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ABSTRACT  

   

Object tracking is an important topic in multimedia, particularly in applications 

such as teleconferencing, surveillance and human-computer interface. Its goal is to 

determine the position of objects in images continuously and reliably. The key steps 

involved in object tracking are foreground detection to detect moving objects, clustering 

to enable representation of an object by its centroid, and tracking the centroids to 

determine the motion parameters. 

 In this thesis, a low cost object tracking system is implemented on a hardware 

accelerator that is a warp based processor for SIMD/Vector style computations. First, the 

different foreground detection techniques are explored to figure out the best technique 

that involves the least number of computations without compromising on the 

performance. It is found that the Gaussian Mixture Model proposed by Zivkovic gives the 

best performance with respect to both accuracy and number of computations. Pixel level 

parallelization is applied to this algorithm and it is mapped onto the hardware accelerator.  

Next, the different clustering algorithms are studied and it is found that while 

DBSCAN is highly accurate and robust to outliers, it is very computationally intensive. 

In contrast, K-means is computationally simple, but it requires that the number of means 

to be specified beforehand. So, a new clustering algorithm is proposed that uses a 

combination of both DBSCAN and K-means algorithm along with a diagnostic algorithm 

on K-means to estimate the right number of centroids. The proposed hybrid algorithm is 

shown to be faster than the DBSCAN algorithm by ~2.5x with minimal loss in accuracy. 

Also, the 1D Kalman filter is implemented assuming constant acceleration model. Since 

the computations involved in Kalman filter is just a set of recursive equations, the 



  ii 

sequential model in itself exhibits good performance, thereby alleviating the need for 

parallelization. The tracking performance of the low cost implementation is evaluated 

against the sequential version. It is found that the proposed hybrid algorithm performs 

very close to the reference algorithm based on the DBSCAN algorithm.  
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CHAPTER 1 

INTRODUCTION 

Object tracking is an interesting and a challenging topic in the field of computer 

vision. Its goal is to determine the position of the object in the images continuously and 

reliably. It is used in the areas of automated surveillance, traffic monitoring, vehicle 

navigation and motion-based recognition [3]. For instance, in object tracking in video, a 

tracker assigns consistent labels to the tracked objects in different frames of a video. 

Additionally, depending on the tracking domain, a tracker can also provide object-centric 

information, such as orientation, area, or shape of an object.  

Tracking objects can be a challenging task in scenes that are prone to illumination 

changes, object to scene occlusions and cluttering [1]. It can also be challenging when 

there is loss of information caused by projection of the 3D world on a 2D image [3]. 

Added to all these algorithm level challenges are the challenges due to real-time 

processing requirements.  

Object tracking can be simplified by imposing constraints on the motion and/or 

appearance of objects. For example, almost all tracking algorithms assume that the object 

motion is smooth with no abrupt changes. One can further constrain the object motion to 

be of constant velocity or constant acceleration based on a priori information. Prior 

knowledge about the number and the size of objects, or the object appearance and shape, 

can also be used to simplify the problem.  

       Numerous approaches for object tracking have been proposed [3]. These primarily 

differ from each other based on the way they approach the following questions: Which 

object representation is suitable for tracking? Which image features should be used? How 
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should the motion, appearance, and shape of the object be modeled? The answers to these 

questions depend on the context/environment in which the tracking is performed and the 

end use for which the tracking information is being sought. 

1.1 PROBLEM DESCRIPTION 

The goal of our research is to design a low cost object tracking system optimized 

for parallel implementation. Specifically, we address the problem of automated object 

tracking of fast-moving objects in a video sequence captured from a stationary camera 

with the additional objective of parallelizing the algorithms in order that they can be 

efficiently implemented on a hardware accelerator. The task of object tracking is 

subdivided into (i) foreground detection that involves detecting the moving objects in the 

frame, (ii) clustering to group the detected objects so that they can be represented by 

centroids, and (iii) tracking the centroids to estimate the parameters of motion of the 

object. 

In an earlier work by University of Michigan researchers, object tracking was 

implemented on a warp based Single Instruction Multiple Threads (SIMT) coprocessor. 

This is a GPGPU like accelerator that has 8 virtual warps; each warp consists of 32 

threads that operate on 32 lanes of data simultaneously.   The lanes each have their own 

integer register file, a separate floating point register file, and conditional flags.  

The specific object tracking algorithm assumed that the background was not 

stationary, so additional steps were implemented to remove the effect of the moving 

background. In our work, we implement a low cost object tracking algorithm on the 

SIMT based hardware accelerator that assumes that the background is stationary.  
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1.2 PROPOSED APPROACH 

In this work, we explore different object tracking techniques. First, we investigate 

the performance of different techniques for foreground detection, clustering and tracking 

by implementing them on an Intel Core I7 processor. We then pick the algorithm that 

gives the least execution time without compromising on the accuracy and implement the 

same on the hardware accelerator. We also propose a new clustering algorithm that uses a 

combination of both DBSCAN [6] and K-means algorithm [35] along with the diagnostic 

algorithm on K-means to estimate the right number of centroids.   

The input to our system is in form of video sequences that are captured from 

stationary cameras. As a result, the background is considered stationary and the only 

noise that can occur is due to changes in illumination and any other background clutter 

such as moving of tree leaves, rain drops, etc.  The first step in our procedure, foreground 

detection involves identifying the moving objects in a frame.  The different techniques 

for this step include frame differencing, mean/variance over time, statistical methods 

using one or more Gaussians and non-parametric methods [2].  Of these techniques, 

background subtraction, Gaussian filter and several variants of Mixture of Gaussians 

were analyzed for performance and execution times. We saw that the mixture of 

Gaussians developed by Zivkovic [4] gave the best performance in terms of robustness 

and execution time.  

The second step in our procedure is to determine the number of moving objects in 

a given frame. In order to do this, we use clustering algorithms on the output binary 

images from the foreground detection step. Though supervised techniques outperform 

unsupervised clustering techniques, we decided to go for unsupervised techniques since 
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they are computationally less complex. The various unsupervised clustering techniques 

that were analyzed include K-means clustering [35], connected components labeling [27], 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [6]. Of these, 

connected components and DBSCAN don't need the number of centroids to be specified 

beforehand, whereas K-means requires it to be specified.  All the clustering algorithms 

are highly sequential in nature, giving very little scope for parallelization.  

We propose an algorithm for clustering that is significantly faster than the 

conventional clustering algorithms. Basically, we chose a combination of K-means and 

DBSCAN algorithms with additional diagnostic algorithms to reduce computational 

complexity. DBSCAN was chosen over connected components because it has inherent 

noise rejection capabilities. The worst case complexity of DBSCAN is O(n
2
) whereas that 

of K-means is O(kn) where n is the number of data points. In our approach, DBSCAN is 

performed for one frame and then K-means is performed over the next 9 frames. The 

number of centroids which is input to K-means is based on the number of centroids 

returned by DBSCAN. A diagnostic algorithm is developed based on the notion of 

distance between centroids of adjacent frames that returns the correct number of centroids 

from K-means. The assumptions are that the object velocity cannot be more than certain 

orders of magnitude from the frame velocity and also that the number of objects entering/ 

leaving the frame at a time cannot be more than a certain number. The proposed 

clustering algorithm gave a speedup of 4.9 compared to DBSCAN.  

