
Bluetooth Low Energy

for Use with MEM Sensors

by

Clinton Francis Hughes

A Thesis Presented in Partial Fulfillment
Of the Requirements for the Degree

Master of Science

Approved November 2015 by the
Graduate Supervisory Committee:

Jennifer Blain Christen, Chair

Sule Ozev
Umit Ogras

James Aberle

ARIZONA STATE UNIVERSITY

December 2015

i

ABSTRACT

Designers creating the next generation remote sensing enabled smart devices need to

overcome the challenges of prevailing ventures including time to market and expense.

To reduce the time and effort involved in initial prototyping, a good reference design is

often desired and warranted. This paper provides the necessary reference materials for

Designers to implement a wireless solution efficiently and effectively.

This document is intended for users with limited Bluetooth technology experience.

Many sensing-enabled devices require a ‘hard-wire’ or cable link to a host monitoring

system. This can limit the potential for product advancements by anchoring the system to a single

location preventing portability and the convenience of a remote system. By removing the “wired”

or cabled portion from a design, a broader scope of devices becomes feasible.

One common problematic area for these types of sensors is within the internal medicine

field. Proximity sensing is far more practical and less invasive to implement than surgical

implantation. Bluetooth Low Energy (BLE) systems solve the hard wired problem by decoupling

the physical sensor from the host system through a BLE transceiver that can send information to

an external monitoring system. This wireless link enables new sensor technology to be leveraged

into previously unobtainable markets; such as, internal medicine, wearable devices, and

Infotainment to name a few. Wireless technology for sensor systems are a potentially disruptive

technology changing the way environmental monitoring is implemented and considered.

With this BLE design reference, products can be created with new capabilities to advance

current technologies for military, commercial, industrial and medical sectors in rapid succession.

ii

ACKNOWLEDGMENTS

1. Special thanks to Joe Decuir (Senior Standards Architect at CSR) for some of the

Graphics and table used in this report.

2. Thanks to the Bluetooth SIG consortium for their help and suggestions and also to their

Developer Portal; who provided a wealth of information.

3. Thanks to the Bluetooth.org Developer Portal Community Forum for suggestions on App

and Device Development

4. Thanks to Simon Finch for outing together an Environmental Sensor board

Demonstration

5. Special to all thanks to the Committee Members

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ... v

LIST OF FIGURES .. vi

CHAPTER

1. INTRODUCTION ... 1

Purpose .. 1

Objective... 2

2. WIRELESS SOLUTION .. 3

What is Bluetooth? ... 7

Bluetooth Low Energy (BLE) .. 9

3. DEVELOPING WITH BLUETOOTH LOW ENERGY ... 11

Bluetooth Low Energy Radio – The Physical Layer ... 12

4. PROJECT SUMMATION ... 13

Hardware Level .. 16

Software Level .. 16

Code Development and Deployment ... 21

5. HARDWARE .. 21

CSR µEnergy CSR1010 Module board.. 22

CSR1010 CSR µEnergy Starter Development Kit ... 23

Environmental Sensor Board H13229 .. 23

6. FIRMWARE DEVELOPMENT ENVIRONMENT .. 25

Launch the xIDE ... 26

Open the Environment Sensor Project ... 27

Application Files ... 28

Customizing the Embedded Application .. 33

Compiling and Deploying the Application ... 42

iv

CHAPTER Page

7. SYSTEM ARCHITECTURE / PROJECT DESCRIPTION ... 51

Environment Sensor Application Overview .. 51

Firmware Code Overview ... 55

Internal State Machine ... 59

Service Characteristics Database .. 62

8. ANDROID DEVELOPMENT ENVIRONMENT ... 66

Setting Up the EnvironmentApp Project ... 67

Launch Android Studio IDE .. 73

Application Files ... 76

Compiling and Deploying the Application ... 79

9. PHONE APP OVERVIEW .. 83

Results of Prototype Implementation and Demo ... 89

Environmental Sensor Board demonstration ... 89

List of Code Debugs and Fixes .. 91

Issues seen during Design / Roadblock & Workaround ... 92

10. SUMMARY ABD FUTURE WORKS .. 94

11. DOCUMENTATION AND OTHER COLLATERAL ... 95

Documentation ... 95

Hardware and Development Kit ... 95

REFERENCES .. 96

APPENDIX

 A CSR1010 MODULE SCHEMATIC ... 98

 B ENVIRONMENT MEMS SENSOR BOARD SCHEMATIC .. 100

v

LIST OF TABLES

TABLE Page

2.1: Short range Wireless Application Areas .. 4

2.2: Short range Wireless Application Specs ... 4

6.2: Source Files ... 30

6.3: Header Files .. 32

6.4: Database Files ... 33

6.5: Advertising Parameters ... 37

6.6: Advertising Parameters ... 37

7.1: Environmental Sensing Profile Role .. 53

7.2: Application Topology ... 53

7.3: Responsibilities .. 53

7.4.1: Battery Service Database ... 53

7.4.2: Device Information Service Database .. 63

7.4.3: Environmental Sensing Service Database ... 64

7.4.4: GAP Service Database ... 65

7.4.5: GATT Service Database ... 65

7.4.6: CSR Custom Characteristics .. 53

8.3.1: App Java Files .. 76

8.3.2: App XML Files .. 77

8.3.3: BTSmart Library Files ... 78

vi

LIST OF FIGURES

FIGURE Page

3.1: Bluetooth Low Energy – Frequency Channels .. 142

4.1: Simplified Overview ... 14

4.2: Project Hierachy .. 15

5.1: CSR1010 Module .. 22

5.2: CSR µEnergy ... 23

5.3: Environment Sensor Board ... 23

5.4: Environment Sensor Board Attached to Starter Kit Board .. 22

6.1: xIDE Platform after Launch ... 23

6.2: Open Workspace ... 27

6.3: Project File Structure ... 22

6.4.1: Configuration Store Key File... 35

6.4.2: Configurating the Device Name ... 59

6.4.4: Connection Parameter Update Procedure ... 23

6.5.1: Content of the CSR uEnergy Development Kit .. 42

6.5.2: Development Kit with USB cable .. 43

6.5.3: Pop-up Window Verifying Driver Installation .. 43

6.5.4: xIDE Build Process ... 44

6.5.5: Selecting Build Active Project ... 45

6.5.6: Build Output Window .. 45

6.5.7: Selecting ‘Run’ to Begin Deployment ... 46

6.5.8: Project Successfully Deployed to the Hardware .. 47

6.5.9: Stop Debugging .. 48

6.5.10: Programmer Board Arranged for Sensor Board ... 23

6.5.11: Programmer Board Compoent Configurations ... 49

6.5.12: Final Board Configuration ... 50

7.1: Environmental Sensing Profile .. 52

vii

LIST OF FIGURES

FIGURE Page

7.2: Primary Services ... 54

7.3: Environment Sensor (state transitions) Diagram... 59

8.1.1.1: Android Setup Wizard .. 67

8.1.1.2: Downloading Components .. 68

8.1.2.3: File Edit .. 70

8.1.2.4: Importing Project ... 70

8.1.3.1: USB Driver for Windows .. 72

8.1.3.2: Configuring Phone for Android Development Environment .. 72

8.2.1: Importing Project .. 73

8.2.2: Building Project ... 73

8.2.3: Install Missing Components .. 74

8.4.1: Building the ‘App’ .. 79

8.4.2: Running the ‘App’ ... 80

8.4.3: Choose Device Pop-up Window ... 81

8.4.4: Session ‘app’ running ... 81

8.4.5: Running App Verified .. 82

9.1: Basic Flowchart ... 83

9.2: Activity Connection .. 84

9.3: Activity Main... 85

9.4: Activity Information .. 86

9.5: Activity Battery ... 87

9.6: Activity Environment .. 88

viii

DEFINITIONS

Abbreviation Definition

ADK Application Development Kit

ADT Android Developer Tool. Is a plugin for Eclipse that provides GUI access to the

command line SDK Tools and UI Design tools allow for rapid prototyping

APP Application

ATT Attribute Protocol

BLE® Bluetooth Low Energy (now known as Bluetooth Smart): a Bluetooth technology designed

for ultra-low power consumption

Bluetooth® Set of technologies providing audio and data transfer over short-range radio

connections

BluetoothSIG Bluetooth Special Interest Group

Bluetooth

Smart

Also known as Bluetooth Low Energy

Characteristic A characteristic is a data value transferred between the client and the server

Client The client is the device that initiates GATT commands and accepts responses. For this

project, the Android device will act as the client as this is a typical use case. However,

the Android BTLE API does allow the Android device to act as the server.

COTS Commercial Off the Shelf

CS Configuration Store

CSB Chip Select Bar

CSR Cambridge Silicon Radio

Demo Demonstration

Descriptor A descriptor provides additional information about a characteristic

DIV Diversifier

e.g. exempli gratia, for example

EEPROM Electrically Erasable Programmable Read Only Memory

Etc et cetera, and the rest, and so forth

Firmware Is software that's installed on a small memory chip on a hardware device

GAP Generic Access Profile

GATT Profile All BTLE devices implement one or more profiles. A profile is a high level definition that

describes how services can be used to enable an application. Low energy application

profiles are based on the Generic Attribute Profile (GATT). This is a general

ix

Abbreviation Definition

specification for sending and receiving short pieces of data (known as attributes) over a

low energy link.

GND Ground

IDE Integrated Development Environment

i.e. Id est, that is

I2C Inter-Integrated Circuit

IRK Identity Resolving Key

ISM Industrial Scientific Medical

L2CAP Logical Link Control and Adaptation Protocol

LED Light Emitting Diode

LM Link Manager

MEMs ‘microelectromechanical systems’ are sub-millimetre devices able to sense mechanical

information in their surroundings

NVM Non Volatile Memory

PC Personal Computer

PIO Programmable Input Output

PnP Plug and Play

PTS Profile Testing Suite

Server The server is the device that receives GATT commands or requests and returns

responses

Service A service is a group of characteristics that operate together to perform a specific

function. Many devices implement the Device Information Service. This service is made

up of characteristics such as manufacturer name, model number, serial number, and

firmware revision.

SIG Special Interest Group

SMP Security Manager Protocol

SPI Serial Peripheral Interface

Tx Transmit

UUID Universally Unique Identifier

1

1. Introduction

In today’s world, there is an ever increasing need to communicate and / or transmit

information from our surrounding environment through sensors. These sensors are key

components in a vast array of consumer electronic devices, such as mobile handsets, tablets,

gaming consoles and wearable technologies that provide the crucial input for this data. Control,

connectivity, and information make it possible to create connected devices known as the ‘Internet

of Everything’ (IoE). This allows us to make our lives easier, more convenient and to control /

interact with everyday technology to feed our need for instant gratification.

Over the next few years the market for Micro Electro-Mechanical Systems (MEMS)

sensors, in connected wearables, is set to increase dramatically. Of these, the fastest growing

segment are activity monitors that require sensors, such as accelerometers, angular rate and

pressure sensors to measure physical activity. Also included are the bioelectronics for monitoring

sensors on and/or in the human body, like pacemakers, heart rate monitors, blood pressure

meters, PH and blood glucose meters, thermometers and other hardware. Smart watches are

another area that has seen considerable interest, particularly with the recent launch from Apple

and Motorola (Google) 360.

1.1. Purpose

With the growing desire to transmit data from sensors, using wireless communication for

human wearable devices, development time and cost become a limiting factor for rapid

prototyping. Typically, these projects get wired directly from sensors to test equipment /

monitoring devices limiting the developmental scope and design capability of the project. The

goal was to devise a reference platform that could be readily utilized by others to minimize cost

and development time without the use of wires.

It is also of interest to parallel this project to facilitate the needs of future academia, as a

reference for those wanting to apply wireless sensor communications to their own projects.

Students could reference this wireless solution as an alternative to their hardwired designs; such

as, to transmit bioelectronics sensor data.

2

1.2. Objective

The design approach was to create a project based on something that is done at

Cambridge Silicon Radio (CSR, employer). CSR is widely known and respected for world class

Bluetooth technology and therefore became the most logical option to implement into this project.

Design guidelines:

 The project should use a low power wireless solution to transmit MEM and other sensor

data to a remote monitoring/recording device such as a Personal Computer (PC) or

Smartphone. The Bluetooth Low Energy (BLE) design has the lowest power consumption

on the market for wireless communication. This allows for the longest battery life possible

using coin-cell battery to allow for human wearable device to be lightweight and portable.

 To minimize cost and development time, the prototype used commercial off the shelf

(COTS) hardware. For this particular design, the CSR µEnergy single-mode BLE solution

(CSR1010 Reference module) was chosen along with the associated CSR µEnergy

Development Kit. See Hardware Section 5 for further information.

Specifications:

 The CSR µEnergy Development Kit allows for quick software (firmware) development,

verification of functionality and to program the Flash local to the CSR1010 Module. Here

are the boards designed around the CSR µEnergy Development Kit Interfaces:

o CSR1010 Module: is a small Printed Circuit Board (PCB) that has all the

components to operate remotely with a battery. It contains the Flash, Clocks,

Antenna, etc. See Appendix A for Schematic and Image of PCB.

o The uEnergy Environmental Sensor board, designed specifically for this project,

is an add-on board for CSR’s uEnergy Development kits that provides

Gyroscopic, Magnetic, Temperature, Pressure, Humidity and Acceleration MEMS

sensors [1]. Designed to be compatible with either the CSR uEnergy Starter Kit

or the CSR uEnergy Development Kit, the board is attached via a set of header

3

sockets on the board [2]. Once physically connected, power is provided from the

development board, which can be fitted with either a coin-cell battery or USB

power cable. See Appendix B for Schematic and Image of PCB.

 Firmware: The CSR’s Integrated Development Environment (xIDE), supplied with CSR

μEnergy Software Development Kits (SDKs), and is the development platform. The API

software was written to program flash to configure CSR1010 Bluetooth Transceiver PIO

to communicate to the MEM Sensors through the I2C/SPI digital interfaces. CSR1010

Module can free run with battery. See Firmware Development / Code Section 7.2 for

further information [2].

 Android SDK was chosen as the APP Development Platform since Samsung Galaxy S4

(Android 19) was already utilized on other projects. See Software Section 9.1 for further

information.

2. Wireless Solution

In this section, we will look at some possible wireless solutions that are already available

Commercial off the Shelf (COTS) that can be used to connect remote sensors and equipment to

central monitoring systems. There are many technologies out there on the market for a wireless

solution that can suit any and all needs, but choosing the right solution for a particular application

can be a daunting task with numerous associated risks. If circumstances allow one to select an

RF standard or off-the-shelf solution, then the options are fairly clear. In terms of range,

penetration, frequency, data rate, and etcetera, there is a set base line of options available to

choose from.

It is all about picking the right technology for the job. Listed here are the most common

wireless solutions on the market today.

4

In Table 2.1 is a list of some short range wireless application solutions that are

categorized by use cases to help visually determine which technology is best for each application.

Table 2.1: Short range Wireless Application Areas [3]

State = low bandwidth, low latency data and low power

In Table 2.2, the chart compares various technical specs with wireless COTS technology.

Wireless Wi-Fi Bluetooth Bluetooth LE ZigBee ANT

Frequencies
2.4GHz and/or

5GHz
2.4GHz 2.4GHz 915MHz 2.4GHz

Channels
16 @ 2.4GHz
80 @ 8GHz

79 @ 1MHz 40 @ 2MHZ
10 @ 915MHz
26 @ 2.4GHz

Varies@1MHz

Range
(Indoor)

70m 1m thru 100m 10m thru 100m 20m 30m

Range
(Outdoor)

>160m >100m >150m >100m
Antenna

dependent>200m

Data Rate
(Max)

54Mbits/s (12Mbits/s
typical)

3Mbits/s 1Mbits/s 250Kbit/s 1Mbits/s

Transmission
Scheme

DSSS Adaptive FHSS DSSS DSSS
adaptive

isochronous
network

Power
Sources

Wired Battery/Wired Battery/Wired Battery/Wired Battery/Wired

Uses
Cable replacement,
large data transfer,

networking

Short distance
cable

replacement

Cable replacement,
Monitoring,

Controlling, and
Data Transfer

Monitoring and
Controlling

Short distance
cable replacement

Table 2.2: Short range Wireless Application Specs [4]

Use Cases

Applications Voice Data Audio Video State

Bluetooth ACL / HS X Y Y X X

Bluetooth SCO/eSCO Y X X X X

Bluetooth low energy X X X X Y

Wi-Fi (VoIP) Y Y Y X

Wi-Fi Direct Y Y Y X X

ZigBee (Legacy) X X X X Y

ANT (Legacy) X X X X Y

5

Here are some important design requirements that should be considered for any wireless

design:

 Range (Distance): Range is determined by four elements: Transmitter Power, Receiver

Sensitivity, Line of Sight (LOS), and Data Volume

 Antenna: depend on the communication requirements, like system array and range. Two

Types of Antenna: Directional and Omni-Directional

 System Configuration Types: Point to Point, Point to Multipoint, Low Costs, Longevity,

Swift Deployment, Easy Configuration, and Security

When looking for the optimum wireless solution, carefully consider these factors: Noise,

Channel Interference, and Signal Echo. Several modulation and transmission schemes have

been developed to counter the effects of these interferers. Here are two of the best to look for:

 FHSS (Frequency Hopping Spread Spectrum) - This scheme requires narrow bandwidth.

