
Efficient Implementation of

 a Low Cost Object Tracking System

by

Asha Sasikumar

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2015 by the

Graduate Supervisory Committee:

Chaitali Chakrabarti, Chair

Umit Ogras

Antonia Papandreou-Suppappola

ARIZONA STATE UNIVERSITY

December 2015

 i

ABSTRACT

Object tracking is an important topic in multimedia, particularly in applications

such as teleconferencing, surveillance and human-computer interface. Its goal is to

determine the position of objects in images continuously and reliably. The key steps

involved in object tracking are foreground detection to detect moving objects, clustering

to enable representation of an object by its centroid, and tracking the centroids to

determine the motion parameters.

 In this thesis, a low cost object tracking system is implemented on a hardware

accelerator that is a warp based processor for SIMD/Vector style computations. First, the

different foreground detection techniques are explored to figure out the best technique

that involves the least number of computations without compromising on the

performance. It is found that the Gaussian Mixture Model proposed by Zivkovic gives the

best performance with respect to both accuracy and number of computations. Pixel level

parallelization is applied to this algorithm and it is mapped onto the hardware accelerator.

Next, the different clustering algorithms are studied and it is found that while

DBSCAN is highly accurate and robust to outliers, it is very computationally intensive.

In contrast, K-means is computationally simple, but it requires that the number of means

to be specified beforehand. So, a new clustering algorithm is proposed that uses a

combination of both DBSCAN and K-means algorithm along with a diagnostic algorithm

on K-means to estimate the right number of centroids. The proposed hybrid algorithm is

shown to be faster than the DBSCAN algorithm by ~2.5x with minimal loss in accuracy.

Also, the 1D Kalman filter is implemented assuming constant acceleration model. Since

the computations involved in Kalman filter is just a set of recursive equations, the

 ii

sequential model in itself exhibits good performance, thereby alleviating the need for

parallelization. The tracking performance of the low cost implementation is evaluated

against the sequential version. It is found that the proposed hybrid algorithm performs

very close to the reference algorithm based on the DBSCAN algorithm.

 iii

To my parents, for they inspired me to trust my heart, believe in myself and follow my

dreams.

 iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Chaitali

Chakrabarti for her continuous guidance and support. I have been amazingly fortunate to

have an advisor who gave me the freedom to explore on my own and at the same time the

guidance to recover when my steps faltered. I cherish all my discussions and interactions

with her, and am deeply indebted to her for her patience and tolerance towards my

imperfections. I am also grateful to my committee members, Dr. Antonia and Dr. Umit

for their time in reviewing my work. Also, I would like to thank Dr. Trevor Mudge,

University of Michigan, Ann Arbor for his support. I acknowledge DARPA for funding

this work.

I am thankful to Qi Zheng and Yajing Chen at University of Michigan, for

providing me timely support as and when I needed without any hitch. I am also quite

grateful to my friends at Low Power Systems lab, Hsing-min Chen, Ming Yang, Manqing

Mao, Jiang Xiang and Siyuan Wei for their help in finishing my thesis.

I am profoundly indebted to my friend, Shrikant for his unconditional support

throughout. I am also thankful to my friends Abhishek Badki, Benzun and Kuldeep for

their time and patience to clarify my queries. I would like to thank my roommates

Karthika, Subha and Manasa for putting up with me during my stay at ASU.

I take this opportunity to thank my parents and my sister, who have been my

pillars of support and have encouraged me in all my endeavors. Lastly, I am extremely

thankful to Srijith, without whose help I couldn’t have completed this thesis and who was

an invaluable source of support at a time when I needed it the most.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION ..1

 Problem Description...2

 Proposed Approach..3

 Thesis Organization…..5

 2. BACKGROUND…. 6

 Introduction..6

 Object Tracking Methods Based on Matching Followed by Tracking.............6

 Object Tracking Methods not Based on Matching followed by Tracking....11

 Comparison of the Different Techniques for Object Tracking....................13

3 PROPOSED OBJECT TRACKING FRAMEWORK ... 15

 Motivation..15

 Overview...15

 Detailed Description..16

4 RESULTS 32

 Simulation Framework...2

 Description of the Hardware Accelerator...33

 Parallelization Schemes..34

Tracking Performance...38

 vi

CHAPTER Page

 Timing Results...42

5 CONCLUSION AND FUTURE WORK .. 48

REFERENCES.. 50

 vii

LIST OF TABLES

Table Page

1. Best Configuration for each Video ... 42

2. Performance of DBSCAN on Intel Core I7 .. 45

3. Performance of DBSCAN on Hardware Accelerator .. 45

 4. Performance of Kalman Filter on Hardware Accelerator...................................46

 5. Overall Performance of Object Tracking System on Intel Core I7....................47

 viii

LIST OF FIGURES

Figure Page

 1. Proposed Object Tracking System...16

 2. DBSCAN Algorithm..22

3. Proposed Clustering Algorithm...27

 4. The Discrete Kalman Filter Cycle..29

5. Loop Unrolling by a Factor of 2..35

6. Variation in Speedups for Gaussian Filter with Loop Unrolling Factor................36

7. Speedup for Foreground Detection using Different Parallelization Schemes........37

8. Tracking Performance for Multi_Car Video; Frame Parameter 10........................39

9. Tracking Performance for Multi_Car Video; Frame Parameter 12........................40

10. Tracking Performance for Highway Video; Frame Parameter 10..........................40

 11. Tracking Performance for Highway Video; Frame parameter 12..........................41

12. Tracking Performance for Aerial_highway Video; Frame parameter 10...............41

13. Tracking Performance for Aerial_highway Video; Frame parameter 12...............42

14. Input Video Frame to find the Best Foreground Detection Technique..................43

15. Variation in Execution Times of Foreground Detection on Intel core I7...............44

16. Result of Foreground Detection Algorithm..44

17. Runtimes of the Different Kernels on Intel I7..46

 1

CHAPTER 1

INTRODUCTION

Object tracking is an interesting and a challenging topic in the field of computer

vision. Its goal is to determine the position of the object in the images continuously and

reliably. It is used in the areas of automated surveillance, traffic monitoring, vehicle

navigation and motion-based recognition [3]. For instance, in object tracking in video, a

tracker assigns consistent labels to the tracked objects in different frames of a video.

Additionally, depending on the tracking domain, a tracker can also provide object-centric

information, such as orientation, area, or shape of an object.

Tracking objects can be a challenging task in scenes that are prone to illumination

changes, object to scene occlusions and cluttering [1]. It can also be challenging when

there is loss of information caused by projection of the 3D world on a 2D image [3].

Added to all these algorithm level challenges are the challenges due to real-time

processing requirements.

Object tracking can be simplified by imposing constraints on the motion and/or

appearance of objects. For example, almost all tracking algorithms assume that the object

motion is smooth with no abrupt changes. One can further constrain the object motion to

be of constant velocity or constant acceleration based on a priori information. Prior

knowledge about the number and the size of objects, or the object appearance and shape,

can also be used to simplify the problem.

 Numerous approaches for object tracking have been proposed [3]. These primarily

differ from each other based on the way they approach the following questions: Which

object representation is suitable for tracking? Which image features should be used? How

 2

should the motion, appearance, and shape of the object be modeled? The answers to these

questions depend on the context/environment in which the tracking is performed and the

end use for which the tracking information is being sought.

1.1 PROBLEM DESCRIPTION

The goal of our research is to design a low cost object tracking system optimized

for parallel implementation. Specifically, we address the problem of automated object

tracking of fast-moving objects in a video sequence captured from a stationary camera

with the additional objective of parallelizing the algorithms in order that they can be

efficiently implemented on a hardware accelerator. The task of object tracking is

subdivided into (i) foreground detection that involves detecting the moving objects in the

frame, (ii) clustering to group the detected objects so that they can be represented by

centroids, and (iii) tracking the centroids to estimate the parameters of motion of the

object.

In an earlier work by University of Michigan researchers, object tracking was

implemented on a warp based Single Instruction Multiple Threads (SIMT) coprocessor.

This is a GPGPU like accelerator that has 8 virtual warps; each warp consists of 32

threads that operate on 32 lanes of data simultaneously. The lanes each have their own

integer register file, a separate floating point register file, and conditional flags.

The specific object tracking algorithm assumed that the background was not

stationary, so additional steps were implemented to remove the effect of the moving

background. In our work, we implement a low cost object tracking algorithm on the

SIMT based hardware accelerator that assumes that the background is stationary.

