School Air Toxic Monitoring Project:

Church Rock Elementary School

by

Karmen Billey

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Approved November 2015 by the Graduate Supervisory Committee:

Larry Olson, Chair Danny Peterson Albert Brown

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed. Conducting an air monitoring toxic analysis on the Navajo Nation at Church Rock Elementary School, Church Rock, New Mexico (CRNM) was carried out. The current school location posed a concern, in regards to the surrounding stationary, mobile, and natural emissions emitted all types of toxic pollutants. USEPA sponsors various air monitoring program, which Tribal Air Monitoring Support (TAMS) program undertook, and offered tribal programs, organizations or agencies to utilized air monitoring equipment's. The air monitoring setup was conducted with the contract Eastern Research Group, Inc. (ERG) laboratory, where collection of 24-hour ambient air samples for 60 days on a 6-day sampling interval were performed. The analysis for volatile organic compounds (VOCs)were collected from canister samples using USEPA Compendium Method TO-15, polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2 resin samples using USEPA Compendium Method TO-13A. Carbonyl compounds were collected by sorbent cartridge samples using USEPA Compendium Method TO-11A, and trace of metals from filters were sampled using USEPA Compendium Method IO-3.5 and FEM EQL-0512-202. A total of 53 VOC concentrations were greater than 1 $\mu g/m^3$, where dichlorodifluoromethane, trichlorofluoromethane, chloromethane, dichloromethane, propylene, toluene, acrolein and acetylene were detected. A total of 23 carbonyl compound concentrations were greater than 1 µg/m³, where acetone and formaldehyde were measured. Naphthalene average with the highest average for PAHs, where phenanthrene and retene were the second and third highest averages. As for the metals the highest averages resulted from manganese, chromium and lead. Overall, the air toxic pollutants resulted from CRNM surrounding monitoring site were detected. Identifying the potential emitter source or sources cannot be assessed.

i

DEDICATION

I would like to dedicate this study to my family. Seeking a higher education has been challenging to complete, especially while working a full time job and facing different trials along the way. I am grateful for the encouragement and positive enforcement from family, especially from Stacey, who witness all the sacrifice I endured to get this study completed. Ahehee' (Thank you).

ACKNOWLEDGMENTS

I would like to acknowledge the Tribal Air Monitoring Support (TAMS) Center and ERG Laboratory for assisting me with this study. When this study was proposed as a thought, I was able with your help and assistance to make it a reality. The planning and funding incorporated from your office help me complete this study, as well as benefit the Navajo Nation school children in Church Rock, New Mexico. Ahehee' (Thank you).

		Page
LIST C	OF TABLES	vi
LIST C	DF FIGURES	vii
СНАР	TER	
1	INTRODUCTION	1
	Statement of Problem	2
	Objective & Scope	2
	Limitations	3
	Assumptions	3
2	LITERATURE REVIEW	4
	Volatile Orangic Compounds	4
	Carbonyl Compounds	5
	Polycyclic Aromatic Hydrocarbons	6
	PM ₁₀ Metals	7
3	METHODOLOGY	9
	Method Overview	9
	VOC Sampling and Analytical Method	10
	Carbonyl Compound Sampling and Analytical Method	11
	PAH Sampling and Analytical Method	11
	PM ₁₀ Metals Sampling and Analytical Method	12
	Site Description	12
	Sample Collection Schedule	17
4	RESULTS	18
	Sample Collection Schedule	18
	Data Results	19
	Meterological Wind Rose Summary	
	Health Risk and Pollutant of Interest Summary	31

TABLE OF CONTENTS

CHAF	PTER	Page
5	CONCLUSION AND RECOMMENDATIONS	35
	Conclusion	
	Recommendations for Future Studies	
REFE	ERENCES	39
APPE	ENDIX	
А	ERG LABORATORY DRAFT REPORT	42
В	VOC COC FORMS	
С	CARBONYL COMPOUNDS COC FORMS	114
D	PAH COC FORMS	132
Е	PM10 METALS COC FORMS	162
F	APPLICATION SUBMITTED TO TAMS	179
G	APPROVAL DOCUMENTATION FROM CHAPTER AND SCHOOLBOARD .	192
Н	TARGET ANALYTES AND REQUIRED METHOD DETECTION LIMITS	197

LIST OF TABLES

Table	Page
1.	Church Rock Monitoring Site Geographical Information 15
2.	1-in-6 Days Sampling 17
3.	Sampling Collection Summary 19
4.	Results of Highest Concentration for VOCs 22
5.	VOC Concentration Values compared to EPA Required Method Detection Limit 23
6.	Results of Highest Concentration for Carbonyl Compounds 26
7.	Carbonyl Concentration Values compared to EPA Required Method Detection Limit 26
8.	PAH Concentration Values compared to EPA Required Method Detection Limit
9.	PM ₁₀ Metals Concentration Values compared to EPA Required Method Detection Limit
10.	Risk-Based Screening Results for the CRNM Monitoring Site

LIST OF FIGURES

Figure	Page
1.	Navajo Nation boundary map13
2.	Navajo Nation Church Rock (CRNM) Monitoring Site Location 14
3.	Church Rock (CRNM) Monitoring Site – Wide View 15
4.	Nearby Point Source Facilities from CRNM 16
5.	Nearby Point Source Facilities from CRNM to Petroleum Refining Facility 16
6.	Volatile Orangic Compounds (VOCs) Concentration over the Sample Period 22
7.	Carbonyl Compound Concentration over the Sample Period 25
8.	Polycyclic Aromatic Hydrocarbs (PAH) Concentration over the Sample Period
9.	Partculate Matter 10 (PM ₁₀) Metals Concentration over the Sample Period 29
10.	Wind Rose from CRNM Air Monitoring Site

CHAPTER 1

INTRODUCTION

Air pollution has been linked to many negative human health effects, which are caused by a variety of emission sources, stationary and mobile factors. U.S. Environmental Protection Agency (EPA) (2015) states, "People exposed to toxic air pollutants at sufficient concentrations and durations may have an increased chance of getting cancer or experiencing other serious health effects. These health effects can include damage to the immune system, as well as neurological, reproductive (e.g., reduced fertility), developmental, respiratory and other health problems." The factors emit air toxics that are known or suspected to cause cancer or other serious health problems, which has led to U.S. Environmental Protection Agency (EPA) – Office of Air Quality Planning and Standards (OAQPS) to develop a school air monitoring project called the School Air Toxics Monitoring Program (SATMP). The SATMP now described as the School Air Toxics Monitoring Initiative refer to the project where EPA, state, local and tribal monitoring of outdoor air around schools are conducted to address pollutants of known air toxics (EPA, 2015). EPA took part in a new initiative approach to ensure that children are breathing healthy outdoor air, where air quality monitoring at sixty-three (63) schools throughout the United States (US) was conducted. The importance of gathering air toxic data from various schools across the United States were conducted, but the tribal school air toxic data was lacking, where data could have assist in understanding if tribal school environments were also being affected by surrounding air toxics. Mostly tribal schools were not considered for the EPA's analysis of selected schools to be included within the merit analysis about air quality. EPA is still addressing concerns about the deficiency of air quality information from surround tribal communities. Therefore, programs like the Tribal Air Monitoring Support (TAMS) Program has assisted with SATMP for tribal communities to perform air monitoring pilot projects, to help gather air monitoring data by loaning air monitoring equipment's to be setup at designated sites. The Navajo Nation submitted a request through the Church Rock Chapter, located in Church Rock, New Mexico to be selected as an SATMP site to be setup at the Church Rock Elementary School (CRNM) in Church Rock, New Mexico.

Statement of Problem

EPA conducted recommendations at 63 schools across the country to ensure children are breathing healthy outdoor air. This was a new initiative to identify schools where investigation is to be conducted to produce data availabilities to EPA based on the air pollution within the surrounding school grounds. Unfortunately, schools on tribal lands have limited air pollution and emission information, and tribal schools were not considered part of the 63 schools assessment. Regardless of limited information, EPA is continues seeking tribal school data in order to eliminate concerns or address issues regarding potential air toxics might be impacting tribal school environment. The Navajo Nation land mass is the size of the state of Vermont. Conducting the school air toxic project to be setup at CRNM cannot be considered the only school toxic analysis information for the Navajo Nation. Selecting CRNM is a start for the Navajo Nation to be considered for additional air toxic monitoring studies to be assessed at other agencies within Navajo Nation. The importance of collecting data for the well-being and health status from children attending school can provide an assessment if potential air toxics are affecting their learning abilities or growth development.

The health related issues caused by breathing in air toxics for children can have an effect on their developmental growth to enhance their learning abilities. Research by Clark-Reyna, Grineski & Collins (2015) states the higher levels of residential air toxics, specifically from non-road mobile sources, are statistically significantly associated with lower grade point averages among fourth and fifth grade school children in El Paso, Texas. The CRNM air monitoring site is surrounded by an active production area where emission resulting from oil and gas facilities emit air toxics, nearby traffic represent mobile sources of air pollutants, and local residences continue to practice outdoor burning. All these sources can impact children's health.

Objectives & Scope

The project objective is to confirm ambient air monitoring efforts that can yield location specific air quality data. This data can be sufficient as an initial screening project for potential impacts from air toxics pollutants that can impact school grounds. This data should assist EPA, state, local and tribal agencies in enforcing policies on surrounding sources, or to request additional air

monitoring studies to be conducted. This study investigated the concentrations of key air toxics at CRNM over a 2-3 month period. The results of this study can help determine whether the concentrations of air toxics, in light of health risk-based criteria, may require additional follow-up activities. The results collected from CRNM will determine if additional data analysis will be needed by extending the short-term monitoring to a long-term status.

Limitations

This research only collected data pertaining to volatile organic compound (VOCs), carbonyl compounds, polycyclic aromatic hydrocarbons (PAH), and metals of particulate matter 10 (PM₁₀). The emitting source reviewed within this research is oil and gas production, mobile sources, and outdoor burning. Comparing another SATMP monitoring site information within this study, which was located in another area of the Navajo Nation, was limited. Due to the SATMP was conducted by a Navajo Nation program, and seeking permission to use information within this study was not granted or authorized.

Assumptions

This research approval to be conducted is to address air toxic emissions for the region within Church Rock, New Mexico. This monitoring data results is not to be considered the only data analysis to be determine for the Navajo Nation. Other sections of the Navajo Nation can be recommended or determine for further data analysis. The Navajo Nation is located within 3 states: Arizona, New Mexico and Utah. The east boundary side of the Navajo Nation local communities is in close proximities to Farmington, New Mexico and Gallup, New Mexico. The city of Farmington, New Mexico is considered a metropolitan status, but Gallup, New Mexico is not. It is assumed the Navajo Nation is considered a rural area, but border town population can have an effect on overall air shed status.

CHAPTER 2

LITERATURE REVIEW

Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOC) contain carbon and can evaporate. EPA (2015a) defines VOCs as means of any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates and ammonium carbonate, which participates in atmospheric photochemical reactions, except those designated by EPA as having negligible photochemical reactivity. The EPA Federal Register 40 CFR part 51 (1996) states, "This action adds perchloroethylene (perc), also known as tetrachloroethylene, to the list of compounds excluded from the definition of VOC on the basis that it has negligible photochemical reactivity, where this rule results in more accurate assessment of ozone formation potential and will assist in avoiding exceedances for the ozone health standards. This rule does this by causing control efforts to focus on compounds which are actual ozone precursors, rather than giving credit for control of a compound which has negligible photochemical reactivity." VOCs are used within household and commercial products. Some cleansers, disinfectants, waxes, glue, cosmetics, dry cleaning products, paints, varnishes and preservatives include VOCs. Other products VOCs are found in are gasoline, kerosene, fuel, cigarette smoke, and pesticides. Research by Ho and Lee (2001) states VOCs are an important group of air pollutants to be investigated, as they contribute to the most serious air pollution problems, where they have been demonstrated to be active in the formation of photochemical smog and ground-level ozone productions. Some VOCs found in urban air classified as carcinogenic compounds (1, 3-butadiene and benzene). VOCs can cause health effects, but the type and amount of exposure can vary with the individual exposed. Children are a potentially at-risk population because they may be both more exposed to VOCs and more susceptible to adverse effects than adults (Sexton et al., 2005). The types of health effects resulting from VOCs exposure may cause irritation to the eyes, nose, and throat. Also other health effects may be headaches, nausea, and nerve problems. The United States National Library of Medicine – Tox Town (2015) states, long-term exposure to volatile organic compounds can cause damage to the liver, kidneys, and central nervous system. Short-term

exposure to volatile organic compounds can cause eye and respiratory tract irritation, headaches, dizziness, visual disorders, fatigue, loss of coordination, allergic skin reactions, nausea, and memory impairment. "It is well established, for example, that children can be affected by different sources, pathways, and routes of exposure than adults; that children often have greater intake of air, food, beverages, soil, and dust per unit body weight and surface area; and that children differ from adults in terms of important pharmacokinetic and pharmacodynamics parameters" said Sexton et al.(2005). The effects of outdoor VOCs have a lower impact compared to indoor exposure. The outdoor exposure of VOCs are more common in urban areas, where sources are related to bus or automobile exhaust. While VOCs can also be a health concern outdoors, EPA regulates VOCs outdoor mainly because of their ability to create photochemical smog under certain conditions (EPA, 2015a).

Carbonyl Compounds

Carbonyl compounds are defined as a compound containing carbonyl groups, where a carbon atom is double bonded to an oxygen atom. Kim et al. (2007) states ambient carbonyls are directly discharged from such primary sources as exhaust gases of motor vehicles and incomplete combustion of hydrocarbons fuels in industrial machinery and industrial processes (production of paper, adhesive, automobile, etc.). Carbonyl compounds can be characterized as major odorous pollutants. Carbonyls are among the major species of organic compounds involved in photochemical air pollution, since aldehydes and ketones play an important role as products of photo oxidation of gas-phase hydrocarbons as a major source of free radicals (Ho & Lee, 2001). Wang, Lee & Ho (2007) state carbonyl compounds are toxic and the most observed toxic effects are irritation of skin, eyes and nasopharyngeal membranes. Formaldehyde is usually the most abundant and the airborne carbonyl compound most concern since it is classified carcinogenic to humans by the International Agency for Research on Cancer (2004). Another carbonyl compound exposure of health concerns is aldehydes. EPA (2015) lists health effects from aldehydes relating to inhalation concerns, where it can alter breathing patterns by narrowing airway openings, and damage cells lining the airways, prompting white blood cells to enter the lungs. Carbonyl sulfide is another element listed as a carbonyl compounds. The health effects of

carbonyl sulfide in animal studies show that exposure to high levels of carbonyl sulfide in the air can damage the areas of the brain that control movement and process sound information (ATSDR, 2014). Liu et al. (2006) defines the health effect of acrolein as a severe lung irritant that, at high acute exposures, can induce oxidative stress and delayed-onset lung injury, including asthma, congestion, and decreased pulmonary function These are just a few of carbonyl compounds health effects that children might be exposed to while attending school on a daily base.

Polycyclic Aromatic Hydrocarbons (PAH)

Polycyclic aromatic hydrocarbons (PAH) are a group of chemicals that occur naturally in coal, crude oil and gasoline. PAH are hydrocarbons where organic compounds contains only carbon and hydrogen. Also EPA (2008) states PAHs are created when products like coal, oil, gas, garbage are burned but the burning process is not complete. PAHs can stay in the environment for long periods of time. A few PAHs are used in medicines, plastics, dyes, and pesticides. The exposure of people encountering PAHs is based on breathing air contaminants that result from motor vehicle exhaust, agricultural or wood smoke, cigarette smoke, fumes from asphalt roads, industrial waste incineration, and release from hazardous waste sites. Also PAHs can attach itself to dust or other particles in the air. After PAHs are swallowed, breathed in, or in some cases, passed through the skin, the body converts PAHs into breakdown products called metabolites that pass out of the body in the urine or feces (CDC, 2013). The health effects associated with PAH suggest an adverse impact of prenatal PAH exposure on child behavior that could impact cognitive development and ability to learn, and have been shown to affect subsequent academic performance due to increase anxiety, depression and attention problems from PAH exposure (Perera, 2012). Several of the PAHs, including benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, chrysene, dibenz [a, h] anthracene, and indeno [1, 2, 3-c, d] pyrene, have caused tumors in laboratory animals when they breathed these substances in the air, when they ate them, or when they had long periods of skin contact with them (ATSDR, 1995). Furthermore, studies of people show that individuals exposed by breathing or skin contact for long periods to mixtures that contain PAHs

and other compounds can also develop cancer (ATSDR, 1995). EPA (2008) has determined that benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, and indeno[1,2,3- c,d]pyrene are probable human carcinogens and that acenaphthylene, anthracene, benzo[g,h,i]perylene, fluoranthene, fluorene, phenanthrene, and pyrene are not classifiable as to human carcinogenicity. For example one of the listed probable human carcinogen is benzo (a) pyrene, which has been studied extensively and considered a potent carcinogen, meaning low doses may cause cancer (CDC, 2013).

Particulate Matter (PM) 10 Metals

"Particulate matter (PM) is used to describe solid or liquid particles that are airborne and transported and dispersed in atmosphere, which vary in number, size, shape, surface area, chemical composition, and solubility" stated by Contini, Cesari, Donateo, Chirizzi, & Belosi (2014). PM originates from a variety of natural or anthropogenic sources and possesses a range of morphological, physical, chemical, and thermodynamic properties. EPA (2015) states that the size of particles is directly linked to their potential for causing health problems. EPA is most concerned about particles 10 micrometers in diameter or smaller, which are the particles that generally pass through the throat and nose and enter the lungs. EPA groups particle pollution into two categories: inhalable coarse particles and fine particles. "Inhalable coarse particles," such as those found near roadways and dusty industries, are larger than 2.5 micrometers and smaller than 10 micrometers in diameter (EPA, 2015). "Fine particles," such as those found in smoke and haze, are 2.5 micrometers in diameter smaller, which can be directly emitted from sources such as forest fires, or they can form when gases emitted from power plants, industries and automobiles react in the air (EPA, 2015). This can have a serious health impact to the heart and lungs, and lead to serious health effects. EPA (2015) states numerous scientific studies have linked particle pollution exposure to a variety of problems, including premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, and increased respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing.

Metals can have additional health effects that can be detrimental. Research by Gieger and Cooper (2010) define differences in exposure to metals or inorganic metal compounds due to the difference between persistence in the body compared to organic compounds. Metals are neither created nor destroyed by biological and chemical processes, but may be bio transformed from one chemical species to another. The exposure to metals in the air is capable of causing a myriad of human health effects, ranging from cardiovascular and pulmonary inflammation to cancer and damage of vital organs (Gieger & Cooper, 2010). Additionally, metals have been associated with wide range of environmental and health effects including respiratory and pulmonary disorder, neurotoxicity, and cancer, which results from high concentrations of metals, especially near industrial facilities (Monn & Becker, 1999).

CHAPTER 3

METHODOLOGY

Method Overview

The laboratory ERG (Eastern Research Group) conducted the data analysis and overview, since collections from samplers were mailed to: ERG, Inc. 601 Keystone Park Drive, Suite 700, Morrisville, North Carolina, 27560. The samples were mailed on a weekly base after samplers collection were retrieved (Appendix A). The samples were collected by site operator (Ms. Karmen Billey), who participated and assist by setting up the air monitoring instruments along with retrieving the samples. The sampling plan was adopted by EPA SATMP, where TAMS followed the requirements of the School Air Toxics Monitoring Quality Assurance Project Plan (EPA, 2015). The samples were collected starting on December 25, 2014 through March 19, 2015. The samplings were collected in 1-in-6 day interval, where the samplers ran for 24 hours. EPA's Compendium methods versions were used by the laboratory ERG for data analysis. Four types of samplers were used to collect data information at CRNM site. Below are the listed EPA's Compendium methods used by ERG for data analysis, as well as descriptions provided below within this section:

- Compendium Method TO-15 for measuring 59 VOCs. EPA (1999) addresses the polar compounds to a lesser extent do not consistently chromatograph well. For example, acrolein is difficult to analyzed, but with gas chromatograph/mass spectrometry (GC/MS) in Selected Ion Monitoring (SIM) mode it can be accurately measured, even at Iow concentrations. The Compendium Method TO-15 is used for sampling and analytical procedures for the measurement of subsets of the 97 VOCs that are included in the 188 hazardous air pollutants (HAPs).
- Compendium Method TO-11A for measuring 15 carbonyl compounds. EPA (1999) states, "The carbonyl compounds in the sample are identified and quantified by comparing their retention times and area counts with those of standard DNPH derivatives. Formaldehyde, acetaldehyde, acetone, propionaldehyde, crotonaldehyde,

benzaladehyde, and o-, m-, p-tolualdehydes can be identified with high degree of confidence."

- Compendium Method TO-13A for measuring 22 PAHs. EPA (1999) determined in the laboratory in regards to collection efficiency, the Compendium Method TO-13A demonstrates to be greater than 95% for targeted PAHs, except for naphthalene, acenaphthylene, and acenaphthene.
- Compendium Method IO-3.5 and EPA Federal Equivalent Methods (FEM) EQL-0512-202 for PM₁₀ were used to measure 11 metals. EPA (1999) indicated this measurement method is used for sampling and analytical procedures for the measurement of metals in ambient air. The analysis technique allows more than 60 elements to be quantitatively determined, and the isotopes of an element can be determined as well. However, this method only detects 20 compounds."

VOC Sampling and Analytical Method

Compendium Method TO-15 was used by ERG based on EPA (1999) guidelines. The air was sampled through a collection by a passivated stainless steel canister for VOC sampling. The stainless steel canisters were provided by the ERG laboratory, where the canisters were prepared (i.e., cleaned and evacuated) and mailed to the designated CRNM site operator before each sample for the monitoring site collection run dates were scheduled. At the time of canister setup, the canister is connected to air sampling equipment prior to each sampling event. The passivated canisters had an internal pressure that was lower than the atmospheric pressure. Due to the evacuated canister, air was able to flow into the canister automatically with the assistance of a solenoid valve system connected to the canister once it was opened. A mass flow controller device inlet was connected to the canister, which allowed air to enter at a constant rate during the 24 hour sampling collection date. At the designated time and date, the solenoid valve automatically closed and the air was stopped from flowing into the canister. The canisters were retrieved and returned back to ERG laboratory for analysis, along with Chain of Custody (CDC) forms (Appendix B).

The ERG laboratory conducted the analysis for each sample with gas chromatograph/mass spectrometry (GC/MS), operating in the Selected Ion Monitoring (SIM) mode. Laboratory staff were able to determine the concentrations of 59 VOCs. This analysis was carried out in this way because VOC analysis method reports only the sum concentration for two isomers (m-xylene and p-xylene) form the gas chromatograph column at the same time. VOC concentration data collected from CRNM are shown in Appendix A.

Carbonyl Compound Sampling and Analytical Method

Compendium Method TO-11A was used by ERG based on EPA (1999) guidelines. The carbonyl compound sampler has an ozone scrubber, where air goes through and then down into the cartridges. The cartridges contain silica gel coated with 2, 4-dinitrophenylhydrazine (DNPH), which is a compound identified to react with many aldehydes and ketones. Other compounds not considered carbonyl are not retained in the cartridge, which continue passing through without reacting with DNPH-coated matrix. ERG laboratory sent DNPH cartridges to the CRNM site operator, who connected the cartridge to the air sampling equipment, where the date and time of each sample was recorded within 24 hour sampling period. The cartridge was then retrieved and sent back to ERG laboratory for analysis, along with COC forms (Appendix C).

The ERG laboratory conducted the analysis for each sample by extracting the exposed DNPH cartridge with acetonitrile. To determine the amount of each carbonyl compounds within each cartridge, ERG used high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Similar to the sum concentration of VOCs, three tolualdehyde isomers (m-xylene, o-xylene, and p-xylene) are removed from the HPLC column at the same time, where the sum concentration is only reported for these isomers and not separated. Carbonyl compound concentration data collected from CRNM are shown in Appendix A.

PAH Sampling and Analytical Method

Compendium Method TO-13A was used by ERG based on EPA (1999) guidelines and ASTM D6209. The ERG laboratory supplied the PUF/XAD-2[®] cartridge and a glass fiber filter, which were installed in high volume sampler. The samples were set to run for a 24 hour sampling

period. Once sampling period was completed, site operator retrieved the cartridge and filter, which were sent to ERG laboratory along with COC forms (Appendix D).

The ERG laboratory conducted the analysis by retrieving 14 days of sampling; the cartridge and filter were extracted together. The extraction was done by using toluene in hexane solution using the Dionex Accelerated Solvent Extractor (ASE) 350 or ASE 300. ERG states the extraction is concentrated to a final volume of 1.0 milliliter (mL). A volume of 1 microliter (μ L) is injected into the GC/MS operating in the SIM mode to analyze for the 22 PAHs concentrations. PAHs concentration data collected from CRNM are shown in Appendix A.

PM₁₀ Metals Sampling and Analytical Method

Compendium Method IO-3.5 and EPA FEM EQL-0512-202 was used by ERG based on EPA (1999) guidelines for the data analysis section. The collections of metal sampling were conducted by ambient air passing through a 47mm Teflon[®] filters. Particulate matter less than 10 microns (PM₁₀) were sampled at a low volume, where collections were done under local conditions. Site operator retrieved filters after the 24 hour sampling period, and returned them to the ERG laboratory for data analysis to be carried out, along with COC forms (Appendix E).

The ERG laboratory processes the filter analysis by digested the filters using a dilute nitric acid, hydrochloric acid, and hydrofluoric acid solution. Then the filter goes through an inductively coupled plasma-mass spectrometry (ICP-MS) to quantify the concentration of specific metals to be shown within the primary air sample. PM₁₀ metals concentration data collected from CRNM are provided in Appendix A.

Site Description

Within this section the monitoring site characterization will be provided using geographical and physical information in regards to the selected air monitoring site and surrounding community setup to conduct the SATMP project. Furthermore, additional information as to why this particular SATMP was considered, including surrounding emission factors which might have an impact on the air quality site data analysis. The Navajo Nation is a federally recognized Indian Tribe with inherent powers of sovereignty and authority to manage and control the use of Navajo lands and resources. The Navajo Nation covers a land mass of about over 27,000 miles with the states of

Arizona, Utah, and New Mexico. Surrounding the Navajo Nation are the Southern Ute of Colorado, and Ute Mountain Ute Tribe. Hope Indian Reservations is located surrounded by the Navajo Nation in Arizona. The Navajo Nation has three (3) large non-contiguous sections located in New Mexico, which are Ramah Navajo Indian Reservation, Alamo Navajo Indian Reservation and Tohajiilee Indian Reservation. Figure 1 shows the overall boundaries of the Navajo Nation retrieved from the Navajo Area-Indian Health Services (2015) website. A red dot is placed on the Navajo Nation map designating the location of Church Rock, New Mexico.

Church Rock Elementary School is one (1) of nineteen (19) schools within Gallup McKinley County School, Gallup, New Mexico, is considered a "public" school. Church Rock Elementary School has teaching grade levels from pre-kindergarten to 5th grade, and about 95% are American Indian. The town of Church Rock is located about 7 miles east of Gallup, New Mexico and about 24 miles east from the state line. The Church Rock Elementary School was selected to be the designated monitoring site. Composite satellite images shown in figures 2 and 3 are retrieved from Google Earth Maps (2015) and show the location of Church Rock Elementary School and the community of Church Rock, New Mexico. Figure 2 shows the location of the school and a star has been place to provide an image where the monitoring site location on the east side of the school was located. North from the Church Rock Elementary School are the red rock formations, shown in Figure 2, which are a part of the Red Rock State Park. Figure 3 shows the composite satellite image of Red Rock State Park. Across the street from the school are located with residential homes, which the area is categorized to be as residential and rural. The Church Rock community is located north of Interstate 40 (I-40), which runs east to west across the United States parallel with Route 66. Table 1 states the geographical information for the Church Rock Elementary School. An EPA Air Quality Standard (AQS) Code was assigned for this site.

Figure 2. Navajo Nation Church Rock (CRNM) Monitoring Site Location

Figure 3. Church Rock (CRNM) Monitoring Site – Wide View

Table 1.								
Church Rock Monitoring Site Geographical Information								
Site Code	AQS Code	Address	Location	County	Tribal Area	Latitude and Longitude	Land Use	Location Setting
CRNM	35-031- 2015	43 Challenger Road	Church Rock	McKinley	Navajo Nation	35.538747, -108.596741	Residential	Rural

Figure 4 identifies emissions nearby the CRNM based from the point source information. The emissions locations are designated by the amount of nearby facilities located within a certain distance from CRNM. This will provide an idea of which emission sources and categories could have a direct impact on the overall air quality at CRNM. Figure 4 shows the proximity of emission and quantity sources to the monitoring site at a certain distance. Within a 10 miles radius distance from CRNM there are three (3) source categories determine. Two (2) oil and/or gas production, one (1) petroleum refining (Figure 5), and one (1) rail line/yard operations. The facilities closest to the monitoring site are oil and gas production, which are located at the bottom left side of Figure 4, north from Interstate Highway 40 (I-40). The facilities are located west and more than 3 miles from monitoring site. Additional, nearby facilities from CRNM include a casino

with installed generators, a rock and Gravel Company, and an out of business furniture making facility. The surrounding residential community near to CRNM conducts open trash burning practices that may contribute to the emissions of air toxics.

Figure 4. Nearby Point Source Facilities from CRNM

Figure 5. Nearby Point Source Facilities from CRNM to Petroleum Refining Facility

Sample Collection Schedule

Sample recovery for each sample from the air toxics instruments sampler in the SATMP network must happen within 72 hours of the end of the sample period. For 1-in-6 days sampling, this will normally be the day after a sample is completed and retrieved. At this time of sample recovery, the next sample would also be set-up, see Table 2. The sample collection began on December 25, 2014 and the last day for sampling took place on March 19, 2015, which is also shown in Table 2.

Table 2.

December 2014							Jar	uary 2	015				
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6					1	2	3
7	8	9	10	11	12	13	4	5	6	7	8	9	10
14	15	16	17	18	19	20	11	12	13	14	15	16	17
21	22	23	24	25	26	27	18	19	20	21	22	23	24
28	29	30	31				25	26	27	28	29	30	31
		Febr	uary 20)15					Ma	arch 20	15		
Sun	Mon	Tue	Wed	Thu	Fri	S	1	2	3	4	5	6	7
						at	8	9	10	11	12	13	14
1	2	3	4	5	6	7	15	16	17	18	19	20	21
8	9	10	11	12	13	14	22	23	24	25	26	27	28
15	16	17	18	19	20	21	29	30	31				
22	23	24	25	26	27	28							
				-									

1-in-6 Days Sampling Calendar 2014-2015

CHAPTER 4

RESULTS

The major goal of this study was to determine if there are any hazardous air pollutants surrounding school boundaries within the ambient air that could possibly are affect school children learning and developmental growth. The CRNM air-monitoring site was selected based on the potential surrounding sources by the TAMS steering committee (see Appendix F). Also the proposal for the CRNM air monitoring site to be considered had to be presented to the Church Rock Community Chapter and the Gallup McKinley School Board, since the CRNM site was located with the community and school district boundaries. Approval of community resolution and school board voting approval documentations are viewed in Appendix G. The ERG laboratory provided the data analysis reporting for this study, since all sample collections were sent off from the site operator to the laboratory. The laboratory report can be viewed in Appendix A.

A meteorological wind rose was determined at the CRNM site and four (4) air monitoring instruments. Based upon the CRNM study results, a health risk-based procedure was used to identify "pollutants of interest." The goals of the sample collection schedule will be address, which will show the samples validation from each sample collection date. A section providing information regarding health risk-based was used to help identify "pollutants of interest" based on the CRNM results of this study.

Sample Collection Schedule

The objective of the CRNM monitoring effort was to retrieve and analyze at least ten (10) sets of valid samples for valid samples for each analyte of interest. The study accomplished this objective: fifteen (15) valid metals and VOCs samples; twelve (12) carbonyl compounds and thirteen (13) PAHs sample. Table 3 shows the list of sample dates for the entire sampling period (December 25, 2014 – March 19, 2015). Majority of the samples were valid for analysis, but five (5) were not considered valid, due to sampler malfunction, lab issue, or sample did not run for the full 24 hours. At least having a set of ten (10) sets of samples for each method is related to the SATMP EPA effort measurements used in their previous studies.

Table 3.

Sample Collection Summary

Sample Date	Metals Analysis PM ₁₀	Carbonyl Compounds	VOCs	PAHs		
12/25/14	Reported	^a Invalid	Reported	Reported		
12/31/14	Reported	^a Invalid	Reported	Reported		
1/6/15	Reported	^a Invalid	Reported	Reported		
1/12/15	Reported	Reported	Reported	Reported		
1/18/15	Reported	Reported	Reported	Reported		
1/24/15	Reported	Reported	Reported	Reported		
1/30/15	Reported	Reported	Reported	Reported		
2/5/15	Reported	Reported	Reported	Reported		
2/11/15	Reported	Reported	Reported	^b Invalid		
2/17/15	Reported	Reported	Reported	Reported		
2/23/15	Reported	Reported	Reported	^c Invalid		
3/1/15	Reported	Reported	Reported	Reported		
3/7/15	Reported	Reported	Reported	Reported		
3/13/15	Reported	Reported	Reported	Reported		
3/16/15	Reported	Reported	Reported	Reported		
Total Valid vs	15/15	12/15	15/15	13/15		
Total Collected						
^a Sampler malfunction ^b Lab Issue ^c Sample did not run for or 24 hours *ERG Laboratory provided data sample collection summary table in Appendix P						

Data Results

This section will provide a summary of the analytical results provided by ERG Laboratory, since they are the contracted lab assisting with TAMS on the SATMP for Navajo Nation in regards to CRNM air monitoring site (Appendix A). Within the Appendix B report the detection rate for each pollutant, minimum concentration, maximum concentration, average concentration

and the standard deviation are stated from pollutants measured from CRNM site for the whole sampling period.

The data results for VOC concentrations, illustrated in Figure 6, the highest average concentration are dichlorodifluoromethane ($2.57 \pm 0.13 \ \mu g/m^3$). It is the only pollutant shown exceeding the 2.0 $\mu g/m^3$. There were two (2) pollutants greater than 1.0 $\mu g/m^3$ but not reaching 2.0 $\mu g/m^3$. The pollutants were chloromethane ($1.45 \pm 0.46 \ \mu g/m^3$) and trichlorofluoromethane ($1.33 \pm 0.06 \ \mu g/m^3$). The remaining VOC concentrations were below 1.0 $\mu g/m^3$. It was reported by ERG Laboratory (Appendix B) the maximum concentration for chloromethane was 4.55 $\mu g/m^3$ measured on February 5, 2015, where the next highest concentration was measured at 1.48 $\mu g/m^3$. The two (2) highest concentrations for chloromethane were recorded on two (2) separate sampling dates in the month of February 2015. Table 4 states the VOCs highest three (3) concentration range and median concentration.

Dichlorodifluoromethane resulted with a pollutant range of 2.13 μ g/m³ to 2.94 μ g/m³, with a median concentration of 2.65 μ g/m³. It was determine by ERG that there is relatively little variability in the concentration for this pollutant based on the derived confidence internals, even though this was the highest VOC average concentration pollutant within the sampling period. Chloromethane ranged from 0.942 μ g/m³ to 4.55 μ g/m³, with a median concentration of 1.23 μ g/m³. It was determined by ERG Laboratory the pollutant range and median concentration for chloromethane results indicate a relatively large confidence interval for this pollutant. The concentration pollutant range for trichlorofluoromethane is from 1.10 μ g/m³ to 1.46 μ g/m³, with 1.33 μ g/m³ as the median concentration. It was determined that this pollutant showed little variability measured at CRNM site.

Other VOC concentrations measured in Figure 6 results from this study were dichloromethane ranged from 0.289 μ g/m³ to 3.48 μ g/m³, with a median concentration of 0.87 μ g/m³. Also benzene had a data range from 0.323 μ g/m³ to 0.771 μ g/m³ with a median concentration of 0.588 μ g/m³, and carbon tetrachloride data ranged from 0.473 μ g/m³ to 0.756 μ g/m³ with a median concentration of 0.633 μ g/m³. Additional VOC concentrations exceeding average concentration of 0.5 μ g/m³ was propylene, toluene, acetylene and trichlorotrifluoroethane. The remaining VOC

concentration were between 0 μ g/m³ to 0.5 μ g/m³, where acrolein data range was 0 μ g/m³ to 1.1 μ g/m³ with a median concentration of 0.448 μ g/m³. Also other concentration below 0.5 μ g/m³ were xylene, acetonitrile, chloroform and etc. Additional discussion will be address further within this chapter in regards to the VOC concentration health impacts in the "Health Risk and Pollutant of Interest Summary" section. Overall, a total of 53 VOCs concentrations were measured to be greater than 1.0 μ g/m³ at CRNM air monitoring site: dichlorodifluoromethane and trichlorofluoromethane measured in 15 samples; chloromethane measured 14; dichloromethane measure 3; propylene and toluene 2; and acrolein and acetylene 1. Ten (10) VOC compounds were not detected at all in any sample collection. The goal of measuring 15 valid VOCs samples were gathered from CRNM and were met.

The method detection limits (MDL) have been established for the target analytes provided from EPA (2015) as part of the SATMP. The MDL listing of HAP compounds in Appendix H is the MDLs reported by ERG for use in the national lab contract for this project. Based on the VOC concentration results shown in Table 5, the EPA required MDL concentrations are highlighted with twelve (12) HAP compounds are higher than resulted concentration for this study: Bromodichloromethane, Bromoform, Chlorobenzene, p-Dichloroethane, Ethyl tert-butyl ether, Methyl methacrylate, Methyl tert-butyl ether, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, Trichloroethylene, Vinyl chloride. The other VOC concentrations resulted were higher than the EPA MDL values.

Figure 6. Volatile Organic Compounds (VOCs) Concentration Over the Sample Period *ERG Laboratory provided the data analysis reported in Appendix B.

Table 4			
Results of Highest Col	ncentration for VOCs	3	
Highest Concentration Pollutants	Concentration Pollutant Range (μg/m³)	Median Concentration (μg/m³)	Confident Interval for Pollutant
Dichlorodifluoromethane	2.13 to 2.94	2.65	Relatively Little Variability
Chloromethane	0.942 to 4.55	1.23	Relatively Large Confidence Interval
Trichlorofluoromethane	1.10 to 1.46	1.33	Relatively Little Variability
*ERG Laboratory provided the	e data analysis reported in Ap	ppendix B.	

Table 5

VOC Concentration Values compared to EPA Required Method Detection Limit (MDL)

VOCs	Concentration µg/m³	EPA Required Method Detection Limit (MDL) µg/m ³	
Acetonitrile	0.19	0.097	
Acetylene	0.52	0.013	
Acrolein	0.448	0.035	
Benzene	0.588	0.020	
Bromodichloromethane	0.00805	0.016	
Bromoform	0.0166	0.020	
1,3-Butadiene	0.068	0.006	
Carbon Disulfide	0.0688	0.007	
Carbon Tetrachloride	0.633	0.012	
Chlorobenzene	0.008	0.011	
Chloroform	0.092	0.012	
Dibromochloromethane	0.0341	0.011	
p-Dichlorobenzene	0.0205	0.023	
Dichlorodifluoromethane	2.57	0.019	
1,1-Dichloroethane	0.00271	0.008	
Dichlorotetrafluoroethane	0.133	0.010	
Ethyl tert-Butyl Ether	0.00223	0.028	
Ethylbenzene	0.0925	0.015	
Methyl Isobutyl Ketone	0.0797	0.025	
Methyl Methacrylate	0.0041	0.110	
Methyl tert-Butyl Ether	0.00169	0.051	
n-Octane	0.107	0.018	
Propylene	0.652	0.063	

Styrene	0.0617	0.013			
1,1,2,2-Tetrachloroethane	0.0138	0.019			
Toluene	0.542	0.030			
1,2,4-Trichlorobenzene	0.0535	0.052			
1,1,2-Trichloroethane	0.00401	0.015			
Trichloroethylene	0.00323	0.008			
Trichlorofluoromethane	1.33	0.012			
1,2,4-Trimethylbenzene	0.0725	0.052			
1,3,5-Trimethylbenzene	0.0266	0.018			
Vinyl chloride	0.00154	0.005			
Xylene	0.263	0.028			
* EPA Required MDL listed in Appendix H.					

The data results from carbonyl compounds concentration shows the highest average concentration was acetone (2.20 \pm 0.56 µg/m³) in Figure 7, which exceeded 2.0 µg/m³. The next pollutant measures with the highest concentration was formaldehyde (1.44 \pm 0.21 µg/m³). As determined by ERG Laboratory, the highest concentration of acetone was on March 19, 2015 and the two other acetone concentration exceeded 3.0 µg/m³ in the month of March. The confidence level for acetone was determined to be relatively large due to the pollutant range from 1.05 µg/m³ to 3.98 µg/m³, and a median concentration of 1.98 µg/m³, which is shown in Table 6. Formaldehyde was measured to have a pollutant concentration range from 0.811 µg/m³ to 1.98 µg/m³ and a median concentration of 1.58 µg/m³. It was determined by ERG Laboratory that the confidence level could not be stated due to the median concentration averaging higher than the average concentration, where the lower end of the range is pulling down the study average. The remaining carbonyl compounds shown in Figure 7 were less than 1.0 µg/m³. A total of 23 carbonyl compounds measured higher than 1.0 µg/m³ at CRNM air monitoring site: acetone had 12 samples above this level and formaldehyde had 11. It was noted by ERG Laboratory two (2)

carbonyl compounds were not detected at all in the samples gather at CRNM. These were isovaleraldehyde and 2, 5-dimethylbenzaldehyde. The goal of the measuring 12 valid carbonyl compound samples were gathered from CRNM and were met

In comparison to the EPA required MDL (Appendix H) the carbonyl compound concentrations in Table 7 resulted with all concentrations from this study were higher than the EPA MDL values. The ERG laboratory used the listed target analytes MDL for use in the national lab contract for this project.

