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ABSTRACT 

The purpose of this study was to determine the applicability of fluorescent 

microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through 

the coagulation, flocculation, sedimentation, and filtration steps of conventional water 

treatment. In order to maintain accuracy and applicability, a local water treatment facility 

was chosen as the system to model. The city of Chandler Arizona utilizes conventional 

treatment methodologies to remove pathogens from municipal drinking water and thus 

the water, coagulant, polymer, and doses concentrations were sourced directly from the 

plant. Jar testing was performed on four combinations of coagulant, polymer, and 

fluorescent microsphere to determine if the log removal was similar to that of 

Cryptosporidium oocysts. 

Complications with the material properties of the microspheres arose during 

testing that ultimately yielded unfavorable but conclusive results. Log removal of 

microspheres did not increase with added coagulant in the predicted manner, though the 

beads were seen aggregating, the low density of the particles made the sedimentation step 

inefficient. This result can be explained by the low density of the microspheres as well as 

the potential presence of residual coagulant present in the system. Given the unfavorable 

properties of the beads, they do not appear to be a suitable candidate for the surrogacy of 

Cryptosporidium oocysts in conventional drinking water treatment. The beads in their 

current state are not an adequate surrogate; however, future testing has been outlined to 

modify the experiment in such a way that the microspheres should behave like oocysts in 

terms of physical transportation.  
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1.0 INTRODUCTION 

1.1. Background 

Drinking water treatment is perhaps the most important aspect of a community’s 

development. Without clean drinking water, a population cannot thrive and develop into 

the modern and sustainable societies that the world so desperately needs. A common 

method of removing contaminants from drinking water is the conventional drinking water 

treatment process that includes coagulation, flocculation, sedimentation, and filtration. 

This process removes contaminants via formation of large clumps (flocs) that then settle 

out of the water in the sedimentation phase. The efficiency of this process was 

historically measured by the decrease in the water’s turbidity; however, in recent years, 

the actual log removal of pathogens has been applied to coagulation, flocculation, and 

sedimentation steps of the water treatment process. 

In researching pathogen removal through conventional water treatment, it was 

discovered that there is a gap in knowledge regarding the use of fluorescent microspheres 

as a surrogate to measure the removal of Cryptosporidium oocysts. Cryptosporidium is an 

enteric parasite with a low infectious dose of a single microbe and thus its removal is 

highly monitored.  

The concept of a surrogate in water treatment is a substitute for a targeted 

pathogen that is likely easier to detect, less harmful if consumed, and more resilient to 

treatment variables like adverse environmental conditions, presence of microbes, 

treatment residuals, etc. Surrogates can be used to determine the performance of 

treatment processes without directly handling potentially harmful contaminants.  
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The measure of microbial log removal for drinking water treatment is done by 

simply measuring influent and effluent concentrations; however, when measuring 

microbes that are sensitive to a multitude of potential factors it is best to instead measure 

a surrogate that is not as sensitive and thus yield a more conservative result. The 

utilization of fluorescent microbeads was suggested due to several physical 

characteristics that would make them an optimal choice in water treatment. The first and 

possibly most important characteristic is that the microspheres are inanimate. Non-living 

surrogates can provide a more conservative representation of physical removal because 

they cannot be broken down by microbes or residual chemicals present in water. 

Additionally, microspheres are much easier to detect then their living counterpart because 

they do not require culturing, thus, eliminating a source of error in the detection process. 

Given that there is little existing literature on the topic of microspheres as surrogates for 

Cryptosporidium oocysts in coagulation, flocculation, sedimentation, and filtration the 

results were unpredictable but nonetheless useful. 

1.2. Objective 

The goal of this study is to determine the viability of a potential surrogate to 

measure the removal of Cryptosporidium oocysts during the conventional treatment 

processes.  

 Evaluation of removal efficiencies for coagulation, flocculation, 

sedimentation, and filtration. 

 Determine the impact of coagulant dose variations on removal efficiency. 

 Evaluate the use of fluorescent microspheres as a surrogate for 

Cryptosporidium oocyst removal.   
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 Compare settling velocities of known and potential surrogates to that of 

the targeted pathogen to determine viability of surrogacy.  
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2.0 LITERATURE REVIEW 

2.1. Conventional Drinking Water Treatment 

2.1.1. History 

Water purification through coagulation processes is no new technology. 

