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ABSTRACT  
   

Theories of interval timing have largely focused on accounting for the aggregate 
properties of behavior engendered by periodic reinforcement, such as sigmoidal 
psychophysical functions and their scalar property. Many theories of timing also stipulate 
that timing and motivation are inseparable processes. Such a claim is challenged by 
fluctuations in and out of states of schedule control, making it unclear whether motivation 
directly affects states related to timing. The present paper seeks to advance our 
understanding of timing performance by analyzing and comparing the distribution of 
latencies and inter-response times (IRTs) of rats in two fixed-interval (FI) schedules of 
food reinforcement (FI 30-s and FI 90-s), and in two levels of food deprivation. 
Computational modeling revealed that each component was well described by mixture 
probability distributions embodying two-state Markov chains. Analysis of these models 
revealed that only a subset of latencies are sensitive to the periodicity of reinforcement, 
and pre-feeding only reduces the size of this subset. The distribution of IRTs suggests 
that behavior in FI schedules is organized in bouts that lengthen and ramp up in 
frequency with proximity to reinforcement. Pre-feeding slowed down the lengthening of 
bouts and increased the time between bouts.  When concatenated, these models 
adequately reproduced sigmoidal FI response functions. These findings suggest that 
behavior in FI fluctuates in and out of schedule control; an account of such fluctuation 
suggests that timing and motivation are dissociable components of FI performance. These 
mixture-distribution models also provide novel insights on the motivational, associative, 
and timing processes expressed in FI performance, which need to be accounted for by 
causal theories of interval timing.  
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CHAPTER 1 
INTRODUCTION 

Interval timing is the entrainment of an animal’s behavior to a target periodicity in 
the environment, on the basis of an endogenous time-keeping mechanism (Buhusi & 
Meck, 2005; Oprisan & Buhusi, 2011). This process is often studied using fixed interval 
(FI) schedules of reinforcement. In FI schedules, the first response after some interval has 
elapsed is reinforced. The behavior engendered by FI schedules is highly regular: 
following an initial pause, or latency, mean response rate increases and plateaus near the 
end of the interval. This organization of behavior has been observed in a wide range of 
species (Lejeune & Wearden, 1991) and also in Pavlovian conditioning. Indeed, Pavlov 
observed that, in the presence of a temporally extended conditioned stimulus, well-
trained animals initially pause before responding continually until the expected time of 
reinforcement (Pavlov, 1927; Rescorla, 1967; Vogel, Brandon, & Wagner, 2003). The 
resemblance between FI performance and performance in Pavlovian analogues has 
stimulated much theory development (Kalafut, Freestone, MacInnis, & Church, 2014; 
Molet & Miller, 2014; Harris, 2015).  
 The foundation of many theories of timing is a basic computational structure first 
formalized by Treisman (1963). Briefly, onset of a stimulus, signaling the to-be-timed 
interval, empties an accumulator and initiates the emission of pulses from a pacemaker to 
the accumulator (together, these comprise the internal clock). Once the pulse count in the 
accumulator becomes similar to a pulse count criterion sampled from memory, a target 
response (e.g., reporting that 10 s have elapsed) is emitted. Following reinforcement, 
pulses in the accumulator update memory. This simple structure yields a temporal 
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distribution of the target response centered on a proportion of the to-be-timed interval 
(see Appendix A of Daniels, Watterson, Garcia, Mazur, Brackney, & Sanabria, 2015 for 
a mathematical description of this mechanism).  
 Theories of timing typically differ in how they instantiate the components of the 
timing mechanism. For instance, the behavioral theory of timing suggests that transitions 
between behavioral states constitute pulses (Killeen & Fetterman, 1988; Machado 1997), 
whereas the multiple timescales theory of timing suggests that the clock is a form of 
memory decay (Staddon, 2005; Staddon, Chelaru, & Higa, 2002; Staddon & Higa, 1999). 
More recently, theorists have attempted to ground the basic mechanism into biologically 
plausible neural networks (Oprisan & Buhusi, 2011; Karmarkar & Buonomano, 2007) 
and in drift diffusion models that appear to approximate neuron dynamics (e.g. Simen, 
Rivest, Ludvig, Balci, & Killeen, 2013; Simen, Balci, deSouza, Cohen, & Holmes, 2011). 
The challenge for these theories is to account for a variety of classic properties of interval 
timing. In the context of FI schedules, this includes the sigmoidal response function and 
the scalar property (Guilhardi & Church, 2005; Machado, Malheiro, & Erlhagen, 2009). 
However, these aggregate properties of behavior provide a relatively weak criterion for 
selecting among models of timing, because most of these models, despite their widely 
different assumptions, provide a reasonable account of such properties. Other properties 
of timing performance, such as its responsiveness to motivational manipulations, may 
provide more informative criteria for selecting between models of timing.  
 Accounting for the effect of motivational manipulations on timing performance 
involves some substantial challenges. Recent studies suggest that timing and motivation 
processes are intimately related (Avlar, Kahn, Jensen, Kandel, Simpson, Balsam, 2015; 
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Balci, 2014; Kirkpatrick, 2013). Consistent with this with relation, neural circuits 
implicated in interval timing also regulate incentive motivation processes (Berridge & 
Kringlebach, 2013; Kirkpatrick, 2013; Coull, Hwang, Leyton, & Dagher, 2012). 
However, such conclusions are often drawn from theoretical frameworks that assume, 
while in a timing task, subjects are always engaged in timing. Such an assumption is 
inconsistent with the hypothesis that responsiveness to the temporal regularities of 
periodic stimuli fluctuates between trials (Daniels et al., 2015a,b; Freestone, Balci, 
Simen, & Church, 2014; Mazur, Wood-Isenberg, Watterson, & Sanabria, 2014; Mika, 
Mazur, Goffman, Talboom, Bimonte-Nelson, Sanabria, & Conrad, 2012; Sanabria & 
Killeen, 2008; Lejeune & Wearden, 1991). This hypothesis suggests, at the beginning of 
each trial, subjects enter either a timing-state and emit target responses generated by a 
timing mechanism, or they enter a non-timing state and emit target responses randomly. 
Furthermore, fluctuation in timing performance may reflect a more general fluctuation in 
behavioral control by operant schedules (Cheung, Neisewander, & Sanabria, 2012; 
Brackney, Cheung, Neisewander, & Sanabria, 2011; Shull 2004; Shull, Grimes, & 
Bennet, 2004; Shull, Gaynor, & Grimes, 2001, 2002; Gibbon, 1995; Meyerson & 
Miezen, 1980).  

Timing performance, as engendered by FI schedules, is thus likely a composite of 
multiple two-state processes that animals cycle into and out of until reinforcement is 
obtained. Although previous studies have attempted to implement models embodying this 
notion (Harris, 2015; Guilhardi and Church, 2005; Kirkpatrick, 2002), it remains poorly 
characterized in the context of FI and have yet to be fully appreciated. Validation and 
implementation of fluctuation models in the analysis of FI performance would provide 
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clarity on whether or not timing and motivation are related (Balci, 2014; Kirkpatrick, 
2014; Galtress, Marshall, & Kirkpatrick, 2012; Ludvig, Balci, & Spetch, 2011; Balci et 
al., 2010; Galtress & Kirkpatrick, 2010; Sanabria, Thrailkill, & Killeen, 2009; Belke & 
Christie-Fougere, 2006; Ludvig, Conover, & Shizgal, 2007; Plowright, Church, Behnke, 
& Silverman, 2000). Specifically, if motivation and timing are inseparable, manipulations 
of motivation should influence performance in the timing state; if motivation and timing 
are dissociable, manipulations of motivation should influence performance only in the 
non-timing state. The latter finding would reinforce the notion that timing is robust to 
changes in the motivational state of the animal (Gibbon, 1977; Gibbon, 1995).  

Thus, the purpose of the present study was two-fold: (1) to isolate the potential 
stochastic processes underlying FI performance by determining whether individual 
components of FI performance are best described by two-state models, and (2) to 
determine which of those processes are affected by motivational manipulations. Using 
strategies formulated by Killeen, Hall, Reilly, & Kettle (2002), the present study pursued 
these goals by conducting a microstructural analysis of performance (Cheung et al., 2012) 
in two FI schedules and two levels of food deprivation. 

Fig. 1 shows a schematic of how behavior is organized in an FI trial. In a well-
trained animal, performance in an FI trial begins with a latency, followed by responses of 
various durations (RDs) that alternate with inter-response times (IRTs). A theoretically-
motivated generative model of latencies and IRTs was derived from a general model of 
operant performance (Brackney et al., 2011). For RDs, the empirical data were leveraged 
to help recover aggregate performance. According to this general model, underlying each 
component is a two-state process wherein the animal either enters a schedule-controlled 
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state (latencies are timed, IRTs are short) or it enters an alternative state (latencies of 
random length, IRTs are long). The analysis also determined the extent to which the 
parameters that generate IRTs change as a function of time in the FI.  

 

 Fig. 1. Illustrative diagram of FI responding in a fixed-interval (FI) trial. Performance 
begins with a latency and is followed by a series of responses (black bars) of variable 
duration (RD) separated by inter-response times (IRTs). RDs and IRTs repeat until the 
reinforcer is delivered following a response.   
 

