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ABSTRACT  

In the burgeoning field of sustainability, there is a pressing need for healthcare to 

understand the increased environmental and economic impact of healthcare products and 

services. The overall aim of this dissertation is to assess the sustainability of commonly 

used medical products, devices, and services as well as to identify strategies for making 

easy, low cost changes that result in environmental and economic savings for healthcare 

systems. Life cycle environmental assessments (LCAs) and life cycle costing assessments 

(LCCAs) will be used to quantitatively evaluate life-cycle scenarios for commonly 

utilized products, devices, and services. This dissertation will focus on several strategic 

and high impact areas that have potential for significant life-cycle environmental and 

economic improvements: 1) increased deployment of reprocessed medical devices in 

favor of disposable medical devices, 2) innovations to expand the use of biopolymers in 

healthcare materials and devices, and 3) assess the environmental and economic impacts 

of various medical devices and services in order to give healthcare administrators and 

employees the ability to make more informed decisions about the sustainability of their 

utilized materials, devices, and services. 
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CHAPTER 1 

INTRODUCTION 

 

1. Moving Towards a Sustainable Healthcare System 

 

The environmental and economic impacts resulting from the healthcare system are 

becoming increasingly apparent. The World Health Organization (WHO) estimates that 

healthcare accounts for 17.1% of the United States’ Gross Domestic Product (GDP) (WHO, 

2015). Direct and total CO2 emissions attributed to the healthcare system are approximately 253 

and 545 million metric tons, respectively, which equates to 4.6% to 9.9% of the total United 

States’ (US) annual CO2 emissions (Jeanette W. Chung & David O. Meltzer, 2009; EPA, 2009). 

To support the healthcare system’s energy needs, 73 billion kWh is used annually (WHO, 2008). 

Hospitals alone generate more than 5.9 million tons of waste on annual basis, where a significant 

proportion of United States (US) hospital waste is either landfilled or incinerated (Practice 

Greenhealth, 2014). Hospitals also spend anywhere from $44 to $68 per ton on waste disposal, 

which equates to $259 to $401 million spent by US hospitals on waste on annual basis (Practice 

Greenhealth, 2014). A significant proportion of hospital waste streams are regulated medical 

waste (RMW), where RMW undergoes incineration before eventually reaching a landfill. The 

incineration of RMW has several resulting effects, including significant consumption of energy 

for incineration, significant expenditures, and the emission of CO2, dioxins, heavy metals (e.g., 

mercury and cadmium), hydrochloric gas, and other toxic substances (while also leaving a toxic 

fly ash residue that must be managed) (Karlsson & Pigretti-Ohman, 2005).  
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Given the healthcare’s significant consumption of goods and services, recent studies are 

examining the indirect environmental, human health, and economic impacts attributed to the 

large volumes of materials, devices, and services utilized by the healthcare system (Adler, 

Scherrer, Rückauer, & Daschner, 2005; Brown, Buettner, Canyon, Crawford, & Judd, 2012; 

Campion et al., 2015; Overcash, 2012a; J. Sherman, Le, Lamers, & Eckelman, 2012; Sorensen & 

Wenzel, 2014; Zhao, van der Voet, Huppes, & Zhang, 2009). These studies support a growing 

recognition in the healthcare community that the rising volumes of produced waste are 

representative of significant supply chain and service inefficiencies occurring in hospitals. These 

studies have also pointed to numerous sustainable strategies that can be applied to the healthcare 

system and to how those strategies can reduce adverse environmental impacts associated with 

healthcare activities, while still providing the same, if not better patient outcomes. Some of these 

strategies include: reusing medical devices, increasing recycling, optimizing medical waste 

incineration processes, and reducing products used in custom packs used in surgical procedures. 

While these studies have significantly advanced knowledge in the sustainable healthcare field, 

there are still an array of highly utilized healthcare products and services whose life-cycles have 

yet to be quantified environmentally or economically.  

  

2. Research Goals and Objectives 

 

In the burgeoning field of sustainability, there is a pressing need for healthcare to 

understand the increased environmental and economic impact of healthcare products and 

services. The overall aim of this dissertation is to assess the sustainability of commonly used 

medical products, devices, and services as well as to identify strategies for making easy, low cost 
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changes that result in environmental and economic savings for healthcare systems. Life cycle 

environmental assessments (LCAs) and life cycle costing assessments (LCCAs) will be used to 

quantitatively evaluate life-cycle scenarios for commonly utilized products, devices, and 

services. This dissertation will focus on several strategic and high impact areas that have 

potential for significant life-cycle environmental and economic improvements: 1) increased 

deployment of reprocessed medical devices in favor of disposable medical devices, 2) 

innovations to expand the use of biopolymers in healthcare materials and devices, and 3) assess 

the environmental and economic impacts of various medical devices and services in order to give 

healthcare administrators and employees the ability to make more informed decisions about the 

sustainability of their utilized materials, devices, and services. The research questions for this 

dissertation are to:  

 

1. determine the comparative environmental and economic impacts of single-use devices vs. 

reprocessed devices in a hospital’s supply chain; 

2. assess opportunities for using biopolymers in healthcare and the resultant comparative 

environmental impacts of single use disposable devices with increased biopolymer 

content vs. typically manufactured devices in hysterectomy procedures; and, 

3. synthesize and prioritize the salient conclusions from the first two research questions, as 

well as from recent studies focusing on the environmental impacts of various medical 

products and/or services for the use of hospital administrators and employees 

 

The three research questions will be addressed in Chapters 3, 4, and 5 of the dissertation. 

Chapters 3, 4, and 5 will include a brief introduction and background, proposed methodology, 
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and where applicable, preliminary results for each research question. Chapter 1 includes the 

dissertation introduction, goals and objectives and research questions. Chapter 2 covers a 

detailed literature review. The following sections are organized by anticipated dissertation 

chapter and the associated research question.  

 

3. Broader Impacts 

 

This research involved collaboration from a diverse team of engineers, healthcare 

administrators, hospital “green team” members, and service professionals in the healthcare 

industry (e.g., representatives from Stryker, Inc. and Stericycle, Inc.). A number of sustainable 

healthcare service strategies were verified by this research, including the reprocessing of medical 

devices, the utilization of biopolymers in medical devices, and the optimal use of disposable and 

reusable devices in healthcare supply chains. 

 

This research will address several opportunities for sustainable healthcare development, 

and will disseminate those results to our partner healthcare institutions: Phoenix Baptist Hospital 

(PBH) and Magee-Womens Hospital of University of Pittsburgh Medical Center (Magee). The 

results of this research will reach PBH administrators, and it will enable them to determine the 

economic viability of their reprocessing device supply chain scaled with various supply chain 

and reprocessing instance inputs. PBH will also have a greater understanding of the precise GHG 

emissions and human-health impacts resulting from their reprocessed device supply chain, which 

can also be scaled with various supply chain and reprocessing instance inputs. From a broader 

perspective, these results will reach a national audience that will learn of the economic and 
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environmental benefits associated with reprocessed medical devices; given that the life-cycle 

processes and materials associated with reprocessing (i.e., ethylene oxide, electricity, and water) 

are optimally utilized.  

 

Magee administrators will also be able to use this research to determine the 

environmental impacts associated with increasing biopolymer compositions in products used in 

their performed hysterectomies. The results will bear significance due to the considerable use of 

typically-used plastics (i.e., LDPE, HDPE, polypropylene, polyisoprene, nitrile, and neoprene) 

used in their hysterectomy product supply chain. Similar to the reprocessing research, these 

results will reach a national audience that will gain a gain an increased understanding of the 

environmental impacts associated with increased biopolymer composition in various medical 

devices.  

 

This research will also enable healthcare administrators and employees to prioritize the 

environmental and economic performance of several medical products and services. Such a 

prioritization system is novel to the healthcare community, but has increased in need as the 

environmental and economic magnitude of the healthcare system becomes more apparent.  

 

4. Intellectual Merit 

 

A range of sustainable strategies are being used in healthcare, yet there is still a 

fundamental lack of understanding of what indirect environmental, economic, and human health 

impacts occur as a result of decisions made in the name of sustainability. The proposed research 
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addresses this knowledge gap two-fold. First, the research assesses environmental and economic 

impacts resulting from either the increased use of reprocessed devices in a hospital’s supply 

chain, or from the increased use of biopolymers in medical devices. Both issues are burgeoning 

fields in the healthcare system, and merit a greater understanding of their environmental and 

economic impacts based on either there current utilization or potential utilization. Second, the 

research aggregates findings from healthcare environmental and economic studies (including 

those performed in the first elements of the research) and provides a holistic understanding of 

environmental and economic impacts resulting from how different sustainable strategies are 

deployed. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

There are several definitions that characterize how a medical device is used. When a 

device is used only one instance prior to disposal, the device is defined as a single-use disposable 

device (SUD). Devices that are not SUDs can either be reused or reprocessed. Reused medical 

devices requires the reuser (i.e., hospital, healthcare provider) to possess sterilizing equipment 

(i.e., autoclaves, ultrasonics). The devices are cleaned onsite by the reuser, and in some 

instances, can be reused thousands of instances. Reprocessed medical devices are sterilized by 

third-party reprocessors located offsite from the devices’ point-of-use. The third-party 

reprocessors are responsible for cleaning the devices, such that the devices will meet their 

original equipment manufacturer (OEM) FDA-regulated requirements. The third-party 

reprocessors repackage the devices and send them back to their point-of-use. Reprocessing can 

occur up to five instances, at which time the third-party reprocessor cleans the device an 

additional instance before the devices are recycled. 

 

1. Disposable and Reusable Medical Products 

 

As early as the late 19th century, hospitals made, processed, and sterilized a number of 

medical devices in their supply chain. The preparation and re-sterilization of gloves, masks, 

gowns, and drapes, and a multitude of medical devices was performed by or at least supervised 

by the onsite healthcare provider. It was not until the 1960s that disposable medical devices 

became popular in healthcare (V. Greene, 1986). At this time, the healthcare industry learned 
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how to substitute polyvinyls, polycarbonates, and polystyrenes with materials originally made 

out of glass, rubber, metal, and woven textiles (V. Greene, 1986). Additionally, device 

manufacturers learned how to sterilize these devices with ethylene oxide or radiation-

technologies, which were not yet available in hospitals. Above all, medical device manufacturing 

companies learned to make these devices efficiently and cheaply. The result was a medical 

device marketing revolution. There was an abundance of inexpensive yet reliable needles, 

syringes, tubing, gloves, catheters, etc; all of which were pre-packaged, pre-sterilized, and pre-

labeled as SUDs. The switch to disposable devices was marketed by device manufacturers as a 

means to decrease risks for pathogenic cross-contamination through device reuse (V. Greene, 

1986). However, recent studies are showing that utilizing reusable devices does not correlate 

with an increased infection risk (Favero, 2001; FDA, 2013a; GAO, 2008b; US Food and Drug 

Administration (FDA), 2009). 

 

The impacts of medical waste resulting from single-use disposable medical products are 

becoming more apparent, and recent studies are showing that utilization of single-use medical 

devices is increasingly considered to be materially and economically wasteful (Hailey, Jacobs, 

Ries, & Polisena, 2008a; Overcash, 2012a; Rutala & Weber, 2001; Shuman & Chenoweth, 2012; 

Suter, Yueng, Johnston, & Suter, 2009). A 2014 study that focused on different types of 

hysterectomies (i.e., abdominal, laparoscopic, vaginal, and robotic) showed that SUDs 

dominated the life-cycle environmental impacts in OR procedures. Disposables contributed 

anywhere from 50 to 90% toward a range of environmental impacts for the four OR procedures. 

The study found that the most commonly disposed items in OR procedures were plastics (or 

trays, bins, and packaging making up 36-46% of waste stream by weight), spunbound/meltblown 
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polypropylene textiles (or blue wrap and gowns, which comprised 22-35% of the waste stream), 

cotton materials (blue towels, laparotomy pads, and gauze), and paper. Eckelman et al. found 

that reusable LMAs had less adverse environmental impacts than single-use LMAs. Overcash 

found that reusing surgical drapes and gowns correlates with significant environmental benefits 

over their disposable counterparts, in categories including: natural resource energy, water, carbon 

footprint, solid waste, and volatile organics (Overcash, 2012a).  

 

The author’s Master’s Thesis was published in the International Journal of Life Cycle 

Assessment, and the focus of the Thesis was a comparative life cycle assessment (LCA) on 

reusable versus disposable dental burs (Unger, 2013; Unger & Landis, 2014). In dental practice, 

the dental bur is a commonly used drilling instrument that can either be reused or used one 

instance and then disposed. The study was performed to evaluate the disparities in environmental 

impacts of disposable and reusable dental burs. The LCA evaluated a reusable 2.00mm Internal 

Irrigation Pilot Drill dental bur that was reused 30 instances, versus 30 identical burs used as 

disposables. The LCA was performed using framework described by the International 

Organization for Standardization (ISO) 14040 series. 

 

The sensitivity analysis was performed with respect to ultrasonic and autoclave loading. 

When the autoclave and ultrasonic were loaded to 30 dental burs (i.e., best-case loading 

scenario), reusable burs were environmentally favorable over single-use dental burs according to 

all nine environmental and human health impact categories. Reused burs exhibited 

approximately one-third less impacts in the following categories: ozone depletion, smog, 

respiratory effects, and ecotoxicity. The global warming impact category was characterized by 



 10 

kg CO2eq emissions, which was 1.19 kg CO2eq and 0.42 kg CO2eq for disposable and reused 

burs, respectively. Notably, the dental bur’s packaging materials contributed more negative 

environmental impacts than the processes associated with the dental bur’s production. Therefore, 

the study recommended that less materially-intensive packaging should be utilized. 

 

 

Figure 1. Comparative Environmental and Human Health Impacts for Disposable versus 

Reusable Dental Burs. 

(Caption Text) Figure 1 represents the autoclave and ultrasonic cleaning filled to their highest 

capacity, which was 30 burs.  
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Reusing medical devices presents also present an opportunity for healthcare providers to 

reduce their economic bottom-line. A case study performed by Cohen et al. analyzed the 

economic impacts of reused papillotomes and baskets (Cohen, Haber, Dorais, Scheider, & 

Kortan, 1996). Endoscopists were blind to the number of prior reuses, where all reuse instances 

where characterized by enzymatic, manual, and ethylene oxide sterilization. Twenty-five 

papillotomes were used with a mean of 9.8 reuses and 15 baskets reused a mean of 12.9 times. 

The study found that the projected yearly savings was approximately $62,000 for papillotomes 

and $41,000 for the baskets (Cohen et al., 1996). A different case study performed by Canard et 

al. evaluated the economic function of double-lumen spincterotomes, where the kits were reused 

a mean of 3.4 instances (Canard et al., 2000). Their study found that the estimated annual savings 

at their case study hospital was $66,000 (Canard et al., 2000). Cost savings opportunities are 

based on a number of factors, including: staff compliance, cost of the reusable devices, devices 

selected by the hospital, pace of reuse implementation, and number of reuse instances. Some 

hospitals are also experiencing an unexpected benefit from utilizing reusable medical devices. 

They are using the lower-cost, reusable devices as leverage when negotiating the price of 

disposable devices with original equipment manufacturers. 

 

Labor is also an important concept when discussing the economic impacts of reusable 

medical devices. For example, reusable medical devices require on-site facilitation of the 

processes related to making a device suitable for procedural use. Therefore, the staff (e.g., 

nurses, technicians, doctors, etc.) needs to be familiar with the processes for sorting, cleaning, 

sterilizing, and repackaging certain reusable medical devices. The additional training requiring 

for the staff related to the previously stated processes, as well as the additional time required for 
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performing these services should be factored into whether reusable medical devices are 

financially viable. Few studies have integrated labor into comparative financial analyses 

regarding reusable medical devices. In 2012, Eckelman et al. found that reusable laryngeal mask 

airways were economically favorable compared to disposable laryngeal mask airways. Included 

in their analysis was a labor component, which they found to be negligible from an economic 

standpoint (M. Eckelman, M. Mosher, A. Gonzalez, & J. Sherman, 2012). 

 

Negative economic outcomes related to the utilization of reusable medical devices should 

also be considered. For example, medical malpractice resulting from reused medical devices 

would potentially offset the previously discussed cost savings. Although there are no studies that 

specifically analyze reusing medical devices and their correlation with offsetting potential 

medical malpractice costs, there are several conclusions that can be made regarding malpractice 

and its effect on utilizing reusable medical devices. For example, even if a reused medical device 

resulted in a nosocomial (i.e., hospital-acquired) infection, it would be difficult to prove that the 

reused device was solely responsible for the secondary infection. In a trial setting, lawyers would 

need to research the particular reused medical device that potentially caused the nosocomial 

infection and determine if the device has been cited for causing previous secondary infections. 

Additionally, there is no correlation between insurance rates and utilization rates of reused 

medical devices.  
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2. Reprocessed Medical Devices 

 

Approximately 3,000 US hospitals actively engage in third-party medical device 

reprocessing services, and the reprocessing industry is valued at roughly $400 million (AMDR, 

2012). The reprocessing industry’s current valuation represents considerable growth within the 

past decade, where in 2000 the reprocessing industry was valued at $20 million (AMDR, 2012). 

US Government Accountability Office (GAO) and the FDA are the primary agencies responsible 

for review and regulation of reprocessed devices.  

 

In 2000, the FDA issued a guidance document “Enforcement Priorities for Single-Use 

Devices Reprocessed by Third Parties and Hospitals.” The document stated that reprocessors 

must be in compliance with the following requirements: registration and listing, medical device 

reporting and tracking, medical device corrections and removals, quality system regulation, 

labeling, and pre-market submission. In 2002, the FDA enacted the Medical Device User Fee 

and Modernization Act (MDUFMA), which required labeling and identification of third-party 

reprocessors” (FDA, 2012). MDUFMA also required FDA clearance (i.e. Premarket 

Notification/ Approval) based on the classification of the medical device.  