Data is transmitted through a single channel at a time, but the channel is constantly and

rapidly changing or hopping [5].

 DSSS (Direct Sequence Spread Spectrum) - This scheme requires large bandwidth. Data

is transmitted simultaneously over every available channel, making it a bit more reliable

in noisy environments.

o Note: Use caution when designing wireless networking systems, make sure that

all wireless transmitters, nodes and equipment support the same transmission

scheme.

In addition to considering these transmission schemes, there are many proven wireless

standards available that can be implemented and developed into one’s design that already takes

into consideration signal reliability, security, distance, speed, and efficiency. Determining the best

solution depends on what the application is and the needs involved. Here is a quick-look at the

wireless options one has along with some corresponding pros and cons.

6

Wi-Fi (IEEE 802.11 b/g/n)

 Pros – This is the typical method of networking for businesses, homes, and offices. Wi-Fi

is widely used for its high data transfer rates between 12MB/s up to 54 MB/s [5].

 Cons - However, complying with this standard requires excessive overhead in relations

to power consumption, processor resources, short range (160m max), software, and the

physical component size, making it less than effective in most situations [5].

Bluetooth (IEEE 802.15.1)

 Pros - Bluetooth has gained popularity because of the compact physical size and its

instantaneous network setup, which comprise of three different classes (Class1=1m,

Class2= 10m, Class3=100m) that allow data to move from 3m to up to 100m away [5].

 Cons - Bluetooth has a relatively high duty cycle, low data throughput up to 3 Mbit/s, and

with its low penetration qualities requires device to maintain a fairly direct line-of-site [5].

ZigBee (IEEE 802.15.4)

 Pros - It is far more power conservative than Wi-Fi and Bluetooth because of its

advanced sleep and sniff abilities. Additionally, it operates with an even smaller physical

footprint than Bluetooth, and has high penetration ability [5].

 Cons - Zigbee has poor interoperability with a low data rate up to 720 kbit/s. Because it is

relatively unpopular, hardware developers are still trying to improve this architecture [5].

Bluetooth Low Energy (IEEE 802.11)

 Pros – This method has the lower power requirements on the market compared to other

design like WIFI, Bluetooth, ZigBee, and Ant. It also has, in comparison, the lowest cost,

better signal penetration, and has the fastest development platform available [5].

 Cons – designed for low energy, the communication rate was not a factor in the design

so information is only transmitted in small bursts of data; of course this could be

considered a ‘Pro’ or an advantage depending on the end use of this technology [5].

7

With today's technology, the possibility of implementing a wireless solution that can

exchange information, as a replacement for wires or cables, is easier than ever; but picking the

proper wireless solution to connect these remote sensors and equipment can pose a varying

degree of complexity. For instance, multiple obstacles could present unique challenges that

would degrade signal integrity and range to these data collecting devices.

There are a wide variety of data communication solutions that could resolve these

challenges, as listed above. BLE is the best technical choice for sending discrete sensor data and

equipment information while maintaining portability, barrier penetration, size, and cost.

If it is not desired to build an RF system from scratch, modules and SDKs can provide an

excellent alternative approach while also providing a rapid prototyping and deployment platform.

See Section 6 on Hardware for more information on the use and implementation of BLE using

COTS SDK with the corresponding BLE module (all-in-one radio plus microcontroller (SOC)).

2.1. What is Bluetooth?

Bluetooth technology is a wireless communications system (frequency bands from 2.4 to

2.485 GHz) intended to replace the cables connecting many different types of devices, from

headsets and speakers to automotive infotainment systems and test equipment. It was invented

in 1994 by Ericson Mobile as an alternative to using wired cables with the design based on

frequency-hopping spread spectrum technology [6].

Bluetooth is managed by Bluetooth Special Interest Group (SIG) and directs the

specifications for common short range wireless applications. These are written, tested and

maintained by the Bluetooth SIG with over 25,000 member companies. The SIG owns the

Bluetooth® trademarks and oversees the development of Bluetooth standards, the licensing of the

Bluetooth technologies and trademarks to the manufacturers, like CSR and Qualcomm [7].

8

The Bluetooth radio [2]:

 Unlicensed 2.4 GHz ISM (Industrial Scientific Medical) band,1 M symbols/s, GFSK, 4PSK

or 8PSK

 1 MHz channel spacing, with frequency hopping applied to combat interference and

fading

 Adaptive Frequency Hopping, for co-existence with Wi-Fi, etc

 Up to 100 mW

IEEE Bluetooth 4.0 Generic Alternate MAC/PHY (AMP) can use additional radios [2]:

 IEEE 802.11(a,b,g,n) and WiMedia UWB (ECMA-368)

How much energy does traditional Bluetooth use?

Bluetooth is connection oriented, which means when a device is connected; a link is

maintained, even if there is no data flowing.

When the device is in Sniffer mode, it is allowed to sleep, reducing power consumption to

give months of battery life with a Peak transmit current typically around 25mA. Even though it has

been independently shown to be lower power than other radio standards, it is still not low enough

for coin battery cells and energy harvesting applications [2].

Bluetooth uses:

 Mobile phones, including ‘Smartphones’

 Wireless controllers for video games

 Voice headsets and “Car kits”

 PCs

 M2M applications – credit card readers, industrial automation

 stereo headsets and speakers

9

2.2. Bluetooth Low Energy (BLE)

Bluetooth Low Energy, also known in the industry as "Bluetooth Smart", was originally

introduced as an in-house project under the name ‘Wibree’ by Nokia in 2006. It is a light-weight

subset of classic Bluetooth and was merged into the main Bluetooth standard by SIG as part of

the Bluetooth 4.0 core specification in 2010.

Think of BLE as a stripped down lean version of Bluetooth. Bluetooth and BLE are used

for two very different purposes. Depending on what the ‘End User’ requirements are will

determine the appropriate wireless technology to develop.

Bluetooth can consume the life of a battery quickly because it was designed to exchange

a lot of data in a short amount of time; plus, it costs a lot more. BLE is used for applications that

do not need to handle large amounts of data (throughput) and can therefore remain on battery

power for years. BLE is intended to provide considerably reduced power consumption, and low

cost while maintaining very similar communication range to standard Bluetooth; otherwise known

as, radio coverage.

The difference between Bluetooth and BLE is that there is no data throughput because

BLE does not support streaming data. After a connection has been established (paired), BLE

spends most of the time in sleep mode waiting to send/receive the next set of device status

information also known as ‘expose state”, such as the Battery Level. It has a data rate of 1Mbps

allowing for quick data transfer of small chunks or data packets (kB), exposing the state of the

device to retrieve that information. This status update interval rate delay can be programmed from

7ms up to 4s between data polls. Once the data has been transferred, a few milliseconds, the

BLE goes back to sleep to conserve battery; whereas, Bluetooth stays on the entire time

regardless if information is being transferred.

10

 Key Features of BLE that differ from standard Bluetooth [2]:

 The PHY or physical layer has parts that were derived from the Bluetooth Radio

 Advertising was altered to simplify the discovery & connection

 Asynchronous connection-less MAC: used for fast transactions with low latency, (e.g.

3ms from start to finish)

 The Interface model, Generic Attribute Profile (GATT), has been simplified between the

devices and software

 Asynchronous Client / Server architecture was redesigned to have the lowest cost and

ease of implementation

 BLE was designed for exposing state of devices and retrieving the information

o Data can be read at any time by a client, such as a Smartphone App

o It’s good at small, discrete data transfers

o Data can be triggered by local events

How much energy does BLE use?

Calculating the energy per transaction: the upper bound transaction period is roughly

3ms with a TX Power Amplifier drawing 10mW (65nm Si process) @ 1Mbit/s, this is 6.7mA for

1.5v battery. 0.01 W x 0.003 sec = 30 micro Joules

How long could a sensor last on a coin cell battery?

 An example battery: Lenmar WC357, 1.55v, 180mAh, $2-5.

 180mAh/6.7mA = 27Hr = 97200 seconds = 32.4M transactions

 Suppose this sensor sends a report every minute = 1440/day

 For just the BLE transactions, this is 15,000 days, which is equivalent to more than 40 yr.

 This far exceeds the life of the battery and/or the product

 Sensors could run on scavenged power if so desired, e.g. ambient light

Simply put, Devices have data and Web Services want this data, BLE provides the

technology to connect these two. With the rise in popularity, BLE is the new wireless radio

standard enabling the ‘Internet of Everything’. Bluetooth versus BLE, the IoE Difference: to read

more go to: http://www.csr.com/products/markets/internet-everything

http://www.csr.com/products/markets/internet-everything

11

3. Developing with Bluetooth Low Energy

BLE is an intelligent, application-friendly technology that is supported by every major OS.

While the power-efficiency of BLE makes it perfect for devices needing to run off batteries for long

periods of time, the real beauty of BLE is in its ability to work with an application on tablets,

smartphones and PCs that consumers already own [9].

Not only does the technology costs less than other wireless solutions on the market, but it

also offers a flexible developmental architecture for creating applications to bring everyday

objects like Physical activity monitors, Blood glucose monitors, and even the remote control into

the connected world and have them communicate with these applications [8].

Support for BLE (which is a subset of BT 4.0) is available on most major platforms, such

as, the versions listed below:

BLE Platform Support [10]

 iOS5+ (iOS7+ preferred)

 Android 4.3+ (numerous bug fixes in 4.4+)

 Apple OS X 10.6+

 Windows 8 (XP, Vista and 7 only support Bluetooth 2.1)

 GNU/Linux Vanilla BlueZ 4.93+

There are plenty of wireless solutions out there for developers like engineers and product

designers, but what makes BLE platform so exciting is that it's undoubtedly the easiest way to

design something that can communicate to any modern mobile platform out there (Android,

Windows phones, iOS, and etcetera), and particularly with Apple devices. BLE is the only

hardware design option available that doesn't require running around in circles to legally market

products for Apple iOS devices.

BLE makes it easy for designers to create solutions that will work with the billions of

Bluetooth enabled products already in the market today, which means developing with BLE is

only limited by the imagination.

12

The Technical explanation of the BLE Profiles and Protocol Stack could be listed in this

part of the report but would be extensive and outside the scope of the project. Being familiar with

the BLE architecture and function are not necessary to get started with prototyping and

referencing the project in this document. It is left up to the end-user to become familiar with the

underlying BLE Technology.

3.1. Bluetooth Low Energy Radio – The Physical Layer

Below is the RF Physical level of BLE, it is put here for comparison to Section 2.1.

The BLE Radio [2]:

 Frequency Hopping in BLE is the same adaptive frequency hopping commonly used for

all versions of Bluetooth technology. It minimizes interference from other technologies in

the 2.4 GHz ISM Band.

 Latency supports connection setup and data transfer as low as 3ms, for a short

communication burst before quickly tearing down the connection

 Larger modulation index gives better range than Bluetooth Basic Radio (~30 meters)

 40 Channels on 2 MHz spacing with frequency hopping applied to combat interference

and fading. Efficient multi-path benefits increase the link budgets and range. See next

Figure 3.1 for a graphical representation of the frequency spectrum used on BLE.

Figure 3.1: Bluetooth Low Energy - Frequency Channels [2]

13

Additional BLE Radio details [2] [10]:

 Range: ~150m open field. Increased modulation index provides a larger range > 100m

 Output Power: ~10mW (10dBm)

 Max Current: ~15mA

 Latency: allows an application to form a connection and then transfers the authenticated

data within a few milliseconds

 Topology: Star configuration allows for one-to-many connections

 Data Transfers: data packets (8 octet min up to 27 octets max) are transferred at 1 Mbps

 Connections: > 2 billion devices use a 32 bit access address on every packet

 Modulation: GFSK @ 2.4 GHz ISM Band for all Data Transfers

 Robustness: Adaptive Frequency Hopping, 24 bit CRC on all packets ensuring the

robustness

 Strong Security: 128bit AES CCM provide strong encryption and authentication of data

packets

 Sleep current: ~ 1µA

 Modes: Broadcast, Connection, Event Data Models Reads, Writes

 Sniffer: advanced sniff-sub rating achieves ultra-low duty cycles, conserving battery life

4. Project Summation

The ‘Project’, Bluetooth Low Energy for use with MEM Sensors, was to design a Low

power wireless solution to transmit MEM and other sensor data to a remote monitoring and / or

recording device such as a PC or Smartphone. This design is meant to be utilized as a BLE

reference platform for developers, designers, engineers and students who wish to implement a

wireless solution into their own project.

The design and Implementation of a wireless solution though it is a complex and

challenging task can be simplified through baseline reference designs and prefabbed hardware

already on the market. Following this project as a guideline can reduce these complexity and

challenges.

14

High level descriptions to sum up this project:

 Most design projects require the need to transmit sensors information to a receiving

station where wires or cables are not desired. Most sensors send out information about

the surrounding environment that corresponds to the function of that sensor.

 Sensors could be anything from bio-electronic devices, Human Interface Devices (HID),

to even wearable devices; all these sensors supply information or data of some kind. The

data just needs to get from point A to point B.

 See Figure 4.1 for a graphical representation or example:

o Here, some Environmental Sensors have been arbitrarily chosen to represent

sensors (data sources) that need to transmit the state of the surrounding

Environment; the type of transmitted data / information is based on the function

of the specific sensor.

o The BLE Transceiver for this task (project) is the CSR1010 Module, a readily

available solution that could quickly be introduced into an existing design as a

cable or wired replacement.

 Most sensors are I2C / SPI compatible, the module supports these

interfaces. If the desired sensor data has an analog signal output, a

readily available Analog to digital converter (ADC) IC can convert the

analog signal into a digital I2C or SPI format.

o The Smartphone allows the information transferred from the Module to be

displayed resident to that phone screen courteous of the APP Software

 The CSR1010 handles all the wireless transactions and acts as the

Slave Device to the Master Smartphone App.

Figure 4.1: Simplified Overview

15

 In Figure 4.2, represents the upper level project Development Hierarchy that shows the

levels of the design in an organized manner. It is recommended to the End-User Designer to

organize the project in a similar manner to maintain focus and a means to give content labels for

documentation.

 Hardware Level – CSR1010 Module and the Android Smartphone. See Section 4.1

 Software Level – The Service is provided by the GATT Service resident on the CSR1010

Module (Hardware) while the Client is the Android App Software. See Section 4.2

 Code development and deployment – A brief walk-through. See Section 4.3

Figure 4.2: Project Hierarchy

16

4.1. Hardware Level

The hardware provides the wireless connectivity to allow for the MEMS sensors to exhibit

the information or data to the display of the Android Smartphone.

 The hardware required for this reference design are necessary to reproduce the end

results discussed in this document. It will be the base design that can be modified to suit

the desire of the developer. See Section 5 – Hardware, for details and purchasing info.

o CSR1010 CSR µEnergy Starter Development Kit with the attached CSR

µEnergy CSR1010 Module board. Kit also comes with the SDK on CD_ROM

o Environmental Sensor Board

 The recommended Smartphone to be used with this Reference design is any Google

Nexus (5 or later), or Samsung Galaxy (S4 or later). One of these types of Smartphones

will be needed in Section 9 – Smartphone App.

4.2. Software Level

Software installations are required by both the CSR1010 Module and the Android

Smartphone to provide the development environments necessary for making modifications to the

reference designs; it is also used to deploy the source code onto the hardware. The following

platforms need to be installed and executed local to the machine that the hardware (CSR1010

Module and Smartphone) will be interfacing.

 CSR1010 Module design reference uses a custom software development platform

created by CSR. This platform is the CSR’s Integrated Development Environment (xIDE)

and provides the means to develop and deploy the Environment Sensor Application, also

known as the Firmware. Firmware is the Software that is installed onto the CSR1010

Module’s on-board electrically erasable programmable read-only memory (EEPROM) to

allow for the program to load upon power-on. This firmware provides the appropriate

Services to communicate with the MEMS sensors and relay that information to the Client

(Phone). The CSR xIDE has been bundled with reference source code applications,

board design files and documents into a single executable installer utility called the CSR

µEnergy Software Development Kit (SDK). See Section 4.2.1 for installation instructions.

17

 The Smartphone Application design reference uses software that was developed in Java

with the Android Studios SDK for the Android operating system and can only be deployed

to Android capable Smartphones. The Android Studios SDK is the development

environment that provides the platform to develop the java source code and deploy it

onto an Android Smartphone, also known as the ‘App’. When this ‘App’ is paired with the

Server (CSR1010 Module), it will be able to retrieve information as the Client and display

that information to the screen of the phone. In order for the Android Studios Environment

to function properly, the Java Kernel and Java development environment also needs to

be installed. This additional software needs to be installed before the Android Studio SDK

software is installed in order to get the Android development platform environment up and

running properly. See Section 4.2.2 for installation instructions.

4.2.1. Installing the SDK Software

 If you have already installed the software go to the next Section.

This section describes how to install the SDK software that came with the CSR µEnergy

Starter Development Kit for the CSR1010 Reference Design Module; supplied on the CD_ROM.

Alternatively, one could download the latest SDK Software directly from CSR’s secure website.

To gain access to CSR’s secure website, register at https://www.csrsupport.com/register.php.