Figure 7. Carbonyl Compound Concentration over the Sample Period *ERG Laboratory provided the data analysis reported in Appendix B.

Table 6

Results of Highest Concentration for Carbonyl Compounds

Highest Concentration Pollutants	Concentration Pollutant Range (µg/m³)	Median Concentration (μg/m³)	Confident Interval for Pollutant
Acetone	1.05 to 3.98	1.98	Relatively Large Confidence
Formaldehyde	0.811 to 1.98	1.58	Undetermined
ERG Laboratory provided	the data analysis reported in	Appendix B.	

Table 7 Carbonyl Concentration Value	alues compared to EPA Requi	ired Method Detection Limit (MDL)
Carbonyl Compounds	Concentration µg/m ³	EPA Required Method Detection Limit (MDL) μg/m ³
Acetaldehyde	0.793	0.0090
Acetone	2.2	0.0100
Benzaldehyde	0.0718	0.0010
Butyraldehyde	0.151	0.0600
Crotonaldehyde	0.0818	0.0050
Formaldehyde	1.44	0.0440
Hexaldehyde	0.0688	0.0050
Propionaldehyde	0.132	0.0120
Tolualdehydes	0.0656	0.0090
Valeraldehyde	0.0415	0.0050
* EPA Required MDL listed	1 in Appendix H.	

The data results from polycyclic aromatic hydrocarbons (PAH) concentration shows the highest average concentration was naphthalene ($53.30 \pm 14.66 \text{ ng/m}^3$) in Figure 8, which exceeded 50 ng/m³. The ERG Laboratory data analysis determined the pollutant concentration

range for naphthalene was 19.2 ng/m³ to 103 ng/m³, where the maximum concentration was measured on February 5, 2015. The next highest PAH was phenanthrene (10.41 \pm 1.39 ng/m³), and the third highest measured concentration was retene (8.92 \pm 3.59 ng/m³). Figure 8 shows naphthalene to be about five times more than phenanthrene, and the rest of the PAH pollutants measured are all less than 5 ng/m³. The goal of the measuring 13 valid PAH samples gathered from CRNM were met. A list of HAP compounds shown in Appendix H provides the EPA required method detection limits (MDL) with higher concentration value than the resulted concentrations from this study are highlighted in Table 8. The four (4) PAH concentrations were: Coronene, Cyclopenta[c,d]pyrene, Perylene, and Retene.

The data results from particulate matter 10 micron (PM₁₀) metals concentration shows the highest average concentration was manganese ($4.32 \pm 1.39 \text{ ng/m}^3$), the next pollutant measure was chromium ($3.49 \pm 0.33 \text{ ng/m}^3$), and the third highest measure was lead ($0.56 \pm 0.10 \text{ ng/m}^3$) in Figure 9. The ERG Laboratory data analysis determined that the variability related to manganese is more than the variability with chromium, which is shown with confidence interval. The rest of the metals measured were below 1.0 ng/m^3): nickel, antimony, arsenic, and selenium. The goal of the measuring 15 valid PM₁₀ metals samples was met. The listing of HAP compounds in Appendix H was compared between the resulted concentration and EPA required method detection limits (MDL). The PM₁₀ metal concentrations shown in Table 9 are all higher in value in comparison to the EPA MDL values.

Table 8						
PAH Concentration Values compared to EPA Required Method Detection Limit (MDL)						
PAHs	Concentration µg/m ³	EPA Required Method Detection Limit µg/m ³				
Anthracene	0.00133	0.000052				
Benzo (a) anthracene	0.000702	0.000063				
Benzo (a) pyrene	0.000519	0.000061				
Benzo (b) fluoranthene	0.00067	0.000059				
Benzo (e) pyrene	0.000407	0.000049				
Benzo (g,h,i) perylene	0.000325	0.000033				
Benzo (k) fluoranthene	0.000326	0.000059				
Chrysene	0.00101	0.000040				
Coronene	0.000141	0.043000				
Cyclopenta[cd]pyrene	0.000516	0.064000				
Dibenz (a,h) anthracene	0.0000824	0.000049				
--	-----------	----------	--	--	--	--
Fluoranthene	0.00268	0.000046				
Fluorene	0.00354	0.000038				
Indeno (1,2,3-cd) pyrene	0.00254	0.000040				
Naphthalene	0.0533	0.000240				
Perylene	0.0000817	0.028000				
Phenanthrene	0.0104	0.000059				
Pyrene	0.0021	0.000059				
Retene	0.00892	0.057000				
* EPA Required MDL listed in Appendix H.						

Metals	Concentration µg/m ³	EPA Required Method Detection Limit µg/m ³		
Antimony	0.000303133	0.000007		
Arsenic	0.0001974	0.000009		
Beryllium	0.00001118	0.000002		
Cadmium	0.00004	0.000029		
Chromium	0.003486667	0.000340		
Cobalt	0.0000598	0.000006		
Lead	0.000555	0.000056		
Manganese	0.004322533	0.000057		
Mercury	0.00001	0.000017		
Nickel	0.000391533	0.000130		
Selenium	0.000106933	0.000013		

Meteorological Wind Rose Summary

Table 9

A wind rose provides information on wind speed and direction at or near the monitoring site. The importance of gathering metrological wind rose information is to help determine the predominant direction from which direction the wind is blowing, which can help determine whether emissions are from an upwind or nearby source. Also the determination of high pollutant concentration can have a correlation to the specific wind direction, where a wind rose diagram is developed to the frequency of time that the wind blows from a particular directions.

A meteorological probe was setup at CRNM air monitoring site. The probe was initially setup to collect data starting with first sample collection date on December 25, 2014, but after viewing the data it did not start to collect data until January 13, 2015 and ended on March 19, 2015. Figure 10 shows the wind rose from January 13, 2015 to March 19, 2015. The frequency of the

wind directions around a 16-point compass is shown by petals position, where colors represent the wind speed. The wind rose illustrates the southwest quadrant is where most winds are detected, followed by the north, northeast and east quadrants. The calms winds between 1-4 knots were detected in all directions of wind observed. The winds from the southwest quadrant were stronger than the northwest quadrant, based on the color scheme, along with a higher frequency.

Figure 10. Wind Rose from CRNM Air Monitoring Site (January 13, 2015 – March 19, 2015) *ERG Laboratory provided the data analysis reported in Appendix B

Health Risk and Pollutant of Interest Summary

Based on the results the following overview is to provide the health risk associated with the "pollutants of interest" from the CRNM air monitoring results. This summary addresses the targeted air toxics within ambient air. Hazardous air pollutants (HAPs) are those pollutants known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects (EPA, 2015). EPA has classified many hazardous air pollutants as "carcinogenic to humans," "likely to be carcinogenic to humans," or "suggestive evidence of carcinogenicity to humans" (EPA, 2015). The health risks are divided into cancer or noncancerous effects to determine the human health risk within this section of the study. Cancer risks are expressed as the number of excess cancer deaths per million people as

a result of inhaling the carcinogen over a 70 year lifetime. Noncancerous related health effects are associated with respiratory and lung issues that includes conditions like asthma to be caused. The health risk related to noncancerous defined by EPA (2015) is called hazard quotient (HQ), where "value of the HQ at or below one indicates that the exposure is not likely to result in adverse health effects." Therefore, HQ is considered a unit less value. An HQ of less than 1 is not likely to have negative effects over a lifetime of exposure.

The human health risk analysis was conducted by ERG Laboratory, which is reported with Appendix A. The toxicity factors were defined by EPA (2015) for cancer unit risk estimates (UREs) and noncancerous reference concentrations (RfCs). Estimates were screened to identify any air toxic concentrations that represent a human health risk. The ERG Laboratory addresses the preliminary risk-based screen process for this section was adapted by the approach and riskbased methodology from the EPA published guidance document called A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Dataset (Appendix B). The screening values are converted from the cancer UREs and noncancerous RfCs, where the URE is converted to µg/m³ and divided by one million. The noncancerous screening value is one-tenth of the RfC and converted from mg/m^3 to $\mu g/m^3$. For the final reporting of the screening value from this study, the lower of the two (2) screening values are used, where not all pollutants analyzed for this study had defined screening values. For this study a total of 65 pollutants have screening values analyzed. The analyses are located within Appendix A for the risk factors used for the study by ERG Laboratory. The "pollutant of interest" from the study was produced from the daily measurements of the target pollutants compared to the chronic risk screening values. The ERG Laboratory (Appendix A) conducted the risk-based screening process to identify "pollutant of interest" by determining the "failing the screen" method where the concentration greater than the risk screening value was indicated; for each pollutant the amount of failed screen was summed; percent contribution to total number of failed screens was calculated; and "pollutant of interest" were determine if pollutant top 95 percent (95%) of the total failed screen. Concentrations that may pose human health risks may be further studied.

32

Table 10 shows the overall risk-based screening results developed by ERG Laboratory from the CRNM air monitoring site. A total of eleven (11) "pollutants of interest" failed the screening process within the sampling period. Six (6) were from VOCs, two (2) from carbonyl compounds, two (2) PAHs, and one (1) from PM₁₀ metals. Four (4) VOCs (benzene, 1, 3-butadiene, carbon tetrachloride, and 1, 2-dichloroethane) had fifteen (15) measurements and each failed the screen, meaning a 100% failure rate for each pollutant. Also there were two (2) carbonyl compounds (acetaldehyde and formaldehyde) which each had twelve (12) measurements and a 100% failure rate for each pollutant. For PAH (naphthalene) thirteen (13) samples were measured and ten (10) resulted in failed screening, resulting in a 77% failure rate. Also for PAH (benzo (a) pyrene) resulted with thirteen (13) valid measurement sampled and five (5) failed screen, with a 38 percent failure rate. The PM₁₀ metal arsenic had fifteen (15) samples collected and four (4) failed the screen, resulting in a 27% failure rate. VOC pollutant 1, 2-dibromoethane is listed as one of the eleven (11) pollutants in Table 6, but due to arsenic exceeding 95 percent (95%) the next pollutant contributed equally to the failed screen amount will be designated as a "pollutant of interest." Table 6 states arsenic had four (4) failed screen resulting, where 1, 2-dibromoethane had two (2), therefore, is not contributed to the 95 percent of failed screen for CRNM. Overall, the shaded gray in Table 6 pollutants are the ten (10) pollutants out of eleven (11) that resulted in at least screened 95 percent (95%) of failed screen for CRNM air monitoring site.

Table 10

Risk-Based Screening Results for the CRNM Monitoring Site

Pollutant (eening alue g/m ³) S	# of # of Failed Measure Screens Detection		% of Screens Failed	% of Total Failures	Cumulative % Contribution			
Navajo Nation Church Rock, New Mexico - CRNM										
Benzene		0.13	15	15	100.00	13.39	13.39			
1,3-Butadiene		0.03	15	15	100.00	13.39	26.79			
Carbon Tetrachloric	le	0.17	15	15	100.00	13.39	40.18			
1,2-Dichloroethane		0.038	15	15	100.00	13.39	53.57			
Acetaldehyde		0.45	12	12	100.00	10.71	64.29			
Formaldehyde		0.077	12	12	100.00	10.71	75.00			
Naphthalene		0.029	10	13	76.92	8.93	83.93			
Hexachloro- 1,3- butadiene		0.045	7	7	100.00	6.25	90.18			
Benzo(a)pyrene		0.00057	5	13	38.46	4.46	94.64			
Arsenic (PM ₁₀)		0.00023	4	15	26.67	3.57	98.21			
1,2-Dibromoethane		0.0017	2	2	100.00	1.79	100.00			
Total		1	112	134	83.58					
*ERG Laboratory provided the data analysis reported in Appendix B.										

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusion

The purpose of this study was to determine if any hazardous air toxics were detected within the ambient air, which could have a health impact on school children who are attending school on a daily basis. The correlation between the data results and the health risk summary section of this study does not necessarily indicate an automatic similarity in measurement, but does state the results from this study have results with some health concerns. For example the pollutant measured with a high concentration results does not mean the pollutant also results with higher risk to human health. Also if the measurements were low, the pollutant might have a higher risk to human, due to the pollutant being more toxic, which is more of a risk associated within ambient air. From the results of this study there are several pollutants (dichlorodifluoromethane, acetone, and trichlorofluromethane) that did not have risk screening values, but results with high concentration were measured. Also chloromethane did not result with any failed risk screening values, therefore this pollutant did not appear on the Table 6. Formaldehyde did result with higher concentration value and failed screens, shown in Table 6. In Table 6 the listed pollutants that failed screens did not have relatively high concentrations, but the screening values are low, which meant the pollutant either failed for all or nearly all measured pollutants for that particular one. Benzene had a risk screening value of 0.13 µg/m³, where the measured CRNM range resulted from 0.323 μ g/m³ to 0.771 μ g/m³, and all of benzene failed for screening. It was determined by ERG Laboratory the CRNM average for benzene concentration is 0.59 ± 0.08 μ g/m³ through the study period, this is less than the national average, which was estimated to be between 0.75 µg/m³ to 1.0 µg/m³. The national averages were gathered from the EPA's National-Scale Air Toxics Assessment (NATA) from 2005 (EPA, 2011), EPA's National Monitoring Programs (NMP) annual reports for 2011 and 2012 (EPA, 2015), and EPA's Report on the Environment (ROE) (EPA, 2015). Benzene concentration from this study did not exceed the national average estimates.

35

Another pollutant compared to the national average is carbon tetrachloride, which was used as a refrigerant and propellants for aerosol cans. The CRNM's average for this pollutant over the study period was $0.63 \pm 0.04 \mu g/m^3$ and the national average estimate was between $0.55 \mu g/m^3$ and $0.70 \mu g/m^3$ (EPA, 2011; EPA, 2015; EPA, 2015). Carbon tetrachloride exceeds the lower end of the national average estimate but not the highest. Formaldehyde over the study period average $1.44 \pm 0.21 \mu g/m^3$, which is also less than the national average estimated between 2.0 $\mu g/m^3$ to $3.0 \mu g/m^3$ (EPA, 2011; EPA, 2015; EPA, 2015). This pollutant did not exceed the national average. Another pollutant concentration had the highest study average of $53.30 \pm$ $14.66 ng/m^3$ for PAHs is naphthalene. The concentration range was from $19.2 ng/m^3$ to 103 ng/m^3 , with a screening risk value of 29 ng/m^3 and all three (3) naphthalene failed screen measured at CRNM. The national average estimate for naphthalene between 70 ng/m³ and 90 ng/m^3 (EPA, 2011; EPA, 2015; EPA, 2015). Naphthalene did not exceed the national average of estimate values, but had the highest concentration range of 103 ng/m³ that exceed the highest end of national average estimate value.

Other PAH pollutants like retene, benzo(a)pyrene and acenaphthylene had high average concentration resulted and exceeded the national average estimate values, but did not have any failed screens or had no risk screening values determined. Retene has an average concentration $8.92 \pm 3.59 \text{ ng/m}^3$, where the national average estimate is about 0.4 ng/m³ (EPA, 2015). Benzo (a) pyrene had a study average of $0.52 \pm 0.26 \text{ ng/m}^3$, with concentration range of 0.13 ng/m^3 to 1.42 ng/m^3 . This pollutant failed five (5) screens, and the national average estimate is about 0.085 ng/m³ (EPA, 2015). Acenaphthylene had a risk screening value but results with no failed screen. The overall study average was $2.46 \pm 1.32 \text{ ng/m}^3$, where the national average estimate is about 0.6 ng/m³ (EPA, 2015). These three (3) PAH pollutants had rather large confidence interval, where the relatively high levels of variability are indicated with the measurements.

As for the PM₁₀ metals, arsenic measured concentration at CRNM was relatively low, but it resulted in failed screens. Arsenic was identified as one of the "pollutant of interest" in Table 6. The overall study average of arsenic is 0.20 ± 0.12 ng/m³, and the national average estimate was reported to be 0.58 ng/m³ by NATA 2005 (EPA, 2011), 0.75 ng/m³ from EPA's 2012 NMP report

36

(EPA, 2015), and 0.87 ng/m³ from EPA's ROE (EPA, 2015). Arsenic has been listed as a toxic pollutant, which is more risk associated to the ambient air. This pollutant did not exceed any of the national estimate averages.

Overall this study has provided an overview from the short-term air monitoring results setup at CRNM site. The CRNM site is located on the Navajo Nation tribal lands in the northwestern area of New Mexico. The sampling period was over a 3-month timeframe, where VOC, carbonyl compounds, PAH, and PM₁₀ metals sample data were collected from CRNM site. A total of 11 pollutant failed screens, but 10 pollutants were detected as "pollutant of interest". It was stated by ERG Laboratory that the outcome of the "pollutant of interest" are the same pollutants that failed screen at any given monitoring location because nearly every measured detection was greater than the associated screening level (Appendix B). The study also found the wind direction might have had an impact on the overall data results. The majority of the wind came from the southwest direction at CRNM air monitoring site shown in figure 10. As illustrated in figure 4, majority of the point source emissions are located in the southwest direction from CRNM. The pollutants detected from this study could have been emitted from sources that are everywhere, for example mobile source or from localized industrial sources. The outcome from this study has determine that hazardous air toxics are looming over the surrounding schools and the ambient air school children are breathing is not pristine, which could have a health impact on their developmental and growth effects.

Recommendations for Future Studies

After completing this study the following are recommendations for future studies.

- A full year of air monitoring sampling period to be conducted would benefit the air toxics at CRNM site. This will help further address if additional steps are needed to determine an improvement of air quality from surrounding sources. Also through a one year sampling period, it would be beneficial to observe the seasonal weather effects of air quality data results and if there is a trend in highest measured concentration.
- Since within this study the wind rose collection dates started from January 13, 2015 to March 19, 2015, the lack of data information for the month of December 2014 and part of

January 2015 was needed. Determining the overall wind speed and direction from the start of sampling period would help if the higher concentrations resulted are really being affected from surrounding source.

- Comparison from emergency room visits relating to respiratory or health related issues from Church Rock Elementary School during the different weather patterns (winter vs. spring) could be favorable.
- Conducting additional SATMP monitoring site throughout the Navajo Nation would help determine if surrounding sources or wind pattern downwind drifts are affecting the overall air quality on school children.
- Further research in surrounding sources around CRNM would determine if the resulted concentration were being affected.

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR). (1995). Public Health Statement: Polycyclic Aromatic Hydrocarbons (PAHs). Retrieved from http://www.atsdr.cdc.gov/ToxProfiles/tp69-c1-b.pdf.

Agency for Toxic Substances and Disease Registry (ATSDR). (2014). Toxicological Profile For Hydrogen Sulfide and Carbonyl Sulfide. Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp114.pdf.

Centers for Disease Control and Prevention (CDC). (2013). Factsheet: Polycyclic Aromatic Hydrocarbons (PAHs). Retrieved from http://www.cdc.gov/biomonitoring/PAHs_FactSheet.html.

Contini, D., Cesari, D., Donateo, A., Chirizzi, D., & Belosi, F. (2014). Characterization of PM₁₀ and PM_{2.5} and Their Metals Content in Different Typologies of Sites in South-Eastern Italy. *Atmosphere*, 5, 435-453.

Clark-Reyna, S.E., Grineski, S.E., & Collins, T.W. (2015). Residential exposure to air toxics is linked to lower grade point averages among school children in El Paso, Texas, USA. *Population and Environment*, 1, 1-22.

Geiger, A. & Cooper, J. (2010). Overview of Airborne Metals Regulations, Exposure Limits, Health Effects, and Contemporary Research. Retrieved from http://www3.epa.gov/ttnemc01/prelim/otm31appC.pdf.

Google Earth Map. (2015). Church Rock, NM. Retrieved from https://www.google.com/maps/place/Church+Rock,+NM/@35.5244241,-108.6370536,13z/data= !4m2!3m1!1s0x8724c3268fa43c5f:0xbec66f8e78d78bd8.

Ho. K.F., & Lee, S.C. (2001). Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong. *The Science of the Total Environment*, 289, 145-158.

Indian Health Services (IHS). (2015). Navajo Area. Retrieved from https://www.ihs.gov/navajo/.

International Agency for Research on Cancer (IARC). (2004). Overall Evaluation of Carcinogenicity to Humans, Formaldehyde Monographs Series. (Vol. 88). International Agency for Research on Cancer, Lyon, France.

Kim, K., Hong, Y., Pal, R., Jeon, E., Koo, Y., Sunwoo, Y. (2007). Investigation of carbonyl compounds in air from various industrial emission sources. *Chemosphere*, 70, 807-820.

Liu, W., Zhang, J., Zhang, L., Turpin, B.J., Weisel, C.P., Morandi, M.T.,...Korn, L.R. (2006). Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. *Atmospheric Environment*, 40, 2202-2214.

Monn, C. & Becker, S. (1999). Cyctotoxicity and Induction of Proinflammatory Cytokines from Human monocytes exposed to Fine (PM2.5) and Coarse (PM10) in Outdoor and Indoor Air. *Toxicology and Applied Pharmacology*, 155, 245-252.

Perera, F.P. (2012). Prenatal Polycyclic Aromatic Hydrocarbons (PAH) Exposure and Child Behavior at Age 6-7 Years. *Environmental Health Perspective*, 120, 921-926.

Sexton, K., Adgate, J.L., Church, T.R., Ashley, D.L., Needham, L.L., Ramachandran, G., ...Ryan, A.D. (2005). Children's Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood. *Environmental Health Perspectives*, 113 (3), 342-349.

Tox Town United States National Library of Medicine. (2015). Volatile Organic Compound (VOCs). Retrieved from http://toxtown.nlm.nih.gov/text_version/chemicals.php?id=31.

United States, 40 USC § 5417. (1996). EPA Air Quality; Revision to Definition of Volatile Organic Compounds-Exclusion of Perchloroethylene. *Federal Register*, vol. 61, 26.

U.S. EPA. (1999). Compendium of Methods TO-15 Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. Retrieved from http://www3.epa.gov/ttn/amtic/files/ambient/airtox/to-15r.pdf.

U.S. EPA. (1999). Compendium Method TO-11A Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC). EPA/625/R-96/010b. Retrieved from http://www3.epa.gov/ttn/amtic/files/ambient/airtox/to-11ar.pdf.

U.S. EPA. (1999). Compendium Method TO-13A Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. Retrieved from http://www3.epa.gov/ttn/amtic/files/ambient/airtox/to-13arr.pdf.

U.S. EPA. (1999). Compendium Method IO-3.5 Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). EPA/625/R-96/010a. Retrieved from http://www.epa.gov/ttn.amtic/files/ambient/inorganic/mthd-3-5.pdf.

U.S. EPA. (2011). 2005 National-Scale Air Toxics Assessment (NATA). Retrieved from <u>http://www3.epa.gov/ttn/atw/nata2005/tables.html</u>.

U.S. EPA. (2015). About Air Toxics. Retrieved from http://www3.epa.gov/ttn/atw/allabout.html.

U.S. EPA. (2015). School Air Toxics Monitoring Initiative. Retrieved from http://www3.epa.gov.ttnamti1/airtoxschool.html.

U.S. EPA. (2015). Technical Overview of Volatile Organic Compounds. Retrieved from http://www2.epa.gov/indoor-air-quality-iag/technical-overview-volatile-organic-compounds.

U.S. EPA. (2015). Inhalation of Aldehydes and Effects on Breathing. Retrieved from <u>http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/2313/rep_ort/0</u>.

U.S. EPA. (2015). Particulate Matter (PM). Retrieved from http://www3.epa.gov/airquality/particlepollution/index.html. U.S. EPA. (2008). Polycyclic Aromatic Hydrocarbons (PAHs). Retrieved from http://www3.epa.gov/epawaste/hazard/wastemin/minimize/factshts/pahs.pdf.

U.S. EPA. (2015). Particulate Matter (PM)-Health. Retrieved from http://www3.epa.gov/airquality/particlepollution/health.html.

U.S. EPA. (2015). Background on Risk Characterization. Retrieved from <u>http://www3.epa.gov/ttn/atw/nata2005/riskbg.html</u>.

U.S. EPA. (2015). Air Toxics-Urban Air Toxics Monitoring Program. Retrieved from <u>http://www.epa.gov/ttnamtil/uatm.html</u>.

U.S. EPA. (2015). EPA's Report on the Environment (ROE); Ambient Concentrations of Selected Air Toxics (Benzene Concentration). Retrieved from http://cfpub.epa.gov/roe/indicator.cfm?i=90#3.

Wang, B., Lee, S.C. & Ho, K.F. (2007). Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China. *Atmospheric Environment*, 41, 2851-2861.

APPENDIX A

ERG LABORATORY DRAFT REPORT

Summary Report

Ambient Air Monitoring Study at the Navajo Nation Church Rock, New Mexico Site

Prepared for:

Karmen Billey Navajo Nation Building #2920 Tribal Hill Drive Window Rock, AZ 86515

And

Farshid Farsi and Christopher J. Lee US EPA TAMS NCRFO 4220 S. Maryland Pkwy, Bldg C Las Vegas, Nevada 89119

Prepared by:

Eastern Research Group, Inc. 601 Keystone Park Drive, Suite 700 Morrisville, NC 27560

June 18, 2015

EPA Contract No. EP-D-14-030

Table of Contents

1.0	Introduction	1
2.0	Site Characterization	1
3.0	Wind Rose Data	6
4.0	Analytical Method Information	8
	4.1 VOC Sampling and Analytical Method	8
	4.2 Carbonyl Compound Sampling and Analytical Method	9
	4.3 PAH Sampling and Analytical Method	9
	4.4 Metals Sampling and Analytical Method	10
	4.5 Sample Collection Schedules	10
5.0	Statistical Summary	
6.0	Human Health Risk and the Pollutants of Interest	17
7.0	Summary	
8.0	References	

List of Figures

Figure 1.	Navajo Nation Church Rock (CRNM) Monitoring Site	2
Figure 2.	Navajo Nation Church Rock (CRNM) Monitoring Site-Wide View	3
Figure 3.	NEI Point Sources Located Within 10 Miles of CRNM	5
Figure 4a.	Location of CRNM and the Weather Station at Gallup Municipal Airport	7
Figure 4b.	Wind Rose for Gallup Municipal Airport (December 25, 2014-March 19, 2015)	7
Figure 5.	Average Concentrations over the Study Period	14
Figure 6.	PAH Concentrations over the Study Period.	. 15
Figure 7.	PM10 Metals Concentrations over the Study Period.	. 16
-	· · ·	

List of Tables

Table 1.	Geographical Information for the CRNM Monitoring Site	. 3
Table 2.	Sample Collection Summary	11
Table 3.	Risk-Based Screening Results for the CRNM Monitoring Site	19

List of Appendices

- Appendix A VOC Raw Data
- Appendix B Carbonyl Compounds Raw Data
- Appendix C PAH Raw Data
- Appendix D Metals Raw Data
- Appendix E Summary Statistics
- Appendix F Risk Factors Used Throughout the Report

1.0 Introduction

Air pollution contains many components that originate from a wide range of stationary, mobile, and natural emissions sources. Because some of these components include air toxics that are known or suspected to have the potential for negative human health effects, the U.S. Environmental Protection Agency (EPA) encourages state, local, and tribal agencies to understand and appreciate the nature and extent of toxic air pollution in their respective locations. To achieve this goal, EPA Office of Air Quality Planning and Standards (OAQPS) sponsors various monitoring programs, including the School Air Toxics Monitoring Program (SATMP). This program has been extended to perform additional studies in tribal communities in conjunction with the Tribal Air Monitoring Support (TAMS) Program (TAMS, 2015), of which the Navajo Nation has a participating monitoring site. The Navajo Nation collected 24-hour integrated ambient air samples for approximately 3 months, at 6-day sampling intervals, and sent them to EPA's national contract laboratory, Eastern Research Group, Inc. (ERG), for the analysis of volatile organic compounds (VOCs) from canister samples (Method TO-15), carbonyl compounds from sorbent cartridge samples (Method TO-11A), polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2® resin samples (Method TO-13A), and trace metals from filters (Method IO-3.5/FEM EQL-0512-202). This report provides characterizing information about the monitoring site location and summarizes the measurements collected at the CRNM monitoring site during the 3-month study.

2.0 Site Characterization

This section characterizes the monitoring site by providing geographical and physical information about the location of the site and the surrounding area. This information is provided to give the reader insight regarding factors that may influence the air quality near the site and assist in the interpretation of the ambient monitoring measurements. Figures 1 and 2 are composite satellite images retrieved from ArcGIS Explorer; the first shows the monitoring site and its immediate surroundings and the latter is a wider-angle image to show additional geographical elements.

The CRNM monitoring site is located in the town of Church Rock in northwest New Mexico. The town of Church Rock is located about 7 miles east of Gallup, New Mexico, and about 24 miles east of the state line. The monitoring site is located at Church Rock Elementary

School. Immediately north of the site are red rock formations, as shown in the composite satellite image in Figure 1, which are part of Red Rock State Park, and are a prominent feature in Figure 2. Residential properties are located across the street of from the elementary school. The surrounding area is classified as residential and is rural in nature with a primarily desert landscape. Much of Church Rock is located north of Interstate-40, which runs generally east-west across the state parallel with Route 66. CRNM is located about a half mile north of the interstate, with primarily residential dwellings situated between the site and the highway. Fort Wingate, a former Army installation (FWDA, 2015), lies to the south of I-40. Table 1 provides supplemental geographical information about the monitoring site.

Figure 2. Navajo Nation Church Rock (CRNM) Monitoring Site-Wide View

Table 1. Geographical Information for the CRNM Monitoring Site

Site Code	AQS Code	Address	Location	County	Tribal Area	Latitude and Longitude	Land Use	Location Setting
CRNM	35-031-2015	43 Challenger Road	Church Rock	McKinley	Navajo Nation	35.538747, -108.596741	Residential	Rural

Page 3

Figure 3 identifies nearby point source emissions locations by source category, as reported in the 2011 NEI for point sources, version 2 (EPA, 2015a). Note that only sources within 10 miles of CRNM are included in the facility counts provided in Figure 3. The 10-mile boundary provides an indication of which emissions sources and emissions source categories could potentially have a direct effect on the air quality at the monitoring site. This boundary also provides both the proximity of emissions sources to the monitoring site as well as the quantity of such sources within a given distance of the site. Sources outside the 10-mile radius are still visible on the map, but have been grayed out in order to show emissions sources just outside the boundary.

Figure 3 shows that the monitoring site is located in close proximity to relatively few emissions sources identified in the 2011 NEI. The four point source emissions sources within 10 miles of CRNM are included in following three source categories:

- Oil and/or gas production (2)
- Petroleum refining (1)
- Rail yard/rail line operations (1).

The closest facilities to CRNM are involved in oil and gas production and are located just outside the bottom-left side of Figure 2, just north of I-40, just greater than 2 miles west of CRNM. The only other point source shown in Figure 3 is an airport located outside the 10-mile radius, 10.5 miles to the southeast of the monitoring site.

According to Navajo Nation, nearby facilities not listed in the NEI include a casino and its generators, a rock and gravel company, and a furniture making facility. In addition, open burning and trash burning may contribute to emissions of air toxics near CRNM as population has increased (Navajo Nation, 2015).

Figure 3. NEI Point Sources Located Within 10 Miles of CRNM

Page 5

3.0 Wind Rose Data

A wind rose shows the frequency at which a given wind speed and direction are measured near the monitoring site and can help identify the predominant direction from which the wind blows near the monitoring site. A wind rose is often used initially to determine where to install an ambient monitoring site when trying to capture emissions from an upwind source. A wind rose may also be useful in determining whether high concentrations correlate with a specific wind direction.

A wind rose was constructed to represent wind data for the sample period at CRNM. The wind rose was constructed by uploading hourly National Weather Service surface wind data from the nearest weather station with sufficient data into a wind rose software program, WRPLOT (Lakes, 2011). The weather station closest to CRNM with sufficient data is located at Gallup Municipal Airport, WBAN 23081 (NCDC, 2014 and NCDC, 2015). Figure 4a shows the orientation of and the distance between the monitoring site and weather station as well as the surrounding topographic features. Figure 4b presents the wind rose for the sample period, December 25, 2014 through March 19, 2015. This wind rose shows the frequency of wind directions as petals positioned around a 16-point compass, and uses color or shading to represent wind speeds.

Observations from Figures 4a and 4b include the following:

- The weather station at Gallup Municipal Airport is located about 11 miles west of CRNM, on the west side of Gallup. The variations in the terrain in the surrounding area are visible in Figure 4a.
- The wind rose shows that winds from the southwest quadrant (including west) and northeast quadrant (including east) were most commonly observed. Winds from the other quadrants were infrequently observed. Calm winds (≤ 2 knots) accounted for just over one-third of wind observations during the sampling period.
- The average wind speed during the sample period was around 4.5 knots. The winds from the southwest quadrant tended to be stronger than those from the northwest quadrant. The strongest winds (shown in green and bright blue) tended to be out of the south-southwest to west.

Figure 4a. Location of CRNM and the Weather Station at Gallup Municipal Airport

Figure 4b. Wind Rose for Gallup Municipal Airport (December 25, 2014-March 19, 2015)

Page 7

4.0 Analytical Method Information

The first samples were collected at the CRNM site on December 25, 2014 and the last samples were collected on March 19, 2015. Samples were collected on a 1-in-6 day sampling schedule and ran for 24 hours. Four types of samples were collected at CRNM, which were analyzed at the laboratory using modified versions of EPA's Compendium methods:

- Compendium Method TO-15 for the measurement of 59 VOCs
- Compendium Method TO-11A for the measurement of 15 carbonyl compounds
- Compendium Method TO-13A for the measurement of 22 PAHs
- A combination of Compendium Method IO-3.5 and EPA Federal Equivalent Methods (FEM) EQL-0512-202 (for PM₁₀) for the measurement of 11 metals.

A brief description of each method is provided below.

4.1 VOC Sampling and Analytical Method

Sampling and analysis for VOCs was performed using methodology based on EPA Compendium Method TO-15 (EPA, 1999a). Ambient air samples were collected in passivated stainless steel canisters for VOC analysis. The ERG laboratory distributed the prepared canisters (i.e., cleaned and evacuated) to the monitoring site before each scheduled sample collection event, and site operators connected the canisters to air sampling equipment prior to each sampling event. Prior to field sampling, the passivated canisters had internal pressures much lower than atmospheric pressure. Using this pressure differential, ambient air flowed into the canisters automatically once an associated system solenoid valve was opened. A mass flow controller on the sampling device inlet ensured that ambient air entered the canister at an integrated constant rate across the collection period. At the end of the 24-hour sampling period, the solenoid valve automatically closed and stopped ambient air from flowing into the canister. Site operators recovered and returned the canisters, along with the Chain of Custody (COC) forms and all associated documentation, to the ERG laboratory for analysis.

By analyzing each sample with gas chromatography incorporating mass spectrometry (GC/MS), operating in the Selected Ion Monitoring (SIM) mode, the laboratory staff determined ambient air concentrations of 59 VOCs. Because *m*-xylene and *p*-xylene elute from the GC column at the same time, the VOC analytical method reports only the sum concentration for

these two isomers, and not the separate concentration for each isomer. Concentration data for the VOC samples collected at CRNM are presented in Appendix A.

4.2 Carbonyl Compound Sampling and Analytical Method

Sampling and analysis for carbonyl compounds was performed using methodology based on EPA Compendium Method TO-11A (EPA, 1999b). Ambient air samples were collected by passing ambient air through an ozone scrubber and then through cartridges containing silica gel coated with 2,4-dinitrophenylhydrazine (DNPH), a compound known to react selectively and reversibly with many aldehydes and ketones. Carbonyl compounds in ambient air are retained in the sampling cartridge, while other compounds pass through the cartridge without reacting with the DNPH-coated matrix. The ERG laboratory distributed the DNPH cartridges to the monitoring site prior to each scheduled sample collection event and site operators connected the cartridges to the air sampling equipment. After each 24-hour sampling period, site operators recovered the cartridges and returned them, along with the COC forms and all associated documentation, to the ERG laboratory for analysis.

To quantify concentrations of carbonyl compounds in the sampled ambient air, laboratory analysts extracted the exposed DNPH cartridges with acetonitrile. High-performance liquid chromatography (HPLC) analysis and ultraviolet (UV) detection of these solutions determined the relative amounts of individual carbonyl compounds present in the original air sample. Because the three tolualdehyde isomers (m-, o-, p-) elute from the HPLC column at the same time, the carbonyl compound analytical method reports only the sum concentration for these isomers, and not the separate concentrations for each isomer, similar to m- and p-xylene described above. Concentration data for the carbonyl compound samples collected at CRNM are presented in Appendix B.

4.3 PAH Sampling and Analytical Method

Sampling and analysis for PAHs was performed using methodology based on EPA Compendium Method TO-13A (EPA, 1999c) and ASTM D6209 (ASTM, 2013). The ERG laboratory prepared sampling media and supplied them to the site before each scheduled sample collection event. The clean sampling PUF/XAD-2[®] cartridge and glass fiber filter are installed in a high volume sampler by the site operators and allowed to sample for 24 hours. Sample collection modules and COC forms and all associated documentation were returned to the ERG laboratory after sample collection. Within 14 days of sampling, the filter and cartridge are extracted together using a toluene in hexane solution using the Dionex Accelerated Solvent Extractor (ASE) 350 or ASE 300. The sample extract is concentrated to a final volume of 1.0 milliliter (mL). A volume of 1 microliter (μ L) is injected into the GC/MS operating in the SIM mode to analyze for 22 PAHs. Concentration data for the PAH sampled collected at CRNM are presented in Appendix C.

4.4 Metals Sampling and Analytical Method

Ambient air samples for metals analysis were collected by passing ambient air through 47mm Teflon[®] filters using low-volume samplers for particulate matter less than 10 microns (PM10). Particulates in ambient air were collected on the filters (under local conditions) and, after a 24-hour sampling period, site operators recovered and returned the filters, along with the COC forms and all associated documentation, to the ERG laboratory for analysis. Extraction and analysis for the determination of metals in or on particulate matter was performed in accordance with EPA Compendium Method IO-3.5 and EPA FEM EQL-0512-202 (for PM10) (EPA, 1999d; EPA, 2012). Upon receipt at the laboratory, the whole filters were digested using a dilute nitric acid, hydrochloric acid, and hydrofluoric acid solution. The digestate was then analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) to quantify the concentration of individual metals present in the original air sample. Concentration data for the speciated metals samples collected at CRNM are presented in Appendix D.

4.5 Sample Collection Schedules

Table 2 presents a list of sample dates for the entire sample period as well as whether the samples collected and/or analyzed were valid or not. The goal of the monitoring effort was to collect and analyze at least 10 sets of valid samples for each method, similar to the model used in the SATMP effort. This goal was achieved for each method. Fifteen valid metals and VOC samples were collected and analyzed successfully; 12 valid carbonyl compound and 13 PAH samples were also collected and analyzed successfully.

	Metals	Carbonyl		
Sample Date	Analysis PM10	Compounds	VOCs	PAHs
12/25/14	Reported	Invalid ^a	Reported	Reported
12/31/14	Reported	Invalid ^a	Reported	Reported
1/6/15	Reported	Invalid ^a	Reported	Reported
1/12/15	Reported	Reported	Reported	Reported
1/18/15	Reported	Reported	Reported	Reported
1/24/15	Reported	Reported	Reported	Reported
1/30/15	Reported	Reported	Reported Reported	
2/5/15	Reported	Reported	Reported	Reported
2/11/15	Reported	Reported	Reported	Invalid ^b
2/17/15	Reported	Reported	Reported	Reported
2/23/15	Reported	Reported	Reported Reported	
3/1/15	Reported	Reported	Reported	Reported
3/7/15	Reported	Reported	Reported	Reported
3/13/15	Reported	Reported	Reported	Reported
3/19/15	Reported	Reported	Reported	Reported
Total Valid vs				
Total Collected	15/15	12/15	15/15	13/15
* Sampler malfunction	n. ^b Lab Issue	° Sample did	not run for or 24 ho	ours.

Table 2. Sample Collection Summary

* Sampler malfunction.

^e Sample did not run for or 24 hours.

5.0 Statistical Summary

This section provides a brief overview of data treatment and presents a summary of analytical results. In order to compare concentrations across multiple sampling methods, all concentrations have been converted to a common unit of measure: microgram per cubic meter (µg/m³). Concentrations of m,p-xylene and o-xylene were summed together and are henceforth referred to as simply "xylenes" throughout the remainder of this report, with the exception of Appendix E. Appendix E presents the detection rate for each pollutant as well as the minimum concentration, maximum concentration, average concentration, and the standard deviation for each pollutant measured at CRNM across the sampling period.

A brief summary for each method is presented below:

The pollutants with the highest average concentration are dichlorodifluoromethane ٠ $(2.57 \pm 0.13 \ \mu g/m^3)$ and acetone $(2.20 \pm 0.56 \ \mu g/m^3)$. These are the only two pollutants with study averages greater than 2 µg/m3. Pollutants with average concentrations greater than 1 µg/m3 over the period of study are: chloromethane

 $(1.45\pm0.46~\mu g/m^3)$, formaldehyde $(1.44\pm0.21~\mu g/m^3)$, and trichlorofluoromethane $(1.33\pm0.06~\mu g/m^3)$. Each of these pollutants was detected in all of the valid samples collected.

