others, is to decide which set of links to schedule at

each time slot in accordance with the underlying interference model so that the system

is stable. The back-pressure algorithm has been proved to be throughput-optimal for

general multihop-traffic settings (Tassiulas and Ephremides, 1992); i.e., it stabilizes

the network as long as the arrival rates are within the network throughput region.

The algorithm, however, requires the network to solve a maximum-weight independent

set problem at each time instance and requires the nodes to exchange queue lengths

with their neighbors constantly.

In this chapter, we study the stability of the longest-queue-first (LQF) scheduling

policy, which selects links according to the queue lengths in a greedy fashion. LQF

has been extensively studied as a low-complexity approximation of the MaxWeight

scheduling, and has great throughput and delay performance in many networks. The

conditions under which LQF is throughput-optimal have been established by Dimakis

and Walrand (2006) and the performance guarantee of LQF in general networks has

been characterized by Joo et al. (2009b) and estimated under different scenarios (Joo

et al., 2009b,a; Birand et al., 2012; Leconte et al., 2011). An asynchronous version of

LQF has also been proved to be throughput-optimal under the local-pooling condition

4



by Maguluri et al. (2014) However, these results all assume single-hop traffic flows

in the network. For networks with multihop traffic, transmitted packets at one link

may become the internal arrivals to another link. Hence links with small queues

may affect the ones with large queues by providing internal arrivals, which makes it

difficult to analyze the system using local-pooling-factor analysis since the maximum

fluid among the large queues does not always decrease, as we will show in the example

in Section 2.3.2. Although Brzezinski et al. (2008) developed conditions for networks

with multihop traffic under which a back-pressure-based greedy algorithm achieves the

maximal throughput, the performance of LQF for networks with multihop traffic flows

is still unknown. We are interested in tackling the problem of throughput performance

of LQF, since it can shed light on the implementation of low-complexity scheduling

algorithms in wireless multihop networks. While the original LQF is a centralized

scheduling policy, a queue-length-based CSMA-type algorithm, called D-GMS, has

been proposed by Ni et al. (2012) to approximate LQF in a distributed fashion, which

does not require constant exchange of queue lengths. Thus, LQF can be used as the

foundation to a low-complexity, distributed scheduling algorithm.

We focus on the scheduling problem under multihop traffic in a simple network, i.e.,

a linear network with single destination on the boundary of the network (also known

as a tandem network) and one-hop interference model (also known as primary or node-

exclusive interference model)1. Such networks have been well studied in the literature

to provide insights in understanding the fundamental scaling properties of multihop

traffic (Tassiulas and Ephremides, 1994; Stolyar, 2011; Bui et al., 2011; Hellings et al.,

2011). In particular, Stolyar (2011) and Bui et al. (2011) analyzed the asymptotic

1While the one-hop interference model is indeed a mathematical simplification of wireless
interference in reality, it has been used as a reasonable approximation to Bluetooth or FH-CDMA
networks (Joo et al., 2009b). It may also be used to model half-duplex communication.
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delay performance of the back-pressure algorithm in large linear networks when no

interference is present. To the best of our knowledge, however, neither throughput

nor delay performance guarantee of LQF has been obtained under multihop traffic

scenario for linear networks.

This chapter proves the throughput optimality of LQF in a special case of linear

networks. While the result is only for linear networks, it is the first step to understand

the following question: to achieve throughput optimality in a wireless network with

multihop traffic flows that have fixed routes, is it sufficient to use queue lengths as

weights instead of using differential queues? If the answer is positive, then nodes do

not need to constantly exchange queue lengths, which eliminates a significant amount

of communication overhead.

The novelty in this chapter lies in the techniques we adopt to show the stability of

the fluid model after the standard construction of fluid limits. Instead of using an

explicit Lyapunov function, we follow the observations from the simulation trajectories

of an example network and examine the evolution of the states of the deterministic

fluid limits. We first show that the system will eventually stay in the state where the

fluid at the first queue is zero. Then by combining the first two queues into one using

a coupled-network argument, we reduce the size of the network by one and conclude

that fluids at all queues eventually become zero by induction.2

The chapter is organized as follows. We introduce the basic model in Section 2.2.

In Section 2.3 we present our result of throughput optimality of LQF, as well as an

intuitive example, formal notation and network equations, construction of fluid limits,

and the proof.

2We remark that while a properly chosen Lyapunov function would suffice to show stability,
finding such a function may be difficult.
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v1
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l1
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l2 lN
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Figure 1: A linear network with N links

Note: The ith dashed line indicates the flow with source node vi and destination node
vN+1 and exogenous packet arrival rate αi.

...
l1 l2 lN

Figure 2: The one-hop interference graph of the linear network

2.2 Model

Consider a linear network represented by a directed graph G = (V, L) with

|V | = N +1 nodes and |L| = N links as shown in Figure 1. Let V = {v1, v2, . . . , vN+1}

and L = {l1, l2, . . . , lN}, where li is the link from node vi to node vi+1. We assume vi

is the origin node of flow fi with exogenous (or external) packet arrival rate αi for

1 ≤ i ≤ N , and all flows have the same destination vN+1. In the chapter we focus on

the one-hop interference model, so the interference graph is as shown in Figure 2.

We assume time is slotted, and in each time slot a subset of the links can be

scheduled. Once scheduled, a packet at link li is transmitted from node vi to node

vi+1 and join the queue at node vi+1 if it has not reached the destination vN+1, or

leave the network otherwise. As a result, besides exogenous packet arrivals, there can

also be internal packet arrivals to a node according to the schedule of other links.

The scheduler decides a subset of the links s ⊆ L to be activated in every time slot,

called a schedule, such that the schedule is feasible (scheduled links do not interfere

with each other) and maximal (no other link can be added to the schedule without
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violating the feasibility constraint), and then the queue length at each transmitter

in the activated subset reduces by 1 if there are any packets to schedule, or remains

0 otherwise. A schedule (also known as an activation set) s is represented by an

activation vector m, which is a binary column vector with N elements. According to

the interference model shown in Figure 2, a schedule s is feasible if no two adjacent

links are activated at the same time; i.e., the activation vector m does not contain two

consecutive 1’s. For example, the activation vectors for the four maximal schedules

when N = 5 are 10101, 10010, 01010 and 01001. The number of maximal schedules

grows exponentially with N .

In the chapter we are interested in LQF with arbitrary tie-breaking rules, and

we define it as follows. At each time slot, let Zi be the queue length at link li

for 1 ≤ i ≤ N . The set of links are sorted with arbitrary tie-breaks such that

Zσ1 ≥ Zσ2 ≥ · · · ≥ ZσN , where (σ1, σ2, . . . , σN ) is the sorted index vector. LQF starts

with the schedule E = {σ1}, and proceeds to consider i = 2, 3, . . . , N inductively

and appends σi to E if σi does not interfere with any link that is already in E . This

procedure ends after the link lσN is considered and the resulting schedule E is the

schedule chosen by LQF.

2.3 Stability

In this section we analyze the stability property of LQF in the linear network

under the one-hop interference model. We say the system is stable if the queue length

process, as a Markov process, is positive recurrent. We first state the main theorem

with the proof outline and an illustrative example, and then proceed with the formal

proof.
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2.3.1 Main Result

Theorem 1. LQF is throughput-optimal on linear networks with multihop traffic and

a single destination on the boundary of the network under the one-hop interference

model. �

Theorem 1 states that LQF can stabilize a linear multihop traffic network with a

single destination on the boundary and the one-hop interference model. Thus using

queue lengths instead of queue differences is sufficient. This result may also shed light

on the throughput performance of LQF in other networks with multihop traffic, in

which the routes are fixed.

The proof consists of the following steps. We first follow the standard construction

of the fluid limits. Then we show that eventually the fluids should be such that each

fluid is less than or equal to at least one neighbor fluid; i.e., no fluid dominates all its

neighbors. After that we prove that the first fluid must decrease with rate at least

ε > 0. Finally we use a coupled-network argument to show that all fluids eventually

go to zero under admissible arrival rates, which implies throughput optimality.

We next demonstrate the key ideas of the proof using an example.

2.3.2 Three-Link Linear Network

We consider the simple linear network example with four nodes {v1, v2, v3, v4} and

three links {l1, l2, l3}. Suppose flow fi has origin vi and destination v4 with Bernoulli

arrival of rate αi for i = 1, 2, 3. The interference is such that two adjacent links cannot

be scheduled at the same time, so either {l1, l3} or {l2} is scheduled in each time slot.

Let Zi(n) be the queue length on link li at time slot n. Then at each time slot, the

9
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Figure 3: Queue evolution of the three-link linear network under LQF

LQF scheduler first selects the longest queue with arbitrary tie-breaking, and then

chooses either {l1, l3} or {l2} according to the first selection.

A typical queue evolution graph for the three-link linear network under LQF is

shown in Figure 3. Here the initial queue lengths are Z1(0) = 300, Z2(0) = 120 and

Z3(0) = 100, with arrival rates α1 = 0.25, α2 = 0.1 and α3 = 0.05. We make several

interesting observations from the figure:

1. The queue lengths look like piecewise-linear functions (this is partially due to

the law of large numbers over the arrival process).

2. The queue dynamics are somewhat complex for the first time slots (largely due

to the internal arrival from other links).

3. The first queue eventually drops to close to zero, and the behavior of the other

queues become more predictable.

4. Finally all queues seem to be close to zero, so the system is expected to be

stable.
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In light of the above findings, we first conjecture that after some time we have either

Z1(t) ≈ Z2(t) ≥ Z3(t) or Z1(t) ≤ Z2(t) ≈ Z3(t), since otherwise one queue will be

larger than all its neighbors, resulting in a higher scheduling priority under LQF that

will force the queue to start decreasing. We can then see that if Z1(t) and Z2(t) stick

together then they must both decrease since the sum of the nominal total arrival rates

to links l1 and l2 due to both the exogenous and internal arrivals is 2α1 +α2 = 0.6 < 1.

If Z2(t) and Z3(t) stick together and Z1(t) is positive, then the service rate of link li

for all i, denoted by µi, should satisfy

µ1 = µ3,

µ1 + µ2 = 1,

and

µ1 + α2 − µ2 = µ2 + α3 − µ3.

We can then get µ1 − α1 = 1
2
− α1 − 1

4
α2 + 1

4
α3 = 0.2375 > 0. So in either case the

first queue will decrease. We also argue that when the first queue drops to close to

zero, it cannot rise again since if it did it would be “forced back” to zero immediately

since the potential service rate of link l1 is larger than its nominal (exogenous only)

arrival rate. So at last the three-link linear network is reduced to a two-link linear

network and the remaining two queues go to close to zero as well. The above intuition

will lead our way to the rigorous proof for the general linear network case in the rest

of this section.

2.3.3 Notation and Network Equations

The following notation is used throughout the chapter:
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• R: the N -by-N routing matrix that is similar to the one defined by Tassiulas

and Ephremides (1992), where Rik = −1 if link lk goes from node vi, Rik = 1

if link lk goes to node vi, or Rik = 0 otherwise, for 1 ≤ i ≤ N and 1 ≤ k ≤ N .

Then in the linear network case the routing matrix is given by

R =



−1 0 0 · · · 0

1 −1
. . . . . . ...

0 1
. . . . . . ...

... . . . . . . −1 0

0 · · · 0 1 −1


. (2.1)

• M : the N -by-r binary-entry matrix whose columns are the activation vectors of

the possible maximal schedules, where r is the total number of possible maximal

schedules. We then have M = (m1,m2, . . . ,mr) where mj is the activation

vector of a maximal schedule for 1 ≤ j ≤ r.

• Zi(n) for 1 ≤ i ≤ N : the queue length at link li at time slot n ∈ N (before

arrivals and departures happen in time slot n).

• Ei(n) for 1 ≤ i ≤ N : the cumulative exogenous arrival to link li up to time

slot n ∈ N. We assume the increment process of
(
Ei(n)

)
, i.e., the process(

Ei(n+ 1)− Ei(n) : n ∈ N
)
, is i.i.d. across n. We also assume the processes(

E1(n)
)
,
(
E2(n)

)
, . . . ,

(
EN(n)

)
are independent. The exogenous arrival rate is

E[Ei(n+ 1)− Ei(n)] = αi for all n.

• Ai(n) for 1 ≤ i ≤ N : the cumulative arrival to link li up to time slot n ∈ N.

This includes both exogenous and internal arrivals.

• Di(n) for 1 ≤ i ≤ N : the actual cumulative departure from link li up to time

slot n ∈ N.
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• Tj(n) for 1 ≤ j ≤ r: the cumulative service time (in number of time slots) of

schedule mj up to time slot n ∈ N.

• Yi(n) for 1 ≤ i ≤ N : the cumulative idle time (in number of time slots) of link

li up to time slot n ∈ N (when link li is chosen by the scheduler but does not

actually send packets). Note that even if the queue at link li is empty at the

time of scheduling, the scheduler can still choose the schedule mk such that

li ∈ mk, in which case Yi(n) will increase instead of Di(n). For non-idling (or

work-conserving) scheduling policies Yi(n) can only increase when the queue at

link li is empty.

Let Z(n), E(n), A(n), D(n), T (n), Y (n) be the corresponding column vectors and

let X(n) = (Z(n), E(n), A(n), D(n), T (n), Y (n)) for any n ∈ N. Then we refer to(
X(n)

)
as the queueing network process. Let X = N5N+r be the state space of

(
X(n)

)
.

Then
(
X(n)

)
is an X -valued stochastic process defined on N. Let Ω be the set of

sample paths specifying the exogenous arrival processes
(
E(n)

)
and the possible

tie-breaks of the scheduler. Note that under the LQF policy
(
X(n)

)
is a discrete

Markov chain. The dynamics of the network are described by the following queueing

network equations :

A(n) = E(n) + (R + I)D(n− 1) (2.2)

Z(n) = Z(0) + A(n)−D(n) (2.3)
r∑
j=1

Tj(n) = n
(
or eTT (n) = n

)
(2.4)

D(n) = MT (n)− Y (n) (2.5)

for any nonnegative integer n, where I is the identity matrix. Moreover, if the
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scheduling is non-idling, then we also have

Yi(n)− Yi(n− 1) =



1 if Zi(n− 1) = 0 and∑
j : i∈mj

(
Tj(n)− Tj(n− 1)

)
= 1

0 otherwise

(2.6)

for 1 ≤ i ≤ N and n = 1, 2, 3, . . . . All of the variables take nonnegative integers in each

component, and
(
Ei(n)

)
,
(
Ai(n)

)
,
(
Di(n)

)
,
(
Tj(n)

)
,
(
Yi(n)

)
are all nondecreasing in

n for any i and j. Also we assume the initial conditions are

E(0) = A(0) = D(0) = Y (0) = 0 and T (0) = 0. (2.7)

For the LQF policy, we have in addition to (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7):

Tj(n)− Tj(n− 1) = 1⇒ mj ∈ LQF(Z(n− 1)), (2.8)

where LQF(Z) is the set of possible LQF maximal schedules given queue length vector

Z. We assume that the schedule is always maximal regardless of the queues being

empty or not, so LQF(Z) ⊆ {m1,m2, . . . ,mr}.

2.3.4 Fluid Limits

We define the scaled systems based on the queueing network process for each

sample path, and show that the scaled systems converge along some subsequence to

deterministic systems called fluid limits.

We first extend the definition of X for arbitrary nonnegative time t ∈ R+ by

piecewise linear interpolation

X(t) = (1 + btc − t)X(btc) + (t− btc)X(btc+ 1),
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where btc is the largest integer less than or equal to t. Then X is an X̄ -valued stochastic

process with X̄ = R5N+r
+ , and is continuous for t ∈ R+ given any fixed sample path

ω ∈ Ω.

Let | · | be the L1-norm of R5N+r
+ . Fix ω ∈ Ω, and let Xx(t) be the queueing network

process with initial state X(0) = x for x ∈ X 0 =
{
y ∈ X : |y| > 0

}
and define the

scaled system

X̄x(t) =
1

|x|
Xx(|x|t).

We then have the following proposition giving the existence of the fluid limits, which

is similar to Theorem 4.1 in Dai (1995).

Proposition 1. For a work-conserving scheduling policy, for almost any sample path

ω ∈ Ω and any sequence of initial states (xk : k ∈ N) with xk ∈ X 0 for all k and

|xk| → ∞ as k → ∞, there exists a subsequence
(
xkp : p ∈ N

)
with |xkp | → ∞ as

p→∞ such that

X̄xkp (0)→ X̄(0) as p→∞

and

X̄xkp → X̄ u.o.c. as p→∞

for some X̄ : R+ → X̄ with X̄(t) = (Z̄(t), Ē(t), Ā(t), D̄(t), T̄ (t), Ȳ (t)) for any t ∈

R+, where “u.o.c.” stands for uniform convergence over compact sets (Royden and

Fitzpatrick, 2010). Furthermore, for any t ∈ R+,

Ā(0) = D̄(0) = Ȳ (0) = 0 and T̄ (0) = 0 (2.9)

Ā(t) = αt+ (R + I)D̄(t) (2.10)

Z̄(t) = Z̄(0) + Ā(t)− D̄(t) (2.11)

eTT̄ (t) = t (2.12)
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D̄(t) = MT̄ (t)− Ȳ (t) (2.13)

and ∫ ∞
0

Z̄i(t) dȲi = 0 i = 1, 2, . . . , N. (2.14)

Moreover, all components of X̄ are absolutely continuous (Royden and Fitzpatrick,

2010) because they are Lipschitz continuous, and
(
Āi(t)

)
,
(
D̄i(t)

)
,
(
T̄j(t)

)
and

(
Ȳi(t)

)
are nondecreasing in t for all i and j.

Particularly, the fluid limits under LQF satisfy

dT̄j
dt

(t) > 0⇒ mj ∈ LQF(Z̄(t)) j = 1, 2, . . . , r, (2.15)

where LQF(Z̄) is the set of LQF schedules for the vector Z̄, and t is assumed regular

so the derivatives exist. �

Remark 1. Basically, (2.9) is the initial condition assumption. (2.10) says the arrival

rates consist of exogenous part and internal part. (2.11) is the queue evolution

equation. (2.12) comes from the fact that in any period of time (t, t+ δ) of the scaled

systems the total increase of the cumulative service time is at most δ. (2.13) gives the

relation among departures, serving time of schedules and idling time. (2.14) means a

link can be idle (when it is chosen by the scheduler) only if the queue length at the

link is 0. (2.15) states that only maximal schedules satisfying the LQF property given

the queue fluids Z̄(t) can be chosen at time t, but it does not specify the fractions

of the schedules that LQF could choose. The proof is similar to those in Dai and

Prabhakar (2000), Shah and Wischik (2012) and Chen and Yao (2001), and can be

found in Appendix A.1.
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2.3.5 Transient States with Dominating Fluids

We first identify a set of transient states of the space of the queue fluid vectors.

Let

B1 =
{
Z̄ ∈ RN+ : Z̄1 > Z̄2

}
B2 =

{
Z̄ ∈ RN+ : Z̄2 > Z̄1, Z̄2 > Z̄3

}
...

BN−1 =
{
Z̄ ∈ RN+ : Z̄N−1 > Z̄N−2, Z̄N−1 > Z̄N

}
BN =

{
Z̄ ∈ RN+ : Z̄N > Z̄N−1

}
and let

B =
N⋃
i=1

Bi.

Then we have

RN+\B = {Z̄ ∈ RN+ : Z̄1 ≤ Z̄2, Z̄N−1 ≥ Z̄N ,

Z̄i ≤ max{Z̄i−1, Z̄i+1} for 2 ≤ i ≤ N − 1}.

So B is the set of queue fluid vectors such that some queue strictly dominates all of its

neighbors (one link has at most two neighbors in linear networks), while RN+\B is the

set of queue length vectors without any queue strictly dominating all of its neighbors.

We then have the following lemma.

Lemma 1. B is transient. Formally, given αi < 1 for any i ∈ {1, 2, . . . , N}, for any

initial conditions Z̄(t0) ∈ RN+ at time t0, we have Z̄(t) /∈ B for any t ≥ t0 + maxi Z̄i(t0)
(1−maxi αi)

under LQF. �

Remark 2. The outline of the proof is as follows, and the proof can be found in

Appendix A.2.
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1. If Z̄ ∈ B, then there are no adjacent dominating nodes.

2. Each dominating node loses its domination in time maxi Z̄i(t0)
(1−maxi αi)

.

3. Once a node loses domination, it cannot regain it.

2.3.6 Stability of the First Fluid Z̄1

We now further divide RN+\B into several partitions:

C0 =
{
Z̄ ∈ RN+\B : Z̄1 = 0

}
C1 =

{
Z̄ ∈ RN+\B : 0 < Z̄1 = Z̄2

}
C2 =

{
Z̄ ∈ RN+\B : 0 < Z̄1 < Z̄2 = Z̄3

}
...

CN−1 =
{
Z̄ ∈ RN+\B : 0 < Z̄1 < · · · < Z̄N−1 = Z̄N

}
.

Then {C0, C1, . . . , CN−1, B} forms a partition of RN+ . We then use the following two

lemmas to show C1, C2, . . . , CN−1 are all transient under admissible arrival rates, so

the system has to eventually go to state C0 where Z̄1 stays at 0.

Lemma 2. If the arrival rate vector α is admissible, then there exists ε > 0 such that

for any regular time t1 ≥ maxi Z̄i(0)
1−maxi αi

and Z̄(t1) /∈ C0 we have

dZ̄1

dt
(t1) ≤ −ε.

�

Remark 3. The idea of the proof is that for any sufficiently large regular time t1

we show that if the fluid of the first queue is positive, then it must decrease with

lower-bounded rate. Hence the first fluid reaches zero eventually.
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Proof. Let t′ = maxi Z̄i(0)
1−maxi αi

. Then by Lemma 1, we have Z̄(t) /∈ B for any t ≥ t′. We let

W̄1(t) = Z̄1(t)

and

W̄i(t) = Z̄i(t)− Z̄i−1(t) i = 2, 3, . . . , N.

We further let

J0(t) =
{
j : W̄j(t) = 0

}
and for a regular time t,

J(t) =

{
j ∈ J0(t) :

dW̄j

dt
(t) = 0

}
.

Note that Z̄(t) ∈ RN+\B implies J0(t) 6= ∅. We claim that J(t) is also nonempty in

the following proposition, the proof of which can be found in Appendix A.3.

Proposition 2. For any t ≥ t′, we have J(t) 6= ∅. �

Now we fix a regular time t1 ≥ t′ with Z̄1(t1) > 0 and let

u = min
j∈J(t1)

j.

Then u ≥ 2. Let the service rate on link li at time t be µi(t) = d
dt
D̄i(t) for regular

time t and any i ∈ {1, 2, . . . , N}. Then we claim that the service rates up to u at time

t1 satisfy the following proposition, the proof of which is presented in Appendix A.4.

Proposition 3. For i = 1, 2, . . . , u− 2, µi(t1) = µi+2(t1). �

Due to the one-hop interference model, we have

µ1(t1) + µ2(t1) = 1
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since at each time slot in the real system either link l1 or link l2 must be scheduled.

Then by the definition of u, we have dZ̄u−1

dt
(t1) = dZ̄u

dt
(t1), i.e.,

µu−2(t1) + αu−1 − µu−1(t1) = µu−1(t1) + αu − µu(t1)

where µ0(t1) = 0 by convention. Then if u = 2, we have
µ1(t1) + µ2(t1) = 1

α1 − µ1(t1) = µ1(t1) + α2 − µ2(t1)

⇒


µ1(t1) = 1

3
+ 1

3
α1 − 1

3
α2

µ2(t1) = 1
3
− 1

3
α1 + 1

3
α2

⇒ dZ̄1

dt
(t1) = α1 − µ1(t1) = −1

3
+

2

3
α1 +

1

3
α2.

Similarly, if u = 3, 
µ1(t1) + µ2(t1) = 1

µ1(t1) = µ3(t1)

µ1(t1) + α2 − µ2(t1) = µ2(t1) + α3 − µ3(t1)

⇒


µ1(t1) = µ3(t1) = 1

2
− 1

4
α2 + 1

4
α3

µ2(t1) = 1
2

+ 1
4
α2 − 1

4
α3

⇒ dZ̄1

dt
(t1) = α1 − µ1(t1) = −1

2
+ α1 +

1

4
α2 −

1

4
α3,
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and if u = 4 we have,

µ1(t1) + µ2(t1) = 1

µ1(t1) = µ3(t1)

µ2(t1) = µ4(t1)

µ2(t1) + α3 − µ3(t1) = µ3(t1) + α4 − µ4(t1)

⇒


µ1(t1) = µ3(t1) = 1

2
+ 1

4
α3 − 1

4
α4

µ2(t1) = µ4(t1) = 1
2
− 1

4
α3 + 1

4
α4

⇒ dZ̄1

dt
(t1) = α1 − µ1(t1) = −1

2
+ α1 −

1

4
α3 +

1

4
α4.