This will give you access to all the reference designs, software and a wealth of information that is

not available on the CD_ROM. After access has been granted, the latest CSR uEnergy SDK

version can be download from these locations:

 https://wiki.csr.com/wiki/Main_Page

 https://www.csrsupport.com/uEnergy/Software

 https://www.csrsupport.com/download/56326/CSR_uEnergy_SDK-2.5.0.20.exe

It is also recommend to register and become a Bluetooth Special Interest Group (SIG)

member so that access can be made to their Developer Portal, documentation, forums and other

information to assist in Bluetooth development. https://www.bluetooth.org/login/register/

https://www.csrsupport.com/register.php
https://wiki.csr.com/wiki/Main_Page
https://www.csrsupport.com/uEnergy/Software
https://www.csrsupport.com/download/56326/CSR_uEnergy_SDK-2.5.0.20.exe
https://www.bluetooth.org/login/register/

18

Install and launch CSR µEnergy SDK executable. Follow the guidance provided by the

Install wizard. During the installation procedure, CSR recommends to accept the default

configuration options that are provided at every prompt.

a. If installer is from a CD: Run the CSR_uEnergy_SDK-x.x.x.x.exe installer application

from the \SDK directory of the CD-ROM (where x.x.x.x is the SDK version e.g. 2.3.0.31).

b. Otherwise run the downloaded single executable installer directly

When the installation process is complete, it is recommended to check the box ‘View the

Support Documentation’ before clicking the ‘Finish’ button to exit. An HTML based directory

system will allow one to peruse though the support documentation. This supporting information

can also be accessed from the home page of the xIDE tool once installed.

After the CSR uEnergy SDK utility completes the installation process, it will then be safe

to connect the Target board (CSR1010 CSR µEnergy Starter Development Kit) to the PC using

the mini-USB cable that came with the kit. The device drivers necessary to connect to the Target

board are automatically installed on the PC at that time.

Also, after the SDK installation process has concluded, the necessary reference design

files like the Environment Sensor Firmware source code and CS-314507-AN Environment Sensor

Application Note can be found in C:\CSR_uEnergy_SDK-2.x.x.x\apps\ directory. This will be the

directory that provides the workspace when the project is opened in the xIDE; those details are in

Section 6 – Firmware.

Note: During the project development cycle, chapters 5-7 of this document developed

into the CS-314507-AN_CSRuEnergyEnvironmentSensorApplicationNote and is available with

the CSR_uEnergy SDK installer, along with the Firmware source code. The files were originally

developed using the CSR uEnergy SDK, version 2.3.0.31 utility. These reference design files

were later bundled into subsequent revisions of the CSR uEnergy SDK. This means that there is

a chance that the CD_ROM that came with the CSR µEnergy Starter Dev Kit, purchased through

a third party vendor like Digikey, may have an SDK version 2.3 or older. Therefore, there is no

guarantee what the latest SDK platform will have these files available on the accompanying

CD_ROM. It is recommended to download the latest SDK from CSR.

19

4.2.2. Installing the Android Development Platform

 If you have already installed the software go to the next Section.

This section describes how to install the Android Development environment. One of the

most important parts of getting started with a new platform is setting up the environment.

Particularly for beginners, it’s important to take time here to follow each step methodically. Even if

the steps are followed perfectly, there may be some small issues that require some

troubleshooting later. Be sure to Google any issues that occur.

The Android development environment requires the following programs:

 Java SE (Standard Edition Kernel) Development Kit

 IntelliJ IDEA - Java Integrated Development Environment (IDE)

 Android Studios Software Development Kit (SDK)

The sequence of the software installation listed here is to prevent or at least minimize the

occurrence of any future issues. Do not open these programs until Section 8.1.1. If the software

is installed properly, there should be no issues with the Android development experience.

Java SE Development Kit (JDK)

The Java development kit provides the resources to compile the source code and

execute in a Java Runtime Environment. The Android Studios relies on this engine to process the

source code. It is recommended to download the latest version of software to minimize bugs and

security risks found in previous revisions.

To install the Java SE Development Kit, in this case jdk_8u40_windows_x64.exe, go to:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

Find the appropriate file that matches your computer then accept license agreement and

download JDK installer. Follow the prompts, recommend installing with the default directory.

Some recommended Java programming resources for Tutorials and reference guides:

 https://docs.oracle.com/javase/tutorial/

 http://code.tutsplus.com/tutorials/java-tutorial--mobile-2604

 http://www.tutorialspoint.com/java/java_basic_syntax.htm

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/javase/tutorial/
http://code.tutsplus.com/tutorials/java-tutorial--mobile-2604
http://www.tutorialspoint.com/java/java_basic_syntax.htm

20

Java IntelliJ IDEA IDE

Java IntelliJ IDEA is a free open source IDE for Android development and provides out-

of-the-box Android support that includes intelligent code editing assistance, on-the-fly code

analysis, built-in Android tools, and other features for a professional development of Android

applications [1].

Until around the end of 2014, the officially supported integrated development

environment (IDE) was Eclipse using the Android Development Tools (ADT) Plugin. As of 2015,

Android Studios, made by Google and powered by IntelliJ, is the official IDE; however,

developers are free to use others [2].

To install IntelliJ IDEA, go to: https://www.jetbrains.com/idea/download/

To begin download (free version), select the ‘Download Community’ button. Follow the prompts

by the install wizard; it is highly recommended to install with all suggested defaults.

For more information about the IntelliJ IDE: https://www.jetbrains.com/idea/help/android.html

Android Studios SDK

The Android Studio is a program that has all the tools necessary to make a professional

application. All of the files used in the development of the ‘app’ are managed by the IDE. The

IDE program, IntelliJ, is used to edit the source code files and to manage the projects. Follow this

hyperlink to directly download and install the Android Studio 1.1, bundled SDK 135.1740770 from

google: https://dl.google.com/dl/android/studio/install/1.1.0/android-studio-bundle-135.1740770-

windows.exe

Note: Warning, after installing the Android Studios Platform do not open the program

until after the other files listed above have been installed. This will prevent complications later.

For more information regarding Android Studios, go to these recommended websites:

 https://developer.android.com/sdk/index.html

 https://developer.android.com/tools/studio/index.html

 http://code.tutsplus.com/tutorials/getting-started-with-android-studio--mobile-22958

 Here is a good source of open source android applications worthy of investigating:

https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/help/android.html
https://dl.google.com/dl/android/studio/install/1.1.0/android-studio-bundle-135.1740770-windows.exe
https://dl.google.com/dl/android/studio/install/1.1.0/android-studio-bundle-135.1740770-windows.exe
https://developer.android.com/sdk/index.html
https://developer.android.com/tools/studio/index.html
http://code.tutsplus.com/tutorials/getting-started-with-android-studio--mobile-22958
https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

21

4.3. Code Development and Deployment

Here is the introduction to the topic of code development and deployment that will be

discussed in upcoming chapters. The following sections will give a brief description on the

interfacing of the hardware to the PC, the development environment, source code, functional

overview and the deployment instructions on compiling and downloading the application.

Firmware Development Environment: Starting with Section 6, will provide guidance to set up

and use the xIDE for the CSR µEnergy Starter Development Kit with the CSR1010 Module.

Android App Development Environment: Starting with Section 8, will provide guidance to

setup and use the Android Studios Environment for the Android Smartphone.

5. Hardware

The ‘Project’, Bluetooth Low Energy for use with MEM Sensors, defines a readily

available (COTS) reference design hardware that is meant to go along with this document. For

this particular design, the CSR µEnergy single-mode BLE solution was chosen (CSR uEnergy

BLE Development kit with the CSR1010 Reference module, and the MEMS Sensor Board). It is

highly recommended to acquire the mentioned reference design hardware as to gain a better

understanding of the concepts, designs and programming environments.

Important Note: Do not connect hardware before installing the appropriate software

Items recommended:

 Purchase CSR uEnergy BLE Development Kit and the necessary SDK from Digikey.com:

DK-CSR1010-10169-1A-ND: EVAL KIT BLUETOOTH LOW ENERGY ($99)

For additional information regarding the H13137V3 CSR µEnergy Starter Development

Kit, see Figure 5.2. Further documentation can be accessed at:

http://www.csr.com/products/bluetooth-smart-starter-development-kit.

 Purchase CSR's µEnergy Environmental MEMS Sensor Board from www.Digikey.com:

DK-ENV_SENS-10224-1A-ND: KIT ENERGY TEMP/PRESSUR4 SENSOR ($49)

For more information regarding the H13229V2 Environmental Sensor board can be seen

in Figure 5.3. Additional information can be accessed at:

http://www.csr.com/products/bluetooth-smart-environmental-sensor-board

https://www.digikey.com/product-search/en?keywords=DK-CSR1010-10169-1A-ND
http://www.csr.com/products/bluetooth-smart-starter-development-kit
https://www.digikey.com/product-search/en?keywords=DK-ENV_SENS-10224-1A
http://www.csr.com/products/bluetooth-smart-environmental-sensor-board

22

18mm

32kHz XTAL

PCB antenna

Single sided PCB mounting on a

double sided FR4 PCB ATMEL EEPROM

CSR1010

Passive filter

5.1. CSR µEnergy CSR1010 Module board

The CSR1010 is a Bluetooth SIG qualified design and is a single-mode Bluetooth low

energy solution. This qualification has also been extended to include the CSR1010 low-cost

module as seen below. For more information on the SIG qualification design listings visit the

website: https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=17702

 A feature of the single-mode is a lightweight Link Layer providing ultra-low power idle

mode operation, simple device discovery, and reliable point-to-multipoint data transfer

with advanced power-save and secure encrypted connections at the lowest possible cost.

Figure 5.1 shows the CSR µEnergy CSR1010 Module board.

Figure 5.1: CSR1010 Module [2]

For more information on the CSR1010 module, schematics, design walk-though and its

reference designs: See CS-218270-DD CSR1010 Hardware Design Review Template [19] on the

https://www.csrsupport.com/document.php?did=39334

Board design files (gerbers and etc) are also provided at this directory that a developer may use

as a reference in their own designs.

 The CSR1010 QFN IC Data Sheet can be located at C:\CSR_uEnergy_SDK-

2.4.5.13\doc\support\docs\ CS-231985-DS_CSRuEnergyCSR1010QFN.

 For more information regarding the onboard CSR1010 Module:

https://www.csrsupport.com/document.php?did=39359

https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=17702
https://www.csrsupport.com/document.php?did=39334
https://www.csrsupport.com/document.php?did=39359

23

68 mm

80 mm

CSR µEnergy

Development Kit

connection

Have jumper
removed while
programming the
EEPROM.
Replace jumper for
normal operation in
order to communicate
with all sensors.

Sensor enable/disable

CSR µEnergy

Development Starter

Kit connection

5.2. CSR1010 CSR µEnergy Starter Development Kit

Figure 5.2 shows the CSR µEnergy Starter Kit board with the solder mounted CSR1010

Module. CSR1010 kit part no. DK-CSR1010-10169

Coin Cell Battery Holder for

standalone operation

Chip Select (CSB) Jumper.

Remove after programming.

Power Source Jumper

Mini USB Connector

SPI Enable Jumpers

CSR1010 Module

Have jumpers in place

only while programming

the EEPROM.

Remove jumpers for

normal operation in

order to communicate

with the sensor board.

Figure 5.2: CSR µEnergy Starter Kit [2]

See CSR µEnergy Starter Dev Kit Quick Guide for more information on the CSR µEnergy Starter Kit.

5.3. Environmental Sensor Board H13229

Figure 5.3 shows the H13229 Environmental Sensor board that was developed for this

project. The board is now in production and is available: CSR part no. DK-ENV_SENS-10224-1A

For board design files, go to https://www.csrsupport.com if these files are not otherwise available.

 Figure 5.3: Environmental Sensor Board [1]

https://www.csrsupport.com/

24

The board features the following sensors:

 Temperature sensor - STMicroelectronics STTS751 sensor

 Pressure sensor - Saw Components T5400 sensor

 Humidity sensor - Sensirion SHT21 sensor

 Accelerometer sensor - Analog Devices ADXL362 sensor

 Magnetometer sensor - Aichi Steel AMI304E sensor

 Gyro/Angular Rate sensor - InvenSense ITG3050 sensor

 Figure 5.4 shows the Environment Sensor Board attached to the Starter Kit board using

the three small header sockets located on the right hand side of the board.

Figure 5.4: Environment Sensor Board Attached to the Starter Kit Board

Board Jumper configurations Use Cases:

• To program the Device (deploy to embed the firmware to EEPROM):

o To program the device, the jumpers need to be in place with the names: CSB

(SPI Chip Select), and SPI Enable

o Jumper on bottom of the SDK board needs to be configured in the USB position,

with USB cable tethered to computer

25

• To operate the Device after programming, including remotely / untethered (Battery)

o To operate the device, need to remove jumpers with the names: CSB (SPI Chip

Select), and SPI Enable

o Jumper on bottom of the SDK board needs to be configured in the Battery

position in order to operate remotely.

To power on the device:

 Ensure the power source is provided i.e. either the board is attached to a PC using the

mini-USB cable, or the coin cell battery is fitted.

 Ensure that the corresponding power source is selected, use power source jumper J16.

To power off the device, either:

 Remove the power source currently selected by jumper J16 i.e. by disconnecting the

mini-USB cable, or by removing the battery.

 Set the power jumper to a power source that is not provided. In Figure 5.2 shows the

jumper in the Battery position.

6. Firmware Development Environment

The reference source code applications, the supporting documentation and the CSR

xIDE were bundled with the CSR uEnergy SDK, as stated in Section 4.2.1. This reference

software (Environment Sensor) should now be located in C:\CSR_uEnergy_SDK-2.x.x.x\apps\

directory; provided that the default prompts were adhered to during the installation process.

The …\apps directory has a selection of reference applications that represent a large

variety of wireless technology currently being used out on the market. These resources can be

the basis for new product designs and remarketed with new capabilities.

Much like the Environment Sensor reference application used in this project, Developers

can make use of these other reference applications as the basis for developing custom

applications. These reference applications demonstrate basic functionality and conform to the

relevant Bluetooth Smart Profiles defined by Bluetooth SIG. Adopting this approach greatly

reduces the effort required to develop a final product application and allows software engineers to

concentrate on further developing additional features and functionality for new products.

26

This chapter describes the procedure for loading a reference application as a project in

the xIDE and then running that code on a hardware development platform. It is intended to

provide developers with the information required to begin using xIDE to develop applications with

the single-mode CSR1010 development platform.

Note: The xIDE provides a common programming environment with all the tools and

utilities required to write, build, run and debug code. Chapter 6 is only focused on developing

reference applications using xIDE, it is not intended to go into great detail of all the features and

the code. For more information on how to use the xIDE software, go to the SDK support docs:

C:\CSR_uEnergy_SDK-2.4.5.13\doc\support\docs\CS-212742-UG_CSRuEnergyXIDEUserGuide

6.1. Launch the xIDE

This section details how to launch / open the xIDE.

To launch the xIDE, click the xIDE shortcut on the desktop (if configured), or from

the Windows Start menu, chose the CSR µEnergy SDK folder, and then click on the CSR

µEnergy SDK (xIDE) to open the development environment.

A window should pop open that looks just like Figure 6.1.

Figure 6.1 – xIDE Platform after Launch

27

6.2. Open the Environment Sensor Project

This section details how to open the reference design application workspace in the xIDE

as a project. To open the environment_sensor workspace in a xIDE project:

1. Click on Project in the menu bar.

2. Select Open Workspace in the xIDE Project menu. An Open workspace window

appears.

3. Browse to the folder containing the example applications provided in the SDK.

e.g. C:\<CSR_uEnergy_SDK-Version>\apps\environment_sensor

4. Select the project file environment_sensor.xiw and click Open, as displayed in Figure 6.2

Figure 6.2 – Open Workspace

The remainder of Chapter 6 – Firmware Development Environment, will go over the

project files in the Environment Sensors Workspace (Section 6.3), how to customize some

application features (Sections 6.4) and how to build and deploy the new firmware application

(Section 6.5).

28

6.3. Application Files

This section of the document lists the files used for developing the Environment Sensor

Firmware Application with CSR’s xIDE. Point is not to cover any specific C coding guidelines. It is

assumed that the end-user referencing this design has at least the basic programming skills.

With the reference material, one does not have to be an expert C programmer to create

applications in the xIDE framework. A basic conceptual knowledge is helpful to get caught up to

speed. The reference source code is fairly simple and well documented; after reviewing the

reference source code, one should get a good understanding and be able to duplicate the results.

If there are some programming hurdles, more information about C-programming can be searched

on-line. Location list of components: C:\CSR_uEnergy_SDK-2.4.5.13\apps\environment_sensor

As shown in Figure 6.3, three folders make up the Application design files:

 C Files Folder: Section 6.3.1

 Header Files Folder: Section 6.3.2

 GATT db files Folder: Section 6.3.3

 The next three sub-sections will describe briefly the files that are in each folder.

Figure 6.3 – Project File Structure

29

6.3.1. Source Files

Source files are the .c files and have specified functions; where the action happens.

Table 6.2 listed here, are the source files with the purpose defined for each.

File Name Purpose

accelerometer.c Implements the interface functions for communicating with an

accelerometer.

accelerometer_emulator.c Implements functions for emulating an accelerometer.

adxl362_accelerometer.c Implements functions for communicating with the Analog

Devices ADXL362 accelerometer.

ami304e_magnetometer.c Implements functions for communicating with the Aichi Steel

AMI304E magnetometer.

battery_service.c Implements routines required for the Battery Service e.g.

handling read/write access indications on the Battery Service

attributes.

dev_info_service.c Implements routines required for the Device Information Service

e.g. handling read/write access indications on the Device

Information Service Attributes.

env_sensing_service.c Implements routines required for the Environmental Sensing

Service e.g. handling read/write access indications on the

Environmental Sensing Service attributes.

env_sensor.c Implements all the entry functions e.g. AppInit(),

AppProcessSystemEvent() and AppProcessLmEvent(). Events

received from hardware and firmware are first handled here.