 

As of 2013, there were approximately 50 FDA-registered third-party reprocessors of 

SUDs (FDA, 2013b). In 2007, 11 of these establishments were actively reprocessing or planning 

to reprocess more than 100 different types of medical devices (GAO, 2008b). The most 

commonly reprocessed medical devices in the United States include: cardiac stabilization and 

positioning devices, diagnostic electrophysiology (EP) catheters, blood pressure cuffs/tourniquet 
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cuffs, electrophysiology cables, pulse oximeters, ultrasonic electrophysiology catheters, 

arthroscopic burrs, soft tissue ablators, and harmonic scalpels (AMDR, 2013). 

 

One of the most commonly cited reasons for not using reprocessed devices is the fear of 

increased infection rates (Krüger, 2008); however extensive research has shown this to be not 

true. The Government Accountability Office (GAO) concluded in 2008 that reprocessed single-

use devices present no elevated health risk when compared their originally manufactured 

counterparts (GAO, 2008a). This finding is based on the FDA’s review of available adverse 

health events reported with reprocessed SUDs, and having no identification of a causative link 

between the adverse health events and use of reprocessed devices. This conclusion is also based 

on several FDA-conducted reviews, including a 2006 review where the FDA identified 434 

adverse health reports submitted from October to July 2006. Of the 434 reports, 65 reports 

involved a reprocessed device and that the reprocessed device may have been a causal factor in 

the adverse health effect. However, the FDA found that the events reported to be associated with 

the use of reprocessed devices were same types and rates of adverse health events reported for 

new, non-reprocessed devices (GAO, 2008b). Additionally, in 2005 the FDA consulted hospitals 

in Medical Product Safety Network (MedSun) about their experiences with reprocessing, 

including adverse health events or safety concerns. None of the MedSun representatives who 

participated in FDA reprocessing focus groups reported being aware of infections related to use 

of reprocessed devices (GAO, 2008b).  
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3. Life Cycle Assessment Background and Methodology 

 

LCA is a method used to assess environmental impacts throughout a product or process’ 

life, which analyzes all stages of the product or process’ life, including: raw material extraction 

and processing, manufacture, distribution, use, maintenance and repair, recycling, and disposal. 

Established guidelines for performing detailed LCAs are well documented by the Environmental 

Protection Agency (EPA), Society for Environmental Toxicologists and Chemists (SETAC), and 

the International Organization of Standardization (ISO) (Fava et al., 1991; ISO, 2006a; 

UNEP/SETAC, 2005; Vigon et al., 1992). LCAs seek to address a number of environmentally 

related concerns, including: compilation of material and energy input and outputs; evaluation of 

potential impacts attributed to the inputs and outputs; and, interpretation of the results to help 

make a more informed decision (EPA, 2010). According to ISO 14040 standards, an LCA is 

defined by four steps, as shown in Figure 2 (ISO, 2006c; "Life cycle assessment (ISO 14040)," 

1996). 
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Figure 2. Life Cycle Assessment Steps.  

(Caption Text) Adapted from ISO 14040 (ISO, 2006c; "Life cycle assessment (ISO 14040)," 

1996) 

 

LCAs begin with the goal and scope definition, which explicitly sets the context of the 

study and defines the functional unit. The functional unit defines the precise quantities of what 

product to be analyzed within the system boundary, which provides reference to the product’s 

associated inputs and outputs. The system boundary describes the extent to which a product’s life 

cycle is analyzed. Defining the goal and scope also addresses any limitations or assumptions 

associated with the study, as well as designate impact categories (e.g., global warming, 

acidification, eutrophication, carcinogenic impacts, respiratory effects).  

 

The second step of the LCA is to perform an inventory analysis. The life cycle inventory 

(LCI) analysis documents the inputs and outputs in the product’s system boundary. Exact 
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quantities of emissions, materials and energy to and from the technosphere (i.e., manmade 

materials/products) are included in the inventory analysis. Development of an inventory analysis 

is characterized by a process flow model, which illustrates the relevant activities included and 

not included the LCA’s system boundary. 

 

Followed by the inventory analysis is the impact assessment, which aggregates the LCI 

data into environmental impact categories. The typical process for conducting a Life Cycle 

Impact Assessment (LCIA) consists of: impact category selection; classification, where the 

inventory parameters are assigned to designated impact categories; and, impact measurement, 

where the LCI data is characterized into a common equivalence unit so that it can be aggregated 

within an LCIA category. Common impact assessment methodologies include the Tool for the 

Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), ReCiPe , 

and Eco-indicator (J. Bare, 2011; Pre, 2013a, 2013b). 

 

The fourth step of a LCA is interpretation, which is performed iteratively throughout each 

step of the LCA. The iterative nature of LCA is shown in Figure 1, where the interpretation is 

performed concurrently with the three preceding LCA steps. LCA interpretation identifies, 

quantifies, and evaluates data and results from the inventory or impact assessment steps. 

Interpretation will identify significant issues based on results from the inventory and impact 

assessments.  

 

LCA can aid in identifying the most benign technology among an array of options, and in 

the case of single-use healthcare products can aid in comparing the environmental impacts of 
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alternative products by tracking their impacts throughout their manufacture, use and disposal. 

Through use of LCA, it is possible to observe which process (or processes) drive environmental 

and human health impacts, and may offer insight into minimizing impacts throughout a product’s 

life. In the case of innovations for new single-use and reprocessed healthcare products, LCA can 

provide insight into the impacts and tradeoffs of alternatives during the innovation process.  

 

4. Life Cycle Costing Assessment 

 

Determining economic impacts are another critical element of sustainability, and major 

federally-funded efforts are underway to identify inefficiencies in the health care system and to 

optimize systems using industrial engineering and life cycle costing tools. Life Cycle Costing 

(LCC), which is also commonly called Life Cycle Cost Analysis (LCCA), is commonly applied 

in the building sector as a method for assessing the total cost of facility ownership and/or 

comparing alternatives (Curran, 1996). Applied to single use versus reusable versus reprocessed 

medical products, LCC can assess the total cost of the alternatives, taking into account costs of 

purchasing, operating, maintaining, sanitizing, and disposing of each product. LCC allows 

decision makers to compare products based on costs and maximized net economic bottom-lines. 

Unlike LCA, LCC does not take into consideration ‘upstream’ costs such as raw materials 

extraction.  
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5. Life Cycle Assessment Healthcare Applications 

 

In recent years hospitals have employed a number of strategies to decrease environmental 

and economic costs. The strategies have included increasing a hospital’s: energy efficiency, 

water efficiency, green purchasing, waste diversion strategies, and healthy food purchasing 

(Janet, 2013; Kaplan et al., 2012; Kwakye, Brat, & Makary, 2011). Practice Greenhealth 

publishes an annual report which provides a comprehensive analysis of how sustainable 

strategies were being integrated at their member institutions. When aggregating the 2013 savings 

of all Practice Greenhealth member institutions, over 100,000 tons of waste was diverted, 275 

million gallons of water were saved, and energy use was reduced by 1.85% (PG, 2015a). 

 

While hospitals made reduced environmental and economic costs, many of these 

strategies still lack scientific validation. To address these research needs, several recent studies 

have applied life cycle methodologies to better understand the environmental and economic 

impacts of the healthcare industry at various levels of detail. The publications in this field range 

in foci and scope; where, a 2007 Economic Input-Output LCA of the entire US healthcare sector 

found that healthcare activities account for 8% of total US greenhouse gas emissions (J. W. 

Chung & D. O. Meltzer, 2009). Power, et al. calculated the annual CO2 emissions of the US’s 

minimally invasive surgeries to be 355,924 metric tons per year, putting the US on par with the 

2008 CO2 emissions of France or Spain (Power, Silberstein, Ghoneim, Guillonneau, & Touijer, 

2012; United Nations (UN), 2012). And even smaller-scoped studies, such as a paper that 

performed a comparative environmental assessment of surgical modalities (i.e., laparotomy, 

conventional laparoscopy, and robotically-assisted laparoscopy), found that robotically-assisted 
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surgeries represent a 38% increase of kg CO2eq over that of conventional laparoscopy, and a 

77% of kg CO2eq increase over laparotomy. There are also several LCAs that compared 

individual single use and reusable materials in the healthcare industry (Adler et al., 2005; 

Dettenkofer, Grießhammer, Scherrer, & Daschner, 1999; M. Eckelman et al., 2012; Sorensen & 

Wenzel, 2014; Unger & Landis, 2014). McGain, et al. found that reusable plastic anesthetic drug 

trays cost less and emitted less CO2 than single-use trays (F. McGain, McAlister, McGavin, & 

Story, 2010). Similarly, a comparative study of the life cycle inventory of reusable and 

disposable laparotomy pads found the disposable pads had a larger impact on the environment 

than reusable pads (Kümmerer, Dettenkofer, & Scherrer, 1996).  

 

The following three chapters aim to extend this field of research into novel areas that 

have not yet been scientifically validated for their environmental and economic impacts.  
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CHAPTER 3 

ASSESSING THE ENVIRONMENTAL AND ECONOMIC IMPACTS OF REPROCESSED 

MEDICAL DEVICES IN A PHOENIX HOSPITAL’S SUPPLY CHAIN 

 

This chapter was published in the peer reviewed journal The Journal of Cleaner Production and 

appears exactly as published with the exception of text and figure formatting. The citation for 

this article is: Unger, S., & Landis, A. (2015). Assessing the environmental, human health, and 

economic impacts of reprocessed medical devices in a Phoenix hospital's supply chain. Journal 

of Cleaner Production. 

 

This chapter addresses the dissertation research question 1) determine the comparative 

environmental and economic impacts of single-use devices vs. reprocessed devices in a 

hospital’s supply chain; 

 

1. Introduction 

 

The structure of hospital supply chains and the processes by which they utilize and 

dispose of medical devices is increasingly considered to be materially and economically 

wasteful. Practice Greenhealth estimates that hospitals generate more than 5.9 million tons of 

waste on annual basis, where a significant proportion of United States (US) hospital waste is 

either landfilled or incinerated (Practice Greenhealth, 2014). Additionally, hospitals spend 

anywhere from $44 to $68 per ton on waste disposal, which equates to $259 to $401 million 

spent by US hospitals on waste on annual basis (Practice Greenhealth, 2014). The significant 
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volume of waste generated by hospitals has incentivized waste reduction strategies in order to 

decrease the considerable environmental and economic costs associated with hospital waste. 

Decreasing utilization of single-use devices (SUDs) in favor of suitable reprocessed medical 

devices is one waste mitigation strategy that can decrease waste created by hospitals, thus 

decreasing the environmental and economic costs incurred by hospitals.  

 

 SUDs became more widely utilized in the 1960s with the advent of polymers and the 

integration of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) into 

medical products (V. W. Greene, 1986). The integration of LDPE and HDPE allowed for 

medical devices to be manufactured at a cost low enough for the devices to be used once and 

then disposed without being cost prohibitive. Additionally, the use of SUDs in favor or 

reprocessed alternatives was attributed to concerns about pathogenic cross-contamination 

through use of reprocessed devices (V. W. Greene, 1986).  

 

However, FDA studies have shown that the use of reprocessed devices does not correlate 

with an increased infection risk (Favero, 2001; GAO, 2008b). The Government Accountability 

Office (GAO) concluded in 2008 that “[the] FDA's analysis of reported device-related adverse 

events does not show that reprocessed SUDs present an elevated health risk” (GAO, 2008b). The 

GAO found that the events reported to be associated with the use of reprocessed items were the 

same types and rates of adverse health events reported for new, non-reprocessed devices (GAO, 

2008b).  
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Because there are no cross-contamination risks associated with reprocessed devices, they 

can be considered as a potential strategy for reducing hospital waste. There are hundreds of 

devices that either have been reprocessed in the US or have been considered for reprocessing in 

the US. Reprocessed devices are used in a variety of medical specialties, which includes: cardio, 

dental, otolaryngology, gastro/urology, neurology, obstetrics/gynecology, ophthalmic, 

orthopedic, physical medicine, respiratory, and general surgery. While most products are suitable 

for reprocessing, several characteristics can influence the efficacy of reprocessing for certain 

devices. These characteristics include either high quantities of polymers or complex design 

features (Hailey, Jacobs, Ries, & Polisena, 2008b). While polymers allow for limited economic 

costs, they may not be durable and may deteriorate after undergoing reprocessing. Additionally, 

complex design features can hinder the ability of reprocessing technicians to fully disassemble a 

device; where, full disassembly is required to ensure effective reprocessing for a device. 

Therefore, devices that have stronger materials in favor of polymers and relatively basic 

assembly/disassembly requirements are typically considered more favorable for reprocessing 

(Hailey et al., 2008b). 

 

Due to the reduced waste and materials used in a hospital’s medical device supply chain, 

reprocessing presents an opportunity for reducing environmental impacts associated with 

medical devices used in hospital supply chains. Life cycle assessment (LCA) is a widely 

accepted methodology for determining and validating environmental impacts associated with a 

particular product or process. LCAs seek to address a number of environmentally related 

concerns, including the: compilation of energy and material input and outputs; evaluation of 
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potential environmental impacts attributed to the inputs and outputs; and, interpretation of the 

results to help make a more sustainable decision (ISO, 2006b).  

 

With regards to LCAs focused on medical devices, Stripple et al. (2008) performed an 

environmental evaluation of plastics used in hydrophilic catheters, which found that polyolefin-

based elastomers showed better environmental performance than the thermoplastic polyurethane 

materials (Stripple, Westman, & Holm, 2008). There have also been several other recent LCA 

studies that have focused their attention on SUDs and other healthcare activities including: 

ambulance services (Brown et al., 2012), reusable versus single-use bedpans (Sorensen & 

Wenzel, 2014), incineration vs. non-incineration treatments (Zhao et al., 2009), anesthetic drugs 

(J. Sherman et al., 2012), disposable custom packs (Campion et al., 2015), and reusable versus 

single-use scissors (Adler et al., 2005). 

 

There have also been several other recent LCA studies that have focused their attention 

on various other devices or activities, including: ambulance services (Brown et al., 2012), 

reusable versus single-use bedpans (Sorensen & Wenzel, 2014), incineration vs. non-incineration 

treatments (Zhao et al., 2009), anesthetic drugs (J. Sherman et al., 2012), disposable custom 

packs (Campion et al., 2015), and reusable versus single-use scissors (Adler et al., 2005). 

 

In addition to LCAs, life cycle cost analyses (LCCAs) account for all recurring and one-

time economic costs over the full life cycle of a product. With regards to economic impacts of 

reprocessed medical products quantified through LCCAs, a 2013 literature review performed by 
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Jacobs et al. was able to show that utilization of reprocessed devices in a hospital’s supply chains 

offers a 49% reduction in direct costs (Jacobs, Polisena, Hailey, & Susan Lafferty, 2008).  

 

Performing a LCA and LCCA on medical devices offers several advantages. First, a LCA 

characterizes a range of environmental impacts resulting from different medical device supply 

chains, rather than simply quantifying waste streams. Quantification of waste streams fails to 

give administrators and healthcare personnel relevant information relating to the procurement, 

management, use, and disposal of medical devices. Additionally, the use of LCCAs on medical 

products helps administrators to more effectively understand life-cycle costs of their utilized 

devices, as opposed to exclusively focusing on procurement costs of devices. 

 

While there are hundreds of items that are suitable for reprocessing, to date there have 

been no studies that evaluate the potential economic and environmnetal benefits of a reprocessed 

device. Additionally a system-wide LCA and life LCCA has not yet been performed on an 

aggregation of reprocessed devices comprising a hospital supply chain. This study fills this 

knowledge gap by using LCA and LCCA to model the environmental and economic impacts of 

medical device supply chains when varying levels of reprocessed devices are utilized.  
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2. Materials and Methods 

 

a. Case Study Description 

 

 Phoenix Baptist Hospital (PBH) is a general medical and surgical hospital located in what 

is considered the metropolitan Phoenix area. PBH is equipped with 215 certified hospital beds 

and employs over 900 healthcare professionals. PBH has admitted roughly 9,000 patients and 

performed over 900 births (i.e., approximately one patient/bed/day) since its opening in 1963. 

Under their classification as a general medical and surgical hospital, PBH performs the following 

types of procedures: cardiovascular, orthopedics, women’s services, radiology, and 24-hour 

emergency services. PBH reprocesses seven devices, including the: deep vein thrombosis (DVT) 

compression sleeve, pulse oximeter, ligasure, harmonic scalpel, endoscopic trocar, arthroscopic 

shaver, and scissor tip. Figure 3 shows these devices, and their associated annual utilization rates. 
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Figure 3. Devices Included in LCA. 

 

b. Life Cycle Assessment 

 

Life cycle assessment (LCA) is a method used to assess potential environmental and 

human health impacts throughout a product's life, including the product’s: raw material 

extraction and processing, manufacture, distribution, use, maintenance and repair, and disposal. 

LCAs seek to address a number of environmentally related concerns, including: compilation of 

energy and material input and outputs; evaluation of potential impacts attributed to the inputs and 

outputs; and, interpretation of the results to help make a more informed decision (EPA, 2010). 

According to the International Organization for Standardization (ISO) 14040 and 
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14044 documents, a LCA is defined by four distinct steps, including: goal and scope definition, 

inventory analysis, impact assessment, and interpretation (ISO, 2006c).  

 

 The first step of a LCA, the goal and scope definition, explicitly sets the context of the 

study, defines the precise quantities of what product to be analyzed, and characterizes the extent 

to which a product’s life cycle (e.g., manufacturing, use, disposal) is analyzed. After the goal and 

scope are defined, the second step of the LCA is inventory analysis. Inventory analysis 

documents exact quantities of emissions, materials and energy to and from the environment. 

Followed by the inventory analysis is the impact assessment, which aggregates the inventory 

data into environmental and human health impact categories. The final step of a LCA is 

interpretation, which is typically performed iteratively throughout each step of the LCA. 

Interpretation is performed, such that, information from the inventory and impact assessment 

steps are identified, quantified, and evaluated. 