- The maximum concentration was measured on February 5, 2014 for chloromethane (4.55 µg/m³) and is more than twice the next highest chloromethane measurement (1.48 µg/m³), measured on two separate sample days in February. Concentrations of this pollutant range from 0.942 µg/m³ to 4.55 µg/m³, with a median concentration of 1.23 µg/m³. This explains the relatively large confidence interval shown for the study average of this pollutant.
- The second highest concentration was measured on March 19, 2015 for acetone (3.98 µg/m³), with two other acetone concentrations greater than 3 µg/m³ also measured in March. Acetone accounts for three of the five highest concentrations measured at CRNM. Acetone concentrations measured at CRNM range from 1.05 µg/m³ to 3.98 µg/m³, with a median concentration of 1.98 µg/m³. Similar to chloromethane, the average concentration of acetone has a relatively large confidence interval associated with it.
- Concentrations of dichlorodifluoromethane measured at CRNM range from 2.13 μ g/m³ to 2.94 μ g/m³, with a median concentration of 2.65 μ g/m³. Although this pollutant has one of the highest average concentrations over the period of sampling, there is relatively little variability in the measurements based on the confidence interval associated with the average. This pollutant accounts for 15 of 24 concentrations greater than or equal to 2 μ g/m³ measured at CRNM (with acetone accounting for six, dichloromethane accounting for two, and chloromethane accounting for one).
- Formaldehyde concentrations measured at CRNM range from 0.811 µg/m³ to 1.98 µg/m³, with a median concentration of 1.58 µg/m³. The median concentration of formaldehyde is actually greater than the average concentration, as the concentrations at the lower end of the concentration range are pulling down the study average.
- Trichlorofluoromethane concentrations measured at CRNM range from 1.10 µg/m³ to 1.46 µg/m³, with a median concentration of 1.33 µg/m³ and exhibiting little variability.
- A total of 53 VOC concentrations greater than 1 µg/m³ were measured at CRNM: dichlorodifluoromethane and trichlorofluoromethane (15 each), chloromethane (14); dichloromethane (3), propylene and toluene (2 each), and acrolein and acetylene (1 each). Ten VOCs were not detected at all in the samples collected at CRNM. A total of 15 valid VOC samples were collected at CRNM.
- A total of 23 carbonyl compound concentrations greater than 1 µg/m³ were measured at CRNM: acetone (12) and formaldehyde (11). Two carbonyl compounds were not detected at all in the samples collected at CRNM (isovaleraldehyde and

2,5-dimethylbenzaldehyd). A total of 12 valid carbonyl compound samples were collected at CRNM.

- Of the PAHs, naphthalene has the highest average over the study period (53.30 ± 14.66 ng/m³) and the 12 highest individual measurements. Concentrations of naphthalene measured at CRNM range from 19.2 ng/m³ to 103 ng/m³, with the maximum naphthalene concentration measured on the same day as the maximum chloromethane concentration (February 5, 2015). The PAHs with the second and third highest average concentrations over the period of study are phenanthrene (10.41 ± 2.86 ng/m³) and retene (8.92 ± 3.59 ng/m³).
- The metals with the highest average concentrations are manganese

 (4.32 ± 1.39 ng/m³), chromium (3.49 ± 0.33 ng/m³), and lead (0.56 ± 0.10 ng/m³). Of
 the 29 concentrations greater than 1 ng/m³ measured at CRNM, total chromium
 accounted for 15 and manganese accounted for the remaining 14. However, the
 six highest metals concentrations measured at CRNM were for manganese.
- Most of the PAHs and speciated metals were detected in all valid samples collected at CRNM.

Figure 5 presents a bar graph of the 21 pollutants with average concentrations greater than 0.1 μ g/m³ over the study period. These are presented in descending order and with the 95 percent confidence intervals indicated. The confidence intervals make it easy to see which pollutants have a higher level of variability in the measurements collected (such as acetone and chloromethane) and which have relatively little variability (dichlorodifluoromethane and trichlorofluoromethane, to name a few). Figure 5 shows that most of the pollutants sampled for at CRNM have average concentrations less than 1 μ g/m³.

Figures 6 and 7 present similar graphical comparisons for the PAHs and PM10 metals, which all have study averages less than $0.1 \ \mu g/m^3$ and therefore do not appear in Figure 5. Figure 6 shows that the average concentration for naphthalene is roughly five times greater than the next highest averages and that all but three PAHs have period averages less than 5 ng/m³. Figure 7 shows that manganese and total chromium have the highest averages by a significant margin. This figure also shows that the variability associated with the manganese measurements is greater than the variability associated with the total chromium measurements, as indicated by the confidence intervals shown.

Figure 5. Average Concentrations over the Study Period

6.0 Human Health Risk and the Pollutants of Interest

Health risk-based potential was used to identify "pollutants of interest" for CRNM based on the results of this study. The following paragraphs provide an overview of health risk terms and concepts and outline how pollutants of interest are determined and what can be gleaned from this information.

EPA defines risk as "the probability that damage to life, health, or the environment will occur as a result of a given hazard (such as exposure to a toxic chemical)" (EPA, 2011a). Human health risk can be defined in terms of time. Chronic effects develop from repeated exposure over long periods of time; acute effects develop from a single exposure or from exposures over short periods of time (EPA, 2010a). Health risk is also route-specific; that is, risk varies depending upon route of exposure (i.e., oral vs. inhalation). Because this report covers air toxics in ambient air, only the inhalation route is considered. Hazardous air pollutants (HAPs) are those pollutants "known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects" (EPA, 2015b).

Health risks are typically divided into cancer and noncancer effects when referring to human health risk. Cancer risk is defined as the likelihood of developing cancer as a result of exposure to a given concentration over a 70-year period, and is presented as the number of people at risk for cancer per million people. Noncancer health effects include conditions such as asthma; noncancer health risks are presented as a hazard quotient, the value below which no adverse health effects are expected (EPA, 2011a). Cancer risk is presented as a probability while the hazard quotient is a ratio and thus, a unitless value.

In order to assess health risk, EPA and other agencies develop toxicity factors, such as cancer unit risk estimates (UREs) and noncancer reference concentrations (RfCs), to estimate cancer and noncancer risks and to identify (or screen) where air toxics concentrations may present a human health risk. EPA has published a guidance document outlining a risk-based screening approach for performing an initial screen of ambient air toxics monitoring datasets (EPA, 2010a). The preliminary risk-based screening process provided in this report is an adaption of that approach and is a risk-based methodology for analysts and interested parties to

identify which pollutants may pose a health risk in their area. Cancer UREs and noncancer RfCs are converted into screening values. The cancer screening value is the cancer URE converted to μ g/m³ and divided by one million. The noncancer screening value is one-tenth of the noncancer RfC and converted from mg/m³ to μ g/m³. The final screening value used in this report is the lower of the two screening values. Not all pollutants analyzed for during this study have screening values; of the pollutants sampled, 65 pollutants have screening values. The screening values used in this analysis are presented in Appendix F¹. The results of this analysis may help identify where policy-makers want to shift their air monitoring priorities. The daily measurements of the target pollutants were compared to these chronic risk screening values in order to identify pollutants of interest across the study. The following risk-based screening process was used to identify pollutants of interest:

- Each daily measurement was compared to its risk screening value, where applicable. Concentrations that are greater than the risk screening value are described as "failing the screen."
- 2. The number of failed screens was summed for each applicable pollutant.
- The percent contribution of the number of failed screens to the total number of failed screens for the site was calculated for each applicable pollutant.
- 4. The pollutants contributing to the top 95 percent of the total failed screens for the site were identified as pollutants of interest. Pollutants of interest are those whose concentrations may pose a human health risk and may warrant further study and/or analysis.

In regards to Step 4 above, the actual cumulative contribution may exceed 95 percent in order to include all pollutants contributing to the minimum 95 percent criteria (refer to arsenic in Table 3). In addition, if the 95 percent cumulative criterion is reached, but the next pollutant contributed equally to the number of failed screens, that pollutant was also designated as a pollutant of interest. Results of the risk-based screening process are provided in Table 3.

¹The risk-based screening process used in this report comes from guidance from EPA Region 4's report "A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Datasets" but the screening values referenced in that report have since been updated (EPA, 2014).

Due to various sampling and analytical issues, a few pollutants sampled for at CRNM

that have risk screening values have been excluded from the risk screening process. These are described below:

- Laboratory analysts have indicated that acetonitrile values may be artificially high (or non-existent) due to site conditions and potential cross-contamination with concurrent sampling of carbonyl compounds using Method TO-11A. The inclusion of acetonitrile in data analyses must be determined on a site-specific basis by the agency responsible for the site.
- Acrolein was also excluded from the preliminary risk-based screening process due to questions about the consistency and reliability of the measurements (EPA, 2010b), as determined during EPA's School Air Toxics Monitoring Program.

Pollutant	Screening Value (µg/m ³)	# of Failed Screens	# of Measured Detections	% of Screens Failed	% of Total Failures	Cumulative % Contribution
N	avajo Nation	Church Ro	ck, New Mex	ico - CRNM	ſ	
Benzene	0.13	15	15	100.00	13.39	13.39
1,3-Butadiene	0.03	15	15	100.00	13.39	26.79
Carbon Tetrachloride	0.17	15	15	100.00	13.39	40.18
1,2-Dichloroethane	0.038	15	15	100.00	13.39	53.57
Acetaldehyde	0.45	12	12	100.00	10.71	64.29
Formaldehyde	0.077	12	12	100.00	10.71	75.00
Naphthalene	0.029	10	13	76.92	8.93	83.93
Hexachloro-1,3-butadiene	0.045	7	7	100.00	6.25	90.18
Benzo(a)pyrene	0.00057	5	13	38.46	4.46	94.64
Arsenic (PM10)	0.00023	4	15	26.67	3.57	98.21
1,2-Dibromoethane	0.0017	2	2	100.00	1.79	100.00
Total		112	134	83.58		

Table 3. Risk-Based Screening Results for the CRNM Monitoring Site

Table 3 presents the results of the preliminary risk-based screening process for CRNM.

Observations from Table 3 include the following:

 Concentrations of 11 pollutants (six VOCs, two carbonyl compounds, two PAHs, and one PM₁₀ metal) exceeded their risk screening values, or "failed screens" over the sampling period; 112 of 134 concentrations for these 11 pollutants were greater than their associated risk screening value (or failed screens), representing an 84 percent combined failure rate.

- Four VOCs were detected in all 15 VOC samples collected at CRNM and failed all 15 screens (benzene, 1,3-butadiene, carbon tetrachloride, and 1,2-dichloroethane), representing a 100 percent pollutant-specific failure rate for each. Acetaldehyde and formaldehyde were also detected in all 12 valid samples collected and failed 100 percent of screens. Together, these six pollutants account for 75 percent of the total failed screens. Two additional VOCs, hexachloro-1,3-butadiene and 1,2-dibromoethane, were detected less frequently but also failed all their screens.
- Naphthalene was detected in all 13 valid PAH samples collected at CRNM and failed 10 screens, representing a 77 pollutant-specific failure rate. Benzo(a)pyrene was also detected in all 13 valid PAH samples collected at CRNM and failed five screens, representing a 38 pollutant-specific failure rate. Together, these PAHs account for 13 percent of the total failed screens.
- Arsenic was detected in all 15 metals samples collected and failed four screens, representing a 27 pollutant-specific failure rate. Arsenic is the only PM10 metal that failed screens and accounts for 4 percent of the total failed screens.
- Ten of these 11 pollutants contributed to at least 95 percent of failed screens for CRNM, and thus were identified as pollutants of interest. These pollutants are shaded in gray in Table 3.

A few items to note in regards to the statistical results presented in Section 5 and the risk screening results presented in Section 6: A pollutant measured in high quantities does not necessarily present a higher risk to human health than a pollutant measured in very low quantities. The more toxic the pollutant, the more risk associated with its concentrations in ambient air.

- Several of the pollutants identified in the statistical analysis section, such as dichlorodifluoromethane, acetone, trichlorofluoromethane do not have risk screening values. Other pollutants, such as chloromethane, have risk screening values, but the concentrations measured at CRNM did not fail any screens and thus, these pollutants do not appear in Table 3. Still other pollutants, such as formaldehyde, have "higher" concentrations and failed many screens.
- Several pollutants that failed screens and appear in Table 3 do not necessarily have relatively "high" concentrations; rather, the screening values are low, as a result of the risk associated with that particular pollutant, such that all or nearly all measured detections fail screens. An example of this is benzene. Benzene's risk screening value is 0.13 µg/m³. Concentrations of benzene measured at CRNM range from 0.323 µg/m³ to 0.771 µg/m³, and thus, all benzene concentrations fail the screen. Yet, CRNM's average benzene concentration over the study period is 0.59 ± 0.08 µg/m³, which is less than national average benzene concentration estimates (generally between 0.75 µg/m³ and 1 µg/m³), as reported in EPA's National-Scale Air Toxics
Assessment (NATA) from 2005 (EPA, 2011b); EPA's National Monitoring Programs (NMP) annual reports for 2011 and 2012 (EPA, 2015c); and EPA's Report on the Environment (ROE) (EPA, 2015d).

- Carbon tetrachloride is a pollutant that was used worldwide as a refrigerant. However, it was identified as an ozone-depleting substance in the stratosphere and its use was banned at the Kyoto Protocol. This pollutant has a long lifetime in the atmosphere, but slowly degrades over time. Today, its concentration in ambient air is fairly ubiquitous regardless of where it is measured. CRNM's average carbon tetrachloride concentration over the study period is $0.63 \pm 0.04 \,\mu g/m^3$, which falls within the national average concentration estimates (generally between $0.55 \,\mu g/m^3$ and $0.70 \,\mu g/m^3$) (EPA, 2011b; EPA, 2015c; and EPA, 2015d).
- Formaldehyde is primarily emitted as a by-product of combustion and can form secondarily in the atmosphere. CRNM's average formaldehyde concentration over the study period is 1.44 ± 0.21 µg/m³, which is less than the national average concentration estimates, which vary between 2.0 µg/m³ and 3.0 µg/m³ (EPA, 2011b; EPA, 2015c; and EPA, 2015d).
- Dichlorodifluoromethane (2.57 ± 0.13 µg/m³) and acetone (2.20 ± 0.56 µg/m³) are the pollutants with the highest study average concentrations for CRNM. However, neither of these pollutants have risk screening values.
- The maximum concentration measured at CRNM was for chloromethane (4.55 µg/m³), with concentrations of this pollutant ranging from 0.942 µg/m³ to 4.55 µg/m³. Chloromethane's risk screening value is 9 µg/m³ and thus, none of the chloromethane concentrations measured at CRNM fail the screen.
- Naphthalene has the highest study average among the PAHs (53.30 ± 14.66 ng/m³), with concentrations ranging from 19.2 ng/m³ to 103 ng/m³. With a risk screening value of 29 ng/m³, all but three of the naphthalene concentrations measured at CRNM failed screens. National average concentration estimates fall between 70 ng/m³ and 90 ng/m³ (EPA, 2011b and EPA, 2015c).
- Other PAHs measured at CRNM have relatively high averages compared to the national program estimates, even though they did not fail screens or have no risk screening value. For example, retene has an average concentration of 8.92 ± 3.59 ng/m³, with national average estimates around 0.4 ng/m³ (EPA, 2015c). Retene has no risk screening value. Benzo(a)pyrene is another example. This pollutant's concentrations span an order of magnitude, ranging from 0.13 ng/m³ to 1.42 ng/m³, with a study average of 0.52 ± 0.26 ng/m³. This pollutant failed five screens. National average estimates for benzo(a)pyrene are around 0.085 ng/m³ (EPA, 2015c). Acenaphthylene is another, with a study average of 2.46 ± 1.32 ng/m³, with national average estimates around 0.6 ng/m³ (EPA, 2015c). Acenaphthylene has a risk screening value but there were no failed screens. Note that for each of these pollutants, the confidence intervals are rather large, indicating a relatively high level of variability associated with the measurements.

Arsenic failed screens, even though the concentrations measured at CRNM appear
relatively low compared to the other pollutants. Arsenic was also identified as a
pollutant of interest for CRNM. The more toxic the pollutant, the more risk associated
with its concentrations in ambient air. CRNM's average arsenic concentration over
the study period is 0.20 ± 0.12 ng/m³. This is less than the national average arsenic
concentration estimates (0.58 ng/m³ as reported in EPA's NATA from 2005 (EPA,
2011b), 0.75 ng/m³ from EPA's 2012 NMP report (EPA, 2015c), and 0.87 ng/m³ as
reported in EPA's ROE (EPA, 2015d)).

7.0 Summary

This report provides an overview of the results of a short-term monitoring study at the CRNM monitoring site on the Navajo Nation tribal lands in New Mexico. VOC, carbonyl compound, PAH, and metals samples were collected over a 3-month period at the CRNM site. Although 11 pollutants failed screens for CRNM and 10 of these were identified as pollutants of interest for this site, these are mostly the same pollutants that fail screens at any given monitoring location because nearly every measured detection was greater than the associated screening level. Many of these pollutants are emitted by sources that are everywhere such as mobile sources but may also be emitted by sources more localized in nature (such as specific industrial sources). A full year's worth of monitoring would be beneficial in the characterization of ambient levels of air toxics at CRNM and would aid in the determination of whether additional steps are needed to improve air quality near the site. In addition, the collection of meteorological measurements, particularly wind speed and direction, would be beneficial in determining if any higher measurements correlate with a specific wind direction.

8.0 References

ASTM, 2013. ASTM, International. ASTM D6209 Standard Test Method for Determination of Gaseous and Particulate Polycyclic Aromatic Hydrocarbons in Ambient Air (Collection on Sorbent-Backed Filters with Gas Chromatographic/Mass Spectrometric Analysis). http://www.astm.org/Standards/D6209.htm Date Last Accessed: 6/19/15.

EPA, 1999a. U.S. EPA. January, 1999. Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. Cincinnati, OH. http://www.epa.gov/ttn/amtic/airtox.html Date last accessed: 6/1815.

Page 22

EPA, 1999b. U.S. EPA. January, 1999. Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC). EPA/625/R-96/010b. Cincinnati, OH. http://www.epa.gov/ttn/amtic/airtox.html Date last accessed: 6/18/15.

EPA, 1999c. U.S. EPA. January 1999. Compendium Method TO-13A: Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. Cincinnati, OH. http://www.epa.gov/ttn/amtic/airtox.html Date Last Accessed: 6/18/2015.

EPA, 1999d. U.S. EPA. June 1999. Compendium Method IO-3.5: Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). EPA/625/R-96/010a. Cincinnati, OH. http://www.epa.gov/ttn/amtic/files/ambient/inorganic/mthd-3-5.pdf Date last accessed: 6/18/15.

EPA 2010a. U.S. EPA. October 2010. A Preliminary Risk-based Screening Approach for Air Toxics Monitoring Data Sets, version 2. EPA-904-B-06-001. Atlanta, GA. <u>http://www.epa.gov/region4/air/airtoxic/Screening_111610_KMEL.pdf</u> Date last accessed: 6/18/15.

EPA, 2010b. U.S. EPA. December 2010. Data Quality Evaluation Guidelines for Ambient Air Acrolein Measurements.

http://www.epa.gov/ttn/amtic/files/ambient/airtox/20101217acroleindataqualityeval.pdf Date last accessed: 6/18/15.

EPA 2011a. U.S EPA. March 2011. The 2005 National-Scale Air Toxics Assessment (NATA) glossary website. <u>http://www.epa.gov/ttn/atw/natamain/gloss1.html</u> Date last accessed: 6/18/15.

EPA 2011b. U.S EPA. March 2011. The 2005 National-Scale Air Toxics Assessment (NATA) Results website. http://www.epa.gov/ttn/atw/nata2005/tables.html. Date last accessed: 6/18/15.

EPA, 2012. U.S. EPA. June 2012. Standard Operating Procedure for the Determination of Lead in PM10 by Inductively Couple Plasma Mass Spectrometry (ICP-MS) with Hot Block Dilute Acid and Hydrogen Peroxide Filter Extraction. EQL-0512-202. http://www.epa.gov/ttn/amtic/pb-monitoring.html Date last accessed: 6/18/15.

EPA, 2014. Email from Ted Palma, U.S. EPA, OAQPS. August 18, 2014. Dose Response Library spreadsheet.

EPA, 2015a. U.S. EPA. March 4, 2015. 2011 National Emissions Inventory, Version 2. http://www.epa.gov/ttnchie1/net/2011inventory.html Date last accessed: 6/18/15.

EPA, 2015b. U.S. EPA. Technology Transfer Network, About Air Toxics website. http://www.epa.gov/airtoxics/allabout.html Date last accessed: 6/18/15.

Page 23

EPA, 2015c. U.S. EPA. Air Toxics – Urban Air Toxics Monitoring Program website. http://www.epa.gov/ttnamti1/uatm.html. Date last accessed: 6/18/15.

EPA, 2015d. U.S. EPA. EPA's Report on the Environment (ROE); Ambient Concentrations of Selected Air Toxics webpage, benzene concentrations. http://cfpub.epa.gov/roe/indicator.cfm?i=90#3. Date last accessed: 6/18/15.

FWDA, 2015. Fort Wingate Depot Activity Environmental Cleanup Information website. http://www.ftwingate.org/. Date last accessed: 6/18/15.

Lakes, 2011. Lakes Environmental. June 2011. WRPLOT View 7.0.0. http://www.weblakes.com/products/wrplot/index.html Date last accessed: 6/18/15.

Navajo Nation, 2015. Email from Karmen Billey, Navajo Nation. May 19, 2015.

NCDC, 2014. National Climatic Data Center. Quality Controlled Local Climatological Data (QCLCD). 2014 Data. <u>http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N</u>. Date last accessed: 6/19/15.

NCDC, 2015. National Climatic Data Center. Quality Controlled Local Climatological Data (QCLCD). 2015 Data. <u>http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N</u>. Date last accessed: 6/19/15.

TAMS, 2015. Tribal Air Monitoring Support Center. Northern Arizona University. http://www4.nau.edu/tams/services/tsatmproj.asp Date last accessed: 6/18/15.

Page 24

VOC Raw Data

Sample Date/Time: 12/25/2014 00:00 Sample ID: 4123110-01 Units: ppbv Sample Type: Field Sample

Acetonitrile	0.063
Acetylene	0.317
Acrolein	0.329
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.143
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	0.013
1,3-Butadiene	0.017
Carbon Disulfide	0.010
Carbon Tetrachloride	0.108
Chlorobenzene	ND
Chloroethane	ND
Chloroform	0.019
Chloromethane	0.516
Chloroprene	ND
Dibromochloromethane	0.006
1,2-Dibromoethane	ND
m-Dichlorobenzene	ND
o-Dichlorobenzene	ND
p-Dichlorobenzene	0.009
Dichlorodifluoromethane	0.446
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.020
1,1-Dichloroethene	ND
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.085
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.018
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Etnyloenzene	0.010
Hexachioro-1,3-butadiene	ND
Methyl Isobutyl Ketone	0.015
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	0.007
n-Octane Deservices	0.015
States	0.210 ND
1 1 2 2 Tatrachlereethane	ND
Tatrachloroethalono	0.000
Tohana	0.009
1.2.4-Trichlorobenzene	ND
1 1 1-Trichloroethane	0.000
1.1.2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0 207
Trichlorotrifluoroethane	0.076
1,2,4-Trimethylbenzene	0.011
1,3,5-Trimethylbenzene	ND
Vinyl chloride	ND
m.p-Xylene	0.031
o-Xylene	0.013

CRNM VOC Sampling Results

Sample Date/Time: 12/31/2014 00:00		
Sample ID: 5010721-01	Units: ppbv	
Sample Type: Field Sample		
Acetonitrile	0.054	
Acetylene	0.365	
Acrolein	0.337	
Acrylonitrile	ND	
tert-Amyl Methyl Ether	ND	
Benzene	0.153	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND	
Bromomethane	0.014	
1,3-Butadiene	0.017	
Carbon Disulfide	0.011	
Caroon Tetrachioride	0.094	
Chloroothana	ND	
Chloroform	0.022	
Chloronom	0.022	
Chloroprene	0.544 ND	
Dibtomochloromethane	0.007	
1.2-Dibromoethane	ND	
m-Dichlorobenzene	ND	
o-Dichlorobenzene	ND	
n-Dichlorobenzene	ND	
Dichlorodifluoromethane	0 404	
1.1-Dichloroethane	ND	
1.2-Dichloroethane	0.024	
1,1-Dichloroethene	ND	
cis-1.2-Dichloroethylene	ND	
trans-1,2-Dichloroethylene	ND	
Dichloromethane	0.083	
1,2-Dichloropropane	ND	
cis-1,3-Dichloropropene	ND	
trans-1,3-Dichloropropene	ND	
Dichlorotetrafluoroethane	0.020	
Ethyl Acrylate	ND	
Ethyl tert-Butyl Ether	ND	
Ethylbenzene	0.016	
Hexachloro-1,3-butadiene	ND	
Methyl Isobutyl Ketone	0.025	
Methyl Methacrylate	ND	
Methyl tert-Butyl Ether	ND	
n-Octane	0.025	
Propylene	0.297	
Styrene	ND	
1,1,2,2-Tetrachloroethane	0.009	
Tetrachloroethylene	ND 0.070	
10 A.Trichlorobonzono	0.079 ND	
1,2,4-Trichloroethane	0.008	
1.1.2-Trichloroethane	ND	
Trichloroothylone	ND	
Trichlorofluoromethane	0.335	
Trichlorotrifluoroethane	0.086	
1.2.4-Trimethylbenzene	0.000	
1.3.5-Trimethylbenzene	ND	
Vinvl chloride	ND	
m.p-Xvlene	0.026	
o-Xvlene	0.011	

Sample Date/Time: 1/6/2015 00:00 Sample ID: 5011418-01 Units: ppbv Sample Type: Field Sample Acetonitrile 0.096 0.518 Acetvlene Acrolein 0.114 Acrylonitrile ND tert-Amyl Methyl Ether ND Benzene 0.223 Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane 0.012 1.3-Butadiene 0.047 Carbon Disulfide 0.008 Carbon Tetrachloride 0.094 Chlorobenzene ND Chloroethane ND Chloroform 0.020 Chloromethane 0.492 Chloroprene ND Dibromochloromethane 0.006 1.2-Dibromoethane ND m-Dichlorobenzene ND o-Dichlorobenzene ND p-Dichlorobenzene ND Dichlorodifluoromethane 0.499 1,1-Dichloroethane ND 1,2-Dichloroethane 0.022 1.1-Dichloroethene ND cis-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND Dichloromethane 0.119 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethylbenzene 0.030 Hexachloro-1,3-butadiene ND 0.012 Methyl Isobutyl Ketone Methyl Methacrylate ND Methyl tert-Butyl Ether ND n-Octane 0.026 Propylene 0.314 0.024 Styrene ND 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene Toluene 0.156 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane 0.008 1,1,2-Trichloroethane ND Trichloroethylene ND Trichlorofluoromethane 0.233 Trichlorotrifluoroethane 0.085 1,2,4-Trimethylbenzene 0.021 1,3,5-Trimethylbenzene 0.009 Vinyl chloride ND 0.059 m,p-Xylene

Page 1 of 5

o-Xylene

0.021

Sample Date/Time: 1/12/2015 00:00 Sample ID: 5011501-01 Units: ppbv Sample Type: Field Sample

Acetonitrile	0.091
Acetylene	0.376
Acrolein	0.124
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.236
Bromochloromethane	ND
Bromodichloromethane	0.008
Bromoform	ND
Bromomethane	0.011
1,3-Butadiene	0.036
Carbon Disulfide	0.014
Carbon Tetrachloride	0.089
Chlorobenzene	ND
Chloroethane	ND
Chloroform	0.020
Chloromethane	0.455
Chloroprene	ND
Dibromochloromethane	0.007
1,2-Dibromoethane	ND
m-Dichlorobenzene	ND
o-Dichlorobenzene	ND
p-Dichlorobenzene	0.012
- Dichlorodifluoromethane	0.430
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.022
1,1-Dichloroethene	ND
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.370
1.2-Dichloropropane	ND
cis-1.3-Dichloropropene	ND
trans-1.3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.017
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.051
Hexachloro-1.3-butadiene	ND
Methyl Isobutyl Ketone	0.024
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.029
Propylene	0.452
Styrene	0.036
1.1.2.2-Tetrachloroethane	ND
Tetrachloroethylene	0.061
Toluene	0.420
1.2.4-Trichlorobenzene	ND
1.1.1-Trichloroethane	0.009
1.1.2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0 1 9 5
Trichlorotrifluoroethane	0.076
1.2.4-Trimethylbenzene	0.030
1.3.5-Trimethylbenzene	0.013
Vinvl chloride	ND
m.p-Xvlene	0,115
o-Xvlene	0.047