 3

1.2 PROPOSED APPROACH

In this work, we explore different object tracking techniques. First, we investigate

the performance of different techniques for foreground detection, clustering and tracking

by implementing them on an Intel Core I7 processor. We then pick the algorithm that

gives the least execution time without compromising on the accuracy and implement the

same on the hardware accelerator. We also propose a new clustering algorithm that uses a

combination of both DBSCAN [6] and K-means algorithm [35] along with the diagnostic

algorithm on K-means to estimate the right number of centroids.

The input to our system is in form of video sequences that are captured from

stationary cameras. As a result, the background is considered stationary and the only

noise that can occur is due to changes in illumination and any other background clutter

such as moving of tree leaves, rain drops, etc. The first step in our procedure, foreground

detection involves identifying the moving objects in a frame. The different techniques

for this step include frame differencing, mean/variance over time, statistical methods

using one or more Gaussians and non-parametric methods [2]. Of these techniques,

background subtraction, Gaussian filter and several variants of Mixture of Gaussians

were analyzed for performance and execution times. We saw that the mixture of

Gaussians developed by Zivkovic [4] gave the best performance in terms of robustness

and execution time.

The second step in our procedure is to determine the number of moving objects in

a given frame. In order to do this, we use clustering algorithms on the output binary

images from the foreground detection step. Though supervised techniques outperform

unsupervised clustering techniques, we decided to go for unsupervised techniques since

 4

they are computationally less complex. The various unsupervised clustering techniques

that were analyzed include K-means clustering [35], connected components labeling [27],

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [6]. Of these,

connected components and DBSCAN don't need the number of centroids to be specified

beforehand, whereas K-means requires it to be specified. All the clustering algorithms

are highly sequential in nature, giving very little scope for parallelization.

We propose an algorithm for clustering that is significantly faster than the

conventional clustering algorithms. Basically, we chose a combination of K-means and

DBSCAN algorithms with additional diagnostic algorithms to reduce computational

complexity. DBSCAN was chosen over connected components because it has inherent

noise rejection capabilities. The worst case complexity of DBSCAN is O(n
2
) whereas that

of K-means is O(kn) where n is the number of data points. In our approach, DBSCAN is

performed for one frame and then K-means is performed over the next 9 frames. The

number of centroids which is input to K-means is based on the number of centroids

returned by DBSCAN. A diagnostic algorithm is developed based on the notion of

distance between centroids of adjacent frames that returns the correct number of centroids

from K-means. The assumptions are that the object velocity cannot be more than certain

orders of magnitude from the frame velocity and also that the number of objects entering/

leaving the frame at a time cannot be more than a certain number. The proposed

clustering algorithm gave a speedup of 4.9 compared to DBSCAN.

 The final step of our procedure is tracking. Tracking involves estimating the

parameters of motion of the object, such as the velocity and the prediction for location of

centroid in the next frame. For tracking, we considered the simplest 1-D Kalman filter

 5

that is the least computationally intensive. Each moving object is assigned a kalman filter

and this assignment tends to remain constant over frames. The algorithm is in itself very

simple and since the sequential algorithm had very minimal execution time, there was no

need for any parallelization.

In our attempt to parallelize the proposed object tracking algorithm, we tried

parallelization techniques such as those based at the pixel level and those that exploit

spatial locality of cache lines by operating on a group of pixels at a time. For instance, for

a Gaussian filter of size 5x5, since adjacent pixels along the row of an image are stored in

sequential memory locations, loop unrolling along the columns gave better performance

than along the rows. For GMM, we found that the smaller loop unrolling factor gave

better timing performance and pixel level parallelization gave the best timing

performance. The DBSCAN could not be parallelized since the hardware accelerator

could not support the memory requirements. The sequential execution time of the

Kalman filter was so less that there was no need to parallelize it.

1.3 THESIS ORGANIZATION

The thesis is organized as follows: Chapter 2 gives a detailed description of the

present day state-of-the-art techniques for object tracking and also discusses their

advantages and disadvantages. Chapter 3 describes the proposed object tracking

technique in detail; and Chapter 4 discusses the results that we obtained. We provide our

conclusions and the scope for future work in Chapter 5.

 6

CHAPTER 2

BACKGROUND

2.1 INTRODUCTION

 Object tracking can be classified into feature, model and optical flow based

approaches. Feature based approach involves extraction of regions of interest (features) in

the images and then identification of counterparts of individual images of the sequence.

Feature based tracking methods include Multi Hypothesis tracking [29], Hidden Markov

Model [30], Artificial Neural Network [31], Kalman Filtering [13] and Mean shift [32].

Model based approach is very similar to feature based tracking; the difference is in the

requirement of grouping, reasoning and rendering. Additionally, prior knowledge of

investigated models is normally required. Optical flow based methods are used for

generating dense flow fields by computing the flow vector of each pixel under the

brightness constancy constraint. This computation is carried out either algebraically or

geometrically.

2.2 OBJECT TRACKING METHODS BASED ON MATCHING FOLLOWED BY

TRACKING

2.2.1 Object Tracking with SIFT Features and Mean Shift [1]

This method uses a scale invariant feature transform (SIFT) [33] based mean shift

algorithm for object tracking in real scenarios. SIFT features are used to establish

correspondence between the regions of interests across frames. Mean shift is applied to

conduct similarity search via color histograms. Maximum likelihood estimation of similar

regions is achieved by evaluating the probability distributions from these two

measurements in an expectation-maximization scheme.

 7

The main steps in this algorithm are: a) Similarity measure by mean shift, b) SIFT feature

based correspondence, and c) integration of SIFT and Mean-shift based similarity

measure.

a) Similarity measure by Mean shift:

The measurement task involves the search of a confidence region for the target candidate

that is most similar to the target model, given the predicted target’s position. The

similarity measure conducted here is based on color information. Given the sample points

and kernel function k(x), the kernel density function can be used to estimate the

probability density function of the object in the current image. Similarly, the target

image’s probability density function can also be estimated. Then correspondence between

the feature and its counterparts can be established using feature-spatial space. Either

Kullback-Leibler divergence or the Bhattacharya distance can be used to measure the

affinity between two distributions.

Mean shift is an instance of gradient ascent with an adaptive step size. Each iteration of

mean shift is guaranteed to get closer to a stationary point; however it can get stuck at a

saddle point or incorrectly assume a start point at a local minimum for a local maximum.

The problem faced by this approach is that there can be a number of discontinuities

which can be avoided by taking infinitesimal steps for moving the direction of the local

gradient. But if step size is too large, the rate of convergence cannot be guaranteed. The

employment of SIFT feature correspondence is a possible optimal solution to this

problem.

b) SIFT Feature based Correspondence

 8

SIFT stands for Scale Invariant Feature Transform. SIFT features are distinctive invariant

features from images that can be used to perform reliable matching between different

views of an object or scene. The features are invariant to image scale and rotation, and

are shown to provide robust matching across a substantial range of affine distortion,

change in 3D viewpoint, addition of noise, and change in illumination.

c) SIFT and mean shift-based similarity measure

In this stage, an expectation maximization algorithm is applied. An expectation (E) step

consists of evaluating the posterior probabilities for each mixture component. A

maximization (M) step then updates the mixture components.

The entire algorithmic flow can be summarized as:

(1) Define a rectangle on the region of interest in the first frame of a video sequence.

(2) Compute the color histogram of this region, whilst extracting SIFT features within

this region

(3) In the second frame, start from the former location and examine the surroundings for

similarity measure. The sum of squared difference (SSD) method is applied for SIFT

feature correspondence across frames.

(4) Launch the proposed Expectation Maximization (EM) algorithm to search for an

appropriate similarity region whilst minimizing the distance between the detected

locations by mean shift and SIFT correspondence, respectively.

 (5) Iterate the above steps till the difference between two mean shifts is smaller than a

threshold (i.e., 0.01).

In summary, this technique involves establishing correspondence between regions of

interests across frames using SIFT feature, applying mean shift to conduct similarity

 9

search based on color histograms and Expectation Maximization to achieve maximum

likelihood estimation of similar regions. Using SIFT and mean shift clustering makes this

technique quite robust. However, it also makes it computationally intensive.

2.2.2. Consensus-Based Matching and Tracking of Keypoints [28]

This is a keypoint method for long-term model-free object tracking in a combined

matching-and tracking framework. A voting mechanism is used wherein each keypoint

casts a vote for the object centre. A consensus based scheme is used for outlier detection.

Given a sequence of images I1, . . . , In, and an initializing region b1 in I1, the aim

in each frame of the sequence is to recover the position of the object of interest or to

indicate that the object is not visible. The position of the object is estimated up to its

center μ, its scale s and the degree of its in-plane rotation α, where s and α are estimated

with respect to the initial appearance of the object.

