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ABSTRACT 

Science instructors need questions for use in exams, homework assignments, class 

discussions, reviews, and other instructional activities.  Textbooks never have enough 

questions, so instructors must find them from other sources or generate their own questions.  

In order to supply instructors with biology questions, a semantic network approach was 

developed for generating open response biology questions.  The generated questions were 

compared to professional authorized questions.  

To boost students’ learning experience, adaptive selection was built on the generated 

questions.  Bayesian Knowledge Tracing was used as embedded assessment of the 

student’s current competence so that a suitable question could be selected based on the 

student’s previous performance.  A between-subjects experiment with 42 participants was 

performed, where half of the participants studied with adaptive selected questions and the 

rest studied with mal-adaptive order of questions. Both groups significantly improved their 

test scores, and the participants in adaptive group registered larger learning gains than 

participants in the control group.   

To explore the possibility of generating rich instructional feedback for machine-

generated questions, a question-paragraph mapping task was identified.  Given a set of 

questions and a list of paragraphs for a textbook, the goal of the task was to map the related 

paragraphs to each question.  An algorithm was developed whose performance was 

comparable to human annotators.  

A multiple-choice question with high quality distractors (incorrect answers) can be 

pedagogically valuable as well as being much easier to grade than open-response questions.  

Thus, an algorithm was developed to generate good distractors for multiple-choice 
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questions.  The machine-generated multiple-choice questions were compared to human-

generated questions in terms of three measures: question difficulty, question discrimination 

and distractor usefulness.  By recruiting 200 participants from Amazon Mechanical Turk, 

it turned out that the two types of questions performed very closely on all the three 

measures. 
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CHAPTER 1 

INTRODUCTION 

        In mathematics and similar topics, question generation is widely used perhaps because 

it is so simple to implement.  For instance, an infinite number of questions can be generated 

from the template “Solve for x:  [num1]x+[num2]=[num3].” where [num1], [num2] and 

[num3] are variables in the template that should be assigned to numbers.  Such question 

generators are used for generating homework exercises, quizzes, exams, questions to be 

asked in class, and many other purposes.  In subjects where questions must be answered in 

natural language, instructors still need a large supply of questions for their homework 

assignments, quizzes, exams, etc.  The goal of the dissertation is to demonstrate how to 

automatically generate questions whose answers are in natural language and the benefits 

of having questions be generated in this way.   

    Previous work disclosed two major methods in question generation in terms of the 

inputs: from a formal representation of knowledge and plain text.  This dissertation focuses 

on generating questions from a formal representation of knowledge and evaluating the 

benefits of utilizing this generation method.  Photosynthesis is selected as my study domain 

because a knowledge base content has already been built and available from Baral & Liang 

(2012).  The formal representation of knowledge specifically in this dissertation is a 

semantic network for photosynthesis.  

    To use machine-generated questions in student’s learning, the quality of the generated 

questions should be as good as those from human.  So my first study was to compare the 

qualities of three types of questions: human authored questions from textbooks, questions 

mined from the web and machine-generated questions from a semantic network.  Although 
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machine-generated questions did not have good coverage of human-generated deep 

questions, overall there was no significant difference in quality of the three types of 

questions.  The results suggested that machine-generated questions could be potentially 

used as the replacement of human-generated shallow questions.  Shallow questions were 

defined as those that were answering them only required to remember or understand factual 

knowledge.  This result has practical importance in that it is likely that students need to 

master shallow questions before being able to profitably tackle deep questions (I-H Hsiao, 

Sosnovsky, & Brusilovsky, 2010). 

    My second study demonstrated that machine-generated method facilitates adaptive 

question selection.  The Q-matrix (Tatsuoka, 1996) and student model are two essential 

components for building adaptive question selection.  The Q-matrix records the 

associations of questions to knowledge components.  The student model maintains a record 

of each student’s mastery levels of each knowledge component. A knowledge component 

is a unit of knowledge in the teaching domain. (Koedinger, Corbett, & Perfetti, 2012)  

Identifying knowledge components and associating them to their corresponding questions 

require domain experts to put in a considerable amount of time.  The semantic network 

used for question generation can also construct the set of knowledge components and the 

Q-matrix.  However, it is not clear whether adaptive question selection would be effective 

when the knowledge components and Q-matrix were constructed by machine.  Thus, my 

second study measured the effectiveness of adaptive question selection using machine-

generated questions from the semantic network.  

    The advantage of machine-generated questions is not limited to adaptive question 

selection. It also lies in forming a feedback for a question.  A good answer to an open 
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response question should be precise and accurate.  Although students may not give a 

complex answer to a simple question, the feedback on the student’s answer is not 

necessarily limited to the scope of the specific question because the moment right after a 

student answers a question, especially the question was answered incorrectly, may be an 

especially good “time for telling” (Schwartz & Bransford, 1998).  Indeed, if only minimum 

feedback is given, this may impede learning.  For example, a precise answer to the question 

“What does photosynthesis need?” should be “light, water and carbon dioxide”, while a 

paragraph containing the answer to this question would also explain how these reactants 

are used in photosynthesis.  Do students bother reading the related paragraphs?  According 

to Kluger and DeNisi (1996), when a student has a clear learning goal and receives a 

negative feedback, the student tends to put more effort into making up the gaps between 

the knowledge and the goal.  So students could be motivated to read and learn the related 

paragraphs to the questions that they answered incorrectly.  My third study was conducted 

to explore how questions annotated with corresponding knowledge components can 

facilitate question-paragraph mapping.  

Although open response questions, which require students to type in their answers, have 

advantages in lowering the probability of guessing and pushing students to think hard, auto-

evaluating students’ answers to this type of questions often face many technical difficulties 

and can be inaccurate.  Multiple choice questions are more widely used when high accurate 

auto-grading are required.  However, the quality of a multiple-choice question depends 

strongly on which incorrect answers are supplied as choices.  Such answers are called 

distractors or foils.  A good distractor may articulate a latent or vague misconception, and 

thus seduce the student into an incorrect answer that leads to an especially productive 
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learning opportunity.  So the last study evaluates the quality of multiple-choice questions 

generated from a semantic network.  In particular, it compares the machine-generated 

distractors to human-generated distractors.  

The rest of the dissertation is divided into five chapters. Chapter 2 to Chapter 5 describe 

the four studies respectively, and Chapter 6 provides a summary and conclusions.  More 

specifically, Chapter 2 evaluates machine-generated questions from a semantic network by 

comparing the questions to web-mined questions and professional authorized questions.  

Chapter 3 demonstrates how to take the advantage of using machine-generated questions 

from a semantic network to implement adaptive question selection.  Chapter 4 describes a 

question-paragraph mapping task, and evaluates how well the machine-generated questions 

annotated with corresponding knowledge components can facilitate this task. Chapter 5 

describes how to generated distractors from a semantic network for multiple choice 

questions, and compares these machine-generated distractors to human-generated 

distractors in terms of three measures: question difficulty, question discrimination, and 

distractor usefulness.  Chapter 6 draws conclusions from these studies.  
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CHAPTER 2 

HOW DO MACHINE-GENERATED QUESTIONS COMPARE TO HUMAN-

GENERATED QUESTIONS? 

2.1  Introduction 

2.1.1 Techniques of question generation 

A recent review of educational systems with automatic question generation (Le, Kojiri, 

& Pinkwart, 2014) noted that there are two major techniques in terms of sources: generating 

from plain text or from a formal representation of knowledge. 

Automatic generation of questions from plain text converts declarative sentences in a 

text into questions.  One of the first systems of this type, AUTOQUEST (Wolfe, 1976), 

helped students check their understanding of readings by generating questions on each 

sentence.  The sentence was first parsed using a natural language parser, the parsed result 

was matched to a predefined pattern, a template was selected, and a question was generated 

by filling in variable in the template with values from the pattern.  For example, suppose 

the original sentence was “John bought some fruits”.  The corresponding parse tree was: 

 (ROOT 

   (S 

      (NP (NNP John)) 

      (VP (VBD bought) 

         (NP (DT some) (NNS fruits))))) 

When the subject of the sentence is being questioned, the question “Who bought some 

fruits?” was generated.  When the object of the verb phrase was being questioned, the 

question “What did John buy?” was generated.  This general procedure has been used many 

times (Ali, Chali, & Hasan, 2010; Heilman & Smith, 2009; Kalady, Elikkottil, & Das, 
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2010; Varga; Wyse & Piwek, 2009).  Patterns and templates can be hand authored (Ali et 

al., 2010; Kalady et al., 2010) or learned from given question-answer pairs (Curto, Mendes, 

& Coheur, 2012).   

The second technique generates questions from a formal representation of knowledge.  

Perhaps the first system of this type, the SCHOLAR system (Carbonell, 1970), represented 

knowledge as a semantic network and used heuristics for generating questions from it.  

Later work focused on providing better assessments of students (Lazarinis, Green, & 

Pearson, 2010) and adaptively selecting questions (Dillenbourg & Self, 1992).  The most 

recent work (Jouault & Seta, 2014) was a history tutoring system for reviewing the 

chronology of important events.  

Hybrids of the two basic approaches have been explored as well.  For instance, Liu and 

Calvo’s (2012) system first identified key concepts, which were essentially a set of noun 

phases, in a student’s essay.  Next, three types of relationships (Different-to, Similar-to, 

Kind-of) among the key concepts were extracted from Wikipedia by using Tregex pattern 

matching rules on Wikipedia articles.  Finally those relations were used to generate 

questions based via expert-made templates.  Although the system dealt with concepts and 

relationships, it didn’t reason with them.  The main effort lay in identifying the key 

concepts and finding the corresponding relations.   

Olney, Graesser and Person (2012) also used a hybrid method to generate questions in 

Biology.  Their system first extracted a concept map from texts, where a concept map is a 

particularly simple type of semantic net.  They then used templates to generate questions 

either from single links in the concept map or from small clusters of specific links.  Once 
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again, the emphasis was on extracting knowledge from the text rather than reasoning with 

the knowledge once it was extracted.   

A third hybrid system (Chen, 2009) reasoned about knowledge it extracted from text in 

order to generate questions about the mental states of characters in stories.  The story was 

first transformed to a set of semantic relations in the Scone language (Fahlman, 2006).  

New relations were then inferred by using everyday knowledge (e.g., the definition of 

“pretend”) already stored in Scone knowledge base, so that the mental states could be 

described more accurately.  Finally, yes/no questions were generated to help check readers’ 

understanding of the characters’ mental states in the story.  

Instead of generating questions, another way to quickly obtain a large number of 

questions is to harvest them from the web.  The process is to first get more than enough 

questions and then rule out the low quality ones.  Section 3 describes how we harvested 

questions using Google’s key word search.   

2.1.2 Evaluation of question generation systems 

Now that the feasibility of machine-generated questions is established, the next issue is 

evaluating their quality compared to human-generated questions.  Only a few studies have 

addressed this issue.  Liu and Calvo (2012) compared their machine-generated questions 

to human questions in terms of 5 quality measures (i.e. correctness, clarity, relevancy, 

useful for learning concepts and useful to improve documents) rated by 23 human students.  

The students were required to write essays at first, and then rate the questions that helped 

to improve their essays. The machine-generated questions were specific to the students’ 

essays, but the human questions were generic to all the essays.  Therefore, this comparison 

confounded the machine vs. human contrast with the specific vs. generic contrast.     
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Although comparison of machine-generated questions to human-generated questions are 

rare, several studies have compared different kinds of machine-generated questions to each 

other, and an evaluation method has come to be widely accepted.   

In order to compare questions produced by different question generation teams, (Rus et 

al., 2010) identified five criteria for humans to use in judging the quality of questions: 

syntactic correctness, ambiguity, relevance, question type, and variety.  Although the first 

two criteria, syntactic correctness and ambiguity, are probably clear, the other three criteria 

need explanation.  Because the generation task required generating questions from given 

texts, relevance measured the match of the question to its source in the text.  Both question 

type and variety rewarded systems that generated questions in a variety of formats.  For 

instance, a system that merely prepended “Is it the case that” to every sentence would get 

low marks for both question type and variety.   

Heilman and Smith (2009) came up with similar criteria for ranking the questions 

generated from Wikipedia and also discussed an important additional issue: over-

generation.  They listed 7 deficiencies that an over-generated question could have.  

Questions that contained any of them were treated as over-generated questions.  Judgments 

on 644 machine-generated questions were done by three researchers.  On average, 87.2% 

of the questions were over-generated, but there was a low inter-rater agreement (.42) 

according to Fleiss’s κ.  This work treated over-generation more from a syntactic 

perspective than a semantic perspective, in part because the machine-generated questions 

were not assumed to be used for instruction.  

The rating systems discussed so far did not directly address the utility of the questions 

for learning.  A pedagogically useful question should prompt deep thought and learning 
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about the domain.  For example, most people can correctly answer “Yes” when asked “Is 

a vacuole wall a part of a vacuole?” even when they have never heard of a vacuole.  Thus, 

assessing the learning caused by questions should be viewed as a separate measure from 

question quality.   

Learning gains have sometimes been used to evaluate questions.  For instance, Beck, 

Mostow and Bey (2004) found statistically reliable improvements in reading 

comprehension after wh-questions (what/where/when questions).  Their study used a 

within-subject design and logistic regression to predict student’s performance in reading 

comprehension as a function of the number of wh-questions.  

2.1.3 Research question 

Our primary interest was in finding ways to help students learn declarative knowledge 

domains like Biology.  Such domains require understanding many concepts and 

relationships, and answering questions is a common way to exercise and assess such 

understanding.  Unfortunately, the number of questions in textbooks is extremely limited, 

and teachers usually have little time to invent their own questions.  So there is also a need 

for machine-generated questions in this domain.   

Our research question was simple:  Are machine-generated biology questions as good as 

human-generated biology questions according to human judges?  We focused on questions 

for a target population of college students in introductory biology classes. 

We assume that questions that are not grammatically correct, ambiguous, confusing or 

are poor at communicating in some other way are probably not going to help students learn 

biology.  However, even if the questions are high quality on these measures, they may or 

may not help students learn biology.  Although we did not measure learning gains in this 
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experiment, we did ask judges to rate the pedagogical benefits of the question.  This was 

intended to be a weak proxy for measuring learning gains. 

To do the comparison, we first implemented a method for machine-generating questions 

from a biology knowledge base.  A second set of questions was formed by selecting 

questions retrieved from the web.  The authors of most web questions were probably 

students and not biology experts.  Our third set of questions was comprised of professional 

human-generated questions from textbooks and a biology study website 1 . University 

biology students were recruited to act as judges.  They rated the three sets of questions on 

four measures.   Our primary question was whether the machine-generated questions were 

worse than the human-generated ones.  We were also interested in whether the two types 

of human-authored questions were of different quality. 

In order to keep the project feasible, all questions concerned photosynthesis at an 

introductory college level.  Although the methods could easily have generated more 

questions, evaluation of the questions was made easier for the human judges by using just 

one topic and allowing them to review the topic before judging the questions. 

The rest of the chapter is organized as follow.  First, we describe how questions were 

generated from the biology knowledge base. Second, we describe how questions were 

collected via web search and how the irrelevant questions were filtered out. Lastly, we 

describe the comparison of these two types of questions to the professional human-

generated questions.  

                                                 
1 http://www.biology-questions-and-answers.com 

http://www.biology-questions-and-answers.com/
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2.2 Generating questions from a semantic knowledge base 

Although recent work on question generation has generated semantic knowledge bases 

from text  (A. Olney, A. C. Graesser, & N. Person, 2012), we chose to use an existing 

knowledge base corpus.  Although few such knowledge bases are currently available, the 

technology and the market for such knowledge bases are increasing steadily 

("ConceptNet," ; Foxvog, 2010; "Wikidata,").  Thus, we believe that it is only a matter of 

time before knowledge bases are available that are sufficient for high school basic sciences. 

There is no uniform way of structuring a semantic knowledge base, so our methods are 

limited somewhat to the particular knowledge base used for experimentation.  The semantic 

knowledge base we chose was from Baral and Liang (2012).  They used the knowledge 

base to develop a question-answering system for biology (Baral, Vo, & Liang, 2012).  For 

the purpose of evaluating our generated questions, we limited our copy of the knowledge 

base to photosynthesis.   

We also cleaned up the knowledge base manually by taking out redundant information 

and removing inconsistencies.  More specifically, the predicate cloned_from, which was 

used to clone the attributes from one instance to another, was removed from the original 

knowledge base, because the predicate was potential to introduce redundant attributes for 

an instance.  Rather than simply removing all the relations that contained this predicate, we 

manually went over each of these relations and copied over the attributes to make sure each 

instance was complete and concise.  The hierarchical information was also cleaned up.  For 

instance, light reaction, light reaction involving noncyclic electron flow and light reaction 

involving cyclic electron flow were used to be three sub-events of photosynthesis, whereas 
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the latter two processes were also the sub-events of the first process.  The latter two 

processes were removed from the subevents of photosynthesis to make the hierarchy clear.    

The rest of the section first introduces the knowledge base and then explains how we 

generated questions from it.  

2.2.1 The knowledge base 

The knowledge base distinguishes classes and instances.  Classes define an ontology, 

that is, a hierarchical classification of all that exists. For example, photosynthesis is a sub-

class of chemical process, and chemical process is a sub-class of event.  Event is one of the 

root classes, which doesn’t have any parent classes.  Another root class is entity.  For 

instance, chloroplast is a distant sub-class of entity.  On the other hand, instances represent 

specific objects or specific events.  A triple composed of two instances and one predicate 

form a relation, which is written as the following format: 

has(photosynthesis001, result, oxygen001) 

has(photosynthesis001, instance_of, photosynthesis) 

has(oxygen001, instance_of, oxygen) 

In the first line, result is a predicate, and photosynthesis001 and oxygen001 are instances.  

The second and third lines indicate that they are instances of the classes photosynthesis and 

oxygen, respectively.   

There are features common to every instance of a class. For example, any instance of 

photosynthesis can produce oxygen.  These are not properties of the class per se, so a 

special instance named a prototype instance is used to represent relations common to all 

members of a class. Any other instance of a class is assumed to have the relations involving 
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the prototype instance of the class as well as the relations in the prototype instances of the 

super-classes.  A class can only have one prototype instance.   

The relations directly stored in the knowledge base are called atomic relations.  Some 

relations are inferred during the question generation process, and those are called secondary 

relations.  Similarly, the pre-existed predicates in the knowledge base are called as atomic 

predicates, and those that are introduced by reasoning only are called secondary predicates.  

The meanings of atomic predicates are defined in KM (Clark, Porter, & Works, 2004).     

According to the most recent version of Bloom’s Taxonomy (Krathwohl, 2002), because 

the atomic relations in the knowledge base only recorded basic elements in photosynthesis, 

they essentially represented the required factual knowledge in the domain.  The inferred 

secondary relations somehow represented pieces of conceptual knowledge.   

2.2.2 Question generation from seed questions 

Our first attempt was to generate questions from a user given “seed” question of the form 

“what is the difference between A and B?”  The strategy was to design an algorithm that 

would input a seed question, generate a set of constraints that characterized the relationship 

between concepts A and B, then output all pairs of concepts that met the constraints, thus 

generating more questions of the form “what is the difference between A and B.” Although 

we tested the algorithm in biology, the process was domain independent in principle. The 

rest of this section first introduces the details of the algorithm and then discusses its 

performance.   
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Preparation 

In the knowledge base, concepts are represented as classes and the relations of the 

concepts are represented in terms of prototype instances, so we extracted all the relations 

of the prototype instances and directly attached them to the concepts.  Figure 1 illustrates 

the resulting knowledge base.   

Constraints induction 

Our basic approach was based on similarity.  Given a user-supplied seed question, such 

as “What is the difference between cell walls and cell membranes?”, A and B comprised a 

good question if their similarity score (A:B) was larger than the similarity score of the 

human-provided seed question concepts (cell wall: cell membrane).  Note that there has 

been many methods developed for calculating semantic similarity, often based on the 

ontology in WordNet (Banerjee & Pedersen, 2002; Budanitsky & Hirst, 2001; Jiang & 

Conrath, 1997; Leacock & Chodorow, 1998; D. Lin, 1998; Resnik, 1995).  Although the 

score we calculated was also called similarity, it was a completely different measure.  For 

instance, dog and hunting dog are highly semantical related, but the pair was clearly not a 

good fit for our question template.   

 

Figure 1. Fragment of the knowledge base 
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We defined two measures. One measured direct similarity and the other measured 

indirect similarity.  As an illustration of these two kinds of similarity, consider Figure 1.  It 

shows that both of cell wall and cell membrane are part of Fungal cell. The direct similarity 

counts such connections.  As an illustration of indirect similarity, note that Cell wall is part 

of Plant cell and Cell membrane is part of Animal cell, and both Plant cell and Animal cell 

are sub-classes of Cell.  Indirect similarity counts these kinds of relations.  

Define the direct similarity 

The most straightforward way to measure the similarity between two concepts is 

counting the number of features they have in common and dividing by the average number 

of features they each have. However, a feature contains both a predicate and an object, and 

some predicates appear frequently connecting many different objects whereas other 

predicates appear seldomly.  Thus, we calculated similarity on a per-predicate basis, and 

used the resulting vector of predicate-number pairs in the subsequent question generation 

algorithm.   

The formula below is to used to calculate the per-predicate similarity: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑜𝑛𝑐𝑒𝑝𝑡1, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡2, 𝑝𝑟𝑒𝑑) =
2 × shared

total
 

shared = |neighbors(concept1, pred) ∩  neighbors(concept2, pred)| 

total = |neighbors(concept1, pred)| + |neighbors(concept2, pred)| 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑐𝑜𝑛𝑐𝑒𝑝𝑡, 𝑝𝑟𝑒𝑑) = {𝑥|𝑝𝑟𝑒𝑑(𝑥, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡)} 

 

The similarity value is in the range [0,1], where 1 means that the two concepts are exactly 

the same in terms of the predicate, and 0 means that they have nothing in common.  
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Define the indirect similarity 

Indirect similarity means that two concepts are connected by the same predicate to two 

different objects (e.g., plant cell and animal cell in Figure 1) that have the same ancestor 

(cell in Figure 1).  Again, we calculated the portion of shared objects for each shared 

predicate, and stored a vector of predicate-number pairs to represent their indirect 

similarity.  The equation below defines the per-predicate indirect similarity measure: 

 

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑜𝑛𝑐𝑒𝑝𝑡1, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡2, 𝑝𝑟𝑒𝑑) =
|(m, n)|

𝑝𝑎𝑖𝑟𝑠_𝑡𝑜𝑡𝑎𝑙
 

 

 (m, n) = {m, n|m ∈ (neighbors(𝑐𝑜𝑛𝑐𝑒𝑝𝑡1, pred), n ∈

           (neighbors(𝑐𝑜𝑛𝑐𝑒𝑝𝑡2, pred),m ≠ n,  ∃p subclass_of(m,  p) & subclass_of(n, p)}  

      pairs_total = |neighbors(obj1, pred)| × |neighbors(obj2, pred)|,

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑐𝑜𝑛𝑐𝑒𝑝𝑡, 𝑝𝑟𝑒𝑑) = {𝑥|𝑝𝑟𝑒𝑑(𝑥, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡)} 

 

However, calculating |(m,n)| is not trivial. A brute force way is for each shared predicate 

of the two concepts, for each pair of different objects connected to the concepts by that 

predicate, enumerate all the ancestors of the two objects and see whether they have an 

ancestor in common. If they do, a counter is increased by 1, otherwise the counter stays the 

same as before. When all pairs for the predicate are explored, the value of the counter is 

|(m,n)|.  

This algorithm is inefficient because it repeatedly finds all the ancestors for an object. If 

the same object is visited x times, the ancestors set will be generated x times. Thus, we 

cached the ancestor set calculation: When the ancestors of an object are first generated, the 
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set is stored as a s  property of the object.  The ancestor sets turned out to be small enough 

that this was tractible, so caching reduced the computation from about 17 hours to 15 

minutes for generating questions for one seed question.  

Definition of the constraints 

Given two vectors of predicate-number pairs--one that measures the direct similarity of a 

pair of concepts and the other that measures the indirect similarity--the constraints for 

“What is the difference between A and B?” is defined below: 

 

    𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛(𝐴, 𝐵) ≡ 

∀𝑝  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵, 𝑝) > 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑒𝑒𝑑1, 𝑠𝑒𝑒𝑑2, 𝑝)  

𝑎𝑛𝑑  

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵, 𝑝) > 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑒𝑒𝑑1, 𝑠𝑒𝑒𝑑2, 𝑝) 

 

In principle, this calculation is run for every possible pair of concepts, A and B.  

However, if there are predicates p such that similarity(A,B,p) is zero but similarity(seed1, 

seed2,p) is non-zero, the the calculation does not need to be run because it will be false for 

this A,B pair.  

2.2.3 Schema induction needs human intervention 

We used 8 seed questions to test the algorithm, one for each of these 8 pairs:  anabolism 

& catabolism, genotype & phenotype, gill & lung, mitosis & meiosis, nematode & annelid, 

plasma membrane & cell wall, spore & gamete, transcription & translation 
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The algorithm generated an average of 842 questions per seed questions, and the 

standard deviation was very high: 1721. Several seed question will be discussed in turn.   