This file contains handling functions for all the LM and System

events.

env_sensor_gatt.c Implements routines for triggering advertisement procedures.

env_sensor_hw.c Implements routines for hardware Initialization indicating

different states by blinking the LED.

gap_service.c Implements routines for the GAP Service e.g. handling

read/write access indication on the GAP Service characteristics,

reading/writing device name on NVM etc.

gatt_service.c Implements routines for the GATT Service.

gyroscope.c Implements interfacing functions for communicating with a

gyroscope.

gyroscope_emulator.c Implements functions for emulating a gyroscope.

humidity_sensor.c Implements interfacing functions for communicating with a

humidity sensor.

30

File Name Purpose

humidity_sensor_emulator.c Implements functions for emulating a humidity sensor.

i2c_comms.c Implements the I2C communicating routines.

itg3050_gyroscope.c Implements functions for communicating with the InvenSense

ITG3050 gyroscope.

magnetometer.c Implements interfacing routines for communicating with a

magnetometer.

magnetometer_emulator.c Implements functions for emulating a magnetometer.

nvm_access.c Implements NVM read and write access routines.

pressure_sensor.c Implements interfacing functions for communicating with a

pressure sensor.

pressure_sensor_emulator.c Implements routines for emulating a pressure sensor.

sht21_humidity_sensor.c Implements routines for communicating with the Sensirion

SHT21 humidity sensor.

stts751_temperature_sensor.c Implements routines for communicating with the

STMicroelectronics STTS751 temperature sensor.

t5400_pressure_sensor.c Implements routines for communicating with the Saw

Components T5400 pressure sensor.

temperature_sensor.c Implements interfacing functions for communicating with a

temperature sensor.

temperature_sensor_emulator.c Implements routines for emulating a temperature sensor.

Table 6.2: Source Files [13]

6.3.2. Header Files

Header files (.h) are the common shared files that contains stuff that is usually shared

with other parts of the code. Table 6.3 lists the header files and the defined purposes of each.

File Name Purpose

accelerometer.h Contains macro definitions for PIO number and function

prototypes for communicating with an accelerometer.

accelerometer_emulator.h Contains prototypes of accelerometer emulator functions

defined in accelerometer_emulator.c.

adxl362_accelerometer.h Contains prototypes of the Analog Devices ADXL362

accelerometer interfacing functions defined in

adxl362_accelerometer.c.

31

File Name Purpose

ami304e_magnetometer.h Contains prototypes of the Aichi Steel AMI304E magnetometer

interfacing functions defined in ami304e_magnetometer.c.

app_gatt.h Contains macro definitions, user defined data type definitions

and function prototypes which are being used across the

application.

appearance.h Contains the appearance value macro of the Environment

Sensor application.

battery_service.h Contains prototypes of externally referred functions defined in

battery_service.c.

battery_uuids.h Contains macro definitions for UUIDs of the Battery Service

and related characteristics.

dev_info_service.h Contains prototypes of the externally referred functions defined

in dev_info_service.c.

dev_info_uuids.h Contains macros for UUID values of the Device Information

Service.

env_sensing_service.h Contains prototypes of externally referred functions defined in

env_sensing_service.c.

env_sensing_uuids.h Contains macros for UUID values for the Environment Sensing

Service.

env_sensor.h Contains user defined data types and macros for NVM offsets.

env_sensor_gatt.h Contains prototypes of externally referred GATT routines

defined in env_sensor_gatt.c.

env_sensor_hw.h Contains user defined data types, macros for LED and buzzer

routine parameters and prototypes of externally referred

functions defined in env_sensor_hw.c.

gap_conn_params.h Contains macro definitions for fast/slow advertising, preferred

connection parameters, idle connection timeout values etc.

gap_service.h Contains prototypes of the externally referred functions defined

in gap_service.c.

gap_uuids.h Contains macros for UUID values of the GAP Service and

related characteristics.

gatt_service.h Contains prototypes of the externally referred functions defined

in gatt_service.c.

gatt_service_uuids.h Contains macros for UUID values for the GATT Service.

gyroscope.h Contains prototypes of externally referred functions defined in

gyroscope.c.

32

File Name Purpose

gyroscope_emulator.h Contains prototypes of emulator functions defined in

gyroscope_emulator.c.

humidity_sensor.h Contains prototypes of externally referred functions defined in

humidity_sensor.c.

humidity_sensor_emulator.h Contains prototypes of humidity sensor emulator functions

defined in humidity_sensor_emulator.c.

i2c_comms.h Contains prototypes of I2C communication functions.

itg3050_gyroscope.h Contains prototypes of externally referred functions defined in

itg3050_gyroscope.c.

magnetometer.h Contains prototypes of externally referred functions defined in

magnetometer.c.

magnetometer_emulator.h Contains prototype of externally referred magnetometer

emulator functions defined in magnetometer_emulator.c.

nvm_access.h Contains prototypes of externally referred NVM read/write

functions defined in nvm_access.c.

pressure_sensor.h Contains prototypes of externally referred functions defined in

pressure_sensor.c.

pressure_sensor_emulator.h Contains prototypes of externally referred functions defined in

pressure_sensor_emulator.c.

sht21_humidity_sensor.h Contains prototypes of externally referred functions defined in

sht21_humidity_sensor.c.

stts751_temperature_sensor.h Contains prototypes of externally referred functions defined in

stts751_temperature_sensor.c.

t5400_pressure_sensor.h Contains prototypes of externally referred functions defined in

t5400_pressure_sensor.c.

temperature_sensor.h Contains prototypes of externally referred functions defined in

temperature_sensor.c.

temperature_sensor_emulator.h Contains prototypes of externally referred functions defined in

temperature_sensor_emulator.c.

user_config.h Contains macros for customising the application including

selection of development boards, real sensor versus emulation

modes etc.

Table 6.3: Header Files [13]

33

6.3.3. Database Files

The xIDE uses database files, see Table 6.4, to generate attribute database for the

application. For more information on how to write database files, see the GATT Database

Generator User Guide, available to registered users at www.csrsupport.com.

 GATT Server Database provides handles, permissions and references to the LE

profiles/services

 Link Manager (LM) messages and the its database access routines

File Name Purpose

app_gatt_db.db Master database file which includes all service specific database

files. This file is imported by the GATT Database Generator.

battery_service_db.db Contains information related to Battery Service characteristics, along

with its descriptors and values. See Table 7.4.1 for more information

on Battery Service characteristics.

dev_info_service_db.db Contains information related to Device Information Service

characteristics, along with its descriptors and values. See Table

7.4.2 for Device Information Service characteristics.

env_sensing_service_db.db Contains information related to Environmental Sensing Service

characteristics, along with its descriptors and values. See Table

7.4.3 for Environmental Sensing Service characteristics.

gap_service_db.db Contains information related to GAP Service characteristics, along

with its descriptors and values. See Table 7.4.4 for GAP

characteristics.

gatt_service_db.db Contains information related to GATT Service characteristics, along

with its descriptors and values. See Table 7.4.5 for more information

GATT Service characteristics.

Table 6.4: Database Files

6.4. Customizing the Embedded Application

Any customization required at compile time or run time should be pre-determined during

the design phase. All compile time customizations should be made in the user_config.h file, while

the run-time configurations are done using the env_sensor_csr101x_A05.keyr file.

Initialization of the keys should be performed during application initialization and

propagated to the appropriate modules whenever required. The developer can easily customize

the application by modifying the parameter values in these files.

34

In sections 6.4.1 – 6.4.2, there are some critical file settings that need to be changed to

ensure that the starter development kit is working properly and is uniquely identifiable. These

three variables need to be modified:

 Bluetooth Address – Section 6.4.1

o Each Bluetooth device must have a unique MAC address, this Address is a

programmable Bluetooth/MAC Address, provided by the CSR. This section allows for

one to update / modify the Address from the given generic address given with the

reference application.

 Crystal Trim – Section 6.4.1

o Bluetooth Low Energy (BLE) is a timing-sensitive technology and requires crystal

trimming. The trimming values are programmable and are loaded during power-on or

reset event. This trimming provides the best performance with a stable frequency.

o A simple calibration process is done during production, the main frequency

calibration up to 1ppm @ 2.4GHz. This calibrated trim value is then marked on the

label of the Starter Development Kit. This section walks-through the process to

modify the file trim values that came with the CSR Starter Development Kit.

 Device Name – Section 6.4.2

o The reference firmware application provides a default local name that is transmitted

during the connection / pairing event, and is seen publically. This section gives the

option to change the local name as seen by others.

Additional application customizations can be implemented in later sections 6.4.3 – 6.4.6.

6.4.1. Configuring the Store Key File

The env_sensor_csr101x_A05.keyr file defines the Configuration Store Key values for the

specific type of target hardware, the CSR1010 Module on-board the CSR Starter Development

kit. This file loads into memory during run-time to configure the device’s MAC Address and crystal

trimming calibrated values. These Configuration Store settings are downloaded to the target

CSR1010 Module during the application deployment activities, see Section 6.5.3 for more details

on code deployment.

35

It is important to have the Bluetooth MAC Address and crystal trim settings in the

Configuration Store Key file match the settings on the Starter Development Kit label. Locate the

label on the outside of the box that the Starter Development Kit came in. The label will have the

S/N, address and crystal trim values as shown here.

Each Development kit has a sticker with a unique Bluetooth

Address and crystal trim value (decimal).

In the CSR uEnergy xIDE, click on the env_sensor_csr101x_A05.keyr to open the file in

the editor, as shown here in Figure 6.4.1. The values should be adjusted in the editor to match

the values on the label. Click on the ‘Save’ Icon in the menu to make the changes permanent.

Figure 6.4.1 – Configuration Store Key File

Update Bluetooth MAC Address

Determining the Address; this example shows the syntax of how to transfer the Bluetooth

address from the sticker label on the development kit into the .keyr file.

Note the endian-ness of the Bluetooth address in

the .keyr file: &BDADDR = 079F 5B04 0002

Update Crystal Trim Setting

Determining the crystal trim value; this example shows the syntax of how to transfer the

crystal trim value from the sticker label. Note that the value on sticker is in decimal, but is in

hexadecimal in the .keyr file: 31 = 0x1F

 &CRYSTAL_FTRIM = 001F

36

6.4.2. Configuring the Device Name

By default, all reference design applications provided have the ‘Device Name’ set to the

name of the reference design application. The device name for this project is set by default to

‘CSR Env Sensor’ in the gap_service.c file on line 58. The maximum length of the device name is

20 octets.

In the CSR uEnergy xIDE, click on the gap_service.c to open the file in the editor, as

shown here in Figure 6.4.2. The values should be adjusted in the editor to match the values on

the label. Click on the ‘Save’ Icon in the menu to make the changes permanent.

Figure 6.4.2 – Configuring the Device Name

When the end-user wants to connect and pair with a Bluetooth device, the letters in

single quotes, on line 58 (gap_service.c), form the ‘Local Name’ that will be broadcasted.

Here the device would be read on a Bluetooth capable device, CSR Env Sensor’ (default

configuration). If one were to change the name of the device, as seen by the public, these

characters will have to be modified.

For example, the S/N could be chosen as a unique designator as shown here. Replace

the word “Sensor” with the Serial Number from the board label.

 uint8 g_device_name[DEVICE_NAME_MAX_LENGTH+2] = {

 AD_TYPE_LOCAL_NAME_COMPLETE,
 'C', 'S', 'R', ' ',

 'E', 'N', 'V', ‘2', ‘9', ‘6', ‘6', ‘0', ‘4', '\0'};

37

6.4.3. Advertising

 The GAP allows for the application to establish the interactions between two devices and

configure the different modes of operation; such as, establish secure a connection, broadcast

data and perform other fundamental operations like advertising.

 In advertising mode, the BLE device periodically transmits advertising information.

Advertising intervals can be set in a range of 20 ms to 10 s. It specifies the interval between

consecutive advertising packets. Advertising is done sequentially on the three BLE available

channels.

Advertising Parameters

The application uses the parameters in Table 6.5 for fast and slow advertisements. The

macros for these values are defined in file gap_conn_params.h. These values have been chosen

by considering the overall current consumption of the device. See Bluetooth Core Specification

Version 4.1 [15] for advertising parameter range.

Parameter Name Slow Advertisements Fast Advertisements

Minimum Advertising Interval 1280 ms 60 ms

Maximum Advertising Interval 1280 ms 60 ms

Table 6.5: Advertising Parameters [13]

Advertisement Timers

There are two pre-set values for GAP settings (fast and slow modes). The application

enters the appropriate state on expiry of the advertisement timers. See Section 7.3 for more

information. The macros for these timer values are defined in file user_config.h.

Timer Name Timer Values

Fast Bonded Advertisement Timer Value 10 s

Fast Advertisement Timer Value 30 s

Slow Advertisement Timer Value 60 s

Table 6.6: Advertisement Timers [13]

38

6.4.4. Connection Parameter Update

The application requests the peer Collector to update connection parameters according

to its power requirements.

The application requests a connection parameter update as per the recommendations in

Bluetooth Core Specification Version 4.1 [Vol. 3] [15], Part C Section 9.3.9, or 30 seconds after

the peer device changes the connection parameters. See Figure 6.4.4 regarding the Connection

Parameter Update Procedure. Upon connection establishment with the Collector, the following

procedure is used to send a connection parameter update request:

1. Upon connection, the 5s TGAP(conn_pause_peripheral) timer is started.

2. Upon the expiry of TGAP(conn_pause_peripheral), the 1s TGAP(conn_pause_central) timer is started.

3. During this 1s TGAP(conn_pause_central) period, if the application receives a

GATT_ACCESS_IND LM event, the timer will be deleted and re-created. The receipt of

this event means that the service discovery procedure is in progress and application

should not request a connection parameter update.

4. Upon the expiry of TGAP(conn_pause_peripheral), a connection parameter update request will be

sent from the application.

The peer Collector may or may not accept the requested parameters. If it rejects the new

requested parameters, the application again requests an update after 30 seconds. The macro for

this time value is defined in file app_gatt.h and can be modified as required. If a user wants to use

a value less than 30 seconds, it has to be communicated to firmware by calling

LsSetTgapConnParamTimeout with the appropriate value. See Bluetooth Core Specification

Version 4.1 [Vol. 3] [15], Part C Section 9.3.9. After two failed attempts, the application tries to

update with the connection parameters another two times.

Note: This procedure requires all the characteristics to be declared as FLAG_IRQ in the

GATT database, gap_service_db.db. This has been done so that the application receives an

event GATT_ACCESS_IND for all the reads/writes requested by the Collector device.

file:///D:/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/AppData/Local/Microsoft/Windows/Documents%20and%20Settings/mb03/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/NJK5BRDM/group__LSA.html%23ga6ad96febcfe02dc938d9b563bd57b480

39

Slave: Check requested

connection parameters comply

with the slave preferred values

Procedure

complete

Yes

Slave: Wait for

TGAP(conn_pause_peripheral)
No

Slave: Wait for

TGAP(conn_pause_central)

Timer expiry

Slave: Received

GATT_ACCESS_IND

No /

Use Default parameters

Request Connection Parameter

update

Yes / Restart timer

Response from Master

Rejected Attempt <= 2

Yes /

Use default parameters

Start

TGAP(conn_param_timeout)

timer

Attempt > 2

AND <= 4

No

No

Yes

Procedure Start

Accepted

Figure 6.4.4: Connection Parameter Update Procedure [13]

6.4.5. Non-Volatile Memory

The application can use one of the following macros to store and retrieve persistent data

in either the EEPROM or Flash-based memory, depending on the type of memory designed to

interface with the CSR1010 Module. This particular reference design uses EEPROM.

 NVM_TYPE_EEPROM for I2C EEPROM

 NVM_TYPE_FLASH for SPI Flash

Note: The macros are enabled by selecting the NVM type using the Project Properties in

xIDE. This macro is defined during compilation to let the application know which NVM type it is

being built for. If EEPROM is selected NVM_TYPE_EEPROM will be defined and for SPI Flash

the macro NVM_TYPE_FLASH will be defined.

40

6.4.6. Environment Sensors – Macro Defined

Macros are defined in user_config.h to allow individual sensors to be enabled (or

disabled by commenting out) during the application image build time. At least one sensor must be

enabled. See Figure 5.3 for Environment Sensor Board Jumper Setting.

Temperature Sensor

Enabled by the INCLUDE_TEMPERATURE_SENSING macro. The application currently

implements a communication interface for the STMicroelectronics STTS751 sensor. The I2C

interface has been used for communicating with the sensor.

Note: The temperature sensor jumper on the Environmental Sensor board H13229V2

must also be fitted. The macro TEMPERATURE_SENSOR_EMULATION enables the sensor to

be emulated.

Humidity Sensor

Enabled by the INCLUDE_HUMIDITY_SENSING macro. The application currently

implements a communication interface for the Sensirion SHT21 sensor. The I2C interface has

been used for communicating with the sensor.

Note: The humidity sensor jumper on the Environmental Sensor board H13229V2 must

also be fitted. The macro HUMIDITY_SENSOR_EMULATION enables the sensor to be emulated.