For two groups of food-deprived rats, head-entries into a food receptacle were 
reinforced according to a FI 30-s (group FI30) or a FI 90-s (group FI90) schedule, until 
performance stabilized according to a pre-defined criterion. FI90 rats were then exposed 
to a pre-feeding manipulation for 5 sessions. Following data collection, a model-space 
investigation was conducted to determine whether the full complexity of a two-state static 
or dynamic model was justified to describe each component of performance. Then, the 
effects of schedule and pre-feeding manipulations on parameter estimates were assessed. 
Finally, a simulation of FI performance based on parameter estimates was conducted to 
recover the empirical response functions.  
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CHAPTER 2 
METHODS 

Subjects 
Sixteen male Wistar rats (Charles River Laboratories, Hollister, CA), divided into 

2 cohorts (groups FI30 and FI90), served as subjects. Rats arrived on post-natal day 60 
and were pair-housed immediately upon arrival. Rats were housed on a 12:12 h light 
cycle, with dawn at 1900 h; all behavioral training was conducted during the dark phase 
of the light cycle. Behavioral training and food restriction protocols were implemented 
shortly after arrival. Access to food was reduced daily from 24, to 18, 12, and finally 1 
h/day. During behavioral training, food was provided 30 min after the end of each 
training session, such that at the beginning of the next session weights were, on average, 
85% of mean ad libitum weights estimated from growth charts provided by the breeder. 
Water was always available in home cages. All animal handling procedures followed 
National Institutes for Health guidelines and were approved by the Arizona State 
University Institutional Animal Care and Use Committee.  
Apparatus 

Experiments were conducted in 8 MED associates (St. Albans, VT, USA) 
modular test chambers (305 mm long, 241 mm wide, and 210 mm high), each enclosed in 
a sound- and light-attenuating box equipped with a ventilation fan that provided masking 
noise of approximately 60 dB. The front and back walls and the ceiling of test chambers 
were made of Plexiglas; the front wall was hinged and served as a door to the chamber. 
The floor consisted of thin metal bars positioned above a catch pan. One of the two 
aluminum side panels served as a test panel. The reinforcer receptacle was a square 
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opening (51-mm sides) located 15 mm above the floor and centered on the test panel. The 
receptacle provided access to a dipper (MED Associates, ENV-202M-S) fitted with a cup 
(ENV-202C) that could hold 0.01 cc of a liquid reinforcer (33% sweetened condensed 
milk diluted in tap water; Great Value brand, Walmart, Bentonville, AK). The receptacle 
was furnished with a head-entry detector (ENV-254-CB). A house-light located behind 
the wall opposite to the test panel could dimly illuminate the test chamber. Experimental 
events were arranged via a MED PC® interface connected to a PC controlled by MED-
PC IV® software.  
Procedure 
 All training sessions for each group were conducted once daily, 7 days/week.  

Phase 1: chamber and reinforcer acclimation. Each session began with a 3-min 
warm-up period during which the house-light was on. After completion of this warm-up 
period, each trial began by turning off the house-light. Reinforcement was programmed 
according to a fixed-time (FT) 30-s schedule of reinforcement for group FI30 and a FT 
90-s schedule of reinforcement for group FI90. The end of the interval was followed by a 
5-s reinforcer and onset of the house-light, which was on until the completion of the 
inter-trial interval (ITI). The ITI was in effect until the rat removed its head from the 
reinforcement receptacle for 2 s. For FI30 and FI90 rats each session lasted 60 and 180 
min, respectively, or until 60 reinforcers were earned. Although the duration of sessions 
for each group was different, it ensured a similar number of trials per session. The 
number of head-entries into the reinforcement receptacle during every FT interval was 
measured; all rats had to make 30 or more head-entries in a session to progress to the next 
phase. This phase lasted 5 sessions. 
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Phase 2: FI training. FI-training sessions were similar to those in phase 1, but 
reinforcement was delivered only if (a) the rat’s head was detected inside the reinforcer 
receptacle, and (b) the FT had elapsed; reinforcement was therefore programmed on a 
fixed-interval (FI) 30-s schedule for group FI30 and a FI 90-s schedule for group FI90. 
Training continued for a minimum of 20 sessions and until all rats demonstrated stable 
temporal control. Stability was determined by a non-significant (p > .05) regression of the 
median and inter-quartile range (IQR) of latencies (the interval between trial onset and 
first head-entry) over 5 consecutive sessions. FI30 rats were trained for 23 sessions; FI90 
rats were trained for 25 sessions.  
Phase 3: pre-feeding. Sessions were similar to those in phase 2, except that the daily 1 h 
of free access to food in the home cage was provided immediately prior to the session 
instead of 30 min after the session. This phase was implemented for 5 sessions. Only rats 
in group FI 90 were exposed to this phase. 
Data Analysis  

During phases 2 and 3, the time of occurrence and duration of every head-entry 
into the reinforcement receptacle was measured in every trial, except for the first trial in 
each session which was considered a warm-up trial. Data from the last 5 sessions of 
phase 2 served as steady-state baseline performance for groups FI30 and FI90; data from 
the 5 sessions of phase 3 served as pre-feeding performance for group FI90. For each 
baseline and pre-feeding trial, each component of FI responding—latency, inter-response 
times (IRTs), and response durations (RDs)—was obtained.  

Latencies and IRTs were modeled and quantitatively analyzed on the basis of 
well-specified theories of timing and operant behavior. Because no such theory is 
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available for RDs, these were not modeled and were only qualitatively analyzed. 
Latencies and IRTs were fit to variations of a shifted gamma-exponential mixture 
distribution, 
p(xt <d ) = 0,
p(xt ³d ) = qtG(xt -d ;1+ e t ,ct )+ (1- qt )exp(xt -d ;kt ) . 0,,;01 ³³³ tttt kcq e  (1) 

In Eq. 1, the probability of a latency or of an IRT sampled at time t in the interval 
(0-30 s in FI30, 0-90 s in FI90) is the weighted average of a gamma distribution Γ with 
shape and scale parameters 1 + εt and ct, respectively, and an exponential distribution 
with mean and standard deviation kt. Eq. 1 is a model of timing performance, in which 
temporal judgments are gamma distributed and random non-timing durations are 
exponentially distributed (Daniels et al., 2015a,b; Mazur et al., 2014; Sanabria & Killeen, 
2008). Parameter δ is the shortest data observed and not a free parameter; it is intended to 
capture the minimum amount of time necessary emit a response and thus reflects motoric 
capacity (Cheung et al., 2012; Brackney et al., 2011; Killeen & Sitomer, 2003; Killeen, 
1994). Note that Γ reduces to an exponential distribution when εt = 0; under such 
constraint, Eq. 1 describes the distribution of IRTs when responses are organized in 
bouts. Such organization accounts for operant-level behavior (Cabrera, Sanabria, 
Jimenez, & Covarrubias, 2013), adjunctive behavior (Ibias, Sanabria, & Pellon, 2015), 
visit times in concurrent variable-interval (VI) schedules of reinforcement (Gibbon, 
1995), and performance under single VI schedules of reinforcement (Brackney et al., 
2011; Hill, Herbst, & Sanabria 2012; Fulton, Conover, & Shizgall, 2001). 

By definition, latencies are always sampled at the beginning of each trial, so t = 0. 
However, IRTs may change as a function of t, yielding the typical sigmoidal-shaped 
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function of response rate over the interval. To account for these potential changes, it was 
assumed that (a) the parameters of the gamma and exponential distributions and the odds 
against sampling from Γ, Jt = (1 – qt) / qt could change exponentially over the interval, 
and such change (b) may not begin until some interval τ has elapsed, and (c) asymptotes 
at Ω. Expressed as equations, 
Jt = J0
ct = c0
kt = k0

ü
ýï
þï

if t £ t , 

Jt = J0eg (t-t )

ct = (c0 - W)ea (t-t ) +W
kt = (k0 -W)eb (t-t ) +W

ü
ýï
þï

if t > t ,       J0,c0,k0,t ,W ³ 0 (2)
 

where γ, α, and β are the change parameters of Jt, ct, and kt, respectively. As mentioned 
before, for IRTs ε = 0 and invariant, and thus no decay parameter is specified. Eq. 2 is a 
general model of change in operant IRTs, so no direction of change is assumed (i.e., 
change rates may be positive or negative), because the direction of change may vary 
depending on the schedule of reinforcement (e.g., negative in FI, but positive in 
extinction). 

To distinguish between models, latency and IRT parameters are subscripted with 
L and I, respectively; for example, for IRTs, cIt is the scale parameter of Γ at time t. 
Taken together, Eqs. 1-2 comprise a general model from which the models of each 
component of FI performance are special cases. For latencies, t = 0, and thus γ, β, τ, and 
Ω are indeterminate. Additionally, for latencies, δ = 0 because, otherwise, it would imply 
that the actual interval being timed is equal to FI – δ instead of the FI. Responses post 
latency were expected to be organized in bouts emitted at random times, thus IRTs were 
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expected to be distributed such that εI0 = 0 and, to provide meaning to q, kIt > cIt. In the 
absence of a theory of RDs, the empirical distribution of RDs for each rat in each 
condition was used for posterior predictive checks of FI response functions.  