We can then get the derivative of Z̄1(·) at t1 as

dZ̄1

dt
(t1) =


−1

3
+ 2

3
α1 + 1

3
α2 if u = 2

−1
2

+ α1 + 1
4
αu−1 − 1

4
αu if u = 3, 5, . . .

−1
2

+ α1 − 1
4
αu−1 + 1

4
αu if u = 4, 6, . . .

.

Since α is admissible, we have (Tassiulas and Ephremides, 1992)

−R−1α < Mγ (2.16)

for some convex combination coefficients γ. Then by (2.1), we have

−R−1 =



1 0 0 · · · 0

1 1 0
. . . 0

... . . . . . . . . . ...

1 1
. . . . . . 0

1 1 1 · · · 1


.

Note that the ith row of −R−1α is the total workload of link li, while the ith row

of Mγ is the service rate on link li. Since the total workload of the last two links
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are
∑N−1

i=1 αi and
∑N

i=1 αi respectively, and exactly one of the last two links must be

chosen at each time slot, we have by combining the last two rows of (2.16)

2α1 + 2α2 + · · ·+ 2αN−1 + αN < 1.

So dZ̄1

dt
(t1) ≤ −ε, where

ε = min

{
1

3
− 2

3
α1 −

1

3
α2,

1

2
− α1 −

1

4
α2 +

1

4
α3,

1

2
− α1 +

1

4
α3 −

1

4
α4,

. . . ,

1

2
− α1 −

1

4
(−1)N−1αN−1 −

1

4
(−1)NαN

}
> 0.

Corollary 1. Given the initial conditions and arrival rates in Lemma 2, there exists

ε > 0 such that Z̄1(t) = 0 for any t ≥ Z̄1(0)
ε

+ maxi Z̄i(0)
1−maxi αi

(
1
ε

+ 1
)
. �

Remark 4. This comes directly from Lemma 2 and a similar proof of Proposition 5

in Appendix A.2. Basically, Z̄1(t) has to drop to 0, after which it cannot rise since

otherwise the negative derivative forces it to go back to 0.

2.3.7 Coupled-Network Argument

Based on Corollary 1, we use induction and a coupled-network argument to show

the following lemma stating the stability of the fluid system, which leads to the

stability of the original queueing system using a similar argument as presented by Dai

(1995).
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Lemma 3. Given the initial conditions and arrival rates in Lemma 2, there exists

c3 > 0 such that Z̄i(t) = 0 for any t ≥ maxj Z̄j(0)c3 and any i = 1, 2, . . . , N . �

Proof. We use induction. First, by Corollary 1, there exists c̃ > 0 such that Z̄1(t) = 0

for any t ≥ maxj Z̄j(0)c̃. Now suppose there exists c and k such that Z̄i(t) = 0

and Z̄k+1(t) > 0 for any t ≥ maxj Z̄j(0)c and i ≤ k. We consider a coupled linear

network under the LQF scheduling with N − k links, initial fluids Z̄ ′i(maxj Z̄j(0)c) =

Z̄i+k(maxj Z̄j(0)c) for 1 ≤ i ≤ N − k, and arrival rates

α′1 = α1 + α2 + · · ·+ αk+1

and

α′j = αk+j j = 2, 3, . . . , N − k.

Thus {Z̄ ′i(t), 1 ≤ i ≤ N} are the fluids of the original network with the first k+ 1 links

combined into one link. Since the fluids satisfy Z̄k+1(t) > Z̄k(t), we have that the

queue length at link lk+1 is larger than that at link lk in the actual system. Then by

the LQF scheduling, the schedule of the first k links does not affect the schedule of the

last N−k links. Also notice that the fluid arrival to Z̄k+1(t) is α1 +α2 +· · ·+αk+1 = α′1

since all fluids Z̄i(t)’s prior to Z̄k+1(t) remain zero, transferring their exogenous arrival

to Z̄k+1(t). Hence, Z̄i+k(t) = Z̄ ′i(t) for all t ≥ maxj Z̄j(0)c.

Taking the last N − k rows of (2.16), we can get

−R′−1α′ < M ′γ′,

where R′ is the routing matrix for the coupled network, M ′ is the maximal scheduling

matrix of the coupled network, and γ′ is a set of convex combination coefficients

induced from γ. Note that M ′ consists of the maximal columns of the matrix formed

by the last N−k rows ofM . Hence α′ is also admissible. Let Z̄ ′max = maxi Z̄
′
i(0). Then
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by the Lipschitz continuity we have Z̄ ′max ≤ maxj Z̄j(0)c4 for some c4 > 0. Again by

Corollary 1, there exists c5 > 0 such that Z̄ ′1(t) = 0 for any t ≥ Z̄ ′maxc5. Consequently,

Z̄k+1(t) = Z̄ ′1(t) = 0 is also true for t ≥ maxj Z̄j(0)c4c5. By mathematical induction,

we get that there exists c3 > 0 such that Z̄i(t) = 0 for any t ≥ maxj Z̄j(0)c3 and

1 ≤ i ≤ N .

2.3.8 Uniform Integrability

According to Lemma 4.5 in Dai (1995), we now have for sufficiently large t,

1

n
max
i
Zi(nt)→ 0

as n→∞. Following a similar argument given in Dimakis and Walrand (2006), to

get the stability of the system, we only need to show

E

(
1

n
max
i
Zi(nt)

)
→ 0

as n→∞. I.e., we only need to show
(

1
n

maxi Zi(nt) : n ∈ N
)
are uniformly integrable

(UI). Note

1

n
max
i
Zi(nt) ≤

1

n

∑
i

Zi(nt)

≤ 1

n

∑
i

Ei(nt).

Then by the law of large numbers, 1
n

∑
iEi(nt) converges to

∑
i αit in probability as

n→∞. Also note

E

 1

n

∑
i

Ei(nt)

 =
∑
i

αit.

Then by Theorem 4.5.4 in Chung (2001) we have UI of
(

1
n

∑
iEi(nt)

)
and thus that

of
(

1
n

maxi Zi(nt)
)
.
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2.3.9 Simulations

Now we proved that LQF is throughput optimal in a linear network with one-hop

interference model. In this subsection, we simulate the LQF policy and the back-

pressure policy over a linear network with multihop traffic under different interference

models. The goal of the simulations is twofold: 1) to examine the throughput

performance of LQF on linear networks under other interference model; 2) to evaluate

the delay performance of both LQF and BP.

Throughout the simulations we fix the network size to be N = 20. We assume

that there is a single flow with source node v1, destination node vN+1, and Bernoulli

arrivals with mean α1. We consider three interference models: no interference (all links

can be transmitting simultaneously), one-hop interference (each link interferes with

its direct neighbors) and two-hop interference (each link interferes with its two-hop

neighbors). We simulate 1, 000, 000 time slots for each setting.

2.3.9.1 No Interference

When no interference is present, we can easily see that the stability region of the

network is [0, 1). LQF is throughput optimal in this case since all links will always try

to transmit and the queue length is at most 1 for any link due to the Bernoulli arrival

and the zero initial state. It has however been noticed that there exists a critical point

of the arrival rate for linear multihop networks, above which the average total queue

lengths (and hence the average delay) will increase quadratically as the network size

becomes larger (Stolyar, 2011; Bui et al., 2011). In Figure 4 we demonstrate that the
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(a) Undercritical scenario when α1 = 0.49
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(b) Supercritical scenario when α1 = 0.51

Figure 4: Stationary queue lengths for different link positions under no interference

critical arrival rate is 1/2 in our discrete-time constant service setting, as opposed to

1/4 obtained in the continuous-time exponential-service setting by Stolyar (2011).

Figure 4a shows the stationary queue lengths of both policies in the undercritical

scenario when α1 = 0.49 < 1/2. We note that the stationary queue length of BP

decreases quickly as the position increases, and stays at α1 for the tail positions. Hence

the average total backlog only increases linearly with the network size. By Little’s

law the delay is also linearly dependent on the network size.
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Figure 5: Stationary queue lengths for different link positions under one-hop interfer-
ence when α1 = 0.49

On the other hand, Figure 4b shows the stationary queue lengths in the supercritical

scenario when α1 = 0.51 > 1/2. We see that the stationary queue length of BP

decreases linearly as the position increases. Then as the network size increases the

average total backlog will increase quadratically, resulting in bad delay performance.

2.3.9.2 One-Hop Interference

Under one-hop interference the stability region becomes [0, 1/2). The stationary

queue lengths for both policies when α1 = 0.49 are shown in Figure 5. We notice that

in this scenario the average total queue length of LQF is about three times that of BP,

yielding comparable delay performances. We conjecture that the delay performance

of BP under one-hop interference is good since the restriction of interference forces

BP to choose good schedules.
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Figure 6: Stationary queue lengths for different link positions under two-hop interfer-
ence when α1 = 0.32

2.3.9.3 Two-Hop Interference

Under two-hop interference the stability region further shrinks to [0, 1/3). We show

the stationary queue lengths for both policies when α1 = 0.32 in Figure 6. Note that

in this particular case the average total queue length of LQF is less than half of that of

BP, so LQF achieves better delay performance than BP. Whether LQF is throughput

optimal for general linear networks under two-hop interference is unknown.
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Chapter 3

LINK SCHEDULING IN WIRELESS NETWORKS WITH REAL-TIME TRAFFIC

3.1 Background

With the increasing number of real-time applications in wireless networks, schedul-

ing traffic of packets with hard deadlines has become a very important problem.

However, the problem is very challenging due to the stochastic nature of the traffic

arrivals and deadlines. Hou et al. (2009) first proposed a frame-based analytical

framework for studying scheduling real-time traffic in wireless networks. In the frame-

based framework it is assumed that each frame is a number of consecutive time

slots, and all packets arrive at the beginning of a frame and have to be scheduled

before the end of the frame. They also characterized the real-time capacity region

and developed the optimal scheduling algorithm for collocated networks. Later, the

frame-based framework has been generalized to networks with heterogeneous delays,

fading, congestion control, etc. (Hou and Kumar, 2009, 2010a,b; Jaramillo and Srikant,

2011; Jaramillo et al., 2011) In particular, Jaramillo et al. (2011) extended the idea to

general arrival/deadline patterns within a frame and general non-collocated network

topology, and found the optimal scheduling policy, where they assumed that packets

can arrive at any time slot during a frame, and the deadline of a packet can be any

time after its arrival and before the end of the frame. Their paper assumes that

the arrival and deadline information is available at the beginning of the frame, so

future knowledge is assumed. Furthermore, the computational complexity of the
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optimal algorithm is prohibitively high except for some special cases such as collocated

networks.

In this chapter, we consider the case of general real-time traffic patterns without

the assumption of frames and with a general conflict graph–based interference model.

Under these settings, the stability region is difficult to characterize, and the optimal

policy is unknown. In this chapter, we are interested in the performance of a low-

complexity greedy policy called the largest-deficit-first (LDF) policy (Hou et al., 2009),

which is the real-time variation of the longest-queue-first (LQF) policy that iteratively

selects the link with the largest deficit that does not interfere with those links that

are already selected. It has been shown that the largest-deficit-first policy is optimal

for scheduling real-time traffic in collocated networks (Hou et al., 2009; Jaramillo

et al., 2011) under the frame-based model. The performance of the LDF in general

non-collocated networks has not been studied.

Since LDF can be directly applied to networks with non-frame-based real-time

traffic, we are interested in characterizing the performance of LDF. We investigate

the efficiency ratio of LDF, which is the fraction of the throughput region guaranteed

by LDF for given traffic distributions. Although the capacity region and optimal

scheduling algorithm for networks with non-frame-based real-time traffic remain

unknown, we are able to establish the efficiency ratio of LDF by connecting it to the

frame-based optimal scheduling algorithm, and obtain a lower bound on the efficiency

ratio in terms of a new quantity, called the real-time local-pooling factor (R-LPF).

The R-LPF extends the idea of the local-pooling factor for non-real-time traffic (Joo

et al., 2007) and its extension for fading channels (Reddy et al., 2012).

We show using the fluid limit technique (Dai, 1995) that this R-LPF can be

successfully used to provide a minimum performance guarantee of LDF under real-
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time traffic. While the R-LPF depends on the traffic pattern, we lower-bound the

R-LPF by purely topological quantities based on the network, which in particular

connects the R-LPF with the interference degree of the conflict graph3 (Chaporkar

et al., 2005). Our contributions are therefore fourfold:

1. We formulate the construction of the R-LPF and prove that it is a lower bound

on the efficiency ratio of LDF in the presence of non-frame-based real-time

traffic.

2. We show that by assigning a nonnegative weight to each link we can get a

lower bound on the R-LPF regardless of the traffic pattern. This translates to

an R-LPF at least 1/(β + 1) for a network with interference degree β, and in

particular an R-LPF at least 1/3 in a network with one-hop interference model.

3. We also propose a heuristic consensus algorithm that intelligently assigns the

weights to compute a good lower bound based on the network topology.

4. We evaluate the performance of the LDF policy and the proposed consensus

algorithm via simulations.

We would like to emphasize again that for general (non-frame-based) real-time

traffic, to the best of our knowledge, there are no known theoretical results on any

scheduling policy in ad hoc wireless networks. This makes the lower bounds obtained

in this chapter a novel contribution.

3The interference degree of a network with a conflict graph is the maximum number of links that
interfere with some single link and can be scheduled simultaneously.
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3.2 Model

In this chapter, we consider a wireless network consisting of K links. The set of

links is denoted by K. Assume time is slotted, and at each time slot one packet can be

successfully transmitted over a link if no interfering links are transmitting at the same

time. We remark that the constant service rate assumption has been widely used in

the literature, e.g., Dimakis and Walrand (2006); Joo et al. (2009b). We consider a

general interference model. We call a set of links Z ⊆ K a maximal link schedule if

links in Z can be scheduled at the same time without interfering with each other,

but no other link can be further scheduled without interfering with links in Z. We

assume that there are R possible maximal link schedules and the set of maximal link

schedules is represented by a maximal link schedule matrix M , which is a K-by-R

matrix with binary entries such that each column represents a distinct maximal link

schedule and the set of links that are included in this schedule have value 1 in that

column. For example, let Mr be the rth column of matrix M , then the set of links{
l ∈ K : Ml,r = 1

}
is a maximal link schedule, where Ml,r is the (l, r) entry of the

matrix. By abuse of notation we also let M = {M1,M2, . . . ,MR}. It is easy to see

that any subset of a maximal link schedule is itself a feasible link schedule (i.e., all

links in that set can be scheduled at the same time).

We consider single hop traffic with deadline constraints. Let al(t) denote the

number of packets that arrive at the beginning of time slot t at link l, where we

assume that all packets have the same size and can be transmitted in a single time slot.

We assume that
(
a(t) : t ≥ 1

)
is a stochastic process that is temporally independent

and identically distributed (i.i.d.) and independent across links, with probability mass

function (p.m.f.) fl : N→ R, where N is the set of nonnegative integers and R is the
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set of real numbers. We also assume that fl(i) = 0 for i > amax; i.e., the number of

packets arriving on a link at each time slot is at most amax. Denote by āl the arrival

rate on link l; i.e., āl = E[al(t)] =
∑N

i=1 ifl(i) for any t.

Each packet is associated with a maximum delay τ , which is a random variable with

integer value between τmin and τmax and follows a p.m.f. gl : {τmin, τmin +1, . . . , τmax} →

R. Furthermore, let Al(t) be the cumulative number of packet arrivals to link l up

to time slot t for any l ∈ K and any nonnegative integer t; i.e., Al(t) =
∑t

t′=1 al(t
′),

and by convention Al(0) = 0. We order the packets arriving on link l according to the

arriving time with arbitrary tie-breakings. Then we let bl(n) be the time slot during

which the nth packet arrives on link l; i.e., bl(n) = min
{
t : Al(t) ≥ n

}
. We also let

el(n) be the deadline of the nth packet on link l. Note that el(n) = bl(n) + τl(n)− 1,

where τl(n) is the maximum delay associated with the nth packet on link l. Then

the nth arriving packet on link l will be immediately dropped if the deadline is

missed. Note that
(
A(t) : t ≥ 0

)
,
(
τ(n) : n ≥ 1

)
,
(
b(n) : n ≥ 1

)
and

(
e(n) : n ≥ 1

)
are

all stochastic processes, and
(
A(t) : t ≥ 0

)
and

(
τ(n) : n ≥ 1

)
determine

(
b(n) : n ≥ 1

)
and

(
e(n) : n ≥ 1

)
. Denote the space of sample paths of the cumulative arrival process(

A(t) : t ≥ 0
)
and the maximum delay process

(
τ(n) : n ≥ 1

)
by A. An example of a

sample path of the arrival and maximum delay processes on a link during the first 10

time slots is shown in Figure 7.

We assume each link l inK is associated with a minimum delivery rate pl (sometimes

called the quality of service or QoS ), which is the minimum fraction of packets that

should be delivered on link l. The goal of a scheduling policy is to keep the long-term

delivery rate on link l at least pl.

Now consider a scheduling policy µ. Denote by Sµ(t) the cumulative service up
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Packet 1

Packet 2
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Feasible scheduling window

Link 1

Packet arrival Packet deadline

Figure 7: An example of the arrival and maximum delay pattern of packets on a link

Note: For each packet, the beginning of the blank bar is the time slot when that
packet arrives, and the end of the blank bar is the deadline associated with that packet.
So the feasible scheduling window denoted by the blank bar represents the time
slots when the packet is available for transmission, while the shaded part indicates
that the packet is not available, either because it has not arrived or because its
deadline has passed. Note that here the cumulative numbers of packet arrivals to
link 1 are

(
A1(t) : t ≥ 0

)
= (0, 1, 2, 2, 4, 4, 4, 4, 4, 5, 5, . . . ) and the maximum delays are(

τ1(n) : n ≥ 1
)

= (3, 5, 2, 4, 2, . . . ).

to time t, in which Sµl (t) is the service link l received up to time slot t. For any

scheduling policy, it is easy to see that the following three conditions hold:

1. (Initialization) Sµl (0) = 0 for all l ∈ K.

2. (Feasibility) The incremental service vector is a feasible schedule; i.e., 0 �

Sµ(t)− Sµ(t− 1) �Mr for some Mr ∈M , for any positive integer t, where �

denotes entrywise less than or equal to.

3. (Deadline constraint) All served packets are served before their deadlines. For-

mally, let ζµl (n) be the time slot in which the nth packet on link l is scheduled

by µ if that packet is ever scheduled, and ζµl (n) = 0 if that packet is never

scheduled by µ. Then the deadline constraint can be stated as follows: For any

n and any l with ζµl (n) > 0,

bl(n) ≤ ζµl (n) < bl(n) + τl(n).

In this chapter, we will consider a greedy scheduling policy, called Largest-Deficit-
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First (LDF) (Hou et al., 2009) based on the following deficit process Dµ(t) (also known

as debts or virtual queues)

1. (Initialization) Dµ
l (0) = 0 for all l ∈ K.

2. (Dynamics) The dynamics of the deficits include the arrival and departure of

the deficits.

The arrival of the deficits are based on the arrival of the real packets and a coin

tossing process that determines whether the arriving packet is counted as a deficit

arrival or not. Let the coin tossing process for link l, denoted by
(
Cl(n) : n ≥ 1

)
,

be an i.i.d. Bernoulli process with mean pl. It is assumed that
(
Cl(n) : n ≥ 1

)
is

independent across l. Let Bl(t) be the cumulative deficit arrival on link l given

by Bl(0) = 0 and

Bl(t)−Bl(t− 1) =

Al(t)∑
n=Al(t−1)+1

Cl(n),

where by definition Bl(t)−Bl(t− 1) = 0 if Al(t− 1) = Al(t). Then each packet

arrival is counted in the cumulative deficit arrival with probability pl.

The deficit decreases by one each time a packet is scheduled until it reaches zero.

Hence, the evolution of the deficit process for link l is then given by

Dµ
l (t) = [Dµ

l (t− 1) + (Bl(t)−Bl(t− 1))

− (Sµl (t)− Sµl (t− 1))]+,

where (·)+ = max{0, ·}.

Observe from the definition that the deficit process keeps track on the amount of

service we owe to a link in order to fulfill the minimum delivery rate. To see that,

note that the arrival rate of deficit on link l is ālpl. The deficit of link l reduces by

one when a packet is successfully transmitted over link l before its deadline. So if all
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deficits are bounded, then the requirements on packet minimum delivery rates are

fulfilled.

The LDF scheduling policy is defined as follows. At each time slot, LDF first sorts

the links K according to the current deficits D with arbitrary tie-breaks, and gets

the index vector I such that DI1 ≥ DI2 ≥ · · · ≥ DIK . LDF starts with the selection

E = {I1}, which only consists of the link with the largest deficit. Then LDF repeatedly

considers the link with the next largest deficit Ii for i from 2 to K and adds it into

the selection E if the following two conditions are satisfied:

1. Link Ii does not interfere with any link in E ; i.e., there exists some Mr ∈ M

such that Mr schedules both E and Ii.

2. There is at least one packet available for transmission on link Ii; i.e., QIi > 0,

where Ql is the number of available packets on link l.

The procedure ends when all links have been considered, and the final selection of

links is the desired LDF schedule.

3.3 Preliminaries

In this section, we introduce basic definitions on stability and efficiency ratio that

will be used in the following sections. First note that a scheduling algorithm may

depend on both the actual queue information and the deficit, so the deficit process

alone is not a Markov chain. We thus introduce a weaker notion of stability than

positive recurrence over the entire Markov chain of actual queue and deficit. This

notion of stability was first proposed by Loynes (1962) as substability, and was used

by, e.g., Maguluri et al. (2011) and Srikant and Ying (2014) (Chapter 4.2).
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Definition 1. The system is stable under a scheduling policy µ if the corresponding

deficit process
(
Dµ(t) : t ≥ 0

)
satisfies

lim
C→∞

lim sup
t→∞

P

∑
l∈K

Dµ
l (t) ≥ C

 = 0.

Note that if the deficit
(
D(t) : t ≥ 0

)
is a part of an aperiodic, irreducible and

positive recurrent Markov chain, then the system is stable as defined in Definition 1,

since the sum of the deficits converges in distribution as time goes to infinity.

Obviously, the stability of the system depends on the arrival distributions given

by f(·), the maximum delay distribution given by g(·), and the required minimum

delivery rate p = (pl : l ∈ K). Without loss of generality, we fix f and g and consider

the stability of the system in terms of the deficit arrival rate λ = (λl : l ∈ K) with

λl = ālpl. We then have the following definition for characterizing such a relation.

Definition 2. The deficit arrival rate vector λ is supportable by a scheduling policy

if the system is stable under that policy with deficit rate λl for each link l.

Definition 3. The stability region of a scheduling policy µ is

Λµ = {λ � 0: λ is supportable by µ} ,

where � denotes pairwise greater than or equal to.

Note that the stability region defined here is different from the conventional stability

region for non-real-time traffic as it is in terms of deficit arrival rates rather than

packet arrival rates. This is due to the constraint that packets cannot be scheduled

after their deadlines, which makes the stability of the system depend on the specific

distributions of packet arrivals and deadlines. As a result, we investigate the stability

by fixing f and g while varying the QoS p.
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Let the set of all causal scheduling policies beM, where a causal scheduling policy,

also known as an online policy, is one that makes decision based on current information

but not future information. We then have the following characterization.

Definition 4. The maximum stability region of the system is

Λ =
⋃
µ∈M

Λµ.

That is, the maximum stability region of the system is the set of deficit arrival

vectors that can be supported by some causal scheduling policy.

For a given scheduling policy µ, the efficiency ratio of the scheduling policy is

defined as follows.

Definition 5. The efficiency ratio of a scheduling policy µ is

γ∗µ = sup
{
γ : γΛ ⊆ Λµ

}
.

While refined characterizations of the stability region are possible (Li et al.,

2011, 2012), the efficiency ratio is still a critical metric to evaluate the throughput

performance of a scheduling policy.

3.4 Main Results

In this section we present the main results of the LDF policy for scheduling real-

time traffic in wireless networks. The first result is Theorem 2, which provides a lower

bound on the efficiency ratio of the LDF policy, called the real-time local-pooling

factor (R-LPF), in the case when the traffic distributions are known. The second

result is Theorem 3, which gives lower bounds on the R-LPF regardless of the traffic

distributions by assigning weights to the links and calculating the ratio of the weighted

sum of the LDF schedule to that of the optimal schedule.
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Figure 8: A roadmap of the proof of the lower bound in Theorem 2

We provide a roadmap of the proof of Theorem 2 in Figure 8. The goal of

Theorem 2 is to establish the connection between Λ, the maximum stability region of

the system, and ΛLDF, the stability region of the LDF policy. However, characterizing

Λ turns out to be extremely difficult due to the general arrival and maximum delay

distributions. We therefore have to introduce a region called ΛNC(F ), which is the

maximum stability region by dividing the time into frames with length F and assume

(i) all information within a frame (arrivals and maximum delays) are known at the

beginning of a frame and (ii) at the end of a frame, all packets that have not been

transmitted are dropped. The region is denoted by ΛNC(F ) since the frame length is

F and the system is non-causal because of condition (i).