              The final step of our procedure is tracking. Tracking involves estimating the 

parameters of motion of the object, such as the velocity and the prediction for location of 

centroid in the next frame. For tracking, we considered the simplest 1-D Kalman filter 
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that is the least computationally intensive. Each moving object is assigned a kalman filter 

and this assignment tends to remain constant over frames. The algorithm is in itself very 

simple and since the sequential algorithm had very minimal execution time, there was no 

need for any parallelization. 

In our attempt to parallelize the proposed object tracking algorithm, we tried 

parallelization techniques such as those based at the pixel level and those that exploit 

spatial locality of cache lines by operating on a group of pixels at a time. For instance, for 

a Gaussian filter of size 5x5, since adjacent pixels along the row of an image are stored in 

sequential memory locations, loop unrolling along the columns gave better performance 

than along the rows. For GMM, we found that the smaller loop unrolling factor gave 

better timing performance and pixel level parallelization gave the best timing 

performance. The DBSCAN could not be parallelized since the hardware accelerator 

could not support the memory requirements. The sequential execution time of the 

Kalman filter was so less that there was no need to parallelize it.  

1.3 THESIS ORGANIZATION 

The thesis is organized as follows: Chapter 2 gives a detailed description of the 

present day state-of-the-art techniques for object tracking and also discusses their 

advantages and disadvantages. Chapter 3 describes the proposed object tracking 

technique in detail; and Chapter 4 discusses the results that we obtained. We provide our 

conclusions and the scope for future work in Chapter 5.  
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CHAPTER 2 

BACKGROUND 

2.1 INTRODUCTION 

  Object tracking can be classified into feature, model and optical flow based 

approaches. Feature based approach involves extraction of regions of interest (features) in 

the images and then identification of counterparts of individual images of the sequence. 

Feature based tracking methods include Multi Hypothesis tracking [29], Hidden Markov 

Model [30], Artificial Neural Network [31], Kalman Filtering [13] and Mean shift [32].  

Model based approach is very similar to feature based tracking; the difference is in the 

requirement of grouping, reasoning and rendering. Additionally, prior knowledge of 

investigated models is normally required. Optical flow based methods are used for 

generating dense flow fields by computing the flow vector of each pixel under the 

brightness constancy constraint. This computation is carried out either algebraically or 

geometrically.  

2.2 OBJECT TRACKING METHODS BASED ON MATCHING FOLLOWED BY 

TRACKING 

2.2.1 Object Tracking with SIFT Features and Mean Shift [1] 

This method uses a scale invariant feature transform (SIFT) [33] based mean shift 

algorithm for object tracking in real scenarios. SIFT features are used to establish 

correspondence between the regions of interests across frames. Mean shift is applied to 

conduct similarity search via color histograms. Maximum likelihood estimation of similar 

regions is achieved by evaluating the probability distributions from these two 

measurements in an expectation-maximization scheme. 
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The main steps in this algorithm are: a) Similarity measure by mean shift, b) SIFT feature 

based correspondence, and c) integration of SIFT and Mean-shift based similarity 

measure.  

a) Similarity measure by Mean shift:  

The measurement task involves the search of a confidence region for the target candidate 

that is most similar to the target model, given the predicted target’s position.  The 

similarity measure conducted here is based on color information. Given the sample points 

and kernel function k(x), the kernel density function can be used to estimate the 

probability density function of the object in the current image.  Similarly, the target 

image’s probability density function can also be estimated. Then correspondence between 

the feature and its counterparts can be established using feature-spatial space. Either 

Kullback-Leibler divergence or the Bhattacharya distance can be used to measure the 

affinity between two distributions.  

Mean shift is an instance of gradient ascent with an adaptive step size. Each iteration of 

mean shift is guaranteed to get closer to a stationary point; however it can get stuck at a 

saddle point or incorrectly assume a start point at a local minimum for a local maximum.  

The problem faced by this approach is that there can be a number of discontinuities 

which can be avoided by taking infinitesimal steps for moving the direction of the local 

gradient. But if step size is too large, the rate of convergence cannot be guaranteed. The 

employment of SIFT feature correspondence is a possible optimal solution to this 

problem.  

b) SIFT Feature based Correspondence 
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SIFT stands for Scale Invariant Feature Transform. SIFT features are distinctive invariant 

features from images that can be used to perform reliable matching between different 

views of an object or scene. The features are invariant to image scale and rotation, and 

are shown to provide robust matching across a substantial range of affine distortion, 

change in 3D viewpoint, addition of noise, and change in illumination.  

c)  SIFT and mean shift-based similarity measure   

In this stage, an expectation maximization algorithm is applied.  An expectation (E) step 

consists of evaluating the posterior probabilities for each mixture component. A 

maximization (M) step then updates the mixture components.  

The entire algorithmic flow can be summarized as:  

(1) Define a rectangle on the region of interest in the first frame of a video sequence.  

(2) Compute the color histogram of this region, whilst extracting SIFT features within 

this region  

(3) In the second frame, start from the former location and examine the surroundings for 

similarity measure. The sum of squared difference (SSD) method is applied for SIFT 

feature correspondence across frames.  

(4) Launch the proposed Expectation Maximization (EM) algorithm to search for an 

appropriate similarity region whilst minimizing the distance between the detected 

locations by mean shift and SIFT correspondence, respectively. 

 (5) Iterate the above steps till the difference between two mean shifts is smaller than a 

threshold (i.e., 0.01). 

In summary, this technique involves establishing correspondence between regions of 

interests across frames using SIFT feature, applying mean shift to conduct similarity 
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search based on color histograms and Expectation Maximization to achieve  maximum 

likelihood estimation of similar regions. Using SIFT and mean shift clustering makes this 

technique quite robust. However, it also makes it computationally intensive.  

2.2.2. Consensus-Based Matching and Tracking of Keypoints [28] 

This is a keypoint method for long-term model-free object tracking in a combined 

matching-and tracking framework. A voting mechanism is used wherein each keypoint 

casts a vote for the object centre. A consensus based scheme is used for outlier detection. 

Given a sequence of images I1, . . . , In, and an initializing region b1 in I1, the aim 

in each frame of the sequence is to recover the position of the object of interest or to 

indicate that the object is not visible. The position of the object is estimated up to its 

center μ, its scale s and the degree of its in-plane rotation α, where s and α are estimated 

with respect to the initial appearance of the object.  

Matching and Tracking: The model is based on a set of keypoints.  Each keypoint 

denotes a location r and descriptor f. Binary descriptors are employed to simplify 

computations. The object model O is initialized by detecting and describing keypoints in 

I1 that are inside the initializing region b1, followed by a mean-normalization of the 

keypoint locations. Matching and tracking keypoints are two complementary strategies 

for finding the keypoints. The candidate keypoints in It that are determined by their 

absolute position a and their descriptor f are detected and described. For each candidate 

keypoint, its Hamming distance with another keypoint is calculated by XORing the 

respective descriptors. If P is the set of candidate keypoints, the keypoints in P are 

matched to keypoints in I1 by requiring that the nearest neighbor must be closer than the 

second-nearest neighbor by a certain ratio ρ. The set of matched keypoints M then 
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consists of the subset of keypoint locations in P that match to O, augmented with the 

corresponding model keypoint index. Candidate keypoints that match to background 

keypoints are excluded from M. For tracking, the displacement of each keypoint in Kt−1 

from It−1 to It is computed by employing the pyramidal variant of the method of Lucas 

and Kanade for estimating optical flow. For t = 2, K1 is obtained by transforming O to 

absolute image coordinates. The set of tracked keypoints T is then obtained by updating 

the keypoint locations in Kt−1 while maintaining the keypoint index. 