  

c. Goal and Scope Definition 

 

An LCA was performed to model the environmental impacts of varying levels of 

reprocessing at Phoenix Baptist Hospital (PBH), located in Phoenix, Arizona. The functional unit 

(FU) was defined as seven medical devices, which is the number of medical devices needed to 

fulfill the reprocessed device supply chain requirements of PBH. The seven devices included 

were: a deep vein thrombosis (DVT) compression sleeve, a pulse oximeter, a ligasure, a 

harmonic scalpel, an endoscopic trocar, an arthroscopic shaver and a scissor tip. The LCA 

included all cradle-to-grave processes for the seven medical devices, where the processes are 
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further detailed in Figure 4. Figure 4 shows that the first five processes in the LCA included the 

seven devices’ fabrication and transport to PBH. Once arriving at PBH, the decision of whether 

to use any of the seven devices as disposables or as reprocessed devises was established. If used 

as a reprocessed device, the devices would undergo transport from the hospital to the 

reprocessing facility, and back from the reprocessing facility to the hospital anywhere from one 

to five instances. When the devices reached their useful reprocessing lifetime, the devices would 

then undergo incineration. Disposable devices were incinerated after being used one instance. 

 

Each device was assumed to be interchangeable as either an SUD or a reprocessed 

device, which assumption is according to the PBH suite of reprocessed devices but it may not be 

the same for other hospitals. However, this assumption may not be true for other hospitals. This 

study assumed that the packaging for reprocessing was the same as the packaging for an SUD; 

the packaging modeled herein was from a new device.  
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Figure 4. System Boundary Showing Processes Included in the LCA. 

(Caption Text) While not shown, the system boundaries include energy, materials, and emissions 

associated with each process. 

 

d. Inventory Analysis 

 

In order to determine each device’s bill of materials, each device was disassembled and 

de-manufactured. The materials for each device were weighed using an Ohaus Pioneer analytical 

scale with ma 0.001-gram detection limit. Materials were identified within the corresponding life 

cycle inventory records from the ELCD (European Reference Life Cycle Database) and 

ecoinvent v2.2.  
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Devices that were used more than once underwent reprocessing, where a commercial gas 

sterilizer was used to reprocess the seven medical devices. The gas sterilization cycle consisted 

of six phases: pre-sterilization conditioning, sterilization, evacuation, air wash, chamber exhaust, 

and aeration. The six phases of gas sterilization phases required inputs of electricity and ethylene 

oxide (ETO). The electricity, ETO, and water were included in the inventory. The inputs related 

to transporting the medical devices from the hospital to the reprocessing center, and back from 

reprocessing center to the hospital were also included in the life cycle inventory. At the end of 

their useful life all devices were treated as regulated medical waste (RMW); where all RMW 

underwent incineration followed by landfilling. The end-of-life processes were included in the 

inventory analysis. All LCI inputs and data sources are summarized in Table 1.  
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Table 1. Utilized Inventory Data. 

Material/Process LCI Database Process Name 
Aluminum Ecoinvent v. 2.2 Aluminum, secondary, shape casted/RNA 

Copper Ecoinvent v. 2.2 Copper, secondary, shape casted/RNA 
Cotton Ecoinvent v. 2.2 Textile, woven cotton, at plant/GLO U 

Electricity Modified 
Ecoinvent v. 2.2 

Electricity, production mix 
Arizona/Arizona U 

Ethylene oxide USLCI Ethylene Oxide, at plant/RNA 
High-density polyethylene 

(HDPE) Ecoinvent v. 2.2 Polyethylene, HDPE, granulate, at 
plant/RER U 

Incineration Ecoinvent v. 2.2 Incineration/CH U 
Kraft paper Ecoinvent v. 2.2 Kraft paper, bleached, at plant/RER U 

Low-density polyethylene 
(LDPE) Ecoinvent v. 2.2 Polyethylene, LDPE, granulate, at 

plant/RER U 
Paperboard Ecoinvent v. 2.2 Solid bleached board, SBB, at plant/RER U 

Stainless steel Ecoinvent v. 2.2 
Stainless steel hot rolled coil, annealed & 
pickled, elec. arc furnace route, prod. mix, 

grade 304 RER U 
Tap water Ecoinvent v. 2.2 Tap water, at user/RER U 

Van transport Ecoinvent v. 2.2 Transport, van <3.5t/RER U 
(Caption Text:) USLCI: United States Life Cycle Database Inventory 

 

Table 1 summarizes the number of devices that PBH would need to purchase on an 

annual basis to meet their supply chain requirements. Table 1 shows the number of devices 

needed to fulfill PBH’s reprocessed device supply chain for each reprocessing instance (i.e., 

none, one, two, three, four, and five). For each of the seven devices, these values were calculated 

using the following equation: 
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Equation 1. Number of Devices Needed to Fulfill PBH’s Reprocessed Devices Supply Chain 

Given Each Reprocessing Instance. 

Dx = 
D0
x + 1

 

Dx  ≡ Number of devices purchased with x reprocessing instances 

D0  ≡ Number of devices purchased with 0 reprocessing instances 

x  ≡ Reprocessing instances 

Mx  ≡ Reprocessing input multiplier for x reprocessing instances 

 

The reprocessing inputs were also varied given the number of devices that were used for 

each associated reprocessing instance. For example, a number of devices reprocessed with a 

certain number of reprocessing instances will have differing associated reprocessing inputs (i.e., 

ethylene oxide, electricity, water) when compared to the same number of devices that are 

reprocessed more or less instances. The varied inputs for electricity, water, and ethylene oxide 

each reprocessing instance were calculated with using the following equation and summarized in 

Equation 2: 

 

Equation 2. Associated Reprocessing Inputs Given Each Reprocessing Instance. 

Mx = Dx · x 

 
  



 34 

Table 2. Number of Devices Needed to Fulfill PBH’s Reprocessed Devices Supply Chain for 

Each Reprocessing Instance. 

 Reprocessing Instances 

 0 1 2 3 4 5 

Arthroscopic Shavers / Burs 47 24 16 12 9 8 

Compression Device - Pairs 6427 3213 2142 1607 1285 1071 

Endoscopic Trocars 5418 2709 1806 1355 1084 903 

Ligasures 29 14 10 7 6 5 

Pulse Oximeters 2351 1175 784 588 470 392 

Scissor Tips 110 55 37 27 22 18 

Ultrasonic Scalpels 613 307 204 153 123 102 

 

Results showed that ETO and electricity were the significant contributors to most of the 

environmental impacts, and as such a sensitivity analysis on ETO, electricity, and water was 

performed. The sensitivity analysis varied quantities of ETO consumed by the commercial gas 

sterilizer. The utilized quantities for ETO and carbon dioxide were based on the values described 

in both the Sterilisation of Polymer Healthcare Products and the Ethylene Oxide Commercial 

Sterilization and Fumigation Operations NESHAP Implementation Document (Midwest 

Research Institute, Environmental Protection Agency, & Office of Air Quality Planning and 

Standards, 1997; Rogers, 2005). The Sterilisation of Polymer Healthcare Products describes the 

range of ETO concentrations that may be used is healthcare product gas sterilizers. The 

sensitivity analysis included the range of ETO concentrations described in the Sterilisation of 

Polymer Healthcare Products, which was 400 to 1,500 mg/L. Additionally, the Ethylene Oxide 
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Commercial Sterilization and Fumigation Operations NESHAP Implementation Document 

describes the range of loading volumes for healthcare product gas sterilizers. The sensitivity 

analysis also included the range the loading volumes for gas sterilizers shown in the Ethylene 

Oxide Commercial Sterilization and Fumigation Operations NESHAP Implementation 

Document, which was 2.8m3 to 28m3. Table 3 shows the gas sterilizer volumes and 

concentrations of ETO used to calculate the kilograms ETO consumed by the commercial gas 

sterilizer. 

 

Table 3. Kilograms of ETO Used by Gas Sterilizer Based on Gas Sterilizer Volume and 

ETO Concentration for the Sensitivity Analysis. 

Gas Sterilizer 
Volume (m3) 

Concentration ETO 
(mg/L) 

Concentration ETO 
(kg/m3) 

Kilograms 
ETO 

2.8 400 0.4 1.12 
15.4 400 0.4 6.16 
28 400 0.4 11.2 
2.8 950 0.95 2.66 
15.4 950 0.95 14.63 
28 950 0.95 26.6 
2.8 1500 1.5 4.2 
15.4 1500 1.5 23.1 
28 1500 1.5 42 

 (Caption Text) Kilograms of ETO were the product of gas sterilizer volume and the ETO 

concentration in kg/m3. 

 

e. Impact Assessment 

 

The Life Cycle Impact Assessment (LCIA) was conducted using the Tool for the 

Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) v2.0 
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developed by the USEPA (2013). TRACI was used to calculate the following environmental and 

human health impacts: global warming, carcinogenic, non-carcinogenic, and respiratory effects. 

TRACI utilizes global warming potentials (GWPs) to calculate the potency of greenhouse gases 

(relative to carbon dioxide) that are emitted during life-cycle phases of a product or process (J. 

Bare, 2011). These values are used to determine the overall global warming impact of a product 

or process. For human health impacts (i.e., carcinogenic, non-carcinogenic, respiratory effects), 

TRACI employs USEtox, which assess the toxicological effects of a chemical emitted into a the 

environment through the following cause-effect chain: environmental fate, exposure, and 

resulting effects (Rosenbaum et al., 2008).  

 

The characterization factor, CTUh (i.e., comparative toxic unit), was used to express 

human toxicity (i.e., carcinogenic and non-carcinogenic impacts). CTUh are the estimated 

increase in morbidity per unit mass of a chemical emitted. CTUh are determined by calculating 

the aggregate potential for carcinogenic or non-carcinogenic diseases based on a combination of 

factors. These factors include a chemical’s: fate factor, exposure factor, effect factor, and intake 

factor. 

 

The reference emission, PM10 (i.e.., particulate matter less than 10 micrometers in 

diameter), was used to determine the human respiratory impacts posed by reprocessed and/or 

disposable devices. Respiratory effects were calculated by modeling and correlating fate and 

exposure with intake fractions (i.e., a portion of an emitted substance, which is expected to be 

inhaled by a human being). The intake fractions were calculated as a function of the amount of 

PM10 emitted into the environment, the resulting increase in PM10 atmospheric concentration, 
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and the breathing rate of the exposed population (J. Bare, 2012). PM10 was used as the reference 

substance because numerous epidemiology studies have shown increased levels of adverse 

human respiratory impacts with elevated levels of ambient particulate matter (Dominici et al., 

2006; Pope III et al., 2002). 

 

f. Life Cycle Cost Analysis  

 

A LCCA was also performed to model the economic impacts of varying levels of 

reprocessing at PBH. The LCCA modeled the economics costs incurred by PBH when using 

varying levels of reprocessed devices vs. SUDs, which spanned each of the seven devices’ 

procurement to disposal. The system boundary of the LCCA matches that of the LCA, where 

both include each device’s manufacturing, use, and disposal phases. Several inputs constructed 

the LCCA, which were the: price of each device (in terms of 2013 US dollars), quantity of each 

device used on an annual basis, waste disposal costs, and the reprocessing markdown for each 

device; all data was obtained from PBH.  

 

The reprocessing markdown for devices was 50%, which was the markdown set by 

PBH’s third-party reprocessor, Stryker. Additionally, PBH’s waste handler, Stericycle, charged 

$0.14 per kilogram of waste generated by PBH, where this markdown was used to calculate 

waste disposal costs for all devices that were not reprocessed by PBH. Because Stryker would 

incur costs for all reprocessed devices, any instance of reprocessing for PBH would correlate 

with no waste disposal costs incurred by PBH. Or, any device or any number of devices that 

were not reprocessed would represent increased waste disposal costs incurred by PBH.  
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3. Results 

 

a. LCA 

 

 Given median/mean reprocessing life-cycle inventory inputs, Figure 5 shows that the 

reprocessing of the seven analyzed devices slightly reduces global warming impacts, but 

concurrently exacerbates human health impacts (i.e., carcinogenic, non-carcinogenic, 

respiratory effects). Irrespective of the number of reprocessing instances, the driving factor in 

both global warming and human health impacts was the reprocessing life-cycle inventory. This 

life-cycle inventory data included: the amount of ETO, electricity, and water consumed. The 

sensitivity anaylsis’ results discussed later varies these inputs based on accepted regulatory 

reprocessing standards.  

 

Whether used as a SUD or a reprocessed device, the use of DVT compression sleeves had 

the highest contribution of all the devices (excluding disposal and reprocessing impacts) to 

environmental impacts, while the trocar was second highest. The significant environmental 

impacts associated with DVT compression sleeves and trocar were driven by the high utilization 

rates; PBH uses 6,427 of DVT compression sleeves and 5,418 trocars on annual basis. The other 

devices were used less frequently (summarized in Figure 3). In addition, the compression sleeve 

was made up of 93% cotton on a weight basis, while all other devices were primarily made of 

plastic and metal. Cotton production has significant energy, chemical, and water inputs, which 

result in the environmental impacts in Figure 5. These environmental impacts are due to the 
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significant direct and indirect agricultural life-cycle inputs involved with manufacturing woven 

cotton. 

 

 

Figure 5. Normalized Global Warming, Carcinogenic, Non-Carcinogenic, and Respiratory 

Effects for PBH’s Reprocessed Device Supply Chain Using Median/Mean Reprocessing 

Life-Cycle Inventory Inputs.    

(Caption Text) Disposal corresponds with incineration and waste-handling processes. The seven 

devices (i.e., ligasure, ultrasonic scalpel, scissor tip, pulse oximeter, endoscopic trocar, DVT 

compression device, arthroscopic shaver/bur) include all processes related to raw material 

extraction, device manufacturing, and device packaging. 
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The kg CO2 eq emitted by PBH reprocessed devices on annual basis given varied 

reprocessing inputs is shown in Figure 6. The reprocessing inputs were based on the values used 

in the sensitivity analysis, which varied the water and ethylene oxide used during reprocessing. 

Figure 6 shows that decreased reprocessing inputs were correlated with decreased levels of kg 

CO2 eq. Increased instances of reprocessing were also correlated with decreased levels of kg CO2 

eq when the reprocessing life-cycle inputs were approximately less than half of the median 

reprocessing life-cycle inputs. In terms of a breakeven point when compared to no reprocessing, 

the most statistically similar data points were that of median reprocessing inputs. Additionally, as 

reprocessing inputs decreased, the kg CO2 eq would be further reduced with each additional 

reprocessing instance. 

 

 

Figure 6. Greenhouse Gas Emissions in kg CO2eq with Varied Reprocessing Inputs for 

Devices Reprocessed One, Two, Three, Four, Five, and No Instances for PBH on an Annual 

Basis. 

 

The carcinogenic, non-carcinogenic, and respiratory effects produced from PBH on an 

annual basis given varied reprocessing inputs are shown in Figure 7, Figure 8, and Figure 9, 

respectively. Figure 7 through Figure 9 show that decreased reprocessing inputs were correlated 
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with decreased magnitudes of human health impacts. When limiting reprocessing life-cycle 

inputs, increased instances of reprocessing were also correlated with decreased magnitudes of 

human health impacts.  

 

Carcinogenic impacts required the lowest quantity of reprocessing inputs to reach 

breakeven with respect to reprocessed and disposable devices. Respiratory effects required the 

highest amounts of reprocessing inputs to reach breakeven with respect to reprocessed and 

disposable devices. Therefore, carcinogenic impacts are especially vulnerable to being 

exacerbated given increased reprocessing inputs; and, vice versa for that of respiratory effects.  

 

 

Figure 7. Carcinogenic in Comparative Toxic Units (CTUh) with Varied Reprocessing 

Inputs for Devices Reprocessed One, Two, Three, Four, Five, and No Instances for PBH on 

an Annual Basis. 
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Figure 8. Non-Carcinogenic Impacts in Comparative Toxic Units (CTUh) with Varied 

Reprocessing Inputs for Devices Reprocessed One, Two, Three, Four, Five, and No 

Instances for PBH on an Annual Basis. 

 

 

Figure 9. Respiratory Effects kg PM10eq with Varied Reprocessing Inputs for Devices 

Reprocessed One, Two, Three, Four, Five, and No Instances for PBH on an Annual Basis. 

 

Figure 10 shows the relative global warming and human health impacts for the seven 

analyzed devices where annual usage is not taken into account (i.e., one-to-one device 

comparison). The compression device and ligasure are the devices with the highest 

environmental impacts; while the ultrasonic scalpel is consistently third and the endoscopic 
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trocar is consistently fourth. The woven cotton textiles drive the environmental impacts of the 

compression device; textiles contribute over 91% to all four compression device impact 

categories. Additionally, the high levels of polyethylenes in the Ligasure and its packaging are 

statistically significant in contributing to environmental impacts. The pulse oximeter, scissor tip, 

and arthroscopic shaver were not statistically significant; where, these devices had normalized 

global warming and human health impact values that were all less than 7%. 

 

 

Figure 10. Global Warming and Human Health Impacts for the Seven Analyzed Devices 

Normalized to the Device with the Highest Impact. 
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b. LCCA 

 

Increased reprocessing of the seven medical devices utilized by PBH correlated with a 

decrease in overall economic costs associated with the manufacturing, use, and disposal of those 

devices. When all seven devices were reprocessed one through five instances, the total savings 

on an annual basis (versus when no devices were reprocessed) were $182k, $351k, and $520k (in 

terms of 2013 US dollars), respectively. These results are further detailed in Figure 11. 

 

 

Figure 11. Reductions in Supply Chain Cost for each Device versus Instances Reprocessed. 

 

 Additionally, the reprocessing of DVT compression sleeves had the highest potential for 

cost savings, where the cost savings for DVT compression sleeves represented nearly half of the 

potential savings realizable to the hypothetical hospital. And because of the high original 

equipment manufacturer (OEM) costs associated with harmonic scalpels, the reprocessing of 
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ultrasonic scalpels also represented significant reductions to the economic costs of PBH’s supply 

chain.  

 

4. Conclusions 

 

When employing ‘average’ reprocessing inputs, the results showed that the global 

warming impacts were marginally lower in reprocessing scenarios when compared to scenarios 

that employed no reprocessing. On the other hand, the human health impact results marginally 

favored that of no reprocessing when compared to reprocessing scenarios when using median 

values. While these results are pertinent, the overarching result is that if reprocessing inputs are 

minimized, then employing reprocessing is favorable from both a global warming and human 

health perspective. 