This novel frame concept was first introduced by Hou et al. (2009) for real-time

scheduling in wireless networks and provides an analytical framework for understanding

real-time communication in wireless networks. The framework has then been extended

to general networks and traffic patterns. In particular, the capacity of the non-causal

system and heterogeneous deadlines has been characterized by Jaramillo et al. (2011);

i.e., ΛNC(F ) is known.

We will use ΛNC(F ) to bridge Λ and ΛLDF. In the theorem, we will first show that

int(Λ) ⊆ lim inf
F→∞

ΛNC(F ),

where int(Λ) is the interior of the set Λ and lim infF→∞ ΛNC(F ) is the limit set of
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ΛNC(F ) as F goes to infinity. After that, we will prove that

σ∗ int
(
ΛNC(F )

)
⊆ ΛLDF,

where σ∗ is a constant, called the real-time local-pooling factor whose definition is

presented in Section 3.4.1. Combining the two results together, we will be able to

prove that σ∗ is a lower bound on the efficiency ratio. We remark that the second step

is non-trivial since we will compare the time-slot-based, causal LDF (not frame-based

LDF) with the frame-based, non-causal system.

As for the second result regarding lower bounds on the R-LPF, we first reformulate

the dual problem of solving the R-LPF as a weight assignment problem following Li

et al. (2011) In the weight assignment problem we try to maximize the ratio of the

smallest weighted sum of a schedule to the largest one over different weights within

a frame. A similar result for the special case of all-one weight assignment has been

observed by Reddy et al. (2012) for characterizing the local-pooling factor for fading

channels. We then look at the multigraph of the network for any given traffic pattern

in a frame, and obtain further lower bounds on the R-LPF using the local weight

ratios which do not require the traffic information. Our result immediately implies

that the R-LPF is at least 1/(β+1) for networks with interference degree β, regardless

of the distributions of the packet arrivals and the maximum delays.

3.4.1 Real-Time Local-Pooling Factor

We will define a quantity analogous to the local-pooling factor proposed by Joo

et al. (2009b) and the fading local-pooling factor studied by Reddy et al. (2012) Before

we do that, we need the following two definitions.

Definition 6. A non-causal frame-based scheduling policy µ with frame size F (called
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an F -framed policy for abbreviation) is defined as follows. The packet arrivals and

deadlines in the kth frame are known to the policy µ at the beginning of the frame

and all packets that arrive during the kth frame are dropped at the end of the frame

if not transmitted. Formally, for any l ∈ K and positive integer n with ζµl (n) > 0,

there exists a positive integer k such that

kF + 1 ≤ bl(n) ≤ ζµl (n) ≤ (k + 1)F,

where ζµl (n) was defined in Section 3.2 in the deadline constraint condition.

Let the set of all F -framed policies beMNC(F ). Note thatMNC(F ) is not a subset

ofM since policies inMNC(F ) can be non-causal. The frame concept (alternatively

called intervals or periods) has been used in the literature for tractable analytical

analysis of delay constrained traffic (Hou and Kumar, 2009, 2010a,b; Jaramillo and

Srikant, 2011; Jaramillo et al., 2011), where packets that arrive in a frame have

deadlines in the same frame. In this section, we adopt this concept to derive the

real-time local-pooling factor for the general traffic model.

Definition 7. The maximum stability region of F -framed policies for a positive integer

F is

ΛNC(F ) =
⋃

µ∈MNC(F )

Λµ.

We now introduce some notations needed for the main results. Let J (F ) be the

set of arrival and maximum delay patterns in a frame of F time slots. We will call an

element of J (F ) an F -pattern. An F -pattern is represented by J = (A(F ), τ (F )) with

A(F ) =
(
A

(F )
l (t) : l ∈ K, 1 ≤ t ≤ F

)
and τ (F ) =

(
τ

(F )
l (n) : l ∈ K, 1 ≤ n ≤ A

(F )
l (F )

)
,

where A(F )
l (t) is the cumulative packet arrival to link l by time slot t in the frame, and

τ
(F )
l (n) is the maximum delay associated with the nth packet on link l. Thus, A(F )

l (F )
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is the total number of arrivals in the frame on link l. Due to the i.i.d. distributions of

the arrival and maximum delay given by f and g, there is a stationary distribution of

the set of F -patterns, denoted by π : J (F )→ R.

For a given F -pattern J = (A(F ), τ (F )), a schedule s =
(
sl(n) : l ∈ K, 1 ≤ n ≤ A

(F )
l (F )

)
specifies the time slot at which each packet is scheduled to be transmitted (if it ever

gets scheduled), where sl(n) is a nonnegative integer that indicates the nth packet on

link l is scheduled at time slot sl(n) if sl(n) ∈ {1, 2, . . . , F}, and is never scheduled if

sl(n) = 0. A schedule s is feasible for the F -pattern J if 1) each scheduled packet is

scheduled within its feasible scheduling window, 2) at most one packet is scheduled

on each link in one time slot, and 3) the set of links with packets scheduled in each

time slot forms a feasible link schedule; i.e., it is a subset of
{
l ∈ K : Ml,r = 1

}
for

some r. Note that the schedule s here is different from the link schedules defined in

Section 3.2 in that s specifies the scheduling of each packet in the whole frame, and

that s needs to take into account the traffic so that no scheduling is allowed before

the arrival or after the deadline of a packet. We also say that a schedule s is maximal

for J if no more packets can be further scheduled (i.e., no sl(t) can be changed from 0

to a positive integer) without breaking feasibility. We denote the maximal feasible

schedules for J by S∗(J).

We define the total service vector of schedule s to be the column vector W (s) =(
Wi(s) : i ∈ K

)
with Wi(s) =

∑Ai(F )
n=1 1{si(n)6=0}, where 1{si(n)6=0} is the indicator func-

tion. Then W (s) is the vector of total number of scheduled packets on each link for

the schedule s. Let the maximal service matrix for J be

MJ =
{
W (s) : s ∈ S∗(J)

}
,

where again MJ represents both the set and the matrix consisting of the vectors as its

columns, by abuse of notation. Then the columns of MJ are the total service vectors
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Figure 9: An example of a 5-pattern for two links

of the maximal schedules. We note that MJ does not contain all-zero columns if and

only if J includes at least one packet arrival on some link, since schedules in S∗(J)

are maximal. Similarly, define MJ,L to be the maximal service matrix restricted to

the set of links L for given pattern J . Then MJ,L has no all-zero columns if and only

if the pattern J includes at least one packet on some link in L. Also note that MJ,L

has |L| rows while MJ has K rows.

We use the example in Figure 9 to illustrate the above notations and the concept

of the maximal service matrix. As shown in the figure, we consider a frame with size 5

and a 5-pattern J with two packets arriving to link 1 and one packet arriving to link 2,

whose arriving times and deadlines are indicated by the blank bars in the figure. The

corresponding pattern can be represented by J = (A(5), τ (5)), where
(
A

(5)
1 (t) : t ≥ 0

)
=

(0, 1, 2, 2, 2, 2),
(
A

(5)
2 (t) : t ≥ 0

)
= (0, 1, 1, 1, 1, 1),

(
τ

(5)
1 (n) : n ≥ 1

)
= (3, 3), and(

τ
(5)
2 (n) : n ≥ 1

)
= (2). Assume the two links interfere with each other, so at each

time slot only one of them can be scheduled. We can check that there are eight

maximal feasible schedules in S∗(J) as follows:

s1 =

(1, 2)

(0)

 , s2 =

(1, 3)

(2)

 , s3 =

(1, 4)

(2)

 , s4 =

(2, 3)

(1)

 ,
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s5 =

(2, 4)

(1)

 , s6 =

(3, 2)

(1)

 , s7 =

(3, 4)

(1)

 , s8 =

(3, 4)

(2)

 ,

where the first row of si is the schedule for the two packets on link 1, and the second

row is the schedule for the packet on link 2. Then the total service vectors are

W (s1) =

2

0

 and W (si) =

2

1

 for 2 ≤ i ≤ 8.

Hence the maximal service matrix is

MJ =

2 2

0 1

 .

We remark from the above example that unlike in the scenario of non-real-time traffic

(Dimakis and Walrand, 2006), the total service vector of one maximal schedule could

be dominated by that of another in the real-time setting. Thus the maximal service

matrix MJ can be huge and hard to compute, especially for large frame size F and

complex traffic pattern J .

Definition 8. The real-time local-pooling factor (R-LPF) for the F -framed scheduling

policies for the set of links L ⊆ K is

σ∗L(F ) = inf
{
σ : ∃φ1, φ2 ∈ ΦL(F ) such that σφ1 � φ2

}
,

where ΦL(F ) is the service region restricted to the set of links L ⊆ K defined by

ΦL(F ) =

φ : φ =
∑

J∈J (F )

π(J)ηJ , ηJ ∈ CH(MJ,L)

 ,

and CH(MJ,L) defines the convex hull over the columns of the matrix MJ,L.

Definition 9. The R-LPF for the F -framed scheduling policies is

σ∗(F ) = min
L⊆K

σ∗L(F ).
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Definition 10. The R-LPF for the system is

σ∗ = lim inf
F→∞

σ∗(F ).

We then have the following theorem stating that the R-LPF is a lower bound on

the efficiency ratio of LDF.

Theorem 2. γ∗LDF ≥ σ∗.

Intuitively when the frame length goes to infinity the loss at the edge of frames

becomes negligible. The proof of Theorem 2 uses the strictly separating hyperplane

theorem (Boyd and Vandenberghe, 2004) and follows the fluid limit technique that

was first proposed by Dai (1995) for multiclass queueing systems and later developed

for discrete-time generalized switches by Andrews et al. (2004) and further used in

wireless networks by Reddy et al. (2012) and Ji et al. (2013) The complete proof is

presented in Appendix B.1.

By the definition of the R-LPF, we can get the R-LPF by solving the following

linear program for each L ⊆ K, as suggested by Li et al. (2011) and Reddy et al.

(2012):

σ∗L(F ) = min
σ,ρ,θ

σ (3.1)

s.t. ML(F )θ −ML(F )ρ � 0

1Tθ − σ = 0

1Tρ− 1 = 0

ρ, θ ∈ Rr+,

where ML(F ) is the vertices of the polygon
∑

J∈J (F ) π(J)CH(MJ,L) (the summation

is in the sense of the Minkowski sum and CH(MJ,L) denotes the convex hull of the
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column vectors in MJ,L, where rJ,L denotes the number of columns), r =
∑

J∈J (F ) rJ,L

is the cardinality of ML(F ), ρ and θ are nonnegative column vectors of length r. That

said, computing the exact R-LPF is usually complex, as it involves roughly

∑
L⊆K

2
∑

J∈J (F )

rJ,L + |L|


constraints for each F , which increases exponentially with both the size of the network

K and the frame size F . Thus, we seek lower bounds on the R-LPF in the next

subsection.

3.4.2 Characterizing the R-LPF

3.4.2.1 Dual of the R-LPF

The dual problem of (3.1) is given by the following (Li et al., 2011)

ω∗L(F ) = max
αL,ω

ω

s.t. 1T � αT
LML(F ) � ω1T

αL ∈ R|L|+

= max
αL∈R|L|+

minφ∈ML(F ) α
T
Lφ

maxφ∈ML(F ) α
T
Lφ
, (3.2)

where we adopt the useful convention 0
0

= 0. By the strong duality of the linear

program (3.1), finding the R-LPF for subset L and frame size F is equivalent to the

weight assignment problem (3.2); i.e., σ∗L(F ) = ω∗L(F ).

Another interpretation of the dual problem is that since αT
Lφ is the length of

the projection of φ along the vector αL (module the length of αL), the optimization

problem (3.2) is to find the best projection direction αL for each subset L such that
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0

Figure 10: Illustration of the projection interpretation of the dual formulation of
ω∗L(F ) with L = K = {1, 2}

Note: The shaded triangular area is the convex hull of ML(F ).

the ratio of the smallest projection to the largest one from ML(F ) is maximized. Note

that for any αL we have a corresponding ratio of the smallest to the largest projections,

which is a valid lower bound on σ∗L(F ). We illustrate this interpretation in Figure 10

with L = K = {1, 2}. In the figure, α∗ is the optimal projection direction since the

ratio of the smallest vector (φ2 projected to the direction of α∗) to the largest vector

(φ1 projected to the direction of α∗) in the projection along the direction of α∗ is the

maximum (it equals ω∗L(F )) among all the possible projection directions. The vector

α in the figure is an arbitrary direction. The ratio of the smallest vector projection to

the largest vector projection is smaller than that along the direction α∗, as shown in

the shaded segment along α, and thus provides a lower bound on ω∗L(F ).

3.4.2.2 Lower Bounds for Conflict Graph Interference Model

While the dual problem (3.2) gives a different view of the original problem for

solving the R-LPF, the problem is not simplified since the size of ML(F ), where

ML(F ) is taken as the set of columns, grows exponentially with F . As a result, we
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Figure 11: An original graph and its conflict graph

are interested in finding a lower bound on the R-LPF that can be computed efficiently

(without calculating the Minkowski sum of the maximal service matrices for all traffic

pattern and all frame size). In this subsection we introduce the lower bounds on

R-LPF for networks with interference models that are represented by conflict graphs

(Jain et al., 2003) (also known as interference graph), where two links either interfere

with each other exclusively, or do not interfere at all. An example of the original

graph and its conflict graph is given in Figure 11. We introduce the ideas of pressure

and minimum pressure in the following, which use the local information to estimate

the global optimal value in (3.2).

For any α ∈ RK+ , we define the pressure of link i to be

κi(α) =
αi

αi + maxI∈I(i)

∑
j∈I αj

, (3.3)

where I(i) ⊆ P(N(i)) is the collection of subsets of the neighbors of i that can be

scheduled simultaneously (N(i) is the set of links that interfere with link i, and P(·)

denotes the power set). We also define the minimum pressure for given vector α ∈ RK+

by

ψ(α) = min
i∈K

κi(α). (3.4)

So ψ(α) is just the lowest pressure for α over all links. Then we have the following

lower bound on the R-LPF.
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Theorem 3.

σ∗ ≥ sup
α∈RK+

ψ(α).

Intuition and proof outline. Given an arbitrary vector of nonnegative weights α on

the links, we define

G(α,L, F ) =
minφ∈ML(F ) α

T
Lφ

maxφ∈ML(F ) α
T
Lφ
,

where αL is the vector of α restricted to the subset L. Then G(α,L, F ) is the

minimum global weight ratio of schedules for subset L and frame size F . By the

dual representation in (3.2), the R-LPF is lower-bounded by the smallest G(α,L, F )

over all possible L and F . Note that while G(α,L, F ) is defined over ML(F ) which is

averaged over all possible traffic patterns in J (F ) according to the traffic distributions,

we can work on an arbitrary traffic J ∈ J (F ) to establish a universal lower bound

that holds for any J ∈ J (F ), which will also be a lower bound on G(α,L, F ). Since

G(α,L, F ) ≥
minφ∈MJ,L

αT
Lφ

maxφ∈MJ,L
αT
Lφ

for any J ∈ J (F ), we only need to lower-bound the ratio of the weights of two

maximal schedules given the specific traffic. Using a multigraph representation of

the network, for any J ∈ J (F ) and any φ1, φ2 ∈ MJ,L, we can divide the scheduled

packets of φ1 and φ2 into groups such that

αT
Lφ1

αT
Lφ2

≥
∑N

i=1 xi∑N
i=1 yi

,

where N is the total number of packets scheduled in φ1, xi is the total weight of

the ith packet in φ1, and yi is the weight of neighboring packets of the ith packet

of φ1 scheduled by φ2. By the group construction and the definition of minimum

pressure ψ(α), we have xi
yi
≥ ψ(α) for any i regardless of L and F . Then G(α,L, F ) is

lower-bounded by the minimum pressure ψ(α). Since the minimum pressure ψ(α) is
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determined by the network topology and does not depend on L or F , we get a lower

bound on the R-LPF, which can then be strengthened to the form of Theorem 3 by

optimizing over α. The detailed proofs can be found in Appendix B.2.

Remark 5. We emphasize that while the R-LPF involves computing the maximal

service matrices for all subsets of K and all traffic patterns under all frame sizes,

Theorem 3 states that the maximum value of the minimum pressure, which is a purely

topological quantity for the entire network, serves as a lower bound on the R-LPF.

Remark 6. Theorem 3 implies that any α ∈ RK+ will give a lower bound on the R-LPF

by the corresponding minimum pressure ψ(α). In particular, we have the following

corollary.

Corollary 2. For a network with an interference degree of β,

σ∗ ≥ 1

β + 1
.

Corollary 2 follows directly from Theorem 3 by setting α = 1.

We note that this translates to σ∗ ≥ 1/3 in the one-hop interference model, where

the interference degree is at most 2 (this can be easily proved by noticing that the

neighboring links of link 3 in Fig 11 form two cliques in the conflict graph). This is

related to the well-known result that LQF has efficiency ratio at least 1/2 in packet

switches (Weller and Hajek, 1997; Dai and Prabhakar, 2000) and in wireless networks

under the one-hop interference (Lin and Shroff, 2005; Wu and Srikant, 2005), where

β = 2. The lower bound on the efficiency ratio of the greedy scheduling policy

decreases from 1/2 in the non-real-time case to 1/3 in the real-time case due to the

temporal correlation among packets brought by deadlines, which does not exist in

non-real-time traffic. This can be illustrated by considering a star network with one

center link and two leaf links, where the center link interferes with any leaf link but
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the two leaf links do not interfere each other. Suppose one packet arrives at the center

link at the beginning of time slot 1 with deadline at the end of time slot 2, and one

packet arrives at each of the two leaf links at the beginning of time slot 1 with deadline

at the end of time slot 1. Then the optimal scheduler will schedule the two leaf links

at time slot 1 and the center link at time slot 2, while LDF may schedule the center

link at time slot 1 and nothing at time slot 2 (since the packets on the leaf links have

already expired), which results in an efficiency ratio of 1/3. Note that if the above

arrival pattern is for non-real-time packets (i.e., there is no deadline of the packets),

then the longest-queue-first (LQF) can schedule at least one packet at each time slot

when at least one of the queues is not empty, while the optimal scheduler may schedule

at most two packets at each time slot, so LQF guarantees at least half throughput.

To sum up, LDF has a smaller efficiency ratio lower bound than its non-real-time

counterpart LQF because it may inevitably schedule the “wrong” packets due to its

inability to take into account the consequences in the future of its current decisions,

and this cannot be compensated by future actions.

3.4.2.3 Lower Bounds on R-LPF for Special Networks

We now do a case study of lower bounds on R-LPF for some special networks via

the minimum pressure technique stated in Theorem 3.

3.4.2.3.1 Collocated Network

We first consider the scenario of the collocated network, where at most one link

can be scheduled at each time slot. Notice that the interference degree of the network
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is β = 1 since in any subset of the links there is at most one link that can be scheduled.

Then by Theorem 2 and Theorem 3, the efficiency ratio is at least 1/2.

3.4.2.3.2 Star Networks

Consider a star network with interference degree β. Then this network consists of

one center link and β leaf links, where at each time slot either the center link or all

the leaves can be scheduled. By setting the weight of the center link to be
√
β and the

weight of each leaf to be 1, we get the minimum pressure ψ = 1/(
√
β + 1). Hence the

efficiency ratio is at least 1/(
√
β + 1) for the star network with interference degree β.

3.4.2.3.3 Tree Networks

For tree networks with interference degree β, a lower bound on the R-LPF is given

in the following corollary.

Corollary 3. σ∗ ≥ 1
2
√
β−1+1

.

The proof can be found in Appendix B.3.

Remark. Note that the interference degree is equal to the largest degree of a link

in the trees. Also note that this lower bound is better than the 1/(β + 1) minimum

pressure bound given by the all-one vector for β ≥ 3.

3.5 The Consensus Algorithm

We design an algorithm that can be used to compute a lower bound on the R-LPF.

Let each link i maintain a weight αi and a pressure κi. In each time slot all links
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broadcast (αi, κi) to its neighbors and update its weight and pressure by

∆αi = z
∑
j∈N(i)

(κj − κi)

and

κi =
αi

αi + maxI∈I(i)

∑
j∈I αj

.

The constant z can be interpreted as the step size. The intuition behind the simple

heuristic algorithm is that if under current weight assignment one link has pressure

greater than those of its neighbors, then the weight of that link should be transferred

to its neighbors so that the minimum of their pressures can increase. Likewise, when

one link has pressure less than those of its neighbors, then the weights on its neighbors

should be transferred to that link to make the minimum pressure higher. We would

expect the algorithm to converge as time goes by when the step size is sufficiently

small; i.e., the weights and pressures for all links remain unchanged eventually. Then

the weight vector that our algorithm converges to yields a minimum pressure that

lower-bounds the R-LPF. Note that we call this algorithm “consensus” because the

pressures for the links will usually converge to the same value and reach consensus.

We evaluate the performance of the consensus algorithm in Section 3.7.

3.6 Discussions

3.6.1 Efficiency Ratios Under Adversarial Traffic

In this section we discuss the performance of LDF under adversarial traffic. We

consider a more general type of traffic, where, instead of i.i.d., the packet arrival,

maximum delay, deficit arrival and tie-breaking processes are relaxed to be irreducible
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Link 1

Link 2

1 2 3 4 5 6 7 8 9 10 11

Figure 12: An adversarial traffic pattern for a collocated network with two links

Note: Each blank bar indicates the arriving time and deadline of a real-time packet.
The packets arrive on link 1 at the beginning of time slots 1, 3, 5, 7, . . . , and must be
scheduled before the end of time slots 1, 4, 5, 8, . . . . The packets arrive on link 2 at
the beginning of time slots 1, 3, 5, 7, . . . , and must be scheduled before the end of
time slots 2, 3, 6, 7, . . . .

positive recurrent Markov chains as by Andrews et al. (2004) We illustrate that when

the traffic is adversarial in this general type, the efficiency ratio of LDF can be as

low as 1/(
√
β + 1), where β is the interference degree. In particular, for collocated

networks the efficiency ratio of LDF under adversarial traffic is consistent with the

lower bound given in Corollary 2.

We start with a collocated network with two links. Consider the adversarial traffic

given in Figure 12. Assume that the deficits for both links are the same at the

beginning of time slot 1. Also assume that when there is a packet arriving to each link

(time slots 1, 3, 5, 7, . . . ), the deficits on both links increase by one with probability

1/2 + ε for some small positive ε, and remain unchanged with probability 1/2 − ε.

This results in minimum delivery rates pi = 1/2 + ε for i = 1, 2. We further assume

that when the deficits on the two links are equal, the tie-breaking rule of LDF gives

priority to link 2. Then one can easily see that LDF schedules link 2 at time slots

1, 5, 9, . . . , and schedules link 1 at time slots 3, 7, 11, . . . , while LDF idles at even

time slots. Then the average deficit arrival to each link per time slot is 1/4 + ε/2, and

the average deficit departure from each link per time slot is 1/4. Hence the deficits

are not stable under LDF given this traffic pattern. However, one would notice that
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the optimal scheduler could schedule link 1 in time slots 4k and 4k + 1 and schedule

link 2 in time slots 4k + 2 and 4k + 3, for all positive integer k. Hence the optimal

scheduler can stabilize the system when the minimum delivery rates are pi = 1 for

i = 1, 2. By making ε arbitrarily small we can see that the efficiency ratio of LDF is

at most 1/2 in this two-link collocated network, which meets with the lower bound

given in Corollary 2.

We now consider a general network. In the following theorem we construct an

adversarial traffic process.

Theorem 4. There exists a traffic pattern distribution such that γ∗LDF ≤ 1√
β+1

, where

β is the interference degree.

The theorem can be proved by finding the link with interference degree β and

constructing a specific traffic pattern on that graph. The detailed proof can be found

in Appendix B.4.

3.6.2 Extension to Heterogeneous Link Rates

The LDF policy can be generalized to heterogeneous integer-valued link rate

scenario following Dimakis and Walrand (2006). Assume the link rate for link i is

ci ∈ N for i ∈ K. LDF now schedules ci packets instead of 1 packet on each selected

link i. Then Theorem 2 still holds by replacing the 1’s on the ith row of M with ci,

and Theorem 3 still holds after redefining the pressure by

κi(α) =
αi

αi + maxI∈I(i)

∑
j∈I αjcj

.

Note that in the summation of the denominator all the weights αj ’s are multiplied by

the corresponding link rate cj, while αi in both the denominator and the numerator
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are not multiplied by ci. Intuitively this is due to the fact that in the worst case

LDF can schedule only one packet on link i as opposed to maxI∈I(i)

∑
j∈I cj packets

scheduled by the optimal policy on the neighboring links of i. The consensus algorithm

can also be modified according to the new definition of pressure.