Aluminum sulfate (Alum) was used as a coagulant in water treatment as early as the 17
th

 

century; however, it is known that Alum was used by the illiterate poorer class along the 

great Chinese Rivers and thus it is believed that Alum was used regularly prior to this 

documentation (Pearls 2015). Many centuries before the addition of chemical coagulants, 

settling basins were utilized by cultures such as the ancient Minoans to decrease turbidity 

and provide the community with cleaner drinking water (Mays 2012). This utilization of 

gravity as a treatment methodology was prevalent for generations before the invention of 

regulated conventional treatment processes.  

2.2. Treatment Processes (Coagulation, Flocculation, Sedimentation, and Filtration) 

2.2.1. Overview 

Conventional water treatment (coagulation, flocculation, sedimentation, and 

filtration) is used to remove drinking water contaminants present as particles, organics, 

and chemicals. Typically the contaminants targeted by coagulation and flocculation are 

those that are stable in a water source and thus not likely to settle out on their own. The 

usage of a coagulant (potentially with a polymer) destabilizes contaminants and thus 

makes them vulnerable to gravitational forces. The addition of coagulants is not, 

however, enough to instigate the immediate removal of contaminants. The process of 

flocculation imparts energy on the water and coagulant solution to increase particle 
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collisions and thus produce an aggregated particle (floc) that will have a much faster 

settling velocity (Edzwald 1993). 

Filtration occurs after the sedimentation step and is used to remove particles that 

remain suspended after coagulation and flocculation. Many different filtration 

methodologies are in use worldwide; however, the process relevant to this study is media 

filtration with anthracite coal, sand, and coarse media. Media filtration has demonstrated 

high removal efficiencies of oocysts; however, removal efficiency is highly dependent on 

filter age, water quality, and presence of coagulants (Gitis 2008). 

2.2.2. Traditional Uses of Coagulation, Flocculation, and Sedimentation 

A common contaminant targeted by water treatment plants is Natural Organic 

Matter (NOM). NOM causes unpleasant odor, color, and taste in water, making it 

undesirable to consumers. The two varieties of NOM present in water are hydrophobic 

and hydrophilic which have higher and lower molar masses respectively. Hydrophobic 

and high molar mass compounds are easily removed through coagulation and flocculation 

as they are easily destabilized and settled out. Hydrophilic and low molar mass 

compounds are difficult to remove and require the usage of advanced coagulation and 

other more costly methods for their efficient removal (Matilainen et al. 2010). 

2.2.3. Non-Traditional Uses of Coagulation, Flocculation, and Sedimentation 

Traditionally, coagulation and flocculation were used for the removal of particles 

such as microbes, metals, soil particulates, and anything present in water as a solid 

(Edzwald 1993). Recent research has demonstrated that conventional water treatment can 

also be used to remove pesticides found in surface water. According to one estimate, 

approximately 95% of surface waters in the United States are contaminated with 
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pesticides such as DDT (dichlorodiphenyltrichloroethane) (Ballard and Mackay 2005). 

Research has shown that DDT is easily removed with traditional coagulation and 

flocculation methodologies (Jordan 2015); however, other anthropogenic organic 

compounds are not so easily destabilized (Ballard and Mackay 2005). Ballard cites 

experimentation in which humic acid was added to contaminated source water in hopes 

of sorption of organic materials to humic materials, thus creating hydrophobic materials 

that are destabilized and able to settle (Rebhun et al. 1998).  

2.3. Jar Testing 

Jar testing is the small scale replication of coagulation, flocculation, and 

sedimentation that is used daily at drinking water treatment plants to assess the day’s 

water quality and determine the dose of coagulants needed to meet the treatment 

requirements. Traditionally jar testing was developed to determine optimum coagulant 

doses but has been proven to be useful in predicting other water quality related factors 

(Hudson and Wagner). Jar testing can be used to determine the quality of water after the 

sedimentation step, the necessary filtration equipment, and the lifespan of filtration 

infrastructure.  

Similar to many other testing procedures, the steps required for jar testing are 

outlined by the American Society for Testing and Materials (ASTM). The standard used 

in the replication of jar testing is ASTM D2035 Standard Practice for Coagulation-

Flocculation Jar Test of Water (ASTM 2011). This testing procedure outlines the water 

volumes, mixing speeds, mixing times, and settling times necessary for proper replication 

of conventional water treatment methodologies. For specific volumes and times, refer to 

the methodology section of this report (Ebeling et al. 2003). 
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2.4. Microbial Removal Surrogates for Coagulation Processes 

The use of surrogates in the treatment process is a common practice. Traditionally 

surrogates are selected to be more conservative than the targeted pathogen. Surrogates 

can be living organisms like Escherichia coli (E. coli) or aerobic spore formers such as 

Bacillus, or non-living surrogates like chemical tracers or microspheres. E. coli is an ideal 

living indicator for many applications because of its low cost detection, its live span in 

water (4-12 weeks), and its sensitivity to oxidants (Edberg et al. 2000). E.coli is also a 

highly desirable biological indicator because of its presence in the mammalian digestive 

system. Enteric pathogens are of great concern for drinking water treatment and thus 

having a simple organism that can be easily observed provides a great advantage for the 

engineers designing treatment processes.  