Matching and Tracking: The model is based on a set of keypoints. Each keypoint

denotes a location r and descriptor f. Binary descriptors are employed to simplify

computations. The object model O is initialized by detecting and describing keypoints in

I1 that are inside the initializing region b1, followed by a mean-normalization of the

keypoint locations. Matching and tracking keypoints are two complementary strategies

for finding the keypoints. The candidate keypoints in It that are determined by their

absolute position a and their descriptor f are detected and described. For each candidate

keypoint, its Hamming distance with another keypoint is calculated by XORing the

respective descriptors. If P is the set of candidate keypoints, the keypoints in P are

matched to keypoints in I1 by requiring that the nearest neighbor must be closer than the

second-nearest neighbor by a certain ratio ρ. The set of matched keypoints M then

 10

consists of the subset of keypoint locations in P that match to O, augmented with the

corresponding model keypoint index. Candidate keypoints that match to background

keypoints are excluded from M. For tracking, the displacement of each keypoint in Kt−1

from It−1 to It is computed by employing the pyramidal variant of the method of Lucas

and Kanade for estimating optical flow. For t = 2, K1 is obtained by transforming O to

absolute image coordinates. The set of tracked keypoints T is then obtained by updating

the keypoint locations in Kt−1 while maintaining the keypoint index.

Voting: In this step, each keypoint in K casts a single vote for the object centre, resulting

in a set of votes V. At the end of this step, a robust estimate of the rotation of the object is

obtained. However, this does not involve information from keypoint detectors, as they are

not found to be reliable enough.

Consensus: This step involves identifying and removing outlier points. To do this,

hierarchical agglomerative clustering is applied on the set of votes V based on the

Euclidean distance as the dissimilarity measure.

To summarize, this technique is a novel keypoint based method for long term model free

tracking where a consensus based scheme is used for outlier detection and a voting

mechanism is used to determine object centre. This method has the advantage that it is

highly accurate and it can achieve consistency in tracking over a large number of frames.

However, it suffers from the drawback of large computational complexity especially

when robust keypoint detectors like BRISK, SIFT or SURF are used.

2.2.3. Conventional Feature Detection and Matching

 11

First, a set of feature points is found in a frame. This is followed by a pyramidal Lucas-

Kanade Algorithm that is used to track the same points in the next image. Of the set of

points in two images that are almost matched, some of the points are on moving objects

but most are on background. To remove the effect of the moving background, several

steps are computed. First, a robust least-squares algorithm, RANSAC[36] is used to find

an affine matrix to find a mapping from one image to the other. The affine matrix is used

to warp the second image and then the warped image is subtracted from the first image.

The background disappears because the feature points remaining after the robust least-

squares are almost all on the background. What show up are the objects that are moving

relative to the background. Then, a connected components algorithm is used to group

pixels into object groups resulting in a moving object blob detector [27]. Finally, a basic

Kalman filter tracker with a constant acceleration motion model is used to track the

objects. Prediction is done based on the target position and velocity, and a global nearest

neighbor (GNN) algorithm is used to pick the most likely object for the track in the

neighborhood of the point.

2.3 OBJECT TRACKING METHODS NOT BASED ON MATCHING FOLLOWED

BY TRACKING

 Two of the object-tracking methods which are based on a completely different flow are:

1. Tracking via Sparse Representation [15]

2. Tracking with Online Multiple Instance Learning [16]

2.3.1 Tracking via Sparse Representation [15]:

This method approaches tracking as a sparse approximation problem in a particle filter

framework. In this framework, occlusion, noise, and other challenging issues are

 12

addressed seamlessly through a set of trivial templates. Specifically, to find the tracking

target in a new frame, each target candidate is sparsely represented in the space spanned

by target templates and trivial templates. The sparsity is achieved by solving an l1-

regularized least-squares problem. Then, the candidate with the smallest projection error

is taken as the tracking target. After that, tracking is continued using a Bayesian state

inference framework. The tracking performance is further improved by using two

strategies. First, target templates are dynamically updated to capture appearance changes.

Second, non-negativity constraints are enforced to filter out clutter which negatively

resembles tracking targets.

2.3.2 Tracking with Online Multiple Instance learning [16]:

In this approach, the problem of tracking an object in a video given its location in the first

frame and no other information is addressed. A class of tracking techniques called

“tracking by detection” has been shown to give promising results at real-time speeds.

These methods train a discriminative classifier in an online manner to separate the object

from the background. This classifier bootstraps itself by using the current tracker state to

extract positive and negative examples from the current frame. Slight inaccuracies in the

tracker can therefore lead to incorrectly labeled training examples, which degrade the

classifier and can cause drift. Using Multiple Instance Learning (MIL) instead of

traditional supervised learning avoids these problems and can lead to a more robust

tracker with fewer parameter tweaks. A new online MIL algorithm for object tracking

that achieves superior results with real-time performance is used in this approach.

 13

2.4 COMPARISON OF THE DIFFERENT TECHNIQUES FOR OBJECT TRACKING

In the method involving mean shift with SIFT features, mean shift is a non-parametric

feature-space analysis technique for locating the maxima of a density function, a so-

called mode-seeking algorithm. When used for clustering, it is robust to image occlusions

and clutters. Also, it is capable of handling arbitrary feature shapes and data cluster

shapes. However, it suffers from two main drawbacks. First, it is computationally

intensive and requires operations, where N is the number of data points and k is

the number of average iteration steps for each data point. Second, the mean shift

algorithm relies on sufficient high data density with clear gradient to locate the cluster

centers. In particular, the mean shift algorithm often fails to find appropriate clusters for

so called data outliers, or those data points located between natural clusters. Though

SIFT is the most widely used feature detection algorithm due to its accuracy and

invariance to rotation and scale, it is computationally expensive due to the high

dimensionality of the descriptor at the matching step. Also, the similarity measures for

correspondence between two groups of the sample points demands two sequential

operations for the pdf and integral calculations that are of the order of . This makes

it less attractive for parallel implementations as execution time is high.

Consensus based matching and tracking of keypoints has high accuracy when compared

to the existing approaches in model-free object tracking. It has been shown that it

achieves state-of-the-art results over a large number of sequences. However this approach

requires manual initialization over the first frame and then carrying out the tracking in

subsequent frames which are not exactly the approach we are interested in. Also, this

 14

method involves keypoint detection which is computationally expensive when prominent

keypoint detection techniques such as BRISK, SIFT or SURF are used.

Tracking with sparse representation requires a lot of memory to store the templates. Also,

a Bayesian inference network is very complex to be implemented on an accelerator.

Tracking with multiple instance learning involves using multiple instance learning in

training a classifier which is not the current focus of the approach we are interested in.

These drawbacks make these methods unattractive for implementation on the hardware

accelerator.

 15

CHAPTER 3

PROPOSED OBJECT TRACKING FRAMEWORK

3.1 MOTIVATION

The complexity of the existing techniques, namely, mean shift, consensus based

tracking, tracking with sparse representation and tracking with multiple instance learning

is quite high. In this thesis, we focus on developing a low cost object tracking system.

Consequently, the algorithms that were not computationally intensive but achieved good

performance were chosen.

3.2 OVERVIEW

The proposed object tracking system is based on the technique described in [3]

The task of object tracking is divided into three steps:

Step 1: Foreground detection: Identifying the moving objects in a video.

Step 2: Clustering: Representing each moving object by its centroid.

Step 3: Tracking: Estimating the parameters of motion of each object

Our proposed technique performs foreground detection using an improved version

of adaptive Gaussian Mixture model developed by Zivkovic [4]. This is followed by the

proposed clustering algorithm that uses DBSCAN clustering algorithm on a frame

followed by K-means clustering for 9 frames and a diagnostic logic to figure out the right

number of clusters from K-means. The last step uses the Kalman filter to predict

estimates of the object’s position and velocity. The block diagram of the whole system is

summarized in Figure 1:

 16

ZIVKOVIK s GAUSSIAN
MIXTURE MODEL

DBSCAN
(for frames i,

i+10, i+20)

KALMAN FILTER

KMEANS
(for frames
i+1 to i+9)

DIAGNOSTIC
ALGORITHM

FOREGROUND
DETECTION

CLUSTERING TRACKING

Figure 1. Proposed Object tracking system

3.3 DETAILED DESCRIPTION

3.3.1 Foreground Detection

The foreground detection is done using an improved version of adaptive Gaussian

Mixture Model (GMM) developed by Zivkovic [4]. This is an efficient adaptive

algorithm using Gaussian mixture probability density. Recursive equations are used to

update the parameters and also to simultaneously select the appropriate number of

components for each pixel. An advantage of using Gaussian mixture model is that it is

robust to changes in illumination. It adapts to changes by updating the training set with

new samples and discarding old samples from the training set. We choose a reasonable

time period T, and at time t, we have training data set, T = {x
(t)
,…., x

(t-T)
} where x

(t)
is the

value of the pixel at time t . For each new sample we update the training data set T and

re-estimate (| T, BG). However, among the samples from the recent history there

 17

could be some values that belong to the foreground objects and we should denote this

estimate as ((t)
| T, BG+FG). We use GMM with M components:

 (| T, BG+FG) =
 mN (; m, m

2
I) (1)

where 1,…., m are the estimates of the means and 1,…. m are the estimates of the

variances that describe the Gaussian components. The mixing weights denoted by m are

non-negative and add up to one. The covariance matrices are assumed to be diagonal and

the identity matrix I has proper dimensions. Given a new data sample (t)
 at time t the

recursive update equations are [5]

 m ← m + α(

- m) (2)

 m ← m +

(α/ m) m (3)

 ←

 +

(α/ m) (
 m-

) , (4)

where m= (t)
- m. Instead of the time interval T that was mentioned above, here constant

α describes an exponentially decaying envelope that is used to limit the influence of the

old data. We keep the same notation having in mind that α is approximately 1/T. For a

new sample the ownership

 is set to 1 for the 'close' component with largest m and

the others are set to zero. We define that a sample is 'close' to a component if the

Mahalanobis distance from the component is for example less than three standard

deviations. The squared distance from the m-th component is calculated as:
 ((t)

) =

 m/

 . If there are no ‘close components’ a new component is generated with m+1 =

α, m+1 = (t)
and m+1= 0 where 0 is some appropriate initial variance. If the maximum

number of components is reached, we discard the component with smallest m.

In this algorithm, we approximate the background model by the first B largest clusters:

 18

 p(|ХT, BG) ~
 mN(m, m2I) (5)

If the components are sorted to have descending weights m, we have

 B= arg (
 m > (1-cf)), (6)

where cf is a measure of the maximum portion of the data that can belong to foreground

objects without influencing the background model. For example, if a new object comes

into a scene and remains static for some time, it will probably generate an additional

stable cluster. Since the old background is occluded, the weight πB+1 of the new cluster

will be constantly increasing. If the object remains static long enough, its weight becomes

larger than cf and it can be considered to be part of the background. If we look at (2) we

can conclude that the object should be static for approximately log(1 - cf)/log(1 - α)

frames. For example for cf = 0.1 and α = 0.001 we get 105 frames.

The procedure for selecting the number of components is as follows: The weight

πm describes how much of the data belongs to the m-th component of the GMM. It can be

regarded as the probability that a sample comes from the m-th component and in this way

the πm-s define an underlying multinomial distribution. Let us assume that we have t data

samples and each of them belongs to one of the components of the GMM. Let us also

assume that the number of samples that belong to the m-th component is nm =

where

-s are the ownerships. The assumed multinomial distribution for nm-s gives

likelihood function L=

 . The mixing weights are constrained to sum up to one.

We take this into account by introducing the Lagrange multiplier λ. The Maximum

Likelihood (ML) estimate follows from:

 = 0. After

getting rid of λ we get:

 19

=

=

 (7)

The estimate from t samples, denoted as

and it can be rewritten in recursive form as a

function of the estimate

for t-1 samples and the ownership

of the last sample:

=

+ 1/t(

-

 (8)

If we now fix the influence of the new samples by fixing 1/t to α = 1/T we get the update

equation (2). This fixed influence of the new samples means that we rely more on the

new samples and the contribution from the old samples is down weighted in an

exponentially decaying manner as mentioned before.

 Prior knowledge for multinomial distribution can be introduced by using its

conjugate prior, the Dirichlet prior =

 . The coefficients cm have a meaningful

interpretation. For the multinomial distribution, the cm presents the prior evidence (in the

maximum aposteriori (MAP) sense) for the class m - the number of samples that belong

to that class a priori. As in [5] we use negative coefficients cm = -c. Negative prior

evidence means that we will accept that the class m exists only if there is enough

evidence from the data for the existence of this class. This type of prior is also related to

Minimum Message Length criterion that is used for selecting proper models for given

data [5]. The MAP solution that includes the mentioned prior follows from

 = 0, where =

 . We get:

 , (9)

where K=

 = t-Mc. We rewrite (9) as:

 (10)

 20

where =

 is the ML estimate from (7) and the bias from the prior is

introduced through c/t. The bias decreases for larger data sets (larger t). However, if a

small bias is acceptable we can keep it constant by fixing c/t to cT = c/T with some large

T. This means that the bias will always be the same as if it would have been for a data set

with T samples. It is easy to show that the recursive version of (9) with fixed c/t = cT is

given by:

=

 (

 -

 - 1/t

 (11)

Since we expect usually only a few components M and cT is small we assume 1-McT 1.

As mentioned we set 1/t to α and get the final modified adaptive update equation

 (12)

The above equation is used instead of (2). After each update we need to normalize -s

so that they add up to one. We start with GMM with one component centered on the first

sample and new components are added as mentioned in the previous section. The

Dirichlet prior with negative weights will suppress the components that are not supported

by the data and we discard the component m when its weight πm becomes negative. This

also ensures that the mixing weights stay non-negative. For a chosen α = 1/T we could

require that at least c = 0.01 * T samples support a component and we get cT = 0.01.

3.3.2 Clustering

Clustering is a data mining technique that groups data into meaningful subclasses,

known as clusters, such that it minimizes the intra-differences and maximizes inter-

differences of these subclasses [8]. Well-known algorithms include K-means, K-medoids

[37], BIRCH [38], DBSCAN, STING [39], and WaveCluster [40]. These algorithms

 21

have been used in various scientific areas such as satellite image segmentation, noise

filtering and outlier detection, unsupervised document clustering, and clustering of

bioinformatics data. DBSCAN is accurate but computationally intensive. K-means, on

the other hand, is fast but requires the number of clusters as an input while also being

prone to noise. We propose an algorithm that uses DBSCAN for a single frame out of a

group of M frames followed by K-means clustering for the remaining M-1 frames. For K-

means, we apply a diagnostic algorithm to estimate the number of means that is closest to

the actual number of means before launching it. The details of this are explained in

subsequent sections.

DBSCAN Algorithm: DBSCAN (Density-Based Spatial Clustering of Applications with

Noise), introduced by Ester et al [9], is a non-parametric, density based clustering

technique [7]. It assumes that cluster is a region in the data space with high density.

Compared to non-density based clustering methods, the DBSCAN algorithm has unique

and advanced features that are useful when detecting objects/class/patterns/structures of

different shapes and sizes. DBSCAN is a good candidate to find ‘natural’ clusters and

their arrangement within the data space when they have a comparable density without

any preliminary information about the groups present in a data set.

DBSCAN scans the points in the input, one at a time, and grows clusters around

each point if it is able to find sufficient number of points within a certain neighborhood of

the point considered. The two inputs to the algorithm are Eps, which is a distance metric

that defines the neighborhood of a point (this is simply a sphere around the point of

radius Eps if we are considering Euclidean distance), and MinPts, which is the minimum

 22

number of points required to be in the Eps neighborhood of a point that would allow a

cluster to be grown from.

To find a cluster, DBSCAN starts with an arbitrary point p and retrieves all points

reachable from p with respect to Eps and MinPts. If p is a core point (i.e. a point that has

at least MinPts points in its Eps neighborhood), this procedure yields a cluster with

respect to Eps and MinPts. If p is not a core point, then DBSCA N moves onto the next

point.

The pseudo code for the algorithm as published in the original nomenclature [9] is

as follows:

DBSCAN(D, eps, MinPts) {

 C = 0

 for each point P in dataset D {

 if P is visited

 continue next point

 mark P as visited

 NeighborPts = regionQuery(P, eps)

 if sizeof(NeighborPts) < MinPts

 mark P as NOISE

 else {

 C = next cluster

 expandCluster(P, NeighborPts, C, eps, MinPts)

 }

 }

}

expandCluster(P, NeighborPts, C, eps, MinPts) {

 add P to cluster C

 for each point P' in NeighborPts {

 if P' is not visited {

 mark P' as visited

 NeighborPts' = regionQuery(P', eps)

 if sizeof(NeighborPts') >= MinPts

 NeighborPts = NeighborPts joined with NeighborPts'

 }

 if P' is not yet member of any cluster

 add P' to cluster C

 }

}

 23

regionQuery(P, eps)

 return all points within P's eps-neighborhood (including

P)

Figure 2. DBSCAN Algorithm

K-means clustering [12]: K-means is one of the simplest

unsupervised learning algorithms that solve the well known clustering problem. It aims to

partition n observations into k clusters in which each observation belongs to the cluster

with the nearest mean, serving as a prototype of the cluster.