 

Whether used as a SUD or a reprocessed device, the use of DVT compression sleeves 

have the highest environmental impacts when devices are compared one-to-one. The significant 

environmental impacts associated with DVT compression sleeves were driven by the high 

utilization of DVT compression sleeves on annual basis at PBH, as well as the considerable 

environmental impacts associated with manufacturing woven cotton. Therefore, substituting 

woven cotton for a less environmentally intensive material could reduce environmental impacts 

associated with DVT compression sleeves. It should also be noted that the high quantities of 

plastics (i.e., HDPE, LDPE) in ligasures correlated with significant environmental and human 

health impacts when used as either reprocessed or disposable devices 
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When taking into consideration the economic benefits of reprocessing, the favorability of 

reprocessing medical devices becomes more apparent. Even in scenarios of high reprocessing 

inputs, the global warming and human health tradeoffs between reprocessed and disposable 

supply chains is not sufficiently significant to outweigh the financial benefits of reprocessing. 

 

Hospitals that are comparable in size, services provided, and overall reprocessing profile 

to PBH can expect similar results. Hospitals that also have increased levels of reprocessing, in 

terms of instanced reprocessed and devices in reprocessing profile, can expects greater economic 

benefits; and, reduced global warming and human health impacts, under the assumption that 

reprocessing inputs are minimized. For all hospitals, if reprocessing inputs are optimized, 

reprocessing offers global warming, human health, and economic benefits over the same devices 

used as disposables. 
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CHAPTER 4 

INVESTIGATING INNOVATIVE AND TRADITIONAL MATERIALS SHIFTS IN 

MEDICAL PRODUCTS TO REDUCE ENVIRONMENTAL IMPACTS: FOCUS ON 

BIOPOLYMERS AND COTTON REUSE 

 

This chapter addresses the dissertation research question 2) assess opportunities for using 

biopolymers in healthcare and the resultant comparative environmental impacts of single use 

disposable devices with increased biopolymer content vs. typically manufactured devices in 

hysterectomy procedures. Due to the apparent environmental impacts associated with disposable 

woven-cotton, this study also compares the environmental impacts of reusable woven-cotton 

medical products versus disposable woven-cotton medical products. 

 

1. Introduction 

 

Over the past half-century, plastics have become a ubiquitous material in the medical 

device industry. In a study analyzing environmental impact of seven single-use medical devices 

undergoing reprocessing, all had some form of polyethylene in each of their respective bill of 

materials (Unger & Landis, 2015). Total polyethylene weight ranged anywhere from 7% to 88% 

of total weight for individual devices, and made up 52% of total weight for the combined 

average of the seven devices (Unger & Landis, 2015). In another study of four types of 

hysterectomy (abdominal, vaginal, laparoscopic, robotic), plastics were again found to be a 

significant portion of the operating room (OR) waste stream. The study concluded that the 

plastics used (e.g., thin film packaging wrappers, hard plastic trays) accounted for a minimum of 
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36% of material solid waste (MSW) by weight for vaginal hysterectomies and a maximum of 

46% of MSW by weight for robotic procedures (Thiel et al., 2014). 

 

It was not until the 1960s that plastics became so pervasively used in healthcare (V. 

Greene, 1986). At this time, the healthcare industry learned how to substitute polyvinyls, 

polycarbonates, and polystyrenes for materials originally made out of glass, rubber, metal, and 

woven textiles (V. Greene, 1986). The substitution occurred primarily because medical device 

manufacturing companies learned to make devices with plastics efficiently and cheaply. These 

factors led to increases in healthcare plastic use, which consequentially led to fundamental 

changes in the processes that governed medical device manufacturing, use, and disposal. For 

example, before the substitution of petroleum-based plastics, medical products made of woven-

cotton would undergo cleaning on-site at the hospital once they were used (V. Greene, 1986). 

Following the substitution of petroleum-based plastics, devices made of plastic that fulfilled the 

same function would be disposed after being used only one instance; which consequently led to 

increased quantities of waste created by hospitals. Moreover, while plastics typically have less of 

an environmental footprint than woven-cotton on a per-weight basis with a single use, woven-

cotton has recently been found to be the most favorable environmental option; where, the caveat 

is that the woven cotton must be reused and not treated as a disposable item (Campion et al., 

2015; Thiel et al., 2014). Recent studies suggest that reusing woven-cotton, as opposed to 

utilizing petroleum-based disposable plastics, could significantly reduce environmental and 

human health impacts associated with healthcare procedures; however, more LCA data is needed 

with respect to laundering facilities (Campion et al., 2015; Thiel et al., 2014).  
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While petroleum-based plastics are extensively used in healthcare settings, bio-plastics 

for the past several decades have also formed their own niche market in the healthcare industry. 

As opposed to petroleum-based plastics that obtain their carbon from non-renewable resources 

(e.g., petroleum), bio-plastics (a.k.a. biopolymers) are plastics in which some or all of the 

polymer is derived from renewable feedstocks. With regards to healthcare applications, recent 

developments in biopolymer manufacturing processes have created new avenues and 

opportunities for increased integration of biopolymers into medical products, devices, and 

services. One factor that has contributed to these opportunities is that newly developed 

biopolymers are able to retain similar physical characteristics of synthetic plastics. For example, 

emerging studies show that guayule-derived latex rubber is a suitable substitute for flexible 

plastics and traditional rubber products (Cornish, Williams, Hall, & III, 2008; Rasutis, Soratana, 

McMahan, & Landis, 2015). Another study shows that the biopolymer polylactide (PLA) is a 

suitable substitute for different forms of plastic (Madhavan Nampoothiri, Nair, & John, 2010). 

Based on the material and chemical properties of PLA, the study concluded that PLA has many 

potential applications, including upholstery, disposable garments, awnings, feminine hygiene 

products, and diapers (Madhavan Nampoothiri et al., 2010). One of the benefits of PLA is that it 

is compostable, and might allow hospitals to decrease the amount of plastics in their waste 

stream (Ghorpade, Gennadios, & Hanna, 2001).  

 

Given recent development in the field of biopolymers and their potential to replace 

commonly used plastics, there is the possibility to use biopolymers in a variety of medical 

products. Replacing petroleum-based plastics with biopolymers would not only reduce depletion 

of non-renewable resources, but could also reduce hospital-generated material solid waste 
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(MSW) and regulated medical waste (RMW) if the biopolymers are composted. Despite these 

benefits, there are very few medical products manufacturers that currently utilize biopolymers in 

their products. Additionally, an assessment of the environmental impacts of increased 

biopolymer use in favor of petroleum-based plastics in medical devices and products has not yet 

been performed. This study addresses this knowledge gap by comparing the environmental 

impacts of medical devices composed of plastics versus the same medical devices made with 

biopolymers. Due to the apparent environmental impacts associated with disposable woven-

cotton, this study also compares the environmental impacts of reusable woven-cotton medical 

products versus disposable woven-cotton medical products.  

 

This study utilized an OR material audit data from previous work and will focus on four of 

the most common types of hysterectomies performed: robotic, abdominal, laparoscopic, and 

vaginal (Thiel et al., 2014). Studies show that the OR is the most resource-intensive area of a 

hospital (Goldberg, Vekeman, Torjman, Seltzer, & Kynes, 1996; Lee, Ellenbecker, & Moure-

Eraso, 2002). A hysterectomy, the removal of a woman’s uterus, is the second most common 

major surgery performed on women in the US, and is the ninth most performed procedure in 

ORs (Health & Human, 2013; Whiteman et al., 2008). The methods, products, and devices 

employed in a hysterectomy are representative of many forms of abdominal surgery. While there 

is overlap in the devices and products used in each type of hysterectomy, there are noteworthy 

differences regarding the technologies, materials, and devices used in hysterectomies; which, 

suggests a need for an increased understanding of how each procedure, and developments within 

in each procedure, differs in their overall environmental impact. For example, a robotic 

hysterectomy uses more technologically-advanced products and devices (e.g., circuit boards, 
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diodes) than that of a vaginal hysterectomy. Therefore, understanding the environmental impacts 

of procedures performed regularly in the OR (in this case, a hysterectomy), is critical to 

understanding environmental impacts related to the aggregate healthcare system.  

 

2. Method 

 

The methods section parallels the four major steps of a life cycle assessment (LCA) (i.e., 

goal and scope definition, inventory analysis, impact assessment, interpretation). LCAs are used 

to assess environmental impacts throughout a product's life and seek to address a number of 

environmentally related concerns, including: compilation of energy and material input and 

outputs; evaluation of potential impacts attributed to the inputs and outputs; and, interpretation of 

the results to help make a more informed decision (EPA, 2010).  

  

An LCA begins with the goal and scope definition, which explicitly sets the context of 

the study. Once the goal and scope are defined, the second step of an LCA is inventory analysis. 

The life-cycle inventory (LCI) analysis documents the inputs and outputs of the studied system, 

where quantities of emissions, materials and energy are quantified. The third step in an LCA is 

the impact assessment, which aggregates the LCI data into environmental impact categories. And 

the final step of a LCA is interpretation, which is typically performed iteratively throughout each 

step of the LCA. LCA interpretation is systematic, and it identifies, quantifies, and evaluates 

information from the inventory or impact assessment steps.  
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In addition to the LCA, a 23 factorial experiment was used to demonstrate the 

environmental and human health impacts resulting from different substitutions biopolymers. An 

analysis was also performed to determine how the laundering of woven cotton products would 

affect environmental and human health impacts. 

 

a. Scope and System Boundary 

 

This study presents a comparative life cycle assessment of single-use-disposable medical 

products containing plastic(s) versus the same single-use medical devices with biopolymers 

substituted for plastic(s). The context of this LCA was that of Magee-Womens Hospital (Magee) 

in Pittsburgh, PA, and the products used in four types of hysterectomies performed at Magee that 

contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching 

hospital, which performs approximately 1400 hysterectomies annually. The products and devices 

evaluated are those used in four types of hysterectomy (i.e., vaginal, abdominal, laparoscopic, 

robotic) at Magee. Figure 12 shows that plastics are the most significant portion by weight of 

MSW per procedure for all types of hysterectomies. The high quantity of plastic waste confirms 

that there is considerable potential for the substitution of biopolymers. When averaging the total 

waste from the four hysterectomies, polypropylene, polyvinylchloride, and various forms of hard 

plastic represented the greatest sources of produced waste by mass. On a percent basis by mass, 

polypropylene, polyvinylchloride, and hard plastic represented 32%, 25%, and 14%, 

respectively, of the total waste produced by the four hysterectomies (Thiel et al., 2014). 
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Figure 12. Average Material Composition of MSW from a Single Hysterectomy by Surgery 

Type with Assumed Biopolymer Substitution. Adapted from (Thiel et al., 2014). 

(Caption Text) This figure shows the total waste produced from the four hysterectomy 

procedures. Materials substituted for biopolymers are colored shades of blue, and non-substituted 

materials are colored shades of orange. Similarly, all materials with (Substituted) following their 

name are materials that were substituted for biopolymers. All materials with (Not Substituted) 

following their name are materials that were not substituted for biopolymers. 

 

The number of medical devices and products used in each type of hysterectomy and the 

quantity of plastic(s) within each product were included in the analysis using the inventory data 

collected in a previous study (Thiel et al., 2014). Specific types of biopolymers were designated 

as substitutions to replace the plastics found in each device. The choice of substituted 

biopolymer was based on which biopolymer has appropriate material and functional properties to 
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that of the original plastic. The system boundary encompasses activities associated with the raw 

material extraction, production, use, and end-of-life (EOL) for the products containing plastic in 

each type of hysterectomy. 

 

There were 8 products and 1 device for which biopolymers were substituted for 

petroleum-based plastics, which are further detailed in Table 4. The bladeless obturator twists 

radially to wedge through muscle fiber layers to cut through to the abdominal cavity. Drapes are 

used to cover portions of the patient’s body in order to separate sterile areas from nonsterile 

areas. Blue wrap is intended to keep medical instruments sterile prior to surgery. And gloves are 

used during procedures to help prevent contamination between caregivers and patients. 

 

Waste audits of 62 hysterectomies were conducted by Thiel et al (2014) (15 each 

abdominal, vaginal, and robotic, and 17 laparoscopic). The waste audits were done to collect the 

material inputs and to quantify and characterize the products and materials entering Magee’s 

municipal solid waste, recycling streams, and RMW. The waste audits began with a visual 

inspection of the OR prior to the surgery to ensure all previously generated waste was 

eliminated. Immediately following the surgery, the MSW was collected, labeled with the case 

identification number, and moved to a secure storage location for sorting and weighing. RMW 

was estimated by quantifying the type of “peel packs” or package labels found in the MSW. All 

MSW was landfilled, while RMW underwent autoclaving prior to landfilling. 
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Table 4. Potential Biopolymer Substitutions for Petroleum Plastics. Adapted from (Thiel et 

al., 2014). 

Plastic found in 
original waste audit 

Substituted 
Biopolymer 

(and 
abbreviation 

used in 
figures) 

Product Device 

Low-density 
polyethylene (LDPE) PLA (P) Laparotomy drape 8 mm bladeless 

obturator 

Polypropylene PLA (P) 

Gowns; laparotomy 
drapes; bare warm air 

drape; blue drape; 
blue wrap 

None 

Polyisoprene 
Guayule-

derived latex 
(G) 

Tan glove; blue glove None 

Nitrile 
Guayule-

derived latex 
(G) 

Purple glove None 

Neoprene 
Guayule-

derived latex 
(G) 

Green glove None 

Cardboard Thermoplastic 
starch (T) Bare warm air drape None 

(Caption Text) Materials found in products and/or devices for robotic, abdominal, laparoscopic, 

and vaginal hysterectomies performed at Magee. Plastic, product, and device information from 

(Thiel et al., 2014). The potential biopolymer substitution was determined for the purposes of 

this study based on biopolymers with similar characteristics. 

 

Life-cycle processes related to woven nylon, adhesive, electric cords, diodes, batteries, 

copper, and titanium were omitted from analysis. These products were omitted because they 

constituted only 6% of the total waste (by weight) generated by Magee and including them in the 

analysis would not offer valuable insights because these products would have identical values for 
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all generated scenarios. Manufacturing processes, such as plastic shaping and moulding, were 

not included due to lack of inventory data and the similarity of manufacturing processes between 

biopolymers and petroleum-based plastics (Shen, Worrell, & Patel, 2010). 

 

One tool, the laparoscopic morcellator, was used in a number of analyzed hysterectomies; 

however, in 2014 the FDA contraindicated the morcellator, stating that “use of laparoscopic 

power morcellators during fibroid surgery may spread cancer and decrease the long-term 

survival of patients” (USFDA, 2015). Because the FDA has recommended that the morcellator 

not be used in hysterectomies, the morcellator’s associated life-cycle inventory was omitted from 

this study’s system boundary. 

 

b. Inventory Analysis 

 

The following plastics were identified in the four types of hysterectomies at Magee: low-

density polyethylene (LDPE), polypropylene (PP), polyisoprene, nitrile, and neoprene. Based on 

their physical properties and delivered function, the weights of plastics found in each device 

were substituted with an equal weight of suitable biopolymers. Guayule-derived latex was 

substituted for all products and/or devices containing nitrile, neoprene, polyisoprene. PLA was 

substituted for all products and/or devices containing LDPE and polypropylene. Thermoplastic 

starch was substituted for all products containing cardboard. While cardboard is considerable a 

renewable material, thermoplastic starch was substituted because of its suitability as a cardboard 

substitute.  
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PLA is a suitable LDPE substitute, as PLA has properties that make it appropriate for thin 

film applications including disposable products and packaging. Research is continuing to expand 

the number of applications for PLA as the potential material characteristics are broadened 

(Reddy, Vivekanandhan, Misra, Bhatia, & Mohanty, 2013; Shen, Haufe, & Patel, 2009). Similar 

to LDPE, PP in film applications and packaging can be replaced with disposable PLA products 

(Shen et al., 2010). Starch is well established as a low cost material for packaging applications 

which can be blended with cardboard and other fibers to achieve a wide range of application 

specific properties. While cardboard is an effective biobased material, starch may perform 

favorably and a comparison of environmental impacts will help assess any tradeoffs that exist 

(Bastioli, 1998; Mohammadi Nafchi, Moradpour, Saeidi, & Alias, 2013; Shen et al., 2009). 

Clinical and performance trials have also shown that guayule-derived latexs have high molecular 

weights, and products made from guayule-derived latexs have desirable performance properties 

in a clinical setting (Rasutis et al., 2015). Guayule-derived latex has also been shown to be safe 

for people with Type I latex allergy, where typical latex materials (e.g., nitrile, neoprene) contain 

allergenic proteins that affect those with Type I latex allergy (Foster & Coffelt, 2005; Siler, 

Cornish, & Hamilton, 1996). 

  

While a seeming departure from plastics, cotton was also investigated as a part of this 

work as previous studies have shown that cotton production represents a disproportionate 

percentage of toxicity impacts for LC-effects of surgeries and medical devices (Campion et al., 

2015; Unger & Landis, 2014). Woven cotton is found in a number of surgical materials, 

including towels, patient gowns, and laparotomy pads. Because of emissions associated with 

cotton, a cotton reuse scenario was developed to assess the potential for reducing environmental 
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and human health impacts through cotton laundering services. An analysis was performed to 

determine how the reuse of woven cotton products would affect environmental and human health 

impacts.  

 

This study utilized life cycle inventory data developed in a study that evaluated materials 

used in hospital custom packs (Campion et al., 2015). Campion et al. (2015) collected life cycle 

data from a commercial laundry facility that serviced Western PA hospitals. The life cycle data 

included: distance traveled for trucks, inventory related to the 18-chamber machine batch 

process, and typical processes for reusable cotton materials (i.e., washing, pressing, ironing, and 

folding). The analysis assumed a lifespan of 50 washes for reusable cotton materials, which is a 

typical lifespan for cotton products (Cartwright et al., 2011). The 18-chamber machine data was 

cross-referenced with industry specs, the electrical consumption was configured for a Western 

PA electricity mix, the chemical wash was determined from published reports and chemical 

MSDS, and the transportation distance was measured via Google Maps from Magee to their 

commercial laundry facility (ACI, 2013; Altenbaher, Šostar Turk, & Fijan, 2011; DOE, 2013; 

Fijan, Fijan, & Šostar-Turk, 2008; Overcash, 2012b). Unit processes were provided by the 

ecoinvent database, the USLCI database, and the Industry 2.0 database, and were used within 

this study in the same manner presented by Campion et al.  

