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ABSTRACT

The objective of this research is to develop robust, accurate, and adaptive algo-

rithms in the framework of the extended finite element method (XFEM) for fracture

analysis of highly heterogeneous materials with complex internal geometries. A key

contribution of this work is the creation of novel methods designed to automate the

incorporation of high resolution data, e.g. from X-ray tomography, that can be used

to better interpret the enormous volume of data generated in modern in-situ ex-

perimental testing. Thus new algorithms were developed for automating analysis of

complex microstructures characterized by segmented tomographic images.

A centrality-based geometry segmentation algorithm was developed to accurately

identify discrete inclusions and particles in composite materials where limitations in

imaging resolution leads to spurious connections between particles in close contact.

To allow for this algorithm to successfully segment geometry independently of par-

ticle size and shape, a relative centrality metric was defined to allow for a threshold

centrality criterion for removal of voxels that spuriously connect distinct geometries.

To automate incorporation of microstructural information from high resolution im-

ages, two methods were developed that initialize signed distance fields on adaptively-

refined finite element meshes. The first method utilizes a level set evolution equation

that is directly solved on the finite element mesh through Galerkins method. The

evolution equation is formulated to produce a signed distance field that matches ge-

ometry defined by a set of voxels segmented from tomographic images. The method

achieves optimal convergence for the order of elements used. In a second approach,

the fast marching method is employed to initialize a distance field on a uniform grid

which is then projected by least squares onto a finite element mesh. This latter

approach is shown to be superior in speed and accuracy.
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Lastly, extended finite element method simulations are performed for the analy-

sis of particle fracture in metal matrix composites with realistic particle geometries

initialized from X-ray tomographic data. In the simulations, particles fracture prob-

abilistically through a Weibull strength distribution. The model is verified through

comparisons with the experimentally-measured stress-strain response of the material

as well as analysis of the fracture. Further, simulations are then performed to analyze

the effect of mesh sensitivity, the effect of fracture of particles on their neighbors, and

the role of a particles shape on its fracture probability.
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Chapter 1

INTRODUCTION

This chapter provides an introduction to methods applied in this work for understand-

ing the subsequent discussion of an adaptive computational algorithm for automating

simulation of experiments. Section 1.1 gives a review of the recent clustering algo-

rithms for geometry segmentation. A brief introduction of betweenness centrality

in graph networks is presented. Section 1.2 reviews different methods for geometry

representation. The advantages of implicit geometry representation is discussed and

presented. In Section 1.3, a review of methods used in fracture analysis are presented.

1.1 Geometry Segmentation

The study of material structure has been traditionally limited to two-dimensional

(2D) analyses [1, 2]. This simplified approach is often inadequate in the analysis

of cutting-edge problems such as microstructure characterization of the intermetallic

size in Sn-rich solder [3], and the study of physical properties like porosity in soils as

well the distribution of pore width [4]. Therefore, there is an increasing demand for

improved three-dimensional (3D) visualization and measurement capabilities. The

significant increase in data generated by 3D characterization techniques can lead to

substantial challenges in dealing with large datasets, and thus robust and automated

data processing algorithms must be developed alongside the advances in character-

ization in order to make such advances useful. This work focuses on an improved

method for geometry segmentation applied for analyzing multi-phase tomographic

data. The objective of this method is to accurately identify and separate discrete

features, e.g. inclusions, from segmented tomography image data for cases where the
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resolution of the tomography measurement is insufficient to resolve the space between

nearly adjacent features.

Due to limits in the resolution of X-ray tomography, it can be difficult to clearly

distinguish between two particles in close proximity, particularly for automated pro-

cessing algorithms. As a consequence, neighboring but separate particles may erro-

neously appear to be connected when the resolution of the measurement is insufficient

to resolve thin regions between the two adjacent particles. Such spurious connections

will generally not affect predictions of average properties of a composite such as the

elastic modulus, however, they can have great influence when stochastic behaviors

are modeled such as fatigue. Even under a small load, fatigue cracks may nucleate

at those thin regions due to fracture of these brittle ligaments. For such simulations,

geometry segmentation is a necessary step that comes after image segmentation to

achieve reliable numerical predictions. Moreover, since manual segmentation of dif-

ferent geometrical features becomes more and more cumbersome with the increase of

resolution and the capability of larger samples, improved algorithms that can robustly

distinguish between separate particles are needed. Geometry segmentation can also

be meaningful in various fields such as bioengineering [5], solid-earth geophysics [6],

and nuclear materials [7].