3.7 Simulations

In this section we use simulations to evaluate the stability performance of LDF, as

well as the consensus algorithm we proposed.

3.7.1 Stability Performance

Since to the best of our knowledge, neither the maximum stability region nor

an optimal scheduling policy has been obtained in the literature, we do not have a

benchmark for the stability performance of LDF. As a result, we compare LDF to two

other scheduling policies that do not depend on frames and evaluate the performance

using simulations. The first simple scheduling policy we consider is RandMax, which

randomly chooses a maximal schedule over the links with packets in each time slot.

The other one is MaxWeight, which chooses a maximal schedule with the maximum

deficit sum over the links with packets in each time slot.

We first considered a 4-link linear network with one-hop interference. We assumed

the packet arrival distribution is binomial with number of trials 2 and success proba-

bility 0.5, and the maximum delay distribution is uniform over {2, 3, 4}. This gives us

packet arrival rate ā = 1 and mean maximum delay τ̄ = 3. We varied the minimum

delivery rate to vary the deficit arrival rate. We compare the average deficit sums
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Figure 13: Comparison of the three scheduling policies on a four-linear network with
one-hop interference

of the last 1,000 iterations under the three policies, where each simulation is run for

100,000 iterations. The results are shown in Figure 13.

As can be observed from the figure, LDF and MaxWeight have similar stability

performance, achieving a maximum deficit arrival rate of roughly 0.5 and significantly

outperform the simple RandMax policy, which achieves a maximum deficit arrival rate

of roughly 0.33. We further remark that for non-real-time traffic, the maximum deficit

arrival rate is 0.5. Thus both LDF and MaxWeight have a near-optimal performance

in this case.

We also consider a nine-cycle network with two-hop interference, whose non-real-

time local-pooling factor is 2/3. The arrival and deadline distributions are the same

as the previous case, and the number of iterations is 100,000. The results are shown

in Figure 14.

Note that in this example, RandMax is still the worst of the three, achieving a

maximum deficit arrival rate roughly 0.12, while MaxWeight is slightly better than

LDF, both of which achieve a maximum deficit arrival rate roughly 0.16. We note
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Figure 14: Comparison of the three scheduling policies on a nine-cycle network with
two-hop interference

that for non-real-time traffic the maximum deficit arrival rate is 1/3. As we have been

trying to convey in this chapter, the maximum stability region for the specific packet

arrival and deadline distribution is unknown. We only know that the maximum rate

for the real-time traffic is λ̄ ≤ 1/3. Note that the nine-cycle has an interference degree

of 2, so by Theorem 3, LDF has an efficiency ratio of at least 1/3, which agrees with

the simulation result since 0.16 > 1
3
× 1

3
≥ 1

3
λ̄.

Therefore, both simulations imply good throughput performance of LDF and

validate our lower bound on the efficiency ratio.

3.7.2 Performance of the Consensus Algorithm

We now study the performance of the consensus algorithm we proposed in Sec-

tion 3.5. We run the consensus algorithm on random networks with the unit-disk

interference model used by Joo et al. (2009b)

We place 32 nodes randomly in a unit square area. Any two nodes with distance

less than the communication range rc = 0.25 may form a link. The default maximal
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Figure 15: Lower bounds on the R-LPF given by the consensus algorithm and the
all-one algorithm for different interference range

number of links is 24 (uniformly chosen from possible links). Any two links with

minimum node distance less than the interference range ri interfere each other, and

the default interference range is ri = 0.4.

We run the consensus algorithm for 3000 iterations with step size z = 0.1 for

each network. We compare the average lower bound obtained via the consensus

algorithm to the all-one algorithm in Figure 15. Each point is the average of 100

random networks. We also attach one example network for each interference range ri

in Figure 16. We see from Figure 15 that our consensus algorithm achieves a much

better lower bound than the one given by the interference degree alone.

We show an example of traces of the consensus algorithm for a random unit-disk

network with rc = 0.25 and ri = 0.11 in Figure 17. The lines in the upper figure of

Figure 17 are the weights αi’s for the links i ∈ K with respect to the iterations, and

the lower figure of Figure 17 shows the minimum pressure given by the weights with

respect to the iterations. We see that the weights become unchanged after about 300

iterations, which indicates that the consensus algorithm converges reasonably fast.
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(a) ri = 0.01.
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(b) ri = 0.11.
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(c) ri = 0.21.
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(d) ri = 0.31.
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(e) ri = 0.41.
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(f) ri = 0.51.
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(g) ri = 0.61.
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(h) ri = 0.71.

Figure 16: Example networks for different interference range ri

Note: The top figures are the original node-link graphs, while the bottom ones are
the corresponding conflict graphs.
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Figure 17: Traces of weights and minimum pressure under the consensus algorithm

We also note that the minimum pressure given by the consensus algorithm after 500

is about 0.3, while by Corollary 2 the all-one vector gives a minimum pressure of 0.25

since the interference degree of the tested network is 3.
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Chapter 4

RANDOMIZED LOAD BALANCING

4.1 Background

In many computing and networking applications, including routing, hashing, and

load balancing (see Mitzenmacher et al. (2001)), a router (also called scheduler) has

to route arriving tasks to one of many servers with the goal of minimizing queueing

delays. Such applications have been increasingly relevant recently, due to the explosive

growth of cloud computing where a large number of servers in a data center are used

to process a large volume of tasks. Ideally, one would like the router to consider the

queue lengths at all the servers and select the shortest of the queues since this is

delay optimal, at least in certain traffic regimes (see Eryilmaz and Srikant (2012) and

references cited within). However, sampling all the queues can be expensive when the

number of servers is very large. Motivated by such considerations, load balancing in

the large-server limit was studied in Mitzenmacher (1996, 2001); Vvedenskaya et al.

(1996). The key result in those papers is that queueing delays can be dramatically

reduced by sampling two servers for each task, instead of just one, and routing the

task to the shorter of the two queues. We will call this basic algorithm the power-of-

two-choices algorithm as in prior work. These results have been extended in various

directions. In Bramson et al. (2012, 2013), the results have been extended to the case

of heavy-tailed distributions, in Tsitsiklis and Xu (2012, 2013), the effect of resource

pooling has been considered, and the case of heterogeneous servers operating under
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the processor-sharing discipline has been treated in Mukhopadhyay and Mazumdar

(2013).

In this chapter, we are motivated by cloud computing applications in which each

arrival is a job consisting of many tasks, each of which can be executed in parallel

in possibly different servers. In queueing theory parlance, this model differs from

the models mentioned earlier due to the fact that task arrivals occur in batches,

i.e., each job corresponding to a batch arrival of tasks. We note the terminology we

use here: a job is a collection of tasks, and each task can be routed independently

of each other. Such a model arises in the well-known Map/Reduce framework, for

example, where each Map job consists of many Map tasks (here, we do not consider

the Reduce phase of the job). More generally, any parallel processing computer system

will have job arrivals which consist of many tasks that can be executed in parallel. The

question of interest is whether the fact that there are batch arrivals can be exploited to

significantly reduce the sample complexity. Here, by sample complexity, we mean the

number of queues sampled per arriving task to make routing decision. Our motivation

for this problem arises from a study of batch arrivals to computing clusters presented

in Ousterhout et al. (2013), where the authors observe a phenomenon called messaging

overhead, i.e., the overhead of providing task backlog feedback can slow down servers

and increase the delays experienced by tasks/jobs. Further, Ousterhout et al. (2013)

proposes an algorithm which achieves better performance than the power-of-two-

choices algorithm when both of them use the same number of samples per arriving

task. In this chapter, we observe that this basic algorithm for batch arrivals suggested

in Ousterhout et al. (2013) does not work well in all traffic conditions. Moreover,

we present a new algorithm which exploits batch arrivals in a manner in which it

provides much better sample complexity than the power-of-two-choices algorithm for
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the same delay performance. Further, when both algorithms are allowed the same

sample complexity, our algorithm achieves better delay performance.

Our main contributions are as follows:

1. We present an algorithm which samples md queues where m is the batch size

(i.e., number of tasks) of a job. Thus, d is the number of sampled queues per

task. The tasks are routed to the queues using a novel algorithm called water

filling.

2. We first study our algorithm and other previously proposed algorithms using a

mean-field analysis. We show that, for any d > 1, we achieve better performance

than the traditional power-of-two-choices algorithm in the large-systems regime.

Thus, the mean-field analysis shows that, in the large-systems regime, we can

reduce the number of samples per arriving task dramatically: from d = 2 to any

d > 1.

3. We then justify the mean-field analysis. In particular, we first show that the

stochastic system dynamics converge to deterministic differential equations in the

large-systems limit for any finite t. Our proof here is motivated by the proof of a

celebrated result on density-dependent Markov processes called Kurtz’s theorem

(see Ethier and Kurtz (2005)), but our model is somewhat nonstandard and

requires additional steps which are not needed in the original Kurtz’s theorem.

Further, using a novel Lyapunov function, we show that the system of differential

equations converges to an equilibrium described by the mean-field analysis. Then

by showing the interchange of the limits, we prove the stationary distribution of

the queue size distribution converges to the solution of the differential equations.

4. Finally, we perform extensive simulations to justify that our analytical conclu-

sions are indeed valid in large, but finite, systems. In particular, simulations
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show that our algorithm with just one sample per task on average, achieves the

same job delay performance as the power-of-two-choices algorithm and dramati-

cally reduces the delay compared to the algorithm proposed in Ousterhout et al.

(2013).

4.2 Problem Statement and Main Results

We consider a computing cluster with n identical servers and a central scheduler

as shown in Figure 18. Each server can process one task at a time. Tasks arrive

at the scheduler in batches (also called jobs). Each batch consists of m tasks and

the job arrival process is a Poisson process with rate n
m
λ. We want the batch size

to be not too small, so we assume that m = Θ(log n). For simplicity, we consider

a deterministic batch size here, but the results in the chapter can be extended to

random batch sizes as well in a straightforward manner. Furthermore, the results

of this chapter hold when the system has multiple distributed schedulers and the

job arrivals on these schedulers are independent Poisson processes with aggregated

rate n
m
λ. This is because the sum of independent Poisson processes is Poisson. The

scheduler dispatches the tasks to the servers when a job arrives. The service times

of the tasks are exponentially distributed with mean 1, and are independent across

tasks. When a task arrives at a server, it is processed immediately if the server is idle

or waits in a FIFO (first-in, first-out) queue if the server is busy.

We first describe the traditional power-of-d-choices algorithm (which is a simple

generalization of the power-of-two-choices mentioned in the previous section) and

another previously-proposed idea called the batch sampling algorithm. Then, we
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server 1 server 2 server n

scheduler

m tasks in each job 

Figure 18: A computing cluster with n servers and a central scheduler

present our idea which we call batch-filling, which combines batch sampling with our

new load balancing technique called water-filling.

• The-Power-of-d-Choices (see Mitzenmacher (1996); Vvedenskaya et al.

(1996)): When a batch ofm tasks arrive, the scheduler probes d servers uniformly

at random for each task. The task is routed to the least loaded server.

• Batch-Sampling (see Ousterhout et al. (2013)): When a batch of m tasks

arrive, the scheduler probes dm servers uniformly at random to acquire their

queue lengths. The m tasks are added to the the least loaded m servers, one for

each server.

In this chapter, we propose a new load-balancing algorithm, named batch-filling : we

sample queues as in the batch sampling algorithm but the way that tasks are routed

to servers uses a different procedure which we call water-filling.

• Batch-Filling: When a batch ofm tasks arrive, the scheduler probes dm servers

uniformly at random to acquire their queue lengths. The m tasks are added to

the dm servers using water filling, specifically, the tasks are dispatched one by
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Batch-Filling Batch-Sampling Pod

Expected − 1
λ

log(1−λ)
log(1+λd)

+Oλ(1) − 1
λ

log(1−λ)
log(λd)

+Oλ(1) − 1
λ

log(1−λ)
log(λd)

+Oλ(1)per-task delay

Maximum queue ⌈
− log(1−λ)

log(1+λd)

⌉ ⌈
log d−1

d(1−λ)
log(λd)

⌉
if λd 6= 1 ∞

size in the system
⌈

1
1−λ

⌉
if λd = 1

Table 1: Summary of the expected per-task delays and the maximum queue sizes of
the three scheduling algorithms

Note: The order notation Oλ(·) is defined when 1/(1 − λ) → ∞, i.e., λ → 1−. Pod
stands for the-power-of-d-choices. In batch-filling and batch-sampling, d > 1; and in
the-power-of-d-choices, d is an integer and d ≥ 2.

one to the least loaded server, where the queue length of a server is updated

after it receives a task.

Remark 7. In batch-filling, the first task in a batch is routed to the least loaded server

among the sampled servers, i.e., the one with the smallest number of tasks in its

queue. The key difference compared to batch-sampling is that the server’s queue size

is updated after this (which means that this server may no longer be the least-loaded

in the sampled servers), and then the next task in the batch is again routed to the

least loaded server, and so on. As we will see later, this small change to the routing

algorithm has dramatic consequences to the sample complexity of the algorithm. In

all algorithms, at each step, ties are broken at random if there is more than one

least-loaded server.

In this chapter, d is called the probe ratio, which is assumed to be a constant

independent of n. As in Mitzenmacher (1996); Vvedenskaya et al. (1996), we will

study the different algorithms in the large-systems limit, i.e., as n→∞, since a data

center today may consist of tens of thousands of servers. The main theoretical results
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which will be established in the chapter are summarized in Table 1, and we discuss

them below.

• The expected per-task delay of batch-filling with any d > 1 is smaller than both

batch-sampling with d = 2 and the-power-of-two-choices when λ→ 1−. In other

words, batch-filling outperforms the other two algorithms by sampling slightly

more than one server per task, hence the title of the chapter.

• The size of the longest-queue in the system under the-power-of-d-choices is

unbounded for any d ≥ 2 because the stationary queue length distribution has

unbounded support. The sizes of the longest-queue under both batch-filling and

batch-sampling are finite because the stationary distributions have bounded

support. The longest queue under batch-filling with d > 1 is smaller than that

of batch-sampling with d = 2 when λ→ 1−. When d is close to 1, the size of

longest queue under batch-filling is much smaller than that under batch-sampling

(7 versus 26 when d = 1.1 and λ = 0.99).

• The small and bounded size of the queues under batch filling has important

consequences. A job is said to be completed when all the tasks in the job

are completed. Since the tail of the queue size is cut off, this has the effect of

significantly reducing job completion delays, as we will see later in the simulations

section.

• The above theoretical results suggest that the sample complexity (i.e., the

number of samples per arriving task) can be significantly reduced under batch-

filling. On the other hand, the computational complexity is slightly increased

compared to batch-sampling since we require to have to compare the sizes of

the smallest queues and the next smallest queues each time a task is routed.

However, this increase in computational complexity is a cost to be paid at the
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router whereas increased sample complexity slows down the servers since they

have to send queue length feedback which takes time away from their primary

role of processing tasks. This is the reason why sample complexity is a more

significant issue than the computational complexity in data centers (although

we do not want the computational complexity to be very high either). The

batch-sampling algorithm performs O(dm logm) computations per batch which

corresponding to a sorting operation, while batch-filling algorithm performs an

additional 2m operations since it has to keep track of the queue lengths of the

smallest queues and the next smallest queue.

4.3 Mean-Field Analysis

In this section, we will use mean-field analysis to study the stationary distributions

of the queue lengths under batch-filling and batch-sampling. The results will be

further validated using a proof inspired by the proof of Kurtz’s theorem in Section 4.4.

Let Q(n)
k (t) denote the queue length of the kth server at time t in a system with n

queues. It can be easily verified that Q(n)(t) is an irreducible and nonexplosive Markov

chain, and using the standard Foster–Lyapunov theorem (see, for example, Srikant

and Ying (2014)) it can be verified that the Markov chain is positive recurrent and

hence, has a unique stationary distribution.

Theorem 5. The Markov chain Q(n)(t) is positive recurrent under batch-filling. Fur-

thermore, there exists a constant c > 0, independent of n, such that

E

 1

n

n∑
k=1

Q̂
(n)
k

 < c

for any n, where Q̂(n)
k denotes the queue length of server k in the steady state. �
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Figure 19: The Markov chain representing the nth system in the mean field analysis

The proof of this theorem is presented in Appendix C.1. Let π(n)
i denote the

stationary distribution of queue k, i.e., the probability that the queue size is i at server

k. Here, the index k is ignored because the stationary distributions are identically

across servers. According to the theorem above, we have
∑

i iπ
(n)
i < c, which further

implies that π(n)
i → 0 as i→∞ and

∑∞
j=i π

(n)
j → 0 as i→∞. We remark that one

challenge in proving that the stochastic system dynamics converge to deterministic

differential equations lies in that the system is an infinite-dimensional system. We

will utilize the facts mentioned above to overcome this challenge in the proofs.

The mean-field analysis proceeds as follows. Assume the n queues are in the steady

state, and further assume that the queue lengths are identically and independently

distributed (i.i.d.) with distribution π. This i.i.d. assumption in the mean-field

analysis will be validated later in Section 4.4 in the large-systems limit. Now consider

the queue evolution of one server in the system. Each queue forms an independent

Markov chain as shown in Figure 19, denoted by Q(n)(t), and the transition rates will

be determined by the particular strategy used to route tasks to servers. We will derive

the transition rates for each of the strategies described earlier, namely batch filling,

batch sampling, and the power-of-d-choices, in the rest of this section.
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4.3.1 The Stationary Distribution under Batch-Filling

We first consider the batch-filling algorithm. The down-crossing transition rate

from state i to i− 1 is 1 for all i ≥ 1, i.e.,

q
(n)
i,i−1 = 1 ∀ i,

because the processing time of a task is exponentially distributed with mean 1. The

up-crossing transition rate from state i to state j for j > i is

q
(n)
i,j =

n

m
λ× dm

n
×
∑
φ

P(φ)× P(j|φ, i)

= dλ
∑
φ

P(φ) P(j|φ, i). (4.1)

In the expression above,

• n
m
λ is the batch arrival rate;

• dm/n is the probability a server is probed when dm servers are sampled;

• φ is a (dm−1)-vector that denotes the queue lengths of the other dm−1 sampled

servers, so

P(φ) =
dm−1∏
k=1

πφk ;

and

• P(j|φ, i) is the probability that a server’s queue length becomes j when the

server is sampled and is in state i, and the the states of the other dm−1 sampled

servers are φ.

Without loss of generality, assume φk ≤ φl if k ≤ l, i.e., φ is ordered. Recall

that batch-filling dispatches tasks using water filling among the sampled dm queues.

Therefore, given i and φ, either j = i if no task is assigned to the server, or j takes
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Figure 20: An example of water filling

two possible values. Consider a simple example in Figure 20 where three tasks will be

dispatched to four servers with queue lengths 1, 1, 4, and 4. Then the servers whose

queue size is 4 will not receive any task, and the servers whose queue size is 1 will

receive one or two tasks.

Assume ties are broken uniformly at random. The values of P(j|φ, i) are summa-

rized below.

• If
dm−1∑
k=1

(i− φk)Iφk≤i−1 ≥ m, (4.2)

which means that the tasks will be assigned to servers whose original queue sizes

are smaller than i, then

P(j|φ, i) =


1 if j = i,

0 if j 6= i.

• If condition (4.2) does not hold, then the server with queue size i will receive

some tasks, and

P(j|φ, i) =


1− αφ,i if j = Q̄φ,i − 1,

αφ,i if j = Q̄φ,i,
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where

Q̄φ,i = min

j : (j − i) +
dm−1∑
k=1

(j − φk)Iφk≤j−1 ≥ m

 ,

which is the maximum size a queue can be filled up to during the water filling,

and αφ,i is given by

m− (Q̄φ,i − 1− i)−
∑dm−1

k=1 (Q̄φ,i − 1− φk)Iφk≤Q̄φ,i−1

1 +
∑dm−1

k=1 Iφk≤Q̄φ,i−1

,

which is the probability that a server receives one more task after its queue size

becomes Q̄φ,i − 1 during water-filling.

While the transition rate q(n)
i,j in (4.1) is a complex expression for finite n, the

following lemma shows that q(n)
i,j converges to some simple qi,j as n→∞. The proof

of this lemma is presented in Appendix C.2.

Lemma 4. Under batch-filling, the transition rates given distribution π, denoted by

q
(n)
i,j (π), converge; and specifically,

lim
n→∞

q
(n)
i,j (π) = qi,j(π),

where for j 6= i,

qi,j(π) =



1 if j = i− 1,

λd(1− απ) if j = Q̄π − 1 > i,

λdαπ if j = Q̄π > i,

0 otherwise,

Q̄π = min

j :

j−1∑
l=0

(j − l)πl ≥
1

d

 (4.3)

and

απ =
1
d
−
∑Q̄π−2

j=0 (Q̄π − 1− j)πj∑Q̄π−1
j=0 πj

∈ (0, 1].

�
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Figure 21: The queue-length Markov chain of a single-server, in the large-system limit,
under batch-filing

According to the lemma above, the queue length dynamics of a single server, in

the limit as the number of servers becomes infinity, can be represented by the Markov

chain in Figure 21, where the up-crossing transitions are into only two states Q̄π − 1

and Q̄π due to water filling. Based on Lemma 4, we can calculate the stationary

distribution of the queue length of a single server in the large-system limit by finding

π̂ that satisfies the global balance equation (see, e.g., Srikant and Ying (2014)).

Theorem 6. The stationary distribution of the queue length of a single server in the

large-system limit under batch-filling is

π̂i =



1− λ i = 0,

(1− λ)λd(1 + λd)i−1 1 ≤ i ≤ Q̄BF − 1,

1− (1− λ)(1 + λd)Q̄BF−1 i = Q̄BF ,

0 otherwise.

(4.4)

where Q̄BF =
⌈
− log(1−λ)

log(1+λd)

⌉
. The expected queue length is

− log(1− λ)

log(1 + λd)
+Oλ(1).

Proof. We first show Q̄BF = Q̄π̂, where Q̄π is defined in (4.3). Note that Q̄BF ≥ 1. If
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λ and d are such that Q̄BF = 1, then equivalently

− log(1− λ)

log(1 + λd)
≤ 1,

which implies that 1
1−λ ≤ 1 + λd, or 1

d
≤ 1− λ. Then π̂ = (1− λ, λ, 0, . . . ) and

Q̄π̂ = 1 = Q̄BF .

If λ and d are such that Q̄BF > 1, according to (4.3), to show Q̄π̂ = Q̄BF we only

need to show
Q̄BF−2∑
l=0

(Q̄BF − 1− l)π̂l <
1

d
≤

Q̄BF−1∑
l=0

(Q̄BF − l)π̂l. (4.5)

Let LHS and RHS denote the left-hand-side and the right-hand-side of (4.5). Then

LHS =

Q̄BF−2∑
i=0

i∑
j=0

π̂j = (1− λ)
(1 + λd)Q̄BF−1 − 1

λd
,

and

RHS =

Q̄BF−1∑
i=0

i∑
j=0

π̂j = (1− λ)
(1 + λd)Q̄BF − 1

λd
.

Then (4.5) is equivalent to

Q̄BF − 1 < − log(1− λ)

log(1 + λd)
≤ Q̄BF ,

which holds according to the definition of Q̄BF .

We next check the global balance equations. For i = 0,

π̂0(q0,Q̄BF + q0,Q̄BF−1)− π̂1q1,0

=(1− λ)λd− (1− λ)λd

=0.

For 1 ≤ i ≤ Q̄BF − 2,

π̂i(qi,i−1 + qi,Q̄BF + qi,Q̄BF−1)− π̂i+1qi+1,i

= (1− λ)λd(1 + λd)i−1(1 + λd)− (1− λ)λd(1 + λd)i

= 0.
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For i = Q̄BF − 1,

π̂Q̄BF−1(qQ̄BF−1,Q̄BF−2 + qQ̄BF−1,Q̄BF )

−
Q̄BF−2∑
i=0

π̂iqi,Q̄BF−1

− π̂Q̄BF qQ̄BF ,Q̄BF−1

=(1− λ)λd(1 + λd)Q̄BF−2(1 + λdαπ̂)

− (1− λ)(1 + λd)Q̄BF−2λd(1− απ̂)

− (1− (1− λ)(1 + λd)Q̄BF−1)

=(1− λ)(1 + λd)Q̄BF−1(λdαπ̂ + 1)− 1.

From the definition of απ̂ we can verify that

απ̂ =
1

λd(1− λ)(1 + λd)Q̄BF−1
− 1

λd
.

So we have

π̂Q̄BF−1(qQ̄BF−1,Q̄BF−2 + qQ̄BF−1,Q̄BF )

−
Q̄BF−2∑
i=0

π̂iqi,Q̄BF−1 − π̂Q̄BF qQ̄BF ,Q̄BF−1

=0.