 

Biopolymer upstream (i.e., raw material extraction, manufacturing) life cycle inventory 

data were derived from existing databases and literature. PLA inventory values were taken from 

ecoinvent v2.2. Guayule-derived latex inventory values were derived from (Rasutis et al., 2015). 

Thermoplastic starch values were provided by ecoinvent v.2.2 (Frischknecht et al., 2005). All 
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inventory database selections were determined by comparing the physical description and 

application of the material to the unit process description in each respective life cycle inventory 

database. Table 2 shows the utilized life cycle inventory databases and processes for all analyzed 

materials. 

 

Table 5. Utilized Life-Cycle Inventory Databases and Processes. 

Material 

Production Disposal 

Database 
or 

Source 
Process Name 

Database 
or 

Source 
Process Name 

Aluminum USLCI 
Aluminum, 

secondary, shape 
casted/RNA 

ecoinvent 
Disposal, aluminum, 
0% water, to sanitary 

landfill/CH U 

Cotton ecoinvent 
Textile, woven 

cotton, at plant/GLO 
U 

ecoinvent 

Disposal, inert 
material, 0% water, to 
sanitary landfill/CH 

U 

Glass ecoinvent 
Packaging glass, 

white, at plant/RER 
U 

ecoinvent 

Disposal, glass, 0% 
water, to inert 

material landfill/CH 
U 

Guayule-
Derived Latex 

(Rasutis 
et al., 
2015) 

Guayule-derived 
latex 

(Rasutis 
et al., 
2015) 

Biowaste treatment 
of, composting/CH U 

HDPE ecoinvent 
Polyethylene, 

HDPE, granulate, at 
plant/RER U 

ecoinvent 

Disposal, 
polyethylene, 0.4% 
water, to sanitary 

landfill/CH U 

Isoprene ecoinvent Synthetic rubber, at 
plant/RER U ecoinvent 

Disposal, plastics, 
mixture, 15.3% water, 

to sanitary 
landfill/CH U 

LDPE ecoinvent 
Polyethylene, LDPE, 

granulate, at 
plant/RER U 

ecoinvent 

Disposal, 
polyethylene, 0.4% 
water, to sanitary 

landfill/CH U 

Neoprene ecoinvent Synthetic rubber, at 
plant/RER U ecoinvent Disposal, plastics, 

mixture, 15.3% water, 
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to sanitary 
landfill/CH U 

Nitrile USLCI Polybutadiene, at 
plant/RNA ecoinvent 

Disposal, plastics, 
mixture, 15.3% water, 

to sanitary 
landfill/CH U 

Paper ecoinvent 
Kraft paper, 
bleached, at 
plant/RER U 

ecoinvent 

Disposal, paper, 
11.2% water, to 

sanitary landfill/CH 
U 

Paperboard ecoinvent 
Solid bleached 
board, SBB, at 
plant/RER U 

ecoinvent 
Process-specific 
burdens, sanitary 

landfill/CH U 

PLA 

(Vink, 
Davies, 

& 
Kolstad, 

2010) 

Polylactide ecoinvent Biowaste treatment 
of, composting/CH U 

PP ecoinvent 
SMS PP Disposable 
Gown - Ponder w/ 

energy 
ecoinvent 

Disposal, 
polypropylene, 15.9% 

water, to sanitary 
landfill/CH U 

PU Foam ecoinvent 
Polyurethane, 

flexible foam, at 
plant/RER S 

ecoinvent 

Disposal, 
polyurethane, 0.2% 
water, to sanitary 

landfill/CH U 

PVC ecoinvent 
Polyvinylchloride, at 

regional 
storage/RER U 

ecoinvent 

Disposal, 
polyvinylchloride, 

0.2% water, to 
sanitary landfill/CH 

U 

Rubber ecoinvent Synthetic rubber, at 
plant/RER U ecoinvent 

Disposal, plastics, 
mixture, 15.3% water, 

to sanitary 
landfill/CH U 

Stainless 
Steel ecoinvent 

Stainless steel hot 
rolled coil, annealed 
& pickled, elec. arc 
furnace route, prod. 
mix, grade 304 RER 

U 

ecoinvent 

Disposal, steel, 0% 
water, to inert 

material landfill/CH 
U 

Styrofoam ecoinvent 
Polystyrene, general 
purpose, GPPS, at 

plant/RER U 
ecoinvent 

Disposal, polystyrene, 
0.2% water, to 

sanitary landfill/CH 
U 
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Thermoplastic 
starch ecoinvent Modified starch, at 

plant/RER U ecoinvent Biowaste treatment 
of, composting/CH U 

Towel-
laundering 

(Campion 
et al., 
2015) 

Towel-laundering 
(Campion 

et al., 
2015) 

Disposal, inert 
material, 0% water, to 
sanitary landfill/CH 

U 

Wood USLCI 
Plywood, at 

plywood plant, US 
SE/kg/US 

ecoinvent 
Process-specific 
burdens, sanitary 

landfill/CH U 
 

All MSW and RMW were included in the system boundary. Additionally, the three 

biopolymers (i.e., PLA, guayule-derived latex, thermoplastic starch) were assumed to be 

composted. Regardless of whether the medical product contained biopolymers, all medical 

products were assumed to be disassembled and disaggregated based on three possible waste 

streams: RMW, MSW, and composted waste. Because biopolymers are made from the carbon 

captured in their plant-based resources, the release of CO2 during EOL does not contribute to an 

increase of anthropogenic atmospheric carbon (Song, Murphy, Narayan, & Davies, 2009). On 

the other hand, if a biopolymer material enters the landfill and does not degrade, that carbon can 

then be considered sequestered because it was removed from the atmosphere via the life-cycle of 

the product.  

 

 

Life-cycle impacts related to the transportation of material wastes were also calculated 

using distances from the hospital to the incineration and landfill facilities based on waste handler 

data provided by Magee’s facility management. Both MSW and RMW traveled from Magee to 

the waste handler, and from the waste handler to the landfill. The total distance traveled by two 
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waste streams was 19.3 km. RMW was incinerated before being landfilled, and MSW was sent 

directly from the waste handler to the landfill without being incinerated. 

 

  

c. Impact Assessment 

  

Environmental and human health impacts resulting from the calculated inputs and outputs 

were calculated using the Tool for Reduction and Assessment of Chemical (TRACI) 2.1 (J. C. 

Bare, 2002), which was created by the United States Environmental Protection Agency (EPA) to 

assist in impact assessment. The following impacts were calculated and reported from TRACI: 

ozone depletion, global warming, smog, acidification, eutrophication, carcinogenics, non-

carcinogenics, respiratory effects, and ecotoxicity. 

 

d. 23 Factorial Design Experiment 

 

A 23 factorial experiment was used to demonstrate the variances of environmental and 

human health impacts resulting from different substitutions of PLA, guayule-derived latex, and 

thermoplastic starch. The 23 factorial design experiment factors were the three substituted 

plastics (i.e., PLA, guayule-derived latex, thermoplastic starch) and the two factor levels were 

whether or not biopolymers were substituted for the three design experiment factors.  
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3. Results 

 

Figure 13 shows the comparative environmental and human health impacts resulting from 

hysterectomies using (1) standard medical products containing petroleum-based plastics and (2) 

medical products with biopolymers substituted. For each impact category, the results are 

normalized to the hysterectomy with the greatest overall impact when considering both base-case 

and biopolymer substitution scenarios. Because the impact categories are normalized for 

comparative purposes, the generated values may not necessarily reflect the overall magnitude of 

impact for individual impact categories.  

 

The use of biopolymers in surgical devices is preferable by a small margin in several 

impact categories which include acidification, carcinogenics, non-carcinogenics, respiratory 

effects, and ecotoxicity as shown in Figure 13. Because the manufacturing of petroleum-based 

plastics is associated with considerable human health impacts, the substitution of manufactured 

biopolymers for manufactured petroleum-based plastics results in the reduction of adverse 

human health impacts. However, medical devices with petroleum-based plastics that do not 

include any quantity of biopolymers perform better in several other impact categories. These 

impact categories include global warming, eutrophication, ozone depletion, and smog. While the 

utilization of biopolymers offers human health benefits, the agricultural activities associated with 

manufacturing biopolymers exacerbate a number of environmental impacts. Significant 

agricultural activities are associated with manufacturing biopolymers, where these agricultural 

activities exacerbate impacts related to global warming, eutrophication, ozone depletion, and 

smog. The relatively high increases for the impact categories smog and ozone depletion are due 
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to the emission of ozone-depleting substances during PLA manufacturing. On the other hand, 

guayule-derived latex and thermoplastic starch are correlated with much lower levels of ozone-

depleting substances during their associated manufacturing processes. 

 

The production of woven cotton requires agricultural inputs, which is coupled with 

significant acidification and ecotoxicity impacts that result from fertilizer inputs. Because higher 

quantities of cotton were used in abdominal hysterectomies, acidification impacts and ecotoxicity 

impacts for abdominal hysterectomies were higher than robotic, laparoscopic, and vaginal 

hysterectomies. Figure 13 shows that most environmental and human health impacts were driven 

by the manufacturing of woven cotton.  

 

In terms of analyzed mass, MSW waste was more than two orders of magnitude greater 

than that of RMW waste. Hence, the results reflect overall impacts resulting from hysterectomies 

as opposed to a comparison of MSW and RMW on an equivalent weight-basis. It should be 

noted, however, that on a per-weight basis, many impact categories favor that of MSW as 

opposed to RMW which, is not demonstrated in the results. RMW results in greater impacts 

because of the additional processes (e.g., autoclaving, incineration) required to render RMW 

suitable for landfilling.  
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1Non Substituted Material 

2Includes Polystyrene, Steel, Aluminum, Rubber, Paper, Glass, Wood, HDPE, and Polyurethane. 

All of these materials composed less than 2% (by weight) of Magee’s total analyzed waste 

stream. 

EOL: End-of-Life; MSW: Material Solid Waste; RMW: Regulated Medical Waste 

Figure 13. Normalized TRACI Impacts for Medical Products Containing Petroleum-Based 

Plastics versus Medical Products Potentially Containing Biopolymers Used in 

Hysterectomies. 

 

Using results from the 23 factorial design experiment, Figure 14 shows the relative 

increase or decrease in all impact categories from various combinations of biopolymer 

substitutions. The error bars in Figure 14 show the most significant increase or decrease for all 

impact categories using values generated from the 23 factorial design experiment. The increase of 

impacts related to global warming, eutrophication, ozone depletion, and smog resulted when 

PLA, guayule-derived latex, and thermoplastic starch were substituted for typically used 

materials. The increase of acidification-related impacts resulted when thermoplastic starch was 

substituted for cardboard. The increase of ecotoxicity related impacts resulted when PLA and 

guayule-derived latex were substituted for typically used materials. Conversely, the decrease of 

impacts related to carcinogenics, non-carcinogenics, and respiratory effects resulted when PLA, 

guayule-derived latex, and thermoplastic starch were substituted for petroleum-based materials. 

The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by 

approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone 

depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. 
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Table 6 through Table 14 in the supplementary information display the design of experiments 

(DOE) results for all nine impact categories.  

 

 

Figure 14. Variability/Percent Increase or Decrease Resulting from Biopolymer 

Substitutions Using Values Generated from 23 Factorial Design Experiment.    

(Caption Text) The error bars in Figure 14 show the most significant increase or decrease for all 

impact categories using values generated from the 23 factorial design experiment. 

 

Figure 15 shows the environmental and human health impacts associated with laundering 

reusable cotton products used in the four hysterectomies. The columns labeled TL show the 

environmental and human health impacts that result when reusable cotton products are 

laundered. The columns labeled BC show the base-case results that do not include any 

laundering of cotton products. The laundering of reusable cotton products resulted in an overall 

net decrease of at least one order of magnitude in eight of the nine of the TRACI impact 

categories. The remaining TRACI impact category, smog, was still associated with 

approximately a 50% reduction when reusable cotton products were laundered. The cultivation 

and manufacturing of woven-cotton requires significant amounts of energy and water; where, the 

quantities of energy and water for cultivation and manufacturing of woven-cotton outweigh the 
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quantities of energy and water used to launder reusable cotton products. The laundering of 

reusable cotton products was also preferable to disposing cotton in all nine respective TRACI 

impact categories. Similar reusable cotton products have been shown to have a lifespan of over 

50 washes (Cartwright et al., 2011); which, would reduce MSW from reusable cotton products 

by approximately 98%.  
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1Includes Polystyrene, Steel, Aluminum, Rubber, Paper, Glass, Wood, HDPE, and Polyurethane. 

All of these materials composed less than 2% (by weight) of Magee’s total analyzed waste 

stream. 

EOL: End-of-Life; MSW: Material Solid Waste; RMW: Regulated Medical Waste 

Figure 15. Life Cycle Impacts of Disposable Medical Products Used in Hysterectomies 

With and Without Laundering of Cotton Products. 

 

4. Discussion 

 

The integration of biopolymers into medical products is correlated with reductions in 

carcinogenic impacts, non-carcinogenic impacts, and respiratory effects. However, the 

significant agricultural inputs associated with manufacturing biopolymers exacerbates 

environmental impacts of products and devices made out of biopolymers. The results showed 

that the PLA and guayule-derived latex substitutions resulted in significant smog-related 

impacts. Both PLA and guayule-derived latex have smog-related life-cycle impact factors that 

are at least 40 times greater than that of their respective substituted plastic (e.g., LDPE for 

polypropylene, guayule-derived latex for polyisoprene). The substitution of polypropylene for 

PLA resulted in the most significant smog-related impacts, where PLA has a smog life-cycle 

impact factor that is more than 140 times greater than that of polypropylene. Hence, due to the 

significant agricultural inputs associated with cultivating biopolymers and their corresponding 

high life-cycle impact factors, the substitution of biopolymers exacerbated smog-related impacts. 

If the biopolymers are cultivated in a locale with high-levels of existing smog (e.g., urban areas), 

the use of biopolymers is not necessarily favorable. On the other hand, if the biopolymers are 



 71 

cultivated in a locale with low-levels of existing smog (e.g., rural areas), the use of biopolymers 

is potentially favorable when considering smog-related impacts.  

 

When utilized as a single-use product, cotton was found to be a significant contributor of 

environmental effects. This result is in-line with other contemporary environmental assessments 

of medical devices, products, and/or services (Campion et al., 2015; Unger & Landis, 2014). 

These environmental effects can effectively be reduced through cotton laundering services, and 

the strategic use of suitable cotton-alternatives that have lower environmental footprints. A study 

by the authors showed that onsite healthcare cleaning processes should be efficiently deployed to 

maximize environmental benefits (Unger & Landis, 2014). The efficient deployment of 

healthcare cleaning processes can be achieved by minimizing the use of detergents, water, and 

energy. Efficient cleaning processes can also be achieved by maximizing the number of medical 

products within the cleaning equipment. The efficient deployment of laundering services also 

typically results in lower economic costs incurred by the hospital. A review article that examined 

the economic costs of reusable cotton gowns and cotton drapes found that reusable gowns and 

drapes were also less expensive than disposable gowns and drapes; where, reusable gowns 

ranged anywhere from $8 to $16 in total life-cycle costs, and disposable gowns ranged anywhere 

from $9 to $33 in total life-cycle costs (Overcash, 2012a). 

 

Effective composting of biopolymers used in medical products would decrease 

environmental and human health impacts resulting from RMW and MSW. Primary concerns 

with composting medical waste include existing regulatory barriers associated with composting 

medical waste, as well as the necessary life-cycle processes and labor required for composting. 
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For example, implementing a composting waste stream at a hospital would require: healthcare 

personnel to distinguish compostable from non-compostable products; consistent upkeep and 

maintenance of composting bins and equipment to ensure their sterility in medical environment; 

and, disassembly of medical products that are only partially composed of compostable material 

before those products enter a composting stream. Despite these concerns, composting would 

decrease environmental and human health impacts because composting provides an opportunity 

to process wastes with fewer harmful emissions than landfill, while still retaining nutrients and 

value in the composted waste.  

 

While the increased use of PLA, guayule-derived latex, and thermoplastic starch result in 

varying environmental and human health impacts, the reuse of cotton products results in net 

decreases of human health and environmental impacts. Therefore, improvements to life-cycle 

environmental impacts can be achieved when laundering reusable cotton healthcare products as 

opposed to treating them as single-use disposable products.  
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5. Supplementary Information 

 

a. 23 Factorial Design Experiment 

 

Table 6 through Table 14 shows the results for the two-level factorial design. The 

standard column represents each calculated scenario. Regarding the Main Effects column, 1 

designates a particular biopolymer being substituted for an original material, and -1 designates a 

particular biopolymer not being substituted for an original material. In addition, the P represents 

PLA, G represents guayule-derived latex, and T represents thermoplastic starch. The column 

furthest to the right is designated by Y1 and represents the impact factor for each respective 

scenario.  

 

Table 6. Two-Level Factorial Design Table for Global Warming. 

  Standard 

Main 

Effects 
Y1 (kg CO2 

eq) 
P G T 

La
pa

ro
sc

op
ic

 

1 -1 -1 -1 32.13 

2 1 -1 -1 33.07 

3 -1 1 -1 32.51 

4 -1 -1 1 31.89 

5 1 1 -1 31.77 

6 1 -1 1 32.85 
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7 -1 1 1 32.77 

8 1 1 1 31.93 

A
bd

om
in

al
 

1 -1 -1 -1 41.18 

2 1 -1 -1 41.85 

3 -1 1 -1 41.45 

4 -1 -1 1 41.09 

5 1 1 -1 40.85 

6 1 -1 1 41.77 

7 -1 1 1 41.64 

8 1 1 1 41.11 

V
ag

in
al

 

1 -1 -1 -1 35.56 

2 1 -1 -1 36.07 

3 -1 1 -1 35.74 

4 -1 -1 1 35.46 

5 1 1 -1 35.25 

6 1 -1 1 36.01 

7 -1 1 1 36.10 

8 1 1 1 35.47 

R
ob

ot
ic

 

1 -1 -1 -1 45.10 

2 1 -1 -1 45.08 

3 -1 1 -1 44.60 

4 -1 -1 1 44.91 
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5 1 1 -1 44.66 

6 1 -1 1 44.96 

7 -1 1 1 45.33 

8 1 1 1 44.93 

 

Table 7. Two-Level Factorial Design Table for Acidification. 