1.1.1 X-ray Synchrotron Tomography

Experimental techniques for 3D microstructural characterization include atom

probe tomography (APT) [8], electron tomography [9], serial sectioning using focused

ion beam (FIB) [10] and mechanical polishing followed by optical microscopy [3], and

X-ray tomography [11]. Among these, 3D atom probe tomography and TEM to-

mography provide very high-resolution images (nearly atomic scale), but very small

volume can be analyzed. In contrast, serial sectioning and X-ray tomography can be

2



used to study large volume of materials, resulting in statistically significant informa-

tion along with the good resolution. While serial sectioning is a powerful technique

for generating virtual 3D microstructures, it is very time-consuming and destructive

in nature. X-ray tomography is a non-destructive technique with minimal sample

preparation [12]. X-ray tomography has been successfully applied to characterize the

microstructures in 3D for heterogeneous materials such as metal matrix composites

[13], Al alloys [14], and Sn-rich alloys [15]. X-ray tomography can also be used to

resolve time-dependent (4D) evolution of a variety of important phenomena such as

fatigue [16], and stress corrosion cracking (SCC) [12]. To obtain the quantitative

information about the microstructure, image segmentation is performed on X-ray to-

mography datasets. Post processing of the X-ray tomography dataset is a very time

consuming process and therefore it is necessary to segment the data automatically

and efficiently.

1.1.2 Review of Early Clustering Algorithms

Some partitioning algorithms have been formulated that can be applied in ge-

ometry segmentation. Commonly known algorithms include hierarchical clustering

schemes [17], k-means clustering [18], spectral clustering [19], and density based clus-

tering methods [20, 21]. Several recent contributions are listed as follows: Ketcham

introduced a new computer program to separate touching objects in X-ray tomogra-

phy data of geological specimens [22]; Peng applied hierarchical clustering to build

clusters of genes with similar patterns of expression in the study of bone morpho-

genetic protein [23]. Stephenson performed the core-linkage clustering algorithm to

identify solute-solute interactions in dilute alloys from experimental APT data [24].

There are some insufficiencies of these partitioning algorithms: Hierarchical clustering

is limited due to its quadratic time complexity [25]; The number of clusters is a priori

3



in k-means clustering [26], which is typically an unknown parameter before clustering

for realistic graphs; Spectral clustering methods sorts points based on eigendecompo-

sition algorithms whose stability is well studied, but there still has disagreements on

the use of eigenvectors in the context of segmentation [27]. Although density based

clustering does not require the number of clusters as a priori, the algorithm is not

entirely deterministic and data with large differences in densities cannot cluster with

satisfied quality [28].

1.1.3 Betweenness Centrality

In this work, we develop a new efficient algorithm for geometry segmentation.

The algorithm is based on the concept of betweenness centrality, which was first

proposed by Freeman [29] to measure the importance of a node in the study of human

communication. In a graph composed of a set of nodes and edges connecting the

nodes, the betweenness centrality is the measure of the number of shortest paths

between nodes that traverse a given node. The nodes in the graph are associated

with segmented voxels and edge weights can be applied to define the dissimilarity

between neighbor voxels. More recently, this concept has found a far more general

application and has been applied to many problems, including ecological studies of

pollination networks [30], network mapping of the human brain [31] and biological

studies of protein networks [32].

4
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CB(1)>CB(2)>CB(3)

(a) (b)

Figure 1.1: An illustration of betweenness centrality as a measure of the relative

importance of nodes in a graph network.

Betweenness centrality is a commonly used metric that can capture the relative

importance of a node in the overall network. In other words, betweenness centrality

quantifies the number of times a node acts as a bridge in the communication between

two other nodes. The betweenness centrality of vertex v in a graph G := (V,E) with

V vertices and E edges is defined as [29, 33]

CB(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(1.1)

Where σst is the number of shortest paths between each vertex s ∈ V and t ∈ V , and

σst(v) is the number of shortest paths passing through vertex v.