Typically the usage of biological surrogates is best applied to treatment 

methodologies in which the target pathogen is to be inactivated rather than physically 

removed. In the inactivation process of microbes like Cryptosporidium, it is wise to select 

a surrogate with similar features to ensure that the results are as similar as possible to the 

actual inactivation of the target pathogen. One example of a biological surrogate for 

Cryptosporidium is bacterial aerobic spores. Spores are an ideal surrogate for pathogens 

such as Giardia and Cryptosporidium due to their enteric presence, their ease of 

detection, and their resistance to chemical treatment (Facile et al. 2000). 

2.5. Microspheres 

In recent years, the utilization of fluorescent microspheres has become a popular 

option for experiments in which a surrogate is needed to assess the efficacy of treatment 

methodologies. Fluorescent microspheres are optimum candidates because unlike 
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chemical tracers and microbial surrogates, microspheres will not react, decay, or multiply 

during a treatment process. Fluorescent microspheres are available in a wide range of 

sizes which enhances their applicability in terms of modeling microbes or other colloids. 

Microspheres have been studied as surrogates for Cryptosporidium oocysts in filtration 

experiments (Dai and Hozalski 2003). A recent experiment performed by Gottinger et al. 

2013 cites the usage of 4.5 micron microspheres as surrogates for Cryptosporidium 

oocysts in slow sand biofiltration beds.  

2.5.1. Microsphere Dose Concentration 

The utilization of microspheres as surrogates for similarly sized microbes requires 

an estimation to be made by researchers regarding the dose concentration at the head of 

the experiment. Different sources yielded different dose concentrations; however, the 

applications for each were different. Given that there is little information regarding the 

use of microspheres as surrogates from Cryptosporidium in conventional water treatment, 

experiments were selected in which Cryptosporidium oocyst were and were not the 

desired target. In the coagulation paper by Gottinger et al. 2013, the dose concentration 

was on the order of 10
6
 beads/liter, whereas the article by Hogan et al. 2013 dosed their 

hydrologic removal experiment with only 10
3
 beads/liter. Given the large variation in 

selected dose concentrations, it seems apparent that the numeric value for the dose is 

irrelevant as long as the bead removal is quantifiable and within reason.  

2.5.2. Microsphere Composition 

Fluorescbright
® 

Microspheres are composed of polystyrene latex with a 

carboxylate coating. Each vile is distributed as 2.5% suspended solids in water and has a 

density of 1005 kg/m
3 

( Fluoresbrite ® 2013).  
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2.5.3. Microsphere Fluorescence 

Fluorescent microspheres are available in a range of colors. Colors are chosen at 

the discretion of the researcher to aid in detection. For example, yellow and Nile red 

microspheres were reportedly used in Cryptosporidium detection experimentation 

(Gottinger et al. 2013). Another experiment in which microspheres were used as a 

surrogate for Cryptosporidium parvum oocysts cited the use of Dragon Green and Glacial 

Blue spheres as these researcher believed these colors would provide the clearest 

detection (Hogan et al. 2013). 

2.5.4. Microsphere Surface Chemistry 

Biotin-and-Glycoprotein coated carboxylate polystyrene beads have been used to 

counter the effects of buoyancy neutral traditional carboxylate-coated beads. 

Cryptosporidium oocysts produce Glycoprotein on the cell surface, and thus coating 

microspheres enables a higher level of surrogacy. As stated by Stevenson et al., the 

utilization of Biotin and Glycoprotein coatings have only proved beneficial in filtration 

models of Cryptosporidium oocysts (Stevenson et al. 2015). 

2.6. Cryptosporidium  

One of the most widely recognized water borne pathogens is the parasite 

Cryptosporidium. Since its discovery in 1907 by Ernest Tyzzer, environmental engineers 

have been working to establish methods of its identification, removal, and inactivation. In 

recent years, Cryptosporidium infection has become more prevalent in developed 

countries and is currently the leading cause of gastrointestinal parasitic infection 

(Sunnotel et al. 2006). Thus, verifying the utilization of fluorescent microspheres as a 

surrogate for Cryptosporidium oocyst removal is crucial. 