The model of each component of FI performance, derived from the general model 
of operant performance described in Eq. 1-2, contains other nested models that 
correspond to different hypotheses about the distribution underlying each component. For 
example, in the case of latencies, the nested model where qL0 = 1 corresponds to the 
hypothesis that all latencies are gamma distributed. The motivation for each nested model 
and its corresponding component of FI performance is detailed in their corresponding 
sections; they were validated using the method of maximum likelihood (Myung, 2003) 
and the corrected Akaike Information Criterion (AICc; Burnham & Anderson, 2002). 
AICc is a model selection criterion that favors models that balance high likelihood with 
low complexity. See Appendix A for further details concerning the model selection 
process. 

Selected models were fit to the baseline data of each rat in groups FI30 and FI90 
and to the pre-feeding data of each rat in group FI90. Parameter estimates and derived 
statistics were log transformed or, in the case of q, log-odds transformed for statistical 
analysis (Cheung et al., 2012). The MLE method sometimes yields extreme estimates 
when applied to mixture-distribution models (Cheung et al., 2012). Thus, prior to each 
statistical analysis a two-tailed Grubbs’ test was performed on log-transformed estimates 
to detect potential outliers. Outlier data was removed when it was detected with α = .05; 
in most instances, outliers were detected with α = .01 and removal of the outlier did not 
change whether or not a statistical test was significant. Statistical analysis consisted of 
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independent t-tests or Welch’s t-test (in the case of unequal ns due to removal of an 
outlier) of the effect of FI schedule (baseline FI30 vs. FI90), and dependent t-tests of the 
effect of pre-feeding (baseline FI90 vs. pre-feeding FI90), with α = .05. All parameter 
estimates are reported back-transformed ±SEM.  
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CHAPTER 3 
RESULTS 

The top panel of Fig. 2 shows the mean probability of a response as a function of 
time in the FI 30-s and FI 90-s schedules. Baseline behavior appears to be under temporal 
control of the schedule for rats in groups FI30 and FI90, as suggested by the progressive 
increase in response probability, plateauing close to the end of interval. The mean 
probability of responding at the end of the interval was slightly higher in FI30 (.80) than 
in FI90 (.70). 

The middle panel of Fig. 2 shows the data from the top panel on a normalized x-
axis (time divided by FI duration) and y-axis (proportion of maximum probability of 
responding). During the first tenth of the interval, response probability rose more rapidly 
towards its maximum for FI90 than for FI30 rats. In the remainder of the interval, 
however, the relative steepness of these slopes was reversed, mostly because of changes 
in the slope of response probability in FI90 rats. This suggests strict adherence to 
Weber’s law may not be observed. 

The bottom panel of Fig. 2 shows the response probability function of baseline 
and pre-feeding FI 90-s performance. Pre-feeding appears to flatten the slope of the 
response probability function and shift it to the right. 
Latencies  

Model-space investigation. The top panel of Fig. 3 shows the mean empirical 
cumulative distribution of latencies for groups FI30 and FI90; the middle panel shows the 
same data normalized against the FI duration; the bottom panel shows group FI90 
performance during baseline and pre-feeding conditions. Latencies for both groups 
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appear to be gamma-distributed, as predicted by some timing models (Killeen & 
Fetterman, 1988; Machado, 1997). Previous research suggests that only a portion of 
intervals produced in a timing task are sensitive to the passage of time (Daniels et al., 
2015a,b; Mazur et al., 2014; Mika, et al, 2012; Sanabria & Killeen, 2008). This suggests 
an underlying two-state process wherein at the beginning of every trial the rat either 
enters a timing state with probability qL or enters a non-timing state with probability 1 – 
qL. When rats are in the timing state they emit latencies that are sensitive to the timing of 
reinforcement, and are thus gamma distributed. When rats are in the non-timing state they 
emit responses randomly with constant probability, thus yielding exponentially-
distributed latencies. The resulting mixture distribution may be expressed as 
p(xL ) = qtG(xL;1+ eL ,cL )+ (1- qL )exp(xL;kL ); 0,,;01 ³³³ LLLL kcq e  (3) 

the meaning of each parameter of Eq. 3 is described in Table 1. 
 
Table 1 
Latency Distribution Parameters (Eq. 3) 

Parameter Unit Meaning 
qL  Proportion of timed latencies. 

1+εL  pulse
s 

Number of pulses that must accumulate before emission of 
response. 

cL  s Mean interval between pulses. 
kL  s Mean non-timed latency 

Note. Parameter qL is a dimensionless proportion. The mean timed latency is cLεL and the 
standard deviation of timed latencies is cL√(εL). 
 

The results of the model-space investigation are reported in Appendix B; fits to 
individual rats are visualized in Appendix C. Of the three models tested, allowing qL to 
vary freely between 0 and 1 provided the best balance between fit and parsimony. The 
selected model was e110 times more likely than the next-best model, in which qL = 1. 
Estimates of the parameters of the selected model are shown in Table 2. According to 



 

15 
 

these estimates, FI30 and FI90 rats entered a timing state, on average, on 80% of trials. 
When timing, rats produced gamma-distributed latencies of about 12 s and 45 s, for FI30 
and FI90 respectively. When not timing, rats produced exponentially-distributed latencies 
of about 6 s and 17 s, for FI30 and FI90, respectively.  
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Fig. 2. Top Panel: Mean response function for group FI30 (squares) and FI90 (circles) as 
a function of time in the FI. The response function of each rat is the probability of 
detecting a head-entry as a function of time (in 1-s bins) in the FI. Middle Panel: Mean 
normalized response functions. Normalization was conducted for each rat by representing 
time as a proportion of the FI, and representing response probability as a proportion of 
the maximum response probability. Bottom Panel: Mean response function of FI90 
baseline (circles) and pre-feeding (triangles) performance.  
 
 

 Fig. 3 Top Panel: Mean empirical cumulative distribution of latencies for groups FI30 
(squares) and FI90 (circles). Middle Panel: Mean distribution of normalized latencies. 
Normalization was conducted for each rat by representing time as a proportion of the FI.  
Bottom Panel: Mean distribution of latencies for baseline FI90 (circles) and pre-feeding 
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(triangles) performance. Solid lines are mean traces of Eq. 3. Latencies are organized in 
40 bins of equal number of latencies. 
 
 
 
Table 2 
Mean Parameter Estimates and Derived Statistics of the Distribution of Latencies 
 FI 30 FI 90 FI 90 Pre-Feeding 
Parameter M SEM M SEM M SEM 
qL  0.818 0.061 0.776 0.039 0.574 0.091 
1+εL (pulses) 4.009  0.621 4.69 .549 9.137 2.527 
cL (s) 3.262  

(.109) 
0.408 
(.014) 

8.633 
(.096) 

0.979 
(.011) 

7.718 1.149  

kL (s) 5.883  
(.196) 

1.979 
(.066) 

16.618 
(.185) 

4.525 
(.050) 

34.393 6.672 
Derived Statistic 
Mean of Gamma (s) 12.231  

(.407) 
1.226 
(.041) 

45.422 
(.505) 

5.023 
(.056) 

54.659 7.744 

SD of Gamma (s) 6.237  
(.208) 

0.613 
(.020) 

19.195 
(.213) 

1.305 
(.015) 

18.591 1.255 
CV of Gamma 0.521 0.031 0.476 0.025 0.398 0.054 
Mean Latency (s) 11.695  

(.389) 
1.264 
(.042) 

39.411 
(.438) 

4.449 
(.049) 

78.365 13.131 
Note. Values in parentheses are non-parenthetical estimates divided by the corresponding 
FI. Derived statistics are computed from parameter estimates. CV is the coefficient of 
variation; CV = SD / mean. The means, SEM, and rescaled means and SEM do not 
contain outliers detected by Grubbs’ test. The pulse count 1+ εL is not rescaled because 
CV = 1/√(1+ εL), and thus rescaling 1+ εL  would constitute rescaling an already 
normalized value. 
 
 

Schedule and pre-feeding effects on latencies. Grubbs’ test revealed a single 
outlier for the estimation of εL and the derived coefficient of variation (CV), rat 2 in 
group FI30, p < .05, and was removed from statistical analysis. There were significant 
differences between FI30 and FI90 performance in estimates of cL [t(14) = 5.549, p < 
.001] and kL  [t(14) = 2.227, p = .043], the mean and SD of the gamma distribution [t(14) 
= 8.819, p < .001; t(14) = 10.131, p < .001], and the mean latency predicted by the model 
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[t(14) = 7.809, p < .001]. These parameters and derived statistics appear to increase as 
duration of the FI schedule increases; all other tests were nonsignificant, all ps > .050. 