Voting: In this step, each keypoint in K casts a single vote for the object centre, resulting 

in a set of votes V. At the end of this step, a robust estimate of the rotation of the object is 

obtained. However, this does not involve information from keypoint detectors, as they are 

not found to be reliable enough. 

Consensus: This step involves identifying and removing outlier points. To do this, 

hierarchical agglomerative clustering is applied on the set of votes V based on the 

Euclidean distance as the dissimilarity measure.  

To summarize, this technique is a novel keypoint based method for long term model free 

tracking where a consensus based scheme is used for outlier detection and a voting 

mechanism is used to determine object centre. This method has the advantage that it is 

highly accurate and it can achieve consistency in tracking over a large number of frames. 

However, it suffers from the drawback of large computational complexity especially 

when robust keypoint detectors like BRISK, SIFT or SURF are used.  

 

2.2.3. Conventional Feature Detection and Matching 
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First, a set of feature points is found in a frame. This is followed by a pyramidal Lucas-

Kanade Algorithm that is used to track the same points in the next image. Of the set of 

points in two images that are almost matched, some of the points are on moving objects 

but most are on background. To remove the effect of the moving background, several 

steps are computed.  First, a robust least-squares algorithm, RANSAC[36] is used to find 

an affine matrix to find a mapping from one image to the other. The affine matrix is used 

to warp the second image and then the warped image is subtracted from the first image. 

The background disappears because the feature points remaining after the robust least-

squares are almost all on the background.  What show up are the objects that are moving 

relative to the background. Then, a connected components algorithm is used to group 

pixels into object groups resulting in a moving object blob detector [27]. Finally, a basic 

Kalman filter tracker with a constant acceleration motion model is used to track the 

objects.   Prediction is done based on the target position and velocity, and a global nearest 

neighbor (GNN) algorithm is used to pick the most likely object for the track in the 

neighborhood of the point. 

2.3 OBJECT TRACKING METHODS NOT BASED ON MATCHING FOLLOWED 

BY TRACKING 

 Two of the object-tracking methods which are based on a completely different flow are:  

1. Tracking via Sparse Representation [15] 

2. Tracking with Online Multiple Instance Learning [16] 

2.3.1 Tracking via Sparse Representation [15]:  

This method approaches tracking as a sparse approximation problem in a particle filter 

framework. In this framework, occlusion, noise, and other challenging issues are 
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addressed seamlessly through a set of trivial templates. Specifically, to find the tracking 

target in a new frame, each target candidate is sparsely represented in the space spanned 

by target templates and trivial templates. The sparsity is achieved by solving an l1-

regularized least-squares problem. Then, the candidate with the smallest projection error 

is taken as the tracking target. After that, tracking is continued using a Bayesian state 

inference framework. The tracking performance is further improved by using two 

strategies. First, target templates are dynamically updated to capture appearance changes. 

Second, non-negativity constraints are enforced to filter out clutter which negatively 

resembles tracking targets.  

2.3.2 Tracking with Online Multiple Instance learning [16]:  

In this approach, the problem of tracking an object in a video given its location in the first 

frame and no other information is addressed. A class of tracking techniques called 

“tracking by detection” has been shown to give promising results at real-time speeds. 

These methods train a discriminative classifier in an online manner to separate the object 

from the background. This classifier bootstraps itself by using the current tracker state to 

extract positive and negative examples from the current frame. Slight inaccuracies in the 

tracker can therefore lead to incorrectly labeled training examples, which degrade the 

classifier and can cause drift. Using Multiple Instance Learning (MIL) instead of 

traditional supervised learning avoids these problems and can lead to a more robust 

tracker with fewer parameter tweaks. A new online MIL algorithm for object tracking 

that achieves superior results with real-time performance is used in this approach.  
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2.4 COMPARISON OF THE DIFFERENT TECHNIQUES FOR OBJECT TRACKING 

In the method involving mean shift with SIFT features, mean shift is a non-parametric 

feature-space analysis technique for locating the maxima of a density function, a so-

called mode-seeking algorithm. When used for clustering, it is robust to image occlusions 

and clutters. Also, it is capable of handling arbitrary feature shapes and data cluster 

shapes. However, it suffers from two main drawbacks. First, it is computationally 

intensive and requires        operations, where N is the number of data points and k is 

the number of average iteration steps for each data point. Second, the mean shift 

algorithm relies on sufficient high data density with clear gradient to locate the cluster 

centers. In particular, the mean shift algorithm often fails to find appropriate clusters for 

so called data outliers, or those data points located between natural clusters.  Though 

SIFT is the most widely used feature detection algorithm due to its accuracy and 

invariance to rotation and scale, it is computationally expensive due to the high 

dimensionality of the descriptor at the matching step. Also, the similarity measures for 

correspondence between two groups of the sample points demands two sequential 

operations for the pdf and integral calculations that are of the order of      . This makes 

it less attractive for parallel implementations as execution time is high.  

Consensus based matching and tracking of keypoints has high accuracy when compared 

to the existing approaches in model-free object tracking. It has been shown that it 

achieves state-of-the-art results over a large number of sequences. However this approach 

requires manual initialization over the first frame and then carrying out the tracking in 

subsequent frames which are not exactly the approach we are interested in. Also, this 
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method involves keypoint detection which is computationally expensive when prominent 

keypoint detection techniques such as BRISK, SIFT or SURF are used.   

Tracking with sparse representation requires a lot of memory to store the templates. Also, 

a Bayesian inference network is very complex to be implemented on an accelerator. 

Tracking with multiple instance learning involves using multiple instance learning in 

training a classifier which is not the current focus of the approach we are interested in. 

These drawbacks make these methods unattractive for implementation on the hardware 

accelerator.  
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CHAPTER 3 

PROPOSED OBJECT TRACKING FRAMEWORK 

3.1 MOTIVATION 

The complexity of the existing techniques, namely, mean shift, consensus based 

tracking, tracking with sparse representation and tracking with multiple instance learning 

is quite high. In this thesis, we focus on developing a low cost object tracking system. 

Consequently, the algorithms that were not computationally intensive but achieved good 

performance were chosen. 

3.2 OVERVIEW 

The proposed object tracking system is based on the technique described in [3] 

The task of object tracking is divided into three steps:  

Step 1: Foreground detection: Identifying the moving objects in a video. 

Step 2: Clustering: Representing each moving object by its centroid.   