Pressure Sensor

Enabled by the INCLUDE_PRESSURE_SENSING macro. The application currently

implements a communication interface for the Saw Components T5400 sensor. The I2C interface

has been used for communicating with the sensor.

Note: The pressure sensor jumper on the Environmental Sensor board H13229V2 must

also be fitted. The macro PRESSURE_SENSOR_EMULATION enables the sensor to be

emulated.

41

Angular Rate Sensor

Enabled by the INCLUDE_GYROSCOPE_SENSING macro. The application currently

implements a communication interface for the InvenSense ITG3050 sensor. The I2C interface has

been used for communicating with the sensor.

Note: The gyroscope sensor jumper on the Environmental Sensor board H13229V2 must

also be fitted. The macro GYROSCOPE_EMULATION enables the sensor to be emulated.

Accelerometer Sensor

Enabled by the INCLUDE_ACCELEROMETER_SENSING macro. The application

currently implements a communication interface for the Analog Devices ADXL362 sensor. The

SPI interface has been used for communicating with the sensor.

Note: The accelerometer sensor jumper on the Environmental Sensor board H13229V2

must also be fitted. The macro ACCELEROMETER_EMULATION enables the sensor to be

emulated. When using the CSR µEnergy Starter Kit board, the SPI ENABLE jumper closest to

the CSR1010 module and chip select jumper (CSB) must be removed immediately after

programming. See Section 6.5.3 for further jumper details.

Magnetometer Sensor

Enabled by the INCLUDE_MAGNETOMETER_SENSING macro. The application

currently implements a communication interface for the Aichi Steel AMI304E sensor. The I2C

interface has been used for communicating with the sensor.

Note: The magnetometer sensor jumper on the Environmental Sensor board H13229V2

must also be fitted. The macro MAGNETOMETER_EMULATION enables the sensor to be

emulated.

42

6.5. Compiling and Deploying the Application

By following the previous instructions, the Environment Sensor Application workspace

should have been loaded into the xIDE project and customized to the designer’s specifications; it

is now time to compile and deploy the firmware application to the CSR1010 Module hardware. In

the following three sections will give instructions on how to connect the hardware, compile the

project and then deploy the firmware application to the hardware. After these processes have

been completed, the hardware should be able to operate remotely (under battery power) and be

ready to communicate with the Android Smartphone.

6.5.1. Connecting the Hardware to the PC

 If not already done so, open the box of the CSR μEnergy Development Kit and remove

the board from the anti-static packaging. Below in Figure 6.5.1 should be the contents of the box.

Figure 6.5.1: Content of the CSR uEnergy Development Kit [11]

 Before the CSR μEnergy Development Kit can be attached to the PC make sure that the

jumpers are populated and configured in the default positions as the image shown in Figure

6.5.2, which is necessary for the deployment (programming) of the CSR1010 Module EEPROM

external memory device. These jumper configurations are necessary for the steps in Sections

6.5.3. For further information on connecting the development hardware to the PC, refer to the CS-

308421-UG CSR uEnergy Starter Dev Kit Quick Start Guide that is provided on the CD_ROM.

43

 It is now safe to connect the CSR µEnergy CSR1010 Development (Target) board to the

PC using the USB cable provided in Development Kit, as shown in Figure 6.5.2.

Figure 6.5.2: Development Kit with USB cable [11]

 Upon connecting the USB cable between the Target board and the PC, the device

drivers will automatically be installed on the PC as seen in Figure 6.5.3. These drivers were

installed during the installation of the CSR µEnergy SDK application.

Figure 6.5.3: Pop-up Window Verifying Driver Installation

6.5.2. Building the Application

This section goes into the details of how to compile the project. The xIDE is used for

developing application software to run on CSR µEnergy chips and is a program that transforms

source code written in C programming language into a binary computer language (the target

language), also known as object code. This process is referred to as 'building' or 'compiling' the

code.

44

The xIDE’s build process combines the application code, GATT database code and

optional 8051 PIO Controller assembly code contained within the project, together with the

firmware library to create the binary image for the CSR1010 Module’s external EEPROM. Below

in Figure 6.5.4, is a flow diagram of the xIDE build process.

Configuration GATT Application Firmware & 8051 Assembly

 Figure 6.5.4: xIDE Build Process [12]

Linker

. elf

gennvsimage

. img

e 2 cmd

EEPROM
Download

objcopy

. xuv & . fwnvs . xuv

Configuration
Download

CSR μ Energy

target device

User Libraries

. a
archive files

. s
xap asm

. o
object file

. asm
assembly files

Code

csconfigcmd

Settings

. keyr
CS configuration file

Compiler

Code

. h , . c
source files

. o
object files

Database

. db files

gattdbgen

. h , . c
source files

as 31
Assembler

8051 _ to _ s

as XAP
Assembler

. byte

45

Here in, Figure 6.5.5, describes how to begin building the active project Environment

Sensor Application Project using the xIDE program. To begin the build, select the Build Active

Project from the xIDE Build menu or press the F7 key.

Figure 6.5.5: Selecting Build Active Project

This builds all the files included in the Active project from the current Workspace using

the selected configuration into a binary image for the Target board.

Figure 6.5.6: Build Output Window

If the compilation was successful or an error occurred, it would be displayed here in the

Build Output window, highlighted in a green box as shown in Figure 6.5.6.

46

6.5.3. Deploying the Application

In the previous section the CSR µEnergy xIDE was used to build the Environment Sensor

application. This section describes how the Environment Sensor application (binary image) is

transferred (downloaded) to the CSR1010 Module board through the CSR1010 CSR µEnergy

Starter Development board. This embeds the Application into the EEPROM (RAM) for later

retrieval. See the CSR µEnergy xIDE User Guide for details steps on coding and programming:

C:\CSR_uEnergy_SDK-2.4.5.13\doc\support\docs\CS-212742-UG_CSRuEnergyXIDEUserGuide.

Here is what needs to be done to deploy the Environment Sensor App to the device:

With the project already compiled with the xIDE, select Run from the Debug menu or press the

F5 shortcut key to begin the deployment process; as seen in Figure 6.5.7. The xIDE Software

platform will program the hardware by downloading the firmware application as described in this

project, otherwise known as deployment.

Figure 6.5.7: Selecting ‘Run’ to Begin Deployment

47

 The Target board must remain connected during the Project deployment. Upon a

successful programming, a message in the Debug Output Window will print to the screen

‘Download Successful’, as seen in Figure 6.5.8.

Figure 6.5.8: Project Successfully Deployed to the Hardware

 After the EEPROM has been programmed (software downloaded), the xIDE debugger

will continue to be running while the Environment Sensor application is running on the hardware,

demonstrated by a flashing LED (Light Emitting Diode). When the LED starts flashing, the

hardware will begin advertising or broadcasting its Bluetooth presence as available for connecting

/ pairing, known as discovery mode. The device will stop advertising after a couple of minutes,

causing the device to go into sleep mode, in order to conserve battery if configured to operate in

battery mode. When this time-out event occurs, the device name will no longer be visible to any

searching Bluetooth capable phones. The button (SW1) can be connected up to PIO11 with a

jumper (not supplied) to re-enable adverts or repower the PCB by disconnecting / reconnecting

the USB cable to restart the CSR1010 Module back into discovery mode.

 Modifications to the timer values, as defined in the env_sensor_hw.c file, can be used to

control the advertising and LED blink rate.

48

 Note: The LED will stop flashing by exiting the debug mode, either by selecting the ‘Stop

Debugging’ from the Debug menu or by pressing the Shift F5 shortcut key, as seen in Figure

6.5.9. Alternatively, could exit the xIDE program and unplug the CSR uEnergy Programmer Board

from the USB Cable.

Figure 6.5.9: Stop Debugging

 The Firmware has successfully been deployed to the CSR1010 Module’s EEPROM on-

board Memory. Now that there is no need to keep the xIDE software running, exit from the xIDE

program and disconnect the USB cable from the CSR uEnergy Programming board and the PC.

 The CSR uEnergy Programming board must be properly configured, with jumpers, to

disable the SPI capable USB Host Controller device from interfering on the SPI bus used by the

CSR1010 Module to communicate with the MEMS sensors. Once the Programming board is

arranged correctly, the Environment Sensor daughter board can be attached and ready to

operate with the CSR1010 Module. The following steps will provide the necessary configurations:

 Insert coin cell battery into the coin cell battery holder.

 Remove the SPI_ENABLE jumpers to disable the USB Host controller chip used for

programming / downloading the firmware into the CSR1010 EEPROM.

 Move the power source jumper (J16) from USB mode to Battery mode

49

 As previously listed, if the configuration steps were followed correctly then the CSR

uEnergy Programming board should look exactly like Figure 6.5.10.

 Figure 6.5.10: Programmer Board Arranged for Sensor Board

 The Programmer Board Component Descriptor in Figure 6.5.11 provides the component

layout for the CSR uEnergy Programming board. It is displayed here to accompany Figure 6.5.10

to give insight into the board components and jumper settings needed for various functions.

 Programmer Board Component Descriptor

• MOD1 – CSR1010 Module

• MOD2 – Reserved CSR1011 Module

• J100, J101, J102 Headers used to

interface with the sensor board

• J16 – option to run board power from

USB interface or directly from battery

for complete wireless

• LK2, LK10, LK11, remove jumpers

after EEPROM is programmed

Figure 6.5.11: Programmer Board Component Configurations

 Refer to H13137V3_Component_Layout_VAR0a.pdf for further details.

50

 Connect the H13229V2 – Environmental Sensor board to the H13137V3 Programmer

Board as shown in Figure 6.5.12. The CSR1010 Module and MEMS Sensor board will now be in

free running mode, meaning that all activity is now battery operated and can operate remotely

free from the USB tethered power.

Figure 6.5.12: Final Board Configuration

Upon booting (loading the application into RAM) puts the CSR1010 Module w/sensors

into discoverable mode. Discoverable mode is when the device broadcasts its availability. Also,

pressing the button on the starter development kit board can reset the device to restart the

discovering mode. The environmental data is received by the Environmental Collector part of the

Environmental Profile which allows the Android APP to discover the Environmental Sensor and

connect/pair with it. This will be discussed later in Section 9 – Android Development Environment.

 Note: As stated earlier, the device will stop advertising after a couple of minutes so will

not be visible to any searching phones.

After the connection is established, the Android APP can be used to read data from each

of the sensors on the board, the user can experiment with the sensors to verify that data is being

collected. Full source code for the Environmental Sensor is provided with the CD_ROM that came

with the CSR uEnergy Development kit. It is possible to customize the software for further

evaluation, or use the reference examples as the basis for further development of a new

application to suit one’s own needs.

51

7. System Architecture / Project description

This section describes the Environment Sensor application and provides guidance to

developers on how to customize this on-chip application with the CSR1010. The Environment

Sensor application is the firmware that is programmed into the EEPROM for later retrieval. Upon

power-up (booting) the firmware is loaded into RAM (memory) to be used by the CSR1010 to

communicate and retrieve data from the external sensors.

As mentioned earlier, the Environment Sensor App Note was created to accompany the

Firmware and can be found in the same directory as Environment Sensor application source

code. This chapter references this App Note since it goes into a little more detail than what is

listed here, it covers the state machine, and portions of the firmware, memory usage, event status

flags to just name a few.

7.1. Environment Sensor Application Overview

The Firmware or Embedded Software known here as the Environment Sensor

Application has two main functions called Sensing Profile and Sensing Service. These

requirements are determined by the Bluetooth SIG and must meet their specifications in order to

meet the BLE standard compliance.

The Environment Sensor application outlined in this section correlates with the

Environmental Sensing profile and Environment Sensing Service requirements as specified by

the Bluetooth SIG. See the following sub-section for further details.

7.1.1. Environmental Sensing Profile

The Environmental Sensing Profile is used to enable a data collection device to obtain

data from an Environmental Sensor that exposes the Environmental Sensing Service.

The Environment Sensor application supports the Environmental Sensing Profile. For

more information about the Environmental Sensing Profile, see Environmental Sensing Profile

Specification version 1.0. Can be downloaded at https://www.bluetooth.org/en-

us/specification/adopted-specifications

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=294797
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=294797
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications

52

This profile enables a Collector device to connect, interact and obtain data from an

Environment Sensor that exposes the Environmental Sensing Service.

• Supports mandatory features only

− Only reads supported characteristics

• Includes additional custom CSR characteristics

− Gyroscope, Accelerometer, Magnetometer data

− Read the calibration registers and add appropriate calibration writes/updates

− PD to show the 'direction' from true north (calculated from X,Y,Z) in degrees / min

• Modes supported

− Automatically read data at regular intervals

• Configuring from UI (100ms, 1,5,10,30,60s)

Temperature: 25 *C

Pressure: 80500 Pa

Humidity: 42%

Environmental Collector Environmental Sensor

Environmental Collector

reads environment data

1

2

Environmental Sensor

sends environment data

Figure 7.1: Environmental Sensing Profile [13]

The Environmental Sensing Profile defines two roles, described in Table 7.1.

Role Description

Environmental

Sensor

Environmental Sensor is a device that exposes the Environmental Sensing

Service.

Environmental

Collector

Environmental Collector is a device that receives environment data from an

Environmental Sensor.

Table 7.1: Environmental Sensing Profile Roles [13]

53

7.1.2. Application Topology

The Environment Sensor application implements the Environmental Sensing Profile in

Environmental Sensor role, see Table 7.2; the responsibilities are described in Table 7.3.

Role

Environmental

Sensing

Profile

GAP Service
GATT

Service

Device

Information

Service

Battery

Service

GATT Role GATT Server GATT Server GATT Server GATT Server GATT Server

GAP Role Peripheral Peripheral Peripheral Peripheral Peripheral

Table 7.2: Application Topology [13]

Role Responsibility

GATT Server It accepts incoming commands and requests from the client and sends

responses, indications and notifications to the client.

GAP Peripheral It accepts connection request from the remote device and acts as a slave in the

connection.

Table 7.3: Responsibilities [13]

For more information about GATT server and GAP peripheral, see Bluetooth Core

Specification Version 4.1 [15].

7.1.3. Environmental Sensing Services

The Environmental Sensing Profile mandates or requires only the Environmental Sensing

Service to be present. The GAP and GATT are mandated or required to be present by Bluetooth

Core Specification Version 4.1 [15]. The Device Information and Battery Information are both

optional, see Figure 7.2.

The CSR Over-the-Air (OTS) Upgrade Application Service allows updating the CSR1010

module (firmware) independently without having to use the CSR µEnergy SDK programming

board. This is a new feature that was recently added to the xIDE but was not utilized for this

project and will not be discussed moving forward.

Note: If the user is interested in implementing CSR OTA then refer to the CS-304564-

AN-4 Adding OTA-Update Support to an Application.pdf describes the changes that must be

made to a CSR μEnergy application to add support for CSR Over-the-Air Update (OTAU)

functionality.

54

The application exposes the following services:

 Environmental Sensing v1.0

 Device Information v1.1

 Battery v1.0

 GAP

 GATT

 CSR OTA Upgrade Application Service (not used)

For more information on Environmental Sensing, Device Information and Battery

Services, see Environmental Sensing Service Specification Version 1.0 [16], Device Information

Service Specification Version 1.1 [18] and Battery Service Specification Version 1.0 [17]. For

more information on GAP and GATT Services, see Bluetooth Core Specification Version 4.1 [15].

See Section 7.4.6 for more information on characteristics supported for each service.

GATT Service

Environmental Sensing
Service

GAP Service

Environmental Collector Environmental Sensor

CSR OTA Upgrade Application

Service

GATT Service

GAP Service

Device Information Service

Battery Service

Figure 7.2: Primary Services [13]

This design fulfils the role of the Environmental Sensor in the Environmental Sensor

Profile (Ref Bluetooth SIG - ESS_V1.0.0.pdf) and allows environmental data to be exposed.

55

7.2. Firmware Code Overview

This section is meant to be a quick code overview for functionality only. It placed here to

give a little more depth to the previous section 7.1 without having to dissect each file line by line.

The behaviour of the Firmware (Embedded) Application described in this section adheres

to the BLE Profile/Service Specifications standard from Bluetooth SIG, as mentioned in the

previous section. The Environmental Sensor Application was designed to meet these Specific

Compliances:

 Environmental Sensing Profile (v1.0) – Sensing role

 Environmental Sensing Service (v1.0)

 Battery Service (v1.0)

 Device Information Service (v1.1)

The next several sections in this chapter cover some important functions that provide

further customization to the design.

7.2.1. AppInit()

This function is invoked when the application is powered on or the chip resets and

performs the following initialization functions [13]:

 Initializes the application timers, application data structures and hardware

 Configures GATT entity for server role

 Resets the white list to remove any filtering of discovered devices. See Bluetooth Core

Specification Version 4.1 [15] for more information on white list

 Configures the NVM manager to use I2C EEPROM or SPI flash

 Initializes all the services

 Reads the persistent store

 Registers the attribute database with the firmware

56

7.2.2. AppProcessLmEvent()

This function is invoked whenever a Link Manager (LM)-specific event is received by the

system. The following events are being handled in this function [13]:

7.2.2.1. Database Access

 GATT_ADD_DB_CFM: This confirmation event marks the completion of database

registration with the firmware. On receiving this event, the application starts

advertisements.

 GATT_ACCESS_IND: This indication event is received when the remote Collector tries

to access an ATT characteristic managed by the application.