Values in parentheses in Table 2 are the parameter estimates and derived statistics 
rescaled relative to the FI duration; the same outliers were detected as before. 
Independent t-tests revealed no significant differences in rescaled parameter estimates 
and derived statistics, all ps > .050 (see note about rescaling of 1+εL in Table 2). The 
absence of other significant effects suggests that all mean parameter estimates and 
derived statistics are approximately proportional to the duration of the FI. This is 
consistent with the absence of a significant difference in CV across FI schedules. Thus, it 
appears that both timed and non-timed latencies are scalar invariant. This is because 
timed-pulses and non-timed pulses appear to be emitted at intervals (cL and kL, 
respectively) proportional to those between trial onset and reinforcement.  

Table 2 also shows the mean parameter estimates and derived statistics from Eq. 3 
for FI90 pre-feeding performance. For all potential comparisons, Grubbs’ test revealed a 
single outlier for the estimates of εL, cL, qL, and the derived mean and CV of the gamma 
distribution: rat 6 under pre-feeding; all ps < .05, and was removed from statistical 
analysis for those parameters. Pre-feeding significantly reduced qL [t(6) = 3.498, p = 
.010], and increased kL [t(7) = 2.675, p = .032] and the mean latency predicted by the 
model [t(7) = 3.501, p = .009]; all other tests were nonsignificant (all ps > .050). These 
results suggest that pre-feeding increases the prevalence and length of non-timed 
latencies. 
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Inter-Response Times 
Model-space investigation. Previous research suggests that operant responses are 

organized in bouts separated by relatively long pauses (Smith, McLean, Shull, & Hughes, 
2013; Cheung et al., 2012; Brackney et al., 2011; Shull, 2004; Shull et al., 2002, 2001; 
Fulton et al., 2002). Within-bout and between-bout responses are emitted randomly at a 
constant high (within-bout) or low (between-bout) rate. Inter-response times (IRTs) are 
thus distributed according to a mixture of two exponential distributions, 
p(xIt <d I ) = 0,
p(xIt ³d I ) = qItG(xIt -d I ;1+ e It ,cIt )+ (1- qIt )exp(xIt -d I ;kIt ) .

  

 0;0;01 >>>=³³ de ItItItIt ckq  (4) 
In Eq. 4, the probability density of a within-bout response is the mixture weight of an 
exponential distribution (the gamma distribution reduces to an exponential when εIt = 0) 
with mean cIt. The probability of a between-bout response is the mixture weight of an 
exponential distribution with mean kIt. The reciprocal of the means, 1/cIt and 1/kIt are the 
within-bout response rate and bout-initiation rate, respectively. Parameter δ is the 
minimum IRT in the data for each individual rat and represents the motoric capacity of 
the subject (Brackney et al., 2011; Killeen, 1994).  

The top panel of Fig. 4 shows the mean IRTs for groups FI30 and FI90 as a 
function of time in the interval; the middle panel shows the same data normalized against 
the FI duration; the bottom panel shows the mean IRTs for group FI90 as a function of 
time in the interval during baseline and pre-feeding conditions.  

Mean IRTs of both groups decreased as a function of time in the interval. This 
suggests that the parameters of Eq. 4 do not remain constant over the interval; as the 
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interval progresses, it is possible that either qIt cIt, kIt, or any combination of these, decay. 
Eqs. 7-9 account for these changes by assuming that the means of the exponential 
distributions may decay exponentially starting at time τ, and until some asymptotic IRT, 
Ω. Furthermore, the mean response-bout length [1/JIt + 1 = 1/(1 – qIt); Cheung et al., 
2012] may increase exponentially as a function of the interval. Expressed 
mathematically,  
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 JIt ,g I ,t I ³ 0;kIt ³ W I ³ cIt ³ 0;b I ³a I ³ 0  (5) 
the meaning of the parameters of Eqs. 4-5 is described in Table 3. 
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Table 3 
IRT Distribution Parameters (Eq. 4-5) 

Parameter Unit Meaning 
1/JIt + 1 Responses Mean bout length 

cI s Mean within-bout IRT 
kIt s Mean between-bout IRT 
ΩI s Asymptotic between-bout IRT 
τI s Time of decay onset 
γI s-1 Rate of decay of JI αI s-1 Rate of decay of cIt βI s-1 Rate of decay of kI δI s Minimum IRT 

Note. The selected model specified αI = 0.   
The results of the model-space investigation are reported in Appendix B and fits 

to individual rats are reported in Appendix C. Of the nested models tested, Eqs. 4-5 
provided the best balance between parsimony and fit to the data when within-bout IRTs, 
cIt,, remained constant for both FI30 and FI90. For these conditions, and after correcting 
for free parameters, this model was at least e1.2 times more likely than the most complex 
model, and at least e3.3 times more likely than the next-best simpler model. According to 
this model, JIt and kIt decay exponentially beginning at time τ; kIt decays to ΩI. This 
suggests that the mean bout length increases and the time between bouts decreases to an 
asymptote as the FI elapses. 
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 Fig. 4. Top Panel: Mean IRT as a function of time (1-s bins) in the interval for groups 
FI30 (squares) and FI90 (circles). Middle Panel: Mean normalized IRTs (divided by 
interval duration) as a function of normalized interval. Normalization was conducted for 
each rat by representing time as a proportion of the FI. Bottom Panel: Mean IRT as a 
function of time in the interval for FI90 baseline (circles) and pre-feeding (triangles) 
performance. Solid lines are mean fitted traces of Eq. 4-5. Note that the y-axis is log base 
10 and the x-axis is linear.  
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Analysis of Schedule and Pre-Feeding Effects on IRTs. Table 4 shows the 
mean parameter estimates and derived statistics from Eqs. 6-9 for steady-state FI30 and 
FI90 performance. Grubbs’ test revealed the estimate of γI and τI for rat 1 in FI30 and rat 
1 in FI 90, respectively, as outliers, ps < .05, and were removed from analysis. Significant 
differences between groups FI30 and FI90 were detected in estimates of γI [t(13) = 5.26, 
p < .001], βI [t(14) = 2.79, p = .014], cI [t(14) = 2.24, p = .042], and τI [t(13) = 13.39, p < 
.001]; all other tests were non-significant (ps > .050). Specifically, parameters changed 
more slowly and later, and within-bout IRTs were longer, in FI30 relative to FI90. These 
results suggest that response-bout length and between-bout IRTs changed more slowly, 
and the within-bout rate decreased with the longer FI duration. 

The distribution parameters of IRTs were assessed at 3 different time-points in the 
schedule: t = 0, t = FI/2 (i.e., 15 and 45 s) and t = FI (i.e., 30 and 90 s) because some 
parameters, βI  and 1/JIt + 1 decayed and increased, respectively, as the FI elapsed. At t = 
FI, Grubbs’ test revealed the estimate of kIt was an outlier for rat 1 in group FI30 (p < .05) 
and was removed from analysis. At every time point estimates of kIt and the mean 
predicted IRT were shorter for FI30 compared to FI 90 [all t(13), t(14) > 2.56, p < .050]; 
all other tests were non-significant (all ps > .050). This suggests that only the declining 
length of between-bout IRTs was consistently shorter in FI 30-s than in FI 90-s 
performance. The failure to detect a significant difference in bout-length suggests that it 
is invariant across schedules.    

Values in parentheses in Table 4 are parameter estimates divided by their 
corresponding FI duration. The same outliers as before were detected and removed from 
the analysis. Rescaled decay parameters (γI and βI) were smaller for FI90 than for FI30 
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[t(14), t(13) > 3.15, p < .02]. Additionally, the rescaled time of decay onset (τI) was 
longer for FI90 than for FI30 [t(13) = 3.96, p = .001], rescaled bout-length was shorter 
for FI90 than FI30 at t = 0 and t = FI/2 [both t(14) > 5.98, p < .001], and the rescaled 
between-bout IRT  and mean predicted IRT was longer for FI90 than FI30 at t = FI/2 
[both t(14) > 2.27, p < .038. No other significant effects of schedule were found for 
rescaled parameter estimates (all ps > .050). This suggests that the rate at which bout 
length and between-bout IRTs change in the first half of the interval do not scale with the 
duration of the FI. These results are consistent with the notion that IRTs, but not their rate 
of change, are proportional to the FI duration. In particular, estimates of within-bout IRT, 
between-bout IRT at t = 0, and the asymptotic between-bout IRT, appear to scale with the 
duration of the FI.  