Step 3: Tracking: Estimating the parameters of motion of each object 

Our proposed technique performs foreground detection using an improved version 

of adaptive Gaussian Mixture model developed by Zivkovic [4]. This is followed by the 

proposed clustering algorithm that uses DBSCAN clustering algorithm on a frame 

followed by K-means clustering for 9 frames and a diagnostic logic to figure out the right 

number of clusters from K-means. The last step uses the Kalman filter to predict 

estimates of the object’s position and velocity. The block diagram of the whole system is 

summarized in Figure 1:   
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ZIVKOVIK s GAUSSIAN 
MIXTURE MODEL

DBSCAN     
(for frames i, 

i+10, i+20)

KALMAN FILTER

KMEANS
(for frames 
i+1 to i+9)

DIAGNOSTIC 
ALGORITHM 

FOREGROUND 
DETECTION

CLUSTERING TRACKING

 

Figure 1.  Proposed Object tracking system 

 

3.3 DETAILED DESCRIPTION 

3.3.1 Foreground Detection 

The foreground detection is done using an improved version of adaptive Gaussian 

Mixture Model (GMM) developed by Zivkovic [4].  This is an efficient adaptive 

algorithm using Gaussian mixture probability density. Recursive equations are used to 

update the parameters and also to simultaneously select the appropriate number of 

components for each pixel. An advantage of using Gaussian mixture model is that it is 

robust to changes in illumination. It adapts to changes by updating the training set with 

new samples and discarding old samples from the training set. We choose a reasonable 

time period T, and at time t, we have training data set,  T = {x
(t)
,…., x

(t-T)
} where x

(t) 
is the 

value of the pixel at time t . For each new sample we update the training data set  T and 

re-estimate   (  | T, BG). However, among the samples from the recent history there 
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could be some values that belong to the foreground objects and we should denote this 

estimate as    (  (t)
| T, BG+FG). We use GMM with M components: 

                                    (  | T, BG+FG) =    
   mN (  ;    m,  m

2
I)                                     (1) 

where      1,….,     m are the estimates of the means and   1,….  m are the estimates of the 

variances that describe the Gaussian components. The mixing weights denoted by   m are 

non-negative and add up to one. The covariance matrices are assumed to be diagonal and 

the identity matrix I has proper dimensions. Given a new data sample   (t)
 at time t the 

recursive update equations are [5]  

                                                       m ←    m  + α(  
   

-   m)                                                (2)  

                                                                                    m ←      m +   
   

(α/  m)  m                                                                     (3)              

                                          
 ←    

 +   
   

(α/  m) (   
    m-    

 ) ,                                          (4)                                                                                                 

where   m=  (t)
-     m. Instead of the time interval T that was mentioned above, here constant 

α describes an exponentially decaying envelope that is used to limit the influence of the 

old data. We keep the same notation having in mind that α is approximately 1/T. For a 

new sample the ownership   
   

 is set to 1 for the 'close' component with largest   m and 

the others are set to zero. We define that a sample is 'close' to a component if the 

Mahalanobis distance from the component is for example less than three standard 

deviations. The squared distance from the m-th component is calculated as:   
 (  (t)

)   = 

   
    m/   

 . If there are no ‘close components’ a new component is generated with   m+1 = 

α,     m+1 =   (t) 
and   m+1=  0 where   0 is some appropriate initial variance. If the maximum 

number of components is reached, we discard the component with smallest   m.  

In this algorithm, we approximate the background model by the first B largest clusters:  
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                                p(  |ХT, BG) ~     
   mN(        m,   m2I)                                                     (5) 

If the components are sorted to have descending weights   m, we have  

                                          B= arg    (    
   m > (1-cf)),                                               (6) 

where cf  is a measure of the maximum portion of the data that can belong to foreground 

objects without influencing the background model. For example, if a new object comes 

into a scene and remains static for some time, it will probably generate an additional 

stable cluster. Since the old background is occluded, the weight πB+1 of the new cluster 

will be constantly increasing. If the object remains static long enough, its weight becomes 

larger than cf and it can be considered to be part of the background. If we look at (2) we 

can conclude that the object should be static for approximately log(1 - cf )/log(1 - α) 

frames. For example for cf = 0.1 and α = 0.001 we get 105 frames.  

The procedure for selecting the number of components is as follows: The weight 

πm describes how much of the data belongs to the m-th component of the GMM. It can be 

regarded as the probability that a sample comes from the m-th component and in this way 

the πm-s define an underlying multinomial distribution. Let us assume that we have t data 

samples and each of them belongs to one of the components of the GMM. Let us also 

assume that the number of samples that belong to the m-th component is nm =     
    

    

where   
   

-s are the ownerships. The assumed multinomial distribution for nm-s gives 

likelihood function L=   
   

   . The mixing weights are constrained to sum up to one. 

We take this into account by introducing the Lagrange multiplier λ. The Maximum 

Likelihood (ML) estimate follows from: 
 

    
              

 
       = 0. After 

getting rid of λ we get: 
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= 
  

 
= 
 

 
   

    
                                                                (7) 

The estimate from t samples, denoted as    
   

and it can be rewritten in recursive form as a 

function of the estimate    
     

for t-1 samples and the ownership   
   

of the last sample: 

                                          
   

=    
     

+ 1/t(  
   

-   
     

                                                     (8) 

If we now fix the influence of the new samples by fixing 1/t to α = 1/T we get the update 

equation (2). This fixed influence of the new samples means that we rely more on the 

new samples and the contribution from the old samples is down weighted in an 

exponentially decaying manner as mentioned before. 

            Prior knowledge for multinomial distribution can be introduced by using its 

conjugate prior, the Dirichlet prior    =   
   

   . The coefficients cm have a meaningful 

interpretation. For the multinomial distribution, the cm presents the prior evidence (in the 

maximum aposteriori (MAP) sense) for the class m - the number of samples that belong 

to that class a priori. As in [5] we use negative coefficients cm = -c. Negative prior 

evidence means that we will accept that the class m exists only if there is enough 

evidence from the data for the existence of this class. This type of prior is also related to 

Minimum Message Length criterion that is used for selecting proper models for given 

data [5]. The MAP solution that includes the mentioned prior follows from 
 

    
       

             
 
       = 0, where    =   

   
   .  We get:  

                                              
   
 

 

 
    

    
      ,                                                        (9) 

where K=     
    

       
    = t-Mc.  We rewrite (9) as:  

                                                
   
 

   
   
    

      
                                                                     (10) 
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where    = 
 

 
   

    
     is the ML estimate from (7) and the bias from the prior is 

introduced through c/t. The bias decreases for larger data sets (larger t). However, if a 

small bias is acceptable we can keep it constant by fixing c/t to cT = c/T with some large 

T. This means that the bias will always be the same as if it would have been for a data set 

with T samples. It is easy to show that the recursive version of (9) with fixed c/t = cT is 

given by: 

                               
   

=    
     

     (
  
   

     
 -    

     
  - 1/t

  

     
                                   (11) 

Since we expect usually only a few components M and cT is small we assume 1-McT   1. 

As mentioned we set 1/t to α and get the final modified adaptive update equation 

                                                      
                                                    (12) 

The above equation is used instead of (2). After each update we need to normalize    -s 

so that they add up to one. We start with GMM with one component centered on the first 

sample and new components are added as mentioned in the previous section. The 

Dirichlet prior with negative weights will suppress the components that are not supported 

by the data and we discard the component m when its weight πm becomes negative. This 

also ensures that the mixing weights stay non-negative. For a chosen α = 1/T we could 

require that at least c = 0.01 * T samples support a component and we get cT = 0.01. 

3.3.2 Clustering 

Clustering is a data mining technique that groups data into meaningful subclasses, 

known as clusters, such that it minimizes the intra-differences and maximizes inter-

differences of these subclasses [8]. Well-known algorithms include K-means, K-medoids 

[37], BIRCH [38], DBSCAN, STING [39], and WaveCluster [40].  These algorithms 
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have been used in various scientific areas such as satellite image segmentation, noise 

filtering and outlier detection, unsupervised document clustering, and clustering of 

bioinformatics data. DBSCAN is accurate but computationally intensive. K-means, on 

the other hand, is fast but requires the number of clusters as an input while also being 

prone to noise. We propose an algorithm that uses DBSCAN for a single frame out of a 

group of M frames followed by K-means clustering for the remaining M-1 frames. For K-

means, we apply a diagnostic algorithm to estimate the number of means that is closest to 

the actual number of means before launching it. The details of this are explained in 

subsequent sections. 