 

  10 

 

 

Figure 1: 

Cryptosporidium Oocysts 

(Ref: Centers for Disease Control,  Atlanta, Georgia) 

2.6.1. Species 

Currently there are 26 recognized species of Cryptosporidium. The species, host, 

and presence in humans has been summarized in Table 1 by Ryan et al. 2014 in their 

work entitled Cryptosporidium species in humans and animals: Current understanding 

and research needs. 
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2.6.2. Oocyst Characteristics 

Outside the body of the host, Cryptosporidium is found as oocysts. Oocysts are 

approximately 3-6 µm in diameter and are spherical in shape. When shed from an 

infected host, contaminated feces can contain up to 10
7
 oocysts/gram (Ongerthl and 

Stibbs 1987). An appropriate summary of Cryptosporidium is provided by Fayer et al. 

2000. 

“The genus Cryptosporidium is classified as a eukaryote in the phylum 

Apicomplexa. All species of Cryptosporidium are obligate, intracellular, 

protozoan parasites that undergo endogenous development culminating in the 

production of an encysted stage discharged in the feces of the host” (Walker et al. 

2001). 

2.6.3. Oocyst Occurrence in Water 

The necessity for modeling the removal of Cryptosporidium was addressed in a 

study performed by Ryu and Abbaszadegan 2008, which quantified the presence of 

Cryptosporidium oocysts in Arizona surface waters over the course of four years. Of the 

samples tested, 10% were positive for Cryptosporidium oocysts (Ryu and Abbaszadegan 

2008). Given that the infectious dose of Cryptosporidium is a single oocyst, the presence 

of oocysts in 10% of the surface water in the Phoenix Metro area indicates that drinking 

water treatment facilities are at a high risk of encountering oocysts in their treatment 

processes.  
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2.6.4. Oocyst Decay Rate 

Cryptosporidium oocysts are shed in the fecal matter of an infected host and thus 

introduced to the surrounding environment. Oocysts that are free in the environment can 

potentially be introduced to any number of host related consumables (drinking water, 

crops, accidental ingestion of surface water, etc.).  As previously stated, Cryptosporidium 

is an intracellular organism and thus cannot reproduce outside of its host; this means, that 

the oocysts in the environment must either infect a host or perish. Modeling the decay of 

oocysts in the environment helps assess the risk of treating contaminated drinking water. 

Using a first order decay function, Walker, et al. modeled the decay of Cryptosporidium 

oocysts when exposed to several harsh environmental conditions including freeze/thaw 

cycles, long durations of freezing cold, and long durations of heat. The results of those 

experiments are seen Table 2 (Walker et al. 2001). 

 

Table 2:  

Oocyst Decay Rates 

Temperature 

(°C) 

Fitted Model 

Model 

Significance 

Parameter 

Significance 

4 and 30 K = 0.003*bars-0.0004*Temp P < 0.001 

Temp, P < 0.001; 

Bars, P = 0.003 

-14 k = 0.013*bars P = 0.001 Bars, P = 0.001 

Freeze-thaw 

cycling (-14 to 

10) 

k = 0.055*bars P < 0.001 Bars, P < 0.001 
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2.6.5. Cryptosporidium Infection (Cryptosporidiosis) 

As stated above, Cryptosporidium is an obligate, intracellular parasite, meaning 

that it cannot replicate outside of its host. Once Cryptosporidium has entered the 

digestive tract of its host it can begin replicating and causing illness. Cryptosporidium 

infects its vertebrate host by targeting the microvillus border of the gastrointestinal 

epithelium, leading to severe diarrhea. The prevalence of Cryptosporidiosis outbreaks and 

the most affected age groups vary throughout the world depending on societal cleanliness 

and age development. In under-developed countries, children under the age of five 

typically experience cryptosporidiosis; however, developed countries typically 

experience outbreaks in adults. Adult outbreaks in developed countries are usually due to 

food or water contamination; whereas, child exposure in underdeveloped countries occurs 

due to person to person transmission (i.e. poor sanitation) (Xiao et al. 2004). 

 

2.6.6. Oocyst Removal in Conventional Treatment 

According to the Unites States Environmental Protection Agency (U.S. EPA), the 

average removal of Cryptosporidium through conventional water treatment with Alum as 

the primary coagulant is between 2 and 3 Log. The variation in removal efficiency is due 

to plant performance and is highly dependent on influent water quality (Nieminski 1997). 