7.2.2.2. LS Events

 LS_CONNECTION_PARAM_UPDATE_CFM: This confirmation event is received in

response to the connection parameter update request by the application. The

connection parameter update request from the application triggers L2CAP connection

parameter update signaling procedure. See Bluetooth Core Specification Version 4.1

[15] for more information on the procedure.

 LS_CONNECTION_PARAM_UPDATE_IND: This indication event is received when the

remote central device updates the connection parameters. On receiving this event, the

application validates the new connection parameters against the preferred connection

parameters set and triggers a connection parameter update request if the new

connection parameters do not comply with the preferred connection parameters set.

7.2.2.3. SMP Events

 SM_KEYS_IND: This indication event is received on completion of the bonding

procedure. It contains keys and security information used on a connection that has

completed the short term key generation. The application stores the received diversifier

(DIV) and Identity Resolving Key (IRK), if the collector device uses resolvable random

address, to NVM. See Bluetooth Core Specification Version 4.1 [15] more information on

keys.

57

 SM_SIMPLE_PAIRING_COMPLETE_IND: This indication event indicates that the pairing

has completed successfully or otherwise. In the case of a successful completion of the

pairing procedure, the sensor application is bonded with the collector and bonding

information is stored in the NVM. The bonded device address will be added to the white

list, if it is not a resolvable random address.

 SM_DIV_APPROVE_IND: This indication event is received when the remote connected

device re-encrypts the link or triggers encryption at the time of reconnection. The

firmware sends the diversifier in this event and waits for the application to approve or

reject the encryption. The application shall reject the encryption if the bond has been

removed by the user or diversifier does not match with the diversifier that is stored during

the bonding procedure.

 SM_PAIRING_AUTH_IND: This indication is received when the remote connected device

initiates pairing. The application can either accept or reject the pairing request from the

peer device. The Environment Sensor application does not mandate bonding and

accepts the pairing request from the peer device.

7.2.2.4. Connection Events

 GATT_CONNECT_CFM: This confirmation indicates that the connection procedure has

completed. If it has completed successfully, the application moves to connected state. If

the directed advertisements have timed out the application start fast advertisements

otherwise it moves to idle state and waits for user activity.

 GATT_CANCEL_CONNECT_CFM: This confirmation event confirms the cancellation of

connection procedure. When the application stops advertisements to change advertising

parameters or to save power, this signal confirms the successful stopping of

advertisements by the application.

58

 LM_EV_CONNECTION_COMPLETE: This event is received when the connection with

the peer device is considered to be complete and includes the new connection

parameters.

 LM_EV_DISCONNECT_COMPLETE: This event is received on link disconnection.

Disconnection could be due to link loss, locally triggered or triggered by the remote

connected device.

 LM_EV_ENCRYPTION_CHANGE: This event indicates a change in the link encryption

state.

 LM_EV_CONNECTION_UPDATE: This event indicates that the connection parameters

have been updated to a new set of values and is generated when the connection

parameter update procedure is initiated by either the master or the slave. These new

values are stored by the application for comparison against the preferred connection

parameters set, see Section 7.3.4.

7.2.3. AppProcessSystemEvent()

This function handles the system events such as a low battery notification or a PIO

change. It currently handles two system events [13]:

 sys_event_battery_low: This event is received whenever the battery voltage crosses the

threshold battery voltage. If connected and notifications are configured, the application

notifies the battery level to the collector device.

 sys_event_pio_changed: This event indicates a change in PIO value. The application

configures events on certain PIOs. If the PIO value changes and the application receives

a PIO change event then it will take the appropriate action.

59

7.3. Internal State Machine

APP_FAST_ADV

APP_DISCONNECTINGAPP_SLOW_ADV

APP_CONNECTEDAPP_IDLE

APP_DIRECTED_ADV

APP_INITAPP_INIT

Database registration

complete, app bonded
Database registration

complete, app not bonded

Directed advertisement timeout

Extra Long button press/

removes bonding

App bonded and

link loss occurs

Remote collector

connects

Disconnection complete

and app is not bonded

Disconnection complete

and app is not bonded

Remote collector

disconnects

Short Button press,

app is not bonded

OR

Extra Long button

press/ removes

bonding

Remote collector

initiated

connection fails

Read requests processed

on Environmental Sensing

Service characteristics

Slow

advertisement

timer expires
Short button

press and app is

bonded

App disconnects

OR

Extra Long button

press/ removes

bonding

Fast

advertisement

timer expires

Extra Long

button press/

Removes

bonding

Link loss occurs and

application is not bonded

Remote collector

connects

Remote collector

connects

Figure 7.3: Environment Sensor (state transition) Diagram [13]

The application has five internal states including three advertising sub-states as

described in sections 7.3.1 to 0 [13].

7.3.1. APP_INIT

When the application is powered on or the chip resets, it enters this APP_INIT state, the

application initializes GATT server functionality and other various modules while in this state. It

registers GATT database with the firmware and waits for the database registration confirmation.

60

7.3.2. APP_IDLE

In this state, the application is not connected to any Collector device and responds to

only button presses.

 On a short button press, less than 2 seconds, the application triggers advertisements and

enters the APP_ADVERTISING state.

 A long button press, greater than or equal to 2 seconds and less than 4 seconds, is

handled in a similar way to short button press.

 On an extra-long button press, greater than or equal to 4 seconds, the application

removes bonding information, clears the white list and enters the APP_ADVERTISING

state.

7.3.3. APP_ADVERTISING

The application enters General Discoverable Mode and beeps twice to indicate the start

of advertisements. If speaker is implemented. It is not implemented in this reference design.

 Sub state APP_DIRECTED_ADV: If the application is bonded to a Collector device,

advertisements start from this state. In this state, the application sends directed

advertisements. If the bonded Collector connects to it, the application stops

advertisements and enters the APP_CONNECTED state. If the Directed Advertisement

Timeout happens before connection establishment, the application moves to

APP_FAST_ADV state.

 Sub state APP_FAST_ADV: The application sends Undirected Connectable

advertisements in this state and uses fast advertising parameters. The application

behaves differently if it bonded or not.

 The application is bonded: The application starts a timer of value

FAST_BONDED_ADVERT_TIMEOUT_VALUE and uses a white list to filter out

the unwanted connection requests. Upon expiry of the timer, it disables the white

list and sends advertisements for

(FAST_CONNECTION_ADVERT_TIMEOUT_VALUE-

FAST_BONDED_ADVERT_TIMEOUT_VALUE) seconds.

61

 The application is not bonded: The application does not use white list and sends

advertisements for FAST_CONNECTION_ADVERT_TIMEOUT_VALUE

seconds.

 If a Collector connects to it, the application stops advertisements and enters the

APP_CONNECTED state. If the fast advertisement timer expires before connection

establishment, the APP_SLOW_ADV sub state is entered. See section 0 for more

information on advertisement timer value.

 Sub state APP_SLOW_ADV: The application sends Undirected Connectable

advertisements in this state and uses slow advertising parameters. If a remote device

connects to it, the application stops advertisements and enters the APP_CONNECTED

state. If the slow advertising timer expires before connection establishment, the

APP_IDLE state is entered.

 An extra-long button press in any of the advertisement states deletes the bonding

information and starts fast advertisements in APP_FAST_ADV state. Removal of pairing

is indicated by three beeps, if speaker is implemented.

 A short button press or a long button press does not have any effect in this state.

 Note: See Volume 3, Part C, section 9 of Bluetooth Core Specification Version 4.1 [15]

for more information on General Discoverable modes, Directed and Undirected Connectable

advertisements.

7.3.4. APP_CONNECTED

The application enters this state on connection establishment with a Collector device.

The application processes all the Read Requests received in this state. A short button press is

indicated by a short beep (100 ms) in this state and a long button press is indicated by a long

beep (500 ms). The application does not perform any action on a short button press or a long

button press. An extra-long button press in this state removes the pairing and disconnects the

link.

 Note: A speaker is not installed nor configured to work in this design. Therefore no beep

can be audible. The beep feature is not used, but mentioned here for completeness.

62

7.3.5. APP_DISCONNECTING

The application enters this state upon initiating a disconnection. The application waits for

a disconnect confirmation for the disconnection initiated by it. When it receives the disconnect

confirmation, it checks if it is bonded to any Collector.

 If the application is bonded to a Collector, it starts directed advertisements and enters

APP_DIRECTED_ADV state.

 If the application is not bonded, it starts fast advertisements and enters the

APP_FAST_ADV state.

 On an extra-long button press, the application removes the bonding information and

starts fast advertisements in APP_FAST_ADV state.

7.4. Service Characteristics Database

Characteristics are managed by either the firmware or the application. The characteristics

managed by the application have flags set to FLAG_IRQ in the corresponding database files.

When the remote connected device accesses that characteristic, the application receives a

GATT_ACCESS_IND LM event that is handled in the AppProcessLmEvent()function defined in

the env_sensor.c file. See Section 7.2.2 for more information on the handling of the

GATT_ACCESS_IND LM event. For more information on flags, see the GATT Database

Generator User Guide, available to registered users at www.csrsupport.com.

7.4.1. Battery Service Database

For information on the Battery Service, see Battery Service Specification Version 1.0 [17].

For information on Security permissions, see Bluetooth Core Specification Version 4.1 [15].

Characteristic

Name

Database

Handle

Access

Permissions
Managed By

Security

Permissions
Value

Battery Level 0x0034 Read, Notify Application Security Mode

1 and Security

Level 2

Current battery

level

Battery Level-

Client

Configuration

Descriptor

0x0035 Read Application Security Mode

1 and Security

Level 2

Current client

configuration for

Battery Level

characteristic

Table 7.4.1: Battery Service Database [13]

63

7.4.2. Device Information Service Database

For more information on the Device Information Service, see Device Information Service

Specification Version 1.1 [18]. For more information on Security permissions, see Bluetooth Core

Specification Version 4.1 [15].

 Note: All the characteristics have been declared as FLAG_IRQ but they are still being

handled by the firmware. This has been done for the connection parameter update procedure.

See Section 6.3.3 for the connection parameter update procedure.

Attribute

Name

Database

Handle

Access

Permissions
Managed By

Security

Permissions
Value

Serial

Number

String

0x0018 Read Firmware Security Mode

1 and Security

Level 2

BLE-ENV-001

Hardware

Revision

String

0x001a Read Firmware Security Mode

1 and Security

Level 2

<Chip Identifier>

Firmware

Revision

String

0x001c Read Firmware Security Mode

1 and Security

Level 2

<SDK version>

Software

Revision

String

0x001e Read Firmware Security Mode

1 and Security

Level 2

<Application

Version>

Manufacturer

Name String

0x0020 Read Firmware Security Mode

1 and Security

Level 2

Cambridge Silicon

Radio

PnP ID 0x0022 Read Firmware Security Mode

1 and Security

Level 2

Vendor Id source

is BT

Vendor Id is

0x000a

Product Id is

0x014c

Product Version is

1.0.0

Table 7.4.2: Device Information Service Database [13]

64

7.4.3. Environmental Sensing Service Database

For more information on the Environmental Sensing Service, see Environmental Sensing

Service Specification Version 1.0 [16]. For more information on Security permissions, see

Bluetooth Core Specification Version 4.1 [15].

 Note: Acceleration and Angular Rate are CSR custom defined characteristics for the

Environmental Sensing Service. See Section 7.4.6 for more information on these characteristics.

Attribute

Name

Database

Handle

Access

Permissions
Managed By

Security

Permissions
Value

Temperature 0x0025 Read Application Security Mode

1 and Security

Level 2

<Measured

Value>

Humidity 0x0027 Read Application Security Mode

1 and Security

Level 2

<Measured

value>

Pressure 0x0029 Read Application Security Mode

1 and Security

Level 2

<Measured

value>

Acceleration 0x002b Read Application Security Mode

1 and Security

Level 2

<Measured

Value>

Angular Rate 0x002d Read Application Security Mode

1 and Security

Level 2

<Measured

Value>

Magnetic Flux 0x002f Read Application Security Mode

1 and Security

Level 2

<Measured

Value>

Magnetometer

Calibration

0x0031 Write Application Security Mode

1 and Security

Level 2

1 or 0

Table 7.4.3: Environmental Sensing Service Database [13]

65

7.4.4. GAP Service Database

 For more information on GAP service and security permissions, see Bluetooth Core

Specification Version 4.1 [15].

Attribute

Name

Database

Handle

Access

Permissions
Managed By

Security

Permissions
Value

Device

Name

0x0011 Read, Write Application Security Mode

1 and Security

Level 2

Device name.

Default name:

CSR Env Sensor

Appearance 0x0013 Read Firmware Security Mode

1 and Security

Level 1

General Tag

0x2000

Peripheral

preferred

connection

parameters

0x0015 Read Firmware Security Mode

1 and Security

Level 1

Min connection

interval - 10 ms

Max connection

interval - 10 ms

Slave latency -

100

Connection

timeout - 6 s

Table 7.4.4: GAP Service Database [13]

7.4.5. GATT Service Database

 For more information on GATT, see Bluetooth Core Specification Version 4.1 [15].

Attribute

Name

Database

Handle

Access

Permissions
Managed By

Security

Permissions
Value

Service

Changed

Characteristic

0x0003 Indicate Application Security Mode

1 and Security

Level 2

Handle Range

Service

Changed

Client

Characteristic

Configuration

Descriptor

0x0004 Read, Write Application Security Mode

1 and Security

Level 2

Current Client

Characteristic

configuration for

Service

Changed

characteristic

Table 7.4.5: GATT Service Database [13]

66

7.4.6. Custom Defined Characteristics

 The following are CSR custom defined characteristics for the Environmental Sensing

service, see Table 7.4.6.

Characteristic UUID Size Description

Acceleration
0x0000aaa1d10211e19b23

00025b00a5a5
6

Instantaneous acceleration value in units

of 0.01 m/s2.

Two octets per axis are being reported in

order (X-accel, Y-accel, Z-accel)

Angular Rate
0x0000aaa2d10211e19b23

00025b00a5a5
6

Instantaneous angular rate in units of
degree/s.

Two octets per axis are being reported in

order (X-angular Rate, Y-angular Rate, Z-

angular Rate)

Magnetometer

Calibration

0x0000aaa4d10211e19b23

00025b00a5a5
1

Writing a value of 1 will start calibration

and a value of 0 will stop calibration of the

magnetometer

Table 7.4.6: CSR Custom Characteristics [13]

8. Android Development Environment

 This chapter will provide guidance to setup and use the Android Studio Environment for

the Android Smartphone. This will be just a top level software discussion to introduce the reader

or end-user to the programming environment in order to get started. Keeping the project in

perspective, a software code review would go beyond the scope of this document. The review

would be too lengthy to have a reasonable discussion in this report. It is left to end-user to

become familiarized with the file script structure and function. This chapter describes the

procedure for configuring the Android Studio IDE, loading the reference application as a project

and then running or deploying that code onto the hardware platform.

 For convenience of those interested in duplicating or expanding on the software that is

mentioned in this document the programming environment setup instructions have been included

in Section 8.1.2. It is intended to provide developers with the information required to begin

developing applications on the Android OS platform. The reference application source code

discussed there could greatly reduce the effort required to develop a final product application and

spring board the software engineer toward developing other new products.

67

8.1. Setting Up the EnvironmentApp Project

 From Section 4.2.2, the Java Resource Environment, IntelliJ IDE, and the Android

Studios (SDK), the files required for the Android development environment to operate were the

installed. Before jumping into the Android Studio with the EnvironmentApp project, the Android

development environment needs to be set up and configured with the proper version of the SDK

Components like the API Tools / Libraries, drivers and other environment settings.

 In Section 8.1.1 will go into details on how to configure the Android SDK Environment

 In Section 8.1.2 will go into details on how to configure the project workspace before

importing the directory into the Android Studio in Section 8.2

 In Section 8.1.3 will go into details how to prepare the Smartphone Hardware to interface

with the PC

8.1.1. Preparing the Android Studio Environment

 In order for the Android Studio development environment to be able to operate properly,

with the EnvironmentApp reference design, the environment must be in the same configuration

that was used with the original EnvironmentApp Project. This requires installing the correct API

Tools and other supporting files using the SDK Manager.

 From the Windows Start menu, chose the Android Studio folder and then click on

the Android Studio to open the development environment.

 The Android Studio Setup Wizard window will appear, select SDK Manager.

 Select to install Android API’s and components for versions 19 – 22 only

Figure 8.1.1.1: Android Setup Wizard

68

 The Download Components window will appear, as in Figure 8.1.2.2. Continue to follow

the prompts until the Wizard has completed. Exit the program and move on to Section

8.1.2.2 to configure the Environment Workspace directory before importing the source

code into the project.

Figure 8.1.2.2: Downloading Components

8.1.2. Configuring the Project Workspace

 This section will step through how to configure the workspace file structure. The

EnvironmentApp project source files should have been resourced with this document, if so

browse through the project folder directory to locate: …\Phone App\Software\EnvironmentApp

 Copy the EnvironmentApp folder and all its content to a local directory, for example

C:\EnvironmentApp\

 Be careful, “Your workspace”, could be any folder, however it is really important to keep

the directories, ‘EnvironmentApp/app’ and ‘EnvironmentApp/btsmart/’, in the workspace

has the same hierarchy.

o BTSmart Library v1.1 is used for the code development, it is CSR’s Reference

library meant to be used will all CSR BLE devices

o The app directory provides the EnvironmentApp source code

69

 The Workspace should now be ready to be import into the Android Studio. In Section

8.2, will cover the procedure for bringing up the Android Studio environment.