The first seed pair was cell wall & plasma membrane. This pair caused generation of 8 

new questions plus the original seed question. Of the 8 new questions, 6 were reasonable 

biology questions based on our (limited) experience.  Moreover, 2 of the 6 questions were 

asked by someone else before, as confirmed using Google search. The other 4 did not 

appear in a Google search, which was interesting.  Thus, cell wall & plasma membrane is 

an example of a good seed question.  

The second seed pair was anabolism & catabolism.  The generator found no new 

questions; it generated only the seed question.  This occurred because the restrictions 

generated from the seed question contained some uncommon predicates.  

The third seed pair was gill & lung.  The generator’s output was 4750 questions. Most 

of the questions would not make good comparisons. This seed question led to few 

restrictions, which caused too many pair of concepts be output.   

The second and third seed pairs are representative of 7 out of the 8 questions.  Except 

for the cell wall and cell membrane seed pair, all the seed pairs led to either too many or 

too few generated questions.  

These results indicate that the number and the quality of the questions generated from 

the constraints varied substantially. The variance could be due to the algorithm, the seed 

questions, and/or the knowledge base.  Every seed question is a good comparison question 

itself.  But the knowledge base sometimes didn’t have adequate descriptions for the 

concepts that appeared in the seed questions, and this led to over-generation. Some 

concepts in the seed question were attached to uncommon predicates in the knowledge 
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base, and it led to under-generation.  It suggested that our method of inducing constraints 

from seed questions was unstable in part because it depended too strongly on the detailed 

content of the knowledge base.   

These results suggested that any technique that relied on traversing large parts of the 

knowledge base in an attempt to generate deep, thought-provoking questions was likely to 

be as fragile as our method.  Knowledge bases are just very large and very complex.  

Nonetheless, instructors still need questions to help their students exercise their knowledge.  

We decided that some help was probably better than no help, so we decided to focus on 

generating questions that tapped only small amounts of knowledge.  In surveying 

textbooks, we had noticed that about half their questions were shallow, factual ones (this 

was confirmed later, as discussed below).  This suggested that although instructors 

probably put a high value on deep questions, they probably also want students to have 

enough factual knowledge to be able to tackle deep questions, so they probably ask shallow 

questions as preparation for the deeper ones.  If high quality shallow questions could be 

generated, then this would remove a load from the instructors and authors, thus allowing 

them to focus on generating deeper questions.  As the remainder of this document 

demonstrates, even the comparatively modest goal of generating moderately shallow 

questions proved challenging. 

2.2.4 Preparing for the generation 

As mentioned earlier, we choose to study questions about a single topic so that the human 

judges could more easily refresh their biology knowledge before judging the questions.  

The chosen topic was photosynthesis, which is a type of event.  Thus, we created a subset 

of the knowledge base that had only knowledge about photosynthesis, its sub-events and 
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concepts that were directly related to such events.  For instances, photosynthesis occurs in 

chloroplasts, so the concept chloroplast is included in our reduced knowledge base.  A 

chloroplast is a part of a plant cell, but the concept of plant cell is not in the knowledge 

base because it is not directly related to photosynthesis or one of its sub-events. 

Also, the knowledge base was biologically accurate, so it represented details that are 

irrelevant to students in our target population.  For instance, the process of photosynthesis 

is somewhat different in plants, algae and photosynthetic prokaryotes.  The original 

knowledge base contained information about all three types of photosynthesis, and used 

three different class names to distinguish them; all were subclasses of the photosynthesis 

class.  Some facts about photosynthesis are general to all three types, so the knowledge 

base uses photosynthesis for them.  Other facts are specific to plants, so the knowledge 

base uses the subclass, photosynthesis_by_plants.  The facts about algae and photosynthetic 

prokaryotes were removed from the knowledge base so that the knowledge base remains 

inside the focus of introductory biology textbooks, 

In order to simplify the generation of questions, information about instances that would 

normally be inferred via inheritance from distal prototypes and classes was copied onto the 

instances themselves.  First, features of the prototype instance of a class were copied to all 

the instances of the class.  Second, the transitive closure of the sub-class relationship was 

represented.  For instance, given  

sub-class(photosynthesis, chemical process) 

sub-class(chemical_process, event) 

the secondary relations 

ancestor(event, photosynthesis) 

was added.  Other secondary relations were also added, and will be described later.  
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2.2.5 Question schemas 

Questions were generated from question schemas, where a schema is a template with 

extra information.   A question schema consisted of variables, constraints and question 

templates.  The constraints were matched against the knowledge base in order to bind 

template variables to concepts in the knowledge base and thus generate a question.    

The question schemas depended on the structure of the semantic network we used.  As 

mentioned earlier, the semantic network was extracted from a knowledge base that was 

used for question answering purpose, where the entire knowledge base was described in 

terms of class, entity, event and relations among these concepts.  Since generating 

questions about classes (e.g., Is photosynthesis an event?) making no sense in our teaching 

domain, we focused on generating questions about entities, events and their relations.  

Briefly put, we generated “What is” questions to have students learn compositional 

relations between an event and its sub events.  We generated “Input and Output” questions 

to have students learn relationships between events belonging to the same parent event.  

We generated “Where” questions to have students learn locational relations between events 

and entities.  We generated “Function” questions to have students learn how entities 

participant in events.  This subsection discusses general design issues for the question 

schemas.  Subsequent subsections discuss issues that are specific to the question types just 

mentioned. 

One general issue is that generating all questions of a certain type from the same question 

schema can be boring to the student.  Thus, each question schema had several versions that 

generated different but synonymous questions, such as “What are the 2 stages of 

photosynthesis?” and “Could you describe the two sub-processes of photosynthesis?”  
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Also, as mentioned earlier, only facts about plant photosynthesis remained after removing 

knowledge about two other kinds of photosynthesis.  Thus, “photosynthesis” and 

“photosynthesis by plants” both appear in questions and they have the same meaning.  

Thus, the knowledge base itself introduces some more-or-less random variation in the 

generated output that helps prevent boredom.  

A difficult problem in natural language generation is generating a referring expression 

that is both succinct and unambiguous (Carenini & Moore, 1993).  In our system, this 

problem arises when generating expressions that refer to an instance.  When an instance 

fills a slot in a question schema, the name of an instance (e.g., inner_membrane001) cannot 

be directly used to fill the blank in the question’s template.  Although the class of the 

instance (e.g. inner_membrane) can be used with the underscores removed, and the 

referring expression is succinct, it is sometimes ambiguous (Carenini & Moore, 1993).  For 

instance, the prototype instance inner_membrane001 represented the inner membrane of a 

cell whereas inner_membrane002 represented the inner membrane of a chloroplast.  Both 

of them were instances of the class named inner_membrane.  If the generator merely used 

“inner membrane” as the referring expression in the question, then student may not know 

which inner membrane was referred to.   

Our solution to the problem is simple but far from perfect.  In the knowledge base, 

instances that belong to the same class were distinguishable because they participated in 

different relations.  Including all the relations in the referring expressing would certainly 

distinguish two instances of the same class, but such referring expressions would be too 

large.  Thus, the referring expression generator used only one relation, namely the “part-

of” relation.  That is, when instance X was a part of instance Y, the question generator used 
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“the [class of X] of the [class of Y]” to refer to X.  If the instance to be referred to was not 

a part of anything according to the knowledge base, then the question generator used only 

the name of the class as the referring expression.   Moreover, rather than implement this 

policy as a general subroutine, which inputs an instance and outputs some text, the question 

templates themselves implemented the policy, and some implemented it slightly differently 

from others in order to increase the variability of the output.  For instance, some templates 

used “in” instead of “of” (e.g., “the [class of X] in the [class of Y]”).  This solution is 

clearly not perfect.  For instance, it sometimes generates spurious contextualization, such 

as “the calvin cycle of photosynthesis.”  It also is strongly affected by the reduction of the 

knowledge base.  For instance, it generates “chloroplast” rather than “the chloroplast of the 

plant cell” because the reduction eliminated the concept plant cell from the knowledge 

base.  Despite the simplicity of this policy, it does an adequate job on a natural language 

generation problem that is known to be very difficult to solve perfectly (Rus et al., 2010).  

Similarly, generating the determiner for a noun phrase is also a difficult problem (Rus et 

al., 2010).   That is, should the referring expression say “chloroplast”, “the chloroplast”, “a 

chloroplast” or “any chloroplast”?  Our solution is again simple but imperfect.  When there 

is a part-of relationship, then “the” is used twice as the determiner (e.g., “the inner 

membrane of the chloroplast”).  When such a relationship is absent, then the noun phrase 

is generated without a determiner (e.g., “___chloroplast”).  However, the policy is 

deliberately implemented slightly different in different question templates in order to 

increase the variability of the language.   

Capitalization (e.g., “the Calvin cycle” vs. “the calvin cycle”) is not handled at all.  Our 

assumption is that capitalization would not affect learning.  Indeed, many of the minor 
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disfluencies in the generated questions probably would not affect learning, which is 

confirmed in the later analysis. 

The rest of the section explains how the questions were generated type by type.  

Appendix B also provides the source in the semantic network for several machine-

generated questions. 

Generating “what is” questions 
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Figure 2 Piece of the semantic network for “what is” questions 

 

 “What is” questions ask students to explain a concept directly.  A simple example is 

“What is photosynthesis?”  Such questions can be answered in many ways, such as 

explaining the chemical equation of photosynthesis in the student’s own words and 

pointing out the different stages of the photosynthesis process. The chemical equation 

actually describes the input and output of the process, which belong to the behavior part of 

a system.  Pointing out the stages refers to the structure part.  We decided to have our “what 

is” questions focus on the structure instead of behavior, because behavior could be handled 

by other types of questions.  Because photosynthesis is an event, all its parts and subparts 

are also events.  Because the evaluation focuses on photosynthesis, rather than cell 

anatomy, the part-of relations between entities (e.g., a chloroplast is a part of a plant cell) 

were removed.   Thus, our “what is” questions all ask students to describe the different 
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stages of a process.  Figure 2 shows the corresponding piece of the semantic network for 

the question “What are the 2 stages of photosynthesis?” 

The key to generating this type of questions is identifying the appropriate concept, which 

is “photosynthesis” in the example.  In principle, any class in the knowledge base can 

become the questioning concept, but many of them are too general or too specific.  For 

example, it doesn’t make sense to ask “What is chemical process?”   As it turns out, neither 

the too-general nor too-specific concepts have sub-events, so generating “what is” 

questions based only on the part-of relationship rules out those inappropriate concepts. 

In order to make it clear that the sub-events are to be described, the question schema 

used the template, such as “What is [the number of sub-events] stages of [the concept]”.  

In order to generate such questions, it is necessary to know the number of subevents of 

each event.  This is pre-computed during the preparation phase and stored as a secondary 

relationship.   

Some events have too many (5 or more) sub-events defined in the knowledge base.  

Pointing out the number of events in this case may confuse the students, because different 

people may have different criteria for distinguishing a sub-event.  In this case, the question 

schema doesn’t mention the number, and instead uses the following template: “Please 

explain the process of [concept].”   
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Generating “where” questions 
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Figure 3 Piece of the semantic network for “where” questions 

 

“Where” questions are classified into two types. The first one is to question the site of an 

event. For example, “Where does the Calvin cycle occur?”  Generating this type of 

questions is fairly straightforward.  Since site is a predefined atomic predicate, the question 

can be composed by generating a question about its object.  As mentioned earlier, simple 

policies were used for generating referring expressions, so spurious context phrases and 

articles were sometimes generated.  In fact, instead of “where does the Calvin cycle occur?” 

the system actually generated “Where does the calvin cycle of photosynthesis occur?”  

Figure 3 shows the piece of the semantic work for generating the question.    

The second type of “where” question is questioning the origin or the destination of a 

movement. The knowledge base describes a movement in terms of three atomic predicates. 

They separately specify the origin, the destination, and the object that is moving. A 

movement must happen under some circumstance, which means that it must belong to a 

parent event.  So the two corresponding question templates are “In [parent event], where 

does the [object of the movement] in [destination] come from?” and “In [parent event], 

where does the [object of the movement] go after it leaves [origin]?”     
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Generating “input & output” questions 

An “input & output” question focuses on the behavior of a process. The most straight 

forward “input & output” questions ask what a single process needs for starting and what 

products it produces. These questions can be easily generated from the knowledge base 

predicates raw_material and result.  Just as their names indicate, the predicate 

raw_material describes the inputs of a chemical process, and the predicate result describes 

its outputs.  Again, if the attached process to the predicate is a sub-event of another one, 

the parent event needs to be included to provide the context. Examples of the templates for 

the input and output questions are respectively “What does the [process] require?” and 

“What does the [process] produce?”  Figure 4 shows the corresponding piece of the 

semantic network for generating “What does the light reaction in photosynthesis require?” 
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Figure 4 Piece of the semantic network for direct input questions 

 

Because the products of one process often serve as the raw materials of another one, we 

devised questions to help students review these connections.  In generating such a question, 

the generator finds processes that have the connecting relations and then puts them into the 

templates.  If the two processes are the sub events of the same process, the parent process 

will also be included in the question to give the context.  So one question template is “How 

does [process1] support [process2] in [parent process]?”  This question template involves 
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somewhat more knowledge than the others.  Figure 5 shows the corresponding piece of the 

semantic network for generating “How does light reaction support Calvin cycle?” 
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Figure 5 Piece of the semantic network for complicated “input&output” questions 

Generating “function” questions 

“Function” questions ask about the role of an entity or event in another event.  The 

predicates in the knowledge base corresponding to the role concept are: enables, inhibits, 

causes, agent, site, and raw_material.  Because all these predicates describe how the 

subject of the predicate (an object) can affect an event, they can all be used to generate a 

function question.  For instance, one question template is:  “What is the role of [subject] in 

[event]?”  Figure 6 shows the piece of the semantic network for generating this types of 

questions. 
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Figure 6 piece of the semantic network for generating “function” questions 
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Generate the questions in natural language 

When the constraints in a question schema are matched against the knowledge base, they 

bind the variables of the schema.  This produces an instance of the schema, such as these: 

What_is(photosynthesis, 2).   A “what is” question, with two sub-events. 

Site_of(calvin_cycle).  A “where” question. 

Raw_material(photosynthesis). An “input” question. 

Role_of(sunlight, light_reaction, photosynthesis).  A “function” question. 

Now that the “question” is written as a relation, we can have several different natural 

language templates for each type of relation, so that students wouldn’t get bored when they 

were answering the same type of questions multiple times.  In the process of transforming 

the relations into the natural language questions, the program randomly selects one natural 

language template from several predefined ones.  

Because the knowledge base was limited to photosynthesis, the generator produced 56 

questions:  6 were “what is” questions; 17 were “where” questions; 17 were “input & 

output” questions; and 16 were “function” questions. 

2.3 Collecting questions by Google 

For a topic like biology, which is widely taught, standard question-answering websites, 

such as ask.com and yahoo answer, can be used to find human-generated questions.  We 

used a Google custom search engine to search the entire Internet with these question-

answering websites prioritized. Figure 2 described how the questions were collected.  In 

order to generate keywords, an algorithm described in section 3.1 was repeatedly given a 

concept and one question schema as the inputs.  The keywords were then sent to the Google 

engine, which returned a set of web links.  The generator visited those web pages and 
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crawled the relevant text.  Questions were selected from the text by the filter described in 

section 3.2.  In the following, the two main steps were described in detail: generating 

keywords and filtering out irrelevant items.  

2.3.1 Generating the keywords 

Since Google’s search is driven by a list of keywords, it is crucial to choose the keywords 

properly.  To make the collected questions comparable with the machine-generated 

questions, the keywords need to specify both the concept to be questioned and the type of 

question.  Let us first discuss how keywords for concepts were generated. 

An initial list of concepts was extracted from the chapter on photosynthesis in a biology 

textbook and an article on photosynthesis in Wikipedia.  However, the same concept may 

have several different names that are used by different people and websites. For example, 

a cell membrane is also called a plasma membrane.  Since a keyword search doesn’t know 

about synonymous terms, the problem needs to be resolved when keywords are generated.  

To cover all the variations, we used WordNet (Fellbaum, 1998) to augment the initial list 

of concepts with synonyms. 
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Questions filter

Searched items

concept
Question 
schema

 

Figure 7 Flow of collecting questions 
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For generating keywords corresponding to the type of question, we used the keywords 

shown in Table 1.  Any combination of the word in question type table and the word in the 

list of concepts makes one set of keywords.  For example, while collecting “output” 

questions for the concept “photosynthesis”, a possible keywords set is {produce, 

photosynthesis}. However, a short set of keywords like this often make Google search 

return too many non-question sentences.  In order to increase the portions of questions 

retrieved and release part of burden of filtering process, we added “what”, “how”, “where” 

and “when” to the keywords set respectively to form the entire set of keywords.  Thus, 

there would be four queries that were actually issued for the keywords set {produce, 

photosynthesis}.  They were {what, produce, photosynthesis}, {how, produce, 

photosynthesis}, {where, produce, photosynthesis}, and {when, produce, photosynthesis} 

 

Table 1 . keywords for Google search 

Type Keywords 

what is what, explain 

where where, place, site 

Input & output produce, product, result, material, cause, need 

function function, use, usage, inhibit, enable 

2.3.2 Filtering mechanism 

The module web-crawler takes the keywords set by set and issues queries via the Google 

API. The returned search results are in JSON format. Each item contains three properties 

of the webpage.  They are “Title”, “Snippet” and “Address”.  Both the Title and Snippet 

can contain a question or parts of a question, so the contents of these two properties are 

stored as candidates of the final returned questions.  The program then goes to the actual 
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web page to get the content in HTML format by the link provided in “Address”.  The 

questions may be deeply embedded in the content so we wrote a parser in terms of HTML 

tags to extract the possible text and store them as the list of candidates.  Specifically, the 

parser considered the content of every HTML tag as one candidate and left the final 

decisions to the filters.  

Every set of keywords generates a list of candidate questions, and all these candidates 

are concatenated. The next step is to go through each candidate and check whether it is 

qualified to be returned.  The criteria of the filter are listed below: 

 length: The number of  the words in the candidate must be between 3 and 50. A 

one or two word candidate usually is a fragment of question.  A long one is often 

a piece of JavaScript code.  

 relevance: The candidate must contain one of the concept keywords and one of 

the question type keywords.  

 duplication: The candidate should not be too similar to a candidate that is already 

on the list of qualified questions.   

Duplication is defined in terms of the edit distance between the candidate and the 

qualified question. Different from the usual definition of edit distance, words were used as 

the atomic units instead of characters.  Because absolute value of edit distance is unfair to 

the items with many words, we divided the absolute value by the length of the current 

candidate.  If the quotient was below 0.2 for all existing qualified questions and the 

candidate passed the other two measures as well, it would be added to the list of qualified 

questions. 
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To improve quality, the questions were further filtered with the Stanford parser.  The 

Stanford parser tagged each word in a sentence with a syntactic symbol.  When the first 

word’s tag was “SBARQ”, which is a sign of direct question introduced by wh-word or 

wh-phase, this candidate was judged to be a question.  In total, there were 8 concepts input 

to the generator, and the generator finally returned 43 questions. 

2.4 Coverage of the machine generated questions 

Unlike many other applications of question generation, it is important for instructional 

applications that the set of questions that are generated “cover” the target material.  In 

particular, the machine-generated questions were all based on a small number of predicates 

such as “site” or “cause.”  Thus, they could be considered “factual” questions rather than 

“deep reasoning” questions.    Although it would be difficult to precisely characterize the 

difference between such questions, we can evaluate coverage by counting how many 

questions are in common between human questions and the machine generated questions.  

We assume that if there exist “deep questions” on a topic, then some human will probably 

ask them.  In other words, we need to examine the coverage of the machine-generated 

questions against human-generated questions.   

Since we were working on a narrow domain, “photosynthesis” in entry level biology, we 

assumed that the union of the questions collected from textbooks and the questions 

gathered from the web would serve as an adequately large set of human questions.  Given 

this assumption, we calculated the coverage of the machine-generated questions by 

matching them against human questions.  Some different human questions were actually 

asking the same thing with different expressions.  These questions were combined together.  

On other hand, 4 special “what is” questions such as “What is light reaction process?” were 
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split into several questions, because each of them could be treated from different angles.  

These “angles” correspond to annotations, which will be described in a moment.   

After splitting and merging, there were 59 distinct human questions.  Out of the 59 

human questions, 24 (41%) were covered by machine-generated questions, and 35 were 

not.  Because one human question sometimes covered more than one machine-generated 

question, 28 machine-generated questions were covered by the 24 human made questions.  

Therefore, of the 56 machine-generated questions, 28 (50%) matched human questions and 

28 did not.   The latter figure is important, because it suggests that humans may be failing 

to generate enough questions to completely cover the knowledge in the knowledge base. 

In order to understand the differences between the two sets of questions, we first 

annotated all the questions according to their topic.  We classified topics as structure, 

behavior or function, as this three-way distinction is common (Goel, Rugaber, & Vattam, 

2009) and can be viewed as a related to the depth of the question.  

Questions asking compositional relations of events, which were sometimes considered 

as behavior questions, were considered as structure questions here.  For example, the 

question “What are the stages into which photosynthesis is divided?” was treated as a 

structure question.   

Questions annotated with “behavior” were further classified into two levels.  Questions 

asking immediate facts were annotated as “behavior-1”, whereas questions whose answers 

involved inferences of facts were annotated as “behavior-2”.  For example, “What does 

cyclic photophosphorylation produce?” was annotated as “behavior-1”, and “How do the 

raw materials of photosynthesis reach the chloroplasts of the leaves?” was annotated as 

“behavior-2”.   
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Questions like “What is the function of chloroplast membranes?” were annotated as 

function questions.   

As mentioned before, three “what is” questions were split into ten new questions.  Two 

“what is” questions asked about a process, so they were each split into four questions with 

the four annotations (structure, behavior-1, behavior-2 and function).  The remaining “what 

is” question asked about an entity.  The “behavior” annotation was not suitable for that 

question, so that question was split into only two ones.    

Table 2 describes the results for the four categories of question topics.  The two columns 

on the right show how many questions were matched by questions from the other category.  

The number of matched questions differs slightly in the two columns because in a few 

cases, one human-generated question matched more than one machine-generated question. 

For the structure and behavior-1 categories, there was considerable overlap of the 

machine- and human-generated questions.  These are fairly simple questions, so it is not 

surprising that the two sources tended to generate the same questions.  For the behavior-2 

and function categories, which tend to include more complex questions, the overlap was 

much smaller.  In terms of a distribution of question types, the machine generated many 

fewer behavior-2 questions and many more behavior-1 questions than the humans.   

Krathwohl (2002) divided the cognitive process of a student into six categories from 

simple to complex: remember, understand, apply, analyze, evaluate and create. Mastery 

of a simpler category would be prerequisite to mastery the next more complex one.  

Therefore, it is reasonable to classify the questions that only test simpler cognitive 

categories as shallow questions and classify the questions that test more complex cognitive 

categories as deep questions.  Because remembering and understanding all the basic facts 
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in photosynthesis would be enough for answering structure and behavior-1 questions, these 

two types of questions were classified as shallow questions.  Answering behavior-2 and 

function questions would require more a complex cognitive process, so these two types of 

questions were classified as deep questions.  Because a simpler cognitive process is 

prerequisite to a more complex one, answering shallow questions may also help students 

have deep learning, which was confirmed by I-H Hsiao, Sosnovsky, & Brusilovsky (2010) 

 

Table 2 Overlap of machine and human-generated questions 

Category Machine Human Human matched Machine matched 

Structure 9 16 9/16 (56%) 9/9 (100%) 

Behavior-1 30 11 10/11 (91%) 13/30 (43%) 

Behavior-2 2 14 1/14 (7%) 1/2 (50%) 

Function 15 18 4/18 (22%) 5/15 (33%) 

Total 56 59 24/59 (41%) 28/56 (50%) 

  

This analysis seems to be the first one to study the coverage issue of question generation, 

so there is no previous work or baseline for comparison.  Rus et al. (Rus, Cai, & Graesser, 

2007) examined the quality of fact questions generated from plain text by the schemas.  

Their fact questions were similar to “structure” and “behavior-1” questions in our study.  

All their generated fact questions were annotated by two human judgers, and a question 

was classified as “good” when both of the two annotators agreed on that. They found that 

only 55% of the machine-generated questions were rated as “good”. Although they were 
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looking at a different measure from us, their work suggests the difficulty of question 

generation.  

2.5 Main study 

The research question we wanted to answer was “What are the relative qualities of 

questions generated from a knowledge base, from searching the web and from a 

professional source of questions?”  For the evaluation, we randomly selected 40 questions 

generated from the knowledge base, 20 questions from the web search and 20 from the list 

of professional questions.  These selections formed a photosynthesis question base with 80 

questions in total.  