DBSCAN Algorithm: DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise), introduced by Ester et al [9], is a non-parametric, density based clustering 

technique [7]. It assumes that cluster is a region in the data space with high density. 

Compared to non-density based clustering methods, the DBSCAN algorithm has unique 

and advanced features that are useful when detecting objects/class/patterns/structures of 

different shapes and sizes. DBSCAN is a good candidate to find ‘natural’ clusters and 

their arrangement within the data space when they have a comparable density without 

any preliminary information about the groups present in a data set.   

DBSCAN scans the points in the input, one at a time, and grows clusters around 

each point if it is able to find sufficient number of points within a certain neighborhood of 

the point considered. The two inputs to the algorithm are Eps, which is a distance metric 

that defines the neighborhood of a point (this is simply a sphere around the point of 

radius Eps if we are considering Euclidean distance), and MinPts, which is the minimum 
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number of points required to be in the Eps neighborhood of a point that would allow a 

cluster to be grown from.  

To find a cluster, DBSCAN starts with an arbitrary point p and retrieves all points 

reachable from p with respect to Eps and MinPts. If p is a core point (i.e. a point that has 

at least MinPts points in its Eps neighborhood), this procedure yields a cluster with 

respect to Eps and MinPts. If p is not a core point, then DBSCA N moves onto the next 

point. 

The pseudo code for the algorithm as published in the original nomenclature [9] is 

as follows:  

DBSCAN(D, eps, MinPts) { 

   C = 0 

   for each point P in dataset D { 

      if P is visited 

         continue next point 

      mark P as visited 

      NeighborPts = regionQuery(P, eps) 

      if sizeof(NeighborPts) < MinPts 

         mark P as NOISE 

      else { 

         C = next cluster 

         expandCluster(P, NeighborPts, C, eps, MinPts) 

      } 

   } 

} 

 

 

expandCluster(P, NeighborPts, C, eps, MinPts) { 

   add P to cluster C 

   for each point P' in NeighborPts {  

      if P' is not visited { 

         mark P' as visited 

         NeighborPts' = regionQuery(P', eps) 

         if sizeof(NeighborPts') >= MinPts 

            NeighborPts = NeighborPts joined with NeighborPts' 

      } 

      if P' is not yet member of any cluster 

         add P' to cluster C 

   } 

} 
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regionQuery(P, eps) 

   return all points within P's eps-neighborhood (including 

P) 

Figure 2. DBSCAN Algorithm 

 

K-means clustering [12]: K-means is one of the simplest 

unsupervised learning algorithms that solve the well known clustering problem. It aims to 

partition n observations into k clusters in which each observation belongs to the cluster 

with the nearest mean, serving as a prototype of the cluster. 

Description: Given a set of observations (x1, x2, …, xn), where each observation is a d-

dimensional real vector, K-means clustering aims to partition the n observations 

into k (≤ n) sets S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares 

(WCSS). In other words, its objective is to find: 

                                                          
 

    
 
   ,                                                      (13) 

where μi is the mean of points in Si. 

Algorithm: The most common algorithm uses an iterative refinement technique. It is also 

called Lloyd’s algorithm. Given an initial set of K-means m1
(1)

,…,mk
(1)

 , the algorithm 

proceeds by alternating between two steps: 

Assignment step: Assign each observation to the cluster whose mean yields the least 

within-cluster sum of squares (WCSS). Since the sum of squares is the squared Euclidean 

distance, this is intuitively the "nearest" mean. 

                         
   

= {xp :         
   
 
 

          
   
 
 

      1                           (14) 
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where each xp is assigned to exactly one S
(t)

, even if it could be assigned to two or more 

of them. 

Update step: Calculate the new means to be the centroids of the observations in the new 

clusters.    

                                                   
     

= 
 

  
 
   
 
        

                                                     (15) 

Since the arithmetic mean is a least-squares estimator, this also minimizes the within-

cluster sum of squares (WCSS) objective. The algorithm converges when the assignments 

no longer change. 

 

Comparison of K-means and DBSCAN clustering: 

DBSCAN is a very robust algorithm since it is good at finding out arbitrarily 

shaped clusters. It is robust to outliers since it has inherent noise rejection capabilities. 

Also, it requires just two parameters and is insensitive to the ordering of the points in the 

database. One does not need to specify the number of means beforehand for it, unlike K-

means. However, DBSCAN suffers from the drawback that it is not entirely deterministic 

and border points that are reachable from more than one cluster can be part of either 

cluster, depending on the order the data is processed. Also, the quality of DBSCAN 

depends on the distance measure used in the function regionQuery(P,ε). The most 

common distance metric used is Euclidean distance. But this metric becomes useless for 

high dimensional data due to the curse of dimensionality. Also, since the order of 

complexity is  (N
2
) where N is the number of pixels, DBSCAN gets computationally 

intensive as the size of input data increases. 
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K-means is a computationally simple algorithm with order of complexity as 

 (kN), where k is the number of clusters. The metric here is Euclidean distance. Its main 

drawback is that it needs to know the number of clusters k beforehand. An inappropriate 

choice of k can lead to poor results.  Also, the final means returned by K-means depends 

on the initial set of means. This could result in poor accuracy at times. But it is 

computationally very simple for lower dimensional data which makes it attractive for low 

cost implementations. The problems of both DBSCAN and K-means algorithms can be 

overcome by simply combining them together with additional modifications.   

 

3.3.3 Proposed Clustering Algorithm 

In the proposed method, DBSCAN clustering is performed once every M frames 

and K-means clustering is performed in the remaining M-1 frames since K-means is way 

less computationally expensive. We experimented with different values of M and found 

that M=10 results in a significant decrease in runtime without losing much accuracy. The 

results are presented in Section 4.4 

The number of centroids obtained by DBSCAN algorithm is sent to K-means. The 

K-means operates on N-2 to N+2 centroids, where N denotes the number of centroids in 

the previous frame. The value of N for the current frame is determined through a 

diagnostic algorithm that rejects noise, but accepts new objects that may have entered the 

scene. The diagnostic algorithm works using distance as metric. It filters out the noise 

points using a size threshold. The proposed algorithm is summarized below:  

1. In the first frame (out of a group of M frames), perform DBSCAN. Let the 

number of centroids returned be N.  
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2. In the next frame, run K clustering algorithm from N-X to N+X, where X is a 

variable that can take values 2, 3, 4 or 5. The value of X is different for different videos 

and is determined experimentally.  

3.  Store the number of centroids obtained for each iteration and also the size of 

the clusters. Calculate the distance between the centroids of the current frame to the 

centroids of the previous frame. We create a distance matrix which would be of 

dimensions AxB, where A corresponds to the number of centroids in the current frame 

and B corresponds to the number of centroids in the previous frame. A matrix element 

with index (a,b) would correspond to the distance between a
th

 centroid in the current 

frame and the b
th

 centroid in the previous frame. We establish a correspondence with the 

points in the previous frame such that the distance values are the minimum and no two 

points in the current frame correspond to the same point in the previous frame. We ensure 

this by looking at the value of ‘b
th’ co-ordinate. The number of means such that the 

distances obtained with the corresponding centroids in the previous frame are the 

minimum is the right number of means. Filter out the noise points after this based on a 

size threshold, the value of which is determined by repeated experiments.  