CRNM VOC Sampling Results

Sample ID:5012207-01Units:ppbvSample Type:Field SampleAcctonitrile0.246Acctylene0.533AcroleinNDAcrylonitrileNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromoformNDBromoformNDBromoformNDChlorobenzeneNDChlorobenzeneNDChloroform0.020Chloroform0.020Chloroform0.020Chloroform0.020ChloroformND1.2-DibromoethaneNDn-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDj.2-Dibloroethane0.0251.1-Dichloroethane0.020Cis-1.2-DichloroethyleneND1.2-DichloroethyleneND1.2-DichloroethyleneND1.2-DichloroethyleneNDtrans-1.3-DichloropropeneNDDichlorotetafluoroethane0.020Ethyl tert-Butyl EtherNDEthyl benzene0.025Hexachloro-1.3-butadieneNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.056Methyl HethacrylateNDMethyl Isobutyl Ketone0.026Firylbenzene0.2161.1.2-	Sample Date/Time: 1/18/20	015 00:00
Sample Type: Field SampleAcetonitrile0.246Acctylene0.533AcroleinNDAcrylonitrileNDtert-Amyl Methyl EtherNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDCharon Disulfide0.089Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloroform0.020ChloromethaneNDChloroform0.020ChloromethaneND1.2-DibromoethaneNDn-DichlorobenzeneNDp-DichlorobenzeneNDo-DichlorobenzeneNDj.2-DichloroethaneNDi.1-DichloroethaneNDi.2-DichloroethaneNDi.2-DichloroethaneNDi.1-DichloroethaneNDi.1-DichloroethaneNDi.1-DichloroethyleneNDi.1-Dichloroethane0.020Ethyl AcrylateNDDichloropropaneNDtass-1,3-DichloropropeneNDtass-1,3-DichloropropeneNDthyl kett-Butyl EtherNDbichloroethane0.025Hexalloro-1,3-butadieneNDHethyl Hett-Butyl EtherNDPolylene0.624Styrene0.0241,1,2-TretraloroethaneND <tr< td=""><td>Sample ID: 5012207-01</td><td>Units: ppbv</td></tr<>	Sample ID: 5012207-01	Units: ppbv
Acetonitrile0.246Acetylene0.333AcroleinNDAcrylonitrileNDtert-Amyl Methyl EtherNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDChorobenzeneNDChlorobenzeneNDChlorobenzeneNDChlorobenzeneNDDibromochloromethane0.694ChlorobenzeneNDDibromochloromethaneND1,2-DibromoethaneNDn-DichlorobenzeneNDp-DichlorobenzeneNDj.2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDtrans-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDEthyl AcrylateNDEthyl KetarcylateNDMethyl Isobutyl Ketone0.025Hexachloro-1,3-butadieneNDPoplene0.624Styrene0.0241,1,2-TretrachloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethane <td< td=""><td>Sample Type: Field Sample</td><td></td></td<>	Sample Type: Field Sample	
Acteylene0.333ActoleinNDAcryleni NDNDAcrylonitrileNDtert-Amyl Methyl EtherNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDChorobenzeneNDChlorobenzeneNDChlorobenzeneNDChlorobenzeneNDChlorobenzeneNDDibromochloromethaneND1,2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-Dichloroethane0.25j-Dichloroethane0.270j-Dichloroethane0.270j-DichloropropaneNDtrans-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDEthyl AcrylateNDHexachloro-1,3-butadieneNDHexachloro-1,3-butadieneNDrichloroethane0.216j-Qiene0.216j-Qiene0.216j-Qiene0.216j-Qiene0.216Hybenzene0.216Hypenzene0.216Hypenzene0.216j-Qiene0.216j-Qiene0.21	Acetonitrile	0.246
AcroleinNDAcrylonitrileNDAcrylonitrileNDtert-Amyl Methyl EtherNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromoformNDBromoformNDBromoformNDBromoformNDBromoformNDChorobenzeneNDChlorobenzeneNDChloroform0.020Chloroform0.020Chloroform0.020ChloromethaneND1.2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDo-DichlorobenzeneNDj.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethyleneNDtrans-1.2-DichloroethyleneNDtrans-1.3-DichloropropeneNDtrans-1.3-DichloropropeneNDEthyl AcrylateNDEthyl AcrylateNDHexachloro-1.3-butadieneNDMethyl Isobutyl Ketone0.026Hexakloro-1.3-butadieneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-TrithloroethaneND1.1.2-T	Acetylene	0.533
AcrylonitrileNDtert-Amyl Methyl EtherNDBenzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromoformNDBromooformNDBromoomethaneND1.3-Butadiene0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChlorobenzeneNDChloroform0.020ChloroomethaneND1.2-DibromoethaneND1.2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDo-DichlorobenzeneNDj.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethyleneNDcis-1.2-DichloroethyleneNDcis-1.2-DichloropropeneNDDichloropropaneNDcis-1.3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl kert-Butyl EtherNDDichlorotethane0.025Hexachloro-1.3-butadieneNDMethyl Isobutyl Ketone0.056Methyl Hetr-Butyl EtherNDn-Octane0.018Propylene0.624Styrene0.2161.2.1-TrichloroethaneND1.1.2-TrichloroethaneND1.1.2-TrichloroethaneND1.1.2-Trichloroethane	Acrolein	ND
ter-Amyl Methyl Ether ND Benzene 0.241 Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromooform ND Carbon Disulfide 0.089 Carbon Disulfide 0.089 Carbon Tetrachloride 0.075 Chlorobenzene ND Chlorobenzene ND Chlorootentane ND Chlorootentane ND Chlorootentane ND 1.2-Dibromoethane ND 1.2-Dibromoethane ND 1.2-Dibromoethane ND Dichlorobenzene ND Dichlorobenzene ND Dichlorobenzene ND 0.25 1,1-Dichloroethane ND 1.2-Dichloroethane ND 1.2-Dichloroethane ND 1.2-Dichloroethane ND 1.2-Dichloroethylene ND Dichloromethane 0.270 1.2-Dichloroptylene ND Dichloroptylene ND Cis-1.3-Dichloroptylene ND Dichlorotetrafluoroethane ND Ethyl tert-Butyl Ether ND Ethyl kert-Butyl Ether ND Methyl tert-Butyl Ether ND N Methyl Isobutyl Ketone ND N Methyl Isobutyl Ketone ND 1.1.2-Tetrachloroethane ND 1.1.2-Tichloroethane ND 1.1.2-T	Acrylonitrile	ND
Benzene0.241BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromooformNDBromooformNDBromooformNDCarbon Disulfide0.054Carbon Disulfide0.059Carbon Tetrachloride0.075ChlorobenzeneNDChlorobenzeneNDChloroform0.020Chloroform0.020Chloroform0.020ChlorobenzeneNDn-DichlorobenzeneNDn-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDi.1DichloroethaneND1.2-DichloroethaneNDi.2-DichloroethaneNDcis-1.2-DichloroethyleneNDtrans-1.3-DichloropropeneNDcis-1.3-DichloropropeneNDDichloromethane0.020Ethyl tert-Butyl EtherNDDichlorotifuoromethane0.020Ethyl kartylateNDBroyne0.025Hexachloro-1.3-butadieneNDMethyl Isobutyl Ketone0.026Methyl Isobutyl KetoneNDn-Octane0.018Propylene0.624Styrene0.2161.1.2-TritchloroethaneND1.1.2-TritchloroethaneND1.1.2-TritchloroethaneND1.1.2-TrichloroethaneND1.1.2-TrichloroethaneND1.1.2-Tritchloroethane <td< td=""><td>tert-Amvl Methyl Ether</td><td>ND</td></td<>	tert-Amvl Methyl Ether	ND
BromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromonothaneNDJa-Butadiene0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChlorobenzeneNDChloromethane0.694Chloromethane0.694ChloromethaneNDChloromethaneNDDibromochloromethaneND-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDj.2-DichlorobenzeneNDj.2-DichlorobenzeneNDcis-1,2-Dichloroethane0.0251,1-DichloroethaneNDcis-1,2-DichloroethyleneNDcis-1,3-DichloropropeneNDcis-1,3-DichloropropeneNDDichlorotettafluoroethane0.020Ethyl kert-Butyl EtherNDEthyl kert-Butyl EtherNDmethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.021Hexakloro-1,3-butadieneNDrepylene0.624Styrene0.0241,1,2-TretrachloroethaneNDrichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethane <td>Benzene</td> <td>0.241</td>	Benzene	0.241
BromodichloromethaneNDBromoformNDBromonethaneND1,3-Butadiene0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloromethaneNDChloromethane0.020Chloromethane0.020ChloromethaneND.2-DibromoethaneND-DichlorobenzeneND-DichlorobenzeneND-DichlorobenzeneND-DichlorobenzeneND-DichlorobenzeneND1,2-DibromoethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethyleneNDcis-1,2-DichloroethyleneNDcis-1,2-DichloropropeneNDDichloropropaneNDCis-1,3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl ett-Butyl EtherNDEthyl ett-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl MethacrylateNDMethyl MethacrylateNDPropylene0.2161,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND <tr< td=""><td>Bromochloromethane</td><td>ND</td></tr<>	Bromochloromethane	ND
BromoformNDBromomethaneND1.3-Butadiene0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloroethaneNDChloroethaneNDChloroethaneNDChloromethane0.020ChloromethaneNDDibromochloromethaneND-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneND1.2-DichloroethaneNDcis-1.2-DichloroethyleneNDtrans-1.2-DichloropropaneNDcis-1.3-DichloropropaneNDDichloroithuropropaneNDEthyl Lett-Butyl EtherNDEthyl Lett-Butyl EtherNDEthyl Isobutyl Ketone0.025Hetachloro-1.3-butadieneNDMethyl Isobutyl Ketone0.035Methyl Isobutyl Ketone0.018Propylene0.624Styrene0.0241.1.2.7-TetrachloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroethaneND1.1.2.2-TetrachloroethaneND1.1.2.2-TetrachloroethaneND1.1.2.1richloroethaneND1.1.2.1richloroet	Bromodichloromethane	ND
BromomethaneND1.3-Butadiene0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloroethaneNDChloroethane0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020ChloroofenaNDDibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDo-DichloroothaneNDo-DichloroothaneND1.2-DichloroothaneND1.2-DichloroothaneND1.2-DichloroothaneNDcis-1.2-DichloroethyleneNDcis-1.2-DichloroothyleneNDcis-1.3-DichloropropaneNDcis-1.3-DichloropropaneNDChylateNDEthyl Lett-Butyl EtherNDEthyl Lett-Butyl EtherNDMethyl I Isobutyl Ketone0.025Methyl I Isobutyl Ketone0.018Propylene0.624Styrene0.0241.1.2.7-TetrachloroethaneND1.1.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-TichloroethaneND1.1.2.1-Tichloroethane	Bromoform	ND
1.3-Butadiane0.054Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloroethaneNDChlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020ChlorooformNDDibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichloroothaneND1.1-DichloroothaneND1.2-DichloroothaneND1.2-DichloroothaneND1.2-DichloroothaneNDcis-1.2-DichloroothyleneNDcis-1.2-DichloroothyleneNDcis-1.3-DichloroopropaneNDcis-1.3-DichloroopropaneNDcis-1.3-DichloroopropaneNDEthyl Lett-Butyl EtherNDEthyl Lett-Butyl EtherNDMethyl I sobutyl Ketone0.025Methyl I sobutyl Ketone0.018Propylene0.624Styrene0.0241.1.2.7-TetrachloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richloroothaneND1.1.2.1richl	Bromomethane	ND
Carbon Disulfide0.089Carbon Tetrachloride0.075ChlorobenzeneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroothaneNDDibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-DichlorobenzeneNDj-DichloroethaneNDj-DichloroethaneNDj-DichloroethaneNDj-DichloroethaneNDj-DichloroethaneNDj-DichloroethaneNDj-DichloroethaneNDcis-1,2-DichloroethyleneNDtrans-1,2-DichloropropaneNDcis-1,3-DichloropropaneNDcis-1,3-DichloropropaneNDtrans-1,3-DichloropropaneNDtrans-1,3-DichloropropaneNDtrans-1,3-DichloropropaneNDtrans-1,3-DichloropropaneNDthyl kert-Butyl EtherNDEthyl benzene0.025Hexachloro-1,3-butadieneNDMethyl 1 sobutyl Ketone0.018Propylene0.624Styrene0.2161,2,4-TrichloroethaneND1,1,2-TettachloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneN	1.3-Butadiene	0.054
Carbon Tetrachloride0.075ChlorobenzeneNDChlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020Chlorooform0.020ChlorooformNDDibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDj.1-Dichloroothane0.0251.1-DichloroothaneNDi.2-DichloroothaneNDi.1-Dichloroothane0.0251.1-Dichloroothane0.0251.1-DichloroothyleneNDtrans-1,2-DichloroothyleneNDDichloroothoroopaneNDcis-1,3-DichloroopropeneNDichloroottrafluoroothane0.020Ethyl AcrylateNDEthyl Lett-Butyl EtherNDHexachloro-1,3-butadieneNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.0241,1,2-TetrachloroothaneNDTolene0.2161,2,4-TrichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneNDTichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-TichloroothaneND1,1,2-Tichlorootha	Carbon Disulfide	0.089
ChlorobenzeneNDChloroofm0.020Chloroform0.020Chloroform0.020ChlorooferneNDDibromochloromethaneND1.2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDj.2-DichlorobenzeneNDj.2-DichloroethaneND1.1-Dichloroethane0.0251.1-DichloroethaneNDcis-1.2-DichloroethyleneNDtrans-1.2-DichloroethyleneNDtrans-1.2-DichloropropaneNDcis-1.3-DichloropropaneNDcis-1.3-DichloropropaneNDcis-1.3-DichloropropaneNDtrans-1.3-DichloropropaneNDEthyl tert-Butyl EtherNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0.026Methyl Isobutyl Ketone0.026Methyl Isobutyl EtherNDropylene0.624Styrene0.0241.1.2-TretrachloroethaneNDToleno0.2161.2.4-TrinchloroethaneNDTichlorothyleneNDTichlorothyleneNDTichloroethaneND1.1.2-TretrachloroethaneNDTichloroethaneND1.1.2-TrichloroethaneND1.1.2-TrichloroethaneNDTichloroethaneND1.1.2-TrichloroethaneNDTichloroethaneND1.1.2-TrichloroethaneNDTichloroethaneND<	Carbon Tetrachloride	0.075
ChloroethaneNDChloroform0.020Chloroform0.020ChloropreneNDDibromochloromethaneND1,2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDj.1-Dichloroethane0.5941,1-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethaneND1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDtrans-1,3-DichloropropeneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDEthyl AcrylateNDEthyl AcrylateNDEthyl Lett-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.0241,1,2-TetrachloroethaneNDToluene0.2161,2,4-TrichloroethaneNDTichloroethaneND1,1,2-TretrachloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND <t< td=""><td>Chlorobenzene</td><td>ND</td></t<>	Chlorobenzene	ND
Chloroform0.020Chloromethane0.694ChloropreneNDDibromochloromethaneND1,2-DibromoethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDj.1-DichlorobenzeneNDj.2-DichlorobenzeneNDj.1-Dichloroethane0.025j.1-DichloroethaneNDj.2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDcis-1,2-DichloropropeneNDcis-1,3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl AcrylateNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.018Propylene0.624Styrene0.024j.1,2-TretrachloroethaneNDretrachloroethaneNDretrachloroethaneNDn-Octane0.018Propylene0.624Styrene0.216j.2,4-TrinchloroethaneNDrichloroethaneNDrichloroethaneND1,1,2-TrithloroethaneNDTichloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-TrithloroethaneND1,1,2-Trithloroethane	Chloroethane	ND
Chloromethane 0.694 Chloroprene ND Dibromochloromethane ND 1,2-Dibromoethane ND m-Dichlorobenzene ND p-Dichlorobenzene ND p-Dichlorobenzene ND p-Dichlorobenzene ND 1,1-Dichloroethane 0.594 1,1-Dichloroethane ND 1,2-Dichloroethylene ND cis-1,2-Dichloroethylene ND cis-1,2-Dichloroethylene ND cis-1,2-Dichloropthylene ND cis-1,3-Dichloropthylene ND trans-1,3-Dichloropthylene ND cishloroptrafiluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.056 Methyl Methacrylate ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2-Trichloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND Tichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND Tichloroethylene ND Tichloroethylene ND Tichloroethane ND 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.048 o-Xylene 0.048 o-Xylene 0.019	Chloroform	0.020
ChloropreneNDDibromochloromethaneND1.2-DibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDj.1-Dichloroethane0.0251.1-DichloroethaneND1.2-DichloroethaneNDcis-1.2-DichloroethyleneNDtrans-1.2-DichloroethyleneNDcis-1.2-DichloropopaneNDcis-1.3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl AcrylateNDEthyl SchloroptitherNDEthyl Sobutyl Ketone0.025Hexachloro-1.3-butadieneNDMethyl Isobutyl Ketone0.056Methyl MethacrylateNDPropylene0.624Styrene0.0241.1.2-TickloroethaneNDTick	Chloromethape	0.694
DibromochloromethaneNDJ.2-DibromochloromethaneNDn-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDp-DichlorobenzeneNDj.1-DichlorobenzeneNDj.2-Dichloroethane0.025j.1-DichloroethaneNDj.2-DichloroethaneNDtrans-1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDtrans-1,2-DichloroppeneNDcis-1,3-DichloropropeneNDcis-1,3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl tert-Butyl EtherNDEthylbenzene0.025Hexachloro-1,3-butadieneNDMethyl Isobutyl Ketone0.056Methyl MethacrylateNDPropylene0.624Styrene0.0241,1,2,2-TetrachloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneNDTichloroethaneND1,1,2-TichloroethaneNDTichloroethaneND1,1,2-TichloroethaneND1,1,2-TichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneND1,1,2-TichloroethaneNDTichloroethaneNDTichloroethaneND1,1,2-TichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneND <td>Chloroprene</td> <td>ND</td>	Chloroprene	ND
1.3-DibromoethaneNDm-DichlorobenzeneNDo-DichlorobenzeneNDp-DichlorobenzeneNDpichlorobenzeneNDDichlorobenzeneND1.1-Dichloroethane0.0251.1-DichloroethaneND1.2-DichloroethyleneNDtrans-1.2-DichloroethyleneNDtrans-1.2-DichloroethyleneNDtrans-1.2-DichloropopaneNDcis-1.3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl tert-Butyl EtherNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl MethacrylateNDPropylene0.018Propylene0.2161.2.4-TrichloroethaneNDTichlorobenzeneNDTrichlorobenzeneNDTrichloroethane0.0241.1.2.7-TetrachloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneND1.3-TirichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethaneND <td>Dibromochloromethane</td> <td>ND</td>	Dibromochloromethane	ND
m-Dichlorobenzene ND o-Dichlorobenzene ND p-Dichlorobenzene ND Dichlorobenzene ND Dichlorodifluoromethane 0.594 1,1-Dichloroethane ND 1,2-Dichloroethane ND cis-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND dichloromethane 0.270 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.056 Methyl Methacrylate ND Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane 0.068 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.018 Nm,p-Xylene 0.048 o-Xylene 0.048 o-Xylene 0.019	1.2-Dibromoethane	ND
a - Dichlorobenzene ND o-Dichlorobenzene ND p-Dichlorobenzene ND Dichlorodiffuoromethane 0.594 1,1-Dichloroethane ND 1,2-Dichloroethane ND trans-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND trans-1,2-Dichloropropane ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl tert-Butyl Ether ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Trichlorobenzene ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2,1-Trichloroethane ND 1,1,2,1-Trichloroethane ND	m-Dichlorobenzene	ND
P-DichlorobenzeneNDp-DichlorobenzeneNDDichlorodifluoromethane0.5941,1-DichloroethaneND1,2-DichloroethaneNDcis-1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDdichloromethane0.2701,2-DichloroethyleneNDcis-1,3-DichloropropaneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDDichlorotertafluoroethane0.020Ethyl AcrylateNDEthyl Lett-Butyl EtherNDMethyl Isoburyl Ketone0.056Methyl Isoburyl Ketone0.018Propylene0.2161,2,2-TetrachloroethaneNDToluene0.2161,2,4-TrichlorobenzeneND1,1,1-TrichloroethaneND1,1,2-TrichloroethaneNDTrichloroforomethane0.0081,2,4-Trinethylbenzene0.0171,3,5-Trimethylbenzene0.0171,3,5-Trimethylbenzene0.048o-Xylene0.048o-Xylene0.048	o-Dichlorohenzene	ND
PDF.InterformethaneNDDichlorodifluoromethane0.5941,1-DichloroethaneND1,2-DichloroethaneNDcis-1,2-DichloroethyleneNDtrans-1,2-DichloroethyleneNDDichloromethane0.2701,2-DichloropropaneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDDichlorotertafluoroethane0.020Ethyl AcrylateNDEthyl Lett-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.0241,1,2-TettrachloroethaneNDToluene0.2161,2,4-TrichlorobenzeneND1,1,1-TrichloroethaneNDTrichlorothyleneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2,4-TrichloroethaneND1,1,2,4-TrichloroethaneND1,1,2,4-TrichloroethaneND1,2,4-Trimethylbenzene0.0171,3,5-Trimethylbenzene0.006Vinyl chlorideNDm.p-Xylene0.048o-Xylene0.048	n-Dichlorobenzene	ND
Dictionation of the second	Dichlorodifluoromothana	0.504
1,2-Dichlotoethane1,D1,2-Dichloroethane0,0251,1-DichloroethyleneNDtrans-1,2-DichloroethyleneNDDichloromethane0,2701,2-DichloroptopeneNDcis-1,3-DichloroptopeneNDtrans-1,3-DichloroptopeneNDtrans-1,3-DichloroptopeneNDDichlorotetrafluoroethane0,020Ethyl AcrylateNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0,056Methyl Isobutyl Ketone0,018Propylene0,624Styrene0,0241,1,2-TetrachloroethaneNDToluene0,2161,2,4-TrichloroethaneND1,1,2-TrichloroethaneNDTrichloroethaneNDTrichloroethaneND1,1,2-TrichloroethaneNDTrichloroethane0,0881,2,4-Trimethylbenzene0,0171,3,5-Trimethylbenzene0,006Vinyl chlorideNDm.p-Xylene0,048o-Xylene0,019	1 1-Dichloroathana	ND
1,1-DichloroethaneND(is-1,2-DichloroethyleneNDcis-1,2-DichloroethyleneNDDichloromethane0,2701,2-DichloropropeneNDcis-1,3-DichloropropeneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDDichlorotetrafluoroethane0,020Ethyl AcrylateNDEthyl AcrylateNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0,056Methyl Isobutyl Ketone0,018Propylene0,624Styrene0,0241,1,2-TetrachloroethaneNDToluene0,2161,2,4-TrichloroethaneNDTichloroethaneNDTichloroethaneNDTrichloroethaneNDTrichloroethane0,018TrichloroethaneND1,1,2-TrithloroethaneNDTichloroethaneNDTichloroethaneNDTichloroethane0,0881,2,4-Trimethylbenzene0,0171,3,5-Trimethylbenzene0,048o-Xylene0,048o-Xylene0,048	1.1 Dichloroothano	0.025
I. I-DichlotochemeIDDichloromethyleneINDcis-1,2-DichloroethyleneNDDichloromethane0.2701,2-DichloropropaneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl AcrylateNDEthyl tert-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.018Propylene0.0241,1,2-TietrachloroethaneNDToluene0.2161,2,4-TrichlorobenzeneNDTichloroethaneNDTrichloroethaneNDTrichlorobenzeneND1,1,2-TietrachloroethaneNDTichloroethaneNDTichloroethaneND1,1,2-TrichloroethaneNDTrichlorofuromethane0.0581,2,4-Trimethylbenzene0.0171,3,5-Trimethylbenzene0.006Vinyl chlorideNDm.p-Xylene0.048o-Xylene0.019	1,2-Dichloroethane	0.025 ND
Its-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND Dichloromethane 0.270 1,2-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl kert-Butyl Ether ND Ethyl benzene 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Methacrylate ND Propylene 0.624 Styrene 0.024 1,1,2-Tetrachloroethane ND Tichlorobenzene ND 1,1,2-Tichloroethane ND Tichloroethylene ND 1,1,2-Tichloroethane ND 1,1,2-Tichloroethane ND Tichlorofluoromethane 0.006 Trichloroethylene ND Tichloroethylene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	cis 1.2 Dichlemethelene	ND
Italis-1,2-DichloroethyleneNDDichloromethane0.2701,2-DichloropropeneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDDichlorotetrafluoroethane0.020Ethyl AcrylateNDEthyl AcrylateNDEthyl tett-Butyl EtherNDMethyl Isobutyl Ketone0.056Methyl Isobutyl Ketone0.018Propylene0.624Styrene0.0241,1,2-TetrachloroethaneNDTetrachloroethyleneNDToluene0.2161,2,4-TrichlorobenzeneND1,1,2-TichloroethaneNDTrichloroethyleneNDTrichloroethaneND1,2,4-TrinchloroethaneNDTrichloroethyleneNDTrichloroethane0.0881,2,4-Trimethylbenzene0.0171,3,5-Trimethylbenzene0.006Vinyl chlorideNDm.p-Xylene0.048o-Xylene0.019	trans 1.2 Dicklossethelene	ND
Dichotometraine 0.276 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Methacrylate ND Propylene 0.624 Styrene 0.024 1,1,2-Tetrachloroethane ND Tichlorobenzene ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichloroethylene 0.026 Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene 0.017 1,3-5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Dichloromothano	0.370
1.2-Dichologicpane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Buryl Ether ND Ethylbenzene 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Methacrylate ND Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichlorobenzene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethane 0.006 Vinyl chloride ND np-Sylene 0.048 o-Xylene 0.048	1.2 Dichlerenzenane	ND
Its-1,3-Dichlotopiopene ND trans-1,3-Dichlotopropene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethane ND Trichloroethane ND Trichloroethane ND Trichloroethane ND Trichloroethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	cis 1.2 Dichlerenzenene	ND
httms-r.j.s-Dirtmöröptöpene ND Dichlorotetrafluoroethane 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Methyl Isobutyl Ketone 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND Trichlorofluoromethane ND Trichlorofluoromethane 0.008 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	trans 1.2 Dichloropropene	ND
Dichorotertanilorotentanie 0.020 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethylbenzene 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND Trichlorothylene ND Trichlorothylene 0.060 Trichlorothylene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Disblasses	0.020
Ethyl Actylate ND Ethyl tert-Butyl Ether ND Ethylbenzene 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone 0.018 Propylene 0.624 Styrene 0.024 1,1,2.7-Etrachloroethane ND Toluene 0.216 1,2.4-Trichloroethane ND Trichlorothylene ND Trichloroethane ND Trichloroethylene ND Trichlorothylene 0.060 Trichlorothylene 0.017 1,3.5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Extended and a second s	0.020
Entry terr-Budy Letter ND Ethylbenzene 0.025 Hexachloro-1.3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone ND Methyl Methacrylate ND Methyl tert-Butyl Ether ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2.7-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND Trichloroethylene ND Trichloroethane ND Trichloroethane ND Trichloroethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Ethyl Acrylate Ethyl tart Butal Ethan	ND
Entrybenzene 0.025 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone ND Methyl Isobutyl Ketone ND n-Cotane 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethane ND Trichloroethane ND Trichloroethane 0.088 1,2,4-Trinethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	EdityTtert-ButyTEther	0.025
Hekachidro-1,3-outlatiene ND Methyl Isobutyl Ketone 0.056 Methyl Isobutyl Ketone ND Methyl tert-Butyl Ether ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2,7-tetrachloroethane ND Tetrachloroethylene ND Toluene 0.216 1,2,4-Trichloroethane ND Trichloroethylene 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Etnyloenzene Ummehlene 1.2 hutediene	0.025
Methyl Isobutyl Ketolie 0.050 Methyl Methacrylate ND Methyl Iert-Butyl Ether ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND Trichloroethylene ND Trichlorofthuoromethane 0.260 Trichlorotifluoromethane 0.0088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Hexachioro-1,5-outaciene	ND
Methyl Methaciyjate ND Methyl tert-Butyl Ether ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Toluene 0.216 1,2,4-Trichloroethane ND 1,1,1-Trichloroethane ND Trichloroethylene 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Methyl Isooutyl Ketone	0.050
memyrten-Butyr Enter ND n-Octane 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene ND Toluene 0.216 1,2,4-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene 0.088 1,2,4-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Methyl Methacrylate	ND
n-venue 0.018 Propylene 0.624 Styrene 0.024 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene ND Tohuene 0.216 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Methyl tert-Butyl Ether	0.019
Propyletie 0.024 Styrene 0.024 1,1,2.7-tetachloroethane ND Tetrachloroethylene ND Toluene 0.216 1,2,4-Trichloroethane ND 1,1,1-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene 0.088 1,2.4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	n-octane Dronvilono	0.018
styrene 0.024 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene ND Toluene 0.216 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichloroethylene ND Trichloroethylene 0.068 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Propyrene	0.024
1,1,2,2-1 etrachioroethane ND Tetrachloroethylene ND Toluene 0.216 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichlorofluoromethane 0.260 Trichlorofluoromethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Styrene	0.024
retracnioroetnylene ND Toluene 0.216 1.2.4-Trichlorobenzene ND 1.1.1-Trichloroethane ND 1.1.2-Trichloroethane ND Trichlorothylene ND Trichlorothylene ND Trichlorothylene ND Trichlorothylene 0.060 Trichlorothylenzene 0.017 1.3.5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,1,2,2-1etrachioroethane	ND
10.10 0.210 1.2.4-Trichlorobenzene ND 1.1.1-Trichloroethane ND 1.1.2-Trichloroethane ND Trichlorothoromethane ND Trichlorothoromethane 0.260 Trichlorotrifhuoroethane 0.088 1.2.4-Trimethylbenzene 0.017 1.3.5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Tetrachioroethylene	ND 0.216
1,2,++11Chlorooenzene ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichlorothylene ND Trichlorothylene 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1 oldene	0.210
1,1,1-IICHIOTORETABLE ND 1,1,2-Trichloroethane ND Trichloroethylene ND Trichlorofhoromethane 0.260 Trichlorotrifhuoromethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,2,4-Irichlorobenzene	ND
1,1,2-11Chloroetnahe ND Trichloroethylene ND Trichlorofhoromethane 0.260 Trichlorotrifhuoromethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,1,1-Irichloroethane	ND
1 richlorofethylene ND Trichlorofluoromethane 0.260 Trichlorofrifluoromethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,1,2-Trichloroethane	ND
Trichlorofluoromethane 0.260 Trichlorofrifuoromethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Trichloroethylene	ND
1 richiorotrifuoroethane 0.088 1,2,4-Trimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Trichlorofluoromethane	0.260
1,2,4-1rimethylbenzene 0.017 1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	Irichiorotrifiuoroethane	0.088
1,3,5-Trimethylbenzene 0.006 Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,2,4-Trimethylbenzene	0.017
Vinyl chloride ND m.p-Xylene 0.048 o-Xylene 0.019	1,3,5-Trimethylbenzene	0.006
m.p-Xylene 0.048 o-Xylene 0.019	Vinyl chloride	ND
o-Xylene 0.019	m,p-Xylene	0.048
	o-Xylene	0.019

Page 2 of 5

Sample Date/Time: 1/24/20	00:00
Sample ID: 5012716-01	Units: ppbv
Sample Type: Field Sample	
Acetonitrile	0.066
Acetylene	0.357
Acrolein	0.125
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.211
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	0.005
Bromomethane	0.014
1,3-Butadiene	0.036
Carbon Disulfide	0.020
Carbon Tetrachloride	0.094
Chlorobenzene	ND
Chloroethane	ND
Chloroform	0.018
Chloromethane	0.567
Chloroprene	ND
Dibromochloromethane	0.004
1,2-Dibromoethane	ND
m-Dichlorobenzene	ND
o-Dichlorobenzene	ND
p-Dichlorobenzene	0.000
Dichlorodifiuoromethane	0.503
1.2 Dichloroethane	0.022
1,2-Dichloroethane	ND
cis-1 2-Dichloroethylene	ND
trans-1.2-Dichloroethylene	ND
Dichloromethane	0.087
1.2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.020
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.019
Hexachloro-1,3-butadiene	0.005
Methyl Isobutyl Ketone	0.015
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.014
Propylene	0.349
Styrene	0.019
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethylene	0.006
Toluene	0.122
1,2,4-Inchlorobenzene	ND
1,1,1-Inchioroethane	0.007
1,1,2-1110filoroethalee	ND
Trichlorofluoromathane	0.026
Trichlorotrifluoroathane	0.230
1 2 4-Trimethylhenzene	0.011
1.3.5-Trimethylbenzene	0.006
Vinvl chloride	ND
m.p-Xylene	0.032
o-Xylene	0.012

Sample Date/Time: 1/30/2015 00:00 Sample ID: 5020311-01 Units: ppbv Sample Type: Field Sample

Acetonitrile	0.117
Acetylene	0.354
Acrolein	0.170
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.174
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	0.007
Bromomethane	0.016
1,3-Butadiene	0.030
Carbon Disulfide	0.016
Carbon Tetrachloride	0.110
Chlorobenzene	ND
Chloroethane	ND
Chloroform	0.024
Chloromethane	0.595
Chloroprene	ND
Dibromochloromethane	0.007
1,2-Dibromoethane	0.008
m-Dichlorobenzene	0.007
o-Dichlorobenzene	0.006
p-Dichlorobenzene	0.008
Dichlorodifluoromethane	0.550
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.028
1,1-Dichloroethene	ND
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.122
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.023
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.027
Hexachloro-1,3-butadiene	0.008
Methyl Isobutyl Ketone	0.016
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.037
Propylene	0.264
Styrene	0.023
1,1,2,2-Tetrachloroethane	0.008
Tetrachloroethylene	0.010
Toluene	0.121
1,2,4-Trichlorobenzene	0.007
1,1,1-Trichloroethane	0.012
1,1,2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.254
Trichlorotrifluoroethane	0.092
1,2,4-Trimethylbenzene	0.022
1,3,5-Trimethylbenzene	0.018
Vinyl chloride	ND
m,p-Xylene	0.048
o-Xylene	0.023

CRNM VOC Sampling Results

Sample Date/Time: 2/5/201	5 00:00
Sample ID: 5021121-01	Units: ppbv
Sample Type: Field Sample	
Acetonitrile	0.152
Acetylene	0.627
Acrolein	ND
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.237
Bromochloromethane	ND
Bromodichloromethane	0.010
Bromoform	0.006
Bromomethane	0.028
1,3-Butadiene	0.067
Carbon Disulfide	0.070
Carbon Tetrachloride	0.107
Chlorobenzene	0.012
Chloroethane	0.130
Chloroform	0.022
Chloromethane	2.20
Chloroprene	ND
Dibromochloromethane	0.008
1.2-Dibromoethane	0.007
m-Dichlorobenzene	0.006
o-Dichlorobenzene	0.006
p-Dichlorobenzene	0.009
Dichlorodifluoromethane	0.562
1.1-Dichloroethane	0.010
1.2-Dichloroethane	0.026
1.1-Dichloroethene	0.009
cis-1.2-Dichloroethylene	ND
trans-1.2-Dichloroethylene	ND
Dichloromethane	0.132
1.2-Dichloropropane	ND
cis-1.3-Dichloropropene	ND
trans-1.3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.025
Ethvl Acrylate	ND
Ethyl tert-Butyl Ether	0.008
Ethvlbenzene	0.023
Hexachloro-1.3-butadiene	0.006
Methyl Isobutyl Ketone	0.021
Methyl Methacrylate	0.015
Methyl tert-Butyl Ether	ND
n-Octane	0.024
Propylene	1.09
Styrene	0.020
1.1.2.2-Tetrachloroethane	0.007
Tetrachloroethylene	0.009
Toluene	0.138
1.2.4-Trichlorobenzene	0.004
1.1.1-Trichloroethane	0.012
1.1.2-Trichloroethane	0.011
Trichloroethylene	0.009
Trichlorofluoromethane	0.259
Trichlorotrifluoroethane	0.094
1.2.4-Trimethylbenzene	0.016
1.3.5-Trimethylbenzene	0.009
Vinvl chloride	0.009
m.p-Xylene	0.040
o-Xylene	0.070
	0.000

Sample Date/Time: 2/11/2015 00:00 Sample ID: 5021829-01 Units: ppbv Sample Type: Field Sample Acetonitrile 0.133 Acetylene 1.09 0.158 Acrolein Acrylonitrile ND tert-Amyl Methyl Ether ND Benzene 0.226 Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane 0.012 1.3-Butadiene 0.040 Carbon Disulfide 0.013 Carbon Tetrachloride 0.116 Chlorobenzene ND Chloroethane ND Chloroform 0.019 Chloromethane 0.670 Chloroprene ND Dibromochloromethane 0.003 1,2-Dibromoethane ND m-Dichlorobenzene ND o-Dichlorobenzene ND p-Dichlorobenzene ND Dichlorodifluoromethane 0.543 1,1-Dichloroethane ND 1,2-Dichloroethane 0.024 1,1-Dichloroethene ND cis-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND Dichloromethane 0.112 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.019 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethylbenzene 0.023 Hexachloro-1,3-butadiene ND Methyl Isobutyl Ketone 0.014 Methyl Methacrylate ND Methyl tert-Butyl Ether ND n-Octane 0.029 Propylene 0.432 0.019 Styrene 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene ND Toluene 0.139 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane 0.007 1,1,2-Trichloroethane ND ND Trichloroethylene Trichlorofluoromethane 0.242 Trichlorotrifluoroethane 0.080 1,2,4-Trimethylbenzene 0.018 1,3,5-Trimethylbenzene 0.007 Vinyl chloride ND

Page 3 of 5

m,p-Xylene

o-Xylene

0.054

0.020

Sample Date/Time: 2/17/2015 00:00 Sample ID: 5022402-01 Units: ppbv Sample Type: Field Sample

Acetonitrile	0.084
Acetylene	0.789
Acrolein	0.170
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.210
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	0.010
1,3-Butadiene	0.026
Carbon Disulfide	0.011
Carbon Tetrachloride	0.120
Chlorobenzene	0.008
Chloroethane	ND
Chloroform	0.018
Chloromethane	0.716
Chloroprene	ND
Dibromochloromethane	0.003
1,2-Dibromoethane	ND
m-Dichlorobenzene	ND
o-Dichlorobenzene	ND
p-Dichlorobenzene	ND
Dichlorodifluoromethane	0.580
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.021
1,1-Dichloroethene	ND
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.228
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.020
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.014
Hexachloro-1,3-butadiene	ND
Methyl Isobutyl Ketone	0.008
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.017
Propylene	0.327
Styrene	0.015
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethvlene	ND
Tohuene	0.092
1,2,4-Trichlorobenzene	ND
1,1,1-Trichloroethane	ND
1.1.2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.258
Trichlorotrifluoroethane	0.082
1.2.4-Trimethylbenzene	0.007
1.3.5-Trimethylbenzene	ND
Vinyl chloride	ND
m.p-Xvlene	0.029
o-Xviene	0.011

CRNM VOC Sampling Results

Sample Date/Time: 2/23/201	15 00:00
Sample ID: 5022538-04	Units: ppbv
Sample Type: Field Sample	
Acetonitrile	0.099
Acetylene	0.463
Acrolein	0.312
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.130
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	0.015
1,3-Butadiene	0.014
Carbon Disulfide	0.012
Caroon Tetrachioride	0.110
Chloropenzene	ND 0.027
Chloroetnane	0.027
Chloromothana	0.018
Chlorometnane	0.710
Dibromochloromethane	0.004
1.2-Dibromosthane	ND
m-Dichlorohenzene	ND
o-Dichlorobenzene	ND
n-Dichlorobenzene	ND
Dichlorodifluoromethane	0.503
1.1-Dichloroethane	ND
1.2-Dichloroethane	0.019
1.1-Dichloroethene	ND
cis-1.2-Dichloroethylene	ND
trans-1.2-Dichloroethylene	ND
Dichloromethane	1.00
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.017
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.012
Hexachloro-1,3-butadiene	ND
Methyl Isobutyl Ketone	0.020
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.039
Propylene	0.407
Styrene	ND
1,1,2,2-1etrachioroethane	ND
Tetrachioroethylene	0.065
1.2.4.Trichlorohenzene	ND
1,2,4-Trichloroothana	0.008
1.1.2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.224
Trichlorotrifluoroethane	0.073
1.2.4-Trimethylbenzene	0.008
1.3.5-Trimethylbenzene	ND
Vinyl chloride	ND
m,p-Xylene	0.022
o-Xylene	0.009
-	

Sample Date/Time: 3/1/201	5 00:00
Sample ID: 5030916-01	Units: ppbv
Sample Type: Field Sample	
Acetonitrile	0.150
Acetylene	0.413
Acrolein	0.261
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.182
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	0.011
1,5-Butadiene Cashan Disulfida	0.028
Carbon Disumde Carbon Tetrachloride	0.013
Chlorobanzana	ND
Chloroethane	ND
Chloroform	0.016
Chloromethane	0.622
Chloroprene	ND
Dibromochloromethane	ND
1,2-Dibromoethane	ND
m-Dichlorobenzene	ND
o-Dichlorobenzene	ND
p-Dichlorobenzene	ND
Dichlorodifluoromethane	0.500
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.019
1,1-Dichloroethene	ND
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.796
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrariuoroetnane Teked Associate	0.015
Ethyl Acrylate Ethyl tart Butyl Ethar	ND
Ethylhenzene	0.022
Havachloro, 1.3-butadiana	0.022
Methyl Isobutyl Ketone	0.023
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.021
Propylene	0.331
Styrene	0.027
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethylene	0.012
Toluene	0.315
1,2,4-Trichlorobenzene	0.026
1,1,1-Trichloroethane	0.004
1,1,2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.222
1 richiorotrifiuoroethane	0.076
1,2,4-1rimethylbenzene	0.018
1,5,5-11imetnyi0enzene Vinul chlorida	0.000
vinyi chioride	ND
n,p-Ayiene o.Vylene	0.048
orayiene	0.025

Page 4 of 5

Sample Date/Time: 3/7/2015 00:00 Sample ID: 5031202-01 Units: ppbv Sample Type: Field Sample Acetonitrile 0.131

Acetonitrile	0.131
Acetylene	0.471
Acrolein	0.236
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.177
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	0.006
Bromomethane	0.014
1,3-Butadiene	0.019
Carbon Disulfide	0.031
Carbon Tetrachloride	0.103
Chlorobenzene	0.006
Chloroethane	0.016
Chloroform	0.020
Chloromethane	0.577
Chloroprene	ND
Dibromochloromethane	0.005
1,2-Dibromoethane	ND
m-Dichlorobenzene	0.006
o-Dichlorobenzene	0.007
p-Dichlorobenzene	0.007
Dichlorodifluoromethane	0.535
1,1-Dichloroethane	ND
1,2-Dichloroethane	0.023
1,1-Dichloroethene	0.006
cis-1,2-Dichloroethylene	ND
trans-1,2-Dichloroethylene	ND
Dichloromethane	0.090
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.021
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.017
Hexachloro-1,3-butadiene	0.018
Methyl Isobutyl Ketone	0.015
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.020
Propylene	0.232
Styrene	0.010
1,1,2,2-Tetrachloroethane	0.006
Tetrachloroethylene	0.007
Toluene	0.094
1,2,4-Trichlorobenzene	0.024
1,1,1-Trichloroethane	0.009
1,1,2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.250
Trichlorotrifluoroethane	0.088
1,2,4-Trimethylbenzene	0.012
1,3,5-Trimethylbenzene	0.007
Vinyl chloride	ND
m,p-Xylene	0.033
	0.014

CRNM VOC Sampling Results

Sample Date/Time: 3/13/201	5 00:00
Sample ID: 5031712-01	Units: ppbv
Sample Type: Field Sample	
Acetonitrile	0.100
Acetylene	0.281
Acrolein	0.479
Acrylonitrile	ND
tert-Amyl Methyl Ether	ND
Benzene	0.101
Bromochloromethane	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	0.007
1,3-Butadiene	0.015
Carbon Disulfide	0.007
Caroon Tetrachioride	0.080
Chlorobenzene	ND
Chloroetnane	0.012
Chlorotorm	0.012
Chlorometnane	0.515
Dibromochloromothano	ND
1.2.Dibromosthane	ND
n.Dichlorobenzene	ND
n-Dichlorobenzene	ND
o-Dichlorobenzene	ND
Dichlorodifluoromethane	0.436
1 1-Dichloroethane	ND
1.2-Dichloroethane	0.014
1 1-Dichloroethene	ND
cis-1.2-Dichloroethylene	ND
trans-1.2-Dichloroethylene	ND
Dichloromethane	0.163
1.2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Dichlorotetrafluoroethane	0.013
Ethyl Acrylate	ND
Ethyl tert-Butyl Ether	ND
Ethylbenzene	0.011
Hexachloro-1,3-butadiene	0.020
Methyl Isobutyl Ketone	0.017
Methyl Methacrylate	ND
Methyl tert-Butyl Ether	ND
n-Octane	0.016
Propylene	0.231
Styrene	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethylene	ND
Toluene	0.062
1,2,4-Trichlorobenzene	0.024
1,1,1-Trichloroethane	0.003
1,1,2-Trichloroethane	ND
Trichloroethylene	ND
Trichlorofluoromethane	0.204
Inchiorotrinuoroethane	0.068
1,2,4-1rimetnyibenzene	0.009
1,5,5-1rimetnyibenzene Virail chlorida	ND
vinyi chionae	ND 0.022
m,p-Xylene	0.022
o-Ayiene	0.011

Page 5 of 5

Sample Date/Time: 3/19/2015 00:00 Sample ID: 5032411-01 Units: ppbv Sample Type: Field Sample Acetonitrile 0.113 Acetylene 0.359 Acrolein 0.112 Acrylonitrile ND tert-Amyl Methyl Ether ND Benzene 0.110 Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane 0.010 1,3-Butadiene 0.014 Carbon Disulfide 0.006 Carbon Tetrachloride 0.105 Chlorobenzene ND Chloroethane ND Chloroform 0.014 Chloromethane 0.635 Chloroprene ND Dibromochloromethane ND 1,2-Dibromoethane ND m-Dichlorobenzene ND o-Dichlorobenzene ND p-Dichlorobenzene ND Dichlorodifluoromethane 0.534 1,1-Dichloroethane ND 1.2-Dichloroethane 0.015 1,1-Dichloroethene ND cis-1,2-Dichloroethylene ND trans-1,2-Dichloroethylene ND 0.090 Dichloromethane 1,2-Dichloropropane ND ND cis-1,3-Dichloropropene trans-1,3-Dichloropropene ND Dichlorotetrafluoroethane 0.016 Ethyl Acrylate ND Ethyl tert-Butyl Ether ND Ethylbenzene 0.013 Hexachloro-1,3-butadiene 0.019 Methyl Isobutyl Ketone 0.010 Methyl Methacrylate ND Methyl tert-Butyl Ether ND n-Octane 0.014 Propylene 0.105 Styrene ND 1,1,2,2-Tetrachloroethane ND Tetrachloroethylene ND Toluene 0.062 1,2,4-Trichlorobenzene 0.023 1,1,1-Trichloroethane 0.004 1.1.2-Trichloroethane ND Trichloroethylene ND Trichlorofluoromethane 0.253 Trichlorotrifluoroethane 0.080 1,2,4-Trimethylbenzene 0.012 1,3,5-Trimethylbenzene ND ND Vinyl chloride m,p-Xylene 0.025 0.013 o-Xylene

Appendix B

Carbonyl Compounds Raw Data

Appendix B		0	RNM Carbonyl (Compound Sampling	Results		Page 1 of 2
Sample Date/Time:	12/25/2014 00:00	Sample Date/Time:	1/6/2015 00:00	Sample Date/Time:	1/18/2015 00:00	Sample Date/Time:	1/30/2015 00:00
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample
Ä	5010721-02	Ä	5011418-02	Ä	5012207-02	Ä	5020311-02
Units	ppbv	Units	ppbv	Units	ppbv	Units	ppbv
Acetaldehyde	Invalid - AN	Acetaldehyde	Invalid - AN	Acetaldehyde	0.463	Acetaldehyde	0.358
Acetone	Invalid - AN	Acetone	Invalid - AN	Acetone	0.443	Acetone	0.697
Benzaldehyde	Invalid - AN	Benzaldehyde	Invalid - AN	Benzaldehyde	0.023	Benzaldehyde	0.012
2-Butanone	Invalid - AN	2-Butanone	Invalid - AN	2-Butanone	0.072	2-Butanone	0.100
Butyraldehyde	Invalid - AN	Butyraldehyde	Invalid - AN	Butyraldehyde	0.056	Butyraldehyde	0.037
Crotonaldehyde	Invalid - AN	Crotonaldehyde	Invalid - AN	Crotonaldehyde	0:030	Crotonaldehyde	0.016
2.5-Dimethylbenzaldehyde	Invalid - AN	2,5-Dimethylbenzaldehyde	Invalid - AN	2.5-Dimethylbenzaldehyde	QN	2.5-Dimethylbenzaldehyde	Ð
Formaldehyde	Invalid - AN	Formaldehyde	Invalid - AN	Formaldehyde	1.28	Formaldehyde	0.892
Hexaldehyde	Invalid - AN	Hexaldehyde	Invalid - AN	Hexaldehyde	0.019	Hexaldehyde	0.009
Isovaleraldehyde	Invalid - AN	Isovaleraldehyde	Invalid - AN	Isovaleraldehyde	Q	Isovaleraldehyde	Ð
Propionaldehyde	Invalid - AN	Propionaldehyde	Invalid - AN	Propionaldehyde	0.056	Propionaldehyde	0.051
Tolualdehydes	Invalid - AN	Toinaldehydes	Invalid - AN	Tolualdehydes	0.014	Tolualdehydes	0.008
Valeraldehyde	Invalid - AN	Valeraldehyde	Invalid - AN	Valeraldehyde	0.013	Valeraldehyde	800.0
Sample Date/Time:	12/31/2014 00:00	Sample Date/Time:	1/12/2015 00:00	Sample Date/Time:	1/24/2015 00:00	Sample Date/Time:	2/5/2015 00:00
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample
Ä	5010721-03	Ä	5011501-02	Ä	5012716-02	Ä	5021121-02
Units	ppbv	Units	ppbv	Units	ppbv	Units	ppbv
Acetaldehyde	Invalid - AN	Acetaldehyde	0.279	Acetaldehyde	0.451	Acetaldehyde	0.463
Acetone	Invalid - AN	Acetone	0.623	Acetone	0.710	Acetone	0.818
Benzaldehyde	Invalid - AN	Benzaldehyde	0.015	Benzaldehyde	0.019	Benzaldehyde	0.022
2-Butanone	Invalid - AN	2-Butanone	0.079	2-Butanone	60.0	2-Butanone	0.072
Butyraldehyde	Invalid - AN	Butyraldehyde	0.036	Butyraldehyde	0.057	Butyraldehyde	0.043
Crotonaldehyde	Invalid - AN	Crotonaldehyde	0.023	Crotonaldehyde	0.034	Crotonaldehyde	0.038
2.5-Dimethylbenzaldehyde	Invalid - AN	2.5-Dimethylbenzaldehyde	Ð	2.5-Dimethylbenzaldehyde	Ð	2.5-Dimethylbenzaldehyde	Q
Formaldehyde	Invalid - AN	Formaldehyde	0.659	Formaldehyde	131	Formaldehyde	1.34
Hexaldehyde	Invalid - AN	Hexaldehyde	0.012	Hexaldehyde	0.012	Hexaldehyde	0.019
Isovaleraldehyde	Invalid - AN	Isovaleraldehyde	Ð	Isovaleraldehyde	Ð	Isovaleraldehyde	Ð
Propionaldehyde	Invalid - AN	Propionaldehyde	0.036	Propionaldehyde	0.059	Propionaldehyde	0.056
Tolualdehydes	Invalid - AN	Tolualdehydes	0.012	Tolualdehydes	0.016	Tohualdehydes	0.018
Valeraldehyde	Invalid - AN	Valeraldehyde	0.009	Valeraldehyde	0.011	Valeraldehyde	0.014

CRNM Carbonyl Compound Sampling Results

CRNM Carbonyl Compound Sampling Results

Sample Date/Time:	2/11/2015 00:00	Sample Date/Time:	2/23/2015 00:00	Sample Date/Time:	3/7/2015 00:00	Sample Date/Time:	3/19/2015 00:00
Sample Type:	Field Sample						
ä	5021829-02	Ä	5022538-01	Ä	5031202-02	Ä	5032411-02
Units	ppbv	Units	ppbv	Units	ppbv	Units	ppbv
Acetaldehyde	0.521	Acetaldehyde	0.372	Acetaldehyde	0.515	Acetaldehyde	0.508
Acetone	0.975	Acetone	0.840	Acetone	1.28	Acetone	1.67
Benzaldehyde	0.019	Benzaldehyde	0.012	Benzaldehyde	0.014	Benzaldehyde	0.013
2-Butanone	0.115	2-Butanone	0.139	2-Butanone	0.185	2-Butanone	0.225
Butyraldehyde	0.056	Butyraldehyde	0.049	Butyraldehyde	0.065	Butyraldehyde	0.067
Crotonaldehyde	0.037	Crotonaldehyde	0.019	Crotonaldehyde	0:030	Crotonaldehyde	0.024
2.5-Dimethylbenzaldehyd-	e ND	2.5-Dimethylbenzaldehyde	Ð	2.5-Dimethylbenzaldehyde	Q	2.5-Dimethylbenzaldehyde	Q
Formaldehyde	1.61	Formaldehyde	806.0	Formaldehyde	111	Formaldehyde	1.28
Hexaldehyde	0.021	Hexaldehyde	0.012	Hexaldehyde	0.018	Hexaldehyde	0.024
Isovaleraldehyde	Ð	Isovaleraldehyde	Ð	Isovaleraldehyde	Ð	Isovaleraldehyde	Ð
Propionaldehyde	0.073	Propionaldehyde	0.053	Propionaldehyde	0.067	Propionaldehyde	0.057
Tolualdehydes	0.021	Tolualdehydes	Ð	Tohualdehydes	0.015	Tohualdehydes	0.016
Valeraldehyde	0.016	Valeraldehyde	0.009	Valeraldehyde	0.013	Valeraldehyde	0.013
Sample Date/Time:	2/17/2015 00:00	Sample Date/Time:	3/1/2015 00:00	Sample Date/Time:	3/13/2015 00:00		
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample		
Ä	5022402-02	Ä	5030916-02	Ä	5031712-02		
Units	ppbv	Units	ppbv	Units	ppbv		
Acetaldehyde	0.529	Acetaldehyde	0.287	Acetaldehyde	0.524		
Acetone	0.868	Acetone	0.590	Acetone	1.59		
Benzaldehyde	0.014	Benzaldehyde	0.017	Benzaldehyde	0.018		
2-Butanone	0.107	2-Butanone	0.049	2-Butanone	0.202		
Butyraldehyde	0.047	Butyraldehyde	0.029	Butyraldehyde	0.072		
Crotonaldehyde	0.032	Crotonaldehyde	0.029	Crotonaldehyde	0:030		
2.5-Dimethylbenzaldehyd	e ND	2.5-Dimethylbenzaldehyde	Ð	2.5-Dimethylbenzaldehyde	Q.		
Formaldehyde	1.48	Formaldehyde	0.845	Formaldehyde	131		
Hexaldehyde	0.010	Hexaldehyde	0.018	Hexaldehyde	0.027		
Isovaleraldehyde	2	Isovaleraldehyde	2	Isovaleraldehyde	Ð		
Propionaldehyde	0.056	Propionaldehyde	0.037	Propionaldehyde	0.066		
Tolualdehydes	0.009	Tolualdehydes	0.017	Tolualdehydes	0.014		
Valeraldehyde	0.010	Valeraldehyde	0.009	Valeraldehyde	0.016		