According to the EPA Long Term 2 Enhanced Surface Water Treatment Rule 

(LT2ESWTR) the maximum credit allotted to the conventional water treatment for the 

removal of Cryptosporidium oocysts is 2.5 Log. This value assumed a high influent dose 

of oocyst as well as the addition of water softening which is something that is not present 

at the drinking water facility in Chandler, Arizona (Nieminski 1997). Multiple coagulants 

are available and widely used in treatment plants throughout the world; however they do 
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not all perform to the same efficiency. Experiments highlighted in Water Treatment and 

Pathogen Control noted that the removal efficiency of iron-based coagulants was 

typically higher than that of alum or polyaluminum chloride; however, the change in 

efficiency was negligible when compared to the efficiency impact of influent water 

quality (Bartram 2004).  

The removal of oocysts occurs at multiple steps in the drinking water treatment 

process. Oocysts, are settled, filtered, broken down, and inactivated to achieve the highest 

removal possible to ensure that the public is not in harm’s way. The effectiveness of 

removal in all stages has been linked directly to the efficiency of the coagulation phase. 

The same article suggests that the most efficiency removal of oocysts during 

conventional treatment is to replace the sedimentation step with Dissolved Air Flotation 

(DAF) to remove low density particles by bringing them to the surface rather than forcing 

them to settle (Betancourt 2004). 
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3.0 MATERIALS AND METHODS  

3.1. Coagulant and Polymer Dosage 

In order to accurately determine the removal of fluorescent microspheres from 

water using coagulation, flocculation, sedimentation, and filtration it was decided that 

various combinations of coagulant and polymer doses would need to be tested to ensure a 

broad enough range of data. The conventional water treatment model being assessed was 

designed to mimic that of Chandler, Arizona’s drinking water treatment facility; thus, the 

coagulant dose range was determined based on typical plant averages. Per discussions 

with Dr. Anupa Jain, it was decided that coagulant would be added in 10, 25, and 40 

mg/L doses while maintaining a polymer concentration of 2.7 mg/L, as well as maintain a 

control which contained no polymer and no coagulant (Jain, Anupa, Personal 

Communication. 30 Aug. 2015).   

The raw water, coagulant, and polymers selected for this study were sourced 

directly from the Chandler Drinking Water Treatment Plant. The raw water from the 

plant had a measured turbidity of 26.86 NTU and a pH of 6.49. The provided coagulant 

and polymer were aluminum sulfate and Magnafloc
®
 LT-7996 (2-Propen-1-aminium, N, 

N-dimethyl-N-2-propenyl-, chloride, homopolymer) respectively. The calculated 

volumetric doses are shown in Table 4  (BASF Safety Data Sheet). 

3.1.1. Coagulant and Polymer Stock Concentration Determination 

The coagulant and polymer stock solutions as well as all relevant information 

regarding the material properties were provided graciously by the city of Chandler. The 

Aluminum sulfate and polymer solutions were of unknown concentrations; however, the 

weight percentage of each chemical in solution was provided.  As stated by the city of 
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Chandler officials, the weight percentages of aluminum sulfate and polymer in their 

respective solutions were 48% and 20% (Jain, Anupa, Personal Communication. 30 Aug. 

2015).  Using known volumes of 10 mL, the samples were weighed and the exact 

concentration of coagulant (in mg/L) was calculated, see Table 3 and calculation below. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑊𝑒𝑖𝑔ℎ𝑡

𝐾𝑛𝑜𝑤𝑛 𝑉𝑜𝑙𝑢𝑚𝑒
∗ 𝑊𝑒𝑖𝑔ℎ𝑡 % 

Table 3:  

Coagulant and Polymer Concentration  

Material 

 

Measured Weight 

(g) 

Volume 

(mL) 

Conc. Total 

(g/mL) 

Weight 

(%) 

Conc.  