 If the EnvironmentApp project source files were not resourced with this document, an

aalternative approach would be to create a new Android Project in the same manner that was

done originally for this project. The original EnvironmentApp was developed using CSR

reference code (RunningSpeedDemo application) and BTSmart Library. The application was

further developed in Android ADK using Eclipse IDE structure. Unfortunately, issues required

upgrading to the modern Android Studio with IntelliJ. Information on this issue can be read in

Section 10 of this document. The remainder of this subsection will mention briefly the

configuration steps to get started straight from CSR’s website.

Since the EnvironmentApp project was developed using the Android Studio with IntelliJ,

the project files structure is different. This means that there needs to be some minor tweaks to the

source code files before importing the workspace directory into Android Studio.

Note: In retrospect it would have been better to have just started with the basic

skeleton source code provided by CSR. There had to be many modifications to

RunningSpeedDemo source code that using the skeleton reference source code would have

sped up development.

Here are the steps to get started with a new reference design:

 Download the source_package.zip, CSR’S Android design reference applications, from:

http://www.csrsupport.com/µEnergy/ExampleApplications

o This skeleton code can then be extended to create new BT Smart applications,

such as the EnvironmentAPP in this project.

o Along with this skeleton code, the zip file also contains other example CSR

µEnergy apps designed to work with the on-chip applications included within the

CSR µEnergy SDK 2.x. These other projects are: Heart Rate Collector, Cycling

Speed, Running Speed

o Be sure to delete the BTSmart Library that comes with the zip file. It is no longer

useful.

https://developer.android.com/sdk/index.html
http://www.csrsupport.com/µEnergy/ExampleApplications

70

 BTSmart Library v1.1 was used for this code development, it has since been updated to

BTSmart Library v1.2 with the old library no longer available. The latest reference library can be

downloaded from CSR’s Website:

https://www.csrsupport.com/download/54696/BtSmartLibrary_UseWithAndroidOTAUAppv1.2.zip

 It is left to the reader, using this reference design, to become familiar with the files and

the Android development environment. Information presented here is to provide an additional

design option.

 Open the ZIP file and extract the folders. Delete the BTSmart Library folder.

 Open the ZIP and extract the BTSmart Library v1.2. Open the directory and copy the

btsmart folder to the Reference demo folder. The \btsmart and \app should be in the

same folder.

 Edit the RunningSpeedDemo\project.properties file lines 13 -17, reads as Figure 8.1.2.3:

Figure 8.1.2.3: File Edit

 Now it is time to launch the Android Studio program and import the Reference design as

seen in Figure 8.1.2.4. Afterwards, proceed to Section 8.2 to continue with the tutorial.

Figure 8.1.2.4: Importing Project

Note: Google also provides a good resource walk-through to get started:

http://developer.android.com/training/basics/firstapp/creating-project.html

https://www.csrsupport.com/download/54696/BtSmartLibrary_UseWithAndroidOTAUAppv1.2.zip
https://www.csrsupport.com/download/54696/BtSmartLibrary_UseWithAndroidOTAUAppv1.2.zip
http://developer.android.com/training/basics/firstapp/creating-project.html

71

8.1.3. Connecting the Hardware to the PC

 The first thing, before connecting the hardware (Android capable Smartphone) to the PC,

is to enable the USB Debugging mode under the Developer options menu on the phone.

The USB Debugging mode allows for the ‘App’ file to be transferred from the Android Studios IDE

to the Smartphone. On Android 4.2 devices and higher, the Developer options screen is hidden

by default. This enabled feature is required for the Android Studio IDE to link, communicate and

download the application file to the smartphone. For convenience, a quick walk-through on

configuring the Android phone is listed here. The same procedure follows for Nexus phones.

1. Go to the ‘Settings’ menu, it can be located by tapping the Apps folder icon on the main

screen of the Phone display; form there select the ‘Settings’ Icon.

2. In the ‘Settings’ Menu, select the ‘More’ tab, then scroll down to the bottom of the screen

and tap the ‘About device’ at the bottom.

3. Scroll down and tap ’Build number’ seven times until a message saying 'Developer

mode has been enabled'.

4. Press the back button then select the ‘More’ tab again. The ‘Developer options’, under

System Manager, should now have appeared; press it.

5. In the ‘Developer options’ menu, click on the box to enable USB debugging. Select okay

after the prompt. The Developer settings should now been configured on the Galaxy S4.

 Note: A detailed instruction on how to enable USB debugging is available through

 Samsung website: http://www.samsung.com/au/support/skp/htg/16385#none

 The second thing, before connecting the hardware (Android capable Smartphone) to the

PC, is to download the Samsung Android. The file can be downloaded from here:

http://developer.samsung.com/technical-doc/view.do?v=T000000117

Follow the prompts during the install, as seen in Figure 8.1.3.1.

http://www.samsung.com/au/support/skp/htg/16385#none
http://developer.samsung.com/technical-doc/view.do?v=T000000117

72

Figure 8.1.3.1: USB Driver for Windows

 Once the phone is setup to be in USB Debugging mode and the Samsung USB Drivers

for Windows has been installed, it is now the time when the Smartphone can be connected and

tethered to the PC through the USB cable. Later, this method will be used by the Android Studios

to download the application file to the phone. Figure 8.1.3.2 is a picture of the hardware.

Figure 8.1.3.2: Configure Phone for Android Development Environment

 Connect the Samsung Galaxy S4 or equivalent Smartphone to the PC with a USB cable.

73

8.2. Launch Android Studio IDE

This section shows how to use Android Studio to build the application envapp.apk file.

Reopen the Android Studio Program from the Start Menu, same as earlier. This time, select

Import project (Eclipse ADT, Gradle, etc.). A pop-up window will appear, browse through the

Windows directory and select the top level folder to import into the directory; as shown in Figure

8.2.1.

Figure 8.2.1: Importing Project

 The Android Studio program will attempt to build the project as it opens the development

environment, a window should appear as in Figure 8.2.2.

Figure 8.2.2: Building Project

74

Once the project is on the computer, open the Android Studio and import the project.

 From the Windows Start menu, chose the Android Studio folder, and then click

on the Android Studio to open the development environment.

 A window should pop open that looks just like Figure 8.3.

 From the wizard ”Welcome to the Android Studio”: select “Import project (Eclipse

ADT, Gradle, etc.)”.

 From “

Figure 8.2.3: Install Missing Components

The application is compatible from Android 4.4.2 (API 19) thru to the latest. Run the

Android SDK Applications and load the Project demo the Thumb drive location:

 //Phone App/Software/EnvironmentApp/app

75

It is recommended to use the latest version of Android Studio along with the latest SDK from

Android – Android 5.1 (API 22). From Android Studio: Tools > Android > SDK Manager or select

the icon on the top toolbar.

Once the project is on the computer, open Android Studio and import the project.

 From the wizard “Welcome to Android Studio”: select “Import project (Eclipse ADT,

Gradle, etc.)”.

 From “File > Import Project…”

Then select the top root of the project which is the “EnvironmentApp” folder – the icon could be

the same file named “build.gradle”:

After the Smartphone Device has been configured for deployment using the Android Device

Monitor in the Android Studio IDE, move onto Section 8.4.1 – Building the Application.

76

8.3. Application Files

 This section provides only list of files that make up the EnvironmentAPP project and

should be contained within the workspace on the PC, these files are provided as is. It is up to the

Engineer referencing this design to become familiar with the structure and function of the files and

how to implement them into other designs.

8.3.1. Java Files

 The Java files provide the behind the scenes processes where the action happens.

These files work with with the XML files to deliver to the display screen the User interface.

File Name Purpose

BatteryActivity.java Provides Battery Data to update on the display, extended from the

LinkedActty.java. Parallels BatteryActvity.xml file.

BtSmartLink.java Creates one connection to the BTSmart device, requests all the

available services & characteristics.

BtSmartLinkListener.java Allows the BTSmart link class to communicate with the different

activities which implement this interface.

BtSmartUuid.java Enumerated type for Bluetooth Smart UUIDs.

CircleImageView.java Sets the icon that will be shown on the button to scan for available

BTSmart devices.

DevicesListAdapter.java This class extends the ArrayAdapter to the ScannedDevice

EnvironmentActivity.java This class allows to display the information for characteristics from

the Environmental Sensing service. Parallels

activity_environment.xml file.

FabButton.java Sets the progress to indeterminate or not, shows the animation ring

FabUtil.java Creates the starting angle animator for the circleview

InformationActivity.java This class displays the Device information, an extension of the

LinkActivity.java. Parallels the activity_information.xml file

LinkedActivity.java This class is the BTSmart Library abstract activity to extend this

application. This class implements all instances needed on each

activity and manages their life cycle depending on what is active.

MainActivity.java Provides three button action controls, parallels the MainActivity.xml

ProgressRingView.java States the progress of the progress bar.

Utils.java Contains all useful methods for this application, like signal strength

Table 8.3.1: App Java Files

77

8.3.2. XML Files

 The XML files handle the graphical user interface (GUI). These files determine the look

and feel of the User experience and where to place the data on the screen when the ‘App’ in

running on the Smartphone. See Table 8.3.2 below for the list of XML file used in this project.

File Name Purpose

activity_battery.xml Shows the battery level

activity_connection.xml Shows a list of connected devices

activity_environment.xml Provides a window to place the environment sensor data on

the display.

activity_information.xml This class allows to display the information for characteristics

activity_main.xml Contains the Layout for the FragmentActivity Values

AndroidManifest.xml Presents essential information about the app to the Android

system

Attrs.xml Defines the attributes throughout the different elements

Colors.xml Resource that carries a color value

values\dimens.xml Displays part of the GUI graphics

values-sw600dp\dimens.xml Sets the values for 600dp size

values-w820dp\dimens.xml Sets the values for 820dp size

flat_button_background.xml Gives the graphic for a button

flat_button_text_color.xml Sets the color for the text on the button

list_devices_item.xml Creates the emulated phone body size

selector_flat_buttons.xml Button movement animation

Strings.xml Used to control what is printed on the device

styles.xml Specifies properties such as height, padding, font color, font

size, background color. Default

tile_battery.xml Creates the battery backdrop color. Default

tile_device.xml Creates the device backdrop color. Default

tile_environmental_sensing.xml Creates the environmental sensing backdrop color. default

widget_fab_button.xml Used to fabricate buttons

Table 8.3.2: App XML Files

78

8.3.3. BTSmart Library Files

 The BTSmart Library is provided by CSR to be used with the CSR1010 hardware. It

handles the communication process and simplifies the overall development effort. Table 8.3.3.

File Name Purpose

ApplicationTest.java Tests the application using the java script

BluetoothStateBroadcastReceiver.java Used to inform about Bluetooth connected/disconnected state

BtSmartConnectedActivity.java Provides the list of available devices

BtSmartConnectionActivity.java Extends BtSmartConnectionActivity from the BTSmart

Library, starts the Bluetooth LE scan and provides the list of

available devices.

BtSmartRequest.java A simple data structure to be used in the request queue.

BtSmartService.java Service for communication with a Bluetooth Smart device.

CharacteristicHandlersContainer.java A class to hold handlers that want to receive notifications

about characteristics.

ParcelCharacteristic.java An interface whose characteristics can be written to and

stored for parcel services

ParcelService.java Provides an array that stores information in a parcel

ScannedDevice.java Data object used to manipulated BTSmart devices found on

Scan

ScanResultsActivity.java Activity used to scan for remote Bluetooth Smart devices,

show the results in a list, and perform an action

ServiceRegistrationFailedException.java Looks for a serialVersionUID and creates a fail exception

UUIDHelper.java List of available Service names

activity_scan_results.xml Shows results of the scan

AndroidManifest.xml Presents essential information about the app to the Android

system

colors.xml Resource that carries a color value

dimens.xml Sets the dimensions for the GUI graphics

list_row.xml Used by the activity scan to list the available devices seen by

the Bluetooth

scan_button_style.xml Detects the button style

values\styles.xml Specify properties such as height, padding, font color, font

size, background color. Default

Table 8.3.3: BTSmart Library Files

79

8.4. Compiling and Deploying the Application

 By following the previous instructions, the EnvironmentApp Project should have been

loaded into the Android Studio IDE and modified to the designer’s specifications (optional). The

next step is to compile and deploy the Android application to an Android OS capable

Smartphone, such as, a Samsung Galaxy S4 or equivalent. In the following two sections will give

instructions on how to configure and compile the project, and then deploy the Android application

to the Smartphone through the USB cable. After these processes have been completed, the

Android Smartphone should be ready to communicate with the CSR1010 Module with the

attached MEMs Sensors board that was developed in Section 6.

8.4.1. Rebuilding the Application

 In Section 8.2, the EnvironmentApp project will automatically be built after it is imported

into the Android Studio. If there are no issues or modifications to the project then there is no need

to ‘Rebuild Project’ and can move onto Section 8.4.2. If changes were made then select from the

Toolbar Menu → Build → Make Project or use shortcut key (ALT B) as seen in Figure 8.4.1.

Figure 8.4.1: Building the ‘App’

If the compilation was successful or an error occurred, it would be displayed in the ‘Event

Log, display window at the bottom right location of the Android Studio, as shown in Figure 8.4.2.

80

8.4.2. Deploying the Application

 Make sure the Smartphone is running and logged into with the main screen visible.

Select Run → Run ‘app’ from the toolbar menu or shortcut keys (Shift 10) to begin the

downloading process of the envapp.apk file, that was created in Section 8.2 and again in

Section 8.4.1, deploying the file to the Android phone.

Figure 8.4.2: Running of the ‘App’

 Android Studios will begin deploying the envapp.apk code to the Smartphone after the

Run ‘app’ was selected. If the procedures from Section 8.1.2 was successful and the phone

name appears in the device window (bottom left in Figure 8.4.2) of the Android development

environment then a pop-up window, Figure 8.4.3, will appear and ask to choose an available

device or give an option to just run an emulation of a predefined phone model to run simulations.

81

 Select the available Device and press okay to begin the download.

Figure 8.4.3: Choose Device Pop-up Window

 If all went well, the window console should say built successful and that the Session ‘app’

running as in Figure 8.4.4

Figure 8.4.4: Session ‘app’ running

82

 In the previous figure, a green bubble pops up in the lower left corner of the Android

Studio saying Session ’app’ running. By clicking the ‘4 Run’ tab or pressing (Alt 4) with the

keyboard, the running display console window will appear, as seen in this Figure. This will notify

if there are any issues while the ‘APP’ is running on the Smartphone.

Figure 8.4.5: Running App Verified

 The screen on the Smartphone should now be displaying the running application that was

just deployed. Power cycle the CSR1010 Development Environment Kit from Section 6.5.3 to put

the device in discovery mode. The Smartphone should see in the Bluetooth available devices

‘CSR Env Sensor’ or some other device name given in Section 6.4.

 The results should be the same as the Demonstration seen in Section 9.2. The next

Section 9.1 will go through a brief tour of the xml files that make up the Graphical User Interface

(GUI) as seen from the Android Studio program.

83

9. Phone App Overview

This section discusses a top level connection, pairing and data transfer summary of how

the Smartphone and hardware interact as demonstrated in the following flowchart. The

remaining portions of this section described the Graphical User Interface (GUI) from the software

that was deployed on the Android Phone, known as the ‘App’.

Basic Flowchart
Description：

1、Bluetooth in mobile phones and devices must be

turned on and matched successfully to be ready for
data exchange.

2、Here the "Device" refers to all of CSR's Bluetooth-

enabled devices. Specifically for this design, CSR1010
module with the Sensors: Temperature, Humidity,
Accelerometer, and etc, but can also be used for other
sensors like heart rate monitor, blood pressure meter,
blood glucose meter, safety equipment, thermometer,
counter and so on.

3、The transmitted data received from the device

includes: the device information, battery information, the
sensor data and so on.

4、APP can monitor, get and display device parameters

and associated measurement data.

Figure 9.1 Basic Flowchart

84

The following screenshots are from the emulator provided by the Android SDK. If the

code is properly loaded into the Android SDK, with the IntelliJ Platform, then the results should be

identical. The following pages are the App display screens as it should look like after the

software has been deployed on to the Smartphone. The images and GUI Interfaces are defined in

the XML files at this directory location:

//Phone App/Software/EnvironmentApp/app/src/main/res/layout

activity_connection.xml

This image is the emulated Splash Screen as seen

by the user during a pairing / connecting event. It

displays the Title of the Android Application and all

Bluetooth devices in range.

During this event, if not already active, the

Smartphone will request for Bluetooth activation;

afterwards it will attempt to locate the Bluetooth

capable device.

By selecting the item (device of interest) the phone

will attempt to mate with that device, in this case

will be the CSR Env Sensor (BLE device) as

labelled in the firmware (CSR1010 module) of the

device.

Figure 9.2 Activity Connection

If pairing is successful, then the ‘activity_main’ Screen will be displayed. See next page.

85

Here, the Smartphone Client was able to obtain a direct connection with the Bluetooth

Low Energy Server and thus went onto the main user interface screen called ‘main’.

The ASU Logo and label at the bottom of the Splash Screen is from the original ASU

design project from EEE590: Reading and Conference. This Thesis on ‘Bluetooth Low Energy for

use with MEM Sensors’ is a derivative of that project.

 activity_main.xml

This image is the emulated Splash Screen as seen

by the user after pairing / connection has been

established.

Three buttons are available that gives the user the

choice to read from the hardware CSR1010 BLE

module and the MEM Sensors.