Page 2 of 2

Appendix C

PAH Raw Data

CRNM PAH Sampling Results

Sample Date/Time: 12/25/2(014 00:00	Sample Date/Time: 12/31/20	014 00:00	Sample Date/Time: 1/6/2015	00:00	Sample Date/Time: 1/12/2015	00:00
Sample ID: 4123110-02 1	Juits: ng/m3	Sample ID: 5010721-06 U	Juits: ng/m3	Sample ID: 5011418-05 Uni	ts: ng/m3	Sample ID: 5011501-03 Un	its: ng/m3
Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample	
Acenaphthene	1.12	Acenaphthene	₽	Acenaphthene	2.33	Acenaphthene	3.24
Acenaphthylene	2.51	Acenaphthylene	2.01	Acenaphthylene	3.52	Acenaphthylene	1.07
Anthracene	1.23	Anthracene	0.641	Anthracene	1.70	Anthracene	1.33
Benzo (a) anthracene	0.362	Benzo (a) anthracene	0.169	Benzo (a) anthracene	1.04	Benzo (a) anthracene	0.583
Benzo (a) pyrene	0.277	Benzo (a) pyrene	0.182	Benzo (a) pyrene	0.664	Benzo (a) pyrene	0.322
Benzo (b) fluoranthene	0.520	Benzo (b) fluoranthene	0.280	Benzo (b) fluoranthene	1.05	Benzo (b) fluoranthene	0.494
Benzo (e) pyrene	0.324	Benzo (e) pyrene	0.162	Benzo (e) pyrene	0.602	Benzo (e) pyrene	0.296
Benzo (g,h,i) perylene	0.206	Benzo (g,h,i) perylene	0.159	Benzo (g,h,i) perylene	0.474	Benzo (g,h,i) perylene	0.230
Benzo (k) fluoranthene	0.276	Benzo (k) fluoranthene	0.112	Benzo (k) fluoranthene	0.503	Benzo (k) fluoranthene	0.265
Chrysene	0.719	Chrysene	0.335	Chrysene	1.45	Chrysene	0.797
Согоделе	0.0837	Coronene	0.0943	Согоделе	0.193	Coronene	0.0858
Cyclopenta[cd]pyrene	0.245	Cyclopenta[cd]pyrene	0.227	Cyclopenta[cd]pyrene	0.672	Cyclopenta[cd]pyrene	0.316
Dibenz (a,h) anthracene	0.0513	Dibenz (a,h) anthracene	0.0337	Dibenz (a,h) anthracene	0.139	Dibenz (a,h) anthracene	0.0610
Fluoranthene	2.79	Fluoranthene	1.43	Fluoranthene	4.00	Fluoranthene	2.42
Fluorene	2.58	Fluorene	1.50	Fluorene	4.81	Fluorene	4.01
9-Fluorenone	2.66	9-Fluorenone	0.899	9-Fluorenone	4.60	9-Fluorenone	2.90
Naphthalene	39.5	Naphthalene	19.2	Naphthalene	74.7	Naphthalene	58.0
Perylene	0.0410	Perylene	0.0300	Perylene	0.103	Perylene	0.0507
Phenanthrene	8.82	Phenanthrene	4.19	Phenanthrene	15.2	Phenanthrene	12.0
Pyrene	2.06	Pyrene	1.08	Рутеле	3.03	Pyrene	1.83
Retene	4.50	Retene	0.806	Retene	12.8	Retene	10.6

Page 1 of 4

Appendix C		Ð	RNM PAH Sa	umpling Results		4	age 2 of 4
Sample Date/Time: 1/18/201	5 00:00	Sample Date/Time: 1/24/2015	00:00	Sample Date/Time: 1/30/2015	00:00	Sample Date/Time: 2/5/2015	00:00
Sample ID: 5012207-03 U	nits: ng/m3	Sample ID: 5012716-04 Un	its: ng/m3	Sample ID: 5020311-06 Un	its: ng/m3	Sample ID: 5021121-04 Uni	its: ng/m3
Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample	
Acenaphthene	3.49	Acenaphthene	2.77	Acenaphthene	Ð	Acenaphthene	3.78
Acenaphthylene	16.7	Acenaphthylene	5.26	Acenaphthylene	0.912	Acenaphthylene	3.26
Anthracene	2.19	Anthracene	2.49	Anthracene	0.903	Anthracene	3.06
Benzo (a) anthracene	1.45	Benzo (a) anthracene	1.77	Benzo (a) anthracene	0.292	Benzo (a) anthracene	1.46
Benzo (a) pyrene	1.16	Benzo (a) pyrene	1.42	Benzo (a) pyrene	0.130	Benzo (a) pyrene	1.08
Benzo (b) fluoranthene	1.12	Benzo (b) fluoranthene	1.39	Benzo (b) fluoranthene	0.302	Benzo (b) fluoranthene	1.34
Benzo (e) pyrene	0.707	Benzo (e) pyrene	0.869	Benzo (e) pyrene	0.174	Benzo (e) pyrene	0.833
Benzo (g,h,i) perylene	0.587	Benzo (g,h,i) perylene	0.719	Benzo (g,h,i) perylene	0.136	Benzo (g,h,i) perylene	0.696
Benzo (k) fluoranthene	0.567	Benzo (k) fluoranthene	0.697	Benzo (k) fluoranthene	0.128	Benzo (k) fluoranthene	0.699
Chrysene	1.77	Chrysene	2.17	Chrysene	0.485	Chrysene	2.09
Согоделе	0.259	Coronene	0.295	Соголепе	0.0552	Согопепе	0.339
Cyclopenta[cd]pyrene	1.14	Cyclopenta[cd]pyrene	1.55	Cyclopenta[cd]pyrene	0.124	Cyclopenta[cd]pyrene	1.06
Dibenz (a,h) anthracene	0.156	Dibenz (a,h) anthracene	0.176	Dibenz (a,h) anthracene	0.0348	Dibenz (a,h) anthracene	0.179
Fluoranthene	3.96	Fluoranthene	5.06	Fluoranthene	1.77	Fluoranthene	4.37
Fluorene	5.75	Fluorene	5.42	Fluorene	2.15	Fluorene	5.99
9-Fluorenone	3.80	9-Fluorenone	4.33	9-Fluorenone	1.71	9-Fluorenone	3.65
Naphthalene	80.8	Naphthalene	81.3	Naphthalene	32.5	Naphthalene	103
Perylene	0.177	Perylene	0.215	Perylene	0.0312	Perylene	0.173
Phenanthrene	15.9	Phenanthrene	17.0	Phenanthrene	6.87	Phenanthrene	19.4
Pyrene	3.19	Pyrene	4.24	Pyrene	1.32	Pyrene	3.64
Retene	18.0	Retene	20.6	Retene	5.46	Retene	14.7

				ennext Sunda			
Sample Date/Time: 2/11/20	15 00:00	Sample Date/Time: 2/17/2015	00:00	Sample Date/Time: 2/23/201	5 00:00	Sample Date/Time: 3/1/2015	00:00
Sample ID: 5021829-04	Units: ng/m3	Sample ID: 5022402-03 Uni	ts: ng/m3	Sample ID: 5022538-03 U	Juits: ng/m3	Sample ID: 5030916-03 Unit	ts: ng/m3
Sample Type: Field Sample	a	Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample	
Acenaphthene	Invalid - AR	Acenaphthene	1.37	Acenaphthene	Invalid - AG	Acenaphthene	1.42
Acenaphthylene	Invalid - AR	Acenaphthylene	3.97	Acenaphthylene	Invalid - AG	Acenaphthylene	0.833
Anthracene	Invalid - AR	Anthracene	1.20	Anthracene	Invalid - AG	Anthracene	0.944
Benzo (a) anthracene	Invalid - AR	Benzo (a) anthracene	0.772	Benzo (a) anthracene	Invalid - AG	Benzo (a) anthracene	0.279
Benzo (a) pyrene	Invalid - AR	Benzo (a) pyrene	0.728	Benzo (a) pyrene	Invalid - AG	Benzo (a) pyrene	0.145
Benzo (b) fluoranthene	Invalid - AR	Benzo (b) fluoranthene	0.926	Benzo (b) fluoranthene	Invalid - AG	Benzo (b) fluoranthene	0.292
Benzo (e) pyrene	Invalid - AR	Benzo (e) pyrene	0.575	Benzo (e) pyrene	Invalid - AG	Benzo (e) pyrene	0.167
Benzo (g,h,i) perylene	Invalid - AR	Benzo (g,h,i) perylene	0.438	Benzo (g,h,i) perylene	Invalid - AG	Benzo (g,h,i) perylene	0.137
Benzo (k) fluoranthene	Invalid - AR	Benzo (k) fluoranthene	0.387	Benzo (k) fluoranthene	Invalid - AG	Benzo (k) fluoranthene	0.132
Chrysene	Invalid - AR	Chrysene	1.34	Chrysene	Invalid - AG	Chrysene	0.489
Coronene	Invalid - AR	Coronene	0.183	Соголепе	Invalid - AG	Coronene	0.0537
Cyclopenta[cd]pyrene	Invalid - AR	Cyclopenta[cd]pyrene	0.586	Cyclopenta[cd]pyrene	Invalid - AG	Cyclopenta[cd]pyrene	0.147
Dibenz (a,h) anthracene	Invalid - AR	Dibenz (a,h) anthracene	0.108	Dibenz (a,h) anthracene	Invalid - AG	Dibenz (a,h) anthracene	0.0298
Fluoranthene	Invalid - AR	Fluoranthene	2.93	Fluoranthene	Invalid - AG	Fluoranthene	1.67
Fluorene	Invalid - AR	Fluorene	3.17	Fluorene	Invalid - AG	Fluorene	2.26
9-Fluorenone	Invalid - AR	9-Fluorenone	2.22	9-Fluorenone	Invalid - AG	9-Fluorenone	1.42
Naphthalene	Invalid - AR	Naphthalene	59.5	Naphthalene	Invalid - AG	Naphthalene	28.7
Perylene	Invalid - AR	Perylene	0.106	Perylene	Invalid - AG	Perylene	0.0337
Phenanthrene	Invalid - AR	Phenanthrene	9.63	Phenanthrene	Invalid - AG	Phenanthrene	7.04
Рутепе	Invalid - AR	Pyrene	2.31	Pyrene	Invalid - AG	Рутеве	1.28
Retene	Invalid - AR	Retene	8.63	Retene	Invalid - AG	Retene	4.67

CRNM PAH Sampling Results

Appendix C

Page 3 of 4

Appendix C

Sample Date/Time: 3/7/2015 00:00

CRNM PAH Sampling Results

Sample Date/Time: 3/19/2015 00:00

Sample ID: 5031712-03 Units: ng/m3 Sample Date/Time: 3/13/2015 00:00

Sample ID: 5031202-03 Un	its: ng/m3	Sample ID: 5031712-03 UI	iits: ng/m3	Sample ID: 5032411-03 Uni	its: ng/m3
Sample Type: Field Sample		Sample Type: Field Sample		Sample Type: Field Sample	
Acenaphthene	1.47	Acenaphthene	3.35	Acenaphthene	1.57
Acenaphthylene	0.256	Acenaphthylene	0.220	Acenaphthylene	0.305
Anthracene	0.522	Anthracene	0.558	Authracene	0.528
Benzo (a) anthracene	0.462	Benzo (a) anthracene	0.259	Benzo (a) anthracene	0.227
Benzo (a) pyrene	0.338	Benzo (a) pyrene	0.162	Benzo (a) pyrene	0.142
Benzo (b) fluoranthene	0.497	Benzo (b) fluoranthene	0.274	Benzo (b) fluoranthene	0.227
Benzo (e) pyrene	0.290	Benzo (e) pyrene	0.162	Benzo (e) pyrene	0.129
Benzo (g,h,i) perylene	0.221	Benzo (g,h,i) perylene	0.121	Benzo (g,h,i) perylene	0.0981
Benzo (k) fluoranthene	0.243	Benzo (k) fluoranthene	0.118	Benzo (k) fluoranthene	0.108
Chrysene	0.742	Chrysene	0.405	Chrysene	0.372
Coronene	0.0898	Согопеле	0.0537	Соголепе	0.0440
Cyclopenta[cd]pyrene	0.306	Cyclopenta[cd]pyrene	0.166	Cyclopenta[cd]pyrene	0.165
Dibenz (a,h) anthracene	0.0555	Dibenz (a,h) anthracene	0.0255	Dibenz (a,h) anthracene	0.0210
Fluoranthene	1.74	Fluoranthene	1.36	Fluoranthene	131
Fluorene	2.28	Fluorene	3.84	Fluorene	2.23
9-Fluorenone	1.54	9-Fluorenone	1.98	9-Fluorenone	1.28
Naphthalene	40.9	Naphthalene	47.4	Naphthalene	27.4
Perylene	0.0523	Perylene	0.0272	Perylene	0.0220
Phenanthrene	6.08	Phenanthrene	7.50	Phenanthrene	5.65
Pyrene	1.35	Pyrene	0.942	Рутепе	0.968
Retene	5.70	Retene	6.62	Retene	1.97

Page 4 of 4

Appendix D

Metals Raw Data

Appendix D

CRNM Metals Sampling Results

Page 1 of 2

Sample Date/Time:	12/25/2014 00:00	Sample Date/Time:	1/12/2015 00:00	Sample Date/Time:	1/30/2015 00:00
PM Type:	PM10	PM Type:	PM10	PM Type:	PM10
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample
ID:	4123110-03	ID:	5011501-04	ID:	5020311-04
Units	ng/m3	Units	ng/m3	Units	ng/m3
Antimony	0.17	Antimony	0.295	Antimony	0.059
Arsenic	0.33	Arsenic	0.099	Arsenic	0.054
Beryllium	0.01	Beryllium	0.0007	Beryllium	ND
Cadmium	0.04	Cadmium	0.026	Cadmium	0.006
Chromium	3.12	Chromium	4.28	Chromium	3.03
Cobalt	0.05	Cobalt	0.029	Cobalt	0.006
Lead	0.80	Lead	0.499	Lead	0.115
Manganese	2.99	Manganese	2.49	Manganese	0.308
Mercury	0.005	Mercury	0.010	Mercury	0.005
Nickel	0.17	Nickel	0.882	Nickel	0.104
Selenium	0.10	Selenium	0.033	Selenium	ND
Sample Date/Time:	12/31/2014 00:00	Sample Date/Time:	1/18/2015 00:00	Sample Date/Time:	2/5/2015 00:00
PM Type:	PM10	PM Type:	PM10	PM Type:	PM10
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample
ID:	5010721-04	ID:	5012207-04	ID:	5021121-03
Units	ng/m3	Units	ng/m3	Units	ng/m3
Antimony	0.22	Antimony	0.564	Antimony	0.466
Arsenic	0.37	Arsenic	0.181	Arsenic	0.038
Beryllium	ND	Beryllium	0.009	Beryllium	0.014
Cadmium	0.06	Cadmium	0.076	Cadmium	0.042
Chromium	2.63	Chromium	3.78	Chromium	3.24
Cobalt	0.05	Cobalt	0.052	Cobalt	0.059
Lead	0.71	Lead	0.470	Lead	0.461
Manganese	4.07	Manganese	4.43	Manganese	4.98
Mercury	0.02	Mercury	0.022	Mercury	0.021
Nickel	ND	Nickel	0.385	Nickel	0.346
Selenium	0.19	Selenium	0.243	Selenium	0.112
Sample Date/Time:	1/6/2015 00:00	Sample Date/Time:	1/24/2015 00:00	Sample Date/Time:	2/11/2015 00:00
PM Type:	PM10	PM Type:	PM10	PM Type:	PM10
Sample Type:	Field Sample	Sample Type:	Field Sample	Sample Type:	Field Sample
ID:	5011418-04	ID:	5012716-03	ID:	5021829-03
Units	ng/m3	Units	ng/m3	Units	ng/m3
Antimony	0.577	Antimony	0.247	Antimony	0.504
Arsenic	0.017	Arsenic	0.222	Arsenic	0.051
Beryllium	0.011	Beryllium	0.005	Beryllium	0.018
Cadmium	0.029	Cadmium	0.034	Cadmium	0.029
Chromium	3.70	Chromium	3.86	Chromium	3.45
Cobalt	0.026	Cobalt	0.038	Cobalt	0.085
Lead	0.392	Lead	0.364	Lead	0.504
Manganese	1.78	Manganese	2.82	Manganese	6.71
Mercury	0.029	Mercury	0.004	Mercury	0.016
Nickel	0.233	Nickel	0.287	Nickel	0.358
Selenium	0.149	Selenium	0.123	Selenium	0.056

Appendix D

CRNM Metals Sampling Results

Sample Date/Time: 2/17/2015 00:00 Sample Date/Time: 3/7/2015 00:00 PM10 PM Type: PM10 PM Type: Field Sample Sample Type: Sample Type: Field Sample ID: 5022402-04 ID: 5031202-04 Units ng/m3 Units ng/m3 0.161 0.300 Antimony Antimony 0.025 0.282 Arsenic Arsenic 0.022 0.014 Beryllium Beryllium Cadmium 0.036 Cadmium 0.036 Chromium 3.32 Chromium 3.61 0.136 0.134 Cobalt Cobalt Lead 0.699 Lead 0.691 Manganese 9.88 Manganese 8.23 Mercury 0.005 Mercury 0.006 Nickel 0.469 Nickel 0.610 Selenium ND Selenium 0.160 Sample Date/Time: 2/23/2015 00:00 Sample Date/Time: 3/13/2015 00:00 PM Type: PM10 PM Type: PM10 Sample Type: Field Sample Sample Type: Field Sample ID: 5022538-02 ID: 5031712-04 Units ng/m3 Units ng/m3 0.109 0.453 Antimony Antimony Arsenic 0.199 Arsenic 0.090 Beryllium 0.022 Beryllium 0.013 Cadmium 0.024 Cadmium 0.040 Chromium 4.57 Chromium 4.17 Cobalt 0.051 Cobalt 0.097 Lead 0.567 Lead 0.682 Manganese 3.46 Manganese 6.38 0.017 Mercury Mercury 0.006 0.694 0.483 Nickel Nickel 0.007 Selenium 0.084 Selenium 3/1/2015 00:00 3/19/2015 00:00 Sample Date/Time: Sample Date/Time: PM Type: PM10 PM Type: PM10 Sample Type: Field Sample Sample Type: Field Sample 5030916-04 5032411-04 ID: ID: Units ng/m3 Units ng/m3 Antimony 0.168 Antimony 0.254 Arsenic 0.884 Arsenic 0.119 Beryllium 0.014 Beryllium 0.015 Cadmium 0.028 Cadmium 0.041 2.28 Chromium Chromium 3.26 Cobalt 0.019 Cobalt 0.065 Lead 0.577 Lead 0.794 1.46 Manganese 4.85 Manganese Mercury 0.014 Mercury 0.013 0.288 0.564 Nickel Nickel Selenium 0.113 Selenium 0.234

Page 2 of 2

Appendix E

Statistical Summaries

Monitoring Site: CRNM	1st Valid Sa	mple: 12/25/2014	Last Valid Sa	mple: 3/19/2015	# Valid Samples: 1	5 PM Type:	NA Units: ug/m3
Analyte	# of Detects	# of Non- Detects	% of Detects	Minimum Concentration	Maximum Concentration	Arithmetic Mean	Standard Deviation
Acetonitrile	15	0	100.00	0.0908	0.414	0.19	0.0771
Acetylene	15	0	100.00	0.3	1.16	0.52	0.219
Acrolein	13	2	86.67	0	1.1	0.448	0.291
Acrylonitrile	0	15	00.00	0	0	0	0
tert-Amyl Methyl Ether	0	15	00.00	0	0	0	0
Benzene	15	0	100.00	0.323	0.771	0.588	0.147
Bromochloromethane	0	15	00.00	0	0	0	0
Bromodichloromethane	2	13	13.33	0	0.0671	0.00805	0.0207
Bromoform	4	11	26.67	0	0.0725	0.0166	0.0277
Bromomethane	14	1	93.33	0	0.109	0.0485	0.0218
1,3-Butadiene	15	0	100.00	0.031	0.149	0.068	0.0345
Carbon Disulfide	15	0	100.00	0.0187	0.278	0.0688	0.0734
Carbon Tetrachloride	15	0	100.00	0.473	0.756	0.633	0.078
Chlorobenzene	3	12	20.00	0	0.0554	0.008	0.0168
Chloroethane	3	12	20.00	0	0.344	0.0305	0.0861
Chloroform	15	0	100.00	0.0587	0.117	0.092	0.0145
Chloromethane	15	0	100.00	0.942	4.55	1.45	0.844
Chloroprene	0	15	0.00	0	0	0	0
Dibromochloromethane	11	4	73.33	0	0.0683	0.0341	0.024
1,2-Dibromoethane	2	13	13.33	0	0.0616	0.0077	0.0197
m-Dichlorobenzene	3	12	20.00	0	0.0422	0.00763	0.0153
o-Dichlorobenzene	3	12	20.00	0	0.0422	0.00763	0.0153
Appendix E - VOC Sampling Sta	tistics.						

VOC Sampling Statistics

Monitoring Site: CRNM	1st Valid Samp	le: 12/25/2014	Last Valid SamJ	ple: 3/19/2015	# Valid Samples: 15	PM Type: N	A Units: ug/m3
Analyte	# of Detects	# of Non- Detects	% of Detects	Minimum Concentration	Maximum Concentration	Arithmetic Mean	Standard Deviation
p-Dichlorobenzene	6	6	40.00	0	0.0723	0.0205	0.0261
Dichlorodifluoromethane	15	0	100.00	2.13	2.94	2.57	0.245
1,1-Dichloroethane	1	14	6.67	0	0.0406	0.00271	0.0101
1,2-Dichloroethane	15	0	100.00	0.0568	0.114	0.0876	0.0149
1,1-Dichloroethene	2	13	13.33	0	0.0358	0.00397	0.0104
cis-1,2-Dichloroethylene	0	15	0.00	0	0	0	0
trans-1,2-Dichloroethylene	0	15	0.00	0	0	0	0
Dichloromethane	15	0	100.00	0.289	3.48	0.87	0.935
1,2-Dichloropropane	0	15	0.00	0	0	0	0
cis-1,3-Dichloropropene	0	15	0.00	0	0	0	0
trans-1,3-Dichloropropene	0	15	0.00	0	0	0	0
Dichlorotetrafluoroethane	15	0	100.00	0.0911	0.175	0.133	0.0207
Ethyl Acrylate	0	15	0.00	0	0	0	0
Ethyl tert-Butyl Ether	1	14	6.67	0	0.0335	0.00223	0.00836
Ethylbenzene	15	0	100.00	0.0479	0.222	0.0925	0.0421
Hexachloro-1,3-butadiene	7	8	46.67	0	0.214	0.0677	0.0859
Methyl Isobutyl Ketone	15	0	100.00	0.0328	0.23	0.0797	0.0448
Methyl Methacrylate	1	14	6.67	0	0.0615	0.0041	0.0153
Methyl tert-Butyl Ether	1	14	6.67	0	0.0253	0.00169	0.00631
n-Octane	15	0	100.00	0.0609	0.183	0.107	0.0368
Propylene	15	0	100.00	0.181	1.88	0.652	0.386
Styrene	10	5	66.67	0	0.154	0.0617	0.0494
Appendix E - VOC Sampling Sta	ttistics.						

VOC Sampling Statistics

88

Monitoring Site: CRNM	1st Valid Sa	umple: 12/25/2014	Last Valid Sa	mple: 3/19/2015	# Valid Samples: 15	PM Type: N	A Units: ug/m3
Analyte	# of Detects	# of Non- Detects	% of Detects	Minimum Concentration	Maximum Concentration	Arithmetic Mean	Standard Deviation
1,1,2,2-Tetrachloroethane	4	11	26.67	0	0.0619	0.0138	0.0232
Tetrachloroethylene	7	8	46.67	0	0.415	0.0517	0.102
Toluene	15	0	100.00	0.234	1.59	0.542	0.374
1,2,4-Trichlorobenzene	6	6	40.00	0	0.193	0.0535	0.0777
1,1,1-Trichloroethane	13	2	86.67	0	0.0656	0.0364	0.0197
1,1,2-Trichloroethane	1	14	6.67	0	0.0601	0.00401	0.015
Trichloroethylene	1	14	6.67	0	0.0485	0.00323	0.0121
Trichlorofluoromethane	15	0	100.00	1.1	1.46	1.33	0.114
Trichlorotrifluoroethane	15	0	100.00	0.522	0.722	0.628	0.0538
1,2,4-Trimethylbenzene	15	0	100.00	0.0345	0.148	0.0725	0.0303
1,3,5-Trimethylbenzene	6	6	60.00	0	0.0887	0.0266	0.0262
Vinyl chloride	1	14	6.67	0	0.0231	0.00154	0.00576
Xylenes	15	0	100.00	0.135	0.705	0.263	0.138

VOC Sampling Statistics

Appendix E - VOC Sampling Statistics.

Monitoring Site: CRNM	1st Valid S	ample: 1/12/2015	Last Valid Sa	mple: 3/19/2015	# Valid Samples: 12	PM Type: N	A Units: ug/m3
Analyte	# of Detects	# of Non- Detects	% of Detects	Minimum Concentration	Maximum Concentration	Arithmetic Mean	Standard Deviation
Acetaldehyde	12	0	100.00	0.504	0.955	0.793	0.159
Acetone	12	0	100.00	1.05	3.98	2.2	0.892
Benzaldehyde	12	0	100.00	0.0522	0.1	0.0718	0.0156
2-Butanone	12	0	100.00	0.145	0.665	0.354	0.16
Butyraldehyde	12	0	100.00	0.0857	0.213	0.151	0.0379
Crotonaldehyde	12	0	100.00	0.046	0.109	0.0818	0.0187
2,5-Dimethylbenzaldehyde	0	12	0.00	0	0	0	0
Formaldehyde	12	0	100.00	0.811	1.98	1.44	0.336
Hexaldehyde	12	0	100.00	0.0369	0.111	0.0688	0.0226
Isovaleraldehyde	0	12	0.00	0	0	0	0
Propionaldehyde	12	0	100.00	0.0857	0.174	0.132	0.0249
Tolualdehydes	11	1	91.67	0	0.103	0.0656	0.0261
Valeraldehyde	12	0	100.00	0.0282	0.0565	0.0415	0.00947

Carbonyl Compound Sampling Statistics

Appendix E - Carbonyl Compound Sampling Statistics.

Statistics
mpling S
Sa
PAH

PM Type: NA Units: ng/m3 Monitoring Site: CRNM 1st Valid Sample: 12/25/2014 Last Valid Sample: 3/19/2015 # Valid Samples: 13

Analyte	# of Detects	# of Non- Detects	% of Detects	Minimum Concentration	Maximum Concentration	Arithmetic Mean	Standard Deviation
Acenaphthene	11	2	84.62	0	3.78	1.99	1.22
Acenaphthylene	13	0	100.00	0.22	7.91	2.46	2.21
Anthracene	13	0	100.00	0.522	3.06	1.33	0.782
Benzo (a) anthracene	13	0	100.00	0.169	1.77	0.702	0.529
Benzo (a) pyrene	13	0	100.00	0.13	1.42	0.519	0.43
Benzo (b) fluoranthene	13	0	100.00	0.227	1.39	0.67	0.416
Benzo (e) pyrene	13	0	100.00	0.129	0.869	0.407	0.262
Benzo (g,h,i) perylene	13	0	100.00	0.0981	0.719	0.325	0.219
Benzo (k) fluoranthene	13	0	100.00	0.108	0.699	0.326	0.214
Chrysene	13	0	100.00	0.335	2.17	1.01	0.643
Coronene	13	0	100.00	0.044	0.339	0.141	0.0978
Cyclopenta[cd]pyrene	13	0	100.00	0.124	1.55	0.516	0.444
Dibenz (a,h) anthracene	13	0	100.00	0.021	0.179	0.0824	0.0581
Fluoranthene	13	0	100.00	1.31	5.06	2.68	1.24
Fluorene	13	0	100.00	1.5	5.99	3.54	1.48
9-Fluorenone	13	0	100.00	0.899	4.6	2.54	1.18
Naphthalene	13	0	100.00	19.2	103	53.3	24.5
Perylene	13	0	100.00	0.022	0.215	0.0817	0.0643
Phenanthrene	13	0	100.00	4.19	19.4	10.4	4.77
Pyrene	13	0	100.00	0.942	4.24	2.1	1.06
Retene	13	0	100.00	0.806	20.6	8.92	5.99

Appendix E - PAH Sampling Statistics.

20	
24	
<u> </u>	
÷	
S	
~	
-	
$\boldsymbol{\sigma}$	
bD.	
~	
pl	
Įđ	
mpl	
Iqmi	
ampl	
Sampl	
Sampl	
s Sampl	
ls Sampl	
ıls Sampl	
als Sampl	
tals Sampl	
etals Sampl	
etals Sampl	
Aetals Sampl	
Metals Sampl	

Units: ng/m3
PM Type: PMI0
Valid Samples: 15
Last Valid Sample: 3/19/2015
1st Valid Sample: 12/25/2014
Monitoring Site: CRNM

	# of	# of Non-	% of	Minimum	Maximum	Arithmetic	Standard
Analyte	Detects	Detects	Detects	Concentration	Concentration	Mean	Deviation
Antimony	15	0	100.00	0.059	0.577	0.303	0.163
Arsenic	15	0	100.00	0.017	0.884	0.197	0.214
Beryllium	13	2	86.67	0	0.022	0.0112	0.00696
Cadmium	15	0	100.00	0.006	0.076	0.0365	0.0154
Chromium	15	0	100.00	2.28	4.57	3.49	0.59
Cobalt	15	0	100.00	0.006	0.136	0.0598	0.0373
Lead	15	0	100.00	0.115	0.8	0.555	0.178
Manganese	15	0	100.00	0.308	9.88	4.32	2.53
Mercury	15	0	100.00	0.004	0.029	0.0129	0.00755
Nickel	14	1	93.33	0	0.882	0.392	0.225
Selenium	13	2	86.67	0	0.243	0.107	0.0766

Appendix E - Metals Sampling Statistics.

Appendix F

Risk Factors Used Throughout the Report

	•))		
Pollutant	Preliminary Screening Value (μg/m3)	Cancer URE 1/(μg/m3)	Noncancer RfC (mg/m3)	Pollutant	Preliminary Screening Value (μg/m3)	Cancer URE 1/(µg/m3)	Noncancer RfC (mg/m3)
Acenaphthene	0.011	0.000088		Carbon Disulfide	70		0.7
Acenaphthylene	0.011	0.000088		Carbon Tetrachloride	0.17	0.000006	0.1
Acetaldehyde	0.45	0.000022	0.009	Chlorobenzene	100		1
Acetonitrile	Q		0.06	Chloroethane	1000		10
Acrolein	0.002		0.00002	Chloroform	9.8		860.0
Acrylonitrile	0.015	0.000068	0.002	Chloromethane	6		0.09
Antimony	0.02		0.0002	Chloroprene	0.0021	0.00048	0.02
Arsenic	0.00023	0.0043	0.000015	Chrysene	0.057	0.0000176	
Benzene	0.13	0.0000078	0.03	Cobalt	0.01		0.0001
Benzo (a) anthracene	0.0057	0.000176		Coronene	0.011	0.000088	
Benzo (a) pyrene	0.00057	0.00176		Dibenz (a,h) anthracene	0.00052	0.0019184	
Benzo (b) fluoranthene	0.0057	0.000176		1,2-Dibromoethane	0.0017	0.0006	0.009
Benzo (e) pyrene	0.011	0.000088		p-Dichlorobenzene	0.091	0.000011	0.8
Benzo (g.h.i) perylene	0.011	0.000088		1,1-Dichloroethane	0.625	0.0000016	0.5
Benzo (k) fluoranthene	0.0057	0.000176		1,2-Dichloroethane	0.038	0.000026	2.4
Beryllium	0.00042	0.0024	0.00002	1,1-Dichloroethene	20		0.2
Bromoform	0.91	0.0000011		Dichloromethane	60	0.00000016	0.6
Bromomethane	0.5		0.005	1,2-Dichloropropane	0.4		0.004
1,3-Butadiene	0.03	0.0003	0.002	cis-1,3-Dichloropropene	0.25	0.00004	0.02
Cadmium	0.00056	0.0018	0.00001	trans-1,3-Dichloropropene	0.25	0.00004	0.02
Appendix F							Page 1 of 2

Toxicity Factors Used Throughout the Monitoring Study

	•))	•	
Pollutant	Preliminary Screening Value (μg/m3)	Cancer URE 1/(μg/m3)	Noncancer RfC (mg/m3)	Pollutant	Preliminary Screening Value (µg/m3)	Cancer URE 1/(μg/m3)	Noncancer RfC (mg/m3)
Ethylbenzene	0.4	0.0000025	1	1,1,1-Trichloroethane	500		5
Fluoranthene	0.011	0.000088		1,1,2-Trichloroethane	0.0625	0.000016	0.4
Fluorene	0.011	0.000088		Trichloroethylene	0.2	0.0000048	0.002
Formaldehyde	0.077	0.000013	0.0098	Vinyl chloride	0.11	0.0000088	0.1
Hexachloro-1,3-butadiene	0.045	0.000022	0.09	Xylenes	10		0.1
Lead	0.015		0.00015				
Manganese	0.03		0.0003				
Mercury	0.03		0.0003				
Methyl Isobutyl Ketone	300		3				
Methyl Methacrylate	70		0.7				
Methyl tert-Butyl Ether	3.8	0.00000026	3				
Naphthalene	0.029	0.000034	0.003				
Nickel	0.0021	0.00048	0.0000				
Perylene	0.011	0.000088					
Propionaldehyde	0.8		0.008				
Selenium	2		0.02				
Styrene	100		1				
Tetrachloroethylene	3.8	0.00000026	0.04				
Toluene	500		5				
1,2,4-Trichlorobenzene	20		0.2				

Toxicity Factors Used Throughout the Monitoring Study

Appendix F

Page 2 of 2

APPENDIX B

VOC COC FORMS

1 Keystone	Park Drive, Builts 700, Morrisville, NC 27660 TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Pre-Sampling	Site Code:	Canister Number: Lab Initial Can. Press. ("Hg): Date Can. Cleaned: Cleaning Batch # : Duplicate Event (Y/N): Duplicate Can # :
Field Setup	Received by:	Date: 12 1/10/14_ MFC Setting:
Field Recovery	Recovery Date: Operator: Field Final Can. Press. ("Hg): Status: VALID VOID (Circle one) Relinquished by:	Sample Duration (3 or 24 hr): Elapsed Time: Canister Valve Closed (Y/N): Date:
Lab Recovery	Received by:	Date:) Lab Final Can. Press. (*Hg):
omment	s: the set of the set	14. When a many the

i finally	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Sampling	Site Code: City/State: AQS Code: Collection Date: Options	Canister Number:
Pre-	SNMOC (Y/N):	Duplicate Event (Y/N): Duplicate Can # : Date:
Setup	Received by: K.O.G.Y. Operator:	Date:
Field Recovery	Recovery Date: Operator: Field Final Can. Press. ("Hg): Status: VALID VOID (Circle one) Relinquished by:	Sample Duration (3 or 24 hr): Elapsed Time:49 Canister Valve Closed (Y/N): Date:/15
Lab Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):
mment	s' D' was reading on the the	and when field Recomm
an L	- prosures was takings	3

	A PILM SA	14025	
	Site Code:	Canister Number: <u>42//3</u>	
	City/State:	Lab Initial Can. Press. ("Hg):	
plin	AQS Code:	Cleaning Rateh # :	
Lab	Collection Date:	Cleaning Batch #.	
re-S	SNMOC (Y/N)	Duplicate Event (Y/N):	
L.	TOXICS (Y/N):	Duplicate Can # :	
	Relinquished by:	Date:	
	Received by KRILLEN	Date: 12/19/14	
P Q	Operator: KS Hu-J Svs. #:	MFC Setting:	
Fiel	Setup Date: 01/2/15	Elapsed Timer Reset (Y/N):	
	Field Initial Can. Press. ("Hg):5	Canister Valve Opened (Y/N):	
	Recovery Date: 01/08/15	Sample Duration (3 or 24 hr):	
2	Operator: KBilley	Elapsed Time:	
ield	Operator: Elapsed Time: Field Final Can. Press. ("Hg): Canister Valve Closed (Y/N):		
Rec	Status: VALID VOID (Circle or	ie)	
	Relinquished by: KBMM	Date: 01/02/15	
2	Received by:	Date:	
Lab	Status: VALID VOID (Circle or	e) Lab Final Can. Press. ("Hg):	
Rei	If void, why:		
Concession of			
omment	s: Sample ran on of	104/15.	
_			
_			

Restored	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Pre-Sampling	Site Code:	Canister Number: Lab Initial Can. Press. ("Hg): Date Can. Cleaned: Cleaning Batch # : Duplicate Event (Y/N): Duplicate Can # : Date:
Field Setup	Received by:	Date:MFC Setting: Elapsed Timer Reset (Y/N): Canister Valve Opened (Y/N):
Field Recovery	Recovery Date: Operator: Field Final Can. Press. ("Hg): Status: VALID VOID (Circle one) Relinquished by:	Sample Duration (3 or 24 hr): Elapsed Time: Canister Valve Closed (Y/N): Date:/
Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):
mment	s: Sample ran on 0	1/12/15.
State of the second	C ()m	SATN71
---------------------	----------------------------------	--------------------------------
	Site Code:	Canister Number:
57	City/State:	Lab Initial Can. Press. ("Hg):
plin	Adds Code:	Cleaning Batch #:
Sam	Options	
Pre-	SNMOC (Y/N): M	Duplicate Event (Y/N):
	TOXICS (Y/N):	Duplicate Can # :
	Relinquished by:	Date: 1-5-15
	Received by:	Date:
pla	Operator: 03.104 Sys. #:	MFC Setting:
Fie	Setup Date:	Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. (*Hg):	Canister Valve Opened (Y/N):
	Recovery Date:	Sample Duration (3 or 24 hr):
d ery	Operator:	Elapsed Time:
Fiel	Field Final Can. Press. ("Hg):	Canister Valve Closed (Y/N):
Ř	Status: VALID VOID (Circle one)	Date:
ab	Received by:	Date:
Reco	Status: VALID VOID (Circle one)	Lab Final Can. Press. ("Hg):
	I VOIG, WHY.	
omment	s Showed I AxIIS	This conister can
NOH	pit mill with the	a mopler times
TO DA	et reveral attempt	but sile lak
211	muie. (nu). + multi	re, and not same
-	4	

14.12	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Pre-Sampling	Site Code:	Canister Number:
Field Setup	Received by:	Date: MFC Setting: Elapsed Timer Reset (Y/N): Canister Valve Opened (Y/N):
Field Recovery	Recovery Date:	Sample Duration (3 or 24 hr): Elapsed Time: Canister Valve Closed (Y/N): Date://
Lab Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):
omment	: Sample up to	run on of/12/17.
122	- Pirth-	

1 Keystone	Park Drive, Suite 700, Montsville, NC 27560	
	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
	Site Code:	Canister Number: Active
Lab Pre-Sampling	City/State:	Lab Initial Can. Press. ("Hg):
	Collection Date:	Cleaning Patch # :
	Ontions	
	SNMOC (Y/N):	Duplicate Event (Y/N):
	TOXICS (Y/N):	Duplicate Can # :
	Relinquished by: MB	Date: 1-14-15
	Received by: KBr Nuy	Date: 91/15/15
ъđ	Operator: CB. Thuy Sys. #:	MFC Setting:
Fiel	Setup Date: 01/19/15	Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. ("Hg):	Canister Valve Opened (Y/N):
	Recovery Date:	Sample Duration (3 or 24 hr);
2	Operator:	Elapsed Time: 23:49
ield	Field Final Can. Press. ("Hg):	Canister Valve Closed (Y/N):
Rec	Status: VALID VOID (Circle one)	
	Relinquished by: KB. 104	Date: 01/25/15
, Lin	Received by:	Date:
Lab	Status: VALID VOID (Circle one)	Lab Final Can. Press. ("Hg):
Re	If void, why:	
-		
mment	Sample set to run	on 1/24/15
	- Contraction -	

	Site Code:	Canister Number:
-	City/State: //	Lab Initial Can. Press. ("Hg):
pling	AQS Code:	Date Can. Cleaned:
Lab	Collection Date: 25/12	Cleaning Batch #:C4
re-S	SNMOC (Y/N)	Dunlicate Event (Y/N):
ш		Duplicate Can # :
	Relinquished by:	Date: 17-5 1-27-15
	Received by:	Date: 1/28//5
μQ	Operator: Svs. #	MEC Setting:
Field	Setup Date: 01/24//15	Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. ("Hg):	Canister Valve Opened (Y/N):
	Recovery Date: 2/01/15	Sample Duration (3 or 24 hr): 24 hr
<u>ک</u>	Operator: KBILM	Elapsed Time: 23:49
ield	Field Final Can. Press. ("Hg):5	Canister Valve Closed (Y/N):
Rec	Status: VALID VOID (Circle one)	
	Relinquished by: CK-164	Date: 02 /01 /15
ery	Received by:	Date:
Lab	Status: VALID VOID (Circle one)) Lab Final Can. Press. ("Hg):
Å	If void, why:	
mment	s: Sample to run drive	01/30/15.
-		The second s

17 19	Sta Code: (PN)M	Canister Number: /0
	City/State:	Lab Initial Can. Press. ("Ho): 290
ő	AQS Code:	Date Can, Cleaned:
plir	Collection Date: 1/201/5	Cleaning Batch #:
Lal Pre-San	Options	
	SNMOC (Y/N):	Duplicate Event (Y/N):
	TOXICS (Y/N):	Duplicate Can # :
	Relinquished by: D)ate:
	Received by KKULY	ate: K.1.
n a	Operator: 6 // Sys. #:	MFC Setting:
Field		Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. (*Hg):	Canister Valve Opened (Y/N):
	Recovery Date:	Sample Duration (3 or 24 hr):
- No	Operator: <u>ICBUILY</u>	Elapsed Time:
Field	Field Final Can. Press. ("Hg):	Canister Valve Closed (Y/N):
Re	Status: VALID VOID (Circle one)	a balist
	Relinquished by: D	Date: 01/34//3
ery	Received by:	Date:
Lab Recov	Status: VALID VOID (Circle one)	Lab Final Can. Press. ("Hg):
omment The	s: sample set to r canister used tors d, since the press	un on al/30/15. La was not ne in coniste
LAG O	to Low for sample	
	ada -	

Site Code:	5	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Non-operator: Sys. #: Date:	Lab Pre-Sampling	Site Code:	Canister Number: Lab Initial Can. Press. ("Hg): Date Can. Cleaned: Cleaning Batch # : Duplicate Event (Y/N): Duplicate Can # : Date:
Recovery Date:	Field Setup	Received by:	Date: MFC Setting: Elapsed Timer Reset (Y/N): Canister Valve Opened (Y/N):
Received by: Date: Status: VALID VOID (Circle one) Lab Final Can. Press. ("Hg): If void, why:	Field Recovery	Recovery Date: Operator: Field Final Can. Press. ("Hg): Status: VALID VOID (Circle one) Relinquished by:	Sample Duration (3 or 24 hr): Elapsed Time: Canister Valve Closed (Y/N): Date:
	Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):

It Keystone	e reacto della fr. Park Drive, Suite 700, Marrisville, NC 27560	
-	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Pre-Sampling	Site Code:	Canister Number:
Field Setup	Received by: Kentury Operator:	Date: 2/3/15 MFC Setting: Elapsed Timer Reset (Y/N): Canister Valve Opened (Y/N):
Field Recovery	Recovery Date: 2/10/15 Operator: 2/10/15 Field Final Can. Press. ("Hg): 2 Status: VALID VOID (Circle one) Relinquished by: 2010 (Circle one)	Sample Duration (3 or 24 hr): Elapsed Time:49 Canister Valve Closed (Y/N): Date:
Lab Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):
	Samuelo suff to all	22 2/11/15.
ommen	s: annopped ser to part	on on pr
	1	

Lab Initial Can. Press. ("Hg):
Date Can. Cleaned:
Cleaning Batch # :
Duplicate Event (Y/N): Duplicate Can # :
Duplicate Event (Y/N):
Duplicate Can # :
2/11/15
2/11/15
MFC Setting:
Elapsed Timer Reset (Y/N):
Canister Valve Opened (Y/N):
Sample Duration (3 or 24 hr):
Elapsed Time: <u>23:49</u>
Canister Valve Closed (Y/N):
in the t
01/22/15
_ab Final Can. Press. ("Hg):
=/17/15.