(mg/L) 

Alum 13.05 10 1.305 0.48 626400 

Polymer 9.64 10 0.964 0.2 192800 

 

3.1.2. Coagulation and Polymer Dosage Concentration Determination 

Having calculated the concentration of each material, the next step was to 

calculate the volume of coagulant needed to achieve the desired dose for each jar.  The 

values represented in Table 4 were calculated as follows: 

𝑆𝑡𝑜𝑐𝑘 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿
] ∗ 𝐷𝑜𝑠𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿]

= 𝐷𝑜𝑠𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿
] ∗ 𝐽𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿] 

 

𝐷𝑜𝑠𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿] =
𝐷𝑜𝑠𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [

𝑚𝑔
𝐿 ] ∗ 𝐽𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 [𝐿]

𝑆𝑡𝑜𝑐𝑘 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝐿 ]
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Table 4:  

Coagulant and Polymer Dose Concentrations for Jar Testing 

Material Target 

Concentration 

in Jar 

(mg/L) 

Volume of 

Stock to 

Achieve Target 

(uL) 

Alum 10 15.964 

Alum 25 39.911 

Alum 40 63.857 

Polymer 2.7 14.004 

 

3.2.  Bead Selection and Stock Solution Preparation 

Since the average size of a Cryptosporidium oocyst is in the range of 3-6 µm, all 

experimentation was performed with a 3 micron sphere, thus providing a more 

conservative set of results. The Fuoresbright
®
 beads were selected due to their 

availability and variety of sizes. For ease of detection, fluorescent green colored beads 

were selected. The 2 mL solution of beads arrived with a concentration of ~10
9 

beads, 

thus a dilution was necessary. Our stock solution for experimentation was produced by 

diluting 20 µL of bead solution in 10 mL of deionized water. This solution was vortexed 

and counted using 2 µL drops under 20X magnification. This process was performed in 

triplicate and averaged to yield a result of 2.56*10
6
 beads per mL. 
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3.3. Jar Testing 

Jar testing was performed in accordance with ASTM standard D2035 using the jar 

tester shown in Figure 4; specifically, 1L samples were subjected to 1 minute of rapid 

mixing at 120 rpm, then transitioned to slow mixing at 30 rpm for 15 minutes, and finally 

settling for 15 minutes. Each jar was dosed with 10
6
 beads (0.39 mL of stock solution) in 

order to ensure visibility of beads in the effluent.  

 

 

 

 

 

Figure 4: 

Jar Testing Device 

3.4. Effluent Analysis  

In order to determine the efficiency of a jar test, the influent and effluent 

concentrations of the water are measured to find the log removal of the targeted 

pathogen. Various methods exist for determining effluent concentration, including: 

 Measuring the settled sludge and calculating the volume in order to 

determine the total number of pathogens removed 

 Measuring the turbidity of the water before and after to determine overall 

improved clarity and quality (this is more typical for present organic 

matter), or 
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 Measuring the effluent concentration and a value of the effluent to 

determine the total number of pathogens still present in the water after 

treatment. 

All of the above methodologies were considered when determining the best way 

to assess the removal of microspheres during the coagulation, flocculation, and 

sedimentation process. After executing several trial runs, it was determined that the 

volume of sludge produced for this particular water was negligible, and thus the 

quantification of how much sludge was produced would introduce an unnecessary source 

of error into the analysis step of this study. Next, the measure of turbidity was determined 

to not be an accurate enough measure given that the infectious dose of Cryptosporidium 

is but one organism, thus turbidity could not reflect the removal of all constituents on a 

microbial level. Thus, measuring effluent concentration was chosen as it would allow a 

direct measure of pathogens present and could be assumed to represent the entire volume 

of the jar given that the sludge layer was negligible.  

3.4.1. Effluent Sampling 

Each jar was dosed with its respective coagulant dose and tested under the ASTM 

D2035 standard. After completing each step in the approved process, 40 mL of water was 

sample one inch from the surface of the water and in the middle of the jar. This sampling 

location was used to avoid any aggregation of microspheres near the surface of the water 

as well as any spheres that may have adhered to the walls of the jar.  

3.4.2. Sample Preparation 

After several trial runs, it became apparent that the concentration of the effluent 

was too dilute to be directly measurable, so a centrifugation step was implemented. Each 
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collected sample was centrifuged at 3,000 rpm for 15 minutes and suspended in 0.4 mL 

of deionized water in order to obtain a 100X concentration.  

3.4.3. Sample Counting 

After sampling and concentrating the effluent from each jar, slides from each jar 

were prepared in triplicate in order to provide an accurate count of beads present in the 

effluent. Each slide was comprised of 2 µL samples that were counted under ultraviolet 

light. Table 5 in section 4.1 outlines effluent bead concentrations. 