4. We repeat the above procedure for the subsequent frames, with two 

modifications: (i) the number of means N is taken from the previous frame and (ii) 

instead of minimum distance, we pick the number of centroids as the one who’s distances 

from the centroids of the previous frame lies within a range of distances returned in the 

previous iteration. 

 A pseudo code for our proposed algorithm is presented below: 
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## Main 

centroids = DBSCAN(frame[0]) 

Foreach centroid { 

  new Object (new_name, centroid) 

  push current_objects(frame(0)), Object  

} 

Cluster(frames) 

## End Main 

 

AssociateObjects(centroids, old_objects) { 

  New_objects = null 

  D = 0 

  foreach obj in old_objects { 

 cen1 = obj.centroid 

 foreach cen2 in centroids { 

   dist_matrix[obj][cen2] = distance(cen1, cen2) 

 } 

   }   

   foreach cen2 in centroids { 

 Next if cen2.cluster_size < size_threshold 

 closest_object = obj for which dist_matrix[obj][cen2] is 

minimum 

 if dist_matrix[obj][cen2] < distance_threshold 

    push new_objects, obj 

    obj.update_centroid(cen2) 

else 

    new_obj = New Object(cen2) 

    push new_objects, new_obj 

   } 

   return new_objects 

} 

     

Cluster(Frames) { 

   B = 0 

   I = 0 

   While B <= Total number of frames { 

 centroids = DBSCAN(frame[I+B]) 

 Objects(frame(I+B)), weight=AssociateObjects(centroids, 

curr_objects) 

 while I < 10 { 

   curr_objects = Objects(frame(I+B) 

   N = count (centroids) 

   I++ 

        Weight = inf 

   For N – 2 <= J <= N + 2 {  

    ## J is number of clusters for K-means  

     K[J]_centroids = K-means(frame[I+B], J) 
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     temp_objects, 

temp_weight=AssociateObjects(K[J]_centroids, curr_objects) 

     if temp_weight < weight 

   centroids = K[J]_centroids  

        next_frame_objects = temp_objects 

       } 

   Objects(frame(I+B)) = next_frame_objects  

     } 

   }   

}    

      Figure 3. Proposed Clustering Algorithm 

 

3.3.4 Kalman Filter [13] 

A Kalman filter is an optimal recursive data processing algorithm. It processes all 

available measurements, regardless of their precision, to estimate the current value of the 

variables of interest, with use of (1) knowledge of the system and measurement device 

dynamics, (2) the statistical description of the system noise, measurement errors, and 

uncertainty in the dynamics models, and (3) any available information about initial 

conditions of the variables of interest. Since a Kalman filter is recursive, there is no need 

to require all previous data to be kept in storage and reprocessed every time a new 

measurement is taken.  

A Kalman filter combines all available measurement data, plus prior knowledge 

about the system and measuring devices, to produce an estimate of the desired variables 

in such a manner that the error is minimized statistically. It estimates a process by using a 

form of feedback control: the filter estimates the process state at some time and then 

obtains feedback in the form of (noisy) measurements. As such, the equations for the 

Kalman filter fall into two groups: time update equations and measurement update 

equations. The time update equations are responsible for projecting forward (in time) the 
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current state and error covariance estimates to obtain the a priori estimates for the next 

time step. The measurement update equations are responsible for the feedback, i.e. for 

incorporating a new measurement into the a priori estimate to obtain an improved a 

posteriori estimate. The equations are updated as shown in Figure 6. 

 

 

Figure 4: The discrete Kalman filter cycle 

Discrete Kalman filter time update equations: 

Project the state ahead:                            
  = A  k – 1 + Buk                                             (17) 

Project the error covariance ahead:         
 = APk – 1A

T
 + Q                                            (18) 

Discrete Kalman filter measurement update equations: 

Compute the Kalman gain:                 Kk =   
 H

T
(H  

 H
T
 + R)

–1
                                   (19) 

Update the error covariance:                    Pk= (I – KkH)  
                                             (20) 

Update estimate with measurement zk:      =   
  + Kk (zk- H   

 )                                     (21) 

The variables used in eqns (17) – (21) are described below:  

          
  : The a posteriori state estimate at time k given observations up to and including 

at time k. It is represented by  

 
 
  
  

 , where (x,y) is the co-ordinate of the point and vx, vy 

are the velocities along  x and y directions respectively.  
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       A : State transition model which is applied to the previous state xk−1 

The value used in this work is:  

     
     
    
    

  

           B : Control input model which is applied to control vector uk  . Here a zero matrix. 

           Pk : The a posteriori error covariance matrix 

        H : The observation model which maps the true state space into the observed space. 

This matrix is  
    
    

          

        zk : Observation at time instant ‘k’ 

The first task during the measurement update is to compute the Kalman gain, Kk. The 

next step is to actually measure the process to obtain, and then to generate an a posteriori 

state estimate by incorporating the measurements in equation (20). The final step is to 

obtain an a posteriori error covariance estimate via equation (21). After each time and 

measurement update pair, the process is repeated with the previous aposteriori estimates 

used to project or predict the new apriori estimates. 

In addition, there is some form of a measurement model [14] that describes the 

relationship between the process state and measurements. This can usually be represented 

with a linear expression similar to equation: 

                                                           zk = Hxk + vk                                                                       (22) 

where, zk is a 2x1 matrix with elements zk[1] is the x coordinate measurement obtained 

directly from pixels, zk[2] is the y coordinate measurement obtained directly from pixels, 

and vk is a 2x1 measurement noise vector with covariance matrix
 
R. that is also a 2x2 

matrix. R is the measurement noise covariance of size 2x2. It determines how much 



  31 

information from the measurement is used [41]. So, if R is high, the Kalman Filter 

considers the measurements as not very accurate. In our work, R is obtained from the 

covariance measurements done on the image pixels.   
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CHAPTER 4 

RESULTS 

4.1 SIMULATION FRAMEWORK 

         The proposed object tracking system was tested on video sequences of cars that 

were captured using stationary cameras. The videos were taken from 

www.changedetection.net [17]. Since the simulation setup currently does not have 

support for OpenCV’s video subroutines, only offline processing could be carried out. 

The video frames were extracted and stored for offline processing. The sizes of the video 

frames were 320x240, 320x240 and 308x242. They were all 8-bit grayscale images.  

The first video sequence, labeled Aerial_highway, is a video sequence that 

captures the traffic at a junction of two crossroads from a stationary aerial camera. The 

sequence of frames has 5 moving cars.    The second video, labeled Multi_car, is the 

video captured from a road with its sidewalk. This has cars moving on the road and a 

bicycle on the pavement.  The third frame sequence, labeled Highway, has four moving 

objects. The considered frame sequences have objects moving as well as ones which are 

entering the scene.    

The proposed algorithm was implemented in C++. Sequential codes for DBSCAN 

and Zivkovic’s Gaussian Mixture Model were obtained from Open Source Software [4]. 