Description: Given a set of observations (x1, x2, …, xn), where each observation is a d-

dimensional real vector, K-means clustering aims to partition the n observations

into k (≤ n) sets S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares

(WCSS). In other words, its objective is to find:

 , (13)

where μi is the mean of points in Si.

Algorithm: The most common algorithm uses an iterative refinement technique. It is also

called Lloyd’s algorithm. Given an initial set of K-means m1
(1)

,…,mk
(1)

 , the algorithm

proceeds by alternating between two steps:

Assignment step: Assign each observation to the cluster whose mean yields the least

within-cluster sum of squares (WCSS). Since the sum of squares is the squared Euclidean

distance, this is intuitively the "nearest" mean.

= {xp :

 1 (14)

 24

where each xp is assigned to exactly one S
(t)

, even if it could be assigned to two or more

of them.

Update step: Calculate the new means to be the centroids of the observations in the new

clusters.

=

 (15)

Since the arithmetic mean is a least-squares estimator, this also minimizes the within-

cluster sum of squares (WCSS) objective. The algorithm converges when the assignments

no longer change.

Comparison of K-means and DBSCAN clustering:

DBSCAN is a very robust algorithm since it is good at finding out arbitrarily

shaped clusters. It is robust to outliers since it has inherent noise rejection capabilities.

Also, it requires just two parameters and is insensitive to the ordering of the points in the

database. One does not need to specify the number of means beforehand for it, unlike K-

means. However, DBSCAN suffers from the drawback that it is not entirely deterministic

and border points that are reachable from more than one cluster can be part of either

cluster, depending on the order the data is processed. Also, the quality of DBSCAN

depends on the distance measure used in the function regionQuery(P,ε). The most

common distance metric used is Euclidean distance. But this metric becomes useless for

high dimensional data due to the curse of dimensionality. Also, since the order of

complexity is (N
2
) where N is the number of pixels, DBSCAN gets computationally

intensive as the size of input data increases.

 25

K-means is a computationally simple algorithm with order of complexity as

 (kN), where k is the number of clusters. The metric here is Euclidean distance. Its main

drawback is that it needs to know the number of clusters k beforehand. An inappropriate

choice of k can lead to poor results. Also, the final means returned by K-means depends

on the initial set of means. This could result in poor accuracy at times. But it is

computationally very simple for lower dimensional data which makes it attractive for low

cost implementations. The problems of both DBSCAN and K-means algorithms can be

overcome by simply combining them together with additional modifications.

3.3.3 Proposed Clustering Algorithm

In the proposed method, DBSCAN clustering is performed once every M frames

and K-means clustering is performed in the remaining M-1 frames since K-means is way

less computationally expensive. We experimented with different values of M and found

that M=10 results in a significant decrease in runtime without losing much accuracy. The

results are presented in Section 4.4

The number of centroids obtained by DBSCAN algorithm is sent to K-means. The

K-means operates on N-2 to N+2 centroids, where N denotes the number of centroids in

the previous frame. The value of N for the current frame is determined through a

diagnostic algorithm that rejects noise, but accepts new objects that may have entered the

scene. The diagnostic algorithm works using distance as metric. It filters out the noise

points using a size threshold. The proposed algorithm is summarized below:

1. In the first frame (out of a group of M frames), perform DBSCAN. Let the

number of centroids returned be N.

 26

2. In the next frame, run K clustering algorithm from N-X to N+X, where X is a

variable that can take values 2, 3, 4 or 5. The value of X is different for different videos

and is determined experimentally.

3. Store the number of centroids obtained for each iteration and also the size of

the clusters. Calculate the distance between the centroids of the current frame to the

centroids of the previous frame. We create a distance matrix which would be of

dimensions AxB, where A corresponds to the number of centroids in the current frame

and B corresponds to the number of centroids in the previous frame. A matrix element

with index (a,b) would correspond to the distance between a
th

 centroid in the current

frame and the b
th

 centroid in the previous frame. We establish a correspondence with the

points in the previous frame such that the distance values are the minimum and no two

points in the current frame correspond to the same point in the previous frame. We ensure

this by looking at the value of ‘b
th’ co-ordinate. The number of means such that the

distances obtained with the corresponding centroids in the previous frame are the

minimum is the right number of means. Filter out the noise points after this based on a

size threshold, the value of which is determined by repeated experiments.

4. We repeat the above procedure for the subsequent frames, with two

modifications: (i) the number of means N is taken from the previous frame and (ii)

instead of minimum distance, we pick the number of centroids as the one who’s distances

from the centroids of the previous frame lies within a range of distances returned in the

previous iteration.

 A pseudo code for our proposed algorithm is presented below:

 27

Main

centroids = DBSCAN(frame[0])

Foreach centroid {

 new Object (new_name, centroid)

 push current_objects(frame(0)), Object

}

Cluster(frames)

End Main

AssociateObjects(centroids, old_objects) {

 New_objects = null

 D = 0

 foreach obj in old_objects {

 cen1 = obj.centroid

 foreach cen2 in centroids {

 dist_matrix[obj][cen2] = distance(cen1, cen2)

 }

 }

 foreach cen2 in centroids {

 Next if cen2.cluster_size < size_threshold

 closest_object = obj for which dist_matrix[obj][cen2] is

minimum

 if dist_matrix[obj][cen2] < distance_threshold

 push new_objects, obj

 obj.update_centroid(cen2)

else

 new_obj = New Object(cen2)

 push new_objects, new_obj

 }

 return new_objects

}

Cluster(Frames) {

 B = 0

 I = 0

 While B <= Total number of frames {

 centroids = DBSCAN(frame[I+B])

 Objects(frame(I+B)), weight=AssociateObjects(centroids,

curr_objects)

 while I < 10 {

 curr_objects = Objects(frame(I+B)

 N = count (centroids)

 I++

 Weight = inf

 For N – 2 <= J <= N + 2 {

 ## J is number of clusters for K-means

 K[J]_centroids = K-means(frame[I+B], J)

 28

 temp_objects,

temp_weight=AssociateObjects(K[J]_centroids, curr_objects)

 if temp_weight < weight

 centroids = K[J]_centroids

 next_frame_objects = temp_objects

 }

 Objects(frame(I+B)) = next_frame_objects

 }

 }

}

 Figure 3. Proposed Clustering Algorithm

3.3.4 Kalman Filter [13]

A Kalman filter is an optimal recursive data processing algorithm. It processes all

available measurements, regardless of their precision, to estimate the current value of the

variables of interest, with use of (1) knowledge of the system and measurement device

dynamics, (2) the statistical description of the system noise, measurement errors, and

uncertainty in the dynamics models, and (3) any available information about initial

conditions of the variables of interest. Since a Kalman filter is recursive, there is no need

to require all previous data to be kept in storage and reprocessed every time a new

measurement is taken.

A Kalman filter combines all available measurement data, plus prior knowledge

about the system and measuring devices, to produce an estimate of the desired variables

in such a manner that the error is minimized statistically. It estimates a process by using a

form of feedback control: the filter estimates the process state at some time and then

obtains feedback in the form of (noisy) measurements. As such, the equations for the

Kalman filter fall into two groups: time update equations and measurement update

equations. The time update equations are responsible for projecting forward (in time) the

 29

current state and error covariance estimates to obtain the a priori estimates for the next

time step. The measurement update equations are responsible for the feedback, i.e. for

incorporating a new measurement into the a priori estimate to obtain an improved a

posteriori estimate. The equations are updated as shown in Figure 6.

Figure 4: The discrete Kalman filter cycle

Discrete Kalman filter time update equations:

Project the state ahead:
 = A k – 1 + Buk (17)

Project the error covariance ahead:
 = APk – 1A

T
 + Q (18)

Discrete Kalman filter measurement update equations:

Compute the Kalman gain: Kk =
 H

T
(H

 H
T
 + R)

–1
 (19)

Update the error covariance: Pk= (I – KkH)
 (20)

Update estimate with measurement zk: =
 + Kk (zk- H

) (21)

The variables used in eqns (17) – (21) are described below:

 : The a posteriori state estimate at time k given observations up to and including

at time k. It is represented by

 , where (x,y) is the co-ordinate of the point and vx, vy

are the velocities along x and y directions respectively.

 30

 A : State transition model which is applied to the previous state xk−1

The value used in this work is:

 B : Control input model which is applied to control vector uk . Here a zero matrix.

 Pk : The a posteriori error covariance matrix

 H : The observation model which maps the true state space into the observed space.