Start voxel (s)

End voxel (t)

Central voxel (v)

Paths through v

Paths not through v

Subcluster-1 Subcluster-2 

Neck

Figure 1.2: An illustration of the shortest path used in the calculation of betweenness

centrality. Two typical paths are shown in dashed lines for a voxel pair (s, t).
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The maximum possible absolute centrality for an undirected network with n vertices

is [34]

max(CB) =
n2 − 3n+ 2

2
(1.2)

The normalized betweenness centrality can be expressed as

CNB (v) =
2CB(v)

n2 − 3n+ 2
(1.3)

In the context of geometry segmentation in material characterization, between-

ness centrality is an effective tool for locating narrow connecting regions between

microstructures in segmented image data. Due to the resolution limit of tomogra-

phy techniques and imperfection of image segmentation, approximate but separate

clusters may erroneously connect by some artificially introduced voxels. Those ar-

tificial voxels that bridge clusters have an elevated level of importance in binding

the network of the combined cluster and, consequently, they contain unusual higher

betweenness centrality values. Betweenness centrality can be an effective metric to

eliminate spurious bridges between separate geometric entities.

Moreover, the centrality based geometry segmentation can be very efficient and

feasible for realistic networks with millions of vertices. Calculating the betweenness

centrality of all the vertices can be very time consuming if we directly compare all pos-

sible paths between all pairs of vertices on a graph. The direct calculation of between

centrality involves calculating the shortest paths between all pairs of vertices on a

graph, which requires O(V 3) time with the Floyd-Warshall algorithm [35]. However,

on sparse graphs, the calculation time decreases to O(V 2 logV + V E) with the help

of Johnson’s algorithm [36]. Fortunately, with the help of Brandes’ algorithm [37],

the centrality calculation requires O(V E) time on unweighted graphs [38] compared

with O(V 3) time, originally. The V and E are the numbers of vertices and edges in

the graph network, respectively.
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1.2 Review of Methods for Geometry Representation

The assumption of material homogeneity in the stress analysis of engineered com-

ponents and structures is necessitated by the vast separation of scales between the

characteristic length of material microstructure and the dimensions of the part be-

ing analyzed. This assumption is appropriate when the constitutive response of the

homogenized material is well-characterized and the characteristic length of the de-

formation is also far separated from the material microstructure scale [39]. This

assumption is not appropriate when there is coupling between the microstructure

and the macroscopic response. Examples of microstructure behavior that play an im-

portant role in macroscale material response are fiber bucking in reinforced polymer

composites [40], shear localization in sand and soils [41], and fatigue crack initiation

at precipitates in alloys [42]. In this work, we develop a level set technique for model-

ing materials with an arbitrary number of phases by representing their complex two-

and three-dimensional microstructure implicitly with distance functions on adaptively

refined meshes with hanging nodes.

This section provides some basic concepts of numerical methods for geometry

representation. Section 1.2.1 reviews some previous work in explicit or parametric

geometry representation. Section 1.2.2 provides some basic concepts of the level set

method. In section 1.2.3, a review of the fast marching method is presented.

1.2.1 Explicit or Parametric Method

The most common method of representing material microstructure in finite ele-

ment models is by an explicit or parametric approach. In this approach, an explicit

representation of the material microstructure is fed into mesh generation software
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so that each phase meshes by a separate set of elements and material interfaces are

coincident with element faces.

There has been much progress in developing algorithms for generating high-

quality, unstructured meshes in arbitrary geometry. Zhang et al. have developed

an octree-based isocontouring method to construct adaptive tetrahedral or hexahe-

dral meshes from volumetric data [43]. In their later work [44], material change edge

was introduced to relocate material interfaces for automatic 3D mesh generation of

multi-phase materials.

However, these approaches require sophisticated unstructured mesh generation,

which complicates the imposition of periodic boundary conditions and ultimately

couples the representation of the geometry to a specific mesh. Explicitly representing

material microstructure through mesh topology poses the restriction that interfaces

must not evolve with respect to the material coordinates, an occurrence that can

be either physical, e.g. grain growth, or numerical, e.g. convection of interfaces in

an arbitrary Lagrangian/Eulerian formulation for extreme deformations. Evolving

geometry can also be modeled by remeshing as the interface advances. A recent

advance in this area is the development of universal meshes, which robustly track

complex moving interfaces in two dimensions by mapping from a fixed background

mesh.