In Table 4, the decay of JI, and kI are also represented according to their half-lives 
(e.g. J1/2). Once the decay process begins, JI appears to decay by half after 10-15% of the 
FI in both FI30 and FI90, whereas kI appears to decay by half after 10% and 20% of the 
FI in FI30 and FI90, respectively. The faster decay of JI suggests that it is the main 
contributor to the decline in mean IRT observed in Fig. 4. To confirm this intuition, γI 
and βI were each set to zero while keeping the other parameter at the value reported for 
each condition in Table 4. Fig. 5 shows the impact of each parameter manipulation on the 
mean trace of Eqs. 6-9, compared against the mean IRT for FI30 and FI90. Setting γI = 0 
and βI = 0 increased AICc, respectively, for FI30 by 6055 and 2718, and for FI90 by 
50640 and 1231. Parameter half-lives, Fig. 5, and changes in AICc suggest that mean 
IRTs decline over the course of the FI mainly because response bouts increase in length 
over the FI. 
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Table 4 
Mean Parameter Estimates and Derived Statistics of the Distribution of IRTs 
Parameter FI 30 FI 90 FI 90 Pre-

Feeding 
Decay/Static 

Param. 
M SEM M SEM M SEM 

cI 0.261 
(0.009) 

0.062 
(0.002) 

0.459 
(0.005) 

0.094 
(0.001) 

0.381 0.037 

ΩI 3.024 
(0.100) 

0.864 
(0.029) 

6.01 
(0.067) 

2.221 
(0.025) 

6.145 2.143 

τI 8.647 
(0.288) 

0.675 
(0.022) 

39.47 
(0.439) 

2.527 
(0.028) 

25.079 5.683 

γI 0.245 
(0.008) 

0.031 
(0.001) 

0.075 
(0.001) 

0.011 
(0.001) 

0.046 0.009 

βI* 2693667 
(89788.89) 

1579014 
(52633.81) 

0.188 
(0.002) 

0.138 
(0.002) 

0.051 0.019 

J1/2 3.341 
(0.111) 

0.719 
(0.024) 

10.764 
(0.119) 

1.565 
(0.017) 

19.236 3.751 

k1/2 3.053 
(0.101) 

 1.781 
(0.059) 

18.696 
(0.202) 

5.400 
(0.059) 

31.569 9.822 
t = 0 

1/JIt + 1 1.593 
(0.053) 

0.198 
(0.007) 

1.649 
(0.018) 

0.205 
(0.002) 

1.349 0.043 

kIt 7.094 
(0.236) 

1.123 
(0.037) 

24.743 
(0.275) 

2.052 
(0.023) 

32.799 5.476 

Mean IRTt 5.041 
(0.168) 

1.074 
(0.036) 

16.794 
(0.187) 

2.369 
(0.026) 

20.551 5.029 
t = FI / 2    

1/JIt + 1 2.96 
(0.099) 

0.606 
(0.020) 

2.027 
(0.023) 

0.210 
(0.002) 

1.975 .122 

kIt 3.831 
(0.128) 

0.623 
(0.021) 

18.366 
(0.204) 

1.696 
(0.019) 

19.332 1.745 

Mean IRTt 1.933 
(0.064) 

0.439 
(0.015) 

10.069 
(0.112) 

1.461 
(0.016) 

9.171 1.509 
t = FI    

1/JIt + 1 101.546 
(3.385) 

41.353 
(1.378) 

39.757 
(0.442) 

15.635 
(0.174) 

14.189 5.739 

kIt 3.692 
(0.123) 

0.706 
(0.025) 

8.674 
(0.096) 

1.509 
(0.017) 

11.855 2.186 

Mean IRTt 0.408 
(0.029) 

0.109 
(0.003) 

0.845 
(0.009) 

0.107 
(0.001) 

2.221 0.534 
Note. See note in Table 3. Parameter δ = .005 for all rats. *Estimates for decay rates can 
be inordinately high when the decay takes on the form of a step-function, i.e. an abrupt 
change from baseline to asymptotic parameter values. This was the case for about half of 
the rats in FI 30 for estimates of βI. 
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Fig. 5. Mean IRT as a function of time (1-s bins) in the FI for FI30 (left panel) and FI90 
(right panel). Lines are mean fitted traces of Eqs. 4-5 (solid), changed so γI = 0 (dashed) 
and βI = 0 (dotted). These curves suggest that the decline of IRTs over the FI is mainly 
driven by the decay of JI, i.e., by the increase in bout length. Note that the y-axis is log 
base 10 and the x-axis is linear. 
 

Table 4 also shows the mean parameter estimates and derived statistics from Eqs. 
6-9 for baseline and pre-feeding FI90 performance. Grubbs’ test revealed the following 
estimates as outliers in the FI90 pre-feeding probe: βI and cI for rat 6; τI for rat 2; 1/JIt + 1 
and kIt respectively for rats 5 and 2 at t = 0, and kIt for rat 3 at t = FI/2; all ps < .05. Pre-
feeding significantly decreased γI [t(7) = 3.51, p = .009] such that bout length increased 

at a slower rate. At t = 0 pre-feeding significantly increased kIt [t(6) > 3.35, ps < .02] and 
the mean IRT [t(7) = 2.64, p < .008]; at t = FI pre-feeding decreased both 1/JIt + 1 [t(7) = 
3.51, p = .009] and the mean IRT [t(7) = 3.972, p = .005]; all other tests were non-
significant (all ps > .050). These findings suggest that the effects of pre-feeding are 
largely localized on decreasing the between-bout IRTs (early in the interval) and slowing 
down the rate of bout lengthening, leaving the rate of within-bout responding relatively 
intact.   
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The half-lives of JI, and kI may help explain why the effects of pre-feeding on the 
distribution of IRTs are not observed until later in the interval. It took longer for JI to 
decay to half during pre-feeding (20 s) than during baseline (10 s). Furthermore, the half-
life of kI is 10 s longer under pre-feeding (29 s) compared to baseline (19 s). This 
suggests that pre-feeding slowed down the decline in the prevalence of between-bout 
IRTs over the interval. Overall, these results suggest that the effect of pre-feeding on 
parameter estimates observed in the latter portion of the interval are driven by pre-
feeding-induced slower lengthening of bouts and an increase in the between-bout IRT. 
Response Durations  

The top panel of Fig. 8 shows the mean RD of groups FI30 and FI90 as a function 
of time in the FI; the middle panel shows the mean normalized RD as a function of 
normalized time; the bottom panel shows the mean RD of group FI90 under baseline and 
pre-feeding conditions. Interestingly, RDs were generally constant across the duration of 
the FI (censored by the FI duration). RDs also appear to be roughly proportional to the FI 
duration and robust to the effects of pre-feeding, although, RDs seem somewhat more 
variable under pre-feeding conditions.  

In the absence of a theory concerning the potential processes governing the 
duration of a response, RD data was modeled using a dynamic empirical distribution. For 
each rat in each condition, the FI was divided into 1 s bins. Each bin was populated with 
RDs that began in that bin. These dynamic empirical distributions allowed for recovery of 
the response functions shown in Fig. 2 without relying on a mathematical model of RDs.  
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Fig. 6 Top panel: Mean RD as a function of time (1-s bins) in the FI for groups FI30 
(squares) and FI90 (circles). Middle Panel: Mean normalized RDs (divided by interval 
duration) as a function of normalized interval. Normalization was conducted for each rat 
by representing time as a proportion of the FI. Bottom Panel: Mean RD as a function of 
time in the interval for FI90 baseline (circles) and pre-feeding (triangles) performance. 
Note that the y-axis is log base 10 and the x-axis is linear. 
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Monte Carlo Simulation of Response Functions 
The previous sections outlined and evaluated three stochastic models, one for 

each component of FI performance. To validate that this collection of models accounts 
for FI performance, a Monte Carlo simulation was conducted using each rat’s estimated 
parameters in each FI and condition in order to reproduce the response functions in Fig. 
1.  

Fig. 7 shows a schematic of the simulator. In each trial, the simulator first 
sampled either a timed latency from a gamma distribution (1+εL, cL) with probability qL, 
or a non-timed latency from an exponential distribution (kL) with probability 1 – qL. The 
sampled latency was added to the clock t. Then a RD was sampled from a dynamic 
empirical distribution (one for each rat in each FI in each condition). The sampled RD 
was added to t. If t ≥ FI (30 s or 90 s), then the trial finished. If t < FI, then either a long 
IRT was sampled from one exponential distribution (kIt) with probability 1 – qIt, or a 
short IRT was sampled from another exponential distribution (cIt) with probability qIt. 
The sampled IRT was added to t; then another RD was sampled, and so on until t ≥ FI. 
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Fig. 7. A generative performance model of FI performance, constructed from the 
concatenation of latency, RD, and IRT subroutines. Note that the latency and IRT 
subroutines are Eq. 3 and Eq 4-5, respectively, whereas the RD subroutine samples from 
the dynamic empirical distribution of RDs, here represented by the letter E. 
 