  Standard 

Main 

Effects 
Y1 (H+ 

moles eq) 
P G T 

La
pa

ro
sc

op
ic

 

1 -1 -1 -1 14.50 

2 1 -1 -1 9.11 

3 -1 1 -1 9.43 

4 -1 -1 1 14.17 

5 1 1 -1 14.54 

6 1 -1 1 9.08 

7 -1 1 1 9.45 

8 1 1 1 14.16 

A
bd

om
in

al
 

1 -1 -1 -1 18.84 

2 1 -1 -1 14.92 

3 -1 1 -1 15.23 

4 -1 -1 1 18.53 

5 1 1 -1 18.87 
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6 1 -1 1 14.91 

7 -1 1 1 15.24 

8 1 1 1 18.53 

V
ag

in
al

 

1 -1 -1 -1 15.87 

2 1 -1 -1 12.37 

3 -1 1 -1 12.64 

4 -1 -1 1 15.60 

5 1 1 -1 15.89 

6 1 -1 1 12.36 

7 -1 1 1 12.65 

8 1 1 1 15.60 

R
ob

ot
ic

 

1 -1 -1 -1 17.53 

2 1 -1 -1 12.77 

3 -1 1 -1 13.13 

4 -1 -1 1 17.17 

5 1 1 -1 17.56 

6 1 -1 1 12.75 

7 -1 1 1 13.15 

8 1 1 1 17.17 
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Table 8. Two-Level Factorial Design Table for Carcinogenics. 

  Standard 

Main 

Effects 
Y1 (kg 

benzene eq) 
P G T 

La
pa

ro
sc

op
ic

 
1 -1 -1 -1 0.16 

2 1 -1 -1 0.14 

3 -1 1 -1 0.21 

4 -1 -1 1 0.19 

5 1 1 -1 0.25 

6 1 -1 1 0.14 

7 -1 1 1 0.21 

8 1 1 1 0.19 

A
bd

om
in

al
 

1 -1 -1 -1 0.17 

2 1 -1 -1 0.17 

3 -1 1 -1 0.22 

4 -1 -1 1 0.20 

5 1 1 -1 0.25 

6 1 -1 1 0.17 

7 -1 1 1 0.23 

8 1 1 1 0.20 

V
ag

in
al

 1 -1 -1 -1 0.17 

2 1 -1 -1 0.17 
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3 -1 1 -1 0.22 

4 -1 -1 1 0.19 

5 1 1 -1 0.25 

6 1 -1 1 0.17 

7 -1 1 1 0.23 

8 1 1 1 0.19 

R
ob

ot
ic

 

1 -1 -1 -1 0.31 

2 1 -1 -1 0.30 

3 -1 1 -1 0.37 

4 -1 -1 1 0.34 

5 1 1 -1 0.41 

6 1 -1 1 0.30 

7 -1 1 1 0.39 

8 1 1 1 0.34 

  

Table 9. Two-Level Factorial Design Table for Non-Carcinogenics. 

  Standard 

Main 

Effects 
Y1 (kg 

toluene eq) 
P G T 

La
pa

ro
sc

op
ic

 1 -1 -1 -1 3224.64 

2 1 -1 -1 2981.08 

3 -1 1 -1 5170.67 
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4 -1 -1 1 4451.52 

5 1 1 -1 6579.76 

6 1 -1 1 3011.76 

7 -1 1 1 5140.00 

8 1 1 1 4451.52 
A

bd
om

in
al

 

1 -1 -1 -1 2762.08 

2 1 -1 -1 2596.51 

3 -1 1 -1 4484.04 

4 -1 -1 1 3637.23 

5 1 1 -1 5502.89 

6 1 -1 1 2607.45 

7 -1 1 1 4638.12 

8 1 1 1 3637.23 

V
ag

in
al

 

1 -1 -1 -1 3191.58 

2 1 -1 -1 3042.32 

3 -1 1 -1 4882.86 

4 -1 -1 1 3985.36 

5 1 1 -1 5809.58 

6 1 -1 1 3050.48 

7 -1 1 1 5040.69 

8 1 1 1 3985.36 

R
ob

o

tic
 1 -1 -1 -1 7682.40 
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2 1 -1 -1 7470.75 

3 -1 1 -1 9820.54 

4 -1 -1 1 8942.99 

5 1 1 -1 11260.13 

6 1 -1 1 7487.07 

7 -1 1 1 10269.75 

8 1 1 1 8942.98 

 

Table 10. Two-Level Factorial Design Table for Respiratory Effects. 

  Standard 

Main 

Effects 
Y1 (kg 

PM2.5 eq) 
P G T 

La
pa

ro
sc

op
ic

 

1 -1 -1 -1 0.07 

2 1 -1 -1 0.05 

3 -1 1 -1 0.05 

4 -1 -1 1 0.07 

5 1 1 -1 0.07 

6 1 -1 1 0.05 

7 -1 1 1 0.05 

8 1 1 1 0.07 

A
bd

om
in

al
 

1 -1 -1 -1 0.09 

2 1 -1 -1 0.07 
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3 -1 1 -1 0.08 

4 -1 -1 1 0.09 

5 1 1 -1 0.09 

6 1 -1 1 0.07 

7 -1 1 1 0.08 

8 1 1 1 0.09 

V
ag

in
al

 

1 -1 -1 -1 0.08 

2 1 -1 -1 0.06 

3 -1 1 -1 0.06 

4 -1 -1 1 0.08 

5 1 1 -1 0.08 

6 1 -1 1 0.06 

7 -1 1 1 0.06 

8 1 1 1 0.08 

R
ob

ot
ic

 

1 -1 -1 -1 0.08 

2 1 -1 -1 0.06 

3 -1 1 -1 0.07 

4 -1 -1 1 0.08 

5 1 1 -1 0.08 

6 1 -1 1 0.06 

7 -1 1 1 0.07 

8 1 1 1 0.08 
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 Table 11. Two-Level Factorial Design Table for Eutrophication. 

  Standard 

Main 

Effects 
Y1 (kg N 

eq) 
P G T 

La
pa

ro
sc

op
ic

 

1 -1 -1 -1 0.11 

2 1 -1 -1 0.12 

3 -1 1 -1 0.12 

4 -1 -1 1 0.17 

5 1 1 -1 0.17 

6 1 -1 1 0.12 

7 -1 1 1 0.12 

8 1 1 1 0.17 

A
bd

om
in

al
 

1 -1 -1 -1 0.15 

2 1 -1 -1 0.15 

3 -1 1 -1 0.16 

4 -1 -1 1 0.19 

5 1 1 -1 0.19 

6 1 -1 1 0.15 

7 -1 1 1 0.16 

8 1 1 1 0.19 

V
ag

i

na
l 1 -1 -1 -1 0.13 
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2 1 -1 -1 0.13 

3 -1 1 -1 0.14 

4 -1 -1 1 0.17 

5 1 1 -1 0.17 

6 1 -1 1 0.13 

7 -1 1 1 0.15 

8 1 1 1 0.17 

R
ob

ot
ic

 

1 -1 -1 -1 0.18 

2 1 -1 -1 0.19 

3 -1 1 -1 0.19 

4 -1 -1 1 0.24 

5 1 1 -1 0.24 

6 1 -1 1 0.19 

7 -1 1 1 0.21 

8 1 1 1 0.24 
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 Table 12. Two-Level Factorial Design Table for Ozone Depletion. 

  Standard 

Main 

Effects 
Y1 (kg 

CFC-11) 
P G T 

La
pa

ro
sc

op
ic

 
1 -1 -1 -1 0.0000007 

2 1 -1 -1 0.0000008 

3 -1 1 -1 0.0000007 

4 -1 -1 1 0.0000007 

5 1 1 -1 0.0000007 

6 1 -1 1 0.0000007 

7 -1 1 1 0.0000007 

8 1 1 1 0.0000007 

A
bd

om
in

al
 

1 -1 -1 -1 0.0000009 

2 1 -1 -1 0.0000010 

3 -1 1 -1 0.0000009 

4 -1 -1 1 0.0000009 

5 1 1 -1 0.0000009 

6 1 -1 1 0.0000009 

7 -1 1 1 0.0000009 

8 1 1 1 0.0000009 

V
ag

in
al

 1 -1 -1 -1 0.0000010 

2 1 -1 -1 0.0000010 
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3 -1 1 -1 0.0000010 

4 -1 -1 1 0.0000010 

5 1 1 -1 0.0000010 

6 1 -1 1 0.0000010 

7 -1 1 1 0.0000010 

8 1 1 1 0.0000010 

R
ob

ot
ic

 

1 -1 -1 -1 0.0000012 

2 1 -1 -1 0.0000013 

3 -1 1 -1 0.0000012 

4 -1 -1 1 0.0000013 

5 1 1 -1 0.0000012 

6 1 -1 1 0.0000013 

7 -1 1 1 0.0000012 

8 1 1 1 0.0000013 

 

Table 13. Two-Level Factorial Design Table for Ecotoxicity. 

  Standard 

Main 

Effects 
Y1 (kg 2,4-

D) 
P G T 

La
pa

ro
sc

op
ic

 1 -1 -1 -1 240.22 

2 1 -1 -1 235.23 

3 -1 1 -1 237.31 



 86 

4 -1 -1 1 245.03 

5 1 1 -1 246.26 

6 1 -1 1 235.65 

7 -1 1 1 236.92 

8 1 1 1 245.07 
A

bd
om

in
al

 

1 -1 -1 -1 407.27 

2 1 -1 -1 403.99 

3 -1 1 -1 405.50 

4 -1 -1 1 410.85 

5 1 1 -1 412.05 

6 1 -1 1 404.14 

7 -1 1 1 406.14 

8 1 1 1 410.86 

V
ag

in
al

 

1 -1 -1 -1 374.23 

2 1 -1 -1 371.18 

3 -1 1 -1 372.75 

4 -1 -1 1 377.37 

5 1 1 -1 378.72 

6 1 -1 1 371.29 

7 -1 1 1 373.62 

8 1 1 1 377.38 

R
ob

o

tic
 1 -1 -1 -1 295.05 
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2 1 -1 -1 290.45 

3 -1 1 -1 292.46 

4 -1 -1 1 300.06 

5 1 1 -1 301.62 

6 1 -1 1 290.67 

7 -1 1 1 294.75 

8 1 1 1 300.08 

  

Table 14. Two-Level Factorial Design Table for Smog. 

  Standard 

Main 

Effects 
Y1 (kg 

CFC-11) 
P G T 

La
pa

ro
sc

op
ic

 

1 -1 -1 -1 0.14 

2 1 -1 -1 1.15 

3 -1 1 -1 1.04 

4 -1 -1 1 0.17 

5 1 1 -1 0.10 

6 1 -1 1 1.13 

7 -1 1 1 1.07 

8 1 1 1 0.17 

A
bd

om
in

al
 

1 -1 -1 -1 0.15 

2 1 -1 -1 0.88 
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3 -1 1 -1 0.80 

4 -1 -1 1 0.18 

5 1 1 -1 0.12 

6 1 -1 1 0.87 

7 -1 1 1 0.81 

8 1 1 1 0.19 

V
ag

in
al

 

1 -1 -1 -1 0.13 

2 1 -1 -1 0.79 

3 -1 1 -1 0.72 

4 -1 -1 1 0.17 

5 1 1 -1 0.10 

6 1 -1 1 0.79 

7 -1 1 1 0.73 

8 1 1 1 0.17 

R
ob

ot
ic

 

1 -1 -1 -1 0.17 

2 1 -1 -1 1.18 

3 -1 1 -1 1.07 

4 -1 -1 1 0.21 

5 1 1 -1 0.12 

6 1 -1 1 1.16 

7 -1 1 1 1.11 

8 1 1 1 0.21 
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CHAPTER 5 

EVALUATING QUANTIFIABLE METRICS FOR HOSPITAL GREEN CHECKLISTS 

 

This chapter addresses the dissertation research question 3) synthesize and prioritize the salient 

conclusions from the first two research questions, as well as from recent studies focusing on the 

environmental impacts of various medical products and/or services for the use of hospital 

administrators and employees. 

 

1. Introduction 

 

An increasing number of hospitals are placing a higher emphasis on sustainability and 

tracking the success of their sustainability initiatives. The foci of these sustainability initiatives 

include (but are not limited to) a hospital’s: built environment, energy efficiency, water 

efficiency, green purchasing, waste diversion strategies, healthy food purchasing and disposal, 

and impacts from employee and patient behaviors and emerging technologies (Janet, 2013; 

Kaplan et al., 2012; Kwakye et al., 2011). These strategies were previously deployed with little 

or no scientific validation of their environmental impacts, but these initiatives and their 

associated environmental, human-health, and economic impacts are increasingly being assessed 

by peer-reviewed publications. The publications in this field range in foci and scope; where, 

some of these studies have relatively small scopes and focus on individual items used in 

hospitals (e.g., surgical gowns, laparotomy pads) (Kümmerer et al., 1996; Overcash, 2012a). 

Other studies have widened their scope beyond textiles to analyze more complex medical 

equipment used in hospitals (Matthew Eckelman, Margo Mosher, Andres Gonzalez, & Jodi 
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Sherman, 2012; Forbes McGain, McAlister, McGavin, & Story, 2012). Larger-scoped studies 

have examined the environmental impacts of hospital operating rooms, showing that multiple 

components of medical procedures have significant impacts, including: facility systems, 

healthcare products, and procedures (Campion et al., 2012a; Thiel et al., 2014).  

 

Beyond peer-reviewed publications, organizations such as Practice GreenHealth, Health 

Care Without Harm, Hospitals for a Healthy Environment, Kaiser Permanente and The 

Collaborative for Health and the Environment have come to forefront as leading groups in the 

sustainable healthcare movement. Noteworthy achievements of Health Care Without Harm 

include the closing of over 5,000 medical incinerators, the elimination of mercury thermometers 

in US hospitals, and the establishment of a health-based green building system for hospitals 

(HCWH, 2015). With a membership exceeding 1,300, Practice Greenhealth is the US’s leading 

membership and networking organization for institutions in the healthcare community that have 

made a commitment to sustainable, environmentally preferable practices (PG, 2015c). Practice 

Greenhealth has published the “Greenhealth Eco-Checklist for Operations” which gives 

healthcare personnel a wide array criteria (e.g., education, waste management and reduction, 

transportation operations) intended to provide guidance on the sustainability of a hospital’s 

medical products and services (PG, 2015b). In 2015, Practice Greenhealth reported that its top-

performing member institutions, who presumably used some form of Practice Greenhealth’s 

Eco-Checklist for Operations, saved an average of 338 tons of waste, 901 thousand gallons of 

water, and 1.85% of their energy use on an annual basis (PG, 2015a). Kaiser Permanente has also 

published the Generation II Medical Sustainability Scorecard, which also reports a set of criteria 
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(e.g., chemical management, natural resources/waste) that similarly validates the sustainability of 

a hospital’s medical devices and services (KP, 2010).  

 

While these studies, organizations, and checklists have helped to advance sustainability 

in healthcare, the healthcare industry still lacks a framework to effectively inform decision 

making and quantitatively assess the success of sustainability initiatives for medical devices and 

services (Kwakye, Pronovost, & Makary, 2010). Several studies have already expressed the need 

for better ways to quantify sustainable healthcare practices (Daschner & Dettenkofer, 1997; 

Karlsson & Pigretti-Ohman, 2005; Kreisberg, 2007; Shanks, 2009; Jodi Sherman & Ryan, 2010). 

To address these needs, this research compared the cradle-to-grave environmental and economic 

impacts of some of the most common recommendations from checklists: reusable versus 

disposable medical products, and changes to common medical services. Several changes to 

medical services include streamlining custom packs, reducing medical waste, increasing 

utilization of reprocessed medical products, and increasing biopolymer content in medical 

products.  

 

Salient results and conclusions from recent studies focusing on the environmental and 

economic impacts of various reusable versus disposable medical products and different medical 

services were synthesized and prioritized. All relevant results related to environmental and 

economic impacts of reusable versus disposable medical products and the analyzed medical 

services were also correlated with existing sustainable checklists. The recommended practices of 

each sustainable healthcare checklist were first evaluated based on their encapsulation of cradle-

to-grave impacts; where, the evaluation of cradle-to-grave impacts contributes to the validation 
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of sustainable healthcare checklists and their aim to increase sustainability at healthcare 

institutions. Where applicable, recommendations for improvement of sustainable healthcare 

checklists were made based on cradle-to-grave environmental impact results synthesized from 

this study. One aim of this research is for hospital employees and administrators to utilize in 

order to make more informed decisions about the sustainability of their products and services. 

 

2. Methods 

 

This research collected, characterized, and normalized recent studies focusing on the 

environmental and economic impacts resulting from the use of reusable medical products, 

comparable disposable medical products, and a series of medical services (Adler et al., 2005; 

Campion et al., 2012b; Campion et al., 2015; M. Eckelman et al., 2012; Ibbotson, Dettmer, Kara, 

& Herrmann, 2013; F. McGain, Sussex, O'Toole, & Story, 2011; Overcash, 2012a; Sorensen & 

Wenzel, 2014; Unger et al., 2015; Unger & Landis, 2014, 2015; Zhao et al., 2009). The 

disposable and/or reusable medical products included a: bedpan, central venous catheter insertion 

kit, dental bur, gown, laparoscopic cholecystectomy instruments, laryngeal mask airway, 

scissors, trocar, and veress cannula. The assessed medical services included: custom packs used 

in vaginal deliveries, medical waste treatments, infant delivery, reprocessed products, and 

products with increased biopolymer content. All studies used life cycle assessment (LCA) and/or 

life cycle cost assessment (LCCA) to evaluate the environmental and economic impacts 

attributed to the medical products and services. LCA is a method used to assess environmental 

impacts associated with the stages of a product's life and is defined by ISO 14040 standards 

(ISO, 2006c). 
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The stages of a product’s life include: raw material extraction, materials processing, 

manufacture, distribution, use, repair and maintenance, and disposal or recycling (ISO, 2006c). 