For i = Q̄BF ,

π̂Q̄BF qQ̄BF ,Q̄BF−1 −
Q̄BF−1∑
i=0

π̂iqi,Q̄BF

=(1− (1− λ)(1 + λd)Q̄BF−1)− (1− λ)(1 + λd)Q̄BF−1λdαπ̂

=1− (1− λ)(1 + λd)Q̄BF−1(1 + λdαπ̂)

=0.
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So the global balance equations hold.

Finally the expected queue length in stationary distribution is

π̂1 + 2π̂2 + · · ·+ Q̄BF π̂Q̄BF

=

Q̄BF−1∑
i=0

1−
i∑

j=0

π̂j


=

Q̄BF−1∑
i=0

(
1− (1− λ)(1 + λd)i

)
=Q̄BF − (1− λ)

(1 + λd)Q̄BF − 1

λd

=− log(1− λ)

log(1 + d)
+Oλ(1).

4.3.2 The Stationary Distribution under Batch-Sampling

Recall in batch-sampling, the m tasks are routed to the least-loaded m queues

among the sampled dm queues. Consider a server with queue size i and assume it is

probed. Then the server will receive a task with probability

E

min

1,

m−∑i−1
j=0

∑dm−1
k=1 Iφk=j

1 +
∑dm−1

k=1 Iφk=i

+



= E

min

1,

 m
dm−1

−
∑i−1

j=0

∑dm−1
k=1 Iφk=j
dm−1

1
dm−1

+
∑dm−1
k=1 Iφk=i
dm−1


+



→E

min

1,

(
1
d
−
∑i−1

j=0 πj

πi

)+

 .
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Figure 22: The Markov chain in the large-system limit under batch-sampling

Following a similar analysis as batch-filling, we can establish the following lemma.

The details are omitted.

Lemma 5. Under batch-sampling, the transition rates given distribution π, denoted

by q(n)
i,j (π) converge; and specifically,

lim
n→∞

q
(n)
i,j (π) = qi,j(π) =



1 if j = i− 1,

λd if i+ 1 = j ≤ Q̄π − 1,

λαπ if i+ 1 = j = Q̄π,

0 otherwise,

where

Q̄π = min

i :
i−1∑
l=0

πj ≥
1

d


and

απ =
1
d
−
∑Q̄π−2

j=0 πj

πQ̄π−1

∈ (0, 1].
�

The Markov chain in the large-system limit is shown in Figure 22. Given π, the

Markov chain is a birth–death process up to state Q̄π. The stationary distribution

can again be calculated using the global balance equations. The results are presented

in Theorem 7, and the details are omitted.
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Theorem 7. The stationary distribution of the queue length of a single server in the

large-system limit under batch-sampling is

π̂i =



1− λ i = 0,

(1− λ)λidi 1 ≤ i ≤ Q̄BS − 1,

1− (1− λ)λ
idi−1
λd−1

i = Q̄BS,

0 otherwise.

where

Q̄BS =

 log d−1
d(1−λ)

log(λd)

 .
The expected queue length is

− log(1− λ)

log(λd)
+Oλ(1).

�

4.3.3 The Stationary Distribution under the-Power-of-d-Choices

The stationary queue-length distribution of a single server in the large-system

limit under the-power-of-d-choices has been established in Mitzenmacher (1996). We

present the result below for comparison purposes.

Theorem 8. The stationary distribution of the queue length of a server in the infinite

system under the-power-of-d-choices is

π̂i = λ
di−1
d−1 − λ

di+1−1
d−1 .

The expected queue length is

− log(1− λ)

log(λd)
+Oλ(1).

�
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4.4 Differential Equations and Kurtz’s Theorem

The results in the previous section were obtained using the mean-field analysis

which assumes that the queues are i.i.d. across servers. We will justify the mean-field

analysis in this section.

Again, we will focus on batch-filling. The same results can be established for

batch-sampling by following similar steps. We first consider the following non-linear

system described by differential equations:

dxi
dt

=



−(1 + λd)xi + xi+1 i ≤ X̄x − 2,

λd(1− αx)
i−1∑
j=0

xj − (1 + λdαx)xi + xi+1, i = X̄x − 1

λdαx

i∑
j=0

xj − xi + xi+1, i = X̄x

−xi + xi+1 otherwise,

(4.6)

where

X̄x = min

j :

j−1∑
l=0

(j − l)xl ≥
1

d


and

αx =
1
d
−
∑X̄x−2

j=0 (X̄x − 1− j)xj∑X̄x−1
j=0 xj

.

These differential equations are derived from the Markov chain in Figure 21. View

xi as the fraction of queues with length i. Consider xi for i ≤ X̄x − 2. According to

Figure 21, xi decreases with rate xi × (1 + λd) because the queue size of a server with

size i becomes i− 1 with rate 1 and becomes X̄x − 1 or X̄x with total rate λd; and xi

increases with rate xi+1 because a queue with size i+ 1 becomes a queue with size i

with rate 1. Note this is a non-linear system because αx and X̄x depend on the state

x.
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We further define

si(t) =
∞∑
j=i

xj(t)

for i ≥ 0, which is related to the fraction of the servers with queue size ≥ i, and

ŝi =
∞∑
j=i

π̂j

for π̂ defined in (4.4). Note that s0(t) = 1 for any t. The differential equations of the

non-linear system can be written in terms of s(t) as follows:

dsi
dt

=



λd− (1 + λd)si + si+1 i ≤ X̄s − 1,

λ− λd
i−1∑
j=0

(1− sj)− si + si+1, i = X̄s

−si + si+1 otherwise,

(4.7)

where

X̄s = max

i :
i−1∑
j=0

(1− sj) ≤
1

d

 .

The following theorem establishes the equilibrium point and the stability of this

non-linear system. The proof is presented in Appendix C.3.

Theorem 9. Assume the initial condition s(0) satisfies 1 = s1(0) ≥ s2(0) ≥ · · · ≥ 0

and (ii) |s(0)| <∞. Starting from s(0), the system converges to the equilibrium point

ŝ as t→∞, where | · | is the 1-norm. �

Next define Π
(n)
i (t) to be number of servers with queue size i in the nth system,

and π(n)
i (t) = 1

n
Π

(n)
i (t) to be the fraction of servers with queue size i in the nth system.

Here we deliberately reuse notation π because in the steady state, the fraction of

servers with queue size i is equal to the probability that the queue size of a server is

i. However, note that here π(n)(t) is a random vector instead of a distribution. Define
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the vector Γ(n)(t) ∈ N∞ such that its ith component Γ
(n)
i (t) =

∑∞
j=i Π

(n)
j (t) is the

number of servers whose queue lengths are at least i, γ(n)(t) = Γ(n)(t)
n

, and γ̂ such that

γ̂i =
∑∞

j=i π̂j for π̂ defined in (4.4).

The following theorem states that γ(n)(t), which is stochastic, coincides with s(t)

for any bounded time interval [0, t] when n→∞. Here we define Ū to be the space of

all sequences γ such that

1 = γ0 ≥ γ1 ≥ · · · ≥ 0 (4.8)

with the 1-norm. The proof is presented in Appendix C.4.

Theorem 10. Suppose that γ(n)(0)→ s(0) in probability, where s(0) is a deterministic

initial condition such that s(0) ≥ 0 and |s(0)| <∞. Then the following holds

lim
n→∞

sup
0≤u≤t

|γ(n)(u)− s(u)| = 0 in probability.
�

This result is motivated by Kurtz’s theorem (see Ethier and Kurtz (2005)). However,

we remark that Π
(n)
i (t) is not a classical density dependent Markov chain because

q
(n)
i,j cannot be written in the form of nβl for some βl independent of n, and γ(n) is an

infinite-dimensional vector. Therefore, the proof of Kurtz’s theorem does not directly

apply. Our proof is a non-trivial extension of Kurtz’s theorem.

We also remark that |s(0)| =
∑

i ixi(0) <∞ is related to the average queue size

at a server, so the condition simply requires the average queue length per server is

bounded initially.

Theorem 9 and Theorem 10 establish the following result:

γ(n)(t)
n→∞−−−→ s(t)

t→∞−−−→ γ̂, (4.9)

which further implies that

π(n)(t)
n→∞−−−→ x(t)

t→∞−−−→ π̂. (4.10)
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A direct consequence of (4.10) is that if π̂(n) converges to some π̃ or a subsequence

of π̂(n) converges to some π̃, then π̃ = π̂. The convergence of stationary distributions

will be discussed in the next section.

4.5 Convergence of the Stationary Distributions

We first present a theorem on the interchange of limits. The theorem is similar to

Theorem 5.1 in Anantharam and Benchekroun (1993). However, Anantharam and

Benchekroun (1993) assumes the state space of each system is finite but in our system,

the state space of each queue is the set of nonnegative integers. While the proofs are

similar, we present it here for the completeness of the chapter.

Theorem 11. Consider a sequence of random processes X(n) indexed by a scaling

parameter n, where X(n) is a vector that denotes value of the process at time t, and a

dynamic system Ẋ(t) = F (X). Assume X(n) and X̂ satisfy the following assumptions:

• (A1) Suppose that for any n,

X(n)(t)
w−→ X̂(n), (4.11)

where X̂(n) is the stationary distribution of the random process and w−→ denotes

the weak convergence.

• (A2) Suppose for each finite t,

X(n)(t)
w−→ X(t), (4.12)

when

lim
n→∞

X(n)(0) = X(0)

where both X(n)(0) and X(0) are deterministic initial conditions, and X(0) ∈ X ,

where X is a set of initial conditions.
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• (A3) Starting from each initial condition X(0) ∈ X , assume that

lim
t→∞

X(t) = X̂. (4.13)

• (A4) Any subsequence of X̂(n) has a subsubsequence that weakly converges. The

limit of any convergent subsequence, denoted by X̄, satisfies P
(
X̄ ∈ X

)
= 1 and

its support is separable.

Then X̂(n) w−→ X̂. �

This result establishes an interchange of limits because from (A1) and (A2), we

have

lim
t→∞

lim
n→∞

X(n)(t) = lim
t→∞

X(t) = X̂.

The theorem says that with additional assumptions, we further have

lim
n→∞

lim
t→∞

X(n)(t) = X̂.

The proof is presented in Appendix C.5.

By utilizing the result above, we show the convergence of the stationary distribution

in the following theorem.

Theorem 12.

γ̂(n) w−→ γ. �

Proof. Define

X = {γ : 1 = γ0 ≥ γ1 ≥ γ2 ≥ · · · ≥ 0,
∑
i

γi <∞},

with metric

ρ(x, y) =
∞∑
i=1

|xi − yi|.

Then X is separable because it is a subspace of the `1 space.
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• (A1) holds due to Theorem 5.

• Note limn→∞ γ
(n)(0) = s(0) for deterministic initial conditions γ(n)(0) and s(0)

implies that γ(n)(0)→ s(0) in probability. Therefore, according to Theorem 10,

given deterministic initial conditions γ(n)(0) and s(0) such that limn→∞ γ
(n)(0) =

s(0), we have

lim
n→∞

sup
0≤u≤t

|γ(n)(u)− s(u)| = 0 in probability,

which implies weak convergence.

• (A3) is established in Theorem 9.

• To validate (A4), we consider the space

Ũ ,
{
γ = (γ0, γ1, . . . ) ∈ [0, 1]∞ : 1 = γ0 ≥ γ1 ≥ · · · ≥ 0

}
with the metric used in Vvedenskaya et al. (1996)

ρ′(γ, γ′) = sup
i>0

|γi − γ′i|
i

.

Then (Ũ , ρ′) is a compact metric space. Let µn ∈ P(Ũ) be the stationary dis-

tribution of the nth system, where P(Ũ) is the set of probability measures on

Ũ with its Borel sets as the σ-algebra. Then the sequence (µn) is tight on Ũ .

By Prokhorov’s theorem (see Billingsley (1999)), any subsequence of (µn) has a

subsubsequence that weakly converges in Ũ . Suppose the convergent subsubse-

quence is (µnk : k) and its limit is µ∞ ∈ P(Ũ). By Skorokhod’s representation

theorem, there exists a sequence of random elements with the same distributions

that converge almost surely. By slight abuse of the notation, we assume γ̂(nk)

converges to γ̃ almost surely in (Ũ , ρ′), where L(γ̂(nk)) = µ(nk) and L(γ̃) = µ∞.

Since 0 ≤ γi ≤ 1, we have by the dominated convergence theorem

lim
k→∞

E[|γ̂(nk)
i − γ̃i|] = 0 ∀i. (4.14)
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Consider

fl(γ) =
l∑

i=1

γi.

Then fl is continuous and bounded on (Ũ , ρ′). By the definition of weak

convergence, we have

lim
k→∞

E fl(γ̂
(nk)) = E fl(γ̃).

Recall by Theorem 5, for any k and l,

E fl(γ̂
(nk)) ≤ c.

We have by Tonelli’s theorem,

E

 ∞∑
i=1

γ̃i

 =
∞∑
i=1

E γ̃i ≤ c <∞.

Consequently P(γ̃ ∈ X ) = 1, or equivalently supp(µ∞) ⊆ X . The following

uniform convergence is established in Appendix C.6.

Lemma 6. The series
∑∞

i=1 E
∣∣∣γ̂(nk)
i − γ̃i

∣∣∣ are uniformly convergent for all k. �

Then we get

lim
k→∞

∞∑
i=1

E
∣∣∣γ̂(nk)
i − γ̃i

∣∣∣ =
∞∑
i=1

lim
k→∞

E
∣∣∣γ̂(nk)
i − γ̃i

∣∣∣ = 0. (4.15)

So (µn) is tight in (X , ρ) and (A4) is verified.

Based on the theorem above, we further have the following results according to

using the same analysis for getting (4.14) and (4.15).

Corollary 4.

lim
n→∞

E[γ̂
(n)
i ] = γ̂i ∀i,
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lim
n→∞

E

∑
i

γ̂
(n)
i

 =
∑
i

γ̂i, (4.16)

and

lim
n→∞

E
[
|γ̂(n) − γ̂|

]
= 0. (4.17)

In the next corollary, we show that any k queues are independently and identically

distributed with distribution π̂ in the large-system limit, where k is a constant

independent of n. Then the system is said to be π̂-chaotic (see Sznitman (1991)). We

prove the result by showing that the unique stationary distribution of k queues that

satisfies the detailed balance equations in the large-system limit has a product form.

The proof is in Appendix C.7.

Corollary 5. Consider a set of k servers, and without loss of generality, assume the

servers are 1, 2, . . . , k. Let π(n)(Q1, Q2, . . . , Qk) denote the stationary distribution of

the queue lengths of these k servers. In the large-system limit, we have

lim
n→∞

π(n)(Q1, Q2, . . . , Qk) =
k∏
i=1

π̂Qi ,

i.e., the k queues are independently and identically distributed with distribution π̂. �

4.6 Simulations

In this section, we use simulations to evaluate the performance of the three load

balancing algorithms in large, but finite-server, systems.
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Figure 23: The average task delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.7 and deterministic batch sizes
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Figure 24: The average job delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.7 and deterministic batch sizes

4.6.1 Deterministic Batch Size

We first considered systems with n = 10,000 servers, batch size m = 100. We

evaluated the per-task and per-job delays of the three algorithms with different

probe ratios d. Figures 23 and 24 show the per-task delays and per-job delays,

respectively, when λ = 0.7. Figures 25 and 26 show the per-task delays and per-job

delays, respectively, when λ = 0.9.

From these figures, we have the following observations.

• In terms of per-task delays, batch-filling matches the power-of-two-choices with

d = 1.3 when λ = 0.7 and with d = 1.2 when λ = 0.9. Batch-sampling, on the

other hand, requires d = 1.6 when λ = 0.7 and d = 1.7 when λ = 0.9 to achieve

the same per-task delay as the power-of-two-choices. Furthermore, even with

d = 1, the per-task delay of batch-filling is only slightly larger than that of the

power-of-two-choices; but batch-sampling has much larger per-task delay when
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Figure 25: The average task delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.9 and deterministic batch sizes
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Figure 26: The average job delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.9 and deterministic batch sizes

d = 1 (10 versus 3 when λ = 0.9). Note that the per-job delay of batch-sampling

with d = 1 has been omitted in the figure for readability of the figure.

• Batch-filling performs even better in terms of per-job delays. As we can see

from Figures 24 and 26, batch-filling matches the power-of-two-choices even

with d = 1! We believe this is because the maximum queue size of batch-filling

is smaller than that of the power-of-two-choices when d = 1 even though the

average queue size is larger. Batch-sampling requires larger probe ratios to match

the per-job delays of the power-of-two-choices. This is because the maximum

queue size of batch-sampling is larger than that of batch-filling as shown in

Table 1.

4.6.2 Random Batch Size

In this set of simulations, we evaluated the performance of algorithms under

random batch sizes. We assume the batch size M is random variable such that with

probability 0.5, M is geometrically distributed with mean 75; and with probability
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Figure 27: The average task delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.7 with random batch sizes
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Figure 28: The average job delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.7 with random batch sizes
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Figure 29: The average task delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.9 with random batch sizes
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Figure 30: The average job delays
for power-of-two-choices (Po2), batch-
sampling (BS) and batch-filling (BF) with
λ = 0.9 with random batch sizes

0.5, M is geometrically distributed with mean 125. The other settings are the same as

those used with fixed batch sizes. The results for λ = 0.7 are shown in Figures 27 and

Figure 28; and the results for λ = 0.9 are shown in Figures 29 and 30. We note that

the conclusions of our previous simulations do not change with these modifications.
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Chapter 5

CONCLUSION

In Chapter 2 we studied the stability of the longest-queue-first scheduling policy in

wireless networks with multihop traffic flows and the one-hop interference model. Using

fluid techniques, we proved that LQF is throughput optimal in this scenario. The

proof itself is an interesting contribution and can be useful when considering similar

fluid systems since we focused on state transition instead of an explicit Lyapunov

function. The result may also be a first step to understand the stability performance

of LQF in general networks with multihop traffic flows.

In Chapter 3 we considered the problem of scheduling real-time traffic in wireless

networks under general stochastic arrivals and deadlines and general interference

model. The fraction of delivered packets at a link is required to be no less than a

certain threshold. We used deficits to inspect the stability of the system, and studied

the stability performance of a scheduling policy that we call the largest-deficit-first

(LDF) policy. We proved that the efficiency ratio of LDF can be lower bounded by

a quantity that we call the real-time local-pooling factor (R-LPF). Furthermore, we

showed lower bounds on the R-LPF can be calculated by assigning weights to the

links, with a special case lower bound of 1/(β + 1), where β is the interference degree.

We also proposed a heuristic consensus algorithm that can be used to estimate the

R-LPF for general networks.

In Chapter 4 we proposed a new load-balancing algorithm, named batch-filling,

which uses water-filling to attempt to equalize the load among the sampled servers.

The algorithm provides a much lower sample complexity than the power-of-two-choices

91



algorithm for the same delay performance. Specifically, it only needs to sample slightly

more than one queue per task to match the per-job delay of the power-of-two-choices

algorithm. We remark that the theoretical results of Chapter 4 can be extended to

random batch sizes. Let M (n)(t) denote the batch size at time t in the nth system.

Assume M (n)(t) are i.i.d. across time t. The main results of Chapter 4 hold given the

sequence of random variables M(n)

E[M(n)]
converge in distribution, are uniformly integrable,

andM (n)(t) = Θ(log n). In particular, Theorem 5 can be established by using the same

idea that the Lyapunov drift of water-filling is dominated by random routing. Lemma

4 also holds because M(n)(0)

E[M(n)(0)]
converge in probability. The differential equations

remain the same under random batch size, so Theorem 9 is still valid. Finally, it is

easy to verify that Di/(dm) converges in mean as m→∞, where m = E[M (n)(0)].
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A.1 Proof of Proposition 1

First notice
∣∣X̄xk(0)

∣∣ =
∣∣∣ xk|xk| ∣∣∣ = 1 and

{
x ∈ X : |x| = 1

}
is compact, so there exists

a subsequence
(
k

(1)
p

)
such that X̄

x
k
(1)
p (0)→ X̄(0) as p→∞.

By (2.4) we know for any j, T
x
k
(1)
p

j (t) is Lipschitz continuous with Lipschitz constant

1 and then T̄
x
k
(1)
p

j (t) is also Lipschitz with Lipschitz constant 1. Then the sequence

of functions
(
T̄
x
k
(1)
p

j (t)

)
is uniformly bounded and equicontinuous on the interval

[0, 1] and by the Arzelà–Ascoli theorem there exists a subsequence
(
k

(1)
1,p

)
of
(
k

(1)
p

)
such that

(
T̄
x
k
(1)
1,p

j (t)

)
converges on [0, 1] uniformly as p→∞. Then for the interval

[0, 2] there exists a subsequence
(
k

(1)
2,p

)
of
(
k

(1)
1,p

)
such that

(
T̄
x
k
(1)
2,p

j (t)

)
converges

on [0, 2] uniformly as p → ∞. By induction, for any positive integer q, we can

find a subsequence
(
k

(1)
q,p : p

)
such that

(
T̄
x
k
(1)
q,p

j (t) : p

)
converges on [0, q] uniformly

as p → ∞. We take the diagonal subsequence
(
k

(2)
p : p

)
by k

(2)
p = k

(1)
p,p and then(

T̄
x
k
(2)
p

j (t) : p

)
converges u.o.c. as p→∞. In the same way we can find a subsequence(

kp
)
such that for any j = 1, 2, . . . , r,

T̄
xkp
j (t)→ T̄j(t) u.o.c. as p→∞.

Similarly, Yi and Di are Lipschitz with constant 1, so we can find
(
kp
)
such that for

all i = 1, 2, . . . , N ,
Ȳ
xkp
i (t)→ Ȳi(t) u.o.c. as p→∞

D̄
xkp
i (t)→ D̄i(t) u.o.c. as p→∞.

The exogenous arrivals satisfy SLLN, so we may assume for the sample path ω and
all i = 1, 2, . . . , N ,

1

|xkp |
Ei(b|xkp |tc)→ αit u.o.c. as p→∞.

Then by (2.2) and (2.3),

Ā
xkp
i (t)→ Āi(t) u.o.c. as p→∞

Z̄
xkp
i (t)→ Z̄i(t) u.o.c. as p→∞.
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Then (2.9), (2.10), (2.11), (2.12), (2.13) and (2.15) readily come from (2.7), (2.2),
(2.3), (2.4), (2.5) and (2.8).

Notice that (2.14) is equivalent to the following: Whenever Z̄i(t) > 0, there exists
δ > 0 such that Ȳi(t′) = Ȳi(t) for any t′ ∈ [t, t + δ]. To show this is true, we use a
technique from Dai and Prabhakar (2000). We consider a time t ≥ 0 and suppose
Z̄i(t) > 0. Then by continuity there exists δ > 0 such that mint′∈[t,t+δ] Z̄i(t

′) > 0. Set
a = mint′∈[t,t+δ] Z̄i(t

′). Thus by uniform continuity, there exists K ≥ 0 such that for
any p ≥ K,

Z̄
xkp
i (t′) ≥ a/2 ∀t′ ∈ [t, t+ δ].

Then
Z
xkp
i (|xkp|t′) ≥ 1 ∀t′ ∈ [t, t+ δ].

That is, all systems in the subsequence
(
kp
)
have nonempty queue at link li during a

period of time slots. By the work-conserving property in (2.6), the cumulative idle
time of link li can increase by at most 1 (possibly because the queue is emptied at the
end of the period of time slots); i.e.,

0 ≤ Y
xkp
i (|xkp |t′)− Y

xkp
i (|xkp |t) ≤ 1 ∀t′ ∈ [t, t+ δ]

⇒ 0 ≤ Ȳ
xkp
i (t′)− Ȳ xkp

i (t) ≤ 1

|xkp |
∀t′ ∈ [t, t+ δ].

Then as p→∞,
Ȳi(t

′) = Ȳi(t) ∀t′ ∈ [t, t+ δ]

so we have (2.14).
Note that by repeatedly taking subsequences we can find

(
kp
)
such that all the

convergences aforementioned hold at the same time. All components of X̄ are absolutely
continuous because they are Lipschitz continuous. The monotonicity of A,D, T, Y
implies the monotonicity of Ā, D̄, T̄ , Ȳ .

A.2 Proof of Lemma 1

We first notice that if Z̄ ∈ B, then there are no adjacent dominating nodes; i.e., if
Z̄ ∈ Bi for some i ∈ {1, 2, . . . , N}, then Z̄ /∈ Bi−1 and Z̄ /∈ Bi+1. Let the dominating
set at time t be

Idom(t) =
{
i ∈ {1, 2, . . . , N} : Z̄(t) ∈ Bi

}
.

Then we can easily check that Idom(t) ⊆
⋂

LQF(Z̄(t)); i.e., all dominating links must
be scheduled by LQF at time t. Due to the one-hop interference, there is no internal
arrival to a scheduled link. Then for regular time t and any i ∈ Idom(t),

dAi
dt

(t) =
dEi
dt

(t) = αi

100



and
dDi

dt
(t) = 1,

while
dDi−1

dt
(t) =

dDi+1

dt
(t) = 0.