The simulation was conducted in Matlab (Mathworks, Natick, MA). Each run of 
the simulator consisted of 295 trials (the approximate number of trials analyzed for each 
rat); 5000 runs were conducted per rat. Mean response functions ± 2 standard deviations 
were drawn from these simulations for each rat.  
 Fig. 8 shows the results of these simulations and Appendix C contains the output 
of the simulator for each rat. The top row of panels shows the mean observed and 
simulated response functions in each FI and condition. The second and third rows of 
panels show the mean observed and simulated response functions of two representative 
rats from each group and condition. Note that the representative rats in FI90 baseline are 
the same rats in FI90 pre-feeding. To assess goodness-of-fit both R2 and norm of 
residuals were calculated and are reported in Fig. 8 and in the figures of Appendix C. The 
mean R2 was .99, .98, and .98; the mean norm of residuals was 0.12, 0.25, and 0.22 for 
FI30, F90 baseline, and FI90 pre-feeding, respectively. Two rats, rat 1 from FI30 and rat 
8 from FI90, were omitted from Fig. 8 based on inspection of R2 (rat 1: .97; rat 8: .96) and 
norm of residuals (n.o.r; rat 1: 0.24; rat 8: 0.55) under the baseline condition. In 
particular, these rats had the smallest R2 and the largest n.o.r (at least twice as large as the 
mean). Inspection of the fit of the model to their data confirmed the model in Fig. 7 did 
not track the empirical response function in those rats as closely as it did in other rats (see 
Appendix C).  Importantly, investigation of the output of the simulator suggests that the 
model provides an adequate account of the data; almost all observed means are within 2 
standard deviations of simulated means. 
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Fig. 8 Top Panels: Mean response functions for each FI and condition as depicted in Fig. 
1 plotted against the mean response function (solid line) and ± 2 standard deviations 
(dashed lines) of the simulator. Each plot also shows R2 and the norm of residuals (n.o.r). 
From left to right, the response functions correspond to FI30 (squares), FI90 Baseline 
(circles), and FI90 pre-feeding (triangles). Middle and Bottom Panels: Response 
functions for representative rats plotted against the output of the simulator. Note that 
representative rats for FI90 baseline are also representative rats for FI90 pre-feeding. 
Response functions were calculated as described in the caption of Fig. 1. 
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CHAPTER 4 
DISCUSSION 

The present study separated three components of FI performance: the latency to 
first response, the inter-response times (IRTs), and the response durations (RDs). Each 
component was analyzed separately, testing various models nested within a general 
framework (Eqs. 1 and 2). Taken together, the selected models configure the algorithm 
depicted in Fig.7, which is a generative performance model of FI performance that 
adequately reproduces the observed response functions.  
Latencies 

The analysis of latencies suggests that they are mostly, but not always, timed (i.e., 
gamma distributed, centered on a proportion of the FI). On average, about 80% of 
latencies were timed with a mean equal to about half the FI. Timed latencies were 
roughly scalar invariant and robust to changes in reinforcer efficacy. Interestingly, scalar 
invariance was driven by changes in the scale parameter of the gamma distribution, 
providing support to the notion that the speed of the clock or at which animal’s transition 
from one state to another decreases as the duration of the FI increases and the rate of 
reinforcement decreases (Beam, Killeen, Bizo, & Fetterman, 1998; Bizo & White, 1997, 
1995, 1994). In contrast, the shape parameter of the gamma distribution (i.e., the response 
threshold) was not affected by the schedule or a decrease in motivation. Further, the 
notion that latencies are sensitive to the time between reinforcers is consistent with 
previous research showing that latencies account for the curvature of FI cumulative 
records (Gentry et al., 1983), are roughly proportional to the duration of the FI (Shull, 
1971; Lowe, Harzem, & Spencer, 1979; Lowe & Wearden, 1981; Wearden, 1985; Zeiler 
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& Powell, 1994), and track rapid within-session changes in the duration of the FI 
(Sanabria & Oldenberg, 2014; Ludvig & Staddon, 2004; Higa, 1997; Wynne, Staddon, & 
Delius, 1996).  

The presence of rapid responding at the beginning of a schedule of reinforcement 
is often referred to as burst responding (e.g., Richards, Sabol, & Seiden, 1993) and has 
been observed in other schedules of reinforcement such as the differential reinforcement 
of low rates (Richards, et al. 1993; Sanabria & Killeen, 2008), fixed minimum interval 
(Mazur et al., 2014; Mika et al., 2012; Watterson et al., 2015), dependent concurrent FI 
FI (Daniels et al., 2015), and lever holding (Sanabria & Killeen, 2008). In these other 
schedules of reinforcement, burst-generated intervals also appear to be exponentially 
distributed (e.g., Sanabria & Killeen, 2008). Furthermore, it has been proposed that a 
random-response component improves the fit of timing models to performance in FI 
(Lejeune & Warden, 1991), temporal bisection, and temporal generalization procedures 
(Droit-Volet & Izaute, 2005; Droit-Volet & Wearden, 2001). This suggests that two-state 
models of timing generally provide a better description than one-state models and thus 
allow for more accurate inferences. 

About 20% of latencies were not timed and had a mean of about 1/5th of the FI. 
These latencies were also scalar invariant but were sensitive to changes in reinforcer 
efficacy. Specifically, pre-feeding increased both the prevalence and mean of non-timed 
latencies. Taken together, these findings suggest, contrary to previous research, that 
parameters governing the distribution of timed responses are robust to changes in 
motivation, and that the effects of motivation on timing performance reflect changes in its 
non-timed components.  
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Inter-Response Times 
The analysis of IRTs revealed that their distribution, both in FI 30-s and FI 90-s, 

was well characterized by a mixture of two exponential distributions with parameters 
changing exponentially as a function of the passage of time. This characterization is 
consistent with those of IRTs in non-timing paradigms, such as the variable-interval (VI) 
schedule of reinforcement (Cheung et al., 2012; Brackney et al. 2011; Shull 2004; Shull 
et al., 2001, 2002; Fulton, et al., 2001). It suggests that responses are organized in bouts 
separated by relatively long pauses.  

Interestingly, strict adherence to Weber’s law was not observed in the parameters 
governing IRTs. Only two parameters appeared to be scalar invariant: the within-bout 
IRT and the asymptotic between-bout IRT. This would suggest that peak-rate and 
asymptotic motivation for the reinforcer scale with the duration of FI. It is unclear why 
other parameters, and aggregated performance, do not follow Weber’s law; nonetheless, 
systematic departures from Weber’s law have been reported (Bizo, Chu, Sanabria & 
Killeen, 2006; Irvy & Hzeltine, 1995). It is possible that measures of performance 
consistent with Weber’s law are more reflective of scalar-invariant components (peak 
rate and motivation under high reward expectation) than measures of performance that 
are inconsistent with Weber’s law. Different response topographies (lever pressing vs. 
head entry) may yield such differences in performance. 

Nonetheless, the parameters of the dynamic biexponential model may be 
intuitively mapped onto features of FI performance. The reciprocal of the within-bout 
IRT is the rate at which the operant is emitted when rats are seeking food, often 
expressed as “peak responding” around the time of reinforcement (Roberts, 1981). 
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Between-bout IRTs may reflect fluctuating levels of motivation which, combined with 
reinforcement expectancy as expressed in latencies, are low early in the interval (when 
the subject is engaged in other, interim behaviors), and increase as the time to 
reinforcement approaches. Bout length appears to grow throughout the interval, 
suggesting that it may also track reinforcement expectancy. These interpretations are 
consistent with those drawn from previous research (Brackney et al., 2015, 2011; Cheung 
et al., 2012).  

It seems reasonable to propose, consistent with the two-state description of FI 
performance proposed by Schneider (1969), the time of decay onset (τ) indicates a 
stepwise change in expectancy to reinforcement (Gibbon, 1977). However, timed 
latencies may also index a stepwise change in reinforcer expectancy. Despite the 
similarity in sensitivity of both parameters to the length of the FI, τ was neither scalar 
invariant or positively related to timed latencies: estimates of τ were either negatively 
correlated (in FI 30 s, r = -.18) or nearly zero-correlated (in baseline FI 90 s, 0 < r < -.01) 
with mean timed latencies. Further research appears to be necessary to establish the 
distinct psychological significance of τ and timed latencies.  

The particularly high sensitivity of response-bout length to the temporal proximity 
of reinforcement has potential theoretical implications. In particular, response-bout length 
appears to express a response-reinforcer association that is robust against changes in 
motivation (Brackney & Sanabria, 2015; Brackney et al., 2011). In support of this 
interpretation, evidence suggests that food deprivation does not affect VI bout length, and 
adding a tandem ratio requirement to a VI schedule yields longer response bouts, even 
though rate of reinforcement is mostly unaffected (Brackney & Sanabria, 2015; Brackney 
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et al., 2011; Shull et al. 2004, 2001; Shull & Grimes, 2003). The tandem-requirement 
effect appears to stem from a selective reinforcement of longer bouts (Brackney et al., 
2015; Brackney et al., 2011; Killeen, 1969). Changes in bout length during the FI, 
however, are inconsistent with this explanation. Bouts initiated early in the FI are 
reinforced only if they are long; such selective reinforcement should yield shorter bouts 
as the FI elapses, which is the opposite of what was observed. Moreover, bouts proximal 
to reinforcement appear to be sensitive to changes in reinforcer efficacy in the FI 90-s 
schedule.   

A potential solution to these inconsistencies posits that the response-reinforcer 
association reflected in the length of bouts is directly related to the underlying associative 
structure supported by the schedule and is modulated by reinforcer efficacy. In VI 
schedules, the distribution of intervals between trial onset and reinforcement is typically 
exponential. This distribution yields a constant subjective hazard function of 
reinforcement—i.e., a constant subjective expectation that reinforcement is available 
now. In contrast, the subjective hazard function of reinforcement supported by FI 
schedules is likely positive, increasing as the FI increases (Machado, 1997; Kirkpatrick, 
2002; Staddon, Chelaru, & Higga, 2002; Dragoi, Staddon, Palmer, & Buhusi, 2003). It is 
possible that bout length is shaped by reinforcement (thus explaining tandem-requirement 
effects in VI schedules), but also reflects the subjective hazard function of reinforcement 
(thus explaining the within-trial pattern of growth in FI schedules).    