LCCA is a method used to calculate the economic costs associated with all stages of a product’s 

life. Once the studies were collected, they were then characterized based on their evaluated 

impact categories. Table 15 shows the peer-reviewed studies that provided reusable versus 

disposable medical products data for this research. All studies use some form of LCA to assess 

each product’s comparative life-cycle environmental impacts; with respect to the product being 

used as a single-use disposable, versus an alternative reusable products that fulfills the same 

function as the disposable. Certain studies expanded their analysis to economic impacts, which 

were quantified through cradle-to-grave LCCA in some instances. All data related to 

environmental and economic impacts quantified by these studies was collected. The respective 

system boundaries of the analyzed studies differed in some instances. For example, the laryngeal 

mask airway study included labor in its system boundary, while all of the other studies did not 

account for labor in their respective system boundaries. The system boundary discrepancies were 

not adjusted due to lack of data.  
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Table 15. Analyzed Medical Products. 

Products Reuse 
Instances 

Disposable 
Weight 
(grams) 

Reusable 
Weight 
(grams) 

LCA 
Method-

ology 

Cradle-
to-Gate 

Use-
Phase 

End-of-
Life Citation 

Bedpan 1,000 474 1,210 SimaPro 
7.3.2, Yes Yes Yes3 

(Sorensen 
& Wenzel, 

2014) 
Central 
venous 
catheter 
insertion 

kit 

300 N/A N/A SimaPro Yes No Yes 
(Forbes 

McGain et 
al., 2012) 

Dental 
bur 30 1.05* 1.05* 

SimaPro; 
ISO 

14040 
Yes Yes Yes 

(Unger & 
Landis, 
2014) 

Gowns 50 - 100 137-243 287-546 N/A N/A N/A N/A (Overcash, 
2012a) 

Laparo-
scopic 

cholecy-
stectomy 

instru-
ments 

N/A N/A N/A N/A No Yes No (Adler et 
al., 2005) 

Laryngeal 
mask 

airway 
40 42.35 43.26 

SimaPro 
7.3.2; 
ISO 

14040 

Yes Yes Yes3 

(M. 
Eckelman 

et al., 
2012) 

Scissors1 N/A N/A N/A N/A No Yes No (Adler et 
al., 2005) 

Scissors2 4,500 N/A N/A 
SimaPro; 

ISO 
14040 

Yes Yes Yes 
(Ibbotson 

et al., 
2013) 

Trocar N/A N/A N/A N/A No Yes No (Adler et 
al., 2005) 

Veress 
cannula N/A N/A N/A N/A No Yes No (Adler et 

al., 2005) 
N/A Not available because the associated data were not published in the associated study 

* Disposable dental bur and reusable dental bur are identical 

1 LCA of scissors performed by Adler et. al, 2005 

2 LCA of scissors performed by Ibbotson et al., 2013 

3 Recycling was used as end-of-life scenario  
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The collection and synthesization of reusable versus disposable medical product data was 

characterized by four impact categories: greenhouse gases (GHG), energy use, water 

consumption, and economic impacts. The following characterization factors were used: GHG – 

kg CO2eq; Energy – kWh; Water – liters; and, economic impacts – 2015 United States (US) 

dollars ($). GHG were reported in terms of all cradle-to-gate processes that drive kg CO2eq 

values for each respective medical product. Similarly, economic impacts were reported in terms 

of all cradle-to-gate processes that drive economic cost values for each respective medical 

product. Energy and water metrics were reported as the energy associated with cleaning medical 

products, as well as the water associated with cleaning medical products. Cleaning typically 

included life-cycle processes associated with utilizing an autoclave, ultrasonic, cleaning 

solutions, and/or manual scrubbing. 

 

The results from the utilized studies were normalized to one instance of use for all 

medical products in order to generate a one-to-one comparison of medical products. For 

example, the results from the LMA study were reported in terms of kg CO2eq for the entire 

usable life-cycle of a reusable laryngeal mask airway; which, was then divided by 40 (i.e., reuse 

instances for the laryngeal mask airway) to generate the kgCO2eq for one instance of use for a 

reusable laryngeal mask airway. Many of the studies utilized similar life cycle assessment tools, 

including ISO 14040 standards and SimaPro life cycle assessment software. The life cycle 

impact assessment methodologies utilized by the studies differed in some instances (e.g., 

ReCiPe, TRACI), but the values were always reported in the same (or mathematically 

convertible) units. For example, MJ were converted to kWh for the gowns and scissors studies.  
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Once the medical product data were collected, the economic and environmental results 

were then organized to compare products individually without any time-based factors. For 

example, of seven products that were examined in a study performed by the authors, it was found 

that the ligasure, a product used for vessel sealing, offered the greatest economic savings when it 

was reprocessed; however, the ligasure did not correlate with significant economic savings on an 

annual basis because of its relatively low annual utilization rate (Unger & Landis, 2015). The 

one-to-one analysis of medical products without time-based factors gives hospital personnel the 

ability to scale the results up to match their own hospital’s specifications. Additionally, 

economic and environmental savings are dependent on the temporal utilization of a product or 

service.  

 

Economic results were normalized to be in terms of 2015 $USD. The price of each 

product was converted to 2015 values using producer price index industry data provided by the 

Bureau of Labor Statistics, where specific values were obtained from their industry and product 

subset entitled “Medical equipment & supplies mfg” (BLS, 2015). The converted present-day-

values were then converted from their respective currencies (e.g., Australian dollars, Euros) to 

US dollars using foreign currency exchanges rates provided by the US federal reserve (USFR, 

2015). The utilized exchange rates were: 1.0393 Australian dollars per US dollar in 2012; 1.3538 

Euros per US dollar in 2004; and, 1.3779 Euros per US dollar in 2013 (FR, 2015). 

  

Data related to the GHG associated with several medical services were also collected and 

normalized on an annual basis. Table 16 shows the analyzed services and their respective 

citation(s) that provide annual utilization data. Several options for each service were included. 
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Two options were evaluated for custom packs used in vaginal deliveries, which included the 

minimum and maximum reported kg CO2eq values (of a total of 15 analyzed custom packs) for 

the custom packs study. Five medical waste treatments were included, which were incineration 

with energy recovery efficiency of 30%, non-incineration with electricity generation from 

landfill gas, non-incineration with landfill gas ignited on site, incineration with energy recovery 

efficiency of 15%, and incineration without energy recovery. Two types of infant delivery were 

evaluated, which included vaginal and cesarean-section delivery. Five options were evaluated for 

reprocessed products, which included four, three, two, one, and zero reprocessing instances. The 

values reported for reprocessing reflect a single hospital and its suite of reprocessed products, 

which included: arthroscopic shavers, deep vein thrombosis compression sleeves, endoscopic 

trocars, ligasures, pulse oximeters, scissors tips, and ultrasonic scalpels. Products with 

biopolymer content and products without biopolymer content were also included. The values 

reported for products with and without biopolymer content reflect the substitution of 

biopolymers (e.g., polylactic acid, guayule-derived latex) for certain fossil-fuel-based plastics 

(e.g., polypropylene, low-density polyethylene) in products and products used in hysterectomies 

at a single hospital. 

 

These services were normalized to represent the annual usage of any given service at a 

hospital with 161 staffed beds (i.e., an average-sized US hospital) (AHA, 2015). In order to 

determine the annual utilization of any given service at an average-sized US hospital, the 

aggregate national utilization of a service was divided by the number of staffed beds (i.e., 161) at 

an average-sized US hospital.   
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Table 16. Annual Usage of Analyzed Medical Services. 

Service 

Annual Utilization an 

Average-sized US 

Hospital (unit/hospital-

year) 

LCA Methodology Citation(s) 

Custom packs 

used in vaginal 

deliveries 

465 custom packs used N/A 

(Campion et al., 2015) 

and (Martin, Hamilton, 

Osterman, Curtin, & 

Mathews, 2013) 

Medical waste 

treatments 

969 tons of waste 

produced 
ISO 14040 

(Zhao et al., 2009) and 

(PG, 2015d) 

Infants delivered 692 infants delivered N/A 
(Campion et al., 2012a) 

and (Martin et al., 2013) 

Reprocessed 

products 
N/A1 SimaPro 8.0.3.14 (Unger & Landis, 2015) 

Products with 

increased 

biopolymer 

content 

N/A2 SimaPro 8.0.3.14 (Unger et al., 2015) 

N/A Not available because the associated data were not published in the associated study 

(Caption Text) The number of beds (i.e., 161) at the ‘Average-sized US hospital’ was calculated 

by dividing the total number of staffed beds in all US registered hospitals (i.e., 914,513) by the 

total number of U.S. registered hospitals (i.e., 5,686) (AHA, 2015). 
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1 This study examined the environmental impacts of reprocessed products at a single hospital and 

its associated reprocessing supply chain. Other hospitals have reprocessing supply chains that 

differ from than of the analyzed hospital in this study, where other hospitals will reprocess 

different types or numbers of products. Therefore, data regarding the number of reprocessed 

products at an average-sized US hospital is not available because it would only reflect a single 

hospital and its use of reprocessing services. 

2 This study examined the environmental impacts of increasing biopolymer content in medical 

products and products used in hysterectomies. Procedures that are not hysterectomies have 

different potentials for implementing biopolymers into their utilized medical products and 

products. Therefore, data regarding the number of products with increased biopolymer content in 

not available because it would only reflect biopolymers used in hysterectomies and not all 

hospital procedures and activities. 

 

All data related to environmental and economic impacts were also correlated with 

existing sustainable checklists, which have been published to aid healthcare workers with 

prioritizing potential sustainable practices. The three sustainable healthcare checklists that were 

correlated with results from this study were the: provided checklist in “Advancing Life Cycle 

Assessment: Perspectives from the Building and Healthcare Industries” (Campion, 2015); 

Practice Greenhealth Eco-Checklist for Operations (PG, 2015b); and, Kaiser Permanente 

Generation II Medical Sustainability Scorecard (KP, 2010).  

The sustainable healthcare checklists and their recommended practices were validated 

using the synthesized data from this study. Because a majority of the analyzed reusable medical 

products, disposable medical products, and medical services encompassed cradle-to-grave 
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impacts, the recommended practices of each sustainable healthcare checklist were first evaluated 

based on their understanding of cradle-to-grave impacts. Where applicable, the recommended 

practices were then augmented based on cradle-to-grave environmental impact results 

synthesized from this study.  

 

3. Results 

 

a. Reusable versus Disposable Medical Products 

 

i. GHG 

 

Several medical products (e.g., scissors, laryngeal mask airways, and in some instances, 

dental burs), were found to have lower life-cycle GHGs when used as a reusable as opposed to a 

single-use disposables, shown in Figure 1. Alternatively, bedpans and central venous catheter 

insertion kits were found to have greater emissions of GHGs when utilized as reusables as 

opposed to single-use disposables. This result is likely attributed to significant life-cycle inputs 

associated with cleaning bedpans and central venous insertion catheter kits. Notably, while 

scissors are relatively small when compared to the other examined medical products, scissors 

exhibited the highest emissions of CO2eq when used as a stainless steel single-use disposable. 

This occurrence was due to the significant life-cycle inputs associated with manufacturing 

stainless steel; especially when the manufactured stainless steel was intended for utilization as a 

disposable. 
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Figure 16. Life-Cycle Greenhouse Gas Emissions for Single-Use versus Reusable Medical 

Products. 

 

ii. Economics 

 

While certain examined scenarios resulted in greater economic costs associated with 

reusable medical products, there was no instance where the minimum cost of a reusable product 

exceeded the minimum cost of the product’s corresponding single-use disposable equivalent. 

Reusable product reviewed were always more affordable than single use products. Figure 17 

shows that smaller products were associated with lower economic costs, while larger, more 

complex products were associated with higher economic costs. In terms of product size, gowns 

were relatively large compared to the other analyzed products. As such, they exhibited the 

highest economic costs of the examined products. This result was found to be true for both 

single-use disposable gowns and reusable gowns.  
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Figure 17. Life-Cycle Economic Costs for Single-Use versus Reusable Medical Products. 

(Caption Text) The reusable products exhibit economic costs related to their washing (i.e., water, 

electricity, detergent) a certain number of instances before eventually being discarded for a new 

reusable product. The economic costs for the analyzed products are based on differing electricity, 

water, and product economic costs that were not adjusted for this study. 

 

iii. Energy and Water Associated with Cleaning 

 

Figure 18 shows the energy and water associated with cleaning medical products. Figure 

18 shows that energy required for cleaning medical products is lower for smaller (i.e., lower-

volume) medical products; and, that energy required for cleaning is comparable for single-use 

disposable and reusable gowns, and scissors. Figure 18 also shows the liters of water used for 

cleaning a particular medical product. Similar to economic costs and required energy for 

cleaning, dental burs required the least amount of water for its associated cleaning processes. 

This outcome is due to the relatively small size of dental burs and the volume. Laparoscopic 
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cholecystectomy instruments were associated with highest levels of required water used in 

cleaning the examined medical product. This result is due the fact that multiple instruments were 

included in the laparoscopic cholecystectomy instrument analysis; and therefore, the results do 

not reflect a one-to-one comparison of medical products. 

 

 

Figure 18. Energy and Water Associated with Cleaning each Medical Product.    

(Caption Text) The results for the gown and scissors report lifecycle energy as opposed to energy 

associated with cleaning. Lifecycle energy represents the energy consumed by all of the 

processes associated with the raw material extraction, manufacturing, and transport of a medical 

product. 

 

Table 17 aggregates results from Figure 16 through Figure 18 to compare medical 

products results for GHG, economics, energy, and water. Cells shaded green are representative 

as favorable in terms of each column/category (i.e., GHG, economic, energy, and water). 

Scissors (as studied by Adler et al., 2005, and not Ibbotson et al., 2013) were shown to be 
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single-use disposable. On the other hand, when used as reusable the central venous catheter 

insertion kit was found to be less favorable from an economic perspective, and not at all 

favorable from a GHG perspective. 

 

The cells in the energy and water columns reflect only values based on reusable products, 

and do not include any values representative of disposable products. These cells reflect only the 

amount of energy (in kWh) and water (in L) used to clean each product. Larger products will 

reflect greater utilizations of both energy and water because these cells are not normalized based 

on a product’s size. The dental bur was found to be favorable with respect to GHG, energy, and 

water. It should be noted that the dental bur’s favorability in energy and water does not account 

and/or normalize for the dental bur’s size, which is smaller than any other assessed product. 
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Table 17. Comparative Environmental Assessment for Reusable versus Single-Use Medical 

Products.  

Products 
GHG Economics 

Energy 

(kWh) 
Water (L) 

Min Max Min Max Min Max Min Max 

Bedpan 1.72 1.74 N/A N/A N/A N/A N/A N/A 

Central venous catheter insertion kit 1.07 2.98 0.68 0.79 N/A N/A 27 27 

Dental bur 0.35 1.64 N/A N/A 0.02 0.02 0 0 

Gown N/A N/A 0.38 0.76 3.61 9.72 0 17 

Laparoscopic cholecystectomy 

instruments 
N/A N/A N/A N/A 4.12 4.12 293 293 

Laryngeal mask airway 0.65 0.65 N/A N/A 4.00 4.00 24 25 

Scissors1 0.04 0.04 0.02 0.02 N/A N/A N/A N/A 

Scissors2 N/A N/A 0.59 0.59 0.29 0.29 N/A N/A 

Trocar N/A N/A 0.01 0.03 N/A N/A N/A N/A 

Veress cannula N/A N/A 0.06 0.06 N/A N/A N/A N/A 

 (Caption Text) The cells in GHG and economics columns are normalized by dividing the 

reusable value by the single-use disposable value to generate the overall reusability of a products 

irrespective of the product’s size. For example, the bedpan’s minimum GHG cell was calculated 

by dividing the minimum GHG value for the reusable bedpan (i.e., 0.291 kgCO2eq) by the 

average GHG value for the disposable bedpan (i.e., 0.138 kgCO2eq) to yield a dimensionless 

value of 2.11. A dimensionless value of 1 would indicate equivalent impacts for GHG or 

economics in a particular product.  
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b. Medical Services 

 

i. GHG 

 

 
Figure 19 shows the normalized life-cycle greenhouse gas emissions of several medical 

services and different options within each respective medical service. Option 1 represents the 

lowest emissions of kgCO2eq and Option 5 represents the highest emissions of kgCO2eq for 

various scenarios. The delivery of infants represents the greatest emission of kg CO2eq when 

compared to the other four medical services; which, was found to be true for vaginal and 

cesarean-section births. The range of kg CO2eq emissions for medical waste treatments 

encompassed kg CO2eq emissions for custom packs used in vaginal deliveries, reprocessed 

products, and products with increased biopolymer content. Reprocessed products and products 

with increased biopolymers had ranges that were comparatively small to the other medical 

services’ ranges. For reprocessed products, the best option in terms of GHG emissions was 
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products that were reprocessed four instances, resulting in 9,406 kgCO2eq emissions on an 

annual basis in an average-sized US hospital. Also for reprocessed products, the worst option in 

terms of GHG was products that were reprocessed zero instances, which resulted in 9,692 

kgCO2eq emissions on an annual basis in an average-sized US hospital. Products with 

biopolymer content and products without biopolymer content had annual kgCO2eq emissions of 

4,040 and 4,011, respectively. And notably, the medical waste treatment of incineration with 

energy recovery efficiency of 30% was the only scenario for any medical service that resulted in 

a net reduction of kg CO2eq emissions; which, reduced kgCO2eq emissions by 507 on an annual 

basis in an average-sized US hospital. 

 

 

Figure 19. Annual Greenhouse Gas Emissions for Medical Services in an Average-Sized US 

Hospital. 

N/A No alternative option evaluated 

1 Low represents the minimum reported value from the study focusing on custom packs used in 

vaginal deliveries. 
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2 High represents the maximum reported value from the study focusing on custom packs used in 

vaginal deliveries. 