Thus,
dZ̄i
dt

(t)− dZ̄i−1

dt
(t) ≤ αi − 1 (A.1)

and
dZ̄i
dt

(t)− dZ̄i+1

dt
(t) ≤ αi − 1. (A.2)

Let Z̄max = maxj Z̄j(0). We now present two propositions to complete the proof of
Lemma 1.

Proposition 4. There exists t1 ∈ (t0, t0 + Z̄max/(1− αi)] such that Z̄(t1) /∈ Bi; i.e.,
link li is not dominating anymore at some time before t0 + Z̄max/(1− αi). �

Proof. Indeed, if link li remains dominating up to (and including) time t0 + Z̄max/(1−
αi), then by (A.1), (A.2) and the absolute continuity of the fluids, we would have for
any adjacent link lj of li,Z̄i(t0 +

Z̄max

1− αi

)
− Z̄j

(
t0 +

Z̄max

1− αi

)− [Z̄i(t0)− Z̄j(t0)
]
≤ −Z̄max.

Hence

Z̄i

(
t0 +

Z̄max

1− αi

)
− Z̄j

(
t0 +

Z̄max

1− αi

)
≤ Z̄i(t0)− Z̄max ≤ 0.

Then by continuity, there is some t1 ∈ (t0, t0 + Z̄max/(1 − αi)] such that Z̄i(t1) −
Z̄j(t1) = 0, which contradicts our assumption that link li remains dominating up to
t0 + Z̄max/(1− αi). This completes the proof of the proposition.

Therefore, for any i ∈ Idom(t0), there exists t1 ∈ (t0, t0 + Z̄max/(1−maxj αj)] such
that Z̄(t1) /∈ Bi.

Proposition 5. If Z̄(t1) /∈ Bi, then Z̄(t) /∈ Bi for any t ≥ t1. �

Proof. Indeed, if Z̄(t2) ∈ Bi for some t2 > t1, let t3 = sup
{
t < t2 : Z̄(t) /∈ Bi

}
. Then

by Lipschitz continuity Z̄i(t3) = Z̄j(t3) for some neighbor lj of link li and t3 < t2.
Since d

dt
(Z̄i(t)− Z̄j(t)) ≤ maxk αk − 1 for almost all t ∈ [t3, t2], we have

Z̄i(t2)− Z̄j(t2) ≤ Z̄i(t3)− Z̄j(t3) + (t2 − t3)(max
k
αk − 1) ≤ 0,

which contradicts the assumption that Z̄(t2) ∈ Bi. Hence, Z̄(t) /∈ Bi for any t ≥ t1.

Considering all i, we have Z̄(t) /∈ B for any t ≥ t0 + Z̄max/(1−maxj αj).
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A.3 Proof of Proposition 2

To show this proposition by contradiction, we suppose J(t) = ∅.
We first notice that for j1 = min

{
j : j ∈ J0(t)

}
we must have d

dt
W̄j1(t) > 0. If

this is not the case, we would have d
dt
W̄j1(t) < 0 and j1 ≥ 2. Then it would follow

that there exists some δ > 0 such that for any s ∈ (t, t + δ) we have Z̄1(s) > Z̄2(s)
if j1 = 2, and Z̄j1−1(s) > max{Z̄j1−2(s), Z̄j1(s)} if j1 > 2, which implies Z̄(s) ∈ B, a
contradiction.

We then conclude that if all j ∈ {1, 2, . . . , k} ∩ J0(t) satisfy

d

dt
W̄j(t) > 0,

then either k + 1 /∈ J0(t) or
d

dt
W̄k+1(t) > 0.

If this is not the case, there would exist δ > 0 such that for any s ∈ (t, t+ δ), we have
Z̄k(s) > max{Z̄k−1(s), Z̄k+1(s)} if W̄k(t) ≥ 0, or Z̄j(s) > max{Z̄j−1(s), Z̄j+1(s)} for
some j < k otherwise, either of which leads to a contradiction.

By induction we have d
dt
W̄j(t) > 0 for all j ∈ J0(t), which also leads to contradiction

since by letting j2 = max
{
j : j ∈ J0(t)

}
there exists δ > 0 such that for any s ∈ (t, t+δ)

we have Z̄N(s) > Z̄N−1(s) if j2 = N , and Z̄j2(s) > max{Z̄j2−1(s), Z̄j2+1(s)} if j2 6= N .
Then Z̄(s) ∈ B, which is a contradiction. This completes the proof of Proposition 2.

A.4 Proof of Proposition 3

Note that u ≥ 2. By definition of u, W̄u(t1) = d
dt
W̄u(t1) = 0, i.e., Z̄u(t1) = Z̄u−1(t1)

and d
dt
Z̄u(t1) = d

dt
Z̄u−1(t1).

We first claim that there exists δ > 0 such that for any t ∈ (t1, t1 + δ),

0 < Z̄1(t) < Z̄2(t) < · · · < Z̄u−1(t).

Indeed, if J0(t1)∩{1, 2, . . . , u−1} = ∅, then W̄i(t1) 6= 0 for i = 1, 2, . . . , u−1. Otherwise
for any j ∈ J0(t1)∩{1, 2, . . . , u−1}, by the definitions of u and J0(·) we have W̄j(t1) = 0
and d

dt
W̄j(t1) 6= 0, so there exists δj > 0 such that W̄j(t) 6= 0 for any t ∈ (t1, t1 + δj).

In either case, there exists δ > 0 such that W̄i(t) 6= 0 for any t ∈ (t1, t1 + δ) and any
i ∈ {1, 2, . . . , u−1}. If W̄i(t) < 0 for some i ∈ {1, 2, . . . , u−1} and some t ∈ (t1, t1 +δ),
then Z̄j(t) > max{Z̄j−1(t), Z̄j+1(t)} for some j ≤ i, which contradicts Lemma 1. Hence
W̄i(t) > 0 for i = 1, 2, . . . , u− 1; i.e., 0 < Z̄1(t) < Z̄2(t) < · · · < Z̄u−1(t). The claim
then follows.
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In the actual system with this strict order of queues, either all odd links up to lu
get scheduled at a time slot, or all even links up to lu get scheduled. Then in our fluid
limits we would have

µi(t) = µi+2(t) ∀i ∈ {1, 2, . . . , u− 2}

for any regular time t ∈ (t1, t1 + δ). Then by the absolute continuity,

D̄3(t)− D̄1(t) = D̄3(t1)− D̄1(t1) +

∫ t

t1

(µ3(s)− µ1(s)) ds = D̄3(t1)− D̄1(t1).

By the definition of derivatives, we have

d

dt
(D̄3(t1)− D̄1(t1)) = lim

t→t+1

(D̄3(t)− D̄1(t))− (D̄3(t1)− D̄1(t1))

t− t1
= 0.

So µ1(t1) = µ3(t1). Similarly, we have µi(t1) = µi+2(t1) for i = 1, 2, . . . , u− 2.
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B.1 Proof of Theorem 2

Lemma 7. The maximum stability region of the F -framed policies can be characterized
by

ΛNC(F ) =

λ � 0: λF �
∑

J∈J (F )

π(J)ηJ , ηJ ∈ CH(MJ)

 ,

where A denotes the closure of A and CH(MJ) is the convex hull over the set of
columns of MJ .

Proof of Lemma 7. If λ is strictly outside the maximum stability region, it can be
proved that the total amount of deficits increase to infinity with probability one
using the strictly separating hyperplane theorem (Boyd and Vandenberghe, 2004) and
Lyapunov drift arguments. If λ is strictly inside the maximum stability region, then
we can find η =

(
ηJ : J ∈ J (F )

)
that dominates λ and make the long-term-average of

the scheduling process be at least η � λ, where � denotes strict pairwise greater than.
So the system can be stabilized.

We then present the next lemma.

Lemma 8. For any F ,

ΛNC(F ) ⊇ int

(
Λ ∩

(
Λ− τmax

F
1

))
,

where Λ− τmax

F
1 =

{
λ− τmax

F
1 : λ ∈ Λ

}
.

Proof of Lemma 8. Note that given the schedules of any causal policy, we can convert
them into valid schedules under the F -framed policy by removing those transmissions
that serve those packets whose arrival times and transmission times are not in the
same frame. Since at most one packet can be scheduled on a link at each time slot
and the maximum delay bound is τmax, the number of packets across frame (i.e., those
arriving in one frame with deadlines in another) scheduled by the causal policy on
a link is at most τmax at the end of a frame. As a result, we only need to remove at
most τmax transmissions for each frame on each link, which is equivalent to at most
τmax/F packets per time slot. So the lemma holds.

Lemma 9. If F > τmax, then

ΛLDF ⊇ σ∗ · int(ΛNC(F )).
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Proof of Lemma 9. Let λ′ ∈ int(ΛNC(F )) and let λ = σ∗λ′. Then by the defini-
tion of interior point and the characterization of ΛNC(F ) in Lemma 7, there exist(
ξJ : J ∈ J (F )

)
with ξJ ∈ CH(MJ) for each J ∈ J (F ) and δ > 0 such that

λ′ + δ1 � 1

F

∑
J∈J (F )

π(J)ξJ , (B.1)

where 1 is a vector with all 1’s.
We now establish the fluid limits for the system sampled every F time slots. Let(

D(t) : t ∈ N
)
and

(
S(t) : t ∈ N

)
be the cumulative deficit and service processes under

LDF (without frame). Let Ψl,τ (t) be the number of packets with deadline t+ τ − 1
on link l at time slot t, and let Ψ(t) =

(
Ψl,τ (t) : l ∈ K, 1 ≤ τ ≤ τmax

)
. Then under

LDF
(
(Ψ(t), D(t)) : t ∈ N

)
is a Markov chain. Let

(
(Ψ(n)(t), D(n)(t)) : t ∈ N

)
be the

system with arbitrary initial state (Ψ(n)(0), D(n)(0)) associated with the requirement
that ‖(Ψ(n)(0), D(n)(0))‖ ,

∑
l∈K
∑τmax

τ=1 Ψ
(n)
l,τ (0) +

∑
l∈KD

(n)
l (0) = n for any n ∈ N,

and let S(n)(t) be the corresponding cumulative service process. We sample Ψ(n), D(n)

and S(n) every F time slots to get Ψ(n)(F )(t) = Ψ(n)(Ft), D(n)(F )(t) = D(n)(Ft) and
S(n)(F )(t) = S(n)(Ft) for t ∈ N. Define the scaled deficit and service processes to be

D̄(n)(F )(t) =
1

n
D(n)(F )(bntc)

and
S̄(n)(F )(t) =

1

n
S(n)(F )(bntc).

Note that the scaled processes are defined for any nonnegative real number t rather
than just integers, and can take values in vectors of multiples of 1

n
rather than vectors

of integers. Following Lemma 1 in Andrews et al. (2004), for almost all sample paths
and any sequence of initial states there exists a subsequence

(
nj
)
such that for any

l ∈ K
D̄

(nj)(F )
l → D̄

(F )
l u.o.c. (B.2)

and
S̄

(nj)(F )
l → S̄

(F )
l u.o.c.

as j →∞, where u.o.c. denotes uniform convergence over compact sets, and D̄(F )
l and

S̄
(F )
l are nonnegative nondecreasing Lipschitz-continuous functions with domain R+.

The limiting functions are called the fluid limits.
Let L(F )

0 (t) be the set of links with the largest deficit fluids at time t, and let
L(F )(t) ⊆ L

(F )
0 (t) be the set of links in L(F )

0 (t) with largest derivatives at time t; i.e.,

L
(F )
0 (t) =

{
l ∈ K : D̄

(F )
l (t) = max

i∈K
D̄

(F )
i (t)

}
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and
L(F )(t) =

{
l ∈ L(F )

0 (t) :
d

dt
D̄

(F )
l (t) = max

i∈L0(t)

d

dt
D̄

(F )
i (t)

}
,

where we assume t is a regular point; i.e., the derivatives of the fluid limits exist at t.
Then we can construct

(
ηJ ∈ CH(MJ) : J ∈ J (F )

)
such that for any l ∈ L(F )(t), the

service fluids satisfy
d

dt
S̄

(F )
l (t) ≥

∑
J∈J (F )

π(J)ηJ,l − τmax, (B.3)

where ηJ,l is the lth entry of the vector ηJ .
To understand (B.3), note that S̄(F )(t) is the fluid limit of the service process

sampled every F time slots, so the derivative of S̄(F )(t) is the average service over
F time slots under LDF. Now consider a frame of F time slots with arrival and
maximum delay pattern J, and denote by sLDF

J the schedule under LDF during the
F time slots. We next construct another schedule sFJ , which is a maximal schedule
under the F -framed policy. The construction is by removing those transmissions in
sLDF
J which serve packets that arrived before the frame started, and then add more
transmissions to make it a maximal schedule. So for link l,

W (sLDF
J )l − oJ,l + nJ,l = W (sFJ )l,

where oJ,l is the number of removed transmissions on link l, nJ,l is the number of
added transmissions on link l, W (sFJ ) ∈MJ , and (·)l denotes the lth component of
the vector. Note that those removed transmissions must occur at the first τmax time
slots because the maximum delay is τmax so none of the packets that arrived before
the frame can be transmitted after the first τmax time slots. This also implies that the
added transmissions must be in the first τmax time slots as well. Therefore, nJ,l ≤ τmax,
and

W (sLDF
J )l ≥ W (sFJ )l − τmax

holds for any J.
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Now assuming D̄(F )
l (t) > 0 for l ∈ L(F )(t), the derivative of D̄(F )

l (t) is

d

dt
D̄

(F )
l (t) = λlF −

d

dt
S̄

(F )
l (t) (B.4)

≤ λlF −
∑

J∈J (F )

π(J)ηJ,l + τmax (B.5)

≤ σ∗

 ∑
J∈J (F )

π(J)ξJ,l − δF


−

∑
J∈J (F )

π(J)ηJ,l + τmax (B.6)

=

σ∗
 ∑
J∈J (F )

π(J)ξJ,l

 (B.7)

−

 ∑
J∈J (F )

π(J)ηJ,l


 (B.8)

− σ∗δF + τmax, (B.9)

where (B.5) comes from (B.3), and (B.6) holds because λ = σ∗λ′ and inequality (B.1).
By the definition of the R-LPF and the fact that L(F )(t) has higher scheduling priority
over K\L(F )(t), there exists i ∈ L(F )(t) such that

σ∗

 ∑
J∈J (F )

π(J)ξJ,i

 ≤
 ∑
J∈J (F )

π(J)ηJ,i

 .

Thus by definition of L(F )(t),

d

dt
D̄

(F )
l (t) =

d

dt
D̄

(F )
i (t) ≤ τmax − σ∗δF.

We note that for any positive integer k,

ΛNC(F ) ⊆ ΛNC(kF ),

since any F -framed policy is a valid but more restrictive kF -framed policy. Then
(B.1) holds with the same δ for any frame size kF . Thus for large enough integer k,
the deficit fluid limits associated with the frame size kF satisfy

d

dt
D̄

(kF )
l (t) ≤ τmax − σ∗δkF ≤ −ε < 0

108



for some ε > 0, as long as maxl D̄
(kF )
l (t) > 0 and t is regular. Since ‖D̄(kF )(0)‖ = 1,

we have ‖D̄(kF )(t)‖ = 0 for any t ≥ 1/ε. By the convergence in (B.2) and the arbitrary
choice of initial states of the systems with the prescribed requirements, we have that
‖D̄(n)(kF )(t)‖ → 0 almost surely as n→∞ for any t ≥ 1/ε. Since

(
D̄(n)(kF )(t) : n ∈ N

)
is uniformly integrable (see, e.g., Dai (1995)), we get that E ‖D̄(n)(kF )(t)‖ → 0 as
n→∞ for t ≥ 1/ε. Note that

∑
l∈K
∑τmax

τ=1 Ψ
(n)(kF )
l,τ (nt) ≤ Kamaxτ

2
max. We then have

lim
n→∞

E

[
1

n
‖(Ψ(n)(kF )(nt), D(n)(kF )(nt))‖

]
= 0

for any t ≥ 1/ε. Then by Theorem 4 in Andrews et al. (2004) we get that the
sampled deficit process of the original system

(
D(kF )(t) : t ∈ N

)
is stable as defined

in Andrews et al. (2004), which implies the existence of a stationary distribution of(
D(kF )(t) : t ∈ N

)
and in turn implies the stability of

(
D(kF )(t) : t ∈ N

)
as defined in

Definition 1. Finally,

lim
C→∞

lim sup
t→∞

P

∑
l∈K

Dl(t) ≥ C


≤ lim

C→∞
lim sup
t→∞

P

∑
l∈K

D
(kF )
l

(⌊
t

kF

⌋)
+ kKFamax ≥ C


= lim

C→∞
lim sup
t→∞

P

∑
l∈K

D
(kF )
l (t) ≥ C − kKFamax


= 0.

So the original unsampled deficit process
(
D(t) : t ∈ N

)
is stable, and therefore the

deficit arrival rate λ = σ∗λ′ ∈ ΛLDF.

We can now proceed to prove Theorem 2.

Proof of Theorem 2. By Lemma 9 and Lemma 8, we have

ΛLDF ⊇ σ∗ · int

(
Λ ∩

(
Λ− τmax

F
1

))
.

The theorem is obtained by letting F →∞.
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B.2 Proof of Theorem 3

For given α ∈ RK+ , let αL denote the vector α restricted to the subset L ⊆ K. We
define the pressure of link i in the subset L ⊆ K for vector α to be

κi,L(α) =
αi

αi + maxI∈I(i,L)

∑
j∈I αj

,

where I(i, L) ⊆ P(NL(i)) is the collection of subsets of the neighbors of i in L that
can be scheduled simultaneously. We also define the minimum pressure in the subset
L ⊆ K for α to be

ψL(α) = min
i∈L

κi,L(α).

We can check with (3.3) and (3.4) that

κi,K(α) = κi(α), ψK(α) = ψ(α).

We note the following lemma.

Lemma 10. For any α ∈ RK+ and any L ⊆ K,

ψL(α) ≥ ψ(α).

Proof.

ψL(α) = min
i∈L

κi,L(α)

= κi∗,L(α)

=
αi∗

αi∗ +
∑

j∈I∗ αj

≥ αi∗

αi∗ +
∑

j∈I∗∗ αj

≥ min
i∈K

κi(α)

= ψ(α),

for some i∗ ∈ L, some I∗ ∈ I(i∗, L) and some I∗∗ ∈ I(i∗,K).

The following lemma is the key to the proof of Theorem 3.

Lemma 11. For any α ∈ RK+ , any F , any J ∈ J (F ) and any L ⊆ K,

minφ∈MJ,L
αT
Lφ

maxφ∈MJ,L
αT
Lφ
≥ ψ(α).
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Proof of Lemma 11. We fix J ∈ J (F ) and L ⊆ K and focus on the arrival and
maximum delay pattern given by J restricted to the subset of links L. If ψ(α) = 0
then the result is trivial, so we may assume ψ(α) > 0; i.e., α � 0. For each link l ∈ L,
replace it with n links (each of which has a single packet arrival in the frame) if the
total number of packets arriving on l in the frame is n ≥ 2, leave it alone if the total
number of packets arriving on l in the frame is 1, and remove it from our consideration
if no packet arrives in this frame according to J . We then get a multigraph whose set
of links is denoted by K′, where K ′ = |K′| equals the total number of packets arriving
on L in the original conflict graph according to J , and each link in K′ represents a
packet in the original conflict graph with arriving time and deadline given by J . The
interference model of K′ inherits from the interference model of K, plus that two links
in K′ that correspond to the same link in K interfere each other. Let I ′(l) denote the
set of links that interfere with link l in K′, and by convention assume l ∈ I ′(l). Also
let I ′(l) be the collection of subsets of I ′(l)\{l} that can be scheduled simultaneously
according to the interference model.

A multi-schedule over the multigraph K′ in the frame is represented by a function
(we overload the symbol s for convenience in this proof)

s : K′ × {1, 2, . . . , F} → {0, 1}
〈i, t〉 7→ si(t)

with si(t) = 1 if link i ∈ K′ is scheduled by s at time slot t, and si(t) = 0 otherwise.
A multi-schedule s is feasible if no two interfering links are scheduled at the same
time slot, no link is scheduled before its arriving time or after its deadline, and each
link is scheduled at most once during the entire frame. A feasible multi-schedule s
is maximal if no more links can be scheduled without breaking the feasibility. We
note that a feasible (or maximal, respectively) schedule for J over the original set of
links K corresponds to a feasible (or maximal, respectively) multi-schedule over the
multigraph K′ given by J . Let supp(s) be the support of s, i.e., the set of 〈link, time
slot〉 pairs of scheduled links by s. Let ‖s‖ =

∑
i

(
ᾱi
∑

t si(t)
)
, where ᾱi = αj if link i

in K′ corresponds to link j in K. Then we say ‖s‖ is the weight of the multi-schedule
s.

Define the interference neighborhood of the 〈link, time slot〉 pair 〈i, t〉 to be the
interfering links of link i at time slot t; i.e.,

I ′(i, t) = I ′(i)× {t} ⊆ X,

where X = K′ × {1, 2, . . . , F}.
We now consider another maximal multi-schedule u, and the set of 〈link, time

slot〉 pairs that are in supp(u) but not in the union of the interference neighborhoods
of 〈link, time slot〉 pairs in supp(s), i.e., the set

P = supp(u)\
⋃

〈i,t〉∈supp(s)

I ′(i, t).
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We note that for any 〈link, time slot〉 pair 〈j, t′〉 ∈ P, we must have 〈j, t̃〉 ∈ supp(s) for
some t̃ 6= t′; in other words, link j must be scheduled in s at some time slot other than
t′. This holds because otherwise, link j can be added to s at time t without interfering
any links in s (note that 〈j, t′〉 is not in any interference neighborhoods of 〈link, time
slot〉 pairs in supp(s)). We use an example in Figure 31 to illustrate this point.

Let u|P be the multi-schedule u supported in P ; i.e., u|P (i, t) = u(i, t)1P (〈i, t〉),

where

1P (〈i, t〉) =


1 if 〈i, t〉 ∈ P

0 otherwise

is the indicator function. Then from the analysis above, we know that

‖u|P‖ ≤ ‖s‖.

Furthermore, the multi-schedule u can have at most some set of links I ′ ∈ I ′(i) active

in I(i, t) for any 〈i, t〉 ∈ supp(s) because of the interference. Therefore, we have

‖u‖ = ‖u|P‖+ ‖u|X\P‖

≤ ‖s‖+
∑

〈i,t〉∈supp(s)

‖u|I(i,t)‖

≤ ‖s‖+
∑

〈i,t〉∈supp(s)

max
I∈I′(i)

‖1I×{t}‖

=
∑

〈i,t〉∈supp(s)

(
ᾱi + max

I∈I′(i)
‖1I×{t}‖

)
.
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Then

‖s‖
‖u‖
≥

∑
〈i,t〉∈supp(s) ᾱi∑

〈i,t〉∈supp(s)

(
ᾱi + maxI∈I′(i) ‖1I×{t}‖

)
≥ min
〈i,t〉∈supp(s)

ᾱi
ᾱi + maxI∈I′(i) ‖1I×{t}‖

≥ min
j∈L

αj
αj + maxI∈I(j,L)

∑
k∈I αk

= ψL(α)

≥ ψ(α),

where the last inequality comes from Lemma 10. Since s and u are any arbitrary

maximal multi-schedules, we have

minφ∈MJ,L
αT
Lφ

maxφ∈MJ,L
αT
Lφ
≥ ψ(α).

Combining (3.2) and Lemma 10, we have

σ∗L(F ) ≥
minφ∈ML(F ) α

T
Lφ

maxφ∈ML(F ) α
T
Lφ

=

∑
J∈J (F ) π(J)αT

Lφ
(1)
J∑

J∈J (F ) π(J)αT
Lφ

(2)
J

≥ min
J∈J (F )

αT
Lφ

(1)
J

αT
Lφ

(2)
J

≥ ψ(α).

By taking supremum over α we get Theorem 3.

B.3 Proof of Corollary 3

Choose an arbitrary leaf l0 in the tree and set it to be the root. Define the depth
of each link to be the number of hops it is away from the root. Then the root has
depth 0 and any other link has depth greater than 0. For any link l, set the weight of
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it to be αl = (β − 1)− dep(l)/2, where dep(l) is the depth of link l. Note that the root
has the largest weight 1. Then each link has at most one parent and at most β − 1
children, where the parent has a weight

√
β − 1 times the weight of that link and the

children have weights 1√
β−1

times the weight of that link. Hence the pressure of link l
for α is

κl(α) ≥ 1

1 +
√
β − 1 + (β − 1) 1√

β−1

=
1

2
√
β − 1 + 1

.

Then by the definition of minimum pressure for α and Theorem 3 we get Corollary 3.