There are two likely explanations for the pre-feeding-induced shortening of bout 
lengths estimated at the time of reinforcement. The first explanation is that this is a 
mathematical artifact. Reinforcement terminates the ongoing response bout, so its 
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uncensored length is estimated from the pattern of change of response bouts over the FI. 
It is possible that this estimation is flawed in such way as to predict shorter (censored) 
bouts when bouts are infrequent, such as under pre-feeding. The second explanation is 
that the interaction of reinforcer expectation and motivation directly affect bout length. It 
is possible that when the expectation of reinforcement is low (as in VI schedules and 
early in FI trials), changes in motivation do not affect bout length, but when the 
expectation is high, they do. Future research may test this latter hypothesis. 
Response Durations 
 Unlike latencies and IRTs, RDs were not modeled and the empirical distribution 
was used to recover aggregate behavior. We sought to provide a reasonable description of 
RDs that, along with latency and IRT parameters, would allow us to program a simulator 
of FI performance (Fig. 7). Nonetheless, the data reported here merits a few qualitative 
observations. First, the duration of FI-reinforced head entries appears to be relatively 
constant across the FI, This observation is in contrast to previous reports suggesting the 
duration of a lever press decreases as the time to reinforcement approaches (Roberts & 
Gharib, 2006). Second, RDs do not appear to be sensitive to changes in reinforcer 
efficacy. These observations are potentially informative and useful for the development 
of theoretical models of operant response duration (e.g., Hurwitz, 1954; Gharib, Derby, & 
Roberts, 2000). 
Implications for Timing Research   

The concatenation of the stochastic processes underlying latencies and IRTs 
resulted in a comprehensive generative FI performance model. This model adequately 
reproduced response functions of individual animals as well as mean response functions. 
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The success of the simulator suggests that the proposed generative model provides a 
viable route by which to understand FI behavior. Further, it is consistent with previous 
attempts to characterize schedule-controlled behavior in terms of two-state Markov 
models (Harris, 2015; Brackney et al., 2011; Shull et al., 2001; Gibbon, 1995; Meyerson 
& Miezein, 1980).  

For example, Harris (2015) compared two models of aggregate FT performance, a 
two-state and a continuous change model; within both models was a nested mixture 
model in which according to some probability animals would be in an engaged state 
(emitting a response) and with a complimentary probability a disengaged state (not 
emitting a response). In the two-state model, the probability of entering an engaged state 
increased and in the continuous-change model, the probability of entering an engaged 
state remained constant but the rate of responding in the engaged state increased as the 
interval elapsed. He found that the two-state model provided the best description of 
aggregated data and is conceptually similar to the present finding that what drives the 
decay of IRTs is a progressive lengthening of bout length (i.e. a progressive increase in 
the probability of a within-bout IRT). However, our microstructural analysis revealed 
both bout length and between-bout IRTs needed to increase and decrease, respectively, as 
the interval elapsed to account for the microstructure of the data. This suggests a 
complexity to the data otherwise missed if analyses are restricted to aggregate 
performance (Hanson & Killeen, 1981).  

The proposed generative model of FI performance also suggests that temporal 
control in FI schedules is confined to a subset of latencies and, therefore, estimates of 
such control may be isolated from potentially confounding processes. Such dissociation 
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provides an alternative characterization of performance in a common timing paradigm, 
the peak-interval procedure. Previous research suggests that the mean and dispersion of 
peak-interval gradients isolate key features of the control that periodic reinforcement 
exerts over behavior (Roberts, 1981; Buhusi & Meck, 2005). That is, all responses 
observed in the peak procedure are generated by a timing mechanism. However, recent 
research suggests that these features may be best characterized by the distribution of 
latencies, or start-times (Taylor, Horvitz, & Balsam, 2007; Saulsgiver, McClure, & 
Wynne, 2006; but see Balci, Ludvig, & Brunner, 2010 for a discussion of stop-times as a 
potential measure). This revised interpretation of peak performance, i.e. that temporal 
performance may be best characterized by the distribution of start-times rather than 
aggregate response functions, is consistent with present findings that suggest that (a) the 
response run is characterized by random bouts of responding instead of a timing process, 
and (b) only a subset of latencies is sensitive to the periodicity of reinforcement. These 
findings suggest that the peak procedure conflates motivation and timing (Sanabria et al., 
2009; Daniels et al., 2015a).  

The dissociation of processes underlying latencies and response runs also sheds 
light on previous research that suggests that peak-interval performance is sensitive to 
changes in reinforcer efficacy. Such sensitivity is demonstrated by horizontal shifts in the 
peak-interval gradient and the distribution of latencies (e.g. Galtress, Marshall, & 
Kirkpatrick, 2012; Galtress & Kirkpatrick, 2009; Belke & Christie-Fougere, 2006; 
Ludvig, Conover, & Shizgal, 2007; Plowright, Church, Behnke, & Silverman, 2000). 
Based on these effects, it has been theorized that motivation and timing processes are 
intimately connected, and thus interact to produce overt behavior (Kirkpatrick, 2014). 
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The present study suggests an alternative explanation: the horizontal shift in the 
distribution of latencies and in the peak-interval gradient are likely due to a decrease in 
the prevalence of timed-latencies, an increase in the mean of non-timed latencies, and a 
shortening of response bouts around the time when reinforcement is anticipated. These 
changes do not imply a change in timing; instead, they suggest a reduction in motivation 
for the reinforcer, which results in reduced temporal control and response rate. 
Furthermore, this suggestion is consistent with the notion that reduction in motivation for 
the reinforcer alters preference for engaging in the FI over alternative behaviors (Killeen 
& Pellon, 2013, Sanabria et al., 2009; Gibbon, 1995) 

The present generative performance model is consistent, to some extent, with the 
Packet theory of timing (Guilhardi, Yi, & Church, 2007; Church & Guilhardi, 2005; 
Guilhardi & Church, 2005; Guilhardi, Keen, MacInnis, & Church, 2005; Kirkpatrick & 
Church, 2003; Kirkpatrick, 2002; also see Dragoi, et al., 2013 for an alternative to Packet 
Theory). Packet theory is the only theory of timing to operate on the assumption of bout-
like behavior; it stipulates that responding in interval schedules of reinforcement is a 
composite of the temporal structure of bouts and the rate at which bouts are generated. 
According to Packet theory, what drives the increasing response rate across the FI is the 
increased expectation for the reinforcer, which yields an increased probability of a bout. 
Implementations of the theory produce response bouts such that, if in the middle of a bout 
another bout is generated, then that new bout is concatenated with the previous bout 
(Kirkpatrick, 2002); the concatenation of bouts therefore increases as the FI elapses. This 
process is reflected in the proposed IRT model as an increase in bout length over the 
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course of the FI, and is consistent with our suggestion that bout length reflects the 
subjective hazard function of reinforcement supported by the schedule.  

There are, however, a few important differences between the present model and 
Packet Theory. Packet Theory assumes that (a) latencies are not differentiated from IRTs, 
(b) latencies and IRTs are both described by a Wald distribution suggesting both arise 
from a timing process, and (c) only the probability of a bout changes as a function of time 
in the FI. Assumptions a and b are in conflict with the present data and previous research 
suggesting that behavior fluctuates into and out of states of schedule control, and that 
latencies and run rate characterize two different processes. To address the present data, 
Packet Theory would infer that pre-feeding affects the timing process. Assumption c is 
inconsistent with the decrease in between-bout IRTs over the FI, suggested by the present 
data, but may actually emerge out of the dynamics of Packet Theory.  
Limitations and Future Directions 

A potential limitation of the proposed model is it is agnostic regarding 
correlations within and between components of FI performance (e.g., consecutive 
latencies, consecutive IRTs and RDs), and was evaluated without taking those potential 
sequential dependencies into consideration. Prior research has shown interesting patterns 
of sequential dependency between latencies (Shull, 1971) and between IRTs (Gentry, et 
al., 1983). Furthermore, recent research has revealed that even after animals are well 
trained, both latencies and run rates may change as a function of time in the session 
(Balci, et al., 2010). Future developments of the proposed generative model may 
incorporate the relation between components of FI performance, and their changes within 
each session. 
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Conclusion 
The present study provides evidence that timing processes may be isolated from 

other confounding processes using established models of operant performance. Timing 
processes appear to be expressed in a subset of latencies to the first response, whose 
distribution is scale-invariant and robust against changes in reinforcer efficacy. Response 
runs appear to be organized in bouts whose length increases as the time to reinforcement 
approaches. The dissociation of these components of FI performance, and the observation 
that pre-feeding does not directly affect timed latencies, provides useful insights into the 
relation between timing and motivation, and for the development of analytical tools for 
testing hypotheses regarding timing and its sensitivity to reward value (Galtress & 
Kirkpatrick, 2009; Ludvig, Conover & Shizgal, 2007; Plowright, Church, Behnke & 
Silverman, 2000). Specifically, timing and motivation appear to be dissociable 
components of interval timing. Although these tools were applied to a limited range of 
data in the present study, the analytical models are beneficial in that they derive from a 
single general equation and have already been tested in other schedules of reinforcement. 
Moreover, the present generative performance model suggests that models of timing are 
still incomplete. It highlights the need to refine our understanding of the microstructure of 
FI performance. 
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APPENDIX A  
MODEL SELECTION 