The quality of questions was evaluated in terms of four measures: fluency, ambiguity, 

pedagogy and depth.  Every measure had a scale from 1 to 5. Fluency had the judges rate 

the grammatical correctness.  Ambiguity asked them whether the question was semantic 

ambiguous or not.  After the judge answered the question, he/she was asked whether 

answering the question helped him/her understand or review any concepts, which was our 

measure of pedagogy.  For depth, we asked the judges to rate how much thinking was 

involved in their answering of the question.  The first two measures, fluency and ambiguity, 

were borrowed from a question generation challenge (Rus et al., 2010).   

We did not expect significant differences among the three types of questions in the first 

two measures, but we expected the professional questions to exceed the other two in 

pedagogy and depth.  In addition to the quality measures, we also asked the judges to rate 

the relevance of the question to their level of understanding of biology.  So there were 5 

measures for each question in total.     
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2.5.1 Procedure 

All 80 questions were stored in a database, and we implemented a data collection website 

so that students could answer questions from anywhere and need not come to our lab.  The 

webpage is shown in Figure 8.  To serve as judges, we recruited 12 college students from 

our school’s Paid Research Participation System, where students registered for 

 

Figure 8 Screenshot of the experiment 
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participating in research experiments.  All but one participant reported that they were native 

speakers of English; the remaining participant was from India and had been speaking 

English since she began school.  We selected students who reported that they took an intro 

biology course in the recent two semesters.  Every participant was required to answer all 

80 questions in order to get 20 dollars as the compensation for finishing the experiment.  

The experiment was IRB approved.  

2.5.2 Results 

Although the questions asked to a student should have been distinct, a technology issue 

caused some of the early participants to get duplicates of a few questions instead.  There 

12 judges, and 40 machine-generated questions, 20 web-generated questions and 20 

professionally written questions.  Thus, there should have been 12*(40+20+20)=960 data 

points per measure (e.g., fluency).  When the judgments of duplicates were removed, there 

were 867 data points for each measure.   

A typical method for evaluating machine-generated questions is to have two or more 

people rate every question independently, and the mean of their ratings is treated as the 

final score of the question.  On questions where the scores from the raters were substantially 

different, the raters discuss and resolve their conflicts.  In our experiment, the 12 

participants were the raters, but it was impossible for them to discuss and resolve discrepant 

judgments, so the scores were combined without discussion and adjustment.    

We used two different methods for combining scores across judges. The first one 

assumes judges may be biased, so it normalizes their scores and makes every judge’s mean 

score for a particular measure be zero with a standard deviation of one.  This method 

assumes that the scores given by the judges form a ratio scale, and thus it is sensible to take 
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means and standard deviations.  The second method assumes that the scales are ordinal 

instead of ratio, so it is not sensible to take the mean and standard deviation.  This method 

uses medians to compare scores. 

Normalized comparison using the ratio scale assumption 

Although the scale for every judge was 1 to 5, different judges chose to use different part 

of the scale.  For example, some judges used mostly 2, 3 and 4 while other judges used the 

whole scale.  Simply taking the mean would give greater weight to the judgments of 

participants who used a wider range of scores.  Thus, as mentioned earlier, we normalized 

the judges’ scores using a z-transformation:   

𝑍 =
(score − mean)

𝑠𝑡𝑑.
+ 3 

where the mean and standard deviation are taken over all 80 scores from a particular 

student’s judgments about a particular measure (e.g., fluency).   By subtracting the mean 

and adding 3, the z-score of every judge/measure combination has a mean of 3, which is 

the center of the 1-5 scale.  

To aggregate across the 12 judges, we simply took the means of their z-scores, as shown 

in Table 3, and the original scores were as shown in Table 4.  Reading across the rows 

suggests that there were few differences among the three different question types.  To test 

that, we ran ANOVA across all the three groups and pair-wise T-tests on each pair of two 

groups.  The results are shown in Table 5 and Table 6. 

 

  



41 

Table 3 mean (and standard deviation) of the measures-original scores 

  
knowledge-base 

(n=40) 
web (n=20) 

professional 

(n=20) 

fluency 4.05(0.340) 4.06(0.479) 4.00(0.341) 

ambiguity 3.97(0.331) 4.05(0.367) 4.00(0.322) 

pedagogy 2.72(0.342) 2.89(0.254) 2.94(0.363) 

depth 2.59(0.351) 2.66(0.360) 2.93(0.478) 

relevance 3.51(0.460) 3.92 (0.298) 3.65(0.409) 

 

Table 4 mean (and standard deviation) of the measures-normalized scores 

  
knowledge-base 

(n=40) 
web (n=20) 

professional 

(n=20) 

fluency 3.03(0.343) 2.98(0.517) 2.97(0.323) 

ambiguity 2.95(0.358) 3.05(0.402) 3.03(0.291) 

pedagogy 2.90(0.360) 3.06(0.281) 3.14(0.337) 

depth 2.93(0.319) 2.98(0.277) 3.16(0.405) 

relevance 2.86(0.481) 3.26(0.334) 3.02(0.471) 

 

The T-tests did find some significant differences.  The web-generated questions were 

more relevant to students’ knowledge than the other two types of questions.  This difference 

was not surprising because the web-mining method tended to collect questions from 

students.     

Professionally written questions beat the questions generated from the knowledge base 

in both pedagogy and depth.  The questions mined from the web received marginally higher 

pedagogy ratings than the questions generated from the knowledge base.  This is consistent 

with the analysis of coverage presented earlier which showed that the more questions from 

humans than machines were classified as Behavior-2 or Function, which seem intuitively 

to be deeper and potentially more pedagogically useful types of questions.   
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Table 5 ANOVA of means from Table 4 

Measure Value 

Relevance p<0.01, F=5.38, power=0.77 

Fluency p=0.84, F=0.17, power=0.94 

Ambiguity p=0.46, F=0.79, power=0.68 

Pedagogy p=0.03, F=3.71, power=0.68 

Depth p=0.04, F=3.32, power=0.65 

 

Table 6 Pair by pair T-tests of means from Table 3 and Table 4 

 

However, even after normalization, the scores from different raters on the same question 

and measure were often far apart.  This suggests that human judges may be unreliable for 

those particular measures on those particular questions.  Because it was impossible to call 

Professional vs. Knowledge-base 

relevance fluency ambiguity pedagogy depth 

p=0.214 p=0.546 p=0.363 p=0.0167** p=0.0313** 

d=0.344 d=-0.163 d=0.235 d=0.669 d=0.669 

power=0.507 power=0.612 power=0.517 power=0.495 power=0.594 

Knowledge-base vs. web 

relevance fluency ambiguity pedagogy depth 

p<0.01** p=0.7153 p=0.3481 p=0.0659* p=0.5095 

d=-0.9118 d=0.1153 d=-0.2709 d=-0.4748 d=-0.1735 

power=0.360 power=0.738 power=0.546 power=0.448 power=0.587 

Professional vs. web 

relevance Fluency ambiguity pedagogy depth 

p=0.0765* p=0.9538 p=0.8453 p=0.4419 p=0.1088 

d=-0.5472 d=-0.0199 d=-0.0658 d=0.2383 d=0.4909 

power=0.579 power=0.954 power=0.850 power=0.590 power=0.567 

** means p<.05  * means p<.10 
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back the participants so that they could discuss and agree upon a rating, a second analysis 

was done discarding the questions/measure combinations with high standard deviation.  

For the measure Pedagogy, the results are shown in Table 7.  Out of the 80 questions, 4 

questions were removed because their standard deviations were much bigger than others 

(more precisely:  They were greater than 2 standard deviations larger than the mean of the 

80 standard deviations).  Among the 4 questions, there were 2 from the knowledge base, 1 

from the web and 1 from professionals.  Table 6 reports the mean values and the 

significances of the comparisons of the remaining 76 questions.  There is still a trend for 

the professionally written questions to be pedagogically better than the questions generated 

from the knowledge base, but the trend is only marginally reliable perhaps due to the loss 

of power due to the loss of data points.        

For the measure Depth, the results are shown in Table 8.  Out of the 80 questions, 2 

questions were removed, 1 from the web and 1 from professionals.  Removing the two 

questions didn’t lead to a different result.  

Although removing question/measure pairs from the sample is one way to cope with 

unreliability, it reduces power, which makes it harder to tell when two methods of 

generating questions are truly equal on a measure.  Thus, for our second analysis, we used 

medians instead of means, on the grounds that they are less sensitive to outliers.  
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Table 7 The comparison of pedagogy after removing questions with high inter-rater 

variability. 

  mean (std.) vs. Professional vs. web 

knowledge base 2.96 (0.3128) p=0.0913* p=0.1652 

    d=-0.5005 d=-0.3859 

    power=0.525 power=0.490 

web 3.07 (0.2822) p=0.6696   

    d=-0.1396   

    power=0.697   

Professional 3.12 (0.3330)      

* means p<.10 

 

Table 8 The comparison of depth after removing questions with high inter-rater 

variability 

  mean (std.) vs. Professional vs. web 

knowledge base 2.59 (0.351) p=0.0429** p=0.653 

    d=-0.577 d=-0.126 

    power=0.530 power=0.685 

web 2.64 (0.354) p=0.102   

    d=0.544   

    power=0.505   

Professional 2.83 (0.491)      

** means p<0.05 

 

Compare by responses 

Among the 867 responses, there were 435 for machine-generated questions, 217 for 

Google collected questions and 215 for textbook questions.  Table 9 shows the distribution 

and median for each measurement.  
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Table 9 Histograms and median value of the measures 

measure  
knowledge base 

(n=435) 
web (n=217) 

professional 

(n=215) 

relevance Median 4 4 4 

  
Relative 

frequency 

  

 

fluency Median 4 5 4 

  
Relative 

frequency 

  

 

ambiguity Median 4 5 4 

  
Relative 

frequency 

  

 

pedagogy Median 3 3 3 

  
Relative 

frequency 

  

 

depth Median 3 2 3 

  
Relative 

frequency 
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For most measures, the medians were the same.  The exception was that the medians of 

fluency and ambiguity suggest that web-generated questions were better than the other two.  

However, the underlying distributions for all three question sources on the measures 

relevance, fluency and ambiguity show that all were similar and all were probably not a 

major source of pedagogical difficulty.   

Pedagogy and depth are the two measures we most care about. The histograms look 

similar across question sources.  

To test whether there are any significant differences existed, we ran Quantile regression 

(Koenker, 2005), which is an algorithm to predict the median from the training data.  A 

variable I was introduced to represent the identity of the question source, and the 

significance level of the coefficient of the variable I represents the reliability of the 

difference.  For example, in comparing the pedagogy of knowledge base questions to that 

of web questions, I equals 1 when the question is from the web, and I equals 0 when the 

question is from the knowledge base.  The significance of the coefficient of I is the 

reliability of their difference between the two question sources.   

Table 10 Quantile regression comparisons. 

 knowledge base vs. professional 

relevance Fluency Ambiguity pedagogy Depth 

p=1.0 p=1.0 p=1.0 p=1.0 p=1.0 

web vs. knowledge base 

relevance Fluency ambiguity pedagogy Depth 

p=1.0 p=0.043** p=0.042** p=1.0 p=0.016** 

web vs. professional 

Relevance Fluency Ambiguity pedagogy Depth 

p=1.0 p=0.012** p=0.047** p=1.0 p=0.064* 

  ** means p <0.05. * means p<.10 
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The Quantile regression comparisons suggest that the differences in the medians that are 

apparent in Table 10 can all be trusted.  That is, there is no difference between the 

knowledge-base questions and the professional questions on any measure, but there are 

three differences between the web-mined questions and the other two:  The web mined 

questions are more fluent, less ambiguous and shallower than the others.   

The pattern of median results is not consistent with the pattern of results from the means 

of the z-scores.  The latter showed that the knowledge base questions were shallower and 

less pedagogically beneficial than the professional questions, and that the web-based 

questions were in between the other two types on all measures except relevance, where 

they were ranked higher than both the professional and knowledge-base questions.   

These conflicting results leave us with an interpretation challenge.  The main issue is 

how to interpret the conflicting results for pedagogy and depth.  The histograms of Figure 

7 suggest that the judgments were nearly uniformly distributed, which in turn suggests that 

medians may not be sufficiently sensitive to detect differences.  Thus, we tend to put more 

confidence in the results about pedagogy and depth that are shown in Tables 7 and Table 

8, which factor out the influence of questions with high inter-rater variability.  We can 

probably ignore the conflict about fluency, ambiguity and relevance because those are not 

the main measures of interest.  Moreover, we had informal interviews with some of the 

participants after the study, and no one claimed that they had trouble in understanding the 

questions.  So fluency and ambiguity probably would have little effects on students’ 

learning.  The next analysis addresses this question.   
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Correlation of the measures 

If the goal of generating question is to enhance students’ learning, are relevance, fluency, 

ambiguity or depth of the question going to affect the pedagogy? To answer this and similar 

questions, we calculated the correlations of the measures.  The original 867 responses per 

measure were used without aggregating or normalizing or dividing by question source.   

The result was showed on Table 11.  From the table, the depth of the question is highly 

correlated with the pedagogy. All the other three measures have very low correlations with 

pedagogy.  Relevance, fluency and ambiguity are moderately inter-correlated, and 

apparently uncorrelated with depth and pedagogy.  

These results are consistent with those of Table 10.  The web-mined questions received 

high scores in fluency and ambiguity, but are tied with or even worse than questions from 

the knowledge base and professionals in pedagogy and depth.  This suggests that as long 

as the question itself is understandable (staying at the relatively high level in fluency and 

ambiguous), its pedagogical features are unrelated to the syntactic aspects.  

 

Table 11 Pearson’s correlation of the different features of the questions. 

  Relevance fluency ambiguity pedagogy depth 

relevance  0.398 0.331 0.168 0.140 

fluency    0.328 0.202 0.124 

ambiguity      0.061 -0.013 

pedagogy        0.800 

depth          

 

When we measured the overlap of the human-generated questions and the machine-

generated questions, we used four annotations:  structure, behavior-1, behavior-2 and 
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function.  It seems intuitively clear that behavior-2 and function questions are deeper than 

the other two types.  To explore whether students agreed with this intuition, each of the 80 

questions used in the experiment were annotated with “behavior-1”, “behavior-2”, 

“function” or “structure” as described in section 4, except for 2 “what is” questions that 

could not be annotated with a single flag.  So 78 questions were split into 4 groups based 

on the types of annotations.  As Figure 9 shows, questions with different annotations have 

clearly different depth score means.  An ANOVA was conducted to confirm our 

assumption (p<0.001, F=6.414, df=74).  Tukey HSD test was performed to test the group-

by-group differences.  If behavior-2 and function questions are considered as deep 

questions, then both should get higher scores than behavior-1 and structure questions.  Both 

of behavior-2 and function questions do have significantly higher scores than behavior-1 

questions.  But only behavior-2 questions have a significant higher depth score than 

structure questions.  It is probably because some function questions have very obvious 

answers. E.g. “What do chloroplasts enable plant cells to do?” can be simply answered as 

“photosynthesis”, whereas behavior-2 questions were defined such that their answers 

always required inference.   

The analysis was repeated with just two categories, shallow and deep.  That is, behavior-

2 and function questions were aggregated together as the deep group, whose mean depth 

score was 2.85 (SD=0.41, n=35), and behavior-1 and structure questions were grouped 

together as the shallow group, whose mean of the depth score is 2.51 (SD=0.32, n=43). 

The difference is significant according to t-Test (t=3.948, p<0.001), with a large effect size 

(Cohen’s d=0.92).  This suggests again that our coding of questions corresponded to the 

depth judgments of the 12 raters. 
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2.6 Discussion 

In order to compare questions generated from the knowledge base, mined from web, and 

collected from textbooks, we first examined the coverage of the human-generated 

questions (the latter two categories) by the questions generated from the knowledge base.  

As expected, the machine-generated questions had a much higher coverage of shallow 

human questions than deep human questions.  This is not a surprise because each question 

generation schema used with the knowledge base only accessed a small number of 

knowledge base relationship.  We tried generating complex question schema using seed 

questions to infer the pattern of knowledge base relationships for the schema.  This turned 

out to be too sensitive to the details of the knowledge base.  Some seed questions generated 

 

Figure 9 Mean of depth for each type of annotations 
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far too many question schemas for a human author to check, and other seed questions 

generated too few candidates.  Therefore, when questions are generated from a knowledge 

base, it seems that a practical method is to have human write the constraints for generation. 

In terms of the quality of the machine-generated question, our experiment shows that the 

questions from the three different sources have only minor differences in their quality 

ratings. Although some significant differences in their fluency and ambiguity ratings were 

observed, the differences in pedagogical and depth ratings were unreliable, appearing only 

with some statistical tests and not others.   In particular, we found: 

 Knowledge base vs. professional: 

o Z-scores:  for pedagogy and depth, knowledge base < professional 

o Z-scores with removal of questions with high inter-rater variability: no 

reliable difference on pedagogy, reliable difference on depth 

o Medians:  no reliable differences 

 Knowledge base vs. web mining: 

o Z-scores: for relevance, knowledge base < web 

o Z-scores with removal of questions with high inter-rater variability: no 

reliable differences on pedagogy and depth 

o Medians:  for fluency and ambiguity, knowledge base < web; for depth, 

knowledge base > web 

 Web mining vs. professional: 

o Z-scores:  no reliable differences 

o Z-scores with removal of questions with high inter-rater variability: no 

reliable differences on pedagogy and depth 



52 

o Medians:  for fluency and ambiguity, web > professional 

If these ratings from 12 biology students can be trusted as proxies for the pedagogical 

quality of the questions, it appears that all three sources are equally beneficial on the whole. 

However, a different analysis did show a difference in the depth.   Unlike the main 

evaluation, which was conducted on a sample of each type of questions, this analysis 

compared all the machine-generated questions to all the human generated questions, both 

professional and web-mined, merged together.  When we classified questions as shallow 

(both structural and behavior-1) versus deep (both behavior-2 and function), we found 

strong correlations with the judgments of the 12 biology students, but the ratings systems 

were not identical.  Using our classifications, we found that about 50% of the human 

questions were deep whereas only about 30% of the machine questions were deep.  

Moreover, only 15% of the human deep questions were also generated by the machine, 

while 70% of the human shallow questions were generated by the machine.  These figures 

are not terribly surprising, as they are consistent with the design goals for the machine 

generated questions.  However, we were pleasantly surprised to see that the machine 

generated a very high percentage of the shallow questions that humans generated. 

2.7 Conclusion 

Given a knowledge base, we developed a rule-based algorithm to generate biology 

questions, and developed a method to collect biology questions by searching the web with 

keywords.  When 12 biology students judged the pedagogical merit, depth, relevance, 

fluency and ambiguity of the two different types of questions to professional human made 

questions, the pattern of results depended on whether we assumed the judgments were a 

ratio scale or an ordinal scale.  If we assumed a ratio scale, then professionally generated 



53 

questions were rated as deeper and more pedagogically beneficial than questions generated 

from the knowledge base, but there were no differences in fluency and ambiguity.  On the 

other hand, if we assumed an ordinal scale, then there were differences in fluency and 

ambiguity, but no differences in depth or pedagogy. 

However, when we classified the questions by their topic, there were differences due to 

the design of our question schemas, in that about 50% of the human-generated questions 

addressed deep topics (function and behavior-2) whereas only about 30% of the machine-

generated questions did.  However, the machine generated questions did cover a large 

fraction of the shallow human-generated questions.   Conversely, only 50% of the machine-

generated questions were covered by human-generated questions. 

This suggests that machine-generated questions can play an important role in instruction 

in that they can generate the shallow questions that human authors would otherwise need 

to generate.  This would leave human authors to focus on generating deep questions.   

Moreover, if our method for collecting human-generated questions is a fair representation 

of questions that humans generate, then it appears that humans are failing to generate about 

half the shallow questions that students need.  Thus, this suggests that machines may be 

better than humans in that they can generate a more complete set of shallow questions. 

However, the results also sound a cautionary note, in that the biology students did not 

perceive much difference in the depth or in the pedagogical benefits of the different types 

of questions.  It is not clear whether our classifications or their judgments are better 

predictors of the actual pedagogical value of the questions.  Thus, the next step in this line 

of research is to compare learning gains from the three types of questions.    
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Another caution is concerns the generality of the question generation schemas, which 

must match the structure of the knowledge base.  If a new knowledge base were used with 

a different structure, new questions schemas would be needed.   

Moreover, the knowledge base can be considered to be a model of an ideal student’s 

knowledge (Carbonell, 1970), so depending on the learning objectives defined by different 

instructors, the knowledge base may need to be adjusted correspondingly.  For example, 

biology teachers in high school don’t expect their students know as much about 

photosynthesis as college students who major in biology.  While removing knowledge to 

change a college knowledge base into a high school one would not require changing the 

question schemas, adding more knowledge may bring in new predicates and thus 

necessitate new question schemas.    
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CHAPTER 3 

ADAPTIVELY SELECTING BIOLOGY QUESTIONS GENERATED FROM A 

SEMANTIC NETWORK 

3.1 Introduction 

Practicing is necessary for learning and especially for retention.  Thus, a typical textbook 

chapter has exercises at its end that allow students to practice using the knowledge 

conveyed in the chapter.  A typical math, physics or engineering textbook may have a 

hundred or more problems at the end of each chapter.   If the textbook has an online 

homework website, then it typically can generate an infinite number of problems by 

plugging into randomly generated numbers into templates.   

However, other subjects are not as fortunate as the mathematically intensive ones.  For 

instance, a typical college biology textbook has only a handful of questions at the end of 

each chapter.  Online resources provide a few more questions for students to answer, but 

the questions tend to duplicate those in the chapters and there are not enough of them.  

Thus, when students are trying to practice using knowledge for a non-mathematical subject, 

they rapidly run out of questions to answer and must resort to re-reading the chapter.   

Our overarching goal is to develop technology for web-based practice systems in biology 

and other non-mathematical subjects.  Such systems should have at least five properties: 

(1) They should be able to generate an essentially infinite number of practice questions so 

that students will have ample opportunity to practice using the knowledge they have 

acquired while listening to lectures or reading the textbook.  (2) The systems should also 

be adaptive, in that they select or recommend questions that will maximize the student’s 

learning and engagement.  (3) The systems should provide helpful corrective feedback 
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when students answer incorrectly.  (4) The systems should ask both open response 

questions, where students type in an answer, and multiple choice questions, where the 

answer is entered more rapidly, with a single click.  (5) The multiple choice questions 

should offer plausible incorrect answers, so that students with inchoate misconceptions 

may be enticed to articulate them and get corrective feedback on them.  

In earlier work (Zhang & VanLehn, submitted), we compared two techniques for 

generating biology questions automatically.  One was based on mining the web.  The other 

was based on reasoning from a biology knowledge base that others had generated for their 

own purposes (answering questions).   Human judges compared questions from textbooks 

to both the web-mined questions and the inferred questions.  The judges rated the questions 

for depth, pedagogical effectiveness, fluency and ambiguity.  Analyses of the ratings found 

that inferred questions were just as good as the textbook questions and web-mined 

questions, although they tended to be shallower.  An attempt to generate deep questions 

from the knowledge base foundered, and that issue remains a topic for future work.  

However, shallow questions are quite important in biology and similar domains, since it is 

likely that students will unable to learn much from attempting to answer deep questions 

until they have first mastered the knowledge required by shallow questions.   

This chapter reports our progress on the second required feature of a biology practice 

website:  Adaptive selection of questions.  Practice can be a boring waste of time when the 

questions exercise only knowledge that the student has mastered.  On the other hand, 

practice can be a frustrating waste of time when the student is not yet prepared to learn 

from the question. Because different students have different prior knowledge and learning 

rates, a practice system should provide personalized selection of practice questions.     
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However, in order to select a question that matches the student’s current state of 

knowledge, the system must formally represent both the student’s current state of 

knowledge and the knowledge exercised by the question.  That is, the system needs two 

models.  It needs a student model that is updated by the system as the student works, and 

each task needs a question model that indicates what knowledge is required by that 

question.   

Some mathematical practice systems do adaptive question selection (see review below).  

They typically require that the author of a question or question template to specify the 

knowledge required for answering it.  Even though the topic is math, specifying the 

question models manually can be tedious and a source of errors.  Given the less formal 

nature of biology and similar subjects, having human authors specify the question models 

is likely to be unacceptably inaccurate or a huge time sink.   

Our contribution is showing that when the questions are generated from a knowledge 

base, the knowledge base can also be used to generate the question models and the student 

models.  This is not technically challenging, but it is risky in the sense that the resulting 

models might not align well with student’s actual knowledge structures, which could cause 

adaptive question selection to behave poorly.  Thus, we tested the resulting adaptive 

question selection system to see if the adaptation had the desired impact on learning gains.  

We compared the learning of students who answered questions selected to increase their 

learning to students given questions selected to decrease learning.  As expected, the 

manipulation did influence learning gains, and in the expected direction.  This supports the 

viability of using a knowledge base to generate question models and student models. 
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The next section reviews relevant prior work.  The subsequent section discusses the 

technology, focusing on the simple technique used to understand the students’ typed 

responses to questions and on the Bayesian methods used for updating the student model 

and selecting questions.  The last half of the chapter presents the experiment used to test 

the viability of the approach.  