This matrix is

 zk : Observation at time instant ‘k’

The first task during the measurement update is to compute the Kalman gain, Kk. The

next step is to actually measure the process to obtain, and then to generate an a posteriori

state estimate by incorporating the measurements in equation (20). The final step is to

obtain an a posteriori error covariance estimate via equation (21). After each time and

measurement update pair, the process is repeated with the previous aposteriori estimates

used to project or predict the new apriori estimates.

In addition, there is some form of a measurement model [14] that describes the

relationship between the process state and measurements. This can usually be represented

with a linear expression similar to equation:

 zk = Hxk + vk (22)

where, zk is a 2x1 matrix with elements zk[1] is the x coordinate measurement obtained

directly from pixels, zk[2] is the y coordinate measurement obtained directly from pixels,

and vk is a 2x1 measurement noise vector with covariance matrix

R. that is also a 2x2

matrix. R is the measurement noise covariance of size 2x2. It determines how much

 31

information from the measurement is used [41]. So, if R is high, the Kalman Filter

considers the measurements as not very accurate. In our work, R is obtained from the

covariance measurements done on the image pixels.

 32

CHAPTER 4

RESULTS

4.1 SIMULATION FRAMEWORK

 The proposed object tracking system was tested on video sequences of cars that

were captured using stationary cameras. The videos were taken from

www.changedetection.net [17]. Since the simulation setup currently does not have

support for OpenCV’s video subroutines, only offline processing could be carried out.

The video frames were extracted and stored for offline processing. The sizes of the video

frames were 320x240, 320x240 and 308x242. They were all 8-bit grayscale images.

The first video sequence, labeled Aerial_highway, is a video sequence that

captures the traffic at a junction of two crossroads from a stationary aerial camera. The

sequence of frames has 5 moving cars. The second video, labeled Multi_car, is the

video captured from a road with its sidewalk. This has cars moving on the road and a

bicycle on the pavement. The third frame sequence, labeled Highway, has four moving

objects. The considered frame sequences have objects moving as well as ones which are

entering the scene.

The proposed algorithm was implemented in C++. Sequential codes for DBSCAN

and Zivkovic’s Gaussian Mixture Model were obtained from Open Source Software [4].

The accelerator was simulated using Gem5 [33]. Since the GEM5 simulations on the

accelerator were very slow, we tested the algorithm for fifteen frames of each video

sequence.

 33

For each of the video sequences, we checked the speedups of the individual

kernels. The speedup was the ratio of the reference code execution time and our

implementation of the kernel.

For example, for GMM, speedup was calculated as the ratio of execution time for

sequential implementation to the execution time for parallel implementation. For

clustering, the speedup is calculated as the ratio of the execution time for DBSCAN

algorithm to the execution time for the proposed clustering algorithm.

4.2 DESCRIPTION OF THE HARDWARE ACCELERATOR

The platform used to implement the algorithm is a warp-based SIMT coprocessor.

There are 8 virtual warps; each warp consists of 32 threads that operate on 32 lanes of

data simultaneously. The lanes each have their own integer register file, a separate

floating point register file, and conditional flags. The programmer sees a warp of 32 lanes

that can execute integer operations and single and double precision floating point (FP)

operations. The processor can switch between 8 virtual warps, similar to nVIDIA Fermi

GPU.

The instruction set supported is ARM’s 64-bit AArch ISA. The implementation is

embodied in the gem5 simulator. The massively parallel engine achieves high throughput

by employing extreme multi threading. Currently, upto 256 threads are supported. To

hold the context of these threads, this engine supports a register file of around 600KB

size.

 34

4.3 PARALLELIZATION SCHEMES

Gaussian Filter:

 To find the most suitable parallelization scheme for the hardware accelerator, we

first carried out experiments involving 2D Gaussian filter of size 5x5. Here 1D filter

computations were done along the columns followed by 1D filter computations along the

rows. Input image is a 2-D matrix of unsigned int data type with 16bits/pixel. The

coefficients are 16 bit integers. 3 types of input images are used: Small(512x512),

Medium(1024x1024) and Large(2048x2048) .

Different parallelization schemes were experimented with, namely, pixel-level

parallelization, loop unrolling along rows and loop unrolling along columns. In pixel

level parallelization, the number of threads launched is equal to the total number of pixels

in the image and the computations on individual pixels are carried out in parallel. The

order in which the threads are spawned and managed is decided by the compiler. In the

loop unrolling approach across columns, the number of threads spawned is equal to the

number of columns. Each thread traverses down the column in steps of the loop unrolling

factor. By this, we mean that in each thread, there are two loops. The inner loop works on

generating N outputs at a time, where N is the loop unrolling factor. The outer loop

traverses down the column in blocks of N pixels (Figure 8). In case of loop unrolling

along rows, the same approach is taken by spawning one thread per row and traversing

across the row in each thread.

 For the Gaussian filter, the loop unrolling approach along columns had the best

speedups among the schemes that were analyzed. This was because it exploited the

characteristics of cache-line access the best. Pixels adjacent to each other along a row are

 35

stored in the same cache-line. As a result, there are more load reuses compared to the

loop unrolling approach along the rows. In pixel level parallelization, each pixel is

processed in a different thread. While this also provides opportunity for exploiting cache

line access depending upon the order in which the threads are executed, there is an

overhead in managing the large number of threads.

We analyzed the variation in performance with loop unrolling factor for Gaussian

column filters and the results are presented in Figure 9. Our study shows that a loop

unrolling factor of eleven along the column achieves the best performance on the

accelerator; larger unrolling factors have minimal effect on the performance.

Figure 5: Loop unrolling by a factor of 2 implies 2 outputs per traversal down the thread;

N threads

 36

Figure 6: Variation in speedups for Gaussian filter with loop unrolling factor; best

performance is when column loop unrolling factor is 11 for small and medium images

and 9 for large images

Gaussian Mixture Model:

For Gaussian Mixture Model (GMM), we investigated the performance of pixel

level parallelization and loop unrolling. However, owing to prohibitively long simulation

times on the GEM5 for GMM, we considered loop unrolling factors of 1, 2, 4 and 8.

Speedup is typically a function of the load store reuses and exploiting cache-line

accesses. So while the optimal loop unrolling factor for Gaussian filter was found out to

be 11, for the GMM, if we chose a factor that is not a divisor of the height of the image,

the overhead caused due to the additional computations for the remaining pixels of the

column was significant. We found that the speedup was almost the same across all loop

unrolling factors. The results are shown in Figure 7.

 37

Figure 7: Speedup for foreground detection using different parallelization schemes

The speedups for foreground detection on the hardware accelerator using different

parallelization schemes are shown in Figure 7. As we can see, these results indicate that

pixel level parallelization shows the best performance. There is no big difference in the

speedup performance of different loop unrolling factors because the serial execution time

and parallel execution time changed proportionately; the variation was in few thousands

of microseconds that made up 0.1% of the total execution time.

DBSCAN:

The sequential DBSCAN algorithm scans the points in space sequentially and

grows clusters around the current point, marking the points to which it grows as visited. It

then moves on to unvisited points and repeats the same procedure. Attempts have been

made to parallelize this algorithm [8], however the parallelization requires additional

runtime for book-keeping tasks and merging of threads. In fact, the more the number of

cores, the more time the algorithm takes for merging the threads. The memory

requirements of the merging operation were too large for the hardware accelerator and

0

1

2

3

4

5

6

7

Loop
unrolling
factor : 1

Loop
unrolling
factor: 2

Loop
unrolling
factor: 4

Loop
unrolling
factor: 8

pixel level

Sp
e

e
d

u
p

Parallelization scheme

Aerial

Multi_Car

Highway

 38

simulations terminated without any errors or print statements. As a result, we were not

able to implement a parallel version of DBSCAN. Instead we designed a low cost

algorithm that exploits the fact that the objects to be tracked do not change much between

subsequent frames and hence the locations of the centroids are also close to each other.

4.4 TRACKING PERFORMANCE

To evaluate the accuracy of our results, outputs were inspected at the end of every

stage. For foreground detection, we checked the output by reading the text file output

from GEM5 and visually checking it in MATLAB. We used the DBSCAN as the

baseline for our clustering algorithm and compared the performance of our proposed

algorithm with DBSCAN. The centroids returned by our algorithm was the same as those

returned by DBSCAN in most cases. However, there were a few deviations due to noise

but those errors were rectified at the Kalman filter stage.