B.4 Proof of Theorem 4

By the definition of the interference degree β, there exists a link l0 together with
β of its neighbors {l1, l2, . . . , lβ} ⊆ N(l0) such that no two links in {l1, l2, . . . , lβ}
interfere each other. Now let L = {l0, l1, l2, . . . , lβ}, then L induces a star network
with the center link l0 and β leaves in the conflict graph. In this proof we construct
periodic traffic processes with packets only arriving on L, and show that the efficiency
ratio of LDF is γ∗LDF ≤ 1√

β+1
.

Let the traffic be such that packets only arrive on L = {l0, l1, . . . , lβ} at odd time
slots with the following 2-patterns (ai is the number of arriving packets on link li, and
the vector τi are the associated maximum delays)

• Pattern 0 (J0): ai = 1 for all i = 0, 1, 2, . . . , β, τ0 = 2, and τi = 1 for i =
1, 2, . . . , β.

• Pattern j (Jj, j = 1, 2, . . . , β): a0 = 1, ai = 1, ak = 0 for any other k, τ0 = 1,
τj = 2.

Note that since no packets arrive at the even time slots and the maximum delay is 2,
all packets expire at the end of the even time slots. Also note that each 2-pattern
takes two time slots.

Now consider periodic traffic with a period of 2n time slots, where each period
consists of n0 consecutive J0’s, followed by n1 consecutive J1’s, and then n2 consecutive
J2’s, and so on, till nβ consecutive Jβ’s, with n =

∑β
i=0 ni. We then notice that for

each traffic pattern Jj , all of the packets can be scheduled if the packets with maximum
delay 1 get scheduled in the odd time slots. Hence the optimal scheduler can always
achieve the QoS vector pOPT = 1. For LDF, we assume each time the pattern Jj
arrives, only deficit j increases by one, and LDF chooses to schedule link j, reducing
deficit j by one. Then with all the deficits unchanged, LDF achieves the QoS vector of

pLDF =

(
n0

n
,

n1

n0 + n1

,
n2

n0 + n2

, . . . ,
nβ

n0 + nβ

)
.
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Then we can easily see that LDF cannot achieve QoS vector p = pLDF + ε1 for any
ε > 0 since adding an extra ε/n deficit for each pattern on each link would make the
deficits grow without bound. Now let n0/n approximate 1√

β+1
and let nj approximate

1
β+
√
β
for j = 1, 2, . . . , β. Then we will have that pLDF approximates 1√

β+1
1. Therefore

the efficiency ratio of LDF under the given traffic and deficit arrival is at most 1√
β+1

.
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(b) Multigraph net-
work.
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Figure 31: Illustration of the proof of Theorem 3

Note: Consider a six-cycle network with one-hop interference as in (a) and traffic
pattern for a frame of 3 time slots as in(c). The network is converted into a multigraph
in (b) by dividing the two packets on link 6 into two links with the same end nodes,
and the corresponding traffic pattern J is shown in (d). Two maximal multi-schedules,
s and u, are given in (e) and (f) with x’s denoting the scheduled links, and the
one-hop neighborhoods of the scheduled links of s are illustrated by circles. We see
that the one-hop neighborhoods of s cover all scheduled links by s, but miss one link
scheduled by u. However, as shown in (g), the missed link can be inserted into the
one-hop neighborhood in the first time slot so that all scheduled links by the modified
multi-schedule u are now covered by the one-hop neighborhoods of s.
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C.1 Proof of Theorem 5

We ignore the superscript (n) of Q(n)
k (t) as we will focus on the nth system. Define

the Lyapunov function to be

V (q) =
n∑
k=1

q2
k.

Let x, y ∈ Nn denote the state of the Markov chains, and qx,y denote the transition
rate from state x to state y. According to the Foster–Lyapunov theorem for continuous-
time Markov chain (see, for example, Theorem 9.1.8 in Srikant and Ying (2014)), we
consider ∑

y 6=x

qx,y
(
V (y)− V (x)

)
. (C.1)

Define 1× n vector ek such that ek[k] = 1 and ek[l] = 0 for any l 6= k. Then

qx,x−ek

(
V ((x− ek)+)− V (x)

)
≤ −2xk + 1,

which corresponds to a departure at server k. Next define Ψx to be the set of possible
states of the Markov chain when a batch arrival occurs when the system is in state x,
then

∑
y∈Ψx

qx,y
(
V (y)− V (x)

)
≤(a)

λn

m

2
m

n

∑
k

xk +m


= 2λ

∑
k

xk + λn,

The inequality (a) can be established by comparing batch-filling with the load-balancing
policy that places the m tasks to a set of randomly selected m servers, one for each
server. Note that water-filling is the optimal solution to the following problem:

minimize
a

dm∑
k=1

(ak +Qk)
2

subject to
n∑
k=1

ak = m

ak ∈ N ∀ k.

Therefore
∑

y∈Ψx
qx,yV (y) is minimized under water-filling, conditioned on the same

set of dm sampled queues, and inequality (a) holds.
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Therefore, we have∑
y 6=x

qx,y
(
V (y)− V (x)

)
≤− (2− 2λ)

∑
k

xk + n+ λn.

Therefore, the Markov chain is positive recurrent according to the Foster–Lyapunov
theorem. Now assume the system is in the steady state, then we have

0 = E

∑
y 6=Q̂

qQ̂,y

(
V (y)− V (Q̂)

)
≤ −(2− 2λ) E

∑
k

Q̂k

+ n+ λn,

which implies that

E

 1

n

∑
k

Q̂k

 ≤ 1 + λ

2− 2λ
.

Therefore, the theorem holds by choosing c = 1+λ
2−2λ

.

C.2 Proof of Lemma 4

Without loss of generality, assume server 1 has queue size i and has been probed.
Now given any j ≥ 0, define

Xj =
dm−1∑
k=1

Iφk=j,

which is the number of probed servers with queue size j without including server 1,
and is the summation of dm− 1 i.i.d. Bernoulli random variables with mean πj. We
further define µj = E[Xj] = (dm− 1)πj.

Consider any i such that i ≥ Q̄π. The probability that server 1 receives a task in
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water filling is upper bounded by

E

(m−∑i−1
j=0(i− j)Xj

1 +
∑i

j=0 Xj

)+


≤E


m−∑Q̄π−1

j=0 (Q̄π − j)Xj

1 +
∑Q̄π

j=0Xj

+


= E


 m

dm−1
−
∑Q̄π−1

j=0 (Q̄π − j) Xj
dm−1

1
dm−1

+
∑Q̄π

j=0
Xj

dm−1

+
 (C.2)

which converges to  1
d
−
∑Q̄π−1

j=0 (Q̄π − j)πj∑Q̄π
j=0 πj

+

(C.3)

as m→∞ because Xj/(dm− 1) converges to πj in distribution and the term inside
the expectation is bounded and continuous in terms of Xj/(dm − 1). According to
the definition of Q̄π (4.3), we know that

1

d
−

Q̄π−1∑
j=0

(Q̄π − j)πj ≤ 0,

so (C.2)→ 0 and,
qi,j = 0 i ≥ Q̄π and j 6∈ {i, i− 1}. (C.4)

Now we assume i < Q̄π. In this case, the queue size of server 1 becomes ≥ Q
(Q > i) after water filling with probability

E

min

1,

m− (Q− 1− i)−
∑Q−2

j=0 (Q− 1− j)Xj

1 +
∑Q−1

j=0 Xj

+

 .

Similar to the analysis above, it can be shown that

m− (Q− 1− i)−
∑Q−2

j=0 (Q− 1− j)Xj

1 +
∑Q−1

j=0 Xj
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converges to

1
d
−
∑Q−2

j=0 (Q− 1− j)πj∑Q−1
j=0 πj

.

For Q ≥ Q̄π + 1, according to the definition of Q̄π, we have

1

d
−

Q̄π−1∑
j=0

(Q̄π − j)πj ≤ 0.

For Q = Q̄π,

1
d
−
∑Q̄π−2

j=0 (Q̄π − 1− j)πj∑Q̄π−1
j=0 πj

= απ.

For Q ≤ Q̄π − 1,

1
d
−
∑Q−2

j=0 (Q− 1− j)πj∑Q−1
j=0 πj

≥
1
d
−
∑Q̄π−3

j=0 (Q̄π − 2− j)πj∑Q̄π−2
j=0 πj

≥
∑Q̄π−2

j=0 (Q̄π − 1− j)πj −
∑Q̄π−3

j=0 (Q̄π − 2− j)πj∑Q̄π−2
j=0 πj

=1. (C.5)

Therefore, for any i < Q̄π and i 6= j, we have

qi,j =


λdαπ, if j = Q̄π

λd(1− απ), if j = Q̄π − 1
0, otherwise.

(C.6)

Hence, the lemma holds.

C.3 Proof of Theorem 9

Motivated by the proof in Mitzenmacher (1996), we consider the following Lyapunov
function

V (t) =
∞∑
i=1

|si(t)− ŝi|.
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Define εi = si − ŝi, so the Lyapunov function can be written as

V (t) =
∞∑
i=1

|εi(t)|.

We will analyze the upper right-hand derivative

dV (t)

dt
= lim sup

t′→t+

V (t′)− V (t)

t′ − t

in three different cases.

• In the first case, consider s such that X̄s = Q̄BF . In this case, the differential
equations can be written in terms of ε in the following form:

dεi
dt

=


−(1 + λd)εi + εi+1 i ≤ Q̄BF − 1,

λd
i−1∑
j=0

εj − εi + εi+1, i = Q̄BF

−εi + εi+1 otherwise.

(C.7)

Now for i ≤ Q̄BF − 1,

d|εi|
dt


= −(1 + λd)εi + εi+1 if εi > 0,

= (1 + λd)εi − εi+1, if εi < 0,

= |εi+1|, if εi = 0.

which implies that

d|εi|
dt
≤ −(1 + λd)|εi|+ |εi+1| i ≤ Q̄BF − 1.

Similarly, we can obtain that

d|εi|
dt
≤

{
−|εi|+ λd

∑i−1
j=1 |εj|+ |εi+1| if i = Q̄BF ,

−|εi|+ |εi+1| if i > Q̄BF .

Combining the results above and the fact that si(t)→ 0 as i→∞ for any t, we
conclude in this case,

dV (t)

dt
=
∞∑
i=1

d|εi|
dt
≤ −|ε1|.
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• In the second case, consider s such that X̄s > Q̄BF . Then, similar to the analysis
of the first case, we have

dεi
dt
≤ −(1 + λd)|εi|+ |εi+1| ∀ i ≤ Q̄BF − 1. (C.8)

We next consider two subcases.

– In the first subcase, sQ̄BF ≥ ŝQ̄BF . Note that ŝi = 0 for any i > Q̄BF , so we
have

∞∑
i=Q̄BF

d|εi|
dt

=
∞∑

i=Q̄BF

dεi
dt

=
∞∑

i=Q̄BF

dsi
dt

= λ− λd
Q̄BF−1∑
j=0

(1− sj)− sQ̄BF

= λd

Q̄BF−1∑
j=0

εj − εQ̄BF

≤ −|εQ̄BF |+ λd

Q̄BF−1∑
j=0

|εj|. (C.9)

Combining (C.8) and (C.9), we obtain

dV (t)

dt
≤ −|ε1| − |εQ̄BF | ≤ 0.

123



– In the second subcase, sQ̄BF < ŝQ̄BF . In this case

∞∑
i=Q̄BF+1

d|εi|
dt

=
∞∑

i=Q̄BF+1

dεi
dt

=
∞∑

i=Q̄BF+1

dsi
dt

= λ− λd
Q̄BF∑
j=0

(1− sj)− sQ̄BF+1

= λ− λd
Q̄BF∑
j=0

(1− ŝj)

+ λd

Q̄BF∑
j=0

εj − εQ̄BF+1

≤ λd

Q̄BF∑
j=0

|εj| − |εQ̄BF+1|, (C.10)

where the last inequality holds due to the definition of Q̄BF and the fact
that εQ̄BF+1(t) = sQ̄BF+1(t) ≥ 0 for any t.
Next, given sQ̄BF < ŝQ̄BF , we have

d|εQ̄BF |
dt

=−
dsQ̄BF

dt
=− λd+ (1 + λd)sQ̄BF − sQ̄BF+1

=− λd+ (1 + λd)ŝQ̄BF
+ (1 + λd)εQ̄BF − εQ̄BF+1

≤− (1 + λd)|εQ̄BF |+ |εQ̄BF+1|, (C.11)

where the last inequality holds because εQ̄BF < 0, and

− λd+ (1 + λd)ŝQ̄BF

=− λd+ (1 + λd)
(

1− (1− λ)(1 + λd)Q̄BF−1
)

=1− (1− λ)(1 + λd)Q̄BF

≤1− (1− λ)
1

1− λ
= 0.
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Combining inequalities (C.8), (C.10) and (C.11), we obtain

dV (t)

dt
≤ −|ε1| ≤ 0.

• In the third case, consider s such that X̄s < Q̄BF . In this case, we first have

∞∑
i=Q̄BF+1

d|εi|
dt

=
∞∑

i=Q̄BF+1

dsi
dt

= −|εQ̄BF+1|, (C.12)

and

dεi
dt
≤ −(1 + λd)|εi|+ |εi+1| ∀ i < X̄s. (C.13)

We next further consider the following subcases.

– Assume sX̄s < ŝX̄s , so

d|εX̄s|
dt

= −λ+ λd
X̄s−1∑
j=0

(1− sj) + sX̄s − sX̄s+1

Note that ŝi − ŝi+1 = λd(1− ŝi) for any i < Q̄BF , so

d|εX̄s|
dt

=− λ+ λd
X̄s∑
j=0

(1− ŝj)

− λd
X̄s−1∑
j=0

εj + εX̄s − εX̄s+1

≤− λ+ λd
X̄s∑
j=0

(1− ŝj)

+ λd
X̄s−1∑
j=0

|εj| − |εX̄s|+ |εX̄s+1|. (C.14)

Next for X̄s < i < Q̄BF , we have

dεi
dt

=− si + si+1

=− ŝi + ŝi+1 − εi + εi+1

=λd− λdŝi − εi + εi+1,
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which implies that

d|εi|
dt
≤ λd(1− ŝi)− |εi|+ |εi+1| ∀ X̄s < i < Q̄BF . (C.15)

For i = Q̄BF , we have

dεQ̄BF
dt

=− sQ̄BF + sQ̄BF+1

=− ŝQ̄BF + ŝQ̄BF+1 − εQ̄BF + εQ̄BF+1

=λ− λd
Q̄BF−1∑
j=0

(1− ŝj)− εQ̄BF + εQ̄BF+1,

which implies that

d|εQ̄BF |
dt

≤ λ− λd
Q̄BF−1∑
j=0

(1− ŝj)− |εQ̄BF |+ |εQ̄BF+1|. (C.16)

Summing inequalities (C.12) - (C.16), we

dV (t)

dt
≤ −|ε1| ≤ 0.

– Assume sX̄s ≥ ŝX̄s , then

d|εX̄s |
dt

=λ− λd
X̄s−1∑
j=0

(1− sj)− sX̄s + sX̄s+1

=λ− λd
X̄s∑
j=0

(1− sj) + λd(1− sX̄s)− sX̄s + sX̄s+1

≤(a)λd− (1 + λd)sX̄s + sX̄s+1

≤− (1 + λd)|εX̄s|+ |εX̄s+1|, (C.17)

where inequality (a) holds due to the definition of X̄s, and the last inequality
holds because

λd− (1 + λd)ŝX̄s + ŝX̄s+1 = 0

when X̄s < Q̄BF .
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The summation of (C.15) and (C.16) yields that

Q̄BF∑
i=X̄s+1

d|εi|
dt
≤λ− λd

X̄s∑
j=0

(1− ŝj)− |εX̄s+1|+ |εQ̄BF+1|

≤λ− λd
X̄s∑
j=0

(1− sj)

− λd
X̄s∑
j=0

εj − |εX̄s+1|+ |εQ̄BF+1|

≤λd
X̄s∑
j=0

|εj| − |εX̄s+1|+ |εQ̄BF+1|, (C.18)

where the last inequality holds due to the definition of X̄s. The summation
of (C.12), (C.13), (C.17) and (C.18) yields

dV (t)

dt
≤ −|ε1| ≤ 0.

In a summary, we have shown that

dV (t)

dt

{
≤ 0, if s(t) 6= ŝ
= 0, otherwise. (C.19)

Next define i∗ = min{i : εi < 0}. If such an i∗ exists, since ŝi = 0 for any i > Q̄BF ,
i∗ ≤ Q̄BF . Furthermore, if X̄s < Q̄BF , then i∗ ≤ X̄s. It is easy to verify that when i∗
exists,

d|εi∗−1|
dt

=
dεi∗−1

dt
= −(1 + λd)|εi∗−1| − |εi∗ |.

Since the following bound has been used throughout in the proof

d|εi∗−1|
dt

≤ −(1 + λd)|εi∗−1|+ |εi∗|,

when i∗ exists, we can further obtain

dV (t)

dt
≤ −|ε1| − |εi∗|, (C.20)

which implies

dV (t)

dt


= 0, if s(t) = ŝ.
< 0, if si(t) < ŝi for some i
< 0, if s1(t) > ŝ1

≤ 0, if si(t) ≥ ŝi ∀i and s1(t) = ŝ1.

(C.21)
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The result above shows that |s(t)− ŝ| is non-increasing.
For any x such that |x| <∞, we define

Sx =
{
y : |yn| ≤ |xn| for all n

}
.

Then we can see that Sx is compact since we can approximate the tail with ε/2 and
the first finitely-many elements are in an equivalent Euclidean space and hence the
the finite-dimensional part is totally bounded with the remaining ε/2 as well.

Since |s(t)− ŝ| is non-increasing, given a fixed r > 0 and initial condition s(0) ∈
B̄(ŝ, r), where

B̄(ŝ, r) =
{
s ∈ X : ‖s− s̄‖ ≤ r

}
,

we have
|s(t)| ≤ r + |ŝ| ∀ t.

Since s1(t) ≥ s2(t) ≥ . . . ≥, there exists N(r) such that for any i ≥ N(r) and any
t ≥ 0,

si(t) ≤
1

d
,

ṡi+1(t) ≤ 0.

Now consider any initial state s(0) ∈ X . Let r = ‖s(0)− ŝ‖ and

s′i =

{
1 if i ≤ N(r),

si(0) if i > N(r).

Then s′ ∈ X . Let Ω = B̄(ŝ, r) ∩ Ss′ . Since both B̄(ŝ, r) and Ss′ are closed and Ss′ is
compact, we have that Ω is compact. Also note that for any initial state s(0) ∈ Ω we
have s(t) ∈ Ω as well, so Ω is positive invariant and compact.

Furthermore, given s(t) such that s1(t) = ŝ1 and si(t) ≥ ŝi(i ≥ 2) , it can be easily
shown that s1(t+ δt) > ŝ1 for a sufficiently small δt unless s(t) = ŝ. The result can be
proved by following the idea of LaSalle’s invariance principle (see Khalil (2001)).

C.4 Proof of Theorem 10

Recall the definition of Π(n)(t) ∈ N∞ where the ith component Π
(n)
i (t) is the

number of servers whose queue lengths are equal to i. Since Π(n)(t) can be uniquely
determined by Γ(n)(t) and vice versa, and Π(n)(t) is a Markov chain, Γ(n)(t) is a Markov
chain and we have

Γ(n)(t) = Γ(n)(0) +
∑
L∈N∞

LNL

(∫ t

0

R
(n)
L (Γ(n)(u)) du

)
, (C.22)
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where NL(x) are independent standard Poisson processes and R(n)
L (Γ) is the transition

rate of the Markov chain from state Γ to state Γ + L. For example, given

L = (0,−1, 0, · · · , )′,

which corresponds to the event that there is a departure from a server with queue size
1,

R
(n)
L (Γ(n)) = Γ

(n)
1 − Γ

(n)
2

because there are Γ
(n)
1 − Γ

(n)
2 servers with queue size 1. Dividing by n on both sides of

equation (C.22), we get

γ(n)(t) = γ(n)(0) +
∑
L∈N∞

L

n
NL

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
.

Now define Bn(t) to be the total number of batch arrivals within time interval
[0, t] in the nth system. Then Bn(t) = N( n

m
λt), i.e., a Poisson random variable with

mean n
m
λt. Define event Bn,α to be

Bn,α =

{
Bn(t) ≤ (1 + α)

n

m
λt

and
∑
i

γ
(n)
i (0) ≤ (1 + α)

∑
i

si(0)

 .

Applying the Chernoff bound, we obtain

P

(
Bn(t) ≤ (1 + α)

n

m
λt

)
≥ 1− e−

n
m
λth(α),

where h(α) = (1 + α) log(1 + α)− α. Also

lim
n→∞

P

∑
i

γ
(n)
i (0) ≤ (1 + α)

∑
i

si(0)

 = 1

because γ(n)(0) converges to s(0) in probability according to the assumption of the
theorem. Thus, we have

lim
n→∞

P
(
Bn,α

)
= 1.

Note that n
∑

i γ
(n)
i (u) is the total number of tasks in the system at time u. When

Bn,α occurs,

max
0≤u≤t

∑
i

γ
(n)
i (u) ≤ (1 + α)

λt+
∑
i

si(0)

 .
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Define Cα = (1 + α)(λt+
∑

i si(0)). When the inequality above holds, we have

γ
(n)
i (u) =

∞∑
j=i

π
(n)
j (u) ≤ Cα

i
∀ 0 ≤ u ≤ t, ∀i, (C.23)

which further implies that for k =

⌈
Cα

1
2(1− 1

d)

⌉
, we have

γ
(n)
i (u) ≤ 1

2

(
1− 1

d

)
∀ 0 ≤ u ≤ t, ∀i ≥ k. (C.24)

Next we define the following four sets:

• T +
n : the set of L such that L ≥ 0, which is the set of L related to arrivals,

• L+
n : the set of L such that L ≥ 0 and Li = 0 for i ≥ k + 1.

• T −n : the set of L such that L ≤ 0, which is the set of L related to departures.
• L−n : the set of L ≤ 0 and Li = 0 for i ≥ m.

We further define N̄L(a) = NL(a)− a, which is a centered Poisson process. Then we
have

γ(n)(t)

= γ(n)(0) +∑
L∈(T +

n ∪T −n )\(L+n∪L−n )

L

n
NL

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
+

∑
L∈L+n∪L−n

L

n
N̄L

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
+

∑
L∈L+n∪L−n

L

n

∫ t

0

R
(n)
L (nγ(n)(u)) du.

Define s(t) to be the solution of the differential equations (4.7) with initial condition
s(0), and F (s) such that the nonlinear differential equations in (4.7) are given by

ds

dt
= F (s).

Following the idea behind the proof of Kurtz’s theorem (see Draief and Massoulié
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(2010) for an easy exposition), we have

sup
0≤u≤t

∣∣∣γ(n)(u)− s(u)
∣∣∣ (C.25)

≤
∣∣∣γ(n)(0)− s(0)

∣∣∣ (C.26)

+ sup
0≤u≤t

∣∣∣∣∣∣∣
∑

L6∈(L+n∪L−n )

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣∣ (C.27)

+ sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈L+n∪L−n

L

n
N̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣ (C.28)

+ sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈L+n∪L−n

L

n

∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

−
∫ u

0

F (γ(n)(τ)) dτ

∣∣∣∣ (C.29)

+ sup
0≤u≤t

∣∣∣∣∫ u

0

F (γ(n)(τ)) dτ −
∫ u

0

F (s(τ)) dτ

∣∣∣∣ . (C.30)

According to Lemmas 12-14, we obtain that there exists n̄ such that for any n ≥ n̄,

P

(
sup

0≤u≤t

(∣∣∣γ(n)(u)− s(u)
∣∣∣−

∣∣∣∣∫ u

0

F (γ(n)(τ))− F (s(τ)) dτ

∣∣∣∣
)
≥ 4δ


≤P

(∣∣∣γ(n)(0)− s(0)
∣∣∣ > δ

)
+ 3(1− P

(
Bn,α

)
)

+ 4mk max

{
e
− n
m
λth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)

}
+
λt

δ
e−

(d−1)2

2(d+1)
m +

λtCα
δm

,

which converges to zero as n→∞ since m = Θ(log n).
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Let

Bn =

{
sup

0≤u≤t

(∣∣∣γ(n)(u)− s(u)
∣∣∣−

∣∣∣∣∫ u

0

F (γ(n)(τ))− F (s(τ))dτ

∣∣∣∣
)
≤ 4δ

 .

Then P(Bn)→ 1 as n→∞. When Bn occurs, for any u ∈ [0, t],∣∣∣γ(n)(u)− s(u)
∣∣∣ ≤ 4δ +

∣∣∣∣∫ u

0

F (γ(n)(τ))− F (s(τ))dτ

∣∣∣∣
≤ 4δ +M

∫ u

0

∣∣∣γ(n)(τ)− s(τ)
∣∣∣ dτ,

where the last inequality holds because F (s) is Lipschitz as shown in Lemma 15. By
Gronwall’s inequality we have

∣∣∣γ(n)(u)− s(u)
∣∣∣ ≤ 4δeMu for any u ∈ [0, t]. Thus

P

(
sup

0≤u≤t

∣∣∣γ(n)(u)− s(u)
∣∣∣ ≤ 4δeMt

)
≥ P(Bn)→ 1

as n→∞.