3.2 Prior works in adaptive task selection  

Many practice systems on the market and in the literature are adaptive in that they 

make decisions based on the student’s performance so far.  This review focuses on 

systems that select tasks for the user (in biology, a question is a task), but some systems 

make other types of decisions, such as:  Which hint to start with in a sequence of 

increasingly strong hints (Wood, 2001)?  Whether to give an unsolicited hint or to 

respond with a hint when asked for one (J. Beck, Woolf, & Beal, 2000; Murray & 

VanLehn, 2006; Murray, VanLehn, & Mostow, 2004)?  Which behavior an affective 

agent should perform (Arroyo, Mehranian, & Woolf, 2010; Muñoz, Mc Kevitt, Lunney, 

Noguez, & Neri, 2010)?  Should the task be posed as an example, a problem with 

feedback or a problem without feedback (Rafferty, Brunskill, Griffiths, & Shafto, 2011; 

Whitehill, 2012)? 

3.2.1 The student’s state 

The information that the system has available on a student consists of the whole history 

of interaction with the student up to this point.  The history can be processed by 

collaborative filtering and related algorithms to select a next task (Brusilovsky, 2007).  

The basic idea is that if my history matches the history of several other students, and 
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some of those students turned out to be more successful than others, then I should be 

given the task that was given to the majority of the successful students at this point.    

Alternatively, the history of interaction can be summarized as the student’s “state.”  

Thus, the decision-making algorithm only needs to examine the student’s current state 

and not the whole student history. This is the approach followed here and in most tutoring 

systems.   

The student’s state can contain a variety of information.  The information is typically 

divided into a student model and a dialogue model.  The student model represents 

properties of the student such as: 

 The student’s knowledge level or skill level 

 Misconceptions held by the student 

 The student’s affective state, which may include emotional state, engagement, 

interest in the topic and other variables. 

 The student’s attributes, which are psychological variables whose values are not 

expected to change.  Common attributes include general intelligence, fluid vs. 

crystalized intelligence, verbal vs. special reasoning ability, working memory 

capacity, and many others. 

The dialogue model represents features of the history of interaction between the system 

and the student, such as: 

 The set of tasks that have been given to the student already.  This is necessary to 

avoid accidently assigning the same task twice.  

 How many times a particular hint or feedback message has been given.  This is 

necessary when systems try to vary the wording of such messages each time they 

are given, as this increases the chance that the student will read them.   

 Whether the student received an unsolicited hint on the preceding task.  This is 

necessary if the system’s policy is to avoid giving two such hints in a row (Burton 

& Brown, 1982).  

 Whether the student has been guessing too much, asking for too much help or not 

asking for enough help.  This is necessary if the system is doing “meta-tutoring,” 

that is, trying to teach the student how to use the system’s help facilities properly 
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(Aleven, Stahl, Schworm, Fischer, & Wallace, 2003; Baker et al., 2006; Roll, 

Aleven, McLaren, & Koedinger, 2007, 2011; Zhang et al., 2014). 

Although these possibilities open up a large design space, many investigations, including 

the one reported here, have concentrated on determining how a student model that just 

represents student competence can help in adaptive task selection.   

Most tutoring systems often assign only one kind of task, typically a problem-solving 

task or a question-answering task.  When a tutoring system must select among multiple 

types of tasks, then some systems divide competence into types that align with the types of 

tasks.  For instance, ActiveMath (Melis et al., 2001) follows Bloom’s taxonomy (Bloom & 

Krathwohl, 1956) and tracks three types of competence, corresponding to reading a text 

about a concept, studying examples of the concept and solving problems involving the 

concept.  In our project, only one type of task (answering biology questions) is assigned, 

so only one type of competence is tracked. 

3.2.2 Mastery learning and remediation 

Unless the tutoring system covers only a small amount of content, the knowledge it 

covers is partitioned into modules (also called topics or units).   Each module has its own 

set of tasks, and the sets are usually mutually exclusive.  By the end of the course, students 

are typically required to have mastered every module in the course.   

The modules are arranged in a partial order by prerequisite relationships.  That is, if 

module A has module B as a predecessor in the partial order, then students should have 

mastered module B before beginning module A.  Many courses arrange modules in a total 

order (linear sequence) as this often makes the teacher’s job easier.  The student’s state 

lists the modules that the student has mastered.   The adaptive task selector is usually 
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constrained to select tasks from modules that are not mastered and have their prerequisites 

mastered.  The formal properties of this arrangement and algorithms for inferring the partial 

order from student data have been developed and generally refer to the partial ordering of 

modules as a knowledge space (Falmagne, Koppen, Villano, Doignon, & Johannesen, 

1990).   

Mastery learning (Bloom, 1984) refers to assigning tasks from a module until the 

students’ competence in the module’s knowledge has reached a certain threshold, called 

the mastery threshold.  When mastery is reached, the student moves on to the next module 

in the sequence, which is sometimes called move on when ready or leveling up.  If the 

system believes that a module has been mastered, and later evidence suggests that it has 

not been mastered, then mastered status can be removed, and tasks are once again assigned 

from the modules.  This is called remediation.   

In this paradigm, the traditional term “mastery” can be misleading.  It refers to an 

operational concept not a cognitive one.  If a module is mastered, then the task selector 

should no longer assign tasks from it.   Each module has a “mastery criterion,” which might 

be set so low that it amounts to acquiring mere familiarity with the contents of the module.  

Nonetheless, when the student’s performance meets the criterion, the module is marked in 

the student’s state as mastered (in the operational definition used here) even though its 

content is far from being mastered (in the cognitive sense that is not used here). 

In order apply the mastery criterion, some kind of assessment of the student’s 

competence is needed.  It can be embedded in the teaching tasks or done with testing tasks, 

which are designed to suppress changes in competence while they try to measure it.  When 

the module includes tests, then the assessment can use conventional psychometric 
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techniques, such as item-response theory.  When the teaching tasks are answering 

questions, then a typical embedded assessment is based on whether the student answers 

correctly on the first attempt.  If they do not, then they get feedback and instruction that 

helps them learn.  Thus, this kind of embedded assessments are trying to measure a 

constantly changing competence.  Techniques for doing this will be described in the next 

section.    

3.2.3 Embedded assessment  

With test tasks, the student does not get feedback on their answer during the test or 

anything else that might serve as instruction and thus change the competence that is being 

measured.  With instructional tasks, where students do get feedback and instruction on their 

answers, it is typical to measure competence based on the correctness of the students’ first 

attempt.  Although some systems also consider the number of attempts before success or 

the strength of the hints required for success, this does not appear to increase assessment 

accuracy much (Shute, 1995), so only the correctness of the first attempt is used here.  

When assessing competence the knowledge taught in a module, there are different 

algorithms depending on whether the content is treated as a single factor or multiple factors.   

Let us consider single-factor algorithms first. 

If the content is treated as a single factor, then all instructional tasks are considered to 

teach the same knowledge and all test items are considered to assess the same knowledge.   

Sometimes, it is reasonable to treat all tasks as having the same difficulty.  If so, then a 

common embedded assessment technique is to use percentage correct on first attempt, but 

only count the most recent N tasks.  For instance, the skill builder part of ASSISTments 

considers a student to have mastered a module when the student gets three tasks correct in 
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a row on the first attempt, that is, 100% correct on the most recent 3 tasks (Razzaq et al., 

2007).   

Alternatively, systems may assume that different tasks have different difficulties even 

though they all address the same knowledge.  For test items with varying difficulties, the 

dominant method for computing competence is item-response theory (IRT).  It is based on 

modeling the probability of a correct response with this formula (or ones similar to it): 

𝑃(𝑆, 𝑇) =
1

1 + 𝑒−𝑚(𝑆,𝑇)
 

𝑚(𝑆, 𝑇) =  competence(S) −  difficulty(T) 

where S denotes the student, T denotes the task and P(S,T) denotes the probability that 

student S will get task T correct.  Every task has a parameter, difficulty(T).  Although every 

student has a parameter, competence(S), IRT assumes that its value is constant.  Thus, the 

formulae above are used for assessing student competence and selecting tasks during 

testing, where competence is assumed not to be changing. 

For updating the student’s competence in an embedded assessment, where competence 

is assumed to be changing, one technique is a variant of IRT that that only counts evidence 

from the most recent N tasks.  The general technique is called Additive Factors Analysis 

(Draney, Pirolli, & Wilson, 1995) because it adds other factors into the calculation of 

probability of correctness of a student S on a task T: 

m(S,T,N) = competence(S) – difficulty(T) + history(N) 

The history(N) factor represents evidence about the student’s current competence 

gathered from the most recent N tasks.  The parameter competence(S) is still an estimate 

of the student’s initial, unchanging competence.   
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Different members of the Additive Factors Analysis family define history(N) different.  

Learning factors analysis (Cen, Koedinger, & Junker, 2006) defines it with: 

history(N) = *percent_correct(N) 

where percent_correct(N) is the percentage of the most recent N tasks that were 

answered correctly on the first attempt.  On the other hand, performance factors analysis 

(Pavlik, Cen, & Koedinger, 2009) defines 

history(N) = *successes(N) + *failures(N) 

where successes(N) counts the number of tasks among the most recent N tasks that were 

answered successfully on the first attempt, and failures(N) counts the number of tasks that 

were not answered correctly on the first attempt.  Other members of the Additive Factors 

Analysis family have more elaborate definitions of history(N) that distinguish tasks by their 

features, such as whether they are example-studying tasks or problem-solving tasks (Chi, 

Koedinger, Gordon, Jordan, & VanLehn, 2011).    

Although only the formulae for predicting student performance have been given, there 

exist calibration methods that mine student data to provide values for the task difficulties, 

difficulty(T), and the Additive Factors Analysis parameters such as ,  and .   

If data are not available for calibration, humans must estimate difficulty(T) subjectively, 

which is difficult.  Thus, a second approach, called Bayesian Knowledge Tracing (Corbett 

& Anderson, 1995), replaces the difficulty(T) parameter with two parameters, slip(T) and 

guess(T).  Slip(T) is the probability that a student who has mastered the target knowledge 

will, despite their mastery, answer task T incorrectly.  Guess(T) is the probability that a 

student who lacks mastery will nonetheless answer task T  correctly.  Both slip(T) and 

guess(T) depend strongly on the form of the task’s answer.  For instance, if the task is a 
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true/false questions, then guess(T)=0.5 and slip(T) is very small.  On the other hand, if the 

task requires writing a complex mathematical expression, then slip(T) is high and guess(T) 

is very low.  Thus, the task parameters are much easier to estimate subjectively with 

Bayesian Knowledge Tracing than with Additive Factor Analysis.   Because the research 

reported here does not have calibration data, it uses Bayesian Knowledge Tracing (BKT).  

The technique will be described in detail later. 

Both BKT and Additive Factors Analysis assume that all the tasks address the same 

knowledge, and that the tasks vary only in difficulty, or in the slip probability and guess 

probability.  An alternative framework is to divide the knowledge taught by a module into 

several smaller pieces of knowledge, usually called knowledge components (Koedinger, 

Corbett, & Perfetti, 2012), and to assume that different tasks may address different sets of 

knowledge components even though all the tasks belong to the same module.   

Although many practical systems, starting with BIP (Barr, Beard, & Atkinson, 1976), 

have made this assumption, it can make assessment more complex.  If correctly solving a 

task requires applying two or more knowledge components (KCs), then failure to solve the 

task can be blamed on either or both of the knowledge components.  This is called the 

assignment of blame problem (VanLehn, 1988).  Although techniques exist to assign blame 

fairly, they dilute the evidence and slow down the assessment process (VanLehn & Niu, 

2001).  Thus, most practical tutoring systems, including the one presented here, try to 

analyze the student’s response to a multi-KC task in such a way that they can determine 

which KCs were applied correctly and which were not.  This works around the assignment 

of blame problem and allows the tutoring system to use BKT or Additive Factors Analysis 

in the simple form described earlier.   
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When a module is assumed to cover several KCs and different tasks are assumed to cover 

different KCs, then a mapping between tasks and the KCs they cover is necessary.  

Although this was earlier referred to as a question model, it is more commonly called a Q-

matrix (Tatsuoka, 1996).  It is difficult for human authors to develop a list of KCs and an 

accurate Q-matrix, in part because the authors are usually experts, so they have lost access 

to their naïve misconceptions and fragmented early knowledge, a phenomenon known as 

“expert blind spot.” (Nathan, Koedinger, & Alibali, 2001).  Consequently, techniques have 

been developed to mine KCs and the Q-matrix from student performance data (Barnes, 

Stamper, & Madhyastha, 2006).  Unfortunately, a great deal of data is required, and 

assumptions are still necessary (e.g., one must decide how many KC there are).  Another 

technique is to start with crudely defined KCs from human authors, then use data to split 

them into more specific KCs (Cen et al., 2006).  Once again, large amounts of student data 

are required.  A novel contribution of this chapter is showing how both the KCs and Q-

matrix can be generated automatically by generating the tasks (biology questions, in 

particular) from a knowledge base. 

Once a Q-matrix has been generated, the partial ordering of modules and even the 

modules themselves are superfluous and be omitted.  Instead of indicating whether a 

module has been mastered, the system can track whether a knowledge component has been 

mastered.  The pre-requisite structure of the modules can be replaced by a pre-requisite 

structure on the knowledge components or more elaborate interrelationships (Kumar, 2006; 

Vassileva & Deters, 1998).  Alternatively, both the module structure and the inter-KC 

structure can be retained; students stay in a module until mastered, and the pre-requisite 

structure among KCs partially determine the task selection within a module.  
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If a system employs a pre-requisite structure among KCs, then it can be used to solve 

the assignment of blame problem.  Tasks are authored to have just one new KCs, and all 

the other KCs required for doing the task are included in the prerequisites.  When the 

student fails to answer the task correctly on the first attempt, all the blame is cast on the 

new KC.  Because the other KCs have been mastered, they probably are not the source of 

the error and thus receive no blame.   

When students may work on tasks even when the prerequisites have not yet been 

mastered, and they succeed, then some systems update success on the prerequisite KCs as 

well as the target KCs (Melis et al., 2001; Weber & Brusilovsky, 2001).  

Our system uses knowledge components, but does not assume a pre-requisite structure 

among them.  Our system does not have multiple modules, but instead assumes all tasks 

belong to the same module. 

3.2.4 Learner control 

Any tutoring system that can select tasks can also display its recommendations to 

students and let the students select the tasks.  This design variable is a special case of the 

general issue of learner control, that is, how much control to give to learners vs. the system 

(Kay, 2001).   Some systems merely present their recommendations without trying to 

explain them (Brusilovsky, 2007).  Others give the student relevant information for making 

a choice, such as the system’s assessment of the student’s current competence (Bull & Kay, 

2013), a capability called open learner modeling.  Some open learner modeling systems 

also provide for comparison the competence or task selections of other students, in which 

case the capability is called social learner modeling (Hosseini, Hsiao, Guerra, & 
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Brusilovsky, 2015; I-Han Hsiao, Bakalov, Brusilovsky, & Konig-Ries, 2011, 2013; I-Han 

Hsiao & Brusilovsky, 2012, submitted).   

A challenge with open and social learner modeling is designing an easily understood 

display of the data that the student needs to know for making an informed decision.  In this 

case, students are assumed to be working in a module, and they do not have choice about 

that, so what they need to see is the assessed competence and/or task selections of 

themselves and possibly other students.  Our system has 162 knowledge components, so 

simply displaying a 162-bar chart of competencies would not be easily understood.  

Moreover, a display of the Q-matrix that pairs tasks with KCs would be even harder to 

understand.   

Thus, this project does not allow learners any control over task selection because they 

would lack to information needed to participate fully.   That is, it does task selection rather 

than task recommendation. 

3.2.5 Task selection: Look ahead 

Most task selection methods can be viewed as rating the expected utility of each task, 

and then choosing the task with the maximal expected utility.   The expected utility of a 

task is sum of the utilities of the possible outcomes of the task multiplied by the probability 

that the outcome will occur.  The utility of a student state can include many issues, such as 

the student’s competence, engagement, understanding, etc.  Options for calculating utility 

are discussed in the next section.  This section discussed another design variable, which is 

how far to look ahead when collecting the outcomes of a selected task. 

From the point of view of the tutoring system, tutoring is a sequential decision making 

problem.  The student is initially in some state, State1.  The tutoring system doesn’t know 
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exactly what that state is, but it has a probabilistic estimate of it.  That is, it has a probability 

for each logically possible state.  Now the tutor makes its first decision, about what task to 

present.  Presenting the task causes the student to move to State2 and to respond to the task.  

Once again, the tutor cannot observe State2, but can use the response of the student to help 

infer a probability distribution across all possible states for State2.  Now the tutor makes 

its second decision, about what kind of feedback to the give the student.  Receiving the 

feedback drives the student to State3, and the student may also emit a response.  This 

process repeats for a long time, generating a sequence of student states. 

Now back when the tutor was making its first decision, it could look ahead to the next 

state or even further.  Looking ahead to State2 means predicting what State2 would be for 

each possible choice of task.  For each predicted version of State2, the tutor runs the utility 

measure to calculate the expected utility of that version of State2.  Then it choose the task 

that leads to the version of State2 with maximal utility.  This is one-state look-ahead.  

Similarly, it could look ahead to State3, State4 or even further.    

This kind of computational problem is called a POMDP—Partially Observable Markov 

Decision Process.  There are methods to solve such problems, but the amount of 

computation required depends strongly on the branching factor, which is number of 

possible tasks the tutor can choose (first kind of branch) and the number of possible types 

of feedback the tutor can give(second kind of branch).  A few tutoring system do use 

POMDP algorithms or related algorithms (Cakmak & Lopes, 2012; Clement, Oudeyer, 

Roy, & Lopes, 2014; Lopes, Clement, Roy, & Oudeyer, 2013; Muldner & Conati, 2007; 

Murray & VanLehn, 2000, 2006; Murray et al., 2004; Pek & Poh, 2000a, 2000b; Rafferty 

et al., 2011; Whitehill, 2012).   
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In the most extreme case, the tutor keeps looking ahead until it generates state that have 

the student reaching mastery with high probability.  Clearly, this much computation is too 

much to do every time tutor has a decision to make, so it is typically done once and all the 

decisions along successful paths are saved.  That is, the tutor plans ahead and saves the 

plan.  Some tutoring systems take this approach to adaptive task selection (Peachy & 

McCalla, 1986; Vassileva & Deters, 1998), but it is computationally feasible only in highly 

constrained applications. 

However, most systems do not look ahead at all.  They apply the utility measures directly 

to the decision alternative themselves.  That is, when the student is State1, utilities of each 

task selection are compute.  This save computation.   

Moreover, it is likely that looking ahead only begins to have added value over this 

method when utilities can be applied to State3 or State4.  That is, the tutor is considering 

pairs of actions instead of just a single action.  This would be advantageous, for instance, 

if the tutor was teaching a concept and could present minimally contrasting examples as 

consecutive tasks. 

Our project had a large branching factor in that the tutor must choose among 48 questions 

to pose to the student.  Thus, it does no looking ahead, and merely evaluates the expected 

utility of each task, then chooses the task with maximal expected utility. 

3.2.6 Task selection: Utility issues 

The whole essence of adaptive task selection is that the utility of a task can be high when 

a student is in one state and low when the student is in a different state.  Thus, it is helpful 

to crudely categorize states into three phases, and then discuss the utility issues for each 

state separately. 
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Theorists of cognitive skill acquisition (Anderson, 1982; Fitts & Posner, 1967; 

Koedinger et al., 2012) often distinguish three phases: 

 Understanding:  The student reads about a concept or skill, sees an initial 

example, or discovers it. 

 Refinement:  The student changes the content of the concept or skill, refining it by 

removing superfluous or incorrect features and perhaps adding new features. 

 Strengthening:  Although the content of the concept or skill no longer changes, 

the students’ use of it becomes more fluent with practice.  That is, time, errors and 

cognitive resource usage all decrease.  

When students are in the understanding phase, tasks that convey the target knowledge 

clearly and succinctly have high utility,  but tasks that activate prior knowledge might need 

to come just before them (Bransford, Brown, & Cocking, 2000).  There are many issues 

here, such as: whether a general description should come before or after an example of it; 

whether pictures are more effective than text; whether presenting parts should be presented 

before or after the whole, etc.  Although heuristics exist for making these choices when 

designing instruction (Patton, Chao, & Reigeluth, 1986; Reigeluth, 1999), little work has 

been done on adapting them for use in dynamic task selection. 

When students are in the refinement phase, a high utility is placed on tasks that 

encourage generalization and discrimination (Koedinger et al., 2012).  Learners have a 

tendency to incorporate the wrong features into the target knowledge when first acquiring 

it, a phenomenon called encoding specificity.  The tasks selected during refinement phase 

should help students remove incorrect features and add correct ones, so the emphasis is on 

the variety of tasks and use of closely contrasting pairs of tasks.  Once again, heuristics for 

instructional design exist (Patton et al., 1986; Reigeluth, 1999).  Although early work on 
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concept acquisition occasionally addressed this phase (Park & Tennyson, 1980), there has 

been little recent work on adaptive task selection for refinement. 

When students have are practicing in order to strengthen their memory, then the utility 

of tasks shifts towards keeping students engaged by making the tasks neither too easy nor 

too hard—the so-called zone of proximal development (Chaiklin, 2003).  When tasks must 

be repeated, the spacing them as far apart as possible without making them too difficult, 

can lead to longer retention (Cepeda, Pashler, Vul, Wixted, & Roher, 2006; Lindsey, 

Mozer, Huggins, & Pashler, 2013; Lindsey, Shroyer, Pashler, & Mozer, 2014; Pavlik & 

Anderson, 2005).  In order to get more tasks completed per unit of time, short-duration 

tasks are often given higher utility (Pavlik & Anderson, 2005).  Although example-

studying tasks may be more effective than problem-solving tasks during the first two 

phases, the reverse is true in the strengthening phase, a phenomenon known as the expertise 

reversal effect (Kalyuga, Ayres, Chandler, & Sweller, 2003).   

Unfortunately, most tutoring systems have used heuristic rules for selecting tasks that 

obscure the utilities that they are trying to maximize.  Some examples are: 

 One ActiveMath (Melis et al., 2001) rule says that if the user’s problem solving 

competence for a particular KC is less than 0.3, then assign four problem solving 

tasks of gradually increasing difficulty: 0.3, 0.3, 0.5 and then 0.7.    

 The SQL-Tutor (Mitrovic, Martin, & Mayo, 2002) uses Bayesian reasoning to 

predict the number of errors that that a student will make, then ranks problems by 

how close the number of predicted errors is to an desired number of errors.  The 

desired number of errors gradually increases as the student’s overall competence 

increases. 

 A common technique for selecting tasks is based on ordering the tasks by 

difficulty, then jumping to higher difficulty tasks if the students succeeds on a 

task, and jumping to a lower difficulty task if the student fails on the task (G. 

Corbalan, Kester, & van Merriënboer, 2008; Salden, Paas, Broers, & Van 
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Merriënboer, 2004; Salden, Paas, Jeroen, & van Merriënboer, 2006; Weber & 

Brusilovsky, 2001).  This assumes that the candidate tasks all address the same 

KC. 

In short, all the issues that bear upon instructional design are also relevant to adaptive 

task selection.  However, the issues must be formalized as rules or utilities so that they can 

be applied in real time to select tasks. 

Our contribution to this effort is to define a particular utility and test its efficacy.  

Although no great claims can be made about its merits based on just one study, perhaps the 

methodology of carefully defining a utility may inspire others to formulate their task 

selection algorithms the same way.  Progress on adaptive task selection research could 

perhaps be faster if there were greater clarity about the basis for making the decisions. 

3.3 Description of the tutoring system 

From the students’ point of view, the tutoring system is extremely simple (see Figure 

10).  A question appears on the screen along with a box.  When the student has typed an 

answer into the box, the student clicks an Enter button, and the system presents feedback.  

This continues until the student has worked for 30 minutes. 

The process of how questions were generated from the semantic network knowledge 

base was detailed in our previous paper (Zhang & VanLehn, submitted), so this section 

describes the rest of the technology. 
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Figure 10 The system feedback on student’s answer 

 

3.3.1 Populating the Q-matrix 

All the questions were generated from a knowledge base comprised of semantic 

relations.  For example, here are the relations that represent that photosynthesis happens 

in the chloroplast and consist of the light action and the Calvin cycle: 

Relation1: has(photosynthesis1514, site, chloroplast18798). 

Relation2: has(photosynthesis1514, subevent, light_reaction13426). 

Relation3: has(photosynthesis1514, subevent, calvin_cycle13425). 

Relation4: has(photosynthesis1514, instance_of, photosynthesis). 

Relation5: has(chloroplast18798, instance_of, chloroplast). 
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Relation6: has(light_reaction13426, instance_of, light_reaction). 

Relation7: has(calvin_cycle13425, instance_of, calvin_cycle). 