1.2.2 Level Set Method

Significant effort has been expended to develop level set methods (LSM) that ad-

dress the drawbacks of explicit or parametric representations of interfaces. The LSM

was created in 1988 by Osher and Sethian [45] as a numerical technique for tracking

the propagation of an interface or front whose speed depends on the local curvature.

Tracking the motion of an interface is meaningful in a wide range of physical phenom-
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ena. Some applications are obvious, for example, the analysis of flame propagation

[46], the computation of incompressible bubble dynamics [47], and tracking the mo-

tion of complex solid/liquid boundaries in crystal growth and dendritic solidification

[48, 49]. Some applications are not so obvious, for example, path optimization in

robotic navigation with constraints [50] and the manufacture of integrated circuits

[51].

One attractive feature of the method is that it allows the topology of the inter-

faces to change (e.g. merging or splitting) automatically during evolution [52, 53].

The LSM allows one to follow the motion of an N-dimensional surface Γ in a N+1

dimensional space Ω [54, 55]. The interface Γ should subdivide the domain Ω into

two or more separate regions, e.g. a sphere subdivides an infinite domain into two

separate regions, one inside the sphere and the other one outside the sphere. One

dimensional curves cannot divide three-dimensional space into separate sub-domains,

and co-dimension two is not considered in this method. In the LSM, interfaces are

represented by the zero value of a higher-dimensional function, e.g. φ(x, t) = 0 where

x ∈ Γ. The level set function can be any continuous function as long as it is zero on

interfaces. Given an initial φ = 0 at t = 0, it would be possible to know at any time

t, the motion equation is

∂φ(x, t)

∂t
= 0 (1.4)

After applying chain rule, equation (1.4) becomes

φt +
∂φ

∂x
xt = 0 (1.5)

φt +∇φ xt = 0 (1.6)

φt +∇φF (x, t)n = 0 (1.7)

φt +∇φF (x, t)
∇φ
|∇φ| = 0 (1.8)

φt + F (x, t)|∇φ| = 0 (1.9)
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In the above equations, F (x, t) is a velocity field function that defines the motion of

the interface along its normal direction. The speed may be an arbitrary function of

the curvature. The evolution of fronts or surfaces can be accomplished by solving

the Hamilton-Jacobi equation [56, 57]. The velocity field can be chosen so that the

evolution equation reaches a stationary point when the level set function is a signed

distance function. A signed distance function is a special case of a level set function

where the value of the field gives the nearest distance to an interface and the sign of

the field determines whether or not a coordinate is interior or exterior to the interface.

By definition, the magnitude of the gradient of a signed distance function is unity, so

the velocity field is defined to enforce this condition. Figure (1.10) shows the distance

field on a slice in a triple sphere model. The distance field is negative inside spheres

and positive outside the spheres. The distance field equals to zero on the sphere

surfaces. The level set field is enforced to satisfy the distance criterion if the velocity

field is defined as

F = sign(φ)

(
1− 1

|∇φ|

)
(1.10)

(a) Triple sphere model. (b) Distance field on the slice.

Figure 1.3: An illustration of the distance field in a triple sphere model.
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1.2.3 Fast Marching Method

The fast marching method (FMM) was introduced by Sethian [58] and improved

for higher order convergence by Chopp [59] as an efficient method to update the dis-

tance fields for monotonically advancing fronts and moving interfaces. This method

has been successfully applied in various areas including digital inpainting for re-

construction of small damaged portions of an image [60], fatigue crack propagation

[61, 62], and path planning for mobile robot navigation [63]. In FMM, an interface is

represented implicitly as

t = φ(x) (1.11)

Differentiating equation (1.11) with respect to t and recall that n = ∇φ
|∇φ| , we have

1 = ∇φ · (F (x)n) = F (x)|∇φ(x)| (1.12)

where F (x) is a monotonic speed function for a propagating interface or front. This

method is vastly faster than any other numerical method by an order of magnitude.

The interface evolution is computed in one pass over the mesh with computational

complexity of O(N logN), where N is the total number of grid points in the domain

[64]. Besides that, the FMM uses techniques incorporated from hyperbolic conserva-

tion laws to appropriately propagate interfaces or fronts with sharp corners [59], such

that we do not need to worry about the stability problem in the evolution of the level

set field.