-	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
	Site Code:	Canister Number: 541070
Lab Sampling	City/State:	Lab Initial Can. Press. ("Hg):
	AQS Code:	Date Can. Cleaned:
	Ontions	Cleaning Balon #
Pre-	SNMOC (Y/N):	Duplicate Event (Y/N):
-	TOXICS (Y/N):	Duplicate Can # :
	Relinquished by:	Date:
	Received by: K-Britte-J	Date: 2/12/15
p d	Operator: K6,111-/ Sys. #:	MFC Setting:
Fie	Setup Date: 2/20/15	Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. ("Hg):	Canister Valve Opened (Y/N):
	Recovery Date: 2/24/15	Sample Duration (3 or 24 hr):
2	Operator: KBITUY	Elapsed Time:3 : 49
ield	Field Final Can. Press. ("Hg):	Canister Valve Closed (Y/N):
Rec	Status: VALID VOID (Circle one)	
	Relinquished by: ABCCCC	Date: 0/24/11
ery	Received by:	Date:
Lab	Status: VALID VOID (Circle one)	Lab Final Can. Press. ("Hg):
Re	If void, why:	
		1
omment	: Sample set to and	kn 2/23/15.
-		1
118T		

	TOXICS/SNMOC SAMPLE	CHAIN OF CUSTODY
Lab Pre-Sampling	Site Code:	Canister Number:
Field Setup	Received by: Operator:	Date:
Field Recovery	Recovery Date:	Sample Duration (3 or 24 hr): Elapsed Time: Canister Valve Closed (Y/N): Date:
Lab Recovery	Received by: Status: VALID VOID (Circle one) If void, why:	Date: Lab Final Can. Press. ("Hg):
omment	: Sample + set + + min	on 03/01/15.
	4	
	april 1	
	Tiest -	

	TOXICS/SININOC SAMIFEE	CHAIN OF COSTODI
5	Site Code:	Canister Number:52 Lab Initial Can. Press. ("Hg):7
Lab e-Samplir	Collection Date: <u>3/)//5</u> Options	Cleaning Batch # :
Pn	SNMOC (Y/N): TOXICS (Y/N):	Duplicate Event (Y/N): Duplicate Can # :
	Relinquished by:	Date: <u>745/15</u>
	Received by: FBILLY	Date: 2/27/15
eld tup	Operator:Sys. #:	MFC Setting:
Se	Setup Date:	Elapsed Timer Reset (Y/N):
	Recovery Date: 3/8/15	Sample Duration (3 or 24 hr):
ery	Operator: <u>ICB. 1044</u>	Elapsed Time:3:49
Field	Field Final Can. Press. ("Hg):	Canister Valve Closed (Y/N):
Re	Status: VALID VOID (Circle one) Relinquished by:	Date: <u>318/17</u>
ab overy	Received by:	Date:
Rec	If void, why:	
omment	: Sel to sample @	n 3/07/15.

17 15
<u>4 m</u>

-	TOXICS/SNMOC SAMPLE O	CHAIN OF CUSTODY
	Site Code: CROM	Canister Number:66
	City/State:	Lab Initial Can. Press. ("Hg):
ling	AQS Code:	Date Can, Cleaned:
amp	Collection Date:	Cleaning Batch #:
-S:-9	Options	
P	SNMOC (Y/N):	Duplicate Event (Y/N):
	TOXICS (Y/N):	Duplicate Can # :
	Relinquished by:	Date: 31912
	Received by: K.A. Ilian	Date: 3/11/15
p dn	Operator: <u>X_B_10k-/</u> _Sys. #:	MFC Setting:
Fie	Setup Date:	Elapsed Timer Reset (Y/N):
	Field Initial Can. Press. ("Hg):	Canister Valve Opened (Y/N):
	Recovery Date: 3/23/15	Sample Duration (3 or 24 hr): 24 h
2	Operator: Kbilly	Elapsed Time: 23:49
eld	Field Final Can, Press, ("Ho): -1 months	Canister Valve Closed (Y/N):
Fi	Status: VALID VOID (Circle one)	
	Relinquished by: KBILLY	Date: 3123/15
ab	Received by:	Late:
Reco	Status: VALID VOID (Circle one)	Lab Final Can. Press. ("Hg):
A STATE	If void, why:	
	C 1 0 1	2110 11-
omments	: samples set to run	on -/17/11.
		4

APPENDIX C

CARBONYL COMPOUNDS COC FORMS

San	Site Code: City/State:	flub - CHA	HT-CRNN	1	Collection Date: Cartridge Lot #:	12-19-	111 44A
Pre-	AQS Code: Relinquished	by:		Date	Duplicate Event (Y/N):	-
Setup	Received by: Set-Up Date: Pre-Sampling Ro	KBillu Z/24/1 otameter Readi	4 Oper ng (cc/min):	Date ator: <u>JCR</u> 1 1530	Elapsed Timer	.#: <u> </u>	r" 1 Y
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Cappor Relinquished	otameter Reac ed (Y/N): by:	<u>q /14-</u> L ling (cc/min):	Date	Sample Duration Elapsed Time: Status: VALI	(3 or 24 hr): VOID (C	ircle one)
Lab Recovery	Received by: Status: VAI If void, why: Sample Volume	LID VOII	D (Circle	Date	Temperature:		
and the second		Comula	Sample	Sample	Cartridge	Camala ID	Labu
	Sample Date	Time	Duration	voiume		Sample ID	Labit
	Sample Date	Time	Duration	volume	(07134244		LaDIL
PAMS	Sample Date 17/2 5/14	Sample Time	Duration		107134-244		LetD IL

al and the second	CARE	SUNYLC	OMPOU	NUSCH	AIN OF CU	STUDY	
mp.	Site Code:	CHA	TICKNM	-	Collection Date:	0471213	un 3
e-Sal	AQS Code:	12.10		-	Duplicate Event (Y/N):	14/20
Ę	Relinquished I	by:		Date			
	Received by:	KBiel	ley	Date	12/10/10	<u>4</u>	
Field	Set-Up Date:	2/29,	14 Oper	rator: <u>KR</u>	Illy Sys.	.#:	/
	Pre-Sampling Ro	tameter Read	ing (cc/min):	480	Elapsed Timer	Reset (Y/N):	/
	Recovery Date:	01/021	115	1	Sample Duration	(3 or 24 hr):	24-
very	Operator: <u> </u>	Billey	ding (astrain);	495	Elapsed Time:	VOID 10	
Fie	Cartridges Cappe	ed (Y/N):					arcie one)
-		W KASIT	ing	Date	: 01/02/15		
ery	Received by: Status: VAL		D (Circl	_ Date	: Temperature:		france
Lab Recovery	Relinquished Received by: Status: VAL If vold, why: Sample Volume (.ID VOI	D (Circl	Date e one)	Temperature:		n (*
Lab Recovery	Relinquished Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID + VOI total Liters): Sample Time	D (Circl Sample Duration	Date e one) Sample Volume	Temperature:	Sample ID	Lab II
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID + VOI total Liters): Sample Time	D (Circl Sample Duration	Date e one) Sample Volume	Cartridge	Sample ID	Lab II
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circl Sample Duration 24	Date e one) Sample Volume	Cartridge Lot #	Sample ID	Lab II
MS Lab Recovery	Received by: Status: VAL If vold, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circl Sample Duration 2.4-	Date e one) Sample Volume	Cartridge Lot #	Sample ID	Lab II
PAMS Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circl Sample Duration	Date e one) Sample Volume	Cartridge Lot #	Sample ID	Lab II
PAMS Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circl Sample Duration 2.4-	Date e one)	Cartridge Lot #	Sample ID	Lab II
PAMS Lab Recovery	Relinquished Received by: Status: VAL If vold, why: Sample Volume (Sample Date Date Date Date Date Date Date Date	ID VOI total Liters): Sample Time	D (Circl Sample Duration 24-	Date e one)	Cartridge Lot #	Sample ID	Lab II
PAMS Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date 13/31/4	ID VOI total Liters): Sample Time	D (Circl Sample Duration	Date e one)	Cartridge Lot #	Sample ID	Lab II
PAMS Lab Recovery	Relinquished Received by: Status: VAL If void, why: Sample Volume (Sample Date 12/31/4	ID + VOI total Liters): Sample Time	D (Circl Sample Duration 2.4-	Date e one)	Cartridge Lot #	Sample ID	Lab II

	CARD	INTL C		NDS CH	AIN OF CO	STUDI	11
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished t	Dy:		Date:	Collection Date: Cartridge Lot #: Duplicate Event (<u>007134</u> Y/N):	9 244,4
Field Setup	Received by: Set-Up Date: Pre-Sampling Rot	KBC 01/2/15 tameter Read	Open ing (cc/min):	Date: ator: <u>US</u>	- 12 / 18 / 10 1 Lug Sys Elapsed Timer	. #: Reset (Y/N):	6
Field Recovery	Recovery Date: Operator:	billion billio	ding (cc/min):	495 Date	Sample Duration Elapsed Time: Status: VALI	(3 or 24 hr):	ircle one)
	Relinquished t	y					Station and the
Lab Recovery	Relinquished t Received by: Status: VAL If void, why: Sample Volume (ID VOI	D (Circle	Date Pohe)	Temperature:		est to é di n
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (ID VOI total Liters): Sample	D (Circle Sample	Date	Cartridge	Sample ID	Lab IE
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	iD VOI total Liters): Sample Time	D (Circle Sample Duration	Date rolie) Sample Volume	Cartridge Lot #	Sample ID	Lab IE
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	iD VOI total Liters): Sample Time	D (Circle Sample Duration	Date rolie) Sample Volume	Cartridge Lot #	Sample ID	Lab IE
AMS Lab Recovery	Relinquished t Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circle Sample Duration	Date e oli e) Sample Volume	Cartridge Lot #	Sample ID	Lab IE
PAMS Lab Recovery	Relinquished t Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circle Sample Duration	Date colie) Sample Volume	Cartridge Lot #	Sample ID	Lab IE
PAMS Lab Recovery	Relinquished t Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circle	Date e oli e) Sample Volume	Cartridge Lot #	Sample ID	Lab IE
PAMS Lab Recovery	Relinquished t Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI total Liters): Sample Time	D (Circle	Date e oli e) Sample Volume	Cartridge Lot #	Sample ID	Lab IE

1 Keystone	Park Drive, Suite 700, Mor CARE	BONYL (COMPOU	NDS CH	AIN OF CU	STODY	
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	Dy: MB		Date	Collection Date: Cartridge Lot #: Duplicate Event (1 - 5 - 15	1/6/15 05323404 Y/N):	YE
Field Setup	Received by: Set-Up Date: Pre-Sampling Ro	01/08/1 otameter Read	US Oper	Date ator: KBi	CI/CI/I Sys	#: Reset (Y/N):	/
Field covery	Recovery Date: Operator: // Post Sampling R Cartridges Cappe	OI/I3 A. J Los otameter Rea ed (Y/N):	/15 	12911	Sample Duration Elapsed Time: Status: VALIE	(3 or 24 hr): 2 3 : 55 VOID (Ci	KA
Re	Relinquished	by: <u>PB111</u>	6-1	Date			
Lab Recovery Re	Relinquished Received by: Status: VAI If void, why: Sample Volume	by: <u>VO</u> LID VO (total Liters):	ID (Circle	Date	Temperature:	<u>.</u>	1-41-4-11-6-14-4-4-
Lab Recovery Re	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date	by: VO LID VO (total Liters): Sample Time	ID (Circle Sample Duration	Date Date	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery Re	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date O\/12/15	by: VO LID VO (total Liters): Sample Time	ID (Circle Sample Duration	Date Date Date Sample Volume	Cartridge Lot #	Sample ID	Lab ID

Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinguished	WM Fiel	d Blank	- - - Date:	Collection Date: Cartridge Lot #: Duplicate Event	(Y/N):	4E]
Field Setup	Received by: Set-Up Date: Pre-Sampling Ro	tameter Read	(cc/min):	Date:	Elapsed Time	s. #: r Reset (Y/N):	
Field Recovery	Recovery Date: Operator: Post Sampling Ro Cartridges Cappe Relinquished	otameter Reader ed (Y/N):	ding (cc/min):	Date:	Sample Duratior Elapsed Time: Status: VALI	n (3 or 24 hr): D VOID (C	ircle one)
ab pvery	Received by: Status: VAL If void, why:	.id voi	D (Ĉircl	Date:	Temperature	- <u>-</u>	
Rect	Sample Volume (total Liters):		P		1. A	
Rect	Sample Volume (total Liters): Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab II
PAMS Reci	Sample Volume (Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab II

.du	Site Code:	CRIM	JOWPOOR		Collection Date:	1-12-15	200
Lab Pre-Sar	AQS Code:	by:()/(}	Date	Duplicate Event (V)):	
Field Setup	Received by: Set-Up Date: Pre-Sampling Ro	1/13/	Opera ling (cc/min):	Date: ator: <u>KB</u> 13.7 L	Elapsed Timer	#:	/
Field Recovery	Recovery Date: Operator: <u>/</u> Post Sampling R Cartridges Cappe Relinquished	01/19 otameter Rea ed (Y/N): by:	ding (cc/min):	 2042 L Date	Sample Duration Elapsed Time: Status: VALIE	(3 or 24 hr): 2 4 : 0 0 VOID (Ci	24 . 00
ab overy	Received by: Status: VAI If void, why:	LID VO	ID (Circle	Date one) 1	Temperature:		*- 11
Rec	Sample Volume		I man and a second second	1			
Rec	Sample Volume	Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Rec	Sample Volume	Sample Time 24	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID

å	Site Code:	CR/	VM	100 011	Collection Date:	1-15-1	5
Lab Pre-Sam	City/State: AQS Code: Relinquished	by:		Date	Cartridge Lot #: Duplicate Event	<u>0 03</u> 03 (Y/N):	34 044
Setup	Received by: Set-Up Date: Pre-Sampling Ro	KBillu 1/19/1 Dtameter Read	Oper ling (cc/min):	Date ator: <u>KB</u>	: <u>()/(>/)</u> <u>////</u> Syn Elapsed Time	5 s. #: r Reset (Y/N):	Y
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Cappe Relinquished	01/25 <u>CB</u> otameter Rea ed (Y/N): by: <u> CB</u>	/) 5 / ding (cc/min):	I288L Date	Sample Duration Elapsed Time: Status: VAL	D VOID (0	24 hr
	Received by: Status: VAL	LID VOI	ID (Circle	Date	: Temperature:		
Lab Recovery	If void, why: Sample Volume	(total Liters):					
Lab Recovery	If void, why: Sample Volume ((total Liters): Sample Time	Sample	Sample	- Cartridge	Sample ID	Lab I
PAMS Recovery	If void, why: Sample Volume (Sample Date	(total Liters): Sample Time	Sample Duration	Sample Volume	- Cartridge Lot #	Sample ID	Lab I

Lab Pre-Samp	Site Code: City/State: AQS Code: Relinquished	<u>CR</u> .M.	М	Date	Collection Date: Cartridge Lot #: Duplicate Event	<u>1-30-</u> 003239 (Y/N):	IS CHIE
Setup	Received by Set-Up Date: Pre-Sampling Ro	KB ILC 1/25/1 Dtameter Read	Oper ing (cc/min):	Date ator: <u>JCB</u>	61/21/1 1/Luy Sys Elapsed Time	s. #: r Reset (Y/N):	у
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Capp Relinquished	CR/01 (B-104) totameter Rear ed (Y/N):y by:	/15 ding (cc/min): /	1289 L Date	Sample Duration Elapsed Time: Status: VALI	(3 or 24 hr): D (Ci	94:00
Lab Recovery	Received by: Status: VAI If void, why: Sample Volume	LID VOI (total Liters):	D (Circle	Date	Temperature:		
Lab Recovery	Received by: Status: VAI If void, why: Sample Volume Sample Date	LID VOI (total Liters): Sample Time	D (Circle Sample Duration	Date	Cartridge	Sample ID	Lab ID
Recovery	Received by: Status: VAI If void, why: Sample Volume Sample Date C1/2.0/15	LID VOI (total Liters): Sample Time 24 M	D (Circle Sample Duration	Date	Cartridge Lot #	Sample ID	Lab ID
AMS Lab Recovery	Received by: Status: VAI If void, why: Sample Volume Sample Date CI / So / / S	LID VOI (total Liters): Sample Time 24 M	D (Circle Sample Duration	Date	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery	Received by: Status: VAI If void, why: Sample Volume Sample Date C1/2.0/15	LID VOI (total Liters): Sample Time 2.4 M	D (Circle	Date	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery	Received by: Status: VAI If void, why: Sample Volume Sample Date	LID VOI (total Liters): Sample Time 24 M	D (Circle Sample Duration	Date	Cartridge Lot #	Sample ID	Lab II

	CARE	BONYL C	OMPOU	NDS CH	AIN OF CU	STODY	
mp.	Site Code:	CRA	->11		Collection Date:	2.5.	15
Lab e-Sa	AQS Code:				Duplicate Event	(Y/N):	19442
Pr	Relinquished I	by:	de like de	Date:			3
	Received by:	KRILL	4	Date			
Field	Set-Up Date:	02/61/	17 Oper	ator: <u>ICB</u>	illing Sys	s. #:	
- 0	Pre-Sampling Ro	tameter Read	ing (cc/min):		Elapsed Timer	Reset (Y/N):	
	Recovery Date:				Sample Duration	(3 or 24 hr):	
very	Operator:		F	+	Elapsed Time:	-	
Fie	Cartridges Cappe	otameter Read	aing (cc/min):		_Status: VALI	D VOID (C	ircie one)
E	Relinquished I	by:	- 144	Date			
2	Received by:			-	1		
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (ID VOI	D (Circle	one)	Temperature:		an nation of the data
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (ID VOi total Liters): Sample	D (Circle Sample	sone)	Cartridge		
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date	ID VOI (total Liters): Sample Time	D (Circle Sample Duration	sone) Sample Volume	Cartridge	Sample ID	Lab ID
Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back	ID VOI total Liters): Sample Time	D (Circle Sample Duration	sample Volume	Cartridge Lot #	Sample ID	Lab ID
S Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back	ID VOI total Liters): Sample Time	D (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back	ID VOI total Liters): Sample Time	D (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Biok	ID VOI	D (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back	ID VOI total Liters): Sample Time	D (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back	ID VOI	D (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Recovery	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field @44k	ID VOI	D (Circle	Sample Volume	Cartridge Lot #	Sample ID	LabID
PAMS	Received by: Status: VAL If void, why: Sample Volume (Sample Date Field Back Field Back Sample Date Field Back Sample Date Field Back Sample Date Field Back	ID VOI	D (Circle Sample Duration	Sample Volume	Cartridge Lot # CO32341040	Sample ID E	Lab ID

	Park Drive, Suite 700, Mo	misville, NC 27580	OMPOU	NDS CH	AIN OF CU	STODY	
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	<u>by:</u>		- Date	Collection Date: Cartridge Lot #: Duplicate Event (<u>005234</u> Y/N):	10442
Field Setup	Received by: Set-Up Date: Pre-Sampling Ro	C2/01/ otameter Read	Oper ing (cc/min):	Date ator: <u>143</u> 4590.0	01/27/1 144 Sys	#: Reset (Y/N):	y Y
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Capp Relinquished	otameter Read	ding (cc/min):	LAS1 L Date	Sample Duration Elapsed Time: Status: VALII	(3 or 24 hr): D VOID (Ci	rcle one)
Lab Recovery	Received by: Status: VAI If void, why: Sample Volume	LID VOI (total Liters):	D (Circle Sample	Date	Temperature:		
	Sample Date	Time 23/53	Duration	Volume	Lot # 0132341444E	Sample ID	Lab ID
PAMS	C9 105 /15						

ä	Site Code:	CRA	M	ibe on	Collection Date:	2-11-1	S
Lab -Sam	City/State:		and the second		Cartridge Lot #:	0 0 3 234/	DUVE
Pre	Relinquished	by:		Date	:		
р Q	Received by:	KBILL	1	Date	2/3/15		
Fiel	Set-Up Date: Pre-Sampling Ro	ora 709 otameter Read	ding (cc/min):	ator: 103, 26,41	Elapsed Timer	.#: Reset (Y/N):	У
<u></u> .	Recovery Date:	02 /14	115		Sample Duration	(3 or 24 hr): 6	4
ery	Operator:	CRIMY			Elapsed Time:	23:55	
Fiel Recov	Post Sampling R Cartridges Capp Relinguished	otameter Rea ed (Y/N):	iding (cc/min):	12912	Status: VALIE	VOID (Ci	rcle one)
Lab Recovery	Received by: Status: VA If void, why: Sample Volume	LID VO	ID (Circle	Date	: Temperature: _		
	Sample Date	Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab I
	2/11/15	24	23:52		003234044E		
	- 4					- Alter	
PAMS							-
PAMS							
PAMS							
PAMS							

Keystone	Park Drive, Suite 700, Mor CARE	NC 27580	COMPOU	NDS CH	AIN OF CU	STODY	
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	C R A	(A)	- - - Date	Collection Date: Cartridge Lot #: Duplicate Event (2-17 0032344 Y/N):	15 244/E
Field Setup	Received by: KBrilly Set-Up Date: 07/14/15 Opera Pre-Sampling Rotameter Reading (cc/min):			Date: 2/11/15 rator: VB 10/15 Sys. #. 24.5L Elapsed Timer Reset (Y/N): Y			<u>y</u>
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Capp Relinquished	dotameter Rea ed (Y/N): by: KB	115 ading (cc/min): Y 1044	1287L	Sample Duration Elapsed Time: Status: VALIC	(3 or 24 hr): 2 3 5 1 2 VOID ((<u>84 M</u> Circle one)
	Received by:			Date	1		
Lab Recovery	Status: VA If void, why: Sample Volume	(total Liters):	DID (Circle	e one)	Castridae	afra meaniga	
Lab Recovery	Status: VA If void, why: Sample Volume Sample Date	(total Liters): Sample Time	Sample	e ore) Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Recovery	Status: VA If void, why: Sample Volume Sample Date	LID VO (total Liters): Sample Time	Sample Duration	e orie) Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS	Status: VA If void, why: Sample Volume Sample Date A//	LID VO	Sample Duration 23:51	e orie) Sample Volume	Cartridge Lot # 203234044	Sample ID	Lab ID

	CARE	BONYLO	COMPOU	NDS CH	Collection Date:	JSTODY	
ab Samp.	City/State:	STAN UT		•	Cartridge Lot #:	003234	OME
Pre-	AQS Code: Relinguished	by:		Date:	Duplicate Event	(Y/N):	
p d	Received by:	KBIT	4 -	Date:	2/18/1	5	
Fiel	Set-Up Date:Operat			27.5L	Elapsed Time	s. #: r Reset (Y/N):	Y
eld overy	Recovery Date:	2/24/	15		Sample Duration	n (3 or 24 hr):	24
	Operator: <u>//</u> Post Sampling R	totameter Rea	ding (cc/min):	12912	Elapsed Time: Status: VAL	ID VOID (Circle one)
E S	Cartridges Capp	ed (Y/N):	¥	- Alexandre	2/24/	15	
R	Relinquished	by: 168 1	Luy	- Date:	C		
ر ج	Relinquished Received by:	by: <u> UK_ </u>	in the	Date:		. <u></u>	
Lab scovery R	Relinquished Received by: Status: VAI	by: <u>JCK. </u> LID VO	ID (Circle	Date:	Temperature		
Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume	by: <u>JCK </u> LID VOI (total Liters):	ID (Cirole	Date:	Temperature		
Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume	by: <u>VO</u> LID VO (total Liters): Sample Time	ID (Circle Sample Duration	Date: Date: Cne) Sample Volume	Temperature Cartridge Lot #	Sample ID	Lab ID
Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume	by: <u>CK</u> LID VOI (total Liters): Sample Time 24 00	ID (Circle Sample Duration	Date: Date: Cne) Sample Volume	Temperature Cartridge Lot #	Sample ID	Lab ID
Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date	by: <u>JCK</u> LID VOI (total Liters): Sample Time 24 00	ID (Circle Sample Duration	Sample Volume	Temperature Cartridge Lot #	Sample ID	Lab ID
AMS Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date	by: <u>JCK</u> LID VOI (total Liters): Sample Time 24:00	ID (Circle Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date	by: <u>JCK</u> LID VOI (total Liters): Sample Time 24:00	ID (Circle Sample Duration	Sample Volume	Temperature Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date A A A A A A A A A A A A A A A A A A A	by: <u>JCK</u> LID VOI (total Liters): Sample Time 24 00	ID (Circle	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date A A A A A A A A A A A A A A A A A A A	by: <u>JCK</u> LID VOI (total Liters): Sample Time 24 00	ID (Circle	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
PAMS Lab Recovery R	Relinquished Received by: Status: VAI If void, why: Sample Volume Sample Date	by: VOI LID VOI (total Liters): Sample Time 24 00	ID (Circle	Sample Volume	Cartridge Lot #	Sample ID	Lab 1D

	CARE Site Code:	BONYL C	COMPOU	NDS CH	Collection Date:	STODY	
Lab Pre-Samp	City/State:AQS Code: Relinquished by:			Date:	Cartridge Lot #: Duplicate Event	<u>(40323</u> (Y/N):	40442
Setup	Received by:			Date: ator: <u>16</u> 26.8 L	Date: 2 3 1 5 Kg I/y Sys. #: 5 XL Elapsed Timer Reset (Y/N): Y		
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Cappe Relinquished	otameter Rea ed (Y/N): by:	ding (cc/min):	1286L Date:	Sample Duration Elapsed Time: Status: VALI	(3 or 24 hr): D (Ci	1 ircle one)
Lab Recovery	Received by: Status: VAI If void, why: Sample Volume	LID VOI	D (Circle	Date:	Temperature:		
	A DECEMBER OF STREET	Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab ID
	Sample Date		03149	1	0632 34/44	ιE	12
	Sample Date	-24					THE WAY
PAMS	Sample Date	-24		3×.			

mp.	Site Code:	RN	n	-	Collection Date:	103724	1) YUF
Lab Pre-Sa	AQS Code:	by:		- - Date:	Duplicate Event (Y/N):	~ 110
Field Setup	Received by: Set-Up Date: Pre-Sampling Re	8/04/1 block	Dper ling (cc/min):	ator: <u>K</u>	2 / 27 / 1 1/1 Sys Elapsed Timer	:: #: Reset (Y/N):	y me
Field Recovery	Recovery Date: Operator: _ Post Sampling F Cartridges Capp Relinquished	Rotameter Rea	ding (cc/min):	 Date:	Sample Duration Elapsed Time: Status: VALI	(3 or 24 hr): D VOID (Ci	rcle one)
Lab Recovery	Received by: Status: VA If void, why: Sample Volume	LID VO	ID (Circle	_ Date: 9 cne)	Temperature:		1
	The second of	Sample	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab II
	Sample Date	TIME			A. 7.3.21 W.F.C.	and the second se	
	Sample Date 3/ 7 // 7	24	23171		0023404	1	
SM	Sample Date	24	23:51		00,23404	(*	
PAMS	Sample Date		23:51		0023404	<u>.</u>	
PAMS	Sample Date		23:51				
PAMS	Sample Date		23:51				1000

o mp.	Site Code: City/State:	RNA	γ	-	Collection Date: Cartridge Lot #: (10323	40442
Pre-Sa	AQS Code:	by:	-	- - Date	Duplicate Event	(Y/N):	
Setup	Received by: Set-Up Date: Pre-Sampling Re	0/8/15 otameter Read	ding (cc/min):	ator: <u>JCB</u>	: 3/03// 109 Sys Elapsed Time	s. #: Reset (Y/N):	k Y
Field Recovery	Recovery Date: Operator: Post Sampling R Cartridges Capp Relinquished	B / 15 Cotameter Rea ed (Y/N): by:	nt ading (cc/min): 1 1144	<u>1386L</u> Date	Sample Duration Elapsed Time: Status: VALI	n (3 or 24 hr): D (0	24 m 9 Dircle one)
covery	Received by: Status: VA If void, why: Sample Volume	LID VO	ID (Circle	Date	Temperature:		
Red	Campio Volume				1.10.000		
Rec	Sample Date	Sample Time	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab IC
Rec	Sample Date	Sample Time 74 M	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID I//E	Lab IE
PAMS	Sample Date 3/13/) 7	Sample Time 74 M	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab IC

Lab re-Samp.	Site Code: City/State: AQS Code:	CR	1 AI	-	Collection Date: Cartridge Lot #: Duplicate Event (*	19-15 <u>2-23</u> 0032340 (/N):	314F
Field Setup P	Relinquished Received by: Set-Up Date: Pre-Sampling Ro	by:	Oper ding (cc/min):	Date: Date: ator: <u>JCB </u>	3/10/15 LIM Sys. Elapsed Timer	#:	/
Field Recovery	Recovery Date: Operator: Post Sampling F Cartridges Capp Relinquished	3/23 CD 1 (CC Rotameter Rea ed (Y/N): by:	7 15 Iding (cc/min): Y	1 <u>386L</u> 1 <u>386</u> Date:	Sample Duration Elapsed Time: Status: VALIE	(3 or 24 hr): 3 : 4 9 VOID (Ci	rcle one)
Lab Recovery	Received by: Status: VA If void, why: Sample Volume	LID VO (total Liters):	ID (Circle	Date:	Temperature:		
PAMS	Sample Date 3/19/15	Sample Time 24:00	Sample Duration	Sample Volume	Cartridge Lot #	Sample ID	Lab IC
				20145	an 3/14	a.h.5.	

APPENDIX D

PAH COC FORMS

Lab e-Sampling	Site Code:	Container #: 344 Collection Date: 12-14-14 Collocated Event (Y/N): 12-14-14 Other: VI.
Pre	Cartridge Certification Date: Relinquished by: Date	e <u>PL: 53723</u>
Field Setup	Received by: KB1144 Date Site Operator: Image: Collection Date: Image: Collection Date: Image: Collection Date:	e: <u>12 /10/14</u> System #: Elapsed Timer Reset (Y/N):
	Recovery Date:	
/ Field Recovery	Elapsed Time Temp (°C) Barometri Start 0.16 0.16 End 0.3.45 0.3.45 Average 0.3.45 0.3.45 Total Collection Time (Minutes) 0.3.45 Status: Valid Void Relinquished by: 0.4.45	Magnehelic Flowrate c ("Hg) ("H ₂ O) (std. m³/min) 2 4.8 3 5 Total Collection Volume (std. m³) Site Operator:
Recovery	Status: Valid Void (Circle one)	Container #: Temperature:
omment Jot <c< th=""><th>is: Change of "replection of we about the "Fluence"?</th><th>lade to 12/2-/14</th></c<>	is: Change of "replection of we about the "Fluence"?	lade to 12/2-/14

Lab Pre-Sampling	Site Code:	Container #: Collection Date: Collocated Event (Y/I Other:	656 12-25-14 13:50-412-12-12-12 13:50-412-12-12-12 13:50-412-12-12 13:50-412-12-12 13:50-412-12 13:50-412-12 13:50-6 12-25-14 12-25-14 12-25-14 12-25-14 12-25-14 12-25-14 12-25-25 12-25-14 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25-25 12-25
Field Setup	Relinquished by: Diff Received by: K K Site Operator: K K Set-Up Date: 12/29/14 K Collection Date: 12/31/14 K	ate: <u>12-1177</u> ate: <u>12-1177</u> System #: Elapsed Timer Reset	(Y/N): <u>//</u>
Field Recovery	Elapsed Time Temp (°C) Barome Start	Magneheli tric ("Hg) ("H ₂ O) 1 12 <t< th=""><th>c Flowrate (std. m³/min) ne (std. m³) <u>24</u></th></t<>	c Flowrate (std. m ³ /min) ne (std. m ³) <u>24</u>
Lab Recovery	Received by:	Contain Tempera	er #: ture:
ommen	ts: Nut Show to get TFI	ourate."	

D	Site Code:(RAM	Conta	iner #:	264
plin	City/State:	10.0	Collec	tion Date:	12-31-14
Lat	AQS Code:		Colloc Other	ated Event (Y/N):	2201-KR
Pre-	Cartridge Certification Date	e:		P1:539	57
	Relinquished by:	BAC	Date: 10-1	7.14	
g	Received by: KBU	ely	Date: 12 /	18/14	
Set	Site Operator: 10/5	Illy	System	n #:	
ield	Set-Up Date: <u>61/</u>	02/15	Elaps	ed Timer Reset (Y	(/N): <u> </u>
<u>щ</u>					
	Recovery Date:	Collectio	OI/US/IS	tion	
		Conectio	Il oystem morma	Magnehelic	Flowrate
>	Elapsed Time	Temp (°C)	Barometric ("Hg)	("H ₂ O)	(std. m ³ /min)
over	End 20:310	IL E	EgicE	20	0.16.11
Reco	Average	2.25	593.8	20	0.160515
eld					
Ξ	Total Collection Time (Minu	ites) <u>23:</u> 2)1 ⁴ Total (Collection Volume	e (std. m ³) <u>3 = 7</u>
	Status: Valid	Void (Circ	le one) Site O	perator: KB	illey
	Relinquished by: Keinquished by:	TRY	- 1 Date: 011	08/15	
ery	Received by:		_ Date:	Container	#:
Lab	Status: Valid	Void (Circ	le one)	Temperatu	re:
Ř	If void, why:		1		
Common	to: So allo	01	linder-		
Johnnen	ample var	n on or	000115.		

Lab Pre-Sampling	Site Code:	Conta Collec Colloc Other Date:	iner #:	294/ 1-6-15 50 <u>0-1129212</u> 500-1 <u>7</u> 5
Field Setup	Received by: CBCCCy Site Operator: KB1100 Set-Up Date: 01/08/15 Collection Date: 01/12/15	Date: <u>61 /</u> Syster Elapse	07 //S n #: ed Timer Reset (Y/I	N):
Field Recover	Start 100 minutes 100 minutes End 94 minutes 5 minutes Average 5 minutes 24 minutes Total Collection Time (Minutes) 24 minutes Status: Valid Void Relinquished by: 100 minutes	D954 D95.5 O Total (le one) Site O Date:	48 46.5 Collection Volume (perator: <u>68</u> , <u>13/1</u> 5	0.21918 0.216715 std. m ³) <u>5.22</u>
b very	Relinquished by:	le one) Site O Date: <u>01/</u> Date:	perator: <u>243</u> <u>13/15</u> Container#	
Reco	If void, why:		Temperature	:
Commen	y of the MS Exal.	Spread st	I have	Calculate
Lab Pre-Sampling	Site Code: Channel Container #: 55.7 City/State: Collection Date: Collection Date: Collocated Event (Y/N): Collocated Event (Y/N): <t< th=""></t<>			
--------------------------	--			
Field Setup	Received by: Image: Critical and the control of the cont			
Field Recovery	Elapsed Time Temp (°C) Barometric ("Hg) ("H₂O) (std. m³/min) Start			
Lab Recovery	Received by: Date: Container #: Status: Valid Void (Circle one) Temperature: If void, why:			
commen <u>s</u> FB	ts: Installed FB and notice plastic peopri clich nacked. But still went a head and install used for sample run date 01/12/15.			

Lab e-Sampling	Site Code: <u>CRNA</u> City/State: AQS Code:	Conta Collec Colloc Colloc Other:	tion Date:	233 -12-15 10:4172901 10:4172901
Pre	Cartridge Certification Date: Relinquished by: <u>310</u>	Date: 1- 2	PL: 5464	56
Field Setup	Received by: Isolary Site Operator: KB, IM, Set-Up Date: 01/13/15 Collection Date: 01/18/15	Date: Syster Elapse	n #: cd Timer Reset (Y/N): <u> </u>
Field Recovery	Recovery Date:		45	
	Elapsed Time Temp (°C) Start 194.83 3.01 End 120.10 19.3 Average 11.15 Total Collection Time (Minutes) 25.17 Status: Valid Void Kelinquished by: KB.144	Barometric ("Hg) 	("H ₂ O) 45 45 43.5 Collection Volume (s perator: <u>145.1(m</u> 9/15	(std. m ³ /min) 0.21457 0.20500 0.204785 td. m ³) <u>5.28</u>
Lab Recovery	Received by: Status: Valid Void (Circ If void, why:	Date: le one)	Container #: Temperature:	
ommen	ts: Sampled for 01	18/15.		

Location:	Churchrock, NM		Initial Flow Rate:	0.21457	m ³ /min
Field Sample ID: Date Sampled:	CRNM 1/18/2015		Final Flow Rate:	0.20500	m ³ /min
			Total Initial Volume:	5.40	m ³
Elapsed Time(minutes): Start	(or enter 0 for start and 94.83	total for end)	Total Final Volume:	5.16	m ³
End Difference	120 25.17		Actual Volume:	5.28	m ³
Temp (⁰ C): Start End	<u>3</u> 19.3	Temp (⁰K): 276 292.3			
Barometric ("Hg): Start End	23.38 23.5				> enter for every s
Magnehelic ("H₂O): Start End	45 42				
Temp Std (⁰K): Barometric Std ("Hg):	298.15 29.92				
Sampler Calibration: Calibration Date: Calibration Intercept (B2) value: Calibration Slope (M2) value:	12/19/2014 -1.970397882 37.90700782				
Calculations:					
Flow Rate: (m ³ /min)	(1) Square Root of:	Magnehelic ('H ₂ O) X	Initial Pressure ("Hg) X Initial Temp (K)	Std Temp (K) Std Pressure ("Hg)	_= y ("H ₂ O)
	(2) (y (*H ₂ O) - Sampler	Calibration B2 value ("He	g m ³ /min) / Sampler Calibra	tion M2 Value (*Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X	Delta Time Change (min)			
Actual Volume: (m ³)	(Total Initial Volume (m ³)) + Total Final Volume (m	³))/2		

Lab Pre-Sampling	Site Code: City/State: AQS Code: Cartridge Certification Date: Relinquished by:	<u>Вл</u> м Зне	Contair Collect Colloca Other:	ner #: on Date: ted Event (Y/N):5 X1: 8(11) P1: 5(14) (5	435 -15-15 1024129012 2291-XB 95
Field Setup	Received by: Kill Site Operator: Image: Collection Date:	11 5 4 11	Date: 61 / System Elapser	#: #: d Timer Reset (Y/I	uj: <u>y</u>
Field Recovery	Start Job 20 End 45.32 Average Total Collection Time (Minute Status: Valid Valid Valid	12.1 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15	Barometric (* Hg) 1	$\frac{45}{45}$ $\frac{45}{45}$ ollection Volume (erator: <u>168</u>)	(sta. m/min) 0.21100 0.21100 0.21154 0.21154 std. m ³) <u>5.39</u>
Recovery	Received by: Status: Valid Ve If void, why:	oid (Circl	Date: e one)	Container # Temperature	:
omment	s: Sample se	\$ to ru	n an oi	124/15.	