The terms ending with numbers are instances of classes.  For example, 

photosynthesis1514 is an instance of photosynthesis.  The knowledge representation is 

described in more detail in another paper (Zhang & VanLehn, submitted).   

The Q-matrix was populated by listing the knowledge components used to generate a 

question.  However, only some relations correspond to knowledge components.  For 

instance, relations 1, 2 and 3 are each knowledge components.  On the other hand, 

instance_of relations, such as relation4 to relation7, are essentially for bookkeeping and 

are not considered to be knowledge components.  For example, the machine generated 

question “What are the two stages of photosynthesis?” has two corresponding knowledge 

components: relations 2 and 3.   

3.3.2 Understanding student answers 

As mentioned earlier, adaptive task selection requires embedded assessment, which 

entails deciding if the student’s response exhibits application of all the knowledge 

components that it should have, according to the Q-matrix.  Because the student’s 

response is in typed natural language, our tutoring system has to understand it, at least 

partially.   

The previous methods for understanding natural language could be classified into two 

types.  One is to treat student’s answer as a bag of words, and the other is to extract 

semantic relations from the text and make inference on the relations.  The latter method is 

rarely used because it requires a great deal of computational linguistic technology, 

including a robust parser, semantic interpreter and domain-specific inference rules 



76 

(Makatchev, Hall, Jordan, Pappuswamy, & VanLehn, 2005).  Along with most other 

work on automated text understanding in education, we used a bag of words technique. 

In bag of words methods, the “word” need not be the original word in the sentence.  It 

could be the stem of the word, a syntactic labeling, and other features extracted from a 

student’s answer.  In order to force generalization and reduce computation, words are 

translated into vectors in a vector developed by principle-components analysis or other 

compression techniques.  The vectors in the student’s answer are processed with 

classification methods such as Naïve Bayes (Lewis, 1998), decision trees (Apté, 

Damerau, & Weiss, 1994) , or K-nearest neighbor (Wiemer-Hastings, Wiemer-Hastings, 

& Graesser, 1999) or cosine distance  (Wiemer-Hastings et al., 1999).  Training the 

classifiers for these methods requires considerable data which are hand-coded by experts.  

Since we did not have such data, we could not use these methods. 

We used a method based on keywords.  The keywords of a knowledge component 

were extracted from the relation representing the knowledge component.  For example, 

the keyword for relation2 was “light reaction” and the keyword for relation3 was “calvin 

cycle.”  To find synonyms for the keywords, we use on-line dictionaries like WordNet 

and Theaurus.  The dictionaries recognized common synonyms like “CO2” and “carbon 

dioxide,” but did recognize unusual terms like GA3P is the abbreviation of 

glyveraldehyde-3-phosphate.  There were only a few of these, so they were added 

manually.  

Figure 11 presents the response-processing algorithm.  
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1. Take question id and student answer as the inputs 

2. Extract the knowledge components associated to the question and the 

corresponding keywords  

3. Visited the associated knowledge components one by one, and for each 

knowledge component: 

a. Visited the corresponding keywords one by one, and for each 

keyword: 

i. Check existence of the keyword in the student’s answer.  

ii. If it is existed, go to (a.) to check next keyword, 

iii. If it is not existed, get all the synonyms of the keyword. 

iv. Visit all the synonyms one by one, and for each synonym: 

 Check existence of the synonym in the answer.  

 If it is existed, go to (a.) to check next keyword. 

 If it is not existed, go to (iv.) to check next 

synonym. 

b. If all the keywords (or the synonym) for the knowledge component 

can be found in the answer, the knowledge component is tagged as 

“correct”. 

c. If at least one keyword for the knowledge component is not existed 

in the answer, the knowledge component is tagged as “incorrect”.  

d. Update the probability of mastery of the knowledge component for 

the current student.  

Figure 11 Analysis of the student’s response 

3.3.3 Checking the accuracy of the natural language understanding 

In order to test whether our simple text analysis mechanism was able to achieve 

satisfactory accuracy, we ran a pilot study comparing decisions made by the machine and 

the decisions made by a human.  This section describes the study. 

While the human judge was making decisions, he could see a table that contained 4 

columns: questions, students’ answers to the questions, the natural language descriptions 

of the associated knowledge components to the questions, and the column used to record 

human decisions.  The natural language descriptions of the knowledge components were 

also used as part of feedback to students.  Given the table, the human judger was asked to 

annotate ‘Y’ or ‘N’ for each knowledge component.  The human judge was asked to put 

‘Y’ when he thought the knowledge component was mentioned in the answer and ‘N’ 

when the knowledge component was not mentioned.  In total, there were 153 questions.  
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Since one question usually covered more than one knowledge components, the total 

number of decision points was 391.   

Kappa was calculated to measure the agreement between the human judges Y/N 

judgments and the algorithm’s.  The kappa was 0.802.  The result suggested that machine 

and human expert agreed with each other at most of time.  So the simple assessing 

mechanism did work in our case.   

Table 12 Machine vs. Human confusion matrix 

Machine/Human Yes No 

Yes 124 5 

No 31 230 

 

The confusion matrix (see Table 12) showed that most of the errors came from false 

negatives.  The system could only recognize synonyms at the word level but failed to 

detect synonyms at the phase level.  Here is an example:  

Question:  What are the 4 stages of cyclic photophosphorylation in light reaction? 

Student’s answer:   

conversion of light energy into chemical energy 

absorption of photon 

splitting of water 

Generating energy carrier 

Although the question covered four knowledge components, only one raised a false 

negative.   The knowledge component was “chlorophyll absorbs photons.”  The keywords 
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of the knowledge component were: chlorophyll, absorb, photon.  The human judge 

decided that the knowledge component was mentioned because of the phase “absorption 

of photon”.  But the system decided that the knowledge component was not mentioned 

because the word “chlorophyll” was not found in the answer and the noun form of the 

keyword “absorb” was not recognized.  Although it is probably feasible to improve the 

accuracy of the text analysis method, that was not a focus of the research, so it will be left 

for future work. 

There is a potential issue that was not fully evaluated in the kappa test.  Both the 

human judge and the algorithm ignored the terms that appeared in the answer when they 

should not have. For example, some students included carbon dioxide in their answer to 

the question “What does photosynthesis make?”  Clearly the probabilities of masteries of 

all the associated knowledge components to the question needed to be somehow 

decreased as a punishment.  Fortunately, we found that students in the pilot study seldom 

made these errors.   

3.3.4 Embedded assessment 

When an expected knowledge component is mentioned in the student’s answer to a 

question, the system’s estimate of the student’s proficiency in using the knowledge 

component should be increased.  On the other hand, if an expected knowledge component 

is not included in the answer, its estimated proficiency should be decreased.  We used 

Bayesian Knowledge Tracing (Corbett & Anderson, 1995) to represent and update the 

proficiencies.   

In Bayesian Knowledge Tracing, for each student and each knowledge component, 

there is a single number between 0 and 1 representing the probability that the student has 
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mastered the knowledge component.  This number changes as questions are answered 

and evidence about the student’s proficiency changes.  When there is no information 

about a student’s initial competence, it is typical to set the initial value for probability of 

mastery to 0.5 for all knowledge components.  If the student repeatedly fails to mention 

the knowledge component, the probability falls.  If the student repeatedly does mention 

the knowledge component, then the probability rises. 

Although the algorithm can be explained by reference to Bayesian networks or hidden 

Markov models (VanLehn, 2008), it will be explained here with simple algebraic 

equations and graphs, from (Van de Sande, 2013), in order to give a more intuitive sense 

for how the algorithm works. 

When a questions has been answered, the BKT algorithm runs once for each 

knowledge component that should have been mentioned by the student.  For each 

knowledge component, the algorithm is given the following inputs: 

 B – the probability of mastery before the questions was asked 

 G – the probability of a lucky guess.  That is, the probability that the student will 

mention the knowledge component even though the student has not mastered it. 

 S – the probability of a slip.  That is, the probability that the student will fail to 

mention the knowledge component even though the student has actually mastered 

it already. 

 L – the probability of learning.  That is, the probability that in the course of 

answering the question and receiving feedback, the student’s competence on this 

knowledge component will change from unmastered to mastered. 

 E – the evidence.  This is “correct” if the student mentioned the knowledge 

component and “incorrect” if the student failed to mention it. 

The algorithm outputs  

 A – the probability of mastery after the student has answered the question and 

received feedback on their attempt.   
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Different questions have different values for the slip (S) and guess (G) parameters, and 

the values can be estimated from the format of the question.  For instance, a true-false 

question has G=0.5.  An open-response questions has a low G and a high S.  When the 

answer to a question should mention multiple KCs, the same S and G parameters are used 

them all.  

However, the probability of learning (L) is difficult to estimate, so it is typical to 

assume that it is the same for all students and all questions, then adjust it to get 

reasonable results overall. 

The BKT algorithm has two stages.  During the first stage, it updates the estimated 

probability of mastery before the question was answer based on the student’s answer.  

During the second stage, it calculates the probability of mastery after the question and 

feedback were processed by the student.   The second stage is easier to describe, so let’s 

start with it. 

Let BE be the output of the first stage.  It represents the probability of mastery before 

the question was posed to the student, but it has been updated to reflect the evidence 

provided by the student’s answer.  That is, BE is a more accurate version of B, because B 

represents the probability of mastery before the question was posed and it does not 

include the evidence provided by the student’s answer. 

The formula for A is BE+(1-BE)*L.  That is, there are two cases. (1) If the student had 

mastered the knowledge component before processing the question and feedback, then 

the student still has mastery.  Thus, the first term is BE.  (2) If the student had not 

mastered the knowledge component before processing (the chance of that is 1-BE), then 

there is a chance (L) that the student will learn during the processing.  Thus, the second 
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term is (1-BE)*L.   This is clearly a rather simple model of learning.  One could imagine 

having multiple probabilities of learning depending on what the student did during the 

processing of the question.  However, the simple BKT model has proven useful in many 

intelligent tutoring systems, and attempts to improve it by adding more parameters have 

provided only marginally more accuracy (Shute, 1995).  

In order to calculate BE, it helps to consider the joint probability distribution, which is 

a table showing all possible cases and their probabilities (see Table 13).  There are four 

cases, and their probabilities (shown in the last column) sum to 1.0.  When a question is 

answered correctly, then two of the four rows can be eliminated:  rows 1 and 4.  Of those 

two remaining cases (rows 2 and 3), only one has the student at mastery.  Thus, given that 

the question was answered correctly, the probability of mastery is P(row 2) 

/[P(row2)+P(row3)]  or B*(1-S) / [B*(1-S) + (1-B)*G].  On the other hand, if the 

question was answered incorrectly, that leaves rows 1 and 4, so the probability of mastery 

is P(row 1)/[P(row 1) +P(row 4)] or B*S/[B*S + (1-B)*G].   

 

Table 13 Joint probability distribution for answering the question 

Mastered? Slip? Guess? Probability 

Yes Yes Not applicable B*S 

Yes No Not applicable B*(1-S) 

No Not applicable Yes (1-B)*G 

No Not applicable No (1-B)*(1-G) 
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In short, BKT has two slightly different formulas for BE depending on whether the 

answer was correct or incorrect.  The left pane of Figure 7 shows how these two values 

vary depending on B, S and G.  This means that A, the probability of mastery after the 

student processed the question, also has different values depending on whether the answer 

was correct or incorrect, like the right pane of Figure 12 shows. 

 

Figure 12 Probabilities of mastery calculated by BKT 

 

3.3.5 Adaptively select the next question 

Suppose that the student has answered a question, the system has updated the 

probabilities of mastery of the knowledge components that should have been included in 

the answer, and it is time to select a new question to pose to the student.  The system goes 

through every question in the database that has not yet been asked, calculates its utility, 

then selects a question with maximal utility.  

The utility is a composite of two factors that correspond to the two stages of the BKT 

algorithm.  That is, we want to maximize A, the probability of mastery after the student 

has processed the question, by maximizing L*(1-BE), the probability of learning, and by 

maximizing BE-B, the probability of raising the estimated probability of mastery by getting 
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evidence from this question.  The latter is necessary because some questions, namely those 

with a high probability of guessing and slipping, provide much less evidence than others.   

However, we don’t know BE yet, because the student has not answered the question, so 

we must do a weighted sum of the two cases: a correct answer and an incorrect answer.  

We weight the two cases by their probability of occurrence, namely B and (1-B) 

respectively.  Thus,  

Utility = B*[L*(1-BEcorrect) + (BEcorrect-B)]  + (1-B)*[L*(1-BEincorrect) + (BEincorrect-B)] 

Where BEcorrect is the formula given above for the case where the answer was correct, 

and BEincorrect is the other formula for BE.   Figure 13 shows how utility varies depending 

on B and the other parameters. 

 

Figure 13 Utility of a question vs. probability of mastery 
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When the learning rate L is at least 0.3, low probabilities of mastery are preferred.   This 

makes sense, as unlearned knowledge components have a greater chance of becoming 

learned.  But when the learning rate is less than 0.3, then the dominant term in the utility 

formula is the increase due to evidence i.e., (BE-B).  Thus, there are bumps around 0.15 

and 0.85 because that is where BEcorrect and BEincorrect are changing rapidly (see Fig. 3).   

Thus, the curves make intuitive sense.   

We chose L=0.3 because all the knowledge components in the teaching domain appeared 

to be simple to learn, e.g. photosynthesis produces oxygen, and a higher learning rate is 

preferred.  

When a question is associated with multiple knowledge components, we took the 

average of the utilities of the knowledge component utilities as the question’s utility.  This 

treats all knowledge components as equally important, which seems reasonable in our 

context.  It could be argued that taking the sum of the utilities is more logical.  However, 

that means a question with more knowledge component has more utility than a question 

with few knowledge components.  Moreover, since knowledge component with low 

probability of mastery are preferred, this would mean preferring questions that required 

lots of knowledge that was highly unfamiliar.  Clearly, this would be a bad policy.  Thus, 

we define question utility as the average rather than the sum of the relevant knowledge 

component utilities.   

 

3.4 Evaluation 

To evaluate our adaptive question selection method, we conducted a between-subject 

experiment, where the experiment group had biology questions that were adaptively 
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selected by the system and the control group was treated with inverse adaption, which 

meant that the question with lowest utility was always selected as the next question.  The 

study was IRB approved.  All the participants of the study were college students who were 

not biology majors.  Students who participated in the study earned $10 per hour.  There 

were 42 students in total, 21 students in experiment group and the rest 21 subjects in control 

group.  

 

Figure 14 Sample test question 

 

3.4.1 Procedure 

The experiment was divided into three parts: pre-test, training session where the 

difference took place, and the post-test.  Pre-test and post-test used the same set of multiple 

choice questions with different order.  There were 10 questions, such as the one in Figure 

14, in the test set.  Besides original choices of the questions, we added “Don’t know” bullet 

to each test question.  Because performance in the test did not affect participant’s 

compensation, we believed that our participants would select the “Don’t know” button 

instead of guessing the correct answer when they had no idea about the answer.  There was 

no time limit for pre-test and post-test.  Students usually spent 5 to 10 minutes in each test.  

The test was closed book.  Students had to work on their own.  The training session lasted 
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30 minutes and participants were allowed to use a researcher provided biology textbook as 

the learning material to answer the questions.  As mentioned earlier, students needed to 

type their answers to the training questions.  There were 48 machine generated training 

questions stored in the database, but students answered only as many as they could in the 

30 minutes allotted for training.  The whole procedure of the experiment was summarized 

in Table 14. Procedure of the experiment. 

Table 14. Procedure of the experiment 

 Time Number of questions Auxiliary material 

Pre-test 5-10 minutes in 

average 

10 multiple choice 

questions 

Close book 

Training  Session 30 minutes Answered 14.8 out of 

48 questions in 

average 

Open to a 

provided textbook 

Post-test 5-10 minutes in 

average 

10 multiple choice 

questions 

Close book 

 

3.4.2 Results: 

Students were asked to answer as many questions as they could during the 30 minute 

training period. Students in both groups answered on average exactly 14.76 questions.  This 

suggests that the set of questions were equally difficult.  Thus, any difference in pre-to-

post gain is probably due to the exact nature of the questions chosen. 

The experiment aimed to answer two questions:  

1. Could students learn with the machine generated questions? 

2. Could students learn more with adaptive selection than the mal-adaptive 

selection? 

To answer the first question, we compared the mean of the students’ scores on the post-

test to the mean of the students’ scores on the pre-test for control group and experiment 
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group separately.  According to T-test, students in both of the groups increased their test 

score significantly. Students in control group scored 3.32 (SD=1.57) in pre-test and 

increased to 4.74 (SD=1.24) in post-test.  Two-tailed T-test reported the p value as 0.0023, 

t=3.26 and Cohen’s d=1.01.  Students in experiment group scored 2.86 (SD=1.49) in pre-

test and increase to 5.29 (SD=1.52) in post-test.  Two-tailed T-test reported the p value 

smaller than 0.001, t=5.22 and Cohen’s d=1.61.   

To compensate for students’ differing prior knowledge, learning gains were used to test 

for a difference between the two groups.  The learning gain was calculated as the difference 

of scores in pre-test and post-test.  The average learning gain of control group was 1.42 

(SD=1.78), and the average learning gain of experiment group was 2.43 (SD=1.29).  A 

two-tail T-test reported p value was 0.043, t=2.097 and Cohen’s d=0.65.  So the adaptive 

question selection did significantly increase students’ learning compared to mal-adaptive 

selection of questions.   See Figure 15 and Table 15. 

Table 15.Comparison between experimental group and control group 

 Pre-test Post-test Learning gain 

Mal-Adaptive 3.33(SD=1.56) 4.76(SD=1.22) 1.43(1.78), 

p=0.0023, 

d=1.01 

Adaptive 2.86(SD=1.49) 5.29(SD=1.52) 2.43(1.29), 

p<0.001, 

d=1.61 
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The difference is significant with p=0.043, t=2.097, d=0.65 

Figure 15. The learning gain of adaptive treatment group vs. the learning gain of mal-

adaptive treatment group 

 

Instead of comparing learning gains between the two groups, an alternative way is to 

compare students’ post-test scores with their pre-test scores as covariates in an ANCOVA.  

Applying an ANCOVA requires that the pretest score is linearly correlated with the posttest 

score(Eric, 1998), which it was in this case (p=0.0089).  Although students with adaptive 

treatment scored higher in the post-test than those with counter-adaptive treatment, the 

difference of their adjusted post-test scores was only marginal significant (p=0.075, 

F=3.348, d=0.58).  See Figure 16, left.  However, we noticed that there were 8 students 

who got extremely low scores (<2 out of 10) in pretest.  These students could be thought 

to have no prior knowledge in the domain at all, so adaptive question selection became 

meaningless to these students.  The difference between the two groups turned out to be 

significant after the 8 students were removed (p=0.034, F=4.933, d=0.77). See Figure 16 

right.    
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The difference is marginal significant with 

p=0.075, F=3.348, d=0.58 

The difference is significant with p=0.034, 

F=4.933, d=0.77 

Figure 16 The adjusted post-test score of adaptive treatment group vs. that of counter-

adaptive treatment group. 

 

The difference between gain scores of the two groups is an unbiased estimation of the 

treatment’s effect when gain score is not affected by pretest score.  To test this assumption, 

we calculated Pearson correlation coefficient between the pretest score and the gain score 

in our experiment.  In a result, the gain score was moderately correlated to the pretest score 

(r=-0.61).  To obtain a gain score that was independent with the pretest score, we 

normalized the original gain score by dividing it with the difference between the pretest 

score and the total score. The normalized gain score was less correlated with the pretest 

score (r=-0.40), and the difference between the normalized gain scores of the two groups 

was still significant (p=0.023, F=5.56).     

3.4.3 Discussion 

Three commonly used measures of learning were used to test the effect of adaptive 

treatment.  Gain scores and adjusted normalized gain scores showed that the treatment 

made a significant difference. ANCOVA suggested that the treatment was only marginally 
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reliable with all the participants included, but significantly reliable after removing the 

participants who had no prior knowledge.  It did intuitively make sense because adaptive 

selection would be degenerated to be random selection for the students who had zero 

competence on all the knowledge components.  Thus, these results suggest that adaptive 

question selection is associated with larger learning gains than mal-adaptive question 

selection. 

 

3.5 Conclusion 

Adaptively questions selection was not a new idea. However, we managed to provide an 

automatic way to build the adaption into a system.  Except for providing a few synonyms 

for esoteric biology terms, no human knowledge was inserted into the question generation 

and adaptive question selection process.    We also found that a simple method for 

analyzing students’ answer in natural language was effective, in that it allowed the system 

to update its estimates of the student’s probability of mastery of the knowledge components 

and its judgments agreed well with human judge.  A between-subjects experiment was 

conducted to evaluate the effectiveness of the adaptive selection algorithm.  Students with 

adaptive question selection had larger learning gains than those with mal-adaptive question 

selection, and both of the students scored higher on the post-test than the pre-test.  

Although the system achieved satisfying results, it did have many aspects that could be 

improved.  One issue was that the system was only able to detect the presence or absence 

of the correct elements in student’s answer but failed to detect the presence of wrong 

elements.  The problem could be solved in two different ways: one would be to figure out 

common error items for each question, so that the system can recognize them in student’s 
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answer.  Another would be to make the system be able to generate multiple choice 

questions to avoid the trouble of evaluating student’s answers in natural language.  The key 

technique for both of the two methods is to figure out wrong elements for the current 

generated questions.  This would be part of our future work.  
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CHAPTER 4 

MAPPING QUESTIONS TO THEIR RELATED PARAGRAPHS IN THE TEXTBOOK 

4.1 Task definition 

When open response questions are used in intelligent tutoring system, they can be 

organized as dialogs as AutoTutor (Graesser et al., 2004) did, so that students can learn 

deeply by going through the dialogs.  Such a dialog has students generate an initial answer 

and then guides them to expand the answer in more detail.  However, designing such 

dialogs is a very time consuming for domain experts.  Reading related paragraphs in the 

textbook could provide an alternative and equally beneficial way of learning.  Presenting 

the text and questions together may help students to learn how to generate questions, which 

is known to be an important skill in learning (Rosenshine, Meister, & Chapman, 1996).  

Therefore, we designed an algorithm to match questions to their related paragraphs in the 

textbook.   

The mapping task is defined as the following: given a number of questions and a set of 

paragraphs in plain text that is also referred to “the text” in the rest of the chapter, find 

reasonable connections between the two groups, where a connection consists of one 

question and one paragraph.  The same paragraph may be connected to several questions, 

and the same question may be connected to several paragraphs.   

Suppose that there are n questions, 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑖, … , 𝑞𝑛}, and m paragraphs, 𝐷 =

{𝑑1, 𝑑2, … , 𝑑𝑖, … , 𝑑𝑚},  then the goal is to generate a related set of connections for each 𝑞𝑖, 

and one connection can be annotated as (𝑞𝑖, 𝑑𝑗).  Because any paragraphs can be mapped 

to any set of questions, there should be 2𝑚 possible connections for each question.  
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4.2 Dataset 

The goal was to connect related paragraphs to each question, so it was important to 

define what a related paragraph is.  A related paragraph to a question here was interpreted 

as a paragraph that could help in answering the question.  In particular, the related 

paragraph should share similarities with the answer to the question.  

We managed to generate good photosynthesis questions as well as their answers from a 

semantic network in our early work. While the questions were being generated, each of 

them was associated with a list of knowledge components, which were essentially the 

relations in the semantic network.  The answers to the questions were just another 

representation of the relations.  For example, 

What does photosynthesis need? …… the machine 

generated question 

Sunlight and water molecule are the reactants of the light 

reaction in photosynthesis.  

…… the answer 

has(light_reaction13426,raw_material,sunlight13428). 

has(light_reaction13426,raw_material,water_molecule2658). 

…… the corresponding 

knowledge components 

 

Because the corresponding knowledge components were good generalization of the 

answers, they could be used to locate the related paragraphs. To take the advantage of our 

previous work, the question set consisted of machine-generated questions, each of which 

was associated to its related knowledge components already.  

The question set domain was photosynthesis, so we chose the chapter “photosynthesis” 

in the biology textbook published by OpenStax College as the text that was going to be 

matched against.  
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There is another benefit of connecting machine-generated questions to the paragraphs in 

the textbook. Based on the connections and the correctness of a student’s answer to the 

machine generated question, it should be easy to infer the student’s level of mastery on 

different knowledge components, and this information could be potentially used for 

generating adaptive reading materials for the student by highlighting the parts where the 

student should pay more attention.  

Therefore, the machine-generated questions from our previous work, which came with 

their related knowledge components, formed the question set, and the photosynthesis 

chapter in the textbook formed the text.  

4.3 Methodology 

4.3.1 Keywords generation 

Although knowledge components represented the answer, they still needed further 

processing in order to help in locating related paragraphs. Thus, we transformed each 

knowledge component into a set of keywords, so that the questions and the text could match 

against each other based on the keywords.  