3.5. Media Filtration 

After performing jar testing with the aforementioned microspheres, a column built 

to the specifications of those in use at the city of Chandler, Arizona plant was set to 

operate at a flow rate of 0.2 gal/min and was dosed with 10
7 

beads and monitored for 

breakthrough. 50 mL of water was sampled hourly and centrifuged and re-suspended to 

achieve 100X concentration; however, after 20 hours of monitoring, no beads were 

observed leaving the filter. Samples of anthracite coal were taken from the top 5 inches of 

the filter and observed under the microscope which revealed as many as 15 microspheres 

adhered to each grain. As seen in Figures 5-6, many beads are present on a single grain of 

carbon; however, to properly see them, the focus must be set for each depth, thus, one 

cannot observe all beads present on the granule at once.  

  



 

  24 

 

  

Figure 5: 

Anthracite Coal Granule Depth 

of View 1 

Figure 6: 

Anthracite Coal Granule Depth 

of View 2 
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4.0 RESULTS AND DISCUSSION 

4.1. Effluent Count Results 

The jar testing procedure was performed three times for each concentration to 

provide triplicate data. The effluent water of each jar was sampled, centrifuged, placed on 

slides, and counted. Three repeat measurements were made for each jar and the results 

were averaged to most accurately represent effluent concentrations. The results are 

summarized in Table 5.  

Table 5:  

Bead Removal Results 

Dose Control  10 mg/L  25 mg/L  40 mg/L  

 (Beads/mL) 

Trial 1 95.0 50.0 411.7 91.7 

Trial 2 113.3 125.0 806.7 311.7 

Trial 3 86.7 106.7 261.7 210.0 

Avg. 98.3 93.9 493.3 204.4 

Log Removal 2.3 2.4 0.7 1.6 

 

As seen in the table above, the desired removal of the beads was not achieved. It 

appears as though an increase in coagulant concentration can drive down removal 

efficiency. The apparent decrease in removal efficiency can be attributed to several 

factors, including but not limited to the surface composition of the beads and the density 

of the beads. 
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4.1.1. Bead Removal Complications 

Unlike many pathogens that flow through the conventional water treatment 

process, the fluorescent microspheres have a carboxylate coating. This coating appears to 

react in such a way with the added polymer that the beads aggregate with one another 

rather than other particles present in the untreated water. This aggregation of smaller 

particles should, in theory, lead to a large enough floc that they would settle out and be 

removed; however, this assumption is only valid for particles with a high enough density. 

The density of the beads was provided from the manufacturer as 1.05 g/mL which is only 

5% higher than that of water. Typical Cryptosporidium oocysts have a density of 

approximately 1075 kg/m
3
 (Komisar 2005). Additionally, the average density of Bacillus 

spores (a current surrogate for oocysts) is approximately 1180 kg/m
3
 (Carrera et al. 

2008). In order to properly compare the affect density has on the settling of a particle, 

Stokes Law was applied to determine the settling velocity of both the beads and average 

oocysts. 

In addition to unnecessary bead aggregation, the low turbidity of the raw water 

generated a nearly negligible sludge layer. Turbidity is the driving force of conventional 

treatment, in that removal efficiency is directly proportional to turbidity. That being said, 

for microspheres to be a viable surrogate they must perform ideally under all influent 

water conditions regardless of turbidity variations.  
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Stokes Law for settling velocity (Crittenden 2005). 

𝑣𝑠 =
𝑔(𝜌𝑃 − 𝜌𝑊)𝐷𝑃

2

18𝜇
 

Table 6:  

Variable Definitions 

𝒗𝒔 Settling Velocity 

𝒈 Gravitational Constant 

𝝆𝑷 Density of Particle 

𝝆𝑾 Density of Water 

𝑫𝑷 Diameter of Particle 

𝝁 Dynamic Viscosity of Water 

 

 Settling velocity of fluorescent microspheres: 

 

𝑣𝑠 =
(9.81

𝑚
𝑠2) ∗ (1050

𝑘𝑔
𝑚3 − 1000

𝑘𝑔
𝑚3) ∗ (3 ∗ 10−6𝑚)2

18 ∗ (1.002 ∗ 10−3 𝑁 ∗
𝑠

𝑚2)
 

𝑣𝑠 = 2.448 ∗ 10−7
𝑚

𝑠
 

 

 Settling velocity of Cryptosporidium oocysts (assuming 3 µm diameter): 

 

𝑣𝑠 =
(9.81

𝑚
𝑠2) ∗ (1075

𝑘𝑔
𝑚3 − 1000

𝑘𝑔
𝑚3) ∗ (3 ∗ 10−6𝑚)2

18 ∗ (1.002 ∗ 10−3 𝑁 ∗
𝑠

𝑚2)
 