Location:	Churchrock, NM		Initial Flow Rate:	0.21100	m ³ /min
Field Sample ID:	CRNM		Final Flow Bate	0.21208	m ³ /min
Date Sampled:	1/24/2015		i indi i fott fiddo.	0.21200	
			Total Initial Volume	5.38	m ³
Elapsed Time(minutes):	(or enter 0 for start and	total for end	Total Final Volumo	5.00	
Start	120.24	s total for endy	rotarrina volume.	5.40	m
End	145.72		Actual Volume	5 30	m ³
Difference	25.48		riotati Foldirio.	0.05	141
Temp (⁰ C):		Tomp (⁰ K)			
Start	18.5	201 5			
End	13.1	281.5			
	1.001				
Barometric ("Hg):				Contraction of the local distance of the	> enter for every s
Start	23.62				> ciller for every a
End	23.5			V SE SONO	>enter for every s:
Magnehelic ("H ₂ O):					
Start	45				
End	45				
Temp Std (⁰ K):	298 15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37.90700782				
Calculations:					
Flow Bate: (m ³ /min)	(1) Squara Past of	Magnahalia ("LL O), X	Initial Property ("Lie)	×	
	(i) Square Hoot of.	Magnenetic (H ₂ O) A	laidel Terrer (M)	 Std Temp (K) 	_= y ("H ₂ O)
			muai remp (K)	Std Pressure ("Hg)	
	(2) (y ("H ₂ O) - Sample	r Calibration B2 value ("Hg	g m ³ /min) / Sampler Calib	pration M2 Value (*Hg)	
Total Volume: (m ³)	Elaw Data (³ (i-). ¥				
· · · · · · · · · · · · · · · · · · ·		Dena Trine Change (Min)			
Actual Volume: (m ³)	(Total Initial Volume (m	3) + Total Final Volume (m	3)) / 2		
	(- organization of organise (in)) + i otai Finar voiume (m	11/2		

Lab Pre-Sampling	Site Code: <u>CRMM</u> City/State: AQS Code: Cartridge Certification Date:	Conta Collec Colloc Other	iner #:	160 36-15 10:4529012 1601-28 18
Field Setup	Received by: <u>BHZ</u> Received by: <u>BHZ</u> Site Operator: <u>BHZ</u> Set-Up Date: <u>1/37/15</u> Collection Date: <u>1/37/15</u>	Date: Date: System Elaps:	n #: n #: ad Timer Reset (Y/N):
Field Recovery	Collection Elapsed Time Temp (°C) Start 145:93 15.8 End 170:16 14.3 Average 15.05 15.05 Total Collection Time (Minutes) 24:23 Status: Valid Void (Circ Relinquished by: <u>V6.164</u>)	Barometric ("Hg)	tion: Magnehelic ("H ₂ O) 45 45 45 Collection Volume (s perator: <u>HSIL</u> ////	Flowrate (std. m ³ /min) 0,21174 0,21175 0,211745 td. m ³) <u>5,13</u>
Lab Recovery	Received by:	_ Date: le one)	Container #: Temperature:	
Commen	s: Set to sample on	01/30/15		

Location:	Churchrock, NM		Initial Flow Rate:	0.21174	m³/min
Field Sample ID:	CRNM		Final Flow Bate	0.21175	m ³ /min
Date Sampled:	1/30/2015		r mar r iow r late.	0.21175	
uniprovi	Instance in		Total Initial Volumer	5.40	m ³
			rotal miliar volume:	5.13	3
Elapsed Time(minutes):	(or enter 0 for start and	l total for end)	Total Final Volume:	5.13	m
Sian	145.93	đ			3
End	170.16		Actual Volume:	5.13	m
Difference	24.23				
Temp (⁰ C):		Tomp (⁰ K):			
Start	16.9				
End	14.3	200.0		-	
LING	19.0	207.0			
Barometric ("Hg):					> enter for every s
Start	23.62				
End	23.5			Manhood and the	>enter for every sa
Magnehelic ("H₂O):					
Start	45				
End	45				
Temp Std (⁰ K):	298.15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37,90700782				
Calculations:					
Elow Pato: (m ³ /min)			Initial Deserves (III In)		
now Hate. (III /ITIIII)	(1) Square Hoot of:	Magnenelic ('H ₂ O) X	Initial Pressure (Hg) X	Std Lemp (K)	$= y ("H_2O)$
			Initial Temp (K)	Std Pressure ("Hg)	
	(2) (y ("H ₂ O) - Sample	er Calibration B2 value ("Hg	m ³ /min) / Sampler Calibr	ration M2 Value (*Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X	Delta Time Change (min)			

Lab Sampling	Site Code: CRAAL Container #: 709 City/State:
Pre-9	Cartridge Certification Date: <u>P1.55746</u> Relinquished by: <u>PAC</u> Date: <u>12375</u>
Field Setup	Received by: KBIILY Date: 01/27/15 Site Operator: KBIILY Date: 01/27/15 Set-Up Date: 02/01/17 System #: Collection Date: 02/01/17 Elapsed Timer Reset (Y/N): Y
Field Recovery	Elapsed Time Temp (°C) Barometric ("Hg) Magnehelic ("H ₂ O) Flowrate (std. m³/min) Start 170.39 14.1 490.5 mml 45 0.21124 End 193.73 11.1 97 mml 42 0.20720 Average 12.0 190.75 43.5 0.20720 Total Collection Time (Minutes) 23.34 Total Collection Volume (std. m³) 4.80 Status: Valid Void (Circle one) Site Operator: CB.104/ Relinquished by: KB.104/ Date: 02109/5 14.1 14.1
Lab Recovery	Received by: Date: Container #: Status: Valid Void (Circle one) Temperature: If void, why:
Commen	ts: Sample set to sun on 2 105/15.

Location:	Churchrock, NM		Initial Flow Rate:	0.21174	m ³ /min
Field Sample ID:	CRNM		Final Flow Rate:	0.00700	m ³ /min
Date Sampled:	2/5/2015		i mai i iow nate.	0.20720	10 /000
			Total Initial Valuma		
			Total Initial Volume	4.94	m
Elapsed Time(minutes):	(or enter 0 for start and	total for end)	Total Final Volume	4.84	ma
Start	170,39			· · · · · · · · · · · · · · · · · · ·	
End	193.73		Actual Volume:	4.89	m ³
Difference	23.34				
Temp (⁰ C):		Tama (0K)			
Chart (C).	111	Temp (K):			
End	14.1	287.1			
ENG	11.1	284.1			
Barometric ("Hg):					> enter for evenue
Start	23.48				
End	23.5			8 4 5 1 6 8 6 4 - S 4 5	>enter for every si
Magnehelic ("H ₂ O):					
Start	45				
End	40				
End	42				
Temp Std (⁰ K):	298.15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37.90700782				
2 7 7 7					
Calculations:					
Flow Bate: (m ³ /min)	(1) Squara Deat of	Magaabalia (IIII O) X	Initial Breasure (IMe)	×	
	(i) Square Hoot or.	Magnenenc (H ₂ O) X	initial Pressure (Hg)	 Std Temp (K) 	$= y ("H_2O)$
			Initial Lemp (K)	Std Pressure ('Hg)	
	(2) (y ("H ₂ O) - Sampler	r Calibration B2 value ("H¢) m³/min) / Sampler Cali	bration M2 Value (*Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X I	Delta Time Change (min)			
Actual Volume: (m ³)	(Total Initial Volume (m ³) + Total Final Volume (m	³)) / 2		

Lab Pre-Sampling	Site Code:	Container #:
Field Setup	Received by: <u>FB:144</u> Site Operator: <u>FB:144</u> Set-Up Date: <u>02101105</u> Collection Date: <u>02105105</u>	Date: 07 / 01 // 5 System #: Elapsed Timer Reset (Y/N):
Field Recovery	Collection Syst Elapsed Time Temp (°C) Baro Start File Life Bank 11.5 51 End Average 11.5 51 Total Collection Time (Minutes)	Information: Magnehelic Flowrate metric ("Hg) ("H ₂ O) (std. m³/min) 1.051.1 Total Collection Volume (std. m³) Site Operator: Date:
Lab Recovery	Received by:	Container #: Temperature:
Commen	15: Field Blank for	02/05/15.

Lab Pre-Sampling	Site Code:	Contai Collec Colloc Other:	iner #: tion Date: ated Event (Y/N): 	233 2-11-15 510:5211600 1301-XB 746
Field Setup	Received by: LB; [LG] Site Operator: ICB; [LG] Set-Up Date: 02/09/15* Collection Date: 02/11/15*	Date: 2/- Syster Elapse	1. /1.5 n #: ed Timer Reset (Y/I	N):
Field Recovery	Elapsed Time Temp (°C) Start 193:80 9.3 End 217:72 12.0 Average 10.15 Total Collection Time (Minutes) 23:92 Status: Valid Valid Void Relinquished by: 148, 1144	Barometric ("Hg) 1597.5 1594.35 Total C cle one) Site O Date: 2//	("H ₂ O) <u>45</u> <u>43</u> <u>44</u> Collection Volume (perator: <u>V.B. 10</u> <u>16 /15</u>	(std. m ³ /min) 0.21322 0.20802 0.21062 std. m ³) <u>5.04</u>
Lab Recovery	Received by: Status: Valid Void (Circ If void, why:	_ Date:	Container # Temperature	F: F:
Commen	ts: Sampele, sup to re	in on 2/	11/15.	

Lab re-Sampling	Site Code: Chui Container #: 7 00 City/State: Collection Date: 2-17 / S AQS Code: Collocated Event (Y/N): 0.5 // Loo Other: Y.1.55 // 30 / XB Cartridge Certification Date: Place S 7 / 4
Field Setup	Relinquished by: Date: 2.9.15 Received by: Date: 2.11/15 Site Operator: 103.109 System #: Site Operator: 103.109 System #: Set-Up Date: 2.101/15 Collection Date: 2.112.115
Field Recovery	Recovery Date:
Lab Recovery	Received by: Date: Container #: Status: Valid Void (Circle one) Temperature: If void, why:
ommen	nts: Sample set to vun on 2/17/15.

Location: Field Sample ID: Date Sampled: Elapsed Time(minutes): Start End Difference	Churchrock, NM CRNM → 02202015 → / 17 / 15 (or enter 0 for start and 1 218.09 242.7 24.61	ップン total for end)	Initial Flow Rate: Final Flow Rate: Total Initial Volume: Total Final Volume: Actual Volume:	0.21158 0.20758 5.21 5.11 5.16	m ³ /min m ³ /min m ³ m ³
Temp (⁰ C): Start End	12.1 13.1	Temp (⁰ K): 285.1 286.1			
Barometric (*Hg): Start End	23.27 23.23				> enter for every s
Magnehelic ("H ₂ O): Start End	45 43				
Temp Std (^o K): Barometric Std ("Hg):	298.15 29.92				
Sampler Calibration: Calibration Date: Calibration Intercept (B2) value: Calibration Slope (M2) value:	12/19/2014 -1.970397882 37.90700782				
Calculations:					
Flow Rate: (m ³ /min)	(1) Square Root of:	Magnehelic ("H ₂ O) X	Initial Pressure ("Hg) X Initial Temp (K)	Std Temp (K) Std Pressure ("Hg)	_= y (*H ₂ O)
	(2) (y ("H ₂ O) · Sampler	Calibration B2 value ("He	g m³/min) / Sampler Calibra	ation M2 Value (*Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X (Delta Time Change (min)			
Actual Volume: (m ³)	(Total Initial Volume (m ⁹) + Total Final Volume (m	1 ³)) / 2		

D	Site Code: <u>LRAM</u>	Container #: 272				
Lab Samplir	City/State:	Collection Date: <u>2-23-15</u> Collocated Event (Y/N):s1 <u>0-5-1/600</u>				
Pre-	Cartridge Certification Date: Relinquished by:	Date: 2-11-45				
Setup	Received by: KBirtuy Site Operator: KBirtuy	Date: <u>@/18/15</u> System #:				
Field	Set-Up Date: 2 [2 3 1]5 Collection Date: 2 [2 3 1]5	Elapsed Timer Reset (Y/N):				
	Recovery Date: Collection System Information:					
ld Recovery	Elapsed Time Temp (°C) Ba Start 243,50 13,6-4-4 5 End 253,55 1.2 1 Average 7,4- 5	Intermetric ("Hg) ("H $_2$ O) (std. m³/min) 910.0 45 6<3146 910.5 50 0.3237 911.35 47.5 0.2173				
Fie	Total Collection Time (Minutes) 10.55 Status: Valid Void (Circle or Relinquished by:	Total Collection Volume (std. m ³) <u>3.</u> ne) Site Operator: <u>KAILuy</u> Date: <u>2/24//7</u>				
Lab Recovery	Received by: Da Status: Valid Void (Circle or If void, why:	te: Container #: ne) Temperature:				
Comment	s: Sample set up to	run on 2/23/15.				
ama	le period on 2/23/15	". "Void" due, to not same				

Field Sample ID: Date Sampled: CRNM 2/23/2015 Final Flow Rate: 0.22374 m³/min Elapsed Time(minutes): (or enter 0 for start and total for end) Total Initial Volume: 2.23 m³ Start 243 253.55 Total Final Flow Rate: 0.22374 m³ End 253.55 10.55 Actual Volume: 2.36 m³ Temp (°C): Temp (°K): 286.6 274.2 m³ Barometric ("Hg): 23.23 274.2 > enter for every s Start 23.23 23.33 > enter for every s Magnehelic ("Hg): 29.92 > enter for every s Start 29.92 > 29.92 > enter for every s Sampler Calibration: 12/19/2014 - 1.970397862 > enter for every s Calibration Intercept (B2) value: 12/19/2014 - 1.970397862 - 45
Date Sampled: 2/23/2015 Total Initial Volume: 2.23 m ³ Elapsed Time(minutes): (or enter 0 for start and total for end) Total Final Volume: 2.36 m ³ Start 243 253.55 Total Final Volume: 2.36 m ³ Difference 10.55 Temp (⁶ K): 2.10 m ³ Total Final Volume: 2.29 m ³ Difference 10.55 Temp (⁶ K): Start 13.6 286.6 End 23.33 243 Barometric ("Hg): 23.33 Start 23.33 Magnehelic ("H ₂ O): 298.15 Start 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Stope (M2) value: 12/19/2014 Calibration Stope (M2) value: 3/970397882
Elapsed Time(minutes): (or enter 0 for start and total for end) Total Initial Volume: 2.23 m ³ End 253.55 10.55 Actual Volume: 2.29 m ³ Temp (⁰ C): Temp (⁰ K): 286.6 274.2 Actual Volume: > enter for every s Barometric ("Hg): Start 23.23 23.33 > enter for every s > enter for every s Start 23.23 23.33 > enter for every s > enter for every s Magnehelic ("Hg.O): Start 45 > enter for every s Start 29.92 29.92 Sampler Calibration: Calibration Intercept (B2) value: 12/19/2014 -1.970397862 Calibration Stope (M2) value: 12/3/50/700782
Elapsed Time(minutes): (or enter 0 for start and total for end) Inter 0 for start and total for end) Start 243 253.55 End 253.55 10.55 Temp (⁰ C): Temp (⁰ K): Start 13.6 286.6 End 1.2 274.2 Barometric ("Hg): Start 23.23 Start 23.33 > enter for every s Magnehelic ("H ₂ O): Start 23.33 Start 45 - End 50 - Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Slope (M2) value: 12/19/2014 Calibration Slope (M2) value: 1.37.007/0782
Start 243 End 253.55 Difference 10.55 Temp (⁰ C): Temp (⁰ K): Start 13.6 End 1.2 Barometric ("Hg): 23.23 Start 23.23 End 1.2 Start 23.23 End 23.23 Magnehelic ("Hg.O): 23.23 Start 23.23 Magnehelic ("Hg.O): Start Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Spe (M2) value: 13/7.007/0782
End 253.55 Actual Volume: 2.29 m³ Difference 10.55 Temp (⁶ C): Temp (⁶ K): 286.6 274.2 Image: Constraint of the every set of the eve
Difference 10.55 Temp (⁰ C): Temp (⁰ K): Start 13.6 End 1.2 Barometric ("Hg): 274.2 Start 23.23 End 23.33 Magnehelic ("H ₂ O): Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Stope (M2) value: 13/7.0070782
Temp (°C): Temp (°K): Start 13.6 286.6 End 1.2 274.2 Barometric ("Hg): > enter for every s Start 23.33 > enter for every s Magnehelic ("H ₂ O):
Start 13.6 286.6 End 1.2 286.6 Barometric ("Hg): 23.23 Start 23.33 Magnehelic ("H ₂ O): >enter for every si Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Slope (M2) value: 7.500700782
End 1.2 274.2 Barometric ("Hg): 23.23 Start 23.33 Magnehelic ("H ₂ O): > enter for every st Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 1.2/19/2014 Calibration Intercept (B2) value: 1.9/0397882 Calibration Slope (M2) value: 37.50/00782
Barometric ("Hg): > enter for every s Start 23.23 End 23.33 Magnehelic ("H ₂ O): > Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 1.970397882
Barometric ("Hg): > enter for every s Start 23.23 End 23.33 Magnehelic ("H ₂ O): > Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 12/19/2014 Calibration Intercept (B2) value: 1.970397862
Start 23.23 End 23.33 Magnehelic ("H ₂ O):
End 23.33 >enter for every si Magnehelic ("H ₂ O):
Magnehelic ("H ₂ O): Start 45 End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 21/19/2014 Calibration Intercept (B2) value: 1.970397882 Calibration Slope (M2) value: 37.90700782
Start End 45 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 21/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Slope (M2) value: 37.90/700782
End 50 Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: Calibration Intercept (B2) value: 12/19/2014 Calibration Slope (M2) value: 37.90/700782
Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration: 21/19/2014 Calibration Intercept (B2) value: 12/19/2014 Calibration Slope (M2) value: 7.90700782
Temp Std (⁰ K): 298.15 Barometric Std ("Hg): 29.92 Sampler Calibration : 12/19/2014 Calibration Intercept (B2) value: 1.970397882 Calibration Slope (M2) value: 37.90700782
Barometric Std ("Hg): 29.92 Sampler Calibration: Calibration Date: 12/19/2014 Calibration Intercept (B2) value: -1.970397882 Calibration Slope (M2) value: 37.90700782
Sampler Calibration: Calibration Date: 12/19/2014 Calibration Intercept (B2) value: -1.970397882 Calibration Slope (M2) value: 37.90700782
Calibration Date: 12/19/2014 Calibration Intercept (B2) value: -1.970397862 Calibration Slope (M2) value: -37.90700782
Calibration Intercept (B2) value: -1.970397882 Calibration Slope (M2) value: 37.90700782
Calibration Slope (M2) value: 37.90700782
Calculations:
Flow Rate: (m ³ /min) (1) Square Root of: Magnehelic ('H ₂ O) X Initial Pressure ("Hg) X Std Temp (K) = v ('H ₂ O)
Initial Temp (K) Std Pressure ("Ho)
(2) (y ("H ₂ O) - Sampler Calibration B2 value ("Hg m ³ /min) / Sampler Calibration M2 Value ("Hg)
Total Volume: (m ³) Elow Bate (m ³ /min) X Delta Time Change (min)
increase and carrier and a second and a se
Actual Volume: (m ³) (Total Initial Volume (m ³) + Total Final Volume (m ³)) / 2

Lab re-Sampling	Site Code: City/State: AQS Code: Cattridge Certification Date: EL 9535557	Container #: 574 Collection Date: 51-15 Collocated Event (Y/N): 51-15 Other: 11-13411240128
4	Relinquished by: <u>BHC</u>	Date: <u>7:23-15</u>
Field Setup	Received by: KBitty D Site Operator:	Date: <u>2/34/15</u> System #: Elapsed Timer Reset (Y/N):
Field Recovery	Collection System	m Information: Magnehelic Flowrate ("Hg) ("H2O) (std. m ³ /min)
	Status: Valid Void (Circle one) Relinquished by: D	Site Operator:
Lab Recovery	Received by: Date: Date: Status: Valid Void (Circle one) If void, why:	Container #; Temperature:
comment I a Theo a af	s: as the filter in ceidentally tore + effore, I am sendery used.	the filter.

	Site Code: (R/A)	Container # 11/12				
ling	City/State:	Collection Date: 3-7-15				
ab	AQS Code:	Collocated Event (Y/N): SID. SATE CO				
-S-a	Cartridge Cartification Date: 51 35 71565	Other: <u>XL: Billogal xb</u>				
6	Relinquished by: BIC D	Date: 0:24-15				
		2/22 / 2				
etup	Site Operator: ICBILLOV	Date: <u>#/d + // 5</u>				
ld S	Set-Up Date: 2/28/15	Elapsed Timer Reset (Y/N):				
Fie	Collection Date: 03/01/15					
	Recovery Date: 3/4/1					
	Collection System Information:					
	Elancod Time Tame (%)	Magnehelic Flowrate				
2	Start 253.80 - 10.24- 158	49.0 - 45 - 0-21292				
ove	End 279.39 2.0 199	5.0 50 0.22384				
Rec	Average 4.2 59	2 47.5 0.21839				
ield	25.59	0				
ш	Total Collection Time (Minutes)	Total Collection Volume (std. m ³) 5,57				
	Relinquiched by: 16 / (Site Operator: 145-144				
		ale. <u>- 74 //)</u>				
ery	Received by: Date:	Container #:				
Lat	Status: Valid Void (Circle one)	Temperature:				
C)	If void, why:					

Location: Field Sample ID: Date Sampled:	Churchrock, NM CRNM 3/1/2015		Initial Flow Rate: Final Flow Rate:	0.21292 0.22386	m ³ /min m ³ /min
Elapsed Time(minutes): Start End	(or enter 0 for start and to 253.8 279.39	tal for end)	Total Initial Volume: Total Final Volume:	5.45 5.73 (5159)	m ³ m ³
Difference Temp (⁰ C): Start End	25.59 6.4 2	Temp (⁰ K): 279.4 275			
Barometric ("Hg): Start End	23.19 23.43				> enter for every s
Magnehelic ("H ₂ O): Start End	45 50				
Temp Std (⁰K): Barometric Std ("Hg):	298.15 29.92				
Sampler Calibration: Calibration Date: Calibration Intercept (B2) value: Calibration Slope (M2) value:	12/10/2014 51.970397862 37.90700762				
Calculations:					
Flow Rate: (m ³ /min)	(1) Square Root of:	Magnehelic ("H ₂ O) 3	(Initial Pressure ("Hg) X Initial Temp (K)	Std Temp (K) Std Pressure ("Hg)	_= y ("H ₂ O)
	(2) (y ("H ₂ O) - Sampler (Calibration_B2 value ("H	lg m ³ /min) / Sampler Calibra	ation M2 Value ("Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X De	elta Time Change (min	I		
Actual Volume: (m ³)	(Total Initial Volume (m³)	+ Total Final Volume (i	m ³)) / 2		

Lab Pre-Sampling	Site Code:	Container #: 146 Collection Date:
Field Setup	Received by: 48.144 0 Site Operator: 143.1444 0 Set-Up Date: 03/04/15 0 Collection Date: 03/67/15 0	Date: <u>3/04/15</u> System #: Elapsed Timer Reset (Y/N):
Field Recovery	Elapsed Time Temp (°C) Baroma Start 379.38 1.51 55 End 3.3.72 19.2 59 Average 10.35 59 Total Collection Time (Minutes) 23.99 Status: Valid Void Relinquished by: KBMMY D	Magnehelic ("H2Q) Flowrate (std. m³/min) 15.5 4.5 6.21522 4.5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.21522 5 4.5 6.213262 5 4.5 6.213262 5 4.5 6.213262 5 4.5 6.213262 5 4.5 6.213262 5 4.5 6.213262 5 4.5 6.213262 5 5 6.213262 5 5 6.213262 5 6.213262 6.213262
Lab Recovery	Received by: Date:	Container #: Temperature:
ommen	is: Replacement for bruken the letted for 317/15.	able. Sample was

Location:	Churchrock, NM		Initial Flow Bate:	0.21522	m ³ /min
Field Sample ID:	CRNM		Einal Elow Pato:	0.21010	m ³ /min
Dete Sempled:	CHINIM		Fillal Flow hate.	0.21010	III ZIIIIII
Date Sampled.	3///2015				
			Total Initial Volume:	5.16	m°
Elapsed Time(minutes):	(or enter 0 for start and	total for end)	Total Final Volume:	5.04	m ³
Start	279.78	10111111111111111111111111111111111111		3635.0	3212
End	303.77		Actual Volume:	5.10	m ³
Difference	23.99				
Temp (⁰ C):		Temp (⁰ K):			
Start	1.5	274.5			
End	19.2	292.2			
Barometric ("Hg):					> enter for every
Start	23.44				. Since for every
End	23.41			I DAY & DAY AND	>enter for every s
Magnehelic ("H ₂ O):					
Start	45				
End	45				
Temp Std (⁰ K):	298.15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37.90700782				
Calculations:					
Flow Rate: (m ³ /min)	(1) Square Root of:	Magnehelic ("H ₂ O) X	Initial Pressure ("Hg)	C Stdi Temp (K)	= y ("H ₂ O)
			Initial Temp (K)	Std Pressure ("Hg)	-
	(2) (y ("H ₂ O) - Sample	r Calibration B2 value ("Hg	m ³ /min) / Sampler Calib	ration M2 Value ("Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X	Delta Time Change (min)			
Actual Volume: (m ³)	(Total Initial Volume (m	3) + Total Final Volume (m	³))/2		

Lab sampling	Site Code: CRAM Container #: 576 City/State: Collection Date: 3-15 AQS Code: Collocated Event (Y/N): 5 10-511[007
Pre-S	Cartridge Certification Date: FL:153/557 PL: 51/95 Relinquished by: BHC Date: 3:2-15
Field Setup	Received by: KB-1144 Date: 3/03/15 Site Operator: VR-1144 System #: System #: Set-Up Date: 03/08/155 Elapsed Timer Reset (Y/N): V Collection Date: 3/13/155 System #: System #:
	Recovery Date: 3/15/15 Collection System Information:
Field Recovery	Elapsed Time Temp (°C) Barometric ("Hg) Imagine field ("H2O) Imagine field (std. m³/min) Start 304109 10.3 594.0 45.4 0.2107A End 327.62 17.1 0.0 48 0.2107A Average 10.7 594.0 45.5 0.2107A Total Collection Time (Minutes) 23.53 Total Collection Volume (std. m³) 5.03 Status: Valid Void (Circle one) Site Operator: 10.5 5.03 Relinquished by: HB.HLY Date: 31.4 15 5.03
Recovery	Received by: Date: Container #: Status: Valid Void (Circle one) Temperature: If void, why:
omment	Sample set to run on 3/13/15.
	1 19 19 19 19 19 19 19 19 19 19 19 19 19

Location:	Churchrock, NM		Initial Flow Rate:	0.21082	m³/min
Field Sample ID:	CRNM		Final Flow Rate:	0.21661	m ³ /min
Date Sampled:	3/13/2015				
2076			Total Initial Volume:	4.96	m ³
Elapsed Time(minutes):	(or enter 0 for start and	total for end)	Total Final Volume:	5.10	m ³
Start	304.09	total for only	rotarr inar rotarrio.	3.10	
End	327.62		Actual Volume:	5.03	m ³
Difference	23.53				
Temp (⁰ C):		Temp (⁰ K):			
Start	16.3	289.3			
End	17.1	290.1			
Barometric ("Hg):					> enter for every
Start	23.39				- enter for every
End	23.62			AREAS TRANSPORT	>enter for every s
Magnehelic ("H ₂ O):					
Start	45				
End	48				
Temp Std (⁰ K):	298.15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37.90700782				
Calculations:					
Flow Hate: (m [*] /min)	(1) Square Root of:	Magnehelic (*H ₂ O) X	Initial Pressure ("Hg)	Std Temp (K)	= y ("H ₂ O)
			Initial Temp (K)	Std Pressure ("Hg)	
	(2) (y ("H ₂ O) - Sample	r Calibration B2 value ("Hg	m³/min) / Sampler Calib	ration M2 Value (*Hg)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X	Delta Time Change (min)			
Actual Volume: (m ³)	(Total Initial Volume (m	3) + Total Final Volume (m	10 / A		

1111	(2) (1)	
Bu	City/State:	Container #:
qu	AQS Code:	Collection Date: <u>5-14-15</u>
La Sar		Other: XI: PSBI201-YB
Pre	Cartridge Certification Date: 11156564	PL: 5.169
	Relinquished by: <u>7 Hc</u>	Date: 3-1-15
tup	Received by: KB: 1144	Date: 3/10/15
Se	Site Operator:	System #:
ield	Collection Date: 3/15/15	_ Elapsed Timer Reset (Y/N):
		-
	Recovery Date: 3/23/15	
1. Ale	Collection Sys	tem Information:
1000	Elapsed Time Temp (°C) Bard	pmetric ("Hg) ("H ₂ O) (std. m ³ /min)
ery	Start 328.00 18.6 40	00 min 15 45 0121097-
COV	End 351,31 12,52 16	98 mills 48 (12 1767
d Re	Average 15,55 5	99 46.5 0.2431
Field	Total Collection Time (Minutes) 35. 7	
	Status: Valid Void (Circle one	I otal Collection Volume (std. m*)
	Relinquished by: CB/104	Date: 3 /33 /15
ven	Received by: Date	Container #:
Reco	Status. Valid Vold (Circle one) Temperature:
-	ii void, wily.	
omment	s Samuelos seo la	- shake
ommoni	- anapren set to pin o	2114/12.

Location:	Churchrock, NM		Initial Flow Rate:	0.21097	m ³ /min
Field Sample ID:	CRNM		Final Flow Bate	0.21765	m ³ /min
Date Sampled:	3/19/2015		i indi i foti fidio.	0.21700	
			Total Initial Volume:	4 92	m ³
Elapsed Time(minutes):	(or enter 0 for start and	total for end)	Total Final Volume:	5.07	m ³
Start	328	lotarior end)	rotarrinar volume.	5.07	.00
End	351.31		Actual Volume:	5.00	m ³
Difference	23.31		Notual Volume.	0.00	
Temp (⁰ C)-		Tamm (⁰ 1/).			
Start	10.0	1 emp (K):			
End	12.5	291.0			
Lind	12,0	203.5			
Barometric ("Hg):					> enter for every s
Start	23.62				> ontor for every a
End	23.54			MMINSTRATES 8	>enter for every si
Magnehelic ("H ₂ O):					
Start	45				
End	48				
Temp Std (⁰ K):	298.15				
Barometric Std ("Hg):	29.92				
Sampler Calibration:					
Calibration Date:	12/19/2014				
Calibration Intercept (B2) value:	-1.970397882				
Calibration Slope (M2) value:	37.90700782				
Calculations:					
euleulunenen					
Flow Rate: (m ³ /min)	(1) Square Boot of:	Magnebelic ("H_O) Y	Initial Pressure (*Ho) ¥	Ctal Tama (IC)	
	(i) oquale hour or.	Magnerielic (1120) A	Initial Target (10)	Std Temp (K)	$= y(H_2O)$
			initial Temp (K)	Sta Pressure ("Hg)	
	(2) (y ("H ₂ O) - Sample	r Calibration B2 value ("Ho	a m ³ /min) / Sampler Calibra	ation M2 Value ("Ho)	
Total Volume: (m ³)	Flow Rate (m ³ /min) X	Delta Time Change (min)			
		2 - VERSTON - VERSTON - NOV			
Actual Volume: (m ³)	(Total Initial Volume (m	³) + Total Final Volume (m	³)) / 2		

APPENDIX E

PM₁₀ METALS COC FORMS

	Site Code:	CRNW)	Co	llection Date:					
ab Samp	City/State:			Du	plicate Event	(Y/N):				
Pre-	AQS Code: Relinquished	by:		Date:						
Setup	Received by: Klinky Date: 12/10/14 Set-Up Date: 12/24/14 Operator: 16/61/14									
Field Recovery	Recovery Date: 12/29/14 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: KB1144 Date: 12/29/14									
Recovery	Received by: Status: Val If void, why:	id Vo	oid (Cire	Date: cle one)						
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		00-51-	6.0	24	1.					
S.	12175/14	Start MFC	End MFC	Avg Flow (L/min)	22 0142 ±	4-				
AETAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
0/ TSP A		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
PM1	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
			-1-	2 held	laure	, interest P	Qiu o			

ä	Site Code:	CRNA	1	Co	llection Date:				
Lab Pre-Sam	City/State: AQS Code: Relinquished	by:		Du	plicate Event	(Y/N):			
Field Setup	Received by: K.R.C.C.Y Date: 12/10/14- Set-Up Date: 12/29/14- Operator: 1000000000000000000000000000000000000								
Field Recovery	Recovery Date: / Sample Duration (i.e. 24 hr): Status: (Valid) Void (Circle one) Relinquished by: Date:								
Lab Recovery	Received by: Status: Val If void, why:	id Ve	oid (Cin	Date: cle one)					
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID		
S	12/31/14	Start MFC	End MFC	24 Avg Flow (L/min)	Filter # 2201.62755	24.58			
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID		
1 ₁₀ / TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #				
PM	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID		
		Start MFC	End MFC	Avg Flow (L/min)	Filter #				
		-	1	in laska	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 5 11	13 Jack		

	PI	W ₁₀ / 15	PMETA	LS CHAIN	UF CUS	IODY						
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	CRNN	1	Co Du Date:	Ilection Date:	(Y/N):						
Setup	Received by: Set-Up Date:	Received by: Listing Date: Date:										
Field Recovery	Recovery Date: 01/08/15 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: KB1/04 Date: 01/08/15											
Lab Recovery	Received by: Status: Val If void, why:	Received by: Date: Status: Valid Void (Circle one)										
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID					
S	cijeujis	Start MFC	End MFC	24 Avg Flow (L/min)	Filter # 720762757	24.59						
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID					
A10 / TSF		Start MFC	End MFC	Avg Flow (L/min)	Filter #							
P	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID					
		Start MFC	End MFC	Avg Flow (L/min)	Filter #	1-	10.00					
mment	s: Run Ca	nplo 4ed.	5:01 T: 1	APR : Elas	V: 17.0	FOLPM: J	10w: 14.					

mp.	Site Code:	CRNY	η	. Co	ollection Date:					
Lab Pre-Sai	AQS Code:	by:		Date:	Date:					
Setup	Received by: KBilley Date: 12/10/14 Set-Up Date: 01/08/15 Operator: KBilley									
Field Recovery	Recovery Date: Status: Val Relinquished	Recovery Date: 01/12/15 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: 01/13/15 Date: 01/13/15								
Lab Recovery	Received by: Status: Val If void, why:	id Vo	pid (Cin	Date: cle one)						
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
S	01/12/15	Start MFC	End MFC	Avg Flow (L/min)	Filter #	24.59				
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
110/ TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
đ	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
mment	s:Sample	1 on 0	ilali	5.						

	PI	M ₁₀ / TSI	P META	LS CHAIN	OF CUS	TODY				
Pre-Samp.	Site Code: City/State: AQS Code:	CRNY	n	. Co . Du	ollection Date: uplicate Event	(Y/N):				
	Relinquished	by:		Date:	Date:					
Setup	Received by: KB: Date: 12/10/14 Set-Up Date: 01/13/17 Operator: KB: KB:									
Recovery	Recovery Date: 01/19/15 Sample Duration (i.e. 24 hr): 024 Status: Valid Void (Circle one) Relinquished by: Context Date: 01/19/15									
Recovery	Received by: Status: Val If void, why:	lid Vo	pid (Circ	Date: cle one)						
0-2002200										
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m³)	Lab ID			
S	Sample Date	Start Time <u>60-00</u> Start MFC	End Time 00 : 00 End MFC	Total Time 24.0 Avg Flow (L/min)	System # Filter #	Total Vol (m ³)	Lab ID			
P METALS	Sample Date	Start Time OU-DO Start MEC Start Time	End Time <u>Ma + a a</u> End MFC End Time	Total Time 24.0 Avg Flow (L/min) 17.07 Total Time	System # Filter # 230163760 System #	Total Vol (m ³) 24,59 Total Vol (m ³)	Lab ID Lab ID			
10/TSP METALS	Sample Date	Start Time Start MEC Start Time Start MEC	End Time End MFC End Time End MFC	Total Time 24.0 Avg Flow (L/min) 17.07 Total Time Avg Flow (L/min)	System # Filter # 23.0112760 System # Filter #	Total Vol (m ³) 24 , 59 Total Vol (m ³)	Lab ID Lab ID			
PM ₁₀ / TSP METALS	Sample Date	Start Time Start MFC Start Time Start MFC Start MFC Start Time	End Time End MFC End Time End MFC End MFC	Total Time 24.0 Avg Flow (L/min) 17.07 Total Time Avg Flow (L/min) Total Time	System # Filter # 230103760 System # Filter # System #	Total Vol (m ³) 24.59 Total Vol (m ³) Total Vol (m ³)	Lab ID Lab ID			
PM10/TSP METALS	Sample Date	Start Time Start MFC Start Time Start MFC Start Time Start MFC	End Time End MFC End Time End MFC End Time End MFC	Total Time 24.0 Avg Flow (L/min) 17.07 Total Time Avg Flow (L/min) Total Time Avg Flow (L/min)	System # Filter # System # Filter # System # Filter #	Total Vol (m ³) 24.59 Total Vol (m ³) Total Vol (m ³)	Lab ID Lab ID			

	Park onwe, suite rob. MC	M ₁₀ / TSI	P META	LS CHAIN	OF CUS	FODY				
Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	CRN1	m	Co Du Date:	llection Date: plicate Event	(Y/N):				
Setup	Received by: KB11Ly Date: 12/10/14 Set-Up Date: 1/19/15 Operator: 1CB11Ly									
Recovery	Recovery Date: 01/25/15 Sample Duration (i.e. 24 hr): 24 hr. Status: Valid Void (Circle one) Relinquished by: KB11Ly Date: 01/25/15									
Recovery	Received by:	lid Vo	oid (Circ	Date: cle one)						
	Sample Date	Start Time	End Time	Totai Time	System #	Total Vol (m ³)	Lab ID			
S	1/24/15	Start MFC	End MFC	24 00 Avg Flow (L/min)	Filter #	24.58				
ETALS	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
N.		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
110/ TSP M	Statement Street	Start	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
PM10/TSP M	Sample Date	THING								
PM10/TSP M	Sample Date	Start MFC	End MFC	Avg Flow (L/min)	Filter #					

	PI	M ₁₀ / TS	P META	ALS CHAIN	OF CUS	TODY				
.du	Site Code:	CRNY	M	Co	ellection Date:					
Lab -Sar	City/State:			- Du	Duplicate Event (Y/N):					
Pre	Relinquished	by:		Date:						
dn	Received by:	KRIT	ley	Date:	2/10/14	F.				
Set	Set-Up Date: DI/R9/15 Operator: 165.104									
d /ery	Recovery Date: 07/01/15 Sample Duration (i.e. 24 hr): 24 M									
Fiel	Status: Valid Void (Circle one) Relinquished by: Y Rulley Date: 02/01/15									
2	Received by:			Date:						
Lab Recove	Status: Val	lid Vo	oid (Ciro	cle one)						
	Sampia Data	Start	End	Total	Svetom #	Total Vol (m ³)	Lab ID			
	Sample Date	COLUMN	G-LATW	24	System #	i otal voi (iii)	Lab ID			
	01/20/15	Start MFC	End MFC	Avg Flow (L/min)	Filter #	24.77				
ALS		Start	End	Total	SHLIND FID					
MEI	Sample Date	Time	Time	Time	System #	Total Vol (m ³)	Lab ID			
/ TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
PM ₁₀		Start	End	Total						
	Sample Date	Time	Time	Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
	0					1 1 1				
	ts: Damy	che -	A to	run im	01/3	0/15, Ku	n Campel			
mment	1		CA BIL	50-00-01 , +	WE. BP !	545 mm	AUN. TA			

Lab Pre-Samp.	Site Code: C R N M Collection Date: City/State: Duplicate Event (Y/N):										
Field Setup	Received by: Krilling Date: 12 10/14 Set-Up Date: 03 01/15 Operator: Krilling										
Field Recovery	Recovery Date: Op /01//5 Sample Duration (i.e. 24 hr): Status: Valid Void (Circle one) Relinquished by: KK.1144 Date: 02 /01/15										
Lab Recovery	Received by: Status: Vali If void, why:	Received by:									
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID				
S	En lighark	Start MFC	End MFC	Avg Flow (L/min)	Filter # 220 1627-63						
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID				
10 / TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #						
Md	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID				
ommen	ts: Field	Start MFC	End MFC	Avg Flow (L/min)	Filter#	he dat	e .				