Lemma 12.

P
(
(C.27) > δ

)
≤ λt

δ
e−

(d−1)2

2(d+1)
m +

λtCα
δm

+ 2(1− P
(
Bn,α

)
).

Proof. Note that L ∈ T +
n \ L+

n occurs when a task is dispatched to a queue with size
at least k. Under condition (C.24), when a batch arrival occurs,

P

 ⋃
L∈T +

n \L+n

{nγ → nγ + L}


≤ P (dm− Zk < m) = P

(
Zk > (d− 1)m

)
≤ e−

(d−1)2

2(d+1)
m,

where Zk is the number of servers probed with queue size at least k and the last
inequality is obtained from the Hoeffding’s inequality for sampling without replacement.
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Therefore, we have

P

 sup
0≤u≤t

∣∣∣∣∣∣∣
∑

L∈T +
n \L+n

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣∣ ≥ δ



≤P

 sup
0≤u≤t

m

n
N

∫ u

0

∑
L∈T +

n \L+n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ



≤(a) P

mn N
∫ t

0

∑
L∈T +

n \L+n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ



≤P

mn N
∫ t

0

∑
L∈T +

n \L+n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ
⋂
Bn,α


+ 1− P(Bn,α)

≤P

(
m

n
N

(
n

m
λte−

(d−1)2

2(d+1)
m

)
≥ δ

)
+ 1− P(Bn,α)

≤λt
δ
e−

(d−1)2

2(d+1)
m + 1− P(Bn,α),

where inequality (a) holds because N(t) is nondecreasing with t and the last inequality
is obtained from the Markov inequality.
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Similarly, we can also obtain

P

 sup
0≤u≤t

∣∣∣∣∣∣∣
∑

L∈T −n \L−n

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣∣ ≥ δ



≤P

 1

n
N

∫ t

0

∑
L∈T −n \L−n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ



≤P

B(n, α)
⋂ 1

n
N

∫ t

0

∑
L∈T −n \L−n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ


+ 1− P(Bn,α)

≤P

(
1

n
N

(
nλt

Cα
m

)
≥ δ

)
+ 1− P(Bn,α)

≤λtCα
δm

+ 1− P(Bn,α).

Lemma 13.

P
(
(C.28) > δ

)
≤ 4mk max

{
e
− n
m
λth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)

}
.

Proof. Note that |L+
n ∪ L−n | ≤ mk +m ≤ 2mk. For L ∈ L+

n ,

P

 sup
0≤u≤t

∣∣∣∣∣LnN̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣ > δ

2mk


≤P

 sup
0≤u≤t

m

n

∣∣∣∣∣N̄L

(
n

m
λu

)∣∣∣∣∣ > δ

2mk


≤2e−

n
m
λth( δ

2mkλt
),
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where the last inequality follows from Proposition 5.2 in Draief and Massoulié (2010).
Similarly, for L ∈ L−n ,

P

 sup
0≤u≤t

∣∣∣∣∣LnN̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣ > δ

2mk


≤P

(
sup

0≤u≤t

1

n

∣∣N̄L (nu)
∣∣ > δ

2mk

)
≤2e−nth( δ

2mkt
).

Combining the results above and using the union bound, we obtain

P
(
(C.28) > δ

)
≤ 4mk max

{
e
− n
m
λth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)

}
.

Lemma 14. There exists n̄ such that for any n ≥ n̄,

P
(
(C.29) > δ

)
≤ 1− P

(
Bn,α

)
.

Proof. To study (C.29) under condition (C.23), we define

F (n)(γ) =
1

n

∑
L∈L+n∪L−n

LR
(n)
L (nγ),

and consider ∣∣∣F (n)(γ)− F (γ)
∣∣∣ =

∑
i

∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ . (C.31)

We divide the analysis into the following cases:

• For i > m, Li = 0 for any L ∈ L+
n ∪ L−n , which implies F (n)

i (γ) = 0 and∑
i>m

∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ =
∑
i>m

Fi(γ) = γm+1 ≤
Cα
m
.

• For m ≥ i > k,

F
(n)
i (γ) = −γi + γi+1,

which implies that ∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ = 0.
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• For k ≥ i,

F
(n)
i (γ) =

1

n

(
λn

m
E[Di|γ]− nγi + nγi+1

)
= λdE

[
Di

dm

∣∣∣∣ γ
]
− γi + γi+1,

where Di is a random variable denoting the change in the number of servers
with queue size at least i after water filling. Therefore,∣∣∣F (n)

i (γ)− Fi(γ)
∣∣∣ = λdE

[
Di

dm

∣∣∣∣ γ
]
.

Recall Zi to be the number of probed servers with queue size at least i, so Di is
a function of Zj (j ≤ i). Specifically,

Di = min

dm− Zi,
m− i−1∑

j=0

(dm− Zj)

+
 . (C.32)

Therefore,

Di

dm
= min

dm− Zidm
,

1

d
−

i−1∑
j=0

(
1− Zj

dm

)+
 .

Applying the Hoeffding’s inequality for sampling without replacement, we have
that

P
(
|Zi − γidm| ≥

√
m logm

)
≤ 2e−2 logm

d =
2

m2/d
,

which implies that

P
(
|Zi − γidm| ≤

√
m logm ∀i ≤ k

)
≥ 1− 2k

m2/d
.

Given |Zi − γidm| ≤
√
m logm for all i ≤ k, we can obtain∣∣∣∣∣∣∣∣E

[
Di

dm

∣∣∣∣ γ
]
−min

1− γi,

1

d
−

i−1∑
j=0

(1− γj)

+

∣∣∣∣∣∣∣∣

≤k
√

logm

d
√
m

.
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By summarizing the cases above, we obtain that under condition (C.23)∣∣∣F (n)(γ)− F (γ)
∣∣∣ ≤ Cα

m
+
k
√

logm

d
√
m

.

Therefore, given δ, there exists mδ such that for any m ≥ mδ,

sup
0≤u≤t

∣∣∣∣∫ u

0

F (n)(γ(n)(τ)) dτ −
∫ u

0

F (γ(n)(τ)) dτ

∣∣∣∣
≤t

(
Cα
m

+
k
√

logm

d
√
m

)
≤ δ.

So for sufficient large n,

P

(
sup

0≤u≤t

∣∣∣∣∫ u

0

F (n)(γ(n)(τ)) dτ −
∫ u

0

F (γ(n)(τ)) dτ

∣∣∣∣ > δ

)
≤1− P

(
Bn,α

)
.

Lemma 15. F (s) is Lipschitz.

Proof. Consider s, s′ ∈ N∞. Without loss of generality X̄s ≤ X̄s′ . Define

hi(s) = Fi(s)− si + si+1.

Then

|F (s)− F (s′)|

=
∞∑
i=1

|Fi(s)− Fi(s′)|

≤
∞∑
i=1

(
|si − s′i|+ |si+1 − s′i+1|+ |hi(s)− hi(s′)|

)
≤2|s− s′|+

∞∑
i=1

|hi(s)− hi(s′)|.

Recall that Fi(s) = −si + si+1 for i > X̄s and Fi(s) = λd − (1 + λd)si + si+1 for
i < X̄s, so

|F (s)− F (s′)|

≤2|s− s′|+ λd

X̄s−1∑
i=1

|si − s′i|+
X̄s′∑
i=X̄s

|hi(s)− hi(s′)|.
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We next consider two cases. If hX̄s(s) ≤ hX̄s(s
′), then

X̄s′∑
i=X̄s

|hi(s)− hi(s′)|

=λd− λds′X̄s − λ+ λd
X̄s−1∑
j=1

(1− sj)

+ λd

X̄s′−1∑
i=X̄s+1

(1− s′i)

+ λ− λd
X̄s′−1∑
j=1

(1− s′j)

=λd
X̄s−1∑
j=1

(s′j − sj)

≤λd
X̄s−1∑
j=1

|s′j − sj|

≤λd|s− s′|.

If hX̄s(s) > hX̄s(s
′), then

X̄s′∑
i=X̄s

|hi(s)− hi(s′)|

=− λd+ λds′X̄s + λd− λdsX̄s + λ− λd
X̄s∑
j=1

(1− sj)

+ λ− λd
X̄s∑
j=1

(1− s′j)− λ+ λd
X̄s∑
j=1

(1− sj)

+ λ− λd
X̄s∑
j=1

(1− sj)

≤λd|s′X̄s − sX̄s|+ λd
X̄s∑
j=1

|s′j − sj|

≤2λd|s− s′|,
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where the first inequality holds because

λ− λd
X̄s∑
j=1

(1− sj) ≤ 0

according to the definition of X̄s.
Combining the results above, we obtain that

|F (s)− F (s′)| ≤ (2 + 3λd)|s− s′|.

Therefore, the lemma holds.

C.5 Proof of Theorem 11

Let X̂(nk) denote the weak convergence subsequence in assumption (A4). By (A1)
and Skorokhod’s representation theorem, there exists {X̃(nk)} and X̃ such that

• X̃(nk) =d X̂
(nk),

• X̃ =d X̄, and
• X̃(nk) converges to X̃ almost surely.

Now let X(nk)(0) = X̃(nk), i.e., the nkth system starts at a random initial condition
specified by its stationary distribution, which implies that

X(nk)(t) =d X̃
(nk) ∀t.

Denote by X(t) the random state of the dynamical system starting from the random
initial condition X̃. According to (A2), for any deterministic initial condition in X ,

X(nk)(t)
w−→ X(t).

By the definition of weak convergence, for a bounded continuous function f,

lim
n→∞

E
[
f(X(nk)(t))|X(nk)(0) = X̃(nk)

]
= E

[
f(X(t))|X(nk)(0) = X̃

]
.

Since f is bounded, further by the bounded convergence theorem and the fact that
P
(
X̃ ∈ X

)
= P

(
X̄ ∈ X

)
= 1, we have

lim
n→∞

E
[
f(X(nk)(t))

]
= E

[
f(X(t))

]
,
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which implies that X(nk)(t) converges weakly to X(t) for any t.
Since X(nk)(t) =d X̂

(nk) ∀t, we further have X(t) =d X̄ ∀t. Now according to (A3),
the dynamical system converges to X̂ starting from any initial condition in X , which
implies X(t) converges to X̂ almost surely and also implies that X(t) converges weakly
to X̂. Therefore, X̄ is a point mass at X̂, which implies that X̂(nk) converges weakly
to X̂. Since this holds for any convergent subsequence, the theorem holds.

C.6 Proof of Lemma 6

Since the series
∑∞

i=1 E [γ̃i] is increasing and bounded above, in order to get uniform
convergence of

∑∞
i=1 E

∣∣∣γ̂(nk)
i − γ̃i

∣∣∣ for all k it suffices to show the series
∑∞

i=1 E γ̂(nk)
i

are uniformly convergent for all k.
Now consider the nkth system and define a Lyapunov function on the queue-length

space to be

Vb(q) =

nk∑
j=1

((qj − b+ 1)+)2,

where b > 0. Let x, y ∈ Nnk denote the state of the Markov chains, and qx,y denote the
transition rate from state x to state y. According to the Foster–Lyapunov theorem for
continuous-time Markov chain (see, e.g., Theorem 9.1.8 in Srikant and Ying (2014)),
we consider the drift

GVb(x) =
∑
y 6=x

qx,y(Vb(y)− Vb(x)),

where G is the generator of the CTMC. We first note that the drift for the departure
at jth queue satisfies

qx,x−ej(Vb(x− ej)− Vb(x)) ≤ −2(xj − b)+.

As for arrival, We note that batch-filling is one of the optimal solutions to the
following problem:

minimize
a

dm∑
k=1

(
(ak + xk − b+ 1)+

)2

subject to
nk∑
k=1

ak = m,

ak ∈ N ∀k,

where (xk : 1 ≤ k ≤ dm) are the sizes of the probed dm queues. In other words, given
x and the set of dm probed servers, batch-filling minimizes Vb(y). This can be proved
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by showing that any task assignment can be modified to the batch-filling solution, by
iteratively moving new tasks from large queues to small queues, without increasing
the value of the objective function.

Given any b > 2, we consider the following two cases.

• First consider x such that

x ∈ Ωb ,

x :
nk∑
j=1

1xj≤b−2 ≥ nk
d+ 1

2d

 .

In other words, at least (d+ 1)/2d fraction of servers have queue size at most
b− 2. Let q̃x,y be the transition rate under batch-sampling from state x to state
y. For φ ⊆ {1, 2, . . . , nk} with |φ| = dm, let yx,φ be one possible state after
probing the servers with indices φ at state x under batch-filling, and let ỹx,φ
be one possible state after probing the servers with indices φ at state x under
batch-sampling. Then we have∑

y≥x

qx,y(Vb(y)− Vb(x))

=
∑
y≥x

λn

m

∑
φ

P(Φ = φ) P(Y = y | X = x,Φ = φ)(Vb(y)− Vb(x))

=
λn

m

∑
φ

P(Φ = φ)
∑
y≥x

P(Y = y | X = x,Φ = φ)(Vb(y)− Vb(x))

=
λn

m

∑
φ

1(
nk
dm

)∑
y≥x

P(Y = y | X = x,Φ = φ)(Vb(yx,φ)− Vb(x))

=
λn

m
(
nk
dm

)∑
φ

(Vb(yx,φ)− Vb(x))

≤ λn

m
(
nk
dm

)∑
φ

(Vb(ỹx,φ)− Vb(x))

=
λn

m

∑
φ

P(Φ = φ)
∑
y≥x

P(Ỹ = y | X = x,Φ = φ)(Vb(y)− Vb(x))

=
∑
y≥x

q̃x,y(Vb(y)− Vb(x)),

where Φ is the random element of the uniformly probed indices, X is the state
before the arrival, Y and Ỹ are the states after the arrival under batch-filling
and batch-sampling, respectively.
Now under batch-sampling, a server may receive one (and at most one) task if
it is probed. Consider server j such that xj ≥ b − 1. Server j is probed with
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probability dm/nk, and will receive one task if it is among the m least loaded
queues in the md probed queues. Conditioned on server j is probed, define Gb−2

to be the number of probed servers with queue size at most b − 2 among the
other dm− 1 servers. According to Hoeffding’s inequality (Hoeffding, 1963) for
sampling without replacement, we get

P(Gb−2 < m) ≤ c1e
− (d−1)2

2d
m.

Therefore, we conclude that∑
y≥x

q̃x,y
(
Vb(y)− Vb(x)

)
≤
∑
j

λnk
m

dm

nk
c1e
− (d−1)2

2d
m
(
2(xj − b+ 1) + 1

)+

≤ λdc1e
− (d−1)2

2d
m
∑
j

(
2(xj − b)+ + 3

)
.

Note that (yj − b + 1)+ = 0 for any queue j such that xj ≤ b − 2 since each
server is given at most one task under batch-sampling.

• Consider x such that x 6= Ωb; i.e.,∑
j

1xj≤b−2 < nk
d+ 1

2d
.

In this case, we compare batch-filling with the randomized load-balancing
algorithm that places m tasks in a set of randomly selected m servers, one for
each server. According to the analysis in the proof of Theorem 5, we have∑

y≥x

qx,y
(
Vb(y)− Vb(x)

)
≤ λnk

m

m

nk

nk∑
j=1

(
((xj − b+ 2)+)2 − ((xj − b+ 1)+)2

)
≤ λ

nk∑
j=1

(
2(xj − b)+ + 3

)
= 2λ

nk∑
j=1

(xj − b)+ + 3λnk.
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Combining the results above, we have that for any x,

GVb(x) =
∑
y 6=x

qx,y
(
Vb(y)− Vb(x)

)
≤
∑
j

−2

(
1− λmax{1, c1de

− (d−1)2

2d
m}
)

(xj − b)+

+ 3nkλc1de
− (d−1)2

2d
m1x∈Ωb + 3λnk1x 6∈Ωb .

Recall that the Markov chain is positive recurrent according to Theorem 5. We
have

E[GVb(Q̂(nk))] = 0,

which implies that

E

 1

nk

nk∑
j=1

(Q̂
(nk)
j − b)+

 ≤ 3λc1de
− (d−1)2

2d
m P(Q̂(nk) ∈ Ωb) + 3λP(Q̂(nk) /∈ Ωb)

2

(
1− λmax{1, c1de

− (d−1)2

2d
m}
) .

Since m = Θ(log n), for sufficiently large n we have 1 ≥ c1de
− (d−1)2

2d
m. So for any

ε > 0 there exists nε such that for any n ≥ nε,

3λc1de
− (d−1)2

2d
m P(Q̂(nk) ∈ Ωb)

2

(
1− λmax{1, c1de

− (d−1)2

2d
m}
) ≤ ε

2
.

Also note by Theorem 5 we have
∑∞

i=1 E γ̂nki ≤ c, which implies E γ̂nki ≤ c
i
for any i

and k. Then by Markov’s inequality,

P(Q̂(nk) /∈ Ωb) = P

(
γ̂

(nk)
b−1 ≥

d− 1

2d

)
≤ c

b− 1

2d

d− 1
.

So there exists bε such that for any b ≥ bε and any n ≥ nε,

3λP(Q̂(nk) /∈ Ωb)

2

(
1− λmax{1, c1de

− (d−1)2

2d
m}
) ≤ ε

2
.

So
∞∑

i=b+1

E γ̂(nk)
i = E

 1

nk

nk∑
j=1

(Q̂
(nk)
j − b)+

 ≤ ε

for n ≥ nε and b ≥ bε. Hence the series
∑∞

i=1 E γ̂(nk)
i are uniformly convergent for all

k.
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C.7 Proof of Corollary 5

To simplify the notation, we assume k = 2, the analysis for k > 2 is almost identical
and hence omitted here. Now for the nth system, we define S(n) = {i : i > 2}, i.e.,
the set of all servers except servers 1 and 2. We consider the following Markov chain
(Q

(n)
1 (t), Q

(n)
2 (t), η(n)(t)), where

η
(n)
i (t) =

∑
i∈S(n) IQ(n)

i (t)=i

n− 2

=
Π

(n)
i (t)− I

Q
(n)
1 (t)=i

− I
Q

(n)
2 (t)=i

n− 2
,

i.e., the fraction of servers with queue size i in S(n). Recall that Q(n)
1 (t) is the queue

length of the first server in the nth system, Q(n)
2 (t) is the queue length of the second

server in the nth system, and Q̂(n)
1 and Q̂(n)

2 are the queue lengths in the steady state.
Denote by

π(n) (x, y, η) = P
(

(Q̂
(n)
1 , Q̂

(n)
2 , η̂(n)) = (x, y, η)

)
,

i.e., the stationary distribution of the Markov chain. For the nth system, the global
balance equation for a given state (x, y, η) is

π(n) (x, y, η)
∑

(x̃,ỹ,η̃)6=(x,y,η)

r
(n)
(x,y,η)(x̃, ỹ, η̃)

=
∑

(x̃,ỹ,η̃)6=(x,y,η)

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y, η),

where r(n)
(x,y,η)(x̃, ỹ, η̃) is the transition rate from state (x, y, η) to (x̃, ỹ, η̃) in the nth

system, which further implies that∑
η

∑
(x̃,ỹ,η̃) 6=(x,y,η)

π(n) (x, y, η) r
(n)
(x,y,η)(x̃, ỹ, η̃)

=
∑
η

∑
(x̃,ỹ,η̃) 6=(x,y,η)

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y, η). (C.33)

Note that for (x̃, ỹ, η̃) such that x̃ = x and ỹ = y,∑
η

∑
η̃ 6=η

π(n) (x, y, η) r
(n)
(x,y,η)(x, y, η̃)

=
∑
η

∑
η̃ 6=η

π(n) (x, y, η̃) r
(n)
(x,y,η̃)(x, y, η)
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by exchanging the symbols η and η̃. Furthermore, to transit to a state with x̃ > x
and ỹ > y, server 1 and server 2 need to be both probed, so∑

x̃>x,ỹ>y

r
(n)
(x,y,η)(x̃, ỹ, η̃) ≤ λ

n

m

dm(dm− 1)

n(n− 1)
= Θ

(
m

n

)
,

which implies that∑
η

π(n) (x, y, η)
∑

x̃>x,ỹ>y

r
(n)
(x,y,η)(x̃, ỹ, η̃) = O

(
m

n

)
since

∑
η π

(n) (x, y, η) ≤ 1. Similarly, we have∑
η

∑
x̃<x,ỹ<y

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y, η) = O

(
m

n

)
. (C.34)

Note that
r

(n)
(x,y,η)(x− 1, y, η) = r

(n)
(x,y,η)(x, y − 1, η) = 1,

so ∑
η

π(n) (x, y, η) r
(n)
(x,y,η)(x− 1, y, η)

=
∑
η

π(n) (x, y, η) r
(n)
(x,y,η)(x, y − 1, η)

= π(n)(x, y), (C.35)

∑
η

π(n) (x+ 1, y, η) r
(n)
(x+1,y,η)(x, y, η) = π(n) (x+ 1, y) , (C.36)

and ∑
η

π(n) (x, y + 1, η) r
(n)
(x,y+1,η)(x, y, η) = π(n) (x, y + 1) .

Now we consider∑
η

∑
x̃>x

∑
η̃

π(n) (x, y, η) r
(n)
(x,y,η)(x̃, y, η̃)

=
∑
x̃>x

∑
η

π(n) (x, y, η)
∑
η̃

r
(n)
(x,y,η)(x̃, y, η̃)

=π(n)(x, y)
∑
x̃>x

∑
η

π(n)
(
η|x, y

)∑
η̃

r
(n)
(x,y,η)(x̃, y, η̃)

=π(n)(x, y)
∑
x̃>x

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] ,
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where r(n)
(x,y,η)(x̃, y) =

∑
η̃ r

(n)
(x,y,η)(x̃, y, η̃).

Note that

r
(n)
(x,y,η)(x̃, y) =

E

min

1,

 1
d − (x̃− 1− x)−

∑x̃−2
j=0 (x̃− 1− j)Xjdm

1 +
∑x̃−1

j=0
Xj
dm

+

∣∣∣∣∣∣∣∣ η


− E

min

1,

 1
d − (x̃− x)−

∑x̃−1
j=0 (x̃− j)

Xj
dm

1 +
∑x̃

j=0
Xj
dm

+

∣∣∣∣∣∣∣∣ η
 ,

which implies that

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] =

E

min

1,

 1
d
− (x̃− 1− x)−

∑x̃−2
j=0 (x̃− 1− j)Xj

dm

1 +
∑x̃−1

j=0
Xj
dm

+



− E

min

1,

 1
d
− (x̃− x)−

∑x̃−1
j=0 (x̃− j)Xj

dm

1 +
∑x̃

j=0
Xj
dm

+

 .

It is easy to show that Xj/dm converges weakly to γ̂i because η converges weakly
to γ̂. Hence, we have

lim
n→∞

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] = qx,x̃(γ̂), x < x̃ ≤ Q̄BF ,

and
lim
n→∞

∑
x̃>Q̄BF

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] = 0, x < Q̄BF ,

where qx,x̃(γ̂) and Q̄BF are defined in Lemma 4. Since 0 ≤ π(n)(x, y) ≤ 1 and
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0 ≤ Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] ≤ dλ, we can conclude that

lim
n→∞

∑
η

∑
x̃>x

∑
η̃

π(n) (x, y, η) r
(n)
(x,y,η)(x̃, y, η̃)

= lim
n→∞

π(n)(x, y)
∑
x̃>x

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]
= lim

n→∞
π(n)(x, y)

∑
Q̄BF≥x̃>x

lim
n→∞

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]

+ lim
n→∞

π(n)(x, y) lim
n→∞

∑
x̃>x≥Q̄BF

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]
=π(x, y)

∑
Q̄BF≥x̃>x

qx,x̃(γ̂).

Similarly, we have

lim
n→∞

∑
η

∑
x̃<x

∑
η̃

π(n) (x̃, y, η̃) r
(n)
(x̃,ỹ,η̃)(x, y, η)

=
∑

x̃<x≤Q̄BF

π(x̃, y)qx̃,x(γ̂).

Summarizing the results above, (C.33) implies that

π(x, y)

 ∑
Q̄BF≥x̃>x

qx,x̃(γ̂) +
∑

Q̄BF≥ỹ>y

qy,ỹ(γ̂)


=

∑
x̃<x≤Q̄BF

π(x̃, y)qx̃,x(γ̂) +
∑

ỹ<y≤Q̄BF

π(x, ỹ)qỹ,y(γ̂).

It is easy to verify the equation above is the detailed balance equation for two
independent and identical Markov chains with transition rates given in Lemma 4, and
the unique solution therefore is π(x, y) = π̂xπ̂y for π̂ defined in (4.4). This means that
queue 1 and queue 2 are independent in the large-system limit.
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