𝑣𝑠 = 3.671 ∗ 10−7
𝑚

𝑠
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 Settling velocity of Bacillus spores (assuming 1 µm average diameter) 

 (Carrera et al. 2007): 

 

𝑣𝑠 =
(9.81

𝑚
𝑠2) ∗ (1180

𝑘𝑔
𝑚3 − 1000

𝑘𝑔
𝑚3) ∗ (1 ∗ 10−6𝑚)2

18 ∗ (1.002 ∗ 10−3 𝑁 ∗
𝑠

𝑚2)
 

𝑣𝑠 = 9.790 ∗ 10−8
𝑚

𝑠
 

 

 Settling velocity comparison of oocysts and microspheres using absolute relative 

difference: 

|
𝑣𝑆𝐶𝑟𝑝𝑦𝑡𝑜𝑠𝑝𝑜𝑟𝑖𝑑𝑖𝑢𝑚

− 𝑣𝑆𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠

𝑣𝑆𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠

| ∗ 100% 

|
(3.67 ∗ 10−7 𝑚

𝑠  ) − (2.488 ∗
10−7𝑚

𝑠 )

(2.448 ∗ 10−7 𝑚
𝑠 )

| ∗ 100% = 47.56% 

 

 Settling velocity comparison of oocysts and Bacillus using absolute relative 

difference: 

|
𝑣𝑆𝐶𝑟𝑝𝑦𝑡𝑜𝑠𝑝𝑜𝑟𝑖𝑑𝑖𝑢𝑚

− 𝑣𝑆𝐵𝑎𝑐𝑖𝑙𝑙𝑢𝑠

𝑣𝑆𝐵𝑎𝑐𝑖𝑙𝑙𝑢𝑠

| ∗ 100% 

|
(3.67 ∗ 10−7 𝑚

𝑠  ) − (9.790 ∗
10−8𝑚

𝑠 )

(9.790 ∗ 10−8 𝑚
𝑠 )

| ∗ 100% = 274.90% 
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4.1.2. Conclusions 

Conventional treatment processes have been proven to remove Cryptosporidium 

oocysts with relatively high efficiency; however, the same cannot be said for the 

aforementioned fluorescent microspheres. The relationship between coagulant and 

polymer dose and bead removal efficiency is not predictable and does not increase 

proportionally as expected. Beads were observed forming larger flocs (Figure 7); 

however, due to their low density this was not enough to initiate settling. As seen in the 

above calculations, the settling velocity of the beads is approximately 50% slower than 

that of oocysts and thus the high concentrations of beads that remained in the jar tester 

effluent is not an accurate representation of oocyst behavior.  Additionally, when 

subjected to media filtration, the beads do not migrate well through the system. After 20 

hours of continuous flow, no beads were seen breaking through in the effluent. This 

would seem to be a favorable result; however, the filter was dosed with 10
7
 beads and no 

detectable concentration was able to migrate through the system which demonstrates 

unreasonably high removal efficiency. This result can be explained by the low density of 

the microspheres as well as the potential presence of residual coagulant present in the 

system. Given the unfavorable properties of the beads, they do not appear to be a suitable 

candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water 

treatment.  
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Figure 7: 

Unsettled Bead Floc 
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5.0 SUMMARY 

5.1. Significance of Results 

Given the importance of Cryptosporidium removal in conventional treatment 

processes, the efficiency seen with fluorescent microspheres needed to match or exceed 

required minimum removal values to be considered an optimal surrogate. Without similar 

removal efficiency, the microspheres are not a suitable surrogate for Cryptosporidium 

oocysts in the conventional drinking water treatment process at the city of Chandler 

Drinking Water Treatment Plant.  

5.2. Future Work 

It is my belief that the addition of the polymer instigated the aggregation of the 

microspheres with one another, and without this chemical, the removal efficiency would 

have increased as coagulant dose increased; however, this task was to model the 

potentially surrogacy specifically for the Chandler plant and thus the polymer was not 

removed. The issue regarding the density of the beads could be resolved by contacting 

bead manufacturers and special ordering beads of higher density. From my research, the 

average density of Cryptosporidium oocysts is approximately 7.5% greater than that of 

water; thus, the density of the beads should be tailored to match. 

Additionally, studies performed by Stevenson et al. 2015 indicate that a chemical 

bath can be applied to beads to negate the chemical coating and make the beads less 

likely to aggregate when exposed to the polymer. This could be applied to mitigate the 

unnecessary aggregation of microspheres in further tests to evaluate their potential 

surrogacy for Cryptosporidium oocysts. 
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