As shown in the previous example, the pattern of a knowledge component was [S, V, O] 

where V stood for a predicate, S stood for the subject of the predicate, and O stood for the 

object of the predicate. Both S and O were instances of some classes, and usually were 

written as the combination of the name of the class and a number. A class was usually a 

biology concept.  For example, an instance of photosynthesis could be written as 

photosynthesis001, and an instance of oxygen could be written as oxygen001, so 
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(photosynthesis001, product, oxygen001) meant that photosynthesis could produce 

oxygen.  

Ordinarily, the class name of the subject and the class name of the object formed the 

keyword set. However, in some cases, the class name itself provides little information 

about the event or object being described, so more information must be included in order 

to make the keyword set specific enough.  Take the class “break” as the example.  The 

class break was used to describe a process of a chemical component being split.  For 

example,  

(cellular_respiration6632,subevent,break72) ……  (1) 

(break72, object, glucose1224).  ……  (2) 

(break72, result, carbon_dioxide28589). ……  (3) 

Keywords were required to be generated for relation 1, and relation 1 meant that the 

process described by break72 was a sub-process of an instance of cellular respiration.  

Relations 2 and 3 further described break72, meant that an instance of glucose was broken 

into pieces including carbon dioxide. To transform these relations into keywords, instead 

of directly putting class name “break” into the keyword set, we put both glucose and carbon 

dioxide in the set of keywords for Relation 1.   

4.3.2 Task reformation 

At this point, each question was associated with several knowledge components, and 

each knowledge component was associated with a set of keywords. The next task could be 

further described in the following: There were n machine-generated questions, 𝑄 =

{𝑞1, 𝑞2, … , 𝑞𝑖, … , 𝑞𝑛}, each of which was associated to a number of knowledge components 

𝐾𝐶 = {𝑘𝑐1, 𝑘𝑐2, … , 𝑘𝑐𝑖 , … , 𝑘𝑐𝑙}.  Each of the knowledge components could be represented 
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as a set of keywords 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑘}.  There were m paragraphs that roughly 

described the same content as the answers to the questions, 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑖, … , 𝑑𝑚}. 

The goal was to build connections between the questions and the paragraphs. Each 

connection could be denoted as (𝑞𝑖, 𝑑𝑗), which meant question i connected to paragraph j. 

The output of the algorithm was a set of (𝑞𝑖, 𝑑𝑗).  The hierarchical relationships among 

question, knowledge component and keyword were described as figure 17.  

Question

KC KC…...

keyword …... keyword keyword …... keyword
 

Figure 17 Relationships among questions, knowledge components and keywords. 

 

Keywords were the features of questions we used to build the connections. Exact 

matching the keywords against the paragraphs would probably lead to omitting important 

connections, so some kind of more general matching was needed. In information retrieval, 

this is usually done by matching words with similar meaning (Cao, Cong, Cui, Jensen, & 

Zhang, 2009; Gao & Nie, 2012), so we used the same strategy. Our keyword generation 

process ignored the predicates in the relations and only put the subject class names and the 

object class names into the keyword set, which guaranteed that all the keywords were 

nouns.  So we simply implemented fuzzy matching on noun phases by referring to the 

synonyms in WordNet (Fellbaum, 1998).  However, WordNet mainly encoded everyday 

knowledge instead of the terms in biology.  So 9 sets of synonyms were manually added 
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(see Appendix C).  Matching any synonym of a keyword was treated as matching the 

keyword itself.     

The entire matching process was divided into two steps: (1) All the paragraphs in the 

text were preprocessed to remove punctuations and stop words and to replace all the 

synonyms of the keywords with the keywords themselves. (2) For each question, Okapi 

BM25 was used to calculate the relatedness of the paragraphs to the question, and the 

related paragraphs were ranked in terms of the relatedness scores. The next two sections 

described the two steps separately. 

4.3.3 Preprocessing 

All the punctuation in the text was removed first. Because our text processing was not 

case sensitive, all the terms were transformed to lower case as well. The original text was 

mixed with some figures, so there were some phrases like “as figure 1” embedded in the 

text.  These phrases were also removed during preprocessing.  

As mentioned before, when a synonym of a knowledge component’s keyword was 

recognized, this synonyms would be replaced with the original keyword.  To implement 

this, a synonyms set was built for each keyword appeared in the question set. For example,  

Light reaction -> {light reaction, light dependent reaction} 

As mentioned earlier, both WordNet and manual input were used to form the entire 

synonyms set.  Whenever a phase in the list of synonyms sets was detected, the phase was 

replaced with the keyword. 
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4.3.4 Question mapping 

Because keywords were associated to knowledge components instead of the questions, 

for each question, we first found the related paragraphs to each of its knowledge 

components, then combined these paragraphs together as the final related paragraphs to the 

question.  

We used BM25 to calculate the relatedness of a paragraph to a knowledge component. 

BM25 was originally used to quantify the relatedness of a document to a given query in 

information retrieval. Given a query, the score of the document to the given query is:   
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where d is the document, and query represents the given query.  iw is the ith keyword in 

the query. ),( dwf i  represents the frequency of the ith keyword in the document.  

is the number of occurrence of  in d, || d is the length of paragraph d and avgdl  is the 

average length of all the documents. 1k  and b are free parameters for tuning performance. 

We set =0.6 and b=0.75 as earlier studies suggested. )( iwIDF  is inverse document 

frequency of , which is calculated as: 
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where N is the total number of documents and )( iwn  is the number of documents that 

contain the keyword iw .  So the more popular the word is, the lower )( iwIDF  is.  

Each paragraph in the text was treated as a document in the original BM25 calculation. 

The knowledge components associated with keywords became the queries.  So the 
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relatedness score, which is ),( kcdscore , of a paragraph to a knowledge component is 

calculated according to equation (5) 
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…… (5) 

where d represents a paragraph instead of a document, kc is the knowledge component 

and iw is the ith keyword associated with the knowledge component. Other notations are 

exactly the same those in original BM25.  

To calculate the relatedness score for each pair of paragraph and knowledge component, 

we first iterate through all the knowledge components’ keywords, calculating )( iwIDF  

and ),( dwf i for each paragraph.  The time complexity of this process was O(Nw*|d|), 

where Nw is the total number of keywords appeared in all the knowledge components, and 

|d| is the total number of paragraphs.  All the calculated values were stored in a hash table 

so that they could be easily retrieved afterwards.  Secondly, we iterated through all the 

knowledge components and calculated the paragraph’s score for the knowledge component 

with the corresponding )( iwIDF  and ),( Dwf i .   

Now that the relatedness of paragraphs to knowledge components were calculated, the 

relatedness of a paragraph to a question could be calculated as the sum of the paragraph’s 

relatedness to all the knowledge components of the question. However, this was not the 

final calculation we adopted, because we wanted to tackle a special case.  

Suppose that given a question, one paragraph was highly related to one of its knowledge 

components but not related to any other of its knowledge components, and another 

paragraph was related to all its knowledge components albeit not strongly.  Which 
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paragraph should be ranked higher? We preferred to rank the latter paragraph higher 

because the latter paragraph probably covered all the key points of the answer to the 

question, while the first paragraph was probably a short one concentrating on just part of 

the answer.  Reading the first paragraph would not enough for a student to fully understand 

the answer. In other words, we think it was always more important for a paragraph to cover 

many knowledge components rather than concentrating on just one knowledge component.   

In our case, the relatedness scores of the knowledge component (KC) -paragraph pairs were 

between 0 and 5, where 0 means that the paragraph is unrelated to the KC.  To ensure that 

the paragraphs covering more knowledge components always rank higher, every time the 

relatedness score of a KC-paragraph pair is added into the relatedness score of a question-

paragraph pair, if the relatedness score of KC-paragraph is strictly greater than 0, an extra 

10 is added to the relatedness score of the question-paragraph pair.  Thus, the score is 

essentially counting the number of question-related KCs that the paragraph covers, and the 

relatedness scores of KC-paragraph pairs make a difference only when two paragraphs 

cover the same number of question-related KCs.  The relatedness score of a question-

paragraph pair was calculated as equation (6) 

𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) =∑10 ∙ 𝑔𝑖

𝑛

𝑖=1

+ 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑘𝑐𝑖) 

𝑘𝑐𝑖 ∈ {𝐴𝑙𝑙 𝑡ℎ𝑒 𝐾𝐶𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 𝑞} 

𝑔𝑖 = {
0   𝑖𝑓 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑘𝑐𝑖) = 0 

1   𝑖𝑓 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑘𝑐𝑖) > 0
 

 

…… (6) 

where d stands for a paragraph, d stands for a question, and 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑘𝑐𝑖) is 

relatedness score of one of the question’s associated knowledge components to the 

paragraph.  
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Recall that the main purpose of mapping questions to their related paragraphs was to 

provide reading materials as a part of the feedback in addition to the correct answer.  

Students could be overwhelmed if there were too many paragraphs attached to one single 

question.  So three related paragraphs at most were permitted per question.  If more than 

three paragraphs were related to the question (i.e., score(d,q)>0), then the three paragraphs 

with the top scores were selected. If there were less than three related paragraphs whose 

relatedness score to the question were bigger than 0, then they were selected.  

4.4 Evaluation 

The output of the machine-generated question-paragraph mapping was a set of pairs, 

represented as (𝑑, 𝑞), where 𝑑 is a paragraph and 𝑞 is a question. One way to evaluate such 

a mapping is to have domain experts go through all the pairs one by one and annotate each 

pair as good or bad.  It is simple and straightforward, but the problem is that domain 

experts’ opinions could be biased by the machine-generated pairs. Moreover, a domain 

expert could not indicate that he/she think there should be a connection pair that is absent 

from the machine-generated pairs.  Therefore, the experiment was designed so that 

question-paragraph connections could be built by domain experts completely independent 

of machine-generated ones.  

Two college students were recruited to generate the question-paragraph connections 

individually, and then they came together to solve any conflicts they had between their 

individual judgments. The two students were considered as domain experts because both 

of them majored in biology and had good grades in their course work.  Both of them were 

simply told to connect the related paragraphs to each question.   
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54 questions and 53 paragraphs were given to the two students.  There was no restriction 

on the number of paragraphs that could be connected to each question.  Students could 

connect as many as they wanted as long as they thought the paragraphs were related.  They 

took the assignment home and reported that it took each of them more than 10 hours in 

total to finish mapping all the 54 questions.  After both of them finished their individual 

work, they were asked to come to our lab and resolved all the conflicts, which took about 

3 hours.  Each of them got $200 as compensation upon completing the entire experiment.   

4.4.1 Measures 

The experiment generated 4 groups of question-paragraph connections in total: the 

individual work of student 1 (S1), the individual work of student 2 (S2), their mutually-

agreed mapping after discussion, and the machine-generated mapping.  Kappa was usually 

used to test inter-rater agreement, but it was not an appropriate measure here because there 

were 253, 53  was the number of paragraphs, combinations of connections for each 

question, which lead to 253 categories.  Instead of kappa, precision and recall were used to 

measure how the 4 mappings agreed with each other. Recall that an item in a group was a 

question-paragraph connection, represented as (𝑑, 𝑞).   Given two sets of questions-

paragraph connections, group1 and group2, with group2 treated as the gold standard, the 

precision of the mapping for one question 𝑞𝑖 was calculated as equation (7), the recall was 

calculated as equation (8), and F-score was calculated as equation (9). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑞𝑖)

=
|{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝1 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}| ∩ |{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝2 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}|

|{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝1 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}|
 

 

… (7) 
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𝑟𝑒𝑐𝑎𝑙𝑙(𝑞𝑖)

=
|{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝1 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}| ∩ |{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝2 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}|

|{(𝑑, 𝑞𝑖) ∈ {𝑔𝑟𝑜𝑢𝑝2 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}}|
 

 

 

… (8) 

 

𝐹(𝑞𝑖) =
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑞𝑖) ∙ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑞𝑖)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑞𝑖) + 𝑟𝑒𝑐𝑎𝑙𝑙(𝑞𝑖)
 

 

…(9) 

 

Now that the precision and recall for each question were calculated, the precision, recall 

and F-score for group1 were the average of those values over the questions.  

4.4.2 Results 

Among the 4 groups of connections, the mapping that the two judges agreed upon after 

discussion (let’s call it the joint mapping) was treated as the gold-standard mapping.  To 

explore how reliable the gold-standard was, we calculated the average precision, recall and 

F-score of S1 and S2 as Table 16 showed. 

 

 

Table 16. Result of question mapping (N=54) 

 All questions (N=54) 

 Precision Recall F measure 

S1 0.68 0.56 0.62 

S2 0.38 0.66 0.48 

 

The precision and recall were much lower than we expected, which meant that the judges 

disagreed with the joint mapping.  However, considering that the chance of getting both 
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precision and recall being 1.0 for one question was 
1

254
 , the result was fairly acceptable.  

On average, there were 1.35 questions mapped to each question in the joint mapping.  S1 

had a high precision with a low recall because S1 always tended to map a small number of 

paragraphs (1.09 on average) to each question.  On other side, S2 always tended to map 

much more paragraphs (3.06 on average) to each question, which ended up with low 

precision and high recall.  In a result, the two individuals made many disagreements.  It 

seemed easier for them to make agreement on finding the related paragraphs to the 

questions whose answers were emphasized only once in the text, such as “Could you 

describe the three sub processes involved in the calvin cycle in photosynthesis?”.  

However, it was more difficult for them to make agreement for the questions whose 

answers were mentioned several times in the text, even though the questions themselves 

were fairly simple, such as “What is the role of chloroplast in photosynthesis?”.    

The mapping algorithm did not successfully generate mappings for all the questions.  

There were 33 questions where it got at least 1 paragraph mapped, out of the 54 questions. 

It was probably because the answers to those unmatched questions were buried in the 

paragraph, and the keyword-based method failed to find the information.   

Nonetheless, if the algorithm can find related paragraphs for some of the questions and 

leave the rest for domain experts to do, it still can save domain expert’s time.  Alternatively, 

we could only use the questions with mapped paragraph to assist students learning. 

Therefore the rest of this section was focus on reporting the data about the 33 questions.  

Table 17 showed the precision, recall, and F-score of S1, S2 and the algorithm based on 

the 33 questions. 
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Table 17 Result of mapping on subset (N=33) of questions 

 Precision Recall F measure 

S1 0.60 0.55 0.57 

S2 0.29 0.64 0.40 

Algorithm 0.28 0.52 0.36 

 

It looks like the algorithm did a fairly good job because its F-score is close to that of S2.  

However, we were still bothered with the relatively low precision and recall of the 

individual judges, so we wanted to understand more about how they made the agreement.  

Then we calculated S1’s precision and recall on S2’s mapping, and S2’s precision and 

recall on S1’s mapping, showed as Table 18.  The result suggested that the two students 

disagree substantially before the discussion.  The joint mapping was a result of their 

compromising with each other. 

 

Table 18 Result of question mapping with different gold standards 

 S1’s mapping as gold standard 

(N=33) 

S2’s mapping as gold standard 

(N=33) 

 Precision Recall F 

measure 

Precision Recall F 

measure 

P1 1 1 1 0.45 0.14 0.21 

P2 0.14 0.45 0.21 1 1 1 

Machine 0.17 0.33 0.22 0.27 0.20 0.23 

 

The two students also reported why they had many conflicts. The most important reason 

they stated was that it was always difficult to select the exact paragraph from several 

adjacent paragraphs, and it was too much to include them all.  To explore how much this 

factor affected the precision and recall, paragraphs were merged in terms of the index in 



107 

the textbook.  In a result, 54 paragraphs were aggregated into 15 segments. All the 

precisions and recalls were calculated again based on the 15 segments like table 19 showed   

 

Table 19 Result of question mapping with aggregation 

by the index in textbook on (N=33) questions 

 Precision Recall F measure 

S1 0.71 0.62 0.66 

S2 0.57 0.80 0.67 

Algorithm 0.63 0.73 0.68 

 

F-scores of all three groups, especially S2 and algorithm, increased significantly.  

However, the improvement could be due to two factors: (1) although students disagreed 

with the gold-standard, they chose the paragraphs that were close to the one in gold 

standard; (2) aggregation of paragraphs made the possible number of combinations of 

connections for each question reduced from 254 to 215.   

We hypothesized that the improvement was mainly because of the first factor.  To test 

this hypothesis, instead of aggregating paragraphs by the index in the textbook, we 

randomly created 15 segments, each of which at least contained one paragraph.  There was 

no maximum number of paragraphs that could be included in one segment.  Every 

paragraph had an equal probability to be assigned to any of the 15 segments. Ideally, we 

should go through all the possible assignments (about 1554) of paragraphs to 15 segments, 

and calculate precision/recall for each assignment.  But there were too many legal 

assignments.  So we estimated precision and recall by sampling. We first repeated 1000 

times of generating 15 segments by random assignment, and precision/recall was 

calculated at each iteration.  Then the first step was repeated 100 times to calculate mean 
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average precision and mean average recall, which were treated as the estimated 

precision/recall of random assignment. The result was showed in Table 20.  Compared to 

Table 18, the F-score was increased a little bit after random aggregation, but the 

aggregation by the textbook index made F-score increase much more significantly.  

Therefore, we believed that most of the disagreement was due to the difficulty of deciding 

the exact paragraph from several adjacent ones.   

Table 20 Result of question mapping with random 

aggregation for auto-matched questions (N=33) 

 Precision Recall F measure 

S1 0.63 0.58 0.60 

S2 0.33 0.69 0.45 

Algorithm 0.33 0.58 0.42 

 

4.5 Discussion 

The big disagreement between the two individuals was unexpected before the 

experiment. They finally came to the agreement after a serious discussion.  The level of 

disagreement was reasonable given the number of possible combinations of question-

paragraph connections for each question.  A further exploration by aggregating adjacent 

paragraphs according to the textbook index showed that, most of the time, the two students 

disagreed with each other because they had a hard time in selecting a mutually agreeable 

paragraph from several adjacent ones.  Although they made the final agreement during the 

discussion, this suggests that adjacent paragraphs were coherent with each other, so it might 

be better to present them all to a learner instead of always reducing the presented 
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paragraphs to the three best.  On the other hand, providing too much reading after each 

question would overwhelm a learner.   

Another way to use the related questions could be providing the related reading after a 

learner answered all the questions or a considerable number of questions.  The learner 

should not be overwhelmed by multiple-paragraph reading materials in this case.   

Regarding the reliability of the joint mapping, the main source of making the agreed 

mapping differ from the individual mappings was the agents picking other close 

paragraphs, and the two participants discussed seriously to resolve all their conflicts.  It 

should be trustful.    

While comparing the machine-generated mapping to the gold standard, it turned out that 

the performance of the machine-generated one was very close to that of S2.  A more 

promising finding was that the machine-generated mapping agreed more with the joint 

mapping than either student’s individual mapping.  This suggests that their discussion 

moves the mapping towards the machine-generate one without knowing what it looked 

like. Therefore, the machine-generated mapping could be a valuable aid to human judges’ 

discussion.  Indeed, one single individual might be able to use the machine-generated 

mapping to refine his own mapping and made the mapping closer to the gold standard 

without discussing with another person.   

4.6 Related works 

4.6.1 Document retrieval 

Document retrieval has always been an active research area in information retrieval. 

Given a query.  Its goal is to find all documents related to a given query.  More specifically, 
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researchers seem to be more interested in retrieving similar questions to a given question 

because of the popularity of question answering communities.  The classical model to solve 

the retrieval problem is BM25 (Robertson, Walker, Jones, Hancock-Beaulieu, & Gatford, 

1995) where words are weighted with tf-idf.  But this model only works for exact match, 

and fails to detect the words with similar meanings (e.g. good & well).  Therefore, Xue, 

Jeon, & Croft (2008) further used IBM translation model 1 to identify the words with 

similar meanings.  Other works (Cao et al., 2009; Gao & Nie, 2012) in questions retrieval 

are also dedicated in solving the same problem.  In intelligent tutoring system field, 

Autotutor(Graesser et al., 2004) represented every word as a vector learned by Latent 

Semantic Analysis (LSA), so that words with similar meaning had a smaller cosine 

distance. 

4.6.2 Question answering 

The most well-known question answering (QA) system is probably IBM’s Watson 

(Ferrucci et al., 2010), which won the American TV quiz show Jeopardy against humans 

in 2010.  Watson’s question answering process could be divided into three big steps: 

question analysis, hypothesis generation, and hypothesis evaluation. Other research on 

question answering (Baral et al., 2012; Fader, Zettlemoyer, & Etzioni, 2013; Puente, 

Sobrino, & Olivas, 2009) usually focuses on one or two steps, assuming perfect inputs and 

outputs of other steps.  Despite any tricky reasoning process a QA system might have, the 

goal of QA systems was to generate precise and specific answers. Question-paragraph 

mapping was similar to hypothesis generation and evaluation in QA, but the goal was not 

to generate the exact answer. 
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4.7 Conclusion 

We developed an algorithm to automatically map the paragraphs in the textbook to the 

machine-generated biology questions.  It was able to do so for 33 of the 54 target questions.  

To test the quality of the auto-generated mapping, two college biology majors manually 

created the mapping for the same set of questions and paragraphs.  It turned out that the 

mapping task was a challenge even for the human participants.  Nonetheless, the algorithm 

managed to produce a mapping that compared favorably to one of the participants.  

Precision and recall were increased significantly after the paragraphs were aggregated in 

terms of the index in the textbook, which suggests that when there were disagreements, it 

was caused by agents picking paragraphs that were adjacent or at least close to each other.  

Thus, we believe that our algorithm is good enough to be useful.  

The mapping technique could be used to generate further reading as a part of feedback 

for each question. Alternatively, the suggested reading could also be provided only after a 

student finished a considerable number of questions.   
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CHAPTER 5 

EVALUATION OF AUTO-GENERATED DISTRACTORS IN MULTIPLE CHOICE 

QUESTIONS 

5.1 Introduction 

5.1.1 Background of multiple choice questions 

A multiple choice question is consisted of three components: stem, answer, and 

distractors.  For example:  

The light reactions of photosynthesis occur in the ______ 

a. Cytochromes 

b. Thylakoid membranes 

c. Reaction centers 

d. Stroma 

e. Antenna complexes 

“The light reaction of photosynthesis occur in the _____” is the stem of the question, and 

the five choices below are the alternatives (sometimes called “foils”), where alternative b 

is the correct answer and all the rest are distractors.  

This type of question is widely used because it is easy to score.  However, generating 

good multiple choice questions is not easy even for human being.  Instructors need to put 

considerable amount of time in making plausible distractors.  A distractor that helps student 

learn is even harder to invent.  So we want to develop an algorithm to at least save 

instructor’s time in finding distractors for shallow multiple choice questions.  

Many guidelines have been developed for generating good multiple choice questions.  

They describe features of good stems and good alternatives (Al-Rukban, 2006; McMillan, 

Hellsten, & Klinger, 2007; McMillan & Lawson, 2001).  In this chapter, we focus on 
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generating good distractors with the assumption that stems have been generated already, 

so we summarized 5 features of good distractors that appeared frequently in these 

guidelines: 

1. All alternatives should be plausible 

2. Alternatives should be homogeneous in content 

3. Alternatives should be mutually exclusive 

4. Alternatives should be free from clues about which response is correct 

5. Alternatives should be placed in some logical order 

We interpreted the rules as: a distractor in a multiple choice question should be similar 

to the correct answer but definitely a wrong response to the stem.  This interpretation was 

translated into constraints to find qualified distractors in a semantic network, which was 

described in the next section.   

5.1.2 Semantic network 

A semantic network is a network that describes the relations of a set of concepts.  It 

records domain knowledge.  We obtained the semantic network about photosynthesis from 

Baral & Liang (2012), and used it to generate open response questions in our previous 

work.  For example, representing “photosynthesis produces sugar and oxygen” in the 

semantic network needs the following two rules: 

(photosynthesis, result, sugar) 

(photosynthesis, result, oxygen) 

where, result is a predefined predicate in the semantic network, photosynthesis is the 

subject of the predicate, and sugar/oxygen is the object of the predicate.  
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Besides relationships between concepts, the semantic network also defines the ontology 

of these concepts. For example, photosynthesis is a subclass of process and sugar is a 

subclass of entity. This ontology information is also described with triples. 

5.2 Related works 

We are not the first one to generate multiple choice questions from a domain knowledge 

base. Alsubait, Parsia, & Sattler (2014) generated multiple choice questions from OWL 

ontologies for evaluating everyday knowledge.  Their domain knowledge base also 

described some simple relationship beyond ontology (e.g. marriedTo(Mark, Sara)).  

However, their generation schema will lead to over-generation in our domain because 

relations in our knowledge base are more complicated. There are several other works that 

also generated multiple choice questions from ontologies, especially for English learning 

(Brown, Frishkoff, & Eskenazi, 2005; Lee & Seneff, 2007; Y.-C. Lin, Sung, & Chen, 

2007).  One thing that makes our work different from previous work was that we generated 

multiple choice questions for a domain that had more complicated relations.  