  



 

51 
 

A model-space investigation was conducted using data from each group of rats 
under baseline conditions to determine which free parameters in Eq. 1 and 2 were 
justified for each component of FI performance. All potential nested models of each 
component of FI performance (Eq. 1 (also see Eq. 3) for latencies, Eq. 1 and 2 (also see 
Eq. 4-5) for IRTs) were fit to the data of each rat from group FI30 and FI90 using the 
method of maximum likelihood (Myung, 2003). For each model, the maximum log-
likelihood estimate (MLE) was used to compute the corrected Akaike Information 
Criterion (AICc; Burnham & Anderson, 2002). Briefly, AICc favors nested models that 
balance goodness-of-fit (higher MLE) against parsimony (fewer free parameters); lower 
AICc are indicative of better balance. The analysis yielded a selection criterion ΔAICc 
for each nested model; ΔAICc of nested model i is the AICc of nested model i minus the 
lowest AICc across all models compared. Thus, the nested model with the lowest AICc 
has a ΔAICc = 0 and all other nested models have a ΔAICc > 0. The simplest constrained 
nested models within 4 ΔAICc units of the minimum ΔAICc were selected (this threshold 
is recommended by other researchers; see Bunrhman & Anderson, 2002; Brackney et al., 
2011) as the most likely model providing the best balance of fit (low AICc) and 
parsimony (fewest free parameters).  
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APPENDIX B 
 

MODEL SELECTION OUTCOMES 
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Table B1 
Latency Model Selection 

Group Model # of Free 
Parameters 

MLE AICc ΔAICc 
 qL, εL, cL, kL 32 -7558.69 15182.31 0* 
FI 30 qL = 1, εL, cL  16 -7648.77 15401.76 219.49 
 qL = 0, kL  8 -8065.11 16146.29 1284.04 
 qL, εL, cL, kL 32 -10333.50 20731.92 0* 
FI 90 qL = 1, εL, cL  16 -10675.54 21399.60 667.69 
 qL = 0, kL  8 -10908.78 21833.62 1101.70 

Note.  Models are labeled with the parameters that were allowed to vary. The number of 
free parameters for each model is equal to the number of free parameters allowed to vary 
times the number of rats (8). Models were fit to 2360 data points for FI 30 and for FI 90 
(~295 per rat). *The model with the fewest free parameters and a ΔAICc < 4 was selected 
for each group.  
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Fig. B1. Left panel: Mean empirical cumulative distribution of latencies (squares) from 
each FI and mean fit of each model in Table B1: gamma + exponential (solid line), 
gamma (dashed line), exponential (dotted line). Latencies are organized in 40 bins of 
equal number of latencies. 
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Table B2 
IRT Model Selection 
Group Model # of Free 

Parameters 
MLE AICc ΔAICc 

FI 30 
 
 
 
 
 
 
 
 
 
 
 
 
 

JI0, cI0 = kI0 8 -9338.13 19892.27 14745.50 
JI0, cI0 = kI0, αI = βI 24 -4299.37 8646.73 3500.06 
JI0, cI0, kI0, 24 -3953.15 7954.29 2807.62 
JI0, cI0, kI0, γI 32 -3145.43 6354.86 1208.26 
JI0, cI0, kI0, αI = βI 32 -3439.26 6942.52 1795.92 
JI0, cI0, kI0, αI 32 -3684.10 7432.21 2285.61 
JI0, cI0, kI0, γI, αI = βI 40 -2957.56 5995.12 848.63 
JI0, cI0, kI0, γI, αI 40 -3130.44 6340.88 1194.39 
JI0, cI0, kI0, αI, βI 40 -3429.25 6938.50 1792.01 
JI0, cI0, kI0, γI, αI, βI 48 -2956.72 6009.43 863.07 
JI0, cI0, kI0, γI, αI, βI, ΩI 56 -2846.15 5804.31 658.09 
JI0, cI0, kI0, γI, αI, βI, ΩI, δI 56 -2535.92 5183.85 37.63 
JI0, cI0, kI0, γI, αI, βI, ΩI, δI, τI 64 -2509.03 5146.05 0 
JI0, cI0, kI0, γI, βI, ΩI , δI, τI 56 -2518.32 5143.73 2.41* 
JI0, cI0 = ΩI, kI0, γI, βI, δI, τI 48 -2542.86 5181.28 35.35 

FI 90 JI0, cI0 = kI0 8 -34644.27 69304.54 33352.62 
JI0, cI0 = kI0, αI = βI 24 -26809.98 53668.03 17716.11 
JI0, cI0, kI0, 24 -19857.39 39762.86 3810.93 
JI0, cI0, kI0, γI 32 -18406.87 36877.87 925.95 
JI0, cI0, kI0, αI = βI 32 -19321.66 38707.45 2755.52 
JI0, cI0, kI0, αI 32 -19736.85 39537.82 3585.90 
JI0, cI0, kI0, γI, αI = βI 40 -18306.65 36693.51 741.59 
JI0, cI0, kI0, γI, αI 40 -18387.14 36854.49 902.57 
JI0, cI0, kI0, αI, βI 40 -19313.81 38707.82 2755.90 
JI0, cI0, kI0, γI, αI, βI 48 -18306.62 36709.53 757.61 
JI0, cI0, kI0, γI, αI, βI, ΩI 56 -18182.18 36476.75 524.83 
JI0, cI0, kI0, γI, αI, βI, ΩI, δI 56 -18209.69 36171.79 219.86 
JI0, cI0, kI0, γI, αI, βI, ΩI, δI, τI 64 -17914.83 35958.18 6.25 
JI0, cI0, kI0, γI, βI, ΩI , δI, τI 56 -17919.76 35950.26 0* 
JI0, cI0 = ΩI, kI0, γI, βI, δI, τI 48 -17931.15 35956.92 6.66 

Note. Models are labeled with the free parameters that were allowed to vary. The number 
of free parameters for each model is equal to the number of free parameters allowed to 
vary times the number of rats (8). Models were fit to 11447 and 16277 data points for FI 
30 and FI 90, respectively. *The constrained model with the fewest free parameters and a 
ΔAICc < 4 was selected. 
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 Fig. B2. Left panel: Mean IRT of FI30 and FI 90 rats as a function of time (1-s bins) in 
the FI. The continuous curve is the mean fit of Eqs. 4 and 5; the dashed curves are mean 
between-bout (kIt)  and the dotted curves are the mean within-bout (cIt) IRT. Right panels: 
Note that, in all panels, the y-axis is log base 10 and the x-axis is linear. 
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APPENDIX C 
 

FIT OF MODELS AND OUTPUT OF SIMULATOR 
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 Fig. C1 Empirical cumulative density functions for each rat trained on FI 30-s. Starting 
on the left side, going down, and then the right and going down rats are numbered 1-8. 
The solid line trace is the fit of the mixture model described by Eq. 3.  
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 Fig. C2 Empirical cumulative density functions for each rat trained on FI 90-s under the 
baseline condition. See Fig. C1 for details about organization of the figure and legend. 
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 Fig. C3 Empirical cumulative density functions for each rat trained on FI 90-s under the 
pre-feeding condition. See Fig. C1 for details about organization of the figure and legend. 
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Time in FI (s)  Fig. C4 Mean IRT as a function of time (1-s bins) for each rat trained on FI 30-s. See Fig 
C1 for details about organization of figure. See Fig. B2 for details about the legend. 
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IRT
 (s

)

Time in FI (s)   Fig. C5 Mean IRT as a function of time (1-s bins) for each rat trained on FI 90-s. See Fig 
C1 for details about organization of figure. See Fig. B2 for details about the legend. 
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 Fig. C6 Mean IRT as a function of time (1-s bins) for each rat trained on FI 90-s under 
the pre-feeding condition. See Fig C1 for details about organization of figure. See Fig. B2 
for details about the legend. 
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Fig. C7 Mean response functions for each rat trained on FI 30-s as depicted in Fig. 1 
plotted against the mean response function (solid line) and ± 2 standard 
deviations(dashed lines) as predicted by the simulator. See Fig. 1C for details about 
organization of figure and Fig. 8 for details about the legend.  
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 Fig. C8 Mean response functions for each rat trained on FI 90-s under the baseline 
condition as depicted in Fig. 1 plotted against the mean response function (solid line) and 
± 2 standard deviations(dashed lines) as predicted by the simulator. See Fig. 1C for 
details about organization of figure and Fig. 8  for details about the legend.  
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 Fig. C9 Mean response functions for each rat trained on FI 90-s under the pre-feeding 
condition as depicted in Fig. 1 plotted against the mean response function (solid line) and 
± 2 standard deviations(dashed lines) as predicted by the simulator. See Fig. 1C for 
details about organization of figure and Fig. 8 for details about the legend.  
 