3 The following products were reprocessed: arthroscopic shavers, deep vein thrombosis 

compression sleeves, endoscopic trocars, ligasures, pulse oximeters, scissors tips, and ultrasonic 

scalpels. 

 

 

c. Sustainable Healthcare Checklists 

 

After assessing the environmental and economic impacts of the analyzed medical 

products and medical services, the recommended practices of each sustainable healthcare 

checklist were first evaluated based on their incorporation of cradle-to-grave impacts. With 

regards to the cradle-to-gate-phase, use-phase, or end-of-life-phase impacts shown in Table 18, 

the green, orange, and red cells designate either a strong, moderate, or lack of focus, 

respectively. The presence of green cells in the Life Cycle Phase columns confirm that the three 

analyzed sustainable healthcare checklists are emphasizing cradle-to-grave life-cycle processes.  

 

Table 18. Life Cycle Phases Addressed by Sustainable Healthcare Checklists and 

Recommended Augmentations. 

Checklist 
(Citation) Recommended Practices 

Life Cycle Phase Recommended 
Additions 

Based on Study’s 
Results 

Cradle-
to-Gate Use 

End-
of-

Life 
Checklist in 
“Advancing 

• Waste reduction (e.g., 
initiate recycling    • Optimize reusability of 

medical products (i.e., 
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Life Cycle 
Assessment: 
Perspectives 

from the 
Building and 
Healthcare 
Industries” 
(Campion, 

2015) 

programs, evaluate 
potential for product 
biodegradability or 
reuse) 

streamline cleaning 
services, reuse smaller 
products, where 
possible) 

• Reduce products 
utilized in custom 
packs 

• Evaluate energy 
recovery potential of 
utilized products 

• Preferred purchasing 
(e.g., identify red list 
items, observe product 
use and trends in specific 
units) 

   

• Food programs (e.g., 
research on-site 
gardening potential, 
consider composting 
potential) 

   --- 

• HVAC and building 
consumption (e.g., 
establishing baseline, 
identifying trends in 
utility data, reduction 
plans) 

   --- 

• Education (e.g., 
seminars, programs, 
culture) 

   --- 

Practice 
Greenhealth 

Eco-
Checklist for 
Operations 
(PG, 2015b) 

• Environmental 
stewardship structure 
(e.g., establishing 
environmental mission 
statement, developing a 
‘green team’) 

   --- 

• Education and 
communication (e.g., 
poster campaigns, 
sustainability reporting 
to senior staff) 

   --- 

• Environmentally 
preferable purchasing 
(e.g., develop list of 
targeted materials of 
concern, evaluate energy 
and water efficiency of 
products before 
purchase) 

   

• Optimize reusability of 
medical products (i.e., 
streamline cleaning 
services, reuse smaller 
products, where 
possible) 

• Reduce products 
utilized in custom 
packs 

• Evaluate energy 
• Waste management 

and reduction (e.g.,    
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develop comprehensive 
waste management plan, 
establish baselines 
generation rates of 
waste) 

recovery potential of 
utilized products 

• Mercury elimination 
(e.g., establish protocol 
for safe handling of 
mercury onsite, institute 
regulated safe disposal of 
mercury) 

   --- 

Kaiser 
Permanente 

Generation II 
Medical 

Sustainability 
Scorecard 
(KP, 2010) 

• General (e.g., establish 
environmentally 
preferable purchasing, 
publish a sustainability 
report) 

   --- 

• Natural 
resources/waste (e.g., 
increase recycling, offer 
end-of-life take-back 
programs) 

   

• Optimize reusability of 
medical products (i.e., 
streamline cleaning 
services, reuse smaller 
products, where 
possible) 

• Reduce products 
utilized in custom 
packs 

• Evaluate energy 
recovery potential of 
utilized products 

• Energy/climate (e.g., 
measure GHGs and take 
steps to reduce GHGs, 
purchase EnergyStar®-
rated products) 

   

• Measuring energy at 
machine, equipment, 
department, and 
facility-levels  

* The following recommended practices for the Practice Greenhealth Eco-Checklist for 

Operations were omitted for length purposes: energy, water, and climate; environmental 

services; food services; sustainable sites management; transportation operations; and, 

chemical management.  
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Where applicable, recommendations for improvement of the sustainable healthcare 

checklists were made based on environmental impact results synthesized from this study. The 

three checklists were supplemented with five recommended additions based on the results of this 

study. The first recommended addition is to optimize the reusability of medical products, which 

includes the streamlining cleaning services (e.g., reducing utilized detergent, reducing utilized 

water), effectively reusing medical products, and maximizing reuse instances of reusable medical 

products through effective cleaning and maintenance protocols. The second recommended 

addition is to reduce products utilized in custom packs. The custom packs study suggested that 

custom packs used in vaginal deliveries can be reduced by using design for environment 

strategies and life cycle assessment data in collaboration with healthcare personnel to determine 

which products should be included in the custom packs. The custom packs study also suggested 

that reducing disposable cotton products and reuse after laundering can further reduce custom 

packs (Campion et al., 2015). The third recommendation is to evaluate the energy recovery 

potential of utilized products, based on the reduction in global warming emissions when medical 

waste undergoes incineration with energy recovery efficiency of 30%. Increasing the volume of 

waste with high levels of embodied energy (i.e., high associated levels of energy recovery 

potential) would further reduce global warming emissions due to the increased energy recovered 

during incineration. The fourth recommendation is to consistently measure and drive efforts to 

reduce energy use. Monitoring energy use not only involves measuring medical products and 

machines with plug-in electric meters, but also expanding the scope of monitoring to department 

and facility-levels. While it is correct that sustainable healthcare checklists focus on broad 

purchasing at the facility level, the fifth recommendation is to increase emphasis (or add an 

element altogether) on custom packs. Custom packs were found to have significant 
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environmental impacts, but those environmental impacts were variable based on a custom pack’s 

design. Therefore, increasing attention towards the design of custom pack can effectively reduce 

a healthcare facility’s environmental footprint. 

 

4. Discussion 

 

The results showed that reusable products typically required less overall environmental 

and economic costs than their single-use disposable alternatives. These environmental costs 

included increased amounts of GHGs, water, and energy. Future work should extend itself to 

other reusable and disposable products, and materials used in healthcare. Due to the limited 

number of currently analyzed medical products, there is difficulty in determining overarching 

conclusions and trends concerning the sustainability of all medical products. Additionally, 

further research should perform more iterations on identical product utilized in different 

locations. For example, the overall life-cycle environmental costs of a particular product may 

differ when used in an urban area as opposed to when that same product is used in a rural area. 

Discrepancies in environmental costs could be due to differing electricity grids, differing reuse 

protocols, and differing materials used in products delivering the same function. 

 

Because infant delivery represents the greatest overall emissions of kg CO2eq for studies 

analyzed in this paper, adjustments or strategies employed to reduce GHG emissions associated 

with vaginal or cesarean-section births would have significant benefits. Campion et al. 

recommended that for all births, strategies should target the production and end-of-life impacts 

resulting from disposable custom packs in order to reduce the overall the environmental impacts 
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of birthing options (Campion et al., 2012b). Different medical waste treatments and the use of 

custom packs presented increased GHG emissions variability when compared to reprocessed 

products and products with biopolymer content. Therefore, decreasing GHG emissions can 

effectively be achieved by evaluating the necessity of certain products assembled in custom 

packs. Future studies on the products comprising custom packs will also further assist in 

validating preferred-purchasing elements included in sustainable healthcare checklists.  

 

Current sustainable healthcare checklists encompass a variety of cradle-to-grave elements 

that are pertinent towards increasing sustainability within a hospital. However, current checklists 

lack substantive data to support their respective recommendations, and further research is needed 

to support the recommendations of current sustainable healthcare checklists. The results of this 

study suggest that sustainable healthcare checklists be further validated with more environmental 

and economic life-cycle analyses related to medical products and services.   
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CHAPTER 6 

CONCLUSIONS 

The purpose of Chapter 6 is to: summarize the most significant findings from the three 

research questions presented in Chapter 1, discuss recommended future work, and discuss the 

outlook for the healthcare system and its sustainability. A number of medical devices and 

medical services were assessed for their environmental, human-health, and economic impacts 

through novel studies performed in Chapters 3 and 4, as well as secondary data collected for 

Chapter 5. The results and significant findings from these three chapters are summarized based 

on their respective research question presented in Chapter 1. Followed by the summarization of 

significant findings from the three research questions, recommended future work is discussed. 

The recommended future work serves to advance the sustainability of medical devices and 

medical services. Lastly, the outlook for the sustainability of medical devices and services, and 

the overall field of sustainable healthcare is discussed. 

 

1. Summary 

 

Chapter 3 answered the research question: What are the comparative environmental and 

economic impacts of single-use devices vs. reprocessed devices in a hospital’s supply chain? The 

study in Chapter 3 used LCA and LCCA to model the environmental and economic impacts of 

medical device supply chains when varying levels of reprocessed devices were utilized. The 

study found that given median/mean reprocessing life-cycle inventory inputs, the reprocessing of 

the seven analyzed devices slightly reduces global warming impacts, but also increases human 

health impacts (i.e., carcinogenic, non-carcinogenic, respiratory effects). Regardless of the 
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number of reprocessing instances, the most significant factor in both global warming and human 

health impacts was the reprocessing life-cycle inventory. This life-cycle inventory data included: 

the amount of ETO, electricity, and water consumed. Decreased reprocessing inputs were 

correlated with decreased levels of human health impacts. When limiting reprocessing life-cycle 

inputs, increased instances of reprocessing were also correlated with decreased levels of human 

health impacts.  

 

The use of DVT compression sleeves had the highest environmental contribution of all 

the examined devices. The significant environmental impacts associated with DVT compression 

sleeves were driven by its high utilization rate, and its composition of 93% cotton on a weight 

basis. Cotton production has significant energy, chemical, and water inputs, which results in a 

number of environmental impacts (e.g., acidification, global warming, and eutrophication). 

Substituting woven cotton for a less environmentally intensive material could reduce impacts 

associated with DVT compression sleeves. Notably, the high quantities of plastics (i.e., HDPE, 

LDPE) in ligasures also correlated with significant impacts when used as either reprocessed or 

disposable devices. 

 

In terms of overall economic impacts, the study presented in Chapter 3 found that 

increased reprocessing of the seven medical devices correlated with a decrease in overall 

economic costs. The total savings on an annual basis (versus when no devices were reprocessed) 

were $182k, $351k, and $520k (in terms of 2013 US dollars) when all seven devices were 

reprocessed one through three instances, respectively. The cost savings associated with the DVT 

compression sleeves represented nearly half of the realizable potential savings. When taking into 
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consideration the economic benefits of reprocessing, the favorability of reprocessing medical 

devices becomes more apparent. The overall economic and environmental benefits resulting 

from reprocessed devices are aimed at healthcare administrators. Healthcare administrators will 

be able to see the environmental and economic benefits of reprocessing, which will motivate 

those administrators to increase reprocessing at their own healthcare facilities. 

 

Chapter 4 addressed the research question: What are the opportunities for using 

biopolymers in healthcare and the resultant comparative environmental impacts of single use 

disposable devices with increased biopolymer content vs. typically manufactured devices in 

hysterectomy procedures? The study in Chapter 4 utilized a comparative LCA on medical 

devices composed of certain quantities of plastics versus the same medical devices with 

biopolymers substituted for each device’s quantity of plastic. The study found that the use of 

biopolymers in surgical devices was preferable in several impact categories, which included: 

acidification, carcinogenics, non-carcinogenics, respiratory effects, and ecotoxicity. Because the 

manufacturing of petroleum-based plastics was associated with considerable human health 

impacts, the substitution of manufactured biopolymers for manufactured petroleum-based 

plastics caused a decrease in human health impacts. While the utilization of biopolymers offers 

human health benefits, the agricultural activities associated with manufacturing biopolymers 

exacerbate a number of environmental impacts.  

 

Similar to Chapter 3, the study in Chapter 4 also found that the use of woven cotton 

resulted in significant environmental and human health impacts. Because higher quantities of 

cotton were used in abdominal hysterectomies, environmental and human health impacts for 
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abdominal hysterectomies were higher than robotic, laparoscopic, and vaginal hysterectomies. 

Woven cotton was found in a number of surgical materials, including towels, patient gowns, and 

laparotomy pads. 

 

In terms of how the use of biopolymers drove environmental and human health impacts, 

it was found that the increase of impacts related to global warming, eutrophication, ozone 

depletion, and smog resulted when PLA, guayule-derived latex, and thermoplastic starch were 

substituted for typically used materials. With regards to the most significant impacts that resulted 

when biopolymers were used, the substitution of biopolymers for petroleum-based plastics 

increased smog-related impacts by approximately 900% for laparoscopic and robotic 

hysterectomies, and increased ozone depletion-related impacts by approximately 125% for 

laparoscopic and robotic hysterectomies. The emission of ozone-depleting substances during 

PLA manufacturing drove the relatively high increases for the impact categories smog and ozone 

depletion. On the other hand, guayule-derived latex and thermoplastic starch were associated 

with much lower emissions of ozone-depleting substances during their associated life-cycle 

processes.  

 

Due to the variable environmental and human health impacts associated with utilizing 

biopolymers in medical products, special attention should be given to the lifecycle processes 

associated with biopolymers. For example, the location of biopolymer cultivation may heavily 

influence a particular biopolymer’s environmental favorability. Specifically, because smog-

related impacts increase when PLA is cultivated, the cultivation of PLA would be best suited in 

an area where existing smog levels are relatively low.  
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The three analyzed biopolymers presented differing advantages and disadvantages. When 

thermoplastic starch was substituted for cardboard there was an increase of acidification-related 

impacts. When PLA and guayule-derived latex were substituted for typically-used materials 

there was an increase of exotoxicity-related impacts. And, when PLA, guayule-derived latex, and 

thermoplastic starch were substituted for petroleum-based materials, there was a decrease of 

impacts related to carcinogenics, non-carcinogenics, and respiratory effects. 

 

The study in Chapter 4 also examined the environmental and human health impacts 

associated with laundering reusable cotton products. The laundering of reusable cotton products 

used in the four hysterectomies was associated with an overall net decrease of at least one order 

of magnitude in eight of the nine of the TRACI impact categories. Such reductions were due the 

cultivation and manufacturing of woven-cotton, where the life-cycle processes associated with 

cultivation and manufacturing of woven-cotton outweigh the life-cycle processes associated with 

laundered, reusable cotton products. While this study showed that biopolymers are associated 

with certain environmental and human health tradeoffs, this study conclusively showed that 

cotton-laundering significantly reduces environmental and human health impacts. Consequently, 

this study recommends that hospitals launder cotton products and devices that are suitable for 

reuse. 

 

The data and results generated from Chapter 4 target several audiences. Medical product 

manufacturers will gain an increased understanding of the environmental and human health 

impacts resulting from the use of biopolymers in their respective products; which, will better 
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equip those manufacturers should they choose to deploy biopolymers in their own products. 

Additionally, healthcare administrators will better understand the environmental benefits of 

maintaining onsite laundering facilities; which, will further motivate healthcare administrators to 

streamline or deploy their own laundering facilities. 

  

Answered by the last study in Chapter 5, the third research question asked: How can the 

salient conclusions from the first two research questions, as well as from recent studies focusing 

on the environmental impacts of various medical products and/or services, be synthesized for the 

use of hospital administrators and employees? The study in Chapter 5 addressed this research 

question by comparing the cradle-to-grave environmental and economic impacts of reusable 

versus disposable medical products, as well as the environmental and economic impacts of 

several medical services. The study drew from results in Chapter 3, Chapter 4, and existing 

studies focusing on the comparative environmental and human health impacts related to medical 

products and services.  

 

The results conclusively showed that reusable products were less expensive their single-

use disposable alternatives. The dental bur also required the least amount of water for its 

associated cleaning processes, had the lowest total embodied energy, and had the lowest 

associated GHG emissions. These outcomes were likely due to the fact the burs were, by far, the 

smallest examined product. Notably, the study also found that the delivery of infants was 

associated with the greatest emission of kg CO2eq when compared to the other four analyzed 

medical services.  
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In addition, the results in Chapter 5’s study were also correlated with existing sustainable 

checklists, where the recommended practices of each sustainable healthcare checklist were 

evaluated based on their encapsulation of cradle-to-grave impacts, and then augmented based on 

cradle-to-grave environmental impact results synthesized from this study. Based on the results 

derived from the study, healthcare checklists should be updated to include: optimizing the 

reusability of medical products; reduce products utilized in custom packs; and evaluating energy 

recovery potential of utilized products.  

 

2. Future Work 

 

There are several areas that future work should focus its attention in order advance the 

sustainability of medical devices and medical services. These areas are:  

• Conduct rigorous, quantitative analyses of environmental, human health, and 

environmental impacts of medical reusable devices, disposable devices, reprocessed 

devices, healthcare products, and healthcare materials. These assessments are necessary 

because there is difficulty in determining overarching conclusions concerning the 

sustainability of all utilized medical devices and products with the limited number of 

currently analyzed medical products.  

• Increased life cycle assessments on identical devices utilized in different geographical 

locations. Such iterations are necessary because the overall life-cycle environmental costs 

of a particular device may differ when used in a particular geographical area as opposed 

to when that same device is used in a different geographical area.  



 121 

• Further research is needed to support the recommendations of current sustainable 

healthcare checklists. Current checklists lack substantive data to support their respective 

recommendations. Sustainable healthcare checklists should be further validated with 

more environmental, human health, and economic life-cycle analyses related to medical 

devices and services.  

• Further research should examine the environmental and economic impacts resulting from 

MSW being diverted to RMW. On a per-weight basis, RMW results in higher levels of 

environmental impacts; which, is principally due to the high levels of electricity used 

during RMW lifecycle processes.  

 

3. Outlook  

 

The burgeoning field of sustainable healthcare is producing significant research that has 

considerable potential to reduce adverse environmental, human health, and economic impacts. 

Yet while there is increasing activity in the field of sustainable healthcare, further quantitative, 

peer-reviewed research is needed to truly advance the sustainability of the healthcare system. But 

this dissertation, and other cotemporary environmental, human health, and economic analyses of 

medical devices and services are generating more and more useful recommendations that will 

increase the sustainability of the healthcare system.  
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