In terms of evaluating distractor or question quality, one common way widely used in 

previous works was to have human judges score the quality of each question or distractor 

(Karamanis, Ha, & Mitkov, 2006; Lee & Seneff, 2007; Papasalouros, Kanaris, & Kotis, 

2008).  A generation algorithm was thought to be good if a majority of the generated 

multiple choice questions had good scores from the judges. The issue with this type of 

evaluation is the expertise of the judges.  After all, not every instructor is an expert in 

generating good distractors, for otherwise there would not be so many guidelines for 

teaching people how to make good multiple choice questions. Mitkov, Ha, Varga, & Rello 

(2009) used Item Response Theory (IRT) to evaluate question qualities, which we believed 
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is a more objective and convincing approach. Another issue with previous work was that 

machine-generated distractors were seldom compared to human-generated distractors. 

Huang & Mostow (2015) was one exception. But their measures were special as well. 

Instead of directly evaluating distractor quality, they tested whether their algorithm could 

generate desired types of distractors.  In this study, we used IRT parameters to compare 

human-generated and machine-generated distractors. 

5.3 Multiple choice question generation 

Open response questions were generated in our previous work.  This is another reason 

we focused on generating and evaluating distractors in this chapter.  There have been many 

different methods developed for finding distractors of a question based upon the answer to 

the question.  The most popular way was to calculate semantic similarity between a 

candidate distractor and the answer according to WordNet (Fellbaum, 1998) or some other 

well-known ontologies.  If the similarity was bigger than some threshold, the candidate 

distractor would become one of the final distractors. Pho, Ligozat, & Grau (2015) recently 

used this method to generate distractors for multiple choice questions in English language 

learning.  Another widely used method was to write rules to extract distractors from a 

domain specific ontology (Al-Yahya, 2011; Papasalouros et al., 2008).  We adopted the 

second methodology because we had a domain specific knowledge base available, and 

stems as well as answers had been generated from the knowledge base already.   

In our previous work, four question generation schemas were developed.  The four 

schemas were for input/output questions, for where questions, for what questions, and for 

connection questions.  Multiple choice question generation guidelines suggest that a good 

distractor should be a plausible answer to the question for an inexperienced person in the 
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domain but also be a clearly wrong answer for a domain expert.  This suggests using the 

schemas that generated the questions as schemas for generating the distractors as well.  The 

next section described the four distractor-generation schemas respectively. 

5.3.1 Distractor generation schemas 

Input/output questions 

Input/output questions ask for the raw materials or the products of a process.  There were 

two intuitions for generating distractors for this type of question: 

1. The raw materials of a process can be used as the distractors for a question 

asking for the products of the process, and vice versa.  

2. The intermediate raw materials or products of a process can be used as 

distractors for a question asking for either the initial raw materials or the final 

products of the process.  

Figure 18 depicted the scenario of the first intuition, where entity1 could be treated as 

the distractors of entity2, and vice versa.  In this case, distractors and the correct answer 

were connected via one node and two specified predicates.  Figure 18 depicted the second 

intuition: Given a process, entity2 is one of the products of the sub process of the given 

process, so entity2 could be treated as the distractors of entities1, which were the final 

products of the given process.  In this case, the distractors and the correct answer were 

connected with two intermediate nodes and three specified predicates.  Obviously, 

removing some of the constraints would lead to an increased number of distractors.   

We were also interested in finding out the quality of new distractors when constraints 

were relaxed.  Therefore, we also generated some distractors by finding out the entities that 

were connected to the correct answer with one intermediate node with the predicates not 

being specified.  According to our informal evaluation, although loose constraints did lead 
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to more distractors, the distractor qualities were also clearly decreased.  So the distractors 

generated after constraints relaxation were not evaluated in the experiment.      

 

Process

Entity1Entity2

resultraw material

 

Figure 18. Entity1 can be a distractor, if Entity2 is the correct answer. 

 

Process Entity1

Sub process

result

sub process

Entity2result

 

Figure 19. Entity2 can be a distractor, if Entity1 is the correct answer. 

 

 “Where” questions 

This type of questions asks for the location of a process.  Because the location had to be 

an entity, a good distractor should also be an entity and somehow related to the correct 

answer.  We defined a good distractor of this type of questions as the entity that was another 

part of the same structure as the correct answer.  The relation between the correct answer 

and a distractor was depicted in Figure 20, where entity1 represented the correct answer, 

entity2 represented a distractor, and entity3 was the structure which both of them were part 

of.  We also tried to relax the constraints in this case in order to generate more distractors.  

When the constraints were relaxed, the predicate could be any one without being limited 

to “part_of” 
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Process Entity1site

Entity2

Entity3

part of

part of

 

Figure 20 A distractor for where questions. 

 

 “What” questions 

“What” questions ask what sub-processes a parent process should contain.  A good 

distractor would be a sub-process contained by a related process to the parent process.  Now 

the issue was how to find the related processes.  Two processes were considered to be 

related to each other if they satisfied one of the three conditions below: 

1. The two processes shared the same parent process. 

2. The two processes shared at least one product  

3. The two processes shared at least one raw material  

The relations of two related processes are depicted in Figure 21, where process1 and 

process2 represent the two related processes. Figure 21a stands for condition 1, Figure 21b 

stands for condition 2, and Figure 21c stands for condition 3. 

Process1

Process2

Entity

product

product

Process1

Process2

Entity

raw material

raw material

Process1

Process2

Process

sub process

sub process

 

 a    b    c 

Figure 21 process1 and process2 are related processes 
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“Connection” questions 

This type of question asks what products of one process were raw materials for another 

process. There were two types of entities that can be potentially used as distractors. One 

was the set of products of the first process that were not used as the inputs to the second 

process, the other was the set of raw materials of the latter process that were not able to be 

produced by the first process.  The relations were depicted as Figure 22, where entity1 

represented the first type of distractors and entity2 represented the second type of 

distractors. 

Entity1

Entity
Process1

product

product Process2raw material

Entity2

raw material

 

Figure 22 distractors for connection questions 

 

5.3.2 Post-possessing 

Not all the distractors generated from the 4 schemas above could directly become the 

final distractors in multiple choice questions.  To distinguish the two types of distractors, 

the former distractors were called as raw distractors, and the latter distractors were called 

as final distractors. This section mainly described how raw distractors were further 

processed to be final distractors.   

In terms of stems, the original machine-generated open response questions could 

potentially be processed to be the stems in the corresponding multiple choice questions. 
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However, we wanted to evaluate how machine-generated distractors compared to human-

generated ones in this chapter.  Moreover, we wanted the human-generated distractors to 

be “naturally occurring” rather than generated by experts in our lab. Thus, we looked for 

human-generated multiple choice questions whose stems were essentially asking the same 

thing as the machine-generated open response questions, and replaced the original 

distractors in human-generated questions with machine-generated raw distractors.  Thus, 

in this study, the stems were human-generated and the distractors were both human-

generated and machine-generated.    

 

What two energy carrying molecules are produced by the light of reaction of 

photosynthesis? 

a. NADP+ and ADP 

b. NADP+ and ATP 

c. NADPH and ATP              …... correct answer 

d. ADP and ATP 

e. NADP+ and NADPH 
 

Figure 23. Human-generated multiple choice question with complex alternatives 

 

A distractor in a human-generated multiple choice question often does not contain just 

one concept.  For instance, Figure 23 is an example of such a question.  Each alternative 

of this question contains two concepts.  Each of the two concepts corresponds to one 

machine-generated raw distractor.  To avoid this essentially format-related factor in this 

study, we adopted the combination patterns of the original human-generated multiple 

choice questions.  Thus, the alternatives in machine-generated questions were generated 

by replacing the phrases in human-generated alternatives. If a phrase in a human-generated 

distractor was a correct response to the question, that phase would be kept without 
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replacement.  When a phrase in a distractor was to be replaced, a raw distractor was 

randomly selected out of all the machine-generated raw distractors for that question. The 

question in Figure 24 was the corresponding machine-generated multiple choice question 

to the human-generated question in Figure 23. The final machine-generated distractors 

would be made by replacing NADP+ and ADP with sunlight, water, sugar or RuBP, as 

Figure 25 showed.   

 

Original machine generated open response question: 

    What are the products of the light reaction in photosynthesis? 

Stem:  What two energy carrying molecules are produced by the light of reaction of 

photosynthesis? 

Raw distractors: sunlight, water, sugar, RuBP 

Figure 24. Pre-processed machine-generated multiple choice question 

 

What two energy carrying molecules are produced by the light of reaction of 

photosynthesis? 

a. Sunlight and RuBP 

b. Water and ATP 

c. NADPH and ATP 

d. RuBP and ATP 

e. Sugar and NADPH 

Figure 25 Final machine-generated multiple choice question 

 

Sometimes, raw distractors could directly replace human-generated distractors without 

combination, as in the question of Figure 26. The raw distractors of the corresponding 

machine-generated question were: thylakoid, chloroplast membrane, ribosome, thylakoid 

space and DNA.  To evaluate as many distractors as possible, each multiple choice question 
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was required to contain 5 alternatives (i.e. one correct answer and four distractors).  Thus, 

the final machine-generated distractors were supposed to be directly built by randomly 

selecting 4 out of the 5 machine-generated raw distractors.  However, the machine-

generated raw distractors and the human-generated distractors shared one common 

distractor in this case.  To make machine-generated distractors be as different from human-

generated ones as possible, the common distractors were excluded before random selection 

except when machine-generated raw distractors were not enough.  

  

The light-independent reactions of photosynthesis take place in the  

a. Stroma   …… correct answer 

b. Thylakoids 

c. Nucleus 

d. Mitochondria 

e. Grana 

Figure 26 Human-generated multiple choice question with simple alternatives 

 

In a summary, each multiple choice question contained 5 alternatives, one of which was 

the correct answer except for two questions that had two correct answers.  Although 

machine-generated distractors did overlap with human-generated distractors as in the 

example above, the distractors in machine-generated questions were selected in a way, so 

that the same distractors would not appear in both of the two types of questions.  

Sometimes, distinct distractors were not enough to form 5 alternatives, and the overlapping 

distractors were used to keep the number of alternatives at 5.  When the machine-generated 

raw distractors needed to be combined to form final distractors, the combination patterns 

in the corresponding human-generated distractors were adopted.  
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5.4 Evaluation 

Our algorithm generated 37 pre-processed multiple choice questions.  Unfortunately, 

only 9 of them were found to correspond to human-generated multiple choice questions.  

So the evaluation was done based on the 9 questions.   

Before comparing the qualities of the two types of distractors, we first wanted to explore 

how much machine-generated distractors and human-generated distractors agreed with 

each other.  The agreement should be checked in the level of raw distractors.  Each phase 

in human-generated distractors was treated as a human-generated raw distractor.  Among 

the 9 pairs of questions, there were 44 machine-generated raw distractors and 42 human-

generated raw distractors. The number of overlapped raw distractors between the two sets 

was 11.  Therefore, 25% of the human-generated raw distractors were covered by machine, 

and 26.2% machine-generated raw distractors were covered by humans.   

5.4.1 Measures 

Good multiple choice questions should make the students who are knowledgeable in the 

teaching domain be able to answer them correctly and those who lack knowledge in the 

teaching domain should fail to correctly answer the questions.  So discrimination of a 

question is probably the best measure for quantifying the quality of a question.   

Rather than quality of a multiple choice question, we are more interested in quality of 

each distractor.  Therefore, we also calculated the discrimination of distractors, which was 

called as usefulness by Mitkov et al. (2009).  Question difficulty can somehow reflect 

question quality as well, and it was a measure that potentially helped us tell the difference 

between machine-generated distractors and human-generated distractors.  So question 

difficulty was also calculated.  
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Either difficulty, discrimination or distractor usefulness can only be calculated once from 

one dataset.  To explore the reliability of these measures, we used bootstrap, so that each 

sample of the original data could produce a group of measures.  For each measure, the 

mean of values produced by all the samples was used as the final output.  

Question difficulty 

A question’s difficulty reflected the percentage of students who were able to answer the 

question correct.  Difficulty should be in [0,1].  The higher the value, the more difficult the 

question.  In general, neither extremely hard questions nor extremely easy questions are 

good.  But extreme questions might be useful in distinguishing some particular set of 

students.  A question’s difficulty was calculated as equation (1) 

𝐷𝑖𝑓(𝑄) =
1 − 𝑁𝑐
𝑁

 ⋯⋯ (1) 

 where 𝑁𝑐 was the number of students who answered the question correct.  

  𝑁 was the total number of students 

Question discrimination 

Discrimination of a question was defined as the difference between the number of upper 

level students who answer the question correct and the number of lower level students who 

answer the question correct divided by the total number of students who correctly answer 

the question.  The value would be positive if a majority of correct responses are from upper 

level students, otherwise it would be negative.  In our study, we used 10 anchor questions, 

which kept the same across the two conditions, to define whether a student was upper level 

or lower level.  Students whose anchor scores were between the 25th and 50th percentile 

classified as lower level students. Students whose anchor scores were greater than the 75th 
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percentile were classified as upper level students.  The rest of the students were excluded 

from the analysis.  The discrimination of question was calculated as equation (2). 

𝐷𝑖𝑠(𝑄) =
𝑁𝑈 − 𝑁𝐿
𝑁𝑈 + 𝑁𝐿

 ⋯⋯ (2) 

where  𝑁𝑈 was the number of upper level students who got the question correct, 

 𝑁𝐿 was the number of lower level students who got the question correct. 

 

 So the bigger the discrimination of a question was, the better the quality of the question 

was.  Because both machine-generated questions and human-generated questions had the 

same stems and the same pattern for distractor combination, the difference on raw 

distractors would be the only source for different discriminations.  Thus, this metric could 

be used to evaluate the overall quality of the two different types of distractors. 

Usefulness of distractors 

Usefulness of a distractor was defined slightly different from that made by Mitkov et 

al.(2009). A distractor was considered as useful if it attracted more lower-level students 

than upper-level students.  In this case, the usefulness of the distractor was annotated as 1. 

When a distractor failed to attract any student or attracted equal number of students from 

different levels, the usefulness of the distractor would be equal to 0.  When a distractor 

attracted more students from upper-level than students from lower-level, the usefulness of 

the distractor would be equal to -1. The calculation was like equation (3).  

𝑈𝑠𝑒(𝐴) = {

−1, 𝑖𝑓 𝑁𝑎𝐿 − 𝑁𝑎𝑈 < 0 
0, 𝑖𝑓 𝑁𝑎𝐿 − 𝑁𝑎𝑈 = 0
1, 𝑖𝑓 𝑁𝑎𝐿 − 𝑁𝑎𝑈 > 0

  ⋯⋯ (3) 

where  𝑁𝑎𝑈 was the number of upper level students who selected the distractor, 

 𝑁𝑎𝐿 was the number of lower level students who selected the distractor. 
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Because bootstrap was used for measurement calculation, the usefulness of a distractor 

could be calculated based on each sample. If a distractor’s usefulness was equal to 1 in at 

least half of the samples, the distractor was treated as a good distractor.  If a distractor’s 

sum of usefulness was smaller than 0, the distractor was treated as a bad distractor. So the 

quality of a distractor was determined in terms of equation (4).  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝐴) =

{
 
 

 
 𝑔𝑜𝑜𝑑, 𝑖𝑓 |{𝑈𝑠𝑒(𝐴𝑛) = 1}𝑛=1,…,𝑁| >

1

2
𝑁

𝑏𝑎𝑑,                                   𝑖𝑓 ∑ 𝑈𝑠𝑒(𝐴𝑛)

𝑛=𝑁

𝑛=1

< 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  …… (4) 

where 𝑁 was the total number of iterations in bootstrap.  

5.4.2 Experiment design 

It is necessary to collect a lot of data for calculating all the three measures.  So we used 

Amazon Mechanical Turk (MTurk) to recruit participants. The advantage of using this 

platform was that we can rapidly collect data from a variety of participants in a short time 

at low cost.  The disadvantage was the difficulty of controlling quality of the collected data.  

There has been more and more researchers starting to use crowd sourcing platforms like 

MTurk to collect data, so analysis about how to better use MTurk also has become a hot 

topic. The thing we most cared about was how MTurk compared to traditional recruiting 

methods. Both Buhrmester, Kwang, & Gosling (2011) and Paolacci, Chandler, & Ipeirotis 

(2010) concluded that the respondents in MTurk might be slightly different from the 

respondents in a traditional subject pool, but the data obtained from MTurk were at least 

as reliable as those obtained by traditional methods.  In addition, several techniques are 

available that can help in improving the quality of the data collected from online surveys, 
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such as instructional manipulation checks (Oppenheimer, Meyvis, & Davidenko, 2009) 

and Kapcha (Kapelner & Chandler, 2010).  Actually, Hauser & Schwarz (2015) even 

believe that Amazon Turkers performed better than participants in traditional subject pool.  

Therefore, we decided to use MTurk to recruit participants for this study.  

By referring to previous works (Kapelner & Chandler, 2010; Oppenheimer et al., 2009), 

we designed three mechanisms to ensure our collected data quality.  The rest of the section 

described the mechanisms in detail.  According to Mason & Watts (2010), data quality 

seems to be not affected by payments.  We took an average payments of similar surveys 

available in MTurk.  Each of participants got $0.50 upon finishing the experiment. 

First of all, qualified participants should at least have basic knowledge of photosynthesis.  

To rule out participants who had poor domain knowledge, two simple fill-in-the-blank 

questions were asked in the very beginning of the survey: 

1. What are the raw materials of photosynthesis?  

2. What does photosynthesis produce?  

Participants were not expected to answer these two questions completely correctly. But 

they should at least point out one correct product and one correct raw material.  If 

participants who failed to do so, they would be redirected to a page telling them their non-

qualifications.  Qualified participants would be redirected to the page showing the consent 

form and start the main survey after filling out the consent form. 

Secondly, we set a delay for each question, so that participants were not able to go 

through all the questions rapidly. A study conducted by Kapelner & Chandler (2010) 

showed that adding a delay for printing each word in a question was more effective than 

simply adding a delay for the submit button of the question.  The technique was called 
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“Kapcha”.  They conducted four groups of experiments to study the effect of different 

setting to a survey of sentiment: the first group was the control group without any treatment.  

The second group had a reminder for each question to ask participants to respond seriously.  

The third group disabled the submit button for a while, so that participants were forced to 

slow down.  The fourth group had the text fade in word by word.  Trick questions were 

used to check the quality of the responses.  Those questions could not be answered correctly 

without careful reading the instructions. Our study setting was very similar to sentiment 

surveys, so we believed that the Kapcha technique should make participants answer more 

seriously. Figure 27 showed how a question faded in to force participants to read carefully.   

Figure 27 Force participants to read questions carefully 

 

Our pilot study disclosed that some participants gave the same answer (i.e. the same 

order of alternatives) to all the multiple choice questions.  They were apparently unserious 

participants.  We assumed that a serious and consistent participant should always give the 

same response (i.e. the content of an alternative) to duplicated questions.  So two more 

filters utilizing duplicated questions were to rule out these unserious responses.  The 

difference of the two filters were: one filter set duplicated questions close to each other, 

called as close duplication filter, and the other filter set duplicated questions far from each 

other, called as far duplication filter.   
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In close duplication filter, a duplicated question of the nth question would appear right 

after the nth question or the (n+1)th question with different order of alternatives.  

Participants were explicitly to be asked to select the same alternative in the new order.  If 

a participant failed to do so, the participant would be asked to stop participating in the 

study. There were three pairs of close duplicated questions.  All of them were located in 

the early phase of the survey.  More specifically, question 4, question 6 and question 8 are 

duplicates of question 2, question 5 and question 7 respectively.  

For the far duplication filter, there were at least 10 questions between two duplicated 

questions.  But the duplicated questions appeared with the same order of alternatives.  

Participants were not told when a duplicated question appeared.  The response to this type 

of duplicated questions would not affect whether a participant could continue the survey.   

There were 2 conditions: control (human-generated) and experimental (machine-

generated). Each condition contained 24 questions in total. The first 13 questions, 3 of them 

were anchor questions, which means that the whole questions—stem, alternatives and 

ordering—was the same in both conditions. We used these questions to decide whether a 

participant was upper-level or lower-level. The subsequent 9 questions were where the 

difference between conditions happened. The control group had 9 questions with human-

generated distractors and the experimental group had 9 questions with machine-generated 

distractors. The last two questions were duplicated questions for the far duplication filter.  

5.4.3 Results 

200 participants were recruited through Amazon Mechanical Turk to take part in the 

experiment. It took about two weeks in total. 1 participant submitted on MTurk without 

actually doing the experiment, so he was excluded in the analysis. 100 out of the 199 
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participants were in control group, the remaining 99 were in the experimental group.  

Participants took 21.4 minutes on average to finish all the 24 questions.  

Students from the two groups were first combined together, and classified as “upper”, 

“lower” or “undefined” based on their anchor scores.  More specifically, students whose 

anchor scores were in [4,6] were lower achievement students. Students whose anchor 

scores were in [7,10] were upper achievement students. The reason of excluding the 

students whose scores were below 4 was that they had too little knowledge in the domain 

even though they passed the prescreen.  In a result, there were 51 lower level and 41 upper 

level students in control group.  There were 43 lower level and 40 upper level students in 

experimental group.  

The three sections below reported the difference between the machine-generated 

distractors and the human-generated distractors in terms of three metrics: difficulty, 

discrimination and alternative usefulness.  Recalled that bootstrap was used to estimate the 

mean value of a metric to each question.  For example, the difficulty of a question was 

calculated as the mean of the difficulties among 10,000 iterations, and the standard 

deviation of the difficulty was the standard deviation of the 10,000 difficulties.   

Question Difficulty 

The average difficulty of the 9 questions in control group was 0.381 (SD=0.15), and the 

average difficulty of the 9 questions in experimental group was 0.376 (SD=0.097).  

Because question difficulties varied a lot within groups, to avoid the effect, we also 

compared the medians of the two groups.  The median difficulty in control group was 0.364 

(min=0.181, max=0.704), the median difficulty in experimental group was 0.366 

(min=0.245, max=0.515).  Two-tailed t-test was also run based on the 18 questions.  It 



131 

turned out the difference was not significant (p=0.94, d=-0.040, power=0.94).  The 

observed standard deviations and number of questions gave the experiment sufficient 

power to detect an effect size of 0.040 or more.  Thus, if there is a difference between these 

two groups, it is smaller than 6%.  All the comparisons suggested that the two groups of 

questions had the same difficulty in general.   

Question Discrimination 

The average discrimination of the questions in control group was 0.270 (SD=0.20), and 

the average discrimination in experimental group was 0.297 (SD=0.23).  The medians of 

the groups were calculated as well.  The median discrimination in control group was 0.325 

(min=-0.101, max=0.535), and the median discrimination in experimental group was 0.340 

(min=-0.151, max=0.689).  It seemed that experimental group was a little bit better than 

control group.  According to two-tailed t-test, there was no significant difference between 

the two groups (p=0.79, d=0.13, power=0.80).  It suggested that the two groups of 

questions had the same discrimination in general.  

Usefulness of distractors 

Usefulness of the alternatives basically reflected the same information as discrimination 

of the questions, but in more detail. Out of the 34 distractors, there were 25 good distractor 

and 8 bad distractors in control group.  In contrast, there were 23 good distractors and 7 

bad distractors in experimental group. According to Chi-square test, 𝑥2=0.0072, p=0.93, 

power=0.93, the two groups were very close to each other.  

Recall that bootstrap was used to calculate the measure, and 10,000 samples were 

generated from the original data.  Whether a distractor was good or bad depends on the 
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summary of its performance on the 10,000 samples.  Table 21 shows the summary of 

performance of three typical distractors.  Distractors like the distractor 1 in Table 21 had 

very unstable usefulness, which changed upon samples.  Although distractor 1 was 

classified as a bad distractor according to our criteria, it actually worked well in about one 

third of the 10,000 samples.  The distractor 2 in Table 21 appeared to be useful in almost 

all the samples, so as to be trusted as a good distractor.  The distractor 3 in the table did not 

appear to be useful in any of the samples, so could be trusted as a bad distractor.   

Table 21 summary of usefulness of two example distractors 

 Negative Neutral  Positive 

Distractor 1 5134 1770 3096 

Distractor 2 3 4 9993 

Distractor 3 6376 3624 0 

  

 The summary of the results was shown in Table 21.  

Table 22 Comparison of machine-generated distractors to human-generated distractors 

  Human-generated 

distractors 

Machine-generated 

distractors 

Question 

Difficulty 

Mean 0.381 0.376 

Median 0.364 0.366 

Question 

Discrimination 

Mean 0.270 0.297 

Median 0.325 0.340 

Distractors 

Usefulness 

Good/Bad 25/8 

 

23/7 

 

5.5 Discussion 

Our entire user study was conducted through Amazon Mechanical Turk, which had been 

widely used in many areas for data collection, but rarely been used in evaluating 

educational systems.  The biggest advantage of using Amazon Mechanical Turk was its 
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speed of data collection. We ran 200 participants within two weeks.  The downside was 

the need of dealing with unqualified participants. It was necessary to have a prescreening 

test and gaming detectors because not every Turker would read instructions carefully and 

treat studies seriously, even only the Turkers with good tracks (historical acceptance rate 

>95%) were allowed to participate.  Due to the length of our study and its required number 

of participants, Amazon Mechanical Turk probably was the best choice.  It was probably 

impossible to finish the experiment within 2 months if participants were recruited from 

campus because there would be too much time required in advertisement and paper work 

preparation.     