The accelerator was simulated using Gem5 [33]. Since the GEM5 simulations on the 

accelerator were very slow, we tested the algorithm for fifteen frames of each video 

sequence.  
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For each of the video sequences, we checked the speedups of the individual 

kernels.  The speedup was the ratio of the reference code execution time and our 

implementation of the kernel. 

For example, for GMM, speedup was calculated as the ratio of execution time for 

sequential implementation to the execution time for parallel implementation. For 

clustering, the speedup is calculated as the ratio of the execution time for DBSCAN 

algorithm to the execution time for the proposed clustering algorithm.  

 

4.2 DESCRIPTION OF THE HARDWARE ACCELERATOR 

The platform used to implement the algorithm is a warp-based SIMT coprocessor. 

There are 8 virtual warps; each warp consists of 32 threads that operate on 32 lanes of 

data simultaneously.   The lanes each have their own integer register file, a separate 

floating point register file, and conditional flags. The programmer sees a warp of 32 lanes 

that can execute integer operations and single and double precision floating point (FP) 

operations.  The processor can switch between 8 virtual warps, similar to nVIDIA Fermi 

GPU.  

The instruction set supported is ARM’s 64-bit AArch ISA. The implementation is 

embodied in the gem5 simulator. The massively parallel engine achieves high throughput 

by employing extreme multi threading.  Currently, upto 256 threads are supported. To 

hold the context of these threads, this engine supports a register file of around 600KB 

size.     
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4.3 PARALLELIZATION SCHEMES 

Gaussian Filter: 

       To find the most suitable parallelization scheme for the hardware accelerator, we 

first carried out experiments involving 2D Gaussian filter of size 5x5. Here 1D filter 

computations were done along the columns followed by 1D filter computations along the 

rows. Input image is a 2-D matrix of unsigned int data type with 16bits/pixel. The 

coefficients are 16 bit integers. 3 types of input images are used: Small(512x512), 

Medium(1024x1024) and Large(2048x2048) . 

Different parallelization schemes were experimented with, namely, pixel-level 

parallelization, loop unrolling along rows and loop unrolling along columns. In pixel 

level parallelization, the number of threads launched is equal to the total number of pixels 

in the image and the computations on individual pixels are carried out in parallel. The 

order in which the threads are spawned and managed is decided by the compiler.  In the 

loop unrolling approach across columns, the number of threads spawned is equal to the 

number of columns. Each thread traverses down the column in steps of the loop unrolling 

factor. By this, we mean that in each thread, there are two loops. The inner loop works on 

generating N outputs at a time, where N is the loop unrolling factor. The outer loop 

traverses down the column in blocks of N pixels (Figure 8). In case of loop unrolling 

along rows, the same approach is taken by spawning one thread per row and traversing 

across the row in each thread.   

         For the Gaussian filter, the loop unrolling approach along columns had the best 

speedups among the schemes that were analyzed. This was because it exploited the 

characteristics of cache-line access the best. Pixels adjacent to each other along a row are 
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stored in the same cache-line. As a result, there are more load reuses compared to the 

loop unrolling approach along the rows.  In pixel level parallelization, each pixel is 

processed in a different thread. While this also provides opportunity for exploiting cache 

line access depending upon the order in which the threads are executed, there is an 

overhead in managing the large number of threads.  

We analyzed the variation in performance with loop unrolling factor for Gaussian 

column filters and the results are presented in Figure 9. Our study shows that a loop 

unrolling factor of eleven along the column achieves the best performance on the 

accelerator; larger unrolling factors have minimal effect on the performance. 

 
Figure 5: Loop unrolling by a factor of 2 implies 2 outputs per traversal down the thread; 

N threads 
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Figure 6: Variation in speedups for Gaussian filter with loop unrolling factor; best 

performance is when column loop unrolling factor is 11 for small and medium images 

and 9 for large images 

Gaussian Mixture Model: 

For Gaussian Mixture Model (GMM), we investigated the performance of pixel 

level parallelization and loop unrolling. However, owing to prohibitively long simulation 

times on the GEM5 for GMM, we considered loop unrolling factors of 1, 2, 4 and 8. 

Speedup is typically a function of the load store reuses and exploiting cache-line 

accesses. So while the optimal loop unrolling factor for Gaussian filter was found out to 

be 11, for the GMM, if we chose a factor that is not a divisor of the height of the image, 

the overhead caused due to the additional computations for the remaining pixels of the 

column was significant. We found that the speedup was almost the same across all loop 

unrolling factors. The results are shown in Figure 7.  
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Figure 7: Speedup for foreground detection using different parallelization schemes 

The speedups for foreground detection on the hardware accelerator using different 

parallelization schemes are shown in Figure 7. As we can see, these results indicate that 

pixel level parallelization shows the best performance. There is no big difference in the 

speedup performance of different loop unrolling factors because the serial execution time 

and parallel execution time changed proportionately; the variation was in few thousands 

of microseconds that made up 0.1% of the total execution time. 

DBSCAN: 

The sequential DBSCAN algorithm scans the points in space sequentially and 

grows clusters around the current point, marking the points to which it grows as visited. It 

then moves on to unvisited points and repeats the same procedure. Attempts have been 

made to parallelize this algorithm [8], however the parallelization requires additional 

runtime for book-keeping tasks and merging of threads. In fact, the more the number of 

cores, the more time the algorithm takes for merging the threads. The memory 

requirements of the merging operation were too large for the hardware accelerator and 
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simulations terminated without any errors or print statements. As a result, we were not 

able to implement a parallel version of DBSCAN. Instead we designed a low cost 

algorithm that exploits the fact that the objects to be tracked do not change much between 

subsequent frames and hence the locations of the centroids are also close to each other.  

 

4.4 TRACKING PERFORMANCE 

To evaluate the accuracy of our results, outputs were inspected at the end of every 

stage.  For foreground detection, we checked the output by reading the text file output 

from GEM5 and visually checking it in MATLAB. We used the DBSCAN as the 

baseline for our clustering algorithm and compared the performance of our proposed 

algorithm with DBSCAN. The centroids returned by our algorithm was the same as those 

returned by DBSCAN in most cases. However, there were a few deviations due to noise 

but those errors were rectified at the Kalman filter stage. 

In order to determine the effect of the number of clusters N, on the accuracy of 

clustering (i.e. tracking performance), we compared the results of our clustering approach 

by computing the error between the centroids returned per frame with our proposed 

algorithm and the centroids returned if DBSCAN had been done on each frame. The error 

was calculated by taking a root mean square of the Euclidean distance between each 

centroid returned by DBSCAN, and the closest centroid returned by the proposed 

solution for that frame. We conducted an experiment in which we fixed the frame 

parameter M and varied the number of means over which K means was iterated (N-2 to 

N+2, N-3 to N+3, N-4 to N+4 and N-5 to N+5). The frame parameter is number of 

frames over which K-means and DBSCAN is repeated such that DBSCAN is done for 1 
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frame and K-means is done for M-1 frames. We varied the frame parameter as 10 and 12, 

since these gave the best results for the three videos. Figures 8 and 9 show the RMS error 

for 210 frames of multi_car video for frame parameters 10 and 12; Figures 10 and 11 for 

210 frames of highway video sequence; Figures 12 and 13 for 210 frames of 

Aerial_highway video.  We found that the frame parameter and number of means that 

gave the best result is different for different video sequences. The findings have been 

presented in Table 1.  