In order to determine the effect of the number of clusters N, on the accuracy of

clustering (i.e. tracking performance), we compared the results of our clustering approach

by computing the error between the centroids returned per frame with our proposed

algorithm and the centroids returned if DBSCAN had been done on each frame. The error

was calculated by taking a root mean square of the Euclidean distance between each

centroid returned by DBSCAN, and the closest centroid returned by the proposed

solution for that frame. We conducted an experiment in which we fixed the frame

parameter M and varied the number of means over which K means was iterated (N-2 to

N+2, N-3 to N+3, N-4 to N+4 and N-5 to N+5). The frame parameter is number of

frames over which K-means and DBSCAN is repeated such that DBSCAN is done for 1

 39

frame and K-means is done for M-1 frames. We varied the frame parameter as 10 and 12,

since these gave the best results for the three videos. Figures 8 and 9 show the RMS error

for 210 frames of multi_car video for frame parameters 10 and 12; Figures 10 and 11 for

210 frames of highway video sequence; Figures 12 and 13 for 210 frames of

Aerial_highway video. We found that the frame parameter and number of means that

gave the best result is different for different video sequences. The findings have been

presented in Table 1.

Figure 8: Variation in tracking performance with the number of frames over which K

Means is done for multi_car video. Frame parameter is 10.

0

20

40

60

80

100

120

600 650 700 750 800 850 900 950 R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

w
rt

 D
B

SC
A

N

FRAME

Variation of RMS error in centroids over means

"N-5 to N+5" "N-2 to N+2" "N-3 to N+3" "N-4 to N+4"

 40

Figure 9: Variation in tracking performance with the number of frames over which K

Means is done for multi_car video. Frame parameter is 12.

Figure 10: Variation in tracking performance with the number of frames over which K

means is done for highway video. Frame parameter is 10.

0

10

20

30

40

50

60

70

600 650 700 750 800 850 900 950

R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

w
rt

D

B
SC

A
N

FRAME

Variation of RMS error in centroids over means

"N-5 to N+5" "N-2 to N+2" "N-3 to N+3" "N-4 to N+4"

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

 w
rt

D

B
SC

A
N

Frame

Variation of RMS error in centroids over means

"N-2 to N+2" "N-3 to N+3" "N-4 to N+4" "N-5 to N+5"

 41

Figure 11: Variation in tracking performance with the number of frames over which K

means is done for highway video. Frame parameter is 12

Figure 12: Variation in tracking performance with the number of frames over which K

Means is done for Aerial_highway video. Frame parameter is 10.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

w
rt

D

B
SC

A
N

Frame

Variation in RMS error in centroids over means

"N-2 to N+2" "N-3 to N+3" "N-4 to N+4" "N-5 to N+5"

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

w
rt

D

B
SC

A
N

Frame

 Variation of RMS error in centroids over means

"N-2 to N+2" "N-3 to N+3" "N-4 to N+4" "N-5 to N+5"

 42

Figure 13: Variation in tracking performance with the number of frames over which K

Means is done for Aerial_highway video. Frame parameter is 12.

The best configuration was analyzed for each video based on which had the minimal

error. The findings are as below:

Video Frame

Parameter

Number of

means

Multi_car 12 N-5 to N+5

Highway 10 N-3 to N+3

Aerial 10 N-4 to N+4

Table 1: Best configuration for each video

4.5 TIMING RESULTS

4.5.1 Foreground Detection

 a) Execution times of various foreground detection techniques

The implementations of Gaussian mixture model obtained from open source [4]

were run on Intel core I7 Processor. The best performing GMM with the minimal number

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

R
M

S
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s

w
rt

 D
B

SC
A

N

Frame

Variation in RMS error in centroids over means

"N-2 to N+2" "N-3 to N+3" "N-4 to N+4" "N-5 to N+5"

 43

of computations was picked. The input video was taken from Change detection website

[17] was used for this evaluation. A frame of the video is shown in Fig 14.

Figure 14: Input video that was used to find the best foreground detection technique

Figure 15: Variation in execution times of foreground detection algorithm on Intel core I7

0

1000000

2000000

3000000

4000000

5000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ex
e

cu
ti

o
n

 t
im

e
 (

u
s)

Algorithm

Comparison of Foreground Detection Algorithms

 44

Figure 15 shows execution times of different foreground detection algorithms on

Intel I7 processor. Among the different algorithms, Zivkovic’s GMM was the algorithm

of choice (Algorithm 12 in Figure 15). The algorithms which had lesser runtime were not

robust enough for tracking purposes. Zivkovic’s GMM provided the necessary robustness

while having a small runtime.

b) Speedup of Zivkovic’s GMM algorithm

 Three videos namely Multi-car, Aerial highway and Highway were chosen for

applying the parallel version of Zivkovic’s GMM. Figure 16 depicts a snapshot of the

videos with foreground detection applied.

Figure 16: Result of foreground detection algorithm

4.5.2: Clustering

Clustering contributes to a significant portion of the overall runtime. If DBSCAN

is used for clustering, then clustering takes ~70% of the overall time.

 45

Performance on Intel Core I7

Video Execution

time for

proposed

algorithm(us)

Execution

time for

DBSCAN

(us)

Speedup=

DBSCAN exe time/

Proposed algorithm

exe time

Multi_Car 9460670 39250663 4.15

Aerial_Highway 4904950 12907185 2.63

Highway 10903100 39238625 3.60

Table 2: Performance of DBSCAN on Intel Core I7

Performance on Hardware accelerator:

Video Execution

time for

DBSCAN(us)

Execution

time for

proposed

algorithm(us)

Speedup=

DBSCAN exe time/

Proposed algorithm

exe time

Aerial_Highway 1320000 448457 2.95

Highway 645000 131000 4.92

Table 3: Performance of DBSCAN on hardware accelerator

Table 2 shows the performance of the DBSCAN on Intel Core I7 processor for

210 frames of videos sequences and Table 3 shows the performance of the DBSCAN

algorithm on the hardware accelerator for 15 frames. The multi_car video did not run on

the hardware accelerator owing to the large memory requirement for the points to be

clustered.

The proposed clustering algorithm provides substantial speedups when compared

to running DBSCAN for each frame of the video. For Intel Core I7, the average speedup

is around 3.9 whereas for the hardware accelerator, the average speedup is around 3.5.

The algorithm results in faster runtimes without compromising much on the accuracy

provided by DBSCAN.

 46

4.5.3 Kalman Filter

Table 4: Performance of Kalman filter on hardware accelerator

The Kalman filter runtimes are negligible when compared to the other

components of the system. As a result, we directly applied the filter in our system without

any modifications. The execution times presented above is the execution time for 15

frames of the three video sequences.

4.5.4. Overall Speedup

Figure 17: Runtimes of the different kernels on Intel I7.

Figure 17 shows the execution times for the different kernels for 210 frames of

the three video sequences on Intel I7 processor. On an average, with the DBSCAN

clustering algorithm, the foreground detection was observed to take 12%, DBSCAN 87%

and Kalman filter 1% of the total execution time. On the other hand, when the hybrid

algorithm was used, foreground detection took 29%, clustering 69% and Kalman filter 2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Foreground
detection

DBSCAN hybrid alg Kalman filter

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Kernel

Multi_Car

Aerial_Highway

Highway

Video Execution

time(us)

Multi car 1400

Highway 994

Aerial_Highway 2248

 47

% of the total execution time. There is a drastic difference in the run times for clustering

between Aerial_highway and the rest because the number of data-points to be clustered in

the case of Aerial_highway was of the order of 10
2
 whereas for the rest, it was of the

order of 10
5
 and hence more time to cluster.

Table 5: Overall performance of object tracking system on Intel Core I7

Video Exe time (us) Speedup

Proposed

algorithm

Conventional

code using

DBSCAN

Multi car 42417234 12627241 3.4

Highway 17225297 9223062 1.9

Aerial_Highway 41910307 13574782 3.1

 48

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis report described our work on implementing a low cost object tracking

algorithm and optimizing it further for a parallel hardware accelerator. The video

sequences that were considered were videos captured using stationary cameras. Also, the

processing done was offline, i.e processing was done on stored frames from the video.

This was because the hardware accelerator simulation setup did not support processing

directly on the videos.

We subdivided the task of object tracking into foreground detection, clustering

and tracking using 1D Kalman filtering. The choice of our algorithms was made on the

basis of computational efficiency without compromising on the accuracy.

 For foreground detection, we analyzed a set of algorithms that were a part of the

Open Source Software developed by Andrews Sobral [2] by executing them on Intel I7

and checking the computation time as well as visually inspecting the accuracy of the

algorithms. We found that the Gaussian Mixture model developed by Zivkovic [4] gave

the best performance and also provided scope for parallelization. We experimented with

different parallelization schemes, such as pixel level and loop unrolling. We found that

pixel level parallelization gave the best speedup for GMM.