In terms of the results, all of the three measures suggested that the questions with 

machine-generated distractors were equivalent to the questions with human-generated 

distractors. It is good news for the researchers in the field of educational question 

generation.  However, both of stems and distractors in the multiple choice questions were 

relatively shallow.  Therefore, machine-generated multiple choice questions could not 

completely make instructors free of generating questions, but could save instructors time 

in fabricating shallow questions.  

Besides distractors, stems in multiple choice question and combination patterns of raw 

distractors may affect question quality as well.  These factors were excluded in our study.  

Further study should be aware of this assumption.  

The results also suggested that the usefulness of some distractors varied a lot on different 

samples generated by bootstrap.  It could be simply because the number of participants was 

not big enough.  It also could because the same distractors worked differently upon 

different students.  It was well known that questions could be selected based upon a 
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student’s competence (Conejo et al., 2004; Gemma Corbalan, Kester, & Van Merriënboer, 

2006). Perhaps distractors can also be selected based on a student’s competence.  This 

might be done in a principled fashion when distractors are generated from an algorithm 

and annotated with the knowledge components. This would be an advantage of machine-

generated distractors over human-generated distractors. 

5.6 Conclusion 

Amazon Mechanical Turk is an appropriate platform for recruiting participants for a 

short study such as ours that requires a large number of participants. With prescreening 

questions and gaming detectors properly set, the data appears to be sufficiently high quality 

in that the participants were taking the task seriously and had sufficient biology background 

to represent biology students in general. All the measures suggested that there was no 

difference between machine-generated distractors and human-generated distractors. The 

unstable performance on some distractors implied that distractors could also be adaptively 

selected based upon a student’s competence.   
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CHAPTER 6 

CONCLUSION  

Studies in the dissertation suggest that despite the fact that the machine-generated 

questions mostly covered the shallow human-generated questions, differences in the two 

types of questions were small, especially in syntactic features such as fluency and 

ambiguity.  In terms of the pedagogical values, the first study showed that the machine-

generated questions had a close performance to the professional authored questions, and 

the second study showed that students made a significant improvement in their test scores 

by learning with the machine-generated questions no matter whether the questions were 

adaptively selected or not.  

Therefore, it can be expected that instructors are able to save their time by using 

machine-generated shallow questions in a near future. These shallow questions can be used 

in many different situations, e.g., as the clicker questions in class, or as pre-assessment 

questions before class, or as the check questions in the middle of a video presentation.  

The biggest advantage of the machine-generated question from a semantic network is 

that the questions are automatically annotated with their corresponding relations in the 

semantic network, and the relations can be easily transformed into knowledge components 

in the domain.  This extra information about the questions has been to shown to be very 

useful in the implementation of adaptive learning, which has become more and more 

popular due to the advent of big data technology.  State of the art technologies in data 

mining let us collect and analyze students’ data much more easily than before.  However, 

analyzing data always needs to get domain experts involved.  Sometimes, data experts and 

domain experts have hard time in figuring out how to cooperate with each other.  
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Specifically in educational data mining, domain experts need to be involved in identifying 

knowledge components, associating knowledge components to test items, evaluating 

student’s response, and etc.  The dissertation has shown that question generation from a 

semantic network is able to relieve domain experts from annotating questions and making 

question-paragraph mapping.  Thus, this question generation technique may provide a 

better basis for adaptive learning.  

The study on generating distractors for multiple choice questions suggests that the 

generation technique has potential for extending adaptive learning to a more fine-grained 

level, specifically, to the level of distractors.  There is no previous work trying to adaptively 

select distractors probably because it requires too much involvement from domain experts.  

Building a Q-matrix that associates questions to knowledge components is already a burden 

for domain experts.  Annotating all the distractors would significantly increase the 

workload.  When distractors are auto-generated from a semantic network, there is no 

involvement is required of domain experts.  Adaptive distractor selection is an issue ripe 

for future work.  

The biggest practical problem with our generation technique is that building a semantic 

network itself needs domain experts.  More importantly, for a given teaching domain, even 

domain experts may have different opinions in what should be included and how to 

represent it.  Fortunately, people have been studying this issue for years and have started 

to establish widely accepted patterns for building knowledge bases.  The most well-known 

platform is Wikipedia, where domain experts all over the world are building a single 

knowledge base together for many different subjects.  Indeed, Wikipedia is hardly 

considered as a good example of semantic network because most of its content is written 
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in natural language.  But it started a trend of knowledge sharing and has demonstrated how 

domain experts can cooperate with each other in making content under the same topic.  

This trend has formed a non-profit and free-content family called Wikimedia.  Wikidata is 

another member of Wikimedia family.  It is essentially a very large semantic network.  

Now there has been over 14 million items in Wikidata.  In another aspect, making a 

semantic network is just like wring a textbook in a different format.  The experience in 

making good textbooks can be borrowed to making good semantic networks.  It also 

suggests that translation from natural language is another way to build a semantic network 

(Baral & Liang, 2012). 

  Studies in the dissertation also demonstrated how technologies in artificial intelligence, 

information retrieval, data mining, and crowd sourcing can be applied to improve tutoring 

systems.  The semantic network used for question generation is a product in artificial 

intelligence, and it is the original initiator of the entire dissertation.  Information retrieval 

techniques are used in building question-paragraph mapping.  Data mining techniques 

empower data analysis on experiment results.   Crowd sourcing methodology enabled 

collecting data during a very short time.  Fortunately, intelligent tutoring system is an 

interdisciplinary field that has always accepted methods and results from many related 

research fields.   
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APPENDIX A 

HUMAN-MACHINE QUESTIONS MAPPING 

  



 

Human questions Answer Machine questions Type 

What are chloroplasts? 

-structure 

Organelle in cell  Structure: 

boundary 

What are chloroplasts? 

-function 

Site of photosynthesis  function 

What is light reaction 

process? 

-structure 

It consist of cyclic 

photophosphorylation 

and noncyclic 

photophosphorylation 

What are the 2 stages 

of the light reaction 

in photosynthesis? 

Structure 

What is light reaction 

process? 

-behavior-1 

Light reaction takes 

water and sunlight as 

reactants and produces 

Oxygen, ATP and 

NADPH 

What is/are the 

product(s) of the light 

reaction in 

photosynthesis? 

What does the light 

reaction in 

photosynthesis 

require? 

Behavior-

1 

What is light reaction 

process? 

-behavior-2 

It produces ATP and 

NADPH, both of which 

are reactants of Calvin 

cycle.  

 Behavior-

2 

What are dark and 

light reactions in 

photosynthesis? 

Light reaction and Calvin 

cycle are the two stages 

of photosynthesis.  

What are the 2 stages 

of photosynthesis? 

Structure 

 

What is light 

dependent and light 

independent reactions 

in photosynthesis? 

What is cyclic 

photophosphorylation? 

-structure 

Chlorophyll first absorbs 

photons to make 

photosystem I release 

electrons.  The electrons 

go through ferredoxin, 

cytochrome b, 

plastocyanin, and go 

back to photosystem I.  

Could you describe 

the three sub-process 

involved in the cyclic 

photophosphorylation 

of light reaction? 

Structure 

What is cyclic 

photophosphorylation? 

-behavior-2 

It produces ATP, which 

could be used in Calvin 

cycle.  

 Behavior-

2 



 

Where does 

photosynthesis occur 

in a plant? 

chloroplasts Where does 

photosynthesis by 

plant happen? 

Structure 

 

In which specific part 

of a leaf cell does 

photosynthesis takes 

place? 

What are the site of 

photosynthesis?  

Where is the 

chloroplast located? 

Plant cell  Structure: 

boundary 

In which part of the 

chloroplast does 

photosynthesis take 

place in? 

Light reaction takes 

place in the thylakoid 

membranes, and Calvin 

cycle takes place in the 

stroma 

 Structure: 

boundary 

What is the fluid part 

of the chloroplasts 

where the calvin cycle 

takes place? 

stroma Where does the 

calvin cycle of 

photosynthesis 

occur? 

 

Structure 

 

Where do the 

enzymatic reactions of 

the calvin cycle take 

place? 

Where do light 

reactions occur? 

thylakoid membranes  Structure: 

boundary 

In what part of 

photosynthesis sugar 

is produced? 

Calvin cycle produces 

sugar 

What is/are the 

product(s) of the 

calvin cycle in 

photosynthesis? 

Behavior-

1 

In which part of 

photosynthesis is 

oxygen produced? 

Light reaction produces 

oxygen 

What is/are the 

product(s) of the light 

reaction in 

photosynthesis? 

Behavior-

1 

What molecules are 

the reactants and 

products of 

photosynthesis? 

The reactants of 

photosynthesis are water, 

CO2, sunlight. The 

products of 

photosynthesis are 

oxygen, sugar 

What does the 

photosynthesis need? 

What does the 

photosynthesis 

produce? 

Behavior-

1 



 

What are the materials 

required by 

multicellular 

organisms for the 

processes of 

respiration and 

photosynthesis? 

Respiration requires 

sugar and oxygen. 

Photosynthesis requires 

sunlight, CO2 and water 

What does the 

cellular respiration 

need? 

What does the 

photosynthesis need? 

Behavior-

1 

What are the raw 

materials of 

photosynthesis? 

Photosynthesis requires 

sunlight, CO2 and water 

What does the 

photosynthesis need? 

 

 

Behavior-

1 

 

What are the four 

basic ingredients 

needed for 

photosynthesis? 

What are the raw 

materials of 

photosynthesis and its 

role? 

 What are the three 

main limiting factors 

of photosynthesis? 

 

What is the energy 

molecule produced in 

the mitochondria and 

chloroplast? 

ATP  Behavior-

2 

How do the raw 

materials of 

photosynthesis reach 

the chloroplasts of the 

leaves? 

Water is absorbed 

through the root hair then 

into the xylem of the 

roots and into the xylem 

of the stem, it then goes 

through the xylem of the 

leaves into the mesophyll 

cells and finally into the 

chloroplasts. 

Carbon dioxide diffuses 

from the atmosphere 

through the stomata and 

then into the intercellular 

airspaces in the leaves 

and finally into the 

 Behavior-

2 



 

chloroplasts of the 

mesophyll cells. 

The chlorophyll and 

other pigments in the 

thylakiod membrane 

absorb the solar energy 

to drive photosynthesis. 

What does the light 

reaction in 

photosynthesis 

produce? 

 

It produces oxygen, ATP 

and NADPH 

What is/are the 

product(s) of the light 

reaction in 

photosynthesis? 

Behavior-

1 

What molecules 

produced during the 

light reaction of 

photosynthesis are 

needed to carry out the 

dark reaction? 

 

Light reaction produces 

ATP and NADPH, both 

of which are used in 

Calvin cycle.  

How does the light 

reaction support the 

calvin cycle? 

 

Function 

 

Why a toxin that 

inhibits an enzyme of 

the calvin cycle will 

also inhibit the light 

reactions? 

Which are the 

subproducts of the 

photochemical stage 

that are essential for 

the chemical stage of 

photosynthesis? 

 

What does the light 

reactions of 

photosynthesis supply 

the Calvin cycle? 

 

What is light reaction 

process? 

-function 



 

What are two products 

in photosynthesis of 

the light reaction that 

are used for the dark 

reaction? 

 

Where does the energy 

used to produce atp in 

the light reactions of 

photosynthesis come 

from? 

 

Sunlight  Behavior-

2 

What does the calvin 

cycle use to produce 

high- energy sugars? 

 

ATP and NADPH  Behavior-

2 

What else is needed 

besides water for the 

calvin cycle to take 

place? 

 

CO2 What is the raw 

material of calvin 

cycle in 

photosynthesis? 

 

Behavior-

1 

What does cyclic 

photophosphorylation 

produce? 

 

ATP What does the cyclic 

photophosphorylation 

in light reaction 

produce? 

Behavior-

1 

What is cyclic 

photophosphorylation? 

-behavior-1 

What does non-cyclic 

photophosphorylation 

produce? 

 

ATP, Oxygen and 

NADPH 

 

What does the 

noncyclic 

photophosphorylation 

in light reaction 

produce? 

 

Behavior-

1 

What is the function of 

the chloroplast? 

What is the chloroplast 

function? 

They are the main site of 

photosynthesis in plant 

cells and help convert 

energy from the sun into 

sugars for the plant. 

 Function 



 

What is the function of 

the chloroplast in plant 

cells? 

What are chloroplasts 

and what is their role? 

What does 

chloroplasts enable 

plant cells to do? 

What is the function of 

chloroplast 

membranes? 

The outer membrane is 

permeable to small 

organic molecules, 

whereas the inner 

membrane is less 

permeable and studded 

with transport proteins. 

The innermost matrix 

of chloroplasts, called 

the stroma, contains 

metabolic enzymes and 

multiple copies of the 

chloroplastgenome. 

 

 Function 

What do you think 

will happen if you 

insert chloroplast into 

animal cells in 

humans? 

Animal may also 

perform photosynthesis.  

 Function 

 

What is the role of 

light in the light 

reactions? 

The light 

reactions use light energy 

to produce ATP and 

NADPH.  

What is the role of 

the sunlight in the 

light reaction of 

photosynthesis? 

function 

What is the primary 

function of the calvin 

cycle in green plant? 

Construct simple sugars 

from carbon dioxide 

(CO2). 

 function 

What is the main 

function of cyclic 

photophosphorylation? 

The function of cyclic 

photophosphorylation is 

to produce ATP. 

 Function 

What is cyclic 

photophosphorylation? 

-function 



 

Why do plants need 

chloroplast and the 

animal cells don't need 

it? 

Animals can acquire 

glucose by eating plants, 

but plants have to 

produce glucose by 

themselves.  

 Function 

 

What would happen to 

photosynthesis if all 

three carbon sugar 

compounds produced 

in calvin cycle were 

used to make organic 

compounds? 

The cycle would stop. 

You need to reinvest 

these compounds into the 

cycle to keep the 

biochemical process 

moving. 

 Function 

 

How is light from the 

sun transformed into 

chemical energy to be 

used by the living 

beings on earth? 

Light from the sun is 

transformed into 

chemical energy 

contained in organic 

material by the 

photosynthesis process. 

In photosynthesis light, 

water and carbon dioxide 

react and highly 

energetic glucose 

molecules and molecular 

oxygen are made.  

 Behavior-

2 

 

What are the stages 

into which 

photosynthesis is 

divided? 

Light reaction and Calvin 

cycle 

What are the 2 stages 

of photosynthesis? 

Structure 

What are the processes 

of the photochemical 

stage of the 

photosynthesis 

process? 

cyclic 

photophosphorylation 

and noncyclic 

photophosphorylation 

What are the 2 stages 

of the light reaction 

in photosynthesis? 

Structure 

What is NADP and 

NADPH? 

-structure 

NADP is the 

abbreviation of the 

nicotinamide adenine 

dinucleotide phosphate 

cation. NADPH is made 

when NADP binds to 

one hydrogen atom.  

 Structure: 

boundary  

What is NADP and 

NADPH? 

-function 

NADP is a hydrogen 

acceptor. NADPH is the 

 Function 



 

form that actually 

transports hydrogen. 

Which chemical 

element is central in 

the chlorophyll 

molecule? 

The chemical element 

that is central in the 

chlorophyll molecule is 

magnesium. One atom of 

magnesium is present in 

the center of an amalgam 

of eight nitrogen-

containing carbon rings.  

 Structure 

 In which chloroplast 

structure are 

chlorophyll molecules 

found? 

Chlorophyll molecules 

sit on the surface of each 

thylakoid 

 Structure: 

boundary 

In photosynthesis, 

what is the molecule 

that donates hydrogen 

for photosynthesis? 

H2O  Function 

Photosynthesis is the 

most important 

producer of molecular 

oxygen (O2) on our 

planet. From which 

molecule do oxygen 

atoms liberated by 

photosynthesis come? 

From which other 

molecule could one 

suspect they have 

come? What are the 

destinations of those 

oxygen atoms? 

The oxygen atoms 

liberated as molecular 

oxygen by the 

photosynthesis process 

come from water. 

 

One indeed could suspect 

that those oxygen atoms 

would have come from 

carbon dioxide. Oxygen 

atoms from carbon 

dioxide however are 

incorporated into glucose 

molecules and into water 

molecules liberated in 

the chemical stage of 

photosynthesis. 

 Behavior-

2 

Where do the 

photochemical and the 

chemical stages of 

photosynthesis occur? 

Stroma of chloroplast Where does the 

calvin cycle of 

photosynthesis 

occur? 

Structure 

What is the destination 

of each of those 

substances produced 

The electrons will 

replace those electrons 

lost by chlorophyll 

molecules in 

 Behavior-

2 



 

by water 

photosynthesis? 

photophosphorylation. 

The hydrogen ions will 

be incorporated into 

hydrogen acceptor 

molecules (NADP) and 

later will be used in the 

synthesis of glucose 

during the chemical 

stage. Molecular oxygen 

is liberated to the 

atmosphere. 

How is the photic 

energy absorbed by 

chlorophyll transfered 

to ATP molecules in 

photophosphorylation? 

Light excites chlorophyll 

and energizes electrons 

that jump off the 

molecule. The energy 

liberated when these 

electrons escape is used 

in the phosphorylation of 

ADP, forming ATP. The 

enzyme that catalyzes the 

reaction is the ATP 

synthase. 

 Behavior-

2 

 

How will be the 

resulting ATP of 

photophosphorylation 

used? 

The resulting ATP is 

then consumed in the 

next chemical stage of 

photosynthesis to 

energetically enrich 

carbon dioxide for the 

formation of glucose.  

 Behavior-

2 

What are the chemical 

substances produced 

by water photolysis?   

Free electrons, hydrogen 

ions and molecular 

oxygen are liberated, 

after the water 

photolysis. 

 

 

 Behavior-

1 

How are the large 

number of ATP and 

NADPH molecules 

used during the Calvin 

cycle consistent with 

the high value of 

Glucose can be used by 

plants as food or 

structure and so without 

it a plant would die.  The 

investment of so much 

ATP and NADPH is 

worth living for. 

 Behavior-

2 



 

glucose as an energy 

source? 

In the light actions, 

what is the initial 

electron donor? Where 

do the electrons finally 

end up? 

 

Water (H2O) is the 

initial electron donor; 

NADP+ accepts 

electrons at the end of 

the electron transport 

chain, becoming reduced 

to NADPH. 

Please explain the 

process of noncyclic 

photophosphorylation 

in the light reaction. 

 

Structure 

Which are the living 

beings that carry out 

photosynthesis? 

 

Plants, algae and 

cyanobacteria are 

photosynthetic beings. 

 Function 

Which is the cell 

organelle responsible 

for the absorption of 

light for the 

photosynthesis process 

in plants and algae? 

 

Light is absorbed by 

chlorophyll, a molecule 

present in cytoplasmic 

organelles called 

chloroplasts. 

 Function 

What are the roles of 

ATP and ADP for the 

cellular energetic 

metabolism? 

 

The conversion between 

ATP, and ADP and 

phosphate, plays a 

central role in the energy 

metabolism of the cell.  

 Function 

Why is it said that 

during photosynthesis 

carbon dioxide is 

enriched to form 

glucose? 

During photosynthesis 

carbon dioxide is 

energetically enriched 

with hydrogen from 

water. Water broken by 

photolysis is the 

hydrogen donor of the 

reaction. Glucose is 

made of carbon and 

oxygen atoms obtained 

from carbon dioxide and 

of hydrogen atoms 

obtained from water.  

 Function 

 

What are the roles of 

NADPH and ATP in 

the chemical stage of 

photosynthesis? 

NADPH acts as 

reductant of carbon 

dioxide, it delivers 

highly energetic 

In the calvin cycle of 

photosynthesis, what 

is the role of atp? 

Function 

 



 

 hydrogens to precursor 

molecules during the 

glucose formation 

process. ATP is an 

energy source for the 

reactions of chemical 

stage. 

What does the nadph 

do in the reduction of 

3 phosphoglycerate 

of calvin cycle? 

Why is the carbon 

dioxide concentration 

a limiting factor of the 

photosynthesis 

process? 

The availability of 

carbon dioxide is a 

limiting factor for the 

photosynthesis process 

because this gas is a 

reagent of the reaction. 

How is the carbon 

dioxide used in the 

carbon fixation of 

calvin cycle? 

Behavior-

2 

When the carbon 

dioxide concentration 

is increased 

indefinitely, is 

photosynthesis also 

increased indefinitely? 

Since enzymes catalyze 

the building of organic 

molecules with carbon 

atoms from carbon 

dioxide photosynthesis 

stops as soon as these 

enzymes become 

saturated, i.e., when all 

their activation centers 

are bound to their 

substrates. In that 

situation an increase of 

the carbon dioxide 

concentration will not 

increase the 

photosynthesis rate. 

 Behavior-

2 

Explain why a poison 

that inhibits an 

enzyme of the Calvin 

cycle will also inhibit 

the light reaction 

The light reactions 

require ADP and 

NADP+, which would 

not be formed in 

sufficient quantities from 

ATP and NADPH if the 

Calvin cycle stopped. 

How does the light 

reaction support the 

calvin cycle? 

 

Function 

 

  



 

APPENDIX B 

THE SOURCE IN THE SEMANTIC NETWORK FOR SOME MACHINE 

GENERATED QUESTIONS 

  



 

Machine- 

generated 

questions 

Knowledge base recorded relations Intermediate relations 

What are the 

2 stages of 

photosynthe

sis? 

subevent(light_reaction1, 

cyclic_photophosphorylation1) 

subevent(light_reaction1, 

noncyclic_photophosphorylation1) 

subevent(photosynthesis1, 

light_reaction1) 

instance_of(photothesis1,photosynthe

sis) 

instance_of(light_reaction1, 

light_reaction) 

instance_of(cyclic_photophosphoryla

tion1, cyclic_photophosphorylation) 

instance_of(noncyclic_photophospho

rylation1, 

noncyclic_photophosphorylation) 

sub_class_of(light_reaction, …) 

ancestor_of(event, 

light_reaction) 

event_num(light_reaction1, 2) 

var(noncyclic_photophosphoryl

ation1, 

desc(noncyclic_photophosphor

ylation)) 

var(cyclic_photophosphorylatio

n1, desc(cyclic_ 

photophosphorylation)) 

var(ligt_reaction1, 

desc_detail(light_reaction, in , 

photosynthesis)) 

What is/are 

the 

product(s) 

of the light 

reaction in 

photosynthe

sis? 

raw_material(light_reaction1, 

sunlight1) 

raw_material(light_reaction1, 

water_molecule1) 

subevent(photosynthesis1, 

light_reaction1) 

instance_of(photothesis1,photosynthe

sis) 

instance_of(light_reaction1, 

light_reaction) 

instance_of(sunlight1, sunlight) 

instance_of(water_molecule1, 

water_molecule) 

sub_class_of(light_reaction, …) 

ancestor_of(event, 

light_reaction) 

var(ligt_reaction1, 

desc_detail(light_reaction, in , 

photosynthesis)) 

var(sunlight1, desc(sunlight)) 

var(water_molecule, 

desc(water_molecule)) 

How does 

the light 

reaction 

support the 

result(light_reaction1, atp1) 

result(light_reaction1, nadph1) 

raw_material(calvin_cycle1,atp1) 

raw_material(calvin_cycle1, nadph1) 

ancestor_of(calvin_cycle, 

event) 

ancestor_of(light_reaction, 

event) 

ancestor_of(atp, entity) 



 

calvin 

cycle? 

instance_of(light_reaction1, 

light_reaction) 

instance_of(calvin_cycle1, 

calvin_cycle) 

instance_of(atp1, atp) 

instance_of(nadph1, nadph) 

ancestor_of(nadph, entity) 

var(calvin_cycle1,desc(calvin_

cycle)) 

var(light_reaction1, 

desc(light_reaction)) 

Where does 

the calvin 

cycle in 

photosynthe

sis occur? 

site(calvin_cycle1, site, stroma1) 

instance_of(stroma1, stroma) 

subevent(phtotosynthesis1, 

calvin_cycle1) 

instance_of(calvin_cycle1, 

calvin_cycle) 

instance_of(photosynthesis1, 

photosynthesis) 

var(calvin_cycle1, 

desc_detail(calvin_cycle, in , 

photosynthesis)) 

 

 

  



 

APPENDIX C 

MANUALLY CREATED SYNONYMS 

  



 

 

Light reaction -> {light reaction, light dependent reaction} 

Calvin cycle -> {calvin cycle, light independent reaction, dark reaction} 

Oxygen -> {Oxygen, O2} 

Ribulose bisphosphate -> {Ribulose bisphosphate, RuBP} 

NADP plus -> {NADP plus , NADP+} 

Three phosphoglycerate -> {three phosphoglycerate, 3-phosphoglycerate, 3PG} 

Glyceraldehyde 3 phosphate -> { glyceraldehyde 3 phosphate, G3P} 

Adenosine diphosphate -> {adenosine diphosphate, ADP } 

Photosystem I -> {photosystem i, psi} 