In FMM, the gradient ∇φ in equation (1.12) is approximated using upwind differ-

ences method. The upwind differences method requires a causality, in other words,

information always flows from the initial contour φ(x) = 0 outward for increasing

values of φ [65]. The causality means that the location of the interface at time t0

must come from time t1 for that t0 ≥ t1. Hence, if equation (1.11) is solved in a

monotonically increasing way, the upwind differences are assured to be valid and the
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level set φ is eventually computed on all grid points. The causality of grid points is

illustrated in Figure (1.4).

Accepted

Tentative

Distant

-1(0) -1(t)

Figure 1.4: An illustration of causality for the fast marching method.

As shown in Figure (1.4), grid points are sorted into three separate sets: the set

of accepted points A, the set of tentative points T and the set of distant points D.

The set A contains all the grid points whose level set have been calculated. The grid

points in set A are always closer to the initial interface than any of the grid points in

set T orD. The grid points in T are all potential candidates to be next computed. We

move a tentative point, x, to the set A once its level set φ(x) is computed. The grid

points in D are considered far away from the initial interface. In upwind differences

method, the information always propagates from the initial contour outward to larger

values of φ. Thus, for grid points xa ∈ A, xt ∈ T and xd ∈ D, the evolved level set

should satisfy φ(xa) < φ(xt) < φ(xd).

The fast marching method can be summarized as an algorithm [66]:

1. Initialize all grid points in a neighborhood of the initial interface with an initial

value. These points are put in A.

2. Compute tentative approximations for all grid points that are adjacent to an

accepted point but not already in A. These points are put in T . All remaining points

12



are placed in the set D. Grid points are considered as neighbors if their distance is

only one space step away along one dimension. As shown in Figure (1.5), grid points

in mutual diagonal positions are not considered as adjacent.

Adjacent

Not adjacent

Target point

Figure 1.5: An illustration of adjacent grid points for a target point in the fast

marching method.

3. Choose the point x ∈ T with the smallest tentative values. Move the point

to A. For all grid points y /∈ A that are adjacent to x, compute tentative values for

φ(y). If y ∈ D, then move point y into T .

4. Go to step 3 until T = ∅.

Using upwind finite differences, equation (1.11) can be discretized in the direction

controlled by which neighboring points are in A ∪ T . One of the key components in

fast marching method is to estimate the tentative values for point in T . Suppose,

for example, a grid point xi,j ∈ T is to have a tentative value computed and as-

sume adjacent grid points xi+1,j ,xi,j−1 ∈ A. Then, the two-dimensional first order

approximation [59] for equation (1.11) is

Fi,j

((φi+1,j − φi,j

∆x

)2
+
(φi,j − φi,j−1

∆y

)2)1/2

= 1 (1.13)

In the above equation, the terms Fi,j, φi+1,j, and φi,j−1 are all known. Solving for

φi,j, we get a quadratic equation:

(∆x
∆y

+
∆y

∆x

)
φ2
i,j−2

(∆y
∆x

φi+1,j+
∆x

∆y
φi,j−1

)
φi,j+

(∆y
∆x

φ2
i+1,j+

∆x

∆y
φ2
i,j−1−

∆x∆y

F 2
i,j

)
= 0

(1.14)
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For this quadratic equation, its discriminant is

d = 4

(
∆x2 +∆y2

F 2
i,j

−
(
φi+1,j − φi,j−1

)2
)

(1.15)

Since Fi,j > 0, if discriminant d < 0, we have

√
∆x2 +∆y2

Fi,j
< |φi+1,j − φi,j−1| (1.16)

Figure (1.6) is helpful to understand the above equation. The discriminant becomes

negative when the travel time from point xi+1,j to point xi,j−1 is smaller than the

difference of their level sets, |φi+1,j−φi,j−1|. Then, when the discriminant is negative,

the proper value for φi,j should only depend on the grid point whose information

arrives at xi,j well before the other one.

φi,j = min
(
φi+1,j +

∆x

Fi,j
, φi,j−1 +

∆y

Fi,j

)
(1.17)

x i, j x i+1, j

x i, j-1

x2+   y2

Figure 1.6: An illustration of propagation time between two grid points.