 ‘Device Information’ as read back from the

firmware (CSR1010 module).

 ‘Battery’ as read back from the CSR1010

module battery monitor.

 ‘Environment Sensing’ as read back from

the MEM Sensors connected to the

CSR1010 module.

Figure 9.3 Activity Main

86

Here the Device information is displayed. This information or data is retrieved from the

GATT Service through the BTSmart Library files and manipulated or controlled through the

corresponding Activity Java files.

 Device information displayed through the activity_information.xml is from the file

InformationActivity.java

activity_information.xml

 Emulated Splash Screen after ‘Device

Information’ button is selected.

 The fields are populated with the data that

was read from the running service,

‘BtSmartService’.

 The data displayed is the info stored in the

firmware upon programming, except for the

Signal Strength.

Figure 9.4 Activity Information

87

 Here the Battery information is displayed. This information or data is retrieved from the

GATT Service through the BTSmart Library files and manipulated or controlled through the

corresponding Activity Java files.

 Battery information displayed through the activity_battery.xml is from the file

BatteryActivity.java

 activity_battery.xml

 Emulated Splash Screen after ‘Battery’

Button is selected.

 The field is populated with the data as

read from the CSR1010 battery Monitor

through the ‘BtSmartService’.

 The data displayed is the measured

Voltage level of the onboard Coin Battery.

 It will display 100% if either the hardware

jumper is configured to USB mode with

port externally powered or while the

battery is fully charged in Battery mode.

Figure 9.5 Activity Battery

88

This is the main Environment Sensing Display screen where the data from the sensors

are shown and updated at a predetermined interval rate, configured in the

EnvironmentActivity.java file. This file controls how the data is utilized once received from server

(hardware). The file can be located in this directory:

//Phone App/Software/EnvironmentApp/app/src/main/java/com/csr/envapp/activities

To change the data polling rate, in milliseconds, modify this portion of the routine:

 private static final int TIMER_REQUEST_CHARACTERISTICS = 1000;

 activity_environment.xml

Emulated Splash Screen after the ‘Environment

Sensing’ button is selected. Here five MEM Sensors

are updated every second through the BtSmartLink

notifier:

 Accelerometer: displays in m/s2 on the X,Y, Z

 Gyrometer: displays in °/s on the X,Y, Z axes

 Humidity: displays in % relative moisture

 Temperature is displayed in °C

 Magnetometer data is displayed in both 2D and 3D

and is relative to magnetic north, calculated as

Magnetic Declination with 360° of rotation

o A calibration button allows for recalibration to

magnetic north, if necessary

 Pressure data is displayed in PA = Pascal

 Figure 9.6 Activity Environment

If the End-user or Developer adhered to the instructions as described in previous

sections, they should get the same results, look and feel as displayed in this section.

89

9.1. Results of Prototype Implementation and Demo

The Prototype development and Implementation were successful, with the expected End

results. Please see the following sections for a personalized account:

Section 9.1: Are the demonstrations

 This section provides links to locations for some operational demos of the BLE

Environmental MEM Sensors designed for this project.

Section 9.2: covers the Phone App

 The screen emulations support the Graphical User Interface on the Android (19) App on

the Samsung Galaxy S4, as seen in the video.

Section 9.3 and 9.4: discuss bug fixes, workarounds and issues

 Some issues did arise during development but through workaround were able to get a

functional end product.

9.2. Environmental Sensor Board demonstration

The goal of the demo is to prove to the audience that this BLE design is real and

performs as advertised in this document. There are two demos in this section that demonstrate

the performance of the Environmental Sensor Board design and implementation.

The first Demo runs a CSR Project Demonstrator program local to the PC and sends

commands through the USB cable to read back the Sensor data. The video is a USB tethered

demonstration only. As of July 9, 2015, Simon Finch, our CSR Market Consultant, placed a video

up on www.youtube.com giving an Environmental Sensor Board demonstration on the platform

developed for this project.

 Option 1: can Watch the Video at CSR: http://www.csr.com/products/bluetooth-smart-

environmental-sensor-board

 Option 2: watch video on YouTube: https://www.youtube.com/watch?v=_CL8re2f0-A

http://www.csr.com/products/bluetooth-smart-environmental-sensor-board
http://www.csr.com/products/bluetooth-smart-environmental-sensor-board
https://www.youtube.com/watch?v=_CL8re2f0-A

90

The second Demo was developed for this project to demonstrate the wireless interface

through an Android Smartphone. Currently working on getting this software and a user guide up

on the CSR support domain / site for future referencing, but may take quite some time depending

on scheduling.

Demonstration:

 Search the directory for the ‘BLE_Environment_Sensors_Demo.mp4’ that accompanied

this document. The Video demonstrates that all requirements have been satisfied, according to

the design:

 Remote MEM Sensors data is received by Android S4 device and displayed on screen

 The Phone’s Bluetooth connects/pairs with the BLE CSR1010 device

 A run through of each button and corresponding displayed info as sent from the BLE

CSR1010

 Full manipulation along the MEMs Sensor board axes to demonstrate that the

Environment MEM sensors are reporting on the Android App display as expected.

o Accelerometer

 Data changes with orientation of x, y, z axis

o (Gyro) Angular rates

 Data changes with orientation of x, y, z axis

o Temperature and Humidity

 Data changes as a breath is applied

o Pressure

 Data displayed is the Atmospheric pressure

o Magnetometer

 Data will change as the Environment Sensor is rotated 360° with respect

to Magnetic North

 Calibration feature allows to reposition the sensor to magnetic North

91

9.3. List of Code Debugs and Fixes

Some issues or otherwise inconveniences were encountered during the development of

the Phone App software. A list is provided here for completeness.

 A connection issue, as it concerns the application, when the device is already paired

o Spent considerable amount of time debugging this issue. Upon disconnect the

Android OS Stack would not unpair with the Hardware, therefore if additional

connections were made between the App and hardware then not all Characteristic

data is transmitted and displayed to the Android screen. Determined it was a bug with

the Android OS and not the Phone. See bug in next subsection for additional details.

 Removed the automatic disconnection when a characteristic fails. This toast appears

when the application is trying to register for an available characteristic and fails. This was

a carryover from the previous application, and it was decided at the time to disconnect

from the device when that happens. It is removed by commenting out the line 567 from

the BtSmartLink.java file which is into com.csr/envapp/model. The line is

“parentBtSmartLink.disconnect();”. See bug in next subsection for additional details.

The code was updated with fixes to the following:

 Magnetometer features

o For the Magnetic calibration, added a button and pop up descriptor for calibration by

the user.

o Magnetometer calibration: there was a problem with the on/off switch working from

the application side. The calibration values are to be sent from the client to the server

(CSR1010) but errors in the code prevented transmission. Checked with a sniffer to

verify that the Phone was sending the expected information.

o In order to get the Magnetic Direction (Declination) to be functional had to do some

Math from the Magnetic Flux characteristic values (2D and 3D) since there is no

Magnetic Declination characteristic sent from the Environment sensors software for

the chip. Also, changed Tesla to Gauss.

92

 Issues displaying the CSR custom defined characteristics on retrieving values.

o Angular rate (CSR custom defined characteristics): the values the application

receives are signed and not unsigned as formerly thought versus the signed value

coming from the Acceleration: (CSR custom defined characteristics).

o Pressure: Was using the wrong type, “int” instead of “long” on Java.

o All database handles needed to be reverse, the bytes that are being received – as it

works generally with Bluetooth.

o For all other characteristics, see the Developer Bluetooth official website [20]

9.4. Issues seen during Design / Roadblock & Workaround

This section provides information regarding issues and / or bugs that were observed

during the development of this project.

Bugs: Bugs observed with the Samsung Galaxy S3 and S4 and equivalent Google Nexus 4 / 5

1. After the Android App connects and pairs with the CSR1010 Module (GATT

Service), an error occurs that causes the running Phone Application to disconnect

and exit. The workaround was to tell the Android App to ignore the error to prevent

the APP from closing (default Android response).

 All UUID characteristics that are used for the MEM sensors request an

encryption. When Android requests the first characteristic to the Bluetooth

Device, it automatically fails (timeout event) before Android can ask for the

encryption. Normally, at this moment the Android stack should keep this first

characteristic as “has to request it again”, but it doesn’t. That’s why it’s not

working here. By ignoring the error and not exiting, the Android can request the

encryption again with no further issues. The issue with this bug was originally

seen on Samsung Galaxy S4, but was not seen when using a Nexus 7. The bug

was then also verified as present on the Nexus 5.

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.environmental_sensing.xml

93

2. Under normal conditions, after the Application has started, the connection and

pairing process are engaged, requesting the characteristics, fails, encryption, and

then the remaining custom characteristics. The very first time, the application runs

as expected. The devices are paired and displaying all data as received by the

GATT Client. Afterwards the application is closed by the user. It is expected that the

device will unpair upon exit, however, the devices remains paired. Upon running the

application again, the device is already paired. The (Nexus 5) Android stack looks

lost or not working: it is never able to come back to the application to say what

happened. So the application is blocked on waiting information from the Android

stack which never arrives. On the Galaxy S4, the Android stack reads back only

partial characteristic data. Not all MEM Sensor information would have the data

updated and displayed; such as, Gyroscope, Accelerometer and Magnetometer

data. Data would just display ‘0’. It was determined that the CSR custom UUID for

these MEMs do not transfer to the GATT Client under this condition.

 This is a limitation with the Android OS Firmware for these two models of

phone. Was told that this bug does not exist in Android models S5 and

later, verified on an S6.

Solution: There is nothing that can be done for the Android stack as it belongs to the

Android OS. The only solutions at the moment are:

 Use a Galaxy S6 (Nexus 7) or newer model

 Galaxy S4 and Nexus 5, unpair the device every time one would want to restart the

application (go to Bluetooth settings and “forget” the device) should fix the

characteristics request issue for that connection.

 Issue: There was an issue with the original Android Development Environment (Eclipse)

that was used for this project, it was no longer supported by Android / Google and therefore

prevented further development of the “APP” causing a roadblock condition. The “App” design

referenced the CSR skeleton code that was written in Eclipse; but, with that platform no longer

supported had to start over with the Phone Application Design.

94

 After speaking with Bluetooth SIG, in an attempt to find a workaround,

determined that the Eclipse IDE Platform and the Android Development

Tool (ADT) plugin were no longer supported by Google / Android and were

not active.

 Had to switch over to the new Android Studio with the IntelliJ IDE Platform

for the code development, resulting in a redesign of the software code from

the original approach. The new environment was easier to program with,

more stable and did not require workarounds or hacks to get the app to

function as expected

 All other issues- see the SDK Release Notes.

10. Summary and Future works

For over 15 years, it was envisioned that people would become connected wirelessly with

everyday objects that surround their environment; making life more convenient as they try to

squeeze every last second into their lives as possible. This movement has become known today

as the ‘Internet of Everything’ and the market is taking full advantage of this fact by continuously

driving up the demand for these wireless connectivity technologies [14].

It is so easy today to incorporate a wireless solution into any project. The theme of this

paper was to devise a reference platform that could be readily utilized by others to minimize cost

and development time with a wireless solution. This platform described in this document should

give the developer / end user a method to quickly develop a prototype strategy for their remote

sensors requirement.

The goal was to instill in the reader the philosophy of Rapid Prototyping by using

reference material already available on the market as a baseline to get started with their design.

Key features:

 Android Phone App and Source code that is associated with this project could be used as

a reference to get the end-user up and running in the shortest amount of time. As a

baseline reference, the software is fully functional with all the bugs either fixed or

documented with a workaround.

95

 Hardware and Firmware (Embedded Software) could be purchased off the shelf, such the

development kits and modules (Digikey or CSR), along with the use of firmware as a

reference point to get started with the prototype. The COTS have already be proven,

adhere to the FCC regulations and have been qualified by Bluetooth SIG, improving the

developers odds that the prototype design will work as expected the first time.

The Developers and College Students needing to create the next generation of

sensors/MEMs-enabled smart devices now have a simple solution to enable them to develop in

the minimum time possible.

 Future Work: It is of great interest to apply what was learned during this project and

apply these skillsets to work with bioelectronics and other sensors that can be worn on or in the

body. This is where the technology is headed in the near future.

11. Documentation and Other Collateral

This section identifies supporting documents and evaluation kits that will be provided to

support end-user engagement and integration and does not attempt to capture all of the internal

deliverables, such as lab boards, compliance matrices, and the like; which are requirements of

the development process.

11.1. Documentation

There are additional documentation that were not specified directly in this document that

could provide additional insight into further development with Bluetooth Low Energy , such as

Application Notes, User documentation, and supporting software for the ADK/SDK and Tools.

These files were useful in development of this project and should accompany this document.

11.2. Hardware and Development Kit

Please note that the hardware and supporting items (the package) that are submitted

along with this report are ‘as is’. If it is desired for further development in Bluetooth Wireless, visit

www.csr.com for additional reference designs and documentation. It is expected that customer

development boards and ADKs/SDKs will continue to be updated with newer revisions. These

follow-on activities fall outside of this project.

http://www.csr.com/

96

REFERENCES

[1] Bluetooth Smart Environmental Sensor Board:
http://www.csr.com/products/bluetooth-smart-environmental-sensor-board

[2] Bluetooth Smart Starter Development Kit
http://www.csr.com/products/bluetooth-smart-starter-development-kit

[3] Bluetooth 4.0: Low Energy
http://chapters.comsoc.org/vancouver/BTLER3.pdf

[4] RF Radio Frequency
http://www.homtrol.com/show.php?id=582&newsid=54

[5] Industrial Wireless - Selecting a Wireless Technology
http://www.bb-elec.com/Learning-Center/All-White-Papers/Wireless-Cellular/Industrial-

 Wireless-Selecting-a-Wireless-Technolog.aspx

[6] What is Bluetooth Technology?
http://www.bluetooth.com/what-is-bluetooth-technology

[7] Understanding Bluetooth Technology
http://blog.abrfid.com/understanding-bluetooth-technology/

[8] Bluetooth Smart Technology: Powering the Internet of Things
http://bluesoleil.com/life/402.html

[9] Low Energy
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-

 energy

[10] Introduction to Bluetooth Low Energy
https://www.yumpu.com/en/document/view/38246955/introduction-to-bluetooth-low-

 energy/3

[11] CSR1010 μEnergy Development Kits
http://www.digikey.com/catalog/en/partgroup/csr1010-%CE%BCenergy-development-

 kits/43200

[12] CS-212742-UG µEnergy xIDE User Guide:
 https://www.csrsupport.com

[13] CS-314507-AN_CSRµEnergyEnvironmentSensorApplicationNote:
 https://www.csrsupport.com

[14] The “Internet of Things” Brings Sensors, Wi-Fi Connectivity to Everyday Objects
http://www.broadcom.com/blog/wireless-technology/the-internet-of-things-brings-sensors-
wi-fi-connectivity-to-everyday-objects/

[15] Bluetooth Core Specification Version 4.1:

https://www.bluetooth.org/Technical/Specifications/adopted.htm

[16] Environmental Sensing Service Specification Version 1.0:
 https://www.bluetooth.org/Technical/Specifications/adopted.htm

http://www.csr.com/products/bluetooth-smart-environmental-sensor-board
http://www.csr.com/products/bluetooth-smart-starter-development-kit
http://chapters.comsoc.org/vancouver/BTLER3.pdf
http://www.homtrol.com/show.php?id=582&newsid=54
http://www.bb-elec.com/Learning-Center/All-White-Papers/Wireless-Cellular/Industrial-Wireless-Selecting-a-Wireless-Technolog.aspx
http://www.bb-elec.com/Learning-Center/All-White-Papers/Wireless-Cellular/Industrial-Wireless-Selecting-a-Wireless-Technolog.aspx
http://www.bluetooth.com/what-is-bluetooth-technology
http://blog.abrfid.com/understanding-bluetooth-technology/
http://bluesoleil.com/life/402.html
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.yumpu.com/en/document/view/38246955/introduction-to-bluetooth-low-energy/3
https://www.yumpu.com/en/document/view/38246955/introduction-to-bluetooth-low-energy/3
http://www.digikey.com/catalog/en/partgroup/csr1010-%CE%BCenergy-development-kits/43200
http://www.digikey.com/catalog/en/partgroup/csr1010-%CE%BCenergy-development-kits/43200
https://www.csrsupport.com/
https://www.csrsupport.com/
http://www.broadcom.com/blog/wireless-technology/the-internet-of-things-brings-sensors-wi-fi-connectivity-to-everyday-objects/
http://www.broadcom.com/blog/wireless-technology/the-internet-of-things-brings-sensors-wi-fi-connectivity-to-everyday-objects/
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm

97

[17] Battery Service Specification Version 1.0:
 https://www.bluetooth.org/Technical/Specifications/adopted.htm

[18] Device Information Service Specification Version 1.1:
 https://www.bluetooth.org/Technical/Specifications/adopted.htm

[19] CS-218270-DD CSR1010 Hardware Design Review Template:
 https://www.csrsupport.com/document.php?did=39334

[20] Developer Bluetooth official website:

 https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.
 service.environmental_sensing.xml

https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.csrsupport.com/document.php?did=39334
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.environmental_sensing.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.environmental_sensing.xml

98

APPENDIX A

CSR1010 MODULE SCHEMATIC

99

100

APPENDIX B

ENVIRONMENTAL MEMS SENSOR BOARD SCHEMATIC

101