 Clustering was found to consume the maximum proportion of the execution time

since clustering algorithms are inherently very sequential. Both DBSCAN and K-means

were considered. Since DBSCAN is computationally more expensive than K-means, we

chose a mixed approach wherein DBSCAN was performed on one frame, followed by K-

means on subsequent 9 frames. The number of centroids which was input to K-means

 49

was based on the number of centroids returned by DBSCAN. We compared the

performance of our hybrid algorithm to DBSCAN per frame and obtained a maximum

speedup of 4.92.

 For the final task of estimating the motion parameters of the moving objects, we

used a constant acceleration model 1D Kalman filter. We did not find a need to

parallelize this task as it contributes to a very small fraction of the overall runtime. The

parameters that were estimated were position and velocity of the objects.

 Also as part of this thesis, we compared our results with the object tracking

technique developed by University of Michigan researchers. Their tracking technique

works with videos having moving background as well, whereas our technique works only

with stationary background.

For future research, we plan to investigate the hybrid clustering algorithm further.

There are parallel versions of DBSCAN implemented on GPUs such as the parallel

DBSCAN based on Disjoint-Set Data structure [8]. We can take inspiration from that to

implement the parallel version on the hardware accelerator.

 50

REFERENCES

[1] H. Zhou, Y. Yuan, C. Shi, “Object tracking using SIFT features and mean

shift,” Computer Vision and Image Understanding, 113 (3), pp.345–352, 2009.

[2] A. Sobral and A. Vacavant, “A comprehensive review of background

subtraction algorithms evaluated with synthetic and real videos,” Computer Vision and

Image Understanding, 122, pp.4–21, 2014.

[3] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM

Computing Surveys (CSUR), 38(4), pp.1 -45, 2006.

[4] Z. Zivkovic, “Improved adaptive gaussian mixture model for background

subtraction,” IEEE International Conference on Pattern Recognition (ICPR), vol. 2, pp.

28–31, August 2004.

[5] Z.Zivkovic and F.van der Heijden, “Recursive Unsupervised Learning of Finite

Mixture Models”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26,

no.5, pp.651-656, May 2004.

[6] H.Bäcklund, A.Hedblom and N.Neijman, “A density - based spatial clustering of

application with noise,” Data Mining TNM033 LinköpingsUniversitet – ITN, 2011.

[7] T.N. Tran, K.Drab, M.Daszykowski, "Revised DBSCAN algorithm to cluster data

with dense adjacent clusters", Chemometrics and Intelligent Laboratory Systems,

120:9296. DOI: 10.1016/j.chemolab.2012.11.006.

[8] M.M.A.Patwary, D.Palsetia, A.Agrawal, W.Liao, F.Manne, A.Choudhary, "A

New Scalable Parallel DBSCAN Algorithm using the Disjoint-Set Data Structure",

International Conference for High Performance Computing, Networking, Storage and

Analysis (SC), 2012.

[9] M. Ester, H.P. Kriegel, J. Sander, X. Xu, "A density-based algorithm for

discovering clusters in large spatial databases with noise", Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, Portland, Oregon,

pp. 226–231, 1996.

[10] C. Lallier, E. Renaud, L. Robinault, L. Tougne, "A testing framework for

background subtraction algorithms comparison in intrusion detection context", 8
th

 IEEE

International Conference on Advanced Video and Signalbased Surveillance (AVSS), ,

pp.314-319, 2011.

[11] M. Sivabalakrishnan, D. Manjula, "Adaptive background subtraction in dynamic

environments using fuzzy logic", International Journal of Video & Image processing,

IJVIPNS-IJENS, vol:10 No: 01, pp. 18-21, 2010

 51

[12] Wikipedia: https://en.wikipedia.org/wiki/K-means_clustering

[13] P.S. Maybeck, "Stochastic models, estimation, and control", Chapter 1,

Introduction, Academic Press, Inc, vol. 1, pp. 1-16, 1979.

[14] G.Welch, G.Bishop, "An Introduction to the Kalman Filter", UNC-Chapel Hill

19(5): 41, 2006.

[15] X.Mei, H.Ling, "Robust visual tracking and vehicle classification via sparse

representation", IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(11), pp.2259–2272, 2011.

[16] B.Babenko, M.-HYang, S.Belongie, "Robust object tracking with online multiple

instance learning", IEEE Transactions on Pattern Analysis and Machine Intelligence, 33,

pp.1619–1632, 2011.

[17] N. Goyette, P.M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, "A new change

detection benchmark dataset", Proc. IEEE Workshop on Change Detection (CDW-2012)

at IEEE Conference on Computer Vision and Pattern Recognition -2012, pp.16-21, June

2012.

[18] J. K Aggarwal, and Q.Cai, "Human motion analysis: A review", Computer Vision

Image Understand. Vol.73, No.3, pp.428–440, 1999.

[19] D. M. Gavrila, "The visual analysis of human movement: A survey", Computer

Vision Image Understand.Vol.73, No.1, pp.82–98, 1999.

[20] T.Moeslund, and E.Granum , "A survey of computer vision-based human motion

capture", Comput.Vision Image Understand. 81(3), pp.231–268, 2001.

[21] R.O. Duda, P.E. Hart, David G. Stork, "Pattern classification", 2
nd

 edition, Wiley.

[22] J. B MacQueen, "Some Methods for classification and Analysis of Multivariate

Observations", Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability 1. University of California Press. pp. 281–297, 1967.

[23] A. Sobral, L. Oliveira, L. Schnitman, F. Souza, "Highway traffic congestion

classification using holistic properties", International Conference on Signal Processing,

Pattern Recognition and Applications (SPPRA’2013), DOI: 10.2316/P.2013.798-105,

2013.

[24] J.Shi and C.Tomasi, "Good Features to Track", IEEE Conference on Computer

Vision and Pattern Recognition, pp.593–600, 1994.

[25] B.D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an

Application to Stereo Vision", Proceedings of the 7th International Joint Conference on

Artificial intelligence pp.674-679,1981.

 52

[26] C.Tomasi and T.Kanade, "Detection and Tracking of Point Features", Carnegie

Mellon University Technical Report CMU-CS, pp.91-132, April 1991.

[27] J.Hopcroft, R.Tarjan, "Algorithm 447: efficient algorithms for graph

manipulation", Communications of the ACM 16 (6), pp.372–378, 1973.

[28] G. Nebehay, R. Pflugfelder, "Consensus-based Matching and Tracking of

Keypoints for Object Tracking", IEEE Winter Conference on Applications of Computer

Vision (WACV), pp. 862-869, 2014.

[29] S. Blackman, "Multiple hypothesis tracking for multiple target tracking", IEEE

Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp.5 -18, 2004.

[30] J.Rittscher, J.Kato, S.Joga, and A. Blake, "A probabilistic background model for

tracking", European Conference on Computer Vision (ECCV). Vol. 2, pp.336–350, 2000.

[31] B.Resko, P.T Szemes, P.Korondi, P.Baranyi, H.Hashimoto, "Artificial neural

network based object tracking," in Annual Conference Society Of Instrument And

Control Engineers Of Japan, vol.2, pp.1398-1403, Aug 2004.

[32] A.Babaeian, S.Rastegar, M.Bandarabadi, M.Rezaei, "Mean shift-based object

tracking with multiple features," 41st Southeastern Symposium on System Theory, pp.68-

72, March 2009.

[33] T. Lindeberg, "Scale Invariant Feature Transform", Scholarpedia, 7(5), 2014.

[34] N. Binkert, B.Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M D. Hill, and D. A. Wood, "The gem5 simulator", ACM SIGARCH Computer

Architecture News, May 2011,

[35] J. A.Hartigan, M. A.Wong, "Algorithm AS 136: A K-Means Clustering

Algorithm", Journal of the Royal Statistical Society, Series C (applied Statistics), 28(1),

pp.100–108, 1979.

[36] M.A. Fischler , R.C. Bolles, "Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography", Communications

of the ACM, 24(6), pp.381–395, 1981.

[37] X. Jin and J. Han, "K-Medoids Clustering", Encyclopedia of Machine Learning,

Springer US, pp. 564-565, 2010.

[38] T. Zhang, R. Ramakrishnan & M. Livny, "BIRCH: an efficient data clustering

method for very large databases", ACM SIGMOD Record ,Vol. 25, No. 2, pp. 103-114,

June 1996.

 53

[39] W.Wang, J. Yang, & R. Muntz, "STING: A statistical information grid approach

to spatial data mining", Very Large Data Bases Conference, Vol. 97, pp. 186-195, August

1997.

[40] G. Sheikholeslami, S. Chatterjee, & A. Zhang, "WaveCluster: a wavelet-based

clustering approach for spatial data in very large databases", The Very Large Data Bases

Journal, 8(3-4), pp. 289-304, 2000.

[41] http://campar.in.tum.de/Chair/KalmanFilter