 
Figure 8: Variation in tracking performance with the number of frames over which K 

Means is done for multi_car video. Frame parameter is 10. 

0 

20 

40 

60 

80 

100 

120 

600 650 700 750 800 850 900 950 R
M

S 
d

is
ta

n
ce

 b
et

w
ee

n
 c

e
n

tr
o

id
s 

w
rt

 D
B

SC
A

N
 

FRAME 

Variation of RMS error in centroids over means 

"N-5 to N+5" "N-2 to N+2" "N-3 to N+3" "N-4 to N+4" 



  40 

 

Figure 9: Variation in tracking performance with the number of frames over which K 

Means is done for multi_car video. Frame parameter is 12. 

 

 

 

Figure 10: Variation in tracking performance with the number of frames over which K 

means is done for highway video. Frame parameter is 10. 
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Figure 11: Variation in tracking performance with the number of frames over which K 

means is done for highway video. Frame parameter is 12 

 

 

Figure 12: Variation in tracking performance with the number of frames over which K 

Means is done for Aerial_highway video. Frame parameter is 10. 
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Figure 13: Variation in tracking performance with the number of frames over which K 

Means is done for Aerial_highway video. Frame parameter is 12. 

 

The best configuration was analyzed for each video based on which had the minimal 

error. The findings are as below:  

Video Frame 

Parameter 

Number of 

means 

Multi_car 12 N-5 to N+5 

Highway 10 N-3 to N+3 

Aerial 10 N-4 to N+4 

Table 1: Best configuration for each video 
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of computations was picked. The input video was taken from Change detection website 

[17] was used for this evaluation. A frame of the video is shown in Fig 14.  

 

Figure 14: Input video that was used to find the best foreground detection technique 

 

Figure 15: Variation in execution times of foreground detection algorithm on Intel core I7 
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Figure 15 shows execution times of different foreground detection algorithms on 

Intel I7 processor. Among the different algorithms, Zivkovic’s GMM was the algorithm 

of choice (Algorithm 12 in Figure 15). The algorithms which had lesser runtime were not 

robust enough for tracking purposes. Zivkovic’s GMM provided the necessary robustness 

while having a small runtime.  

b) Speedup of Zivkovic’s GMM algorithm 

 Three videos namely Multi-car, Aerial highway and Highway were chosen for 

applying the parallel version of Zivkovic’s GMM.  Figure 16 depicts a snapshot of the 

videos with foreground detection applied.  

 

Figure 16: Result of foreground detection algorithm 

 

4.5.2: Clustering  

Clustering contributes to a significant portion of the overall runtime. If DBSCAN 

is used for clustering, then clustering takes ~70% of the overall time.  
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Performance on Intel Core I7 

Video Execution 

time for 

proposed 

algorithm(us) 

Execution 

time for 

DBSCAN 

(us) 

Speedup= 

DBSCAN exe time/ 

Proposed algorithm 

exe time 

Multi_Car 9460670 39250663 4.15 

Aerial_Highway 4904950 12907185 2.63 

Highway 10903100 39238625 3.60 

Table 2: Performance of DBSCAN on Intel Core I7 

Performance on Hardware accelerator: 

 

Video Execution 

time for 

DBSCAN(us) 

Execution 

time for 

proposed 

algorithm(us) 

Speedup= 

DBSCAN exe time/ 

Proposed algorithm 

exe time 

Aerial_Highway 1320000 448457 2.95 

Highway 645000 131000 4.92 

Table 3: Performance of DBSCAN on hardware accelerator 

Table 2 shows the performance of the DBSCAN on Intel Core I7 processor for 

210 frames of videos sequences and Table 3 shows the performance of the DBSCAN 

algorithm on the hardware accelerator for 15 frames. The multi_car video did not run on 

the hardware accelerator owing to the large memory requirement for the points to be 

clustered.  

The proposed clustering algorithm provides substantial speedups when compared 

to running DBSCAN for each frame of the video. For Intel Core I7, the average speedup 

is around 3.9 whereas for the hardware accelerator, the average speedup is around 3.5. 

The algorithm results in faster runtimes without compromising much on the accuracy 

provided by DBSCAN.  
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4.5.3 Kalman Filter 

 

 

 

Table 4: Performance of Kalman filter on hardware accelerator 

The Kalman filter runtimes are negligible when compared to the other 

components of the system. As a result, we directly applied the filter in our system without 

any modifications. The execution times presented above is the execution time for 15 

frames of the three video sequences.  

4.5.4. Overall Speedup 

 
Figure 17: Runtimes of the different kernels on Intel I7. 
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% of the total execution time.   There is a drastic difference in the run times for clustering 

between Aerial_highway and the rest because the number of data-points to be clustered in 

the case of Aerial_highway was of the order of 10
2
 whereas for the rest, it was of the 

order of 10
5
 and hence more time to cluster.  

                                                                               

 

 

                                                          

Table 5: Overall performance of object tracking system on Intel Core I7 

Video Exe time (us) Speedup 

Proposed 

algorithm 

Conventional 

code using 

DBSCAN 

Multi car 42417234 12627241 3.4 

Highway 17225297 9223062 1.9 

Aerial_Highway 41910307 13574782 3.1 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

This thesis report described our work on implementing a low cost object tracking 

algorithm and optimizing it further for a parallel hardware accelerator. The video 

sequences that were considered were videos captured using stationary cameras. Also, the 

processing done was offline, i.e processing was done on stored frames from the video. 

This was because the hardware accelerator simulation setup did not support processing 

directly on the videos.  

We subdivided the task of object tracking into foreground detection, clustering 

and tracking using 1D Kalman filtering. The choice of our algorithms was made on the 

basis of computational efficiency without compromising on the accuracy.  

 For foreground detection, we analyzed a set of algorithms that were a part of the 

Open Source Software developed by Andrews Sobral [2] by executing them on Intel I7 

and checking the computation time as well as visually inspecting the accuracy of the 

algorithms. We found that the Gaussian Mixture model developed by Zivkovic [4] gave 

the best performance and also provided scope for parallelization. We experimented with 

different parallelization schemes, such as pixel level and loop unrolling. We found that 

pixel level parallelization gave the best speedup for GMM.   

 Clustering was found to consume the maximum proportion of the execution time 

since clustering algorithms are inherently very sequential. Both DBSCAN and K-means 

were considered. Since DBSCAN is computationally more expensive than K-means, we 

chose a mixed approach wherein DBSCAN was performed on one frame, followed by K-

means on subsequent 9 frames. The number of centroids which was input to K-means 
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was based on the number of centroids returned by DBSCAN. We compared the 

performance of our hybrid algorithm to DBSCAN per frame and obtained a maximum 

speedup of 4.92.  

 For the final task of estimating the motion parameters of the moving objects, we 

used a constant acceleration model 1D Kalman filter. We did not find a need to 

parallelize this task as it contributes to a very small fraction of the overall runtime. The 

parameters that were estimated were position and velocity of the objects.   

 Also as part of this thesis, we compared our results with the object tracking 

technique developed by University of Michigan researchers.  Their tracking technique 

works with videos having moving background as well, whereas our technique works only 

with stationary background.  

For future research, we plan to investigate the hybrid clustering algorithm further. 

There are parallel versions of DBSCAN implemented on GPUs such as the parallel 

DBSCAN based on Disjoint-Set Data structure [8].  We can take inspiration from that to 

implement the parallel version on the hardware accelerator.  
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