601 Keystone	Park Drive, Suite 700, Mc	risvilla, NC 27560 M ₁₀ / TS	P META		OF CUS	TODY				
Lab Pre-Samp.	Site Code: City/State: AQS Code: Relinquished	CRNM	\	Co Du Date:	Collection Date: Duplicate Event (Y/N): Date:					
Field Setup	Received by: Set-Up Date:	2B. 14.	115	Date: Operator:	Date: 12 110/14 Operator: 103:104					
Field Recovery	Recovery Date: Status: Val Relinquished	Recovery Date: 02/09/15 Sample Duration (i.e. 24 hr): 24 hr Status: Valid Void (Circle one) Relinquished by: 08 1 hr Date:								
Lab Recovery	Received by: Status: Val If void, why:	id Vo	oid (Ciro	Date: cle one)						
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
S	02/07/15	Start MFC	End MFC	Avg Flow (L/min)	Filter #	24.58				
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
10 / TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
PM	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
Comment	15: Sample	- to r	un 01 00100	1 02/05/ Avg. BP: 6	15. "Ku	n Compl Hug. T: C	ited "			
Elow !	17:07 al	pni, 14.	69 stps	i Std.Vd.:	-1,15 m	3 ; Vel. : -	4.58 m			

á	Site Code:	CRNM		. Co	ellection Date:					
Lab Pre-Sam	City/State:	-	2	Du	plicate Event	(Y/N):				
p da	Received by:	KBIILA		Date: Date: 1	2 10/14					
Fie	Set-Up Date: 02/09/15 Operator: KB1104									
Field Recovery	Recovery Date: Status: Va Relinquished	Recovery Date: 2/16/15 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: 106/104 Date: 2/16/15								
Lab Recovery	Received by: Status: Va If void, why:	lid Vo	old (Cire	Date: cle one)						
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
S	2/11/15	00'00 Start MFC	End MFC	24:00 Avg Flow (L/min)	Filter #	24.58				
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
110 / TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
PM	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
	< .	0		La reas a	2/	11/15. "0	no Care			
2010	PN	A ₁₀ / 151	MEIA	LS CHAIN U	JF CUSI	UDI				
-------------------	--	---	------------------	------------------	-----------------------------------	-----------------------------	--------	--		
amp.	Site Code: City/State:	CRNA	1	Co	llection Date: plicate Event (Y/N):				
Pre-S	AQS Code: Relinquished	by:		Date:						
Setup	Received by: Set-Up Date:	Received by: 1/16/14 Date: 12/16/14 Set-Up Date: 12/16/14 Operator: 16/11/4								
Field Recovery	Recovery Date: 2/22/15 Sample Duration (i.e. 24 hr): Status: Valid Vold (Circle one) Relinquished by: Verify Date: 2/22/15									
Lab Recovery	Received by: Date: Status: Valid Void (Circle one) If void, why:									
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
	2/17/15	C0:00 Start MFC	CO'CO End MFC	Avg Flow (L/min)	Filter #	24.59	- Ĥ			
METALS	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
110/TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
PM	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID			
		Start MFC	End MFC	Avg Flow (L/min)	Filter #					
		-			in Such	lim to				

		W10/13		LO CHAIN	01 000		
.du	Site Code:	CRNW	1	. Co	ellection Date:		
e-Sar	AQS Code:				ipicate Event	(1/10).	
Pr	Relinquished	by:		Date:			
Setup	Received by Set-Up Date:	KB114	/15	Date: 1	2/10/10 163114	f- 1	
Recovery	Recovery Date: Status: Va Relinquished	Recovery Date: 02 124-/15 Sample Duration (i.e. 24 hr): 24 hr. Status: Valid Void (Circle one) Relinguished by: V B 100 Date: 2124/15					
	Received by:			Date:			
Lab Recove	Status: Va	lid Vo	oid (Circ	cle one)			
	Comula Data	Start	End	Total	Sustan #	Total Val (m ³)	Lab ID
	Sample Date	00.00	CU CU	24	System #	rotar vor (in)	Lavib
10	9/23/15	Start MFC	End MFC	Avg Flow (L/min)	Filter#	24.58	
IETAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID
0/ TSP A		Start MFC	End MFC	Avg Flow (L/min)	Filter#		
PM	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID
		Start MFC	End MFC	Avg Flow (L/min)	Filter #		
	-	- 1-			2122/1	T. Run	complet

-	PI	M ₁₀ / TSI	P META	LS CHAIN	OF CUST	TODY		
Lab Pre-Samp.	Site Code: C R N M Collection Date: City/State: Duplicate Event (Y/N):							
Setup	Received by: Set-Up Date:	Received by: Keilly Date: 12/10/14 Set-Up Date: 2/28/11 Operator: 108/14						
Field Recovery	Recovery Date: Status: Val Relinquished	Recovery Date: 3/4/15 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: Killy Date: 3/4/15						
Lab Recovery	Received by: Date: Status: Valid Void (Circle one) If void, why:							
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
S	03/01/15	CO:GO Start MFC	End MFC	24. M. Avg Flow (L/min) 17. 08	Filter # 22011/2718	24.59		
METAL	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
110/TSF		Start MFC	End MFC	Avg Flow (L/min)	Filter #			
PN	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
		Start MFC	End MFC	Avg Flow (L/min)	Filter #			
	Same I	5. +	to ru	n for of	3/01/15	"Run Co	mydete	

Keystone	Park Drive, Suite 700, Mo	maville, NC 27560 M ₁₀ / TS	P META		OF CUS	TODY		
Lab Pre-Samp.	Site Code: C R N M Collection Date: City/State: Duplicate Event (Y/N): AQS Code: Date:							
Field Setup	Received by: Set-Up Date:	Received by: 16 Date: 12 10 14 Set-Up Date: 03 04 17 Operator: K3 14						
Field Recovery	Recovery Date: 3/8/15 Sample Duration (i.e. 24 hr): 24h Status: Valid Void (Circle one) Relinquished by: 0.03.11.44 Date: 3/8/15							
Lab Recovery	Received by: Status: Valid Void (Circle one)							
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
S	3/7/15	CO CO Start MFC	End MFC	Avg Flow (L/min)	Filter # 22016274	24.58 9		
SP METAI	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
PM ₁₀ / T	Sample Date	Start MFC Start Time	End MFC End Time	Avg Flow (L/min) Total Time	Filter # System #	Total Vol (m ³)	Lab ID	
		Start MFC	End MFC	Avg Flow (L/min)	Filter #			
mment 3/c	5: Sep +0 7 60 10 10	5 am	yell Jarou 54 sho	en 3/7	/15.11 BP:59 1.:21.0	Envy Co 8 mm ; Aug m3 ; 24.5	7.1.8°C	

	RG			ERG Lab	ID #			2	
601 Keystone	Park Drive, Suite 790, Mor PN	isville, NC 27560 1 ₁₀ / TSI	Р МЕТА	LS CHAIN		rody			
Lab Pre-Samp.	Site Code: C R N M Collection Date: City/State: Duplicate Event (Y/N):								
Field	Received by: Image: 100 million Set-Up Date: 3/8/15 Operator: 10311117								
Field Recovery	Recovery Date: 3/15/15 Sample Duration (i.e. 24 hr): 34 Status: Valido Void (Circle one) Relinquished by: KB: I.C.Y								
Lab Recovery	Received by: Status: Valid Void (Circle one)								
	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID		
ω	3/B/15	CU · CO Start MFC-	((୦:୦୦ -End MFC	24:59 Avg Flow (L/min) 17.07	Filter # 22.0162	781			
SP METAI	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID		
PM ₁₀ / TS		Start MFC Start	End MFC End	Avg Flow (L/min)	Filter #		Lab ID		
	Sample Date	Time Start MFC	Time End MFC	Avg Flow (L/min)	System #	Total Vol (m [*])	Labiu		
Commer <u>S: 0</u> <u>Avg. T</u>	nts: Sep fo 3/13 00 1	Sange UD:00, Flow	E:03,	n 3/13/ 114 00:00 elpm 17.	15."Ru 100, Avg OF alpr	n Cenni BP:599 Val.:20	pleted!" 1 mm Hz; 1,59 m3; Std.)	_ _ 	
米工 d ナいっ White	iel not hav (2) copie : Sample Traveler	e ciny o to fr	more a	Can bon 'Can M. Canary: Lab Copy	ry te	in so	F'm attak Pink: Field Copy	herry	

E	RG			ERG Lab	ID #			
1 Keystone i	Park Drive, Suite 700, Mo	nisville, NC 27560 И ₁₀ / TSF	Р МЕТА		OF CUS	TODY		
Lab Pre-Samp.	Site Code: C R N M Collection Date: City/State: Duplicate Event (Y/N): AQS Code: Date:							
Field Setup	Received by: ICB; ILU Date: 3 / 4 / 1 5 Set-Up Date: 3 / 1 5 / 15 Operator: ICB; ILU							
Field Recovery	Recovery Date: 3/23/15 Sample Duration (i.e. 24 hr): 24 Status: Valid Void (Circle one) Relinquished by: Lets, May Date: 3/23/15							
Lab Recovery	Received by: Date: Status: Valid Void (Circle one)							
TS OF	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
ۍ ۲	31/9/15	৫ ৩ া ৩০ Start MFC	End MFC	Avg Flow (L/min)	Filter # 22 6275	24.59 70		
METAI	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
10/ TSP		Start MFC	End MFC	Avg Flow (L/min)	Filter #			
M	Sample Date	Start Time	End Time	Total Time	System #	Total Vol (m ³)	Lab ID	
		Start MFC	End MFC	Avg Flow (L/min)	Filter #			
omment $\frac{1}{5}$: O $\frac{1}{5}$	s: Sungel 3/19 00 T.: 4,2 Vol.:20,0	e sut 00 j E 0 j on 0 m j	tor cos, Flou	un cu 12000000 1.10.27 24.59 m	slali - j Avg sLpn 3.	r; ('Ru , BP: 59 2, 17.0	n Congel 5 mm j 17 alpm	
White:	Sample Traveler		c	Canary: Lab Copy			Pink: Field Copy	

APPENDIX F

APPLICATION SUBMITTED TO TAMS

(I.) Background: Tribal School Air Toxics Monitoring Project Proposal

U.S. Environmental Protection Agency (EPA) has recommended air quality monitoring at 63 schools around the country as part of a new initiative to ensure children are breathing healthy outdoor air. EPA identified schools for monitoring based on information that raised some questions about air quality that merit investigation. That information included the best data available to EPA scientists about air pollution in the vicinity of schools, results of a computer modeling analysis, results from a recent newspaper analysis, and information from state and local air agencies. Unfortunately, because of limited information on tribal schools¹ and limited emissions information, most tribal schools could not be considered in time for EPA's analysis of the schools initially chosen to conduct monitoring. The term "tribal school" refers to any school located within a reservation boundary or any school operated by a tribe, BIA or tribal agency (regardless of location). EPA is still concerned that lack of information/data does not necessarily mean there is not a problem in Indian country and wants to ensure that we are investing in potential air toxics impacts around tribal schools as well. In order to accomplish this parallel effort to the national study, EPA, working with the Regional Offices, identified two tribal schools with appropriate conditions to initiate this monitoring effort.

Complete Article: http://www.usatoday.com/news/nation/environment/school-air-monitoring1.htm

Proposed Approach for the Tribal School Monitoring Analysis

Monitoring at first two schools: As in the national analysis, EPA will provide monitors and analysis following the requirements of the national monitoring plan and QAPP for these two schools. The tribes have the capacity and agreed to conduct the monitoring.

After the 60 – 90 day monitoring study is completed monitors will be transferred to the Tribal Air Monitoring Support (TAMS) Center for further deployment. Once the EPA monitoring program is over, the monitors will be provided to the TAMS Center to support activities in Indian country as appropriate.

A tribal working group of environmental professionals and representatives of the TAMS Steering Committee will determine the protocol for further deployment of monitors. Some criteria discussed on the first call included:

- Some demonstrated source of air toxics concern including point source(s), mobile sources, nontraditional sources like open burning, and garbage burning.
- Tribe's willingness to provide location information of the tribal school and submission of monitoring data through the AQS process.
- School is on/off the reservation or has a presence/location of schools on/off the reservation.
- Tribe has the capacity to run the monitors for the 60- 90 day period or availability of TAMS staff support for that or funding available for contractor support.
- Presence/location of daycare sites on/off the reservation.

EPA will work with the RTOCs and NTOC to reach out to the tribes to determine interest in participating in the school monitoring effort. We will also work with BIA or NCAI to reach tribes that don't have strong

Page 2 of 12

04/07/2010

Tribal School Air Toxics Monitoring

environmental programs and don't participate in TOCs. Interest will be evaluated against criteria developed by the workgroup with the decision made by the TAMS steering committee.

Monitors will be rotated to new locations as available. Decisions on the length of time for the monitoring will be determined by the TAMS steering committee.

If any problems are found, the appropriate EPA Regional Offices, OECA, OAQPS, and other offices, in consultation with the tribe, will determine the appropriate actions. In some cases, there may be targeted enforcement, in others permit or regulatory action may be needed, and in other cases community initiatives may be necessary.

 Data will be captured on the tribal air site and linked to the national school program site (www.epa.gov/schoolair). The workgroup requested that the schools be identified on the national School Air toxic map and the tribal boundaries also be identified.

(II.) Planning and Operations Procedures: Tribal School Air Toxics Monitoring Study

- Monitors have been transferred to the TAMS Center, from EPA for deployment to Tribal
 applicants across the country. An application packet, criteria and process has been developed
 for those interested in monitoring.
- Tribes will be selected for monitoring as monitors are available and applications are processed. Schedule for monitoring and selection to be determined and approved by the TAMS Steering Committee and technical staff.
- Monitoring and analysis will follow the requirements of the national School Toxics Air Monitoring Initiative Quality Assurance Project Plan, Standard Operating Procedures, and/or approved plans for each of the selected schools.
- Tribal capacity will be assessed for running monitors; if technical assistance or training is needed/requested every attempt will be made to hold training for the Tribes interested in the program.
- The Tribe must agree to monitor and report data to the Tribal air toxic database.

<u>LOGISTICS</u>: After completion of a monitoring cycle the monitors are to be transferred to a location determined by the Tribal Air Monitoring Support (TAMS) Center Steering Committee. The monitors will remain assigned to the TAMS Center to support further monitoring activities in Indian country, as appropriate.

<u>PROCEDURES AND PROCESSES:</u> Monitors will be rotated to new school locations through an application process. Decisions on the schools, school priority and length of time for the monitoring will be determined by criteria developed and a process agreed upon by the Tribal planning team and the TAMS Steering Committee. The TAMS Steering Committee will update guidance as necessary and appropriate to improve the decision process.

Application will be submitted to TAMS Center Co-Directors. (see below)

EPA TAMS Co-Director	ITEP TAMS Co-Director	TAMS Technical Assistance
Farshid Farsi	Christopher Lee	Henry Gerard
702/784-8263	702/784-8278	702/784-8268

Page 3 of 12

04/07/2010		Tribal School Air Toxics Monitoring			
	Farsi.Farshid@epa.gov	Christopher.Lee@nau.edu	gerard.henry@epa.gov		
		4220 S. Maryland Pkwy, Bldg C			
		Las Vegas, Nevada 89119			

- Applications and will be prioritized and assessed by voting members of the TAMS Steering Committee.
- When applying for monitoring the Tribes should identify when they will be ready for deployment of monitoring, if approved monitors need to be deployed as soon as possible and should not sit idle.
- A calendar of rotation, training, etc. will be maintained by the TAMS Center. Alternates will be identified in case a tribe is unable take their assigned rotation.

OUTREACH:

EPA and TAMS Center will work with the regional and national tribal organization to outreach to all tribes, even those without air programs, to promote interest in participating in the school monitoring project. Interested parties will be given application information and resources to learn more about the Tribal School Air Toxics Project. Outreach efforts will be in the form of:

- Newsletters, Fact Sheets, pamphlets
- Poster Sessions at National Tribal Meetings
- Canned presentations to share with those who are going to be presenting
- Presentations on conference calls or regional meetings
- Interagency presentations of the project to reach other Tribes who do not have air programs
- Resource feedback and sharing of experienced tribal monitoring
- Training of prospective tribal programs or select points of contact for monitoring project

ANALYSIS and Next steps:

If any problems are identified through monitoring, the appropriate EPA Regional Offices, OECA, OAQPS, and other offices, in consultation with the tribe, will determine the appropriate actions. In some cases, there may be targeted enforcement, permit, and regulatory actions, or community initiatives may be necessary.

DATA TRACKING:

Data will be captured on the tribal air website and linked to the national school air toxic program site. All data will need to be submitted to AQS, if technical assistance is needed to complete this please make sure the application reflects this need. National map will be updated with completed schools.

Note: Selected applicants will be required to sign and submit TAMS monitor agreement.

Page 4 of 12

04/07/2010 Tribal School Air Toxics Monitoring (III.) Application for Tribal School Air Toxics Monitoring

Date: September 15, 2014

Name of Tribe Navajo Nation - Church Rock Community Chapter

Address P.O. Box 549, Church Rock, New Mexico, 87311

Background of Tribe and proposed schools or educational program

The Navajo Nation is a federally recognized Indian Tribe with inherent powers of sovereignty and authority to manage and control the use of Navajo lands and resources. The Navajo Nation covering in land mass about 27,425 miles with the states of Arizona, Utah, and New Mexico. Surrounding the Navajo Nation are the Southern Ute of Colorado, and Ute Mountain Ute Tribe. Also the Hopi Indian Reservation is located surrounded by the Navajo Nation in Arizona. Additional to the Navajo Nation there are three large non-contiguous sections located in New Mexico: Ramah Navajo Indian Reservation, Alamo Navajo Indian Reservation and Tohajiilee Indian Reservation.

Church Rock Elementary School is one (1) of nineteen (19) schools within Gallup McKinley County School, Gallup, New Mexico, and considered a "public" school. Church Rock Elementary School has teaching grade levels from pre-kindergarten to 5th grade, and serves about 95% to American Indian students. The school is located about 4 miles east of Gallup, New Mexico. The population for Church Rock community is about 1,077 and located within the Eastern Navajo Nation Agency. Church Rock Navajo name is Kinlitsosinil, and is named for the natural landmark with the same name.

To the east direction from Church Rock community are the beautiful scenery of Mount Taylor, and toward the south direction lay the Zuni Mountains. Within the community of Church Rock it is distinguished with Red Rock structures on the north side of the Church Rock Elementary School. The Puerco River is located west from Church Rock community.

The major emissions are from surrounding facilities located west from Church Rock Elementary School, for example: oil & gas refinery, rock & gravel company, casino with generators, and furniture making facility. Also the transportation emission are currently highly accessible with Interstate Highway 40 (I-40) and BNSF Railroad Company both located within 2 miles south from Church Rock Elementary School. Development of mineral and fossil fuel resources and industrial and population growth within the region may contribute to the degradation of the air quality. In 1979, United Nuclear Corporation Church Rock uranium mill breached and spill 1,100 tons of milled uranium ore and about 94 million US gallons of heavy metal into the Puerco River. In 2005, the Navajo Nation prohibit any further uranium mining. In 2008, the US EPA and Navajo EPA have started a five-year plan to identify contaminated areas caused by uranium mining. The area of uranium mining that once existed is located about 5-6 miles north from Church Rock Elementary School. The National Park Service and other agencies and organizations are conducting air-monitoring programs around the borders of the Navajo Nation to ensure the health and well-being of the Navajo people are being protected.

Page 5 of 12

04/07/2010 Tribal Sch	nool Air Toxics Monitoring
Identified School Name Church Rock Elementary School	
Address of School(s) P.O. Box 40, Churchrock, New Mexic	co, 87311
Lat and Long for school site Latitude: 35.538747; Longi	itude: -108.596741
Grades and ages of children attending application school site	Grade: Pre-K – 5 ^{ra} grade level; Ages: 4-10 years old.
Is the school in the presence of /or on the reservation?	YES or NO
If not on reservation, describe native population? (Estimated ra	tio stats from the school, etc.)
Please describe the suspected sources of Air Toxics possibly in monitoring to be requested? (Ex. Open burning, garbage burning	npacting the identified school and type of ng, mobile sources, etc.) See attached inventory.
The possible sources of air toxics impacting the Church Rock I burning, and mobile source emissions. Also other surround air refinery, casino generators, rock & sand gravel facilities, Inters Rock Chapter request the following type of monitoring to be co PAHs	Elementary School are open burning, trash toxics are being emitted by nearby oil & gas state Highway 40, and Highway 566. Church onducted: VOCs, PM10 HAP Metals, carbonyls,
Identify who the possible affected population would be and how (Elementary age, infants, etc.)	w they may be impacted?
The possible affected population would be the children, infants School and surround Church Rock Community Chapter area. due to the sensitivity of their health and development growth st	and elder within the Church Rock Elementary The possible affected population area impacted tage.
For this application, approval should be obtained to submit mo and/or an OAQPS national tribal database?	nitoring data to Air Quality Systems database
Yes, Church Rock Community Chapter's approval to obtain da System (AQS) database and /or an OAQPS national tribal data	ata to submit monitoring data to Air Quality base.
If the tribe agrees to submit data, please explain the tribe's tech explain the need for technical assistance?	mical capacity available to submit data, or
Ms. Karmen Billey, Arizona State University (ASU) Graduate submit data into the database. Has experience in setting up car meteorological monitoring setup. She might need additional tr project sample begins. Overall, she has received various trainin Support (TAMS) Center, Las Vegas, NV and Inter Tribal Envi	Student has had previous work experience to bonyl and VOCs samplers in the past, as well as, aining in regards to other listed sampler before ag in courses offered by Tribal Air Monitoring ronmental Professional (ITEP), Flagstaff, AZ.
Explain your Tribe's technical capacity to <u>operate</u> the monitor will be required?	s or will technical assistance and/or what training

Page 6 of 12

04/07/2010

Tribal School Air Toxics Monitoring

Ms. Billey has had technical capacity in operating the monitors for carbonyl and VOC sampler setup and sampler collection, but might need some training on the other listed samplers. Overall, she has operated many monitoring setup in previous employment in regards to FRM (PM2.5), TEOM (PM10/PM 2.5), Teledyne Gaseous Analyzer's (Ozone, NOx, SO₂). Also she has received training in maintaining instruments monitoring setup, calibrations, audit and able to follow SOPs and QAPP documentation given.

Is a designated person available at the Tribe to take training or be the point of contact for this project, if so please identify?

Ms. Karmen Billey, Arizona State University Graduate Student, will be the point of contact for this project.

Page 7 of 12

Page 8 of 12

Photo taken from school in the north direction.

Page 9 of 12

Page 10 of 12

Page 11 of 12

Page 12 of 12

APPENDIX G

APPROVAL DOCUMENTATION FROM CHAPTER AND SCHOOLBOARD

Johnnie Henry Jr., PRESIDENT Sherman Woody, VICE-PRESIDENT Louise Jim, SECRETARY/TREASURER

CHURCHROCK CHAPTER

P.O. Box 549 Churchrock, New Mexico 87311 Phone: (505) 905-5949 * Fax: (505) 905-6561 Website: http://churchrock.navajochapters.org E-mail: Churchrock@navajochapters.org

Edmund Yazzie, COUNCIL DELEGATE Emery Chee, LAND BOARD MEMBER Vacant, COMMUITY SERVICES COORDINATOR

066-15-02

RESOLUTION OF THE CHURCHROCK CHAPTER

RECOMMENDING AND SUPPORTING MS. KARMEN BILLEY IN CONDUCTING A TRIBAL SCHOOL AIR TOXICS MONITORING AT THE CHURCHROCK ELEMENTARY SCHOOL ON BEHALF OF ENVIRONMENTAL PROTECTION AGENCY

WHEREAS:

- Pursuant to Sections 1.B and 2.22 of the Navajo Nation Local Governance Act, the Churchrock Chapter is established to make decisions about local government matters, to conduct local government operations and to provide for the general health, safety and welfare of its membership; and
- 2. U.S. Environmental Protection Agency (EPA) has recommended air quality monitoring at 63 schools around the country as part of a new initiative to ensure children are breathing healthy outdoor air. EPA identified schools for monitoring based on information that raised some questions about air pollution in the vicinity of schools, results of a computer modeling analysis, results from a recent newspaper analysis, and information from state and local air agencies. Unfortunately, because of limited information on tribal schools and limited emissions information, most tribal schools could not be considered in time for EPA's analysis of the schools initially chosen to conduct monitoring. The term "tribal school" refers to any school located within a reservation boundary or any school operated by a tribe, BIA or tribal agency (regardless of location); and
- 3. EPA will provide monitors and analysis following the requirements of the national monitoring plan and QAPP for these two schools. The tribes have the capacity and agreed to conduct the monitoring. Two schools have been selected by committee and will be conducted by ASU graduate candidate student Ms. Karmen Billey; and
- Some criteria discussed on the first call are: demonstrated source of air toxics concern including point source(s), mobile sources, non-traditional sources like open burning, and garbage burning; and
- 5. Churchrock Chapter is in full support of this project, this will provide much needed data compiling for our air we breathe for our children and elders. The air within the community continues to change daily and cause health issues to residents in Sundance and Churchrock; and

RESOLUTION OF THE CHURCHROCK CHAPTER RESOLUTION NO. 066-15-01

1 | P a g e FINAL-APPROVED

- Ms. Karmen Billey, Arizona State University Graduate Student approach the Churchrock Chapter and requested the Air Monitoring project. Ms. Billey also received full support of the Gallup-McKinley County School Board during its October 6, 2014 meeting; and
- It is therefore recommended by the Churchrock Chapter to fully support Ms. Billey in pursuing her objectives to monitor the air within the Churchrock community and the Churchrock Elementary School.

NOW THEREFORE IT BE RESOLVED THAT:

- The Churchrock Chapter recommends and supports Ms. Karmen Billey in conducting a tribal school air toxic monitoring at the Churchrock Elementary School on behalf of the United States Environmental Protection Agency.
- Attached to this resolution as "Attachment A" is the Tribal School Air Toxics Monitoring Application packet" submitted by Ms. Karmen Billey.

CERTIFICATION

We, the undersigned, hereby certify that the forging resolution was presented to the Churchrock Chapter, at a duly called regular chapter meeting at which a quorum was present, and it was approved by a vote of ______ in favor, __O_ opposed, with _____ abstaining at Churchrock (Navajo Nation), New Mexico on the 13th day of October 2014.

Main Motion: Jess Coho Seconded by: Betty Cha sinadoL buise Jim, Secretary/Treasurer istrative Staff

RESOLUTION OF THE CHURCHROCK CHAPTER RESOLUTION NO. 066-15-01

2 | P a g e FINAL-APPROVED Notice of Regular Meeting October 6, 2014 The Board of Education Gallup McKinley County Schools

A Regular meeting of the Board of Education of Gallup McKinley County Schools will be held October 6, 2014, beginning at 6:00 PM in the Board Room of the Student Support Center, 640 Boardman, Gallup, NM 87301.

The subjects to be discussed or considered or upon which any formal action may be taken are as listed below. Items do not have to be taken in the order shown on this meeting notice.

Unless removed from the consent agenda, items identified within the consent agenda will be acted on at one time.

- 1. Call to Order - Pledge of Allegiance/NM Pledge - Roll Call
- A. Public Comment
- 2. Approval of Agenda
- 3. Approval of Minutes 4.

5

- Approval of Consent Agenda Items (*6b, *6c, *6d, *6e, *8b, *8c, *8f, *8g, *8h, *8i, *8j, *8k)
 - Study Circle
 - Α. Reports

2.

- Superintendent's Report L.
 - Recognition (Student, Staff and Other) a.
 - JOM Program ١.
 - Dolly Manson Grant b.
 - Gallup Reads c.
 - đ. Del Norte Elementary School Design and Progress Report
 - State and Tribal Education Partnership (STEM) Travel Report e.
 - Board Report (Meetings, Conventions, Conferences, Training Sessions)
- 3. School Site Reports
- Twin Lakes Elem. а.
- Indian Education Committee / JOM Report 4.
- Notices and Communication 5. а.
 - Announcements / Reminders
 - October 9-10, 2014 ~ Fall Break No School 1.
 - 2. October 13, 2014 ~ Professional Development Day (No School)
 - October 20, 2014 ~ BOE Meeting Gallup Mid, 4PM 3.
 - 4, October 21, 2014 ~ Report Cards
 - 5. November 3, 2014 ~ BOE Meeting
 - November 11, 2014 ~ Veterans Day (No School) б.
 - November 17, 2014 ~ BOE Meeting 7.
 - 8. November 24-28, 2014 ~ Thanksgiving Break
- 6. Financial Section - CONSENT
 - 2014-2015 Budget Decrease A.
 - Β. 2014-2015 Budget Increase
 - C. 2014-2015 Budget Adjustment Requests (Intra-Transfers)
 - D. 2014-2015 Budget Adjustment Requests (Inter-Transfers)
 - E. Current Bills-Operational, Federal Projects, Food Services, Other - CONSENT
- Old Business None 7.
- 8. New Business
 - Report on, consideration of, and action on bids, proposals and use of existing contracts: CONSENT None А. В.
 - Approval of Student Activity Travel: CONSENT
 - 1. Gallup High JR ROTC, 20 students, 2 chaperons, Phoenix, AZ, October 24-25, 2014 for Orienteering Championship. (Activity Fund) Trip 9738
 - С. Approval of Out-of-State Travel: CONSENT Board Policy D-3150 (10.8.1-10.8.8) - Travel Approved by Superintendent

- 1. Jarrid Thelen, St. Bonaventure, Dallas, TX, October 22-26, 2014 to attend National Standards Benchmark. (Title II-A)
- 2. Shannon Balok-Red Rock Elem, Kathy Bostic-Indian Hills Elem, Nashville, TN, October 25-29, 2014 to attend National Association for Music Educators. (Operational)
- 3. Betsy Soltero, Thoreau Elem, Nashville, TN, October 25-29, to attend National Association for Music Educator Conference. (Operational)
- Tine Hayes, John Ohle, Miyamura, San Diego, CA, December 11-14, 2014 to attend Screen 4. Printing Class.(Perkins)
- Jenilee Charley, Belinda Cross, EDC, Sedona, AZ, November 12-15, 2014 to attend AZ AER Fall 5. Conference. (Entitlement IDEA B)
- Kate Poortenga, Karyn Weglarz, Rehoboth, Phoenix, AZ, October 8-10, 2014 to attend Reading 6. and Writing Conference (Title II-A)
- D. Approval of Superintendent Travel: CONSENT - None
- Approval of Board of Education Travel- CONSENT None E.
- F. Approval of Charitable Contribution to Thoreau High School from Western Refinery - CONSENT
- Approval of a Donation from Donor.org for Stagecoach Elementary School CONSENT G.
- H. Approval of the request for a Swimming Equipment Donation / Grant from Nike for Gallup High School -CONSENT
- L Approval of \$1000 Donation from Richard Lambert, Church Group for Tse Yi Gai High School -CONSENT
- J. Approval of the Transfer Ownership of Portable Classroom Buildings as Listed - (2) Portables to the Mariano Lake Chapter - CONSENT
- К. Approval to Designate Jefferson Elementary as the "Magnet School" for the Blind & Visually Impaired and Indian Hills as the Magnet for the Deaf & Hearing Impaired - CONSENT L.
 - Approval of Dissertation Request "Tribal School Air Toxics Monitoring" by Karmen Billey ACTION
- M. Approval for the Use of Crownpoint and TseYiGai High Schools Gyms for Community Mass Vaccinations by Crownpoint Health Care Facility - ACTION
- N. First Reading - Travel Policy and Approval/Reimbursement Procedures
- 9. Requested Topics by the Board for Future Meetings
- 10. EXECUTIVE SESSION-The Board will meet in executive session on pursuant to NMSA 1978 § 10-15-1 (H)(2) in regards to Personnel Actions Taken. .
- 11. Adjourn

APPENDIX H

TARGET ANALYTES AND REQUIRED METHOD DETECTION LIMITS

Appendix B. Target Analytes and Required Method Detection Limits (4/10/09)

The MDLs provided in the far right column below are those that can be achieved by the EPA's air toxics contract laboratory and are thus considered to be the requisite / minimally acceptable MDLs for the School Air Toxics monitoring initiative. These concentration values were compared with those labeled as "Lower Bound of Concentration Range of Potential Risk-Related Interest" so as to evaluate sufficiency for health-based decision making. With the exception of eight chemicals, the laboratory reported MDLs fall below the lower bound of the concentration range that might be of potential risk-related interest when measuring ambient concentrations. In all cases (including those eight chemicals for which the laboratory MDLs are higher than the lower bound concentrations), the MDL presented is considered sufficient for this initiative. The target analytes listed below include 1) any chemical identified as risk drivers on the 3/31/09 schools-for-monitoring list, and 2) any other chemicals captured and reported out by the analytical methods used in this project.

HAP Compound	Lower Bound of Concentration Range of Potential Risk-related Interest ¹	REQUIRED METHOD DETECTION LIMIT (MDL) ²	
CHEMICAL NAME	ug/m3	ug/m3	
Acetaldehyde	75-07-0	4.5E-01	9.0E-03
Acetonitrile	75-05-8	6.0E+00	9.7E-02
Acetone	67-64-1	No Value	1.0E-02
Acetylene	74-86-2	No Value	1.3E-02
Acrolein	107-02-8	2.0E-03	3.5E-02 3
Acrylonitrile	107-13-1	1.5E-02	3.1E-02 ³
Antimony compounds	7440-36-0	0.02 5	6.7E-06 4
Arsenic compounds	7440-38-2	2.3E-04	9.2E-06 4
Benzene	71-43-2	1.3E-01	2.0E-02
Benzyl chloride	100-44-7	2.0E-02	8.0E-03
Benzaldehyde	100-52-7	No Value	1.0E-03
Beryllium compounds	7440-41-7	4.2E-04	1.8E-06 4
Bromochloromethane	74-97-5	No Value	2.4E-02
Bromodichloromethane	75-27-4	No Value	1.6E-02
Bromoform	75-25-2	9.1E-01	2.0E-02
1,3-Butadiene	106-99-0	3.3E-02	6.0E-03
Butyr/Isobutyraldehyde	123-72-8	No Value	6.0E-02
Cadmium compounds	7440-43-9	5.6E-04	2.9E-05 4
Carbon disulfide	75-15-0	7.0E+01	7.0E-03
Carbon tetrachloride	56-23-5	6.7E-02	1.2E-02
Chlorobenzene	108-90-7	1.0E+02	1.1E-02
Chloroform	67-66-3	9.8E+00	1.2E-02
Chloroprene	126-99-8	7.0E-01	1.1E-02
Chromium Compounds (all species)	7440-47-3	No Value	3.4E-04 4
Chromium (VI) compounds	18540-29-9	8.3E-05	4.3E-06
cis -1,2-Dichloroethylene	156-59-2	No Value	6.9E-02
trans- 1,2 -Dichloroethylene	75-69-4	No Value	1.0E-02
Cobalt compounds	7440-48-4	1.0E-02	5.5E-06 ⁴
Crotonaldehyde	123-73-9	No Value	5.0E-03
p-Dichlorobenzene	106-46-7	9.1E-02	2.3E-02
1,3-Dichloropropene	542-75-6	2.5E-01	0.011 (cis), 0.014 (trans)
Dibromochloromethane	124-48-1	No Value	1.1E-02
Dichlorodifluoromethane	75-71-8	No Value	1.9E-02

Dichlorotetrafluoroethane	76-14-2	No Value	1.0E-02
2,5,- Dimethylbenzaldehyde	5779-94-2	No Value	2.0E-03
Ethyl acrylate	140-88-5	No Value	2.5E-01
Ethyl benzene	100-41-4	1.0E+02	1.5E-02
Ethyl chloride	75-00-3	1.0E+03	4.0E-03
Ethyl tert-Butyl Ether	637-92-3	No Value	2,8E-02
Ethylene dibromide	106-93-4	1.7E-03	1.1E-02 3
Ethylene dichloride	107-06-2	3.8E-02	8.0E-03
Ethylidene dichloride (1,1-			
Dichloroethane)	75-34-3	6.3E-01	8.0E-03
Formaldehyde	50-00-0	9.8E-01	4.4E-02
Hexachlorobutadiene	87-68-3	4.5E-02	0.13 3
Hexaldehyde	66-25-1	No Value	5.0E-03
Hexamethylene-1 6-diisocyanate	822-06-0	1.0E-03	2 5E-01 3,5
Isovaleraldebyde	590-86-3	No Value	4.0E-03
L and compounds	7420 02 1	1 55 01	5.6E.05 ⁴
m Dichlerobenzene	F 409-92-1	No Voluo	2.4E.02
In -Dichlorobenzene	541-73-1		2.46-02
Manganese compounds	7439-96-5	5.0E-03	5./E-05
Mercury Compounds		0.03 °	1.7E-05 *
Methyl bromide	74-83-9	5.0E-01	7.0E-03
Methyl chloride	74-87-3	9.0E+00	1.3E-02
Methyl chloroform (1,1,1-			
Trichloroethane)	71-55-6	5.0E+02	8.0E-03
Methyl Ethyl Ketone	78-93-3	No Value	1.2E-01
Methyl isobutyl ketone	108-10-1	3.0E+02	2.5E-02
Methyl methacrylate	80-62-6	7.0E+01	1.1E-01
Methyl tert-butyl ether	1634-04-4	3.8E+00	5.1E-02
Methylene chloride	75-09-2	2.1E+00	2.6E-02
Methylene diphenyl diisocyanate	101-68-8	6.0E-02	2.23E-02 °
4,4'-Methylenedianiline	101-77-9	2.2E-03	0.025 3, 5
n -Octane	111-65-9	No Value	1.8E-02
Naphthalene	91-20-3	2.9E-02	2.4E-04
Nickel compounds	7440-02-0	0.0042 7	1.3E-04 ⁴
Acenaphthene	83-32-9	No Value	4.2E-05
Acenaphthylene	206-96-8	No Value	4.8E-05
Anthracene	120-12-7	No Value	5.2E-05
Benzo(a)anthracene	56-55-3	9.1E-03	6.3E-05
Benzo(b)fluoranthene	205-99-2	9.1E-03	5.9E-05
Benzo(k)fluoranthene	207-08-9	9.1E-03	5.9E-05
Benzo(g,h,i)perylene	191-24-2	No Value	3.3E-05
Benzo(a)pyrene	50-32-8	9.1E-04	6.1E-05
Benzo(e)pyrene	192-97-2	No Value	4.9E-05
Chrysene	218-01-9	9.1E-02	4.0E-05
Coronene	191-07-1	No Value	4.3E-02
Cyclopenta(c,d)pyrene	27208-37-3	No Value	6.4E-02
Dibenz(a,h)anthracene	53-70-3	8.3E-04	4.9E-05
Fluoranthene	206-44-0	No Value	4.6E-05
9-Fluoranthene	486-25-9	No Value	4.7E-05
Fluorene	86-73-7	No Value	3.8E-05
Indeno(1,2,3-cd)pyrene	193-39-5	9.1E-03	4.0E-05
o- Dichlorobenzene	95-50-1	No Value	2.5E-02
Phenanthrene	85-01-8	No Value	5.9E-05
Pyrene	129-00-0	No Value	5.9E-05

Perylene	1985-5-0	No Value	2.8E-02
Retene	483-65-8	No Value	5.7E-02
Propionaldehyde	123-38-6	No Value	1.2E-02
Propylene	115-07-1	No Value	6.3E-02
Propylene dichloride	78-87-5	5.3E-02	1.5E-02
Selenium compounds	7782-49-2	20 7	1.3E-05 ⁴
Styrene	100-42-5	1.0E+02	1.3E-02
1,1,2,2-Tetrachloroethane	79-34-5	1.7E-02	1.9E-02 3
tert-Amyl Methyl Ether	994-05-8	No Value	2.8E-02
Tetrachloroethene	127-18-4	1.7E-01	1.8E-02
Toluene	108-88-3	5.0E+02	3.0E-02
2,4/2,6-Toluene diisocyanate mixture			
(TDI)	26471-62-5	7.0E-03	0.025 3,5
o-Tolualdehyde	529-20-4	No Value	9.0E-03
m-Tolualdehyde	620-23-5	No Value	9.0E-03
p-Tolualdehyde	104-87-0	No Value	9.0E-03
1,2,4-Trichlorobenzene	120-82-1	2.0E+01	5.2E-02
1,1,2-Trichloroethane	79-00-5	6.3E-02	1.5E-02
1,2,4-Trimethylbenzene	95-63-6	No Value	5.2E-02
1,3,5-Trimethylbenzene	108-67-8	No Value	1.8E-02
Trichloroethylene	79-01-6	5.0E-01	8.0E-03
Trichlorofluoromethane	75-69-4	No Value	1.2E-02
Trichlorofluoroethane	76-13-1	No Value	2.4E-02
Valeraldehyde	110-62-3	No Value	5.0E-03
Vinyl chloride	75-01-4	1.1E-01	5.0E-03
Vinylidene chloride	75-35-4	2.0E+01	1.2E-02
o-Xylene	95-47-6	No Value	1.5E-02
Xylenes (mixed)	1330-20-7	1.0E+01	0.028 (mixed m p)

¹ The value shown is the lower of the continuous lifetime exposure concentration associated with an HQ of 0.1 or a cancer risk of 1 x 10-6 (using OAQPS chronic toxicity values: http://www.epa.gov/ttn/atw/toxsource/summary.html, updated where needed).

² The values in this column reflect MDLs reported by ERG for use in the national lab contract for this project.

³ The MDL for this constituent is higher than the lower bound of the concentration range of potential risk-related Interest (Le., concentrations below which risks are typically considered negligible). For this Schools Project, this MDL will be considered sufficient.

⁴ The MDL value given is for the metal (e.g., antimony, arsenic, etc.). The analytical methodology being used in this project does not distinguish among various metal compounds. Only the total amount of metal will be measured and reported. (Note that some schools will be targeted for Cr⁴⁶ analysis. At these schools, a special monitor will be deployed that can determine the amount of Cr⁴⁶ present in air.)

⁵ The MDL is estimated; a calculated MDL will be established prior to monitoring.

⁵ This value is for a specific metal compound among multiple compounds in a group.

⁷ For nickel and selenium, the value presented is the lowest for the types of compounds expected to be present in ambient air.