If the discriminant is not less than zero, we have two solutions:

φi,j =
2
(

∆y
∆x
φi+1,j +

∆x
∆y
φi,j−1

)
± 2
√

∆x2+∆y2

F 2

i,j

−
(
φi+1,j − φi,j−1

)2

2
(

∆x
∆y

+ ∆y
∆x

) (1.18)

In order to satisfy φi,j > φi+1,j, the new estimate for φi,j is given by the largest of the

two roots.
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1.3 Fracture Analysis of Metal Matrix Composites

Metal matrix composites (MMCs) are widely used industrially due to their at-

tractive combination of high strength, high stiffness and low density [67]. Efficient

numerical analysis of the interrelations between microstructure and strength of these

composites can serve as a basis in material design and optimization. Traditionally,

the simulation of damage in MMCs has been limited to two dimensions with the

reinforcing particles simplified as spheres or ellipsoids [68, 69, 70, 71]. These simpli-

fications do not strongly influence predictions of average properties of a composite

such as the elastic modulus, however, they introduce large errors in the prediction of

phenomena dominated by extreme values, such as fracture and fatigue. The actual

geometries of reinforcing particles may contain sharp corners and edges, which cause

stress concentrations that act to initiate fracture. Furthermore, the spatial distribu-

tion of reinforcing particles can be a significant factor in the strength and toughness

of the material. In this work, we present an extended finite element algorithm for the

fracture analysis of MMCs with realistic internal geometries initialized from X-ray

tomography data.

1.3.1 Fundamentals of Fracture Mechanics

Fracture mechanics is the field of mechanics that studies the initialization and

propagation of cracks in materials [72]. Analytical and experimental solid mechanics

are used to characterize the material resistance to fracture. There are three types of

loading to enable a crack to propagate [73], as illustrated in Figure (1.8). In mode

I loading, a principal load is applied normal to the crack plane to open the crack.

Mode II refers to an in-plane shear loading and inclines to slide the crack surface.

Mode III corresponds to an out-of-plane shear loading that acts parallel to the plane
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of the crack and parallel to the crack front. A crack can be loaded in any one of the

three modes, or a combination of two or three modes.

Mode I Mode II Mode III

Figure 1.7: Three types of loading that can be applied to a crack.

There are two approaches to fracture analysis: the energy criterion [74, 75] and

the stress-intensity approach [76, 77]. These two approaches are equivalent in certain

circumstances. The energy approach states that the crack propagation happens when

the energy available for crack extension is sufficient to overcome the resistance of the

material [72]. The material resistance includes the surface energy of crack surfaces,

plastic dissipation, or other types of energy dissipation associated with a growing

crack. The energy criterion for fracture was firstly proposed by Griffith [78], to

explain the failure of brittle materials. Griffith’s theory has excellent agreement with

experimental data for brittle materials, however, for ductile materials, the surface

energy calculated by Griffith’s model is usually unrealistic high.

Irwin and his coworkers [79, 80] found the important role of plasticity in the

fracture of ductile materials. In ductile materials, there is a plastic zone around

the crack tip of the crack. With increasing external load, the plastic zone increases

in size until the crack propagates. Once crack propagates, the region behind the

crack tip starts to unload. The cycles of plastic loading and unloading result in
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energy dissipation as heat. Therefore, a dissipative energy term has to be added to

the energy balance relation. In Irwin’s strategy, the energy is partitioned into two

parts: the stored elastic strain energy and the dissipated energy which includes plastic

dissipation and the crack surface energy. The energy release rate G can be used to

represent the rate of change in potential energy with the crack area. Finally, the

energy release rate required for crack growth can be represented as

G = 2(γs + γp) (1.19)

where γs is the surface energy of the material and γp is the plastic work per unit area

and typically much larger than γs. For a crack of length 2a in an infinite plate subject

to a remote tensile stress, the energy release rate is

G =
πσ2a

E
(1.20)

where E is Young’s modulus, σ is the remotely applied stress, and a is the half-crack

length. Once the energy release rate equals to a critical value, the crack propagates.

The critical energy release rate can be denoted as

Gc =
πσ2

f a

E
(1.21)

Combine equation (1.19), equation (1.20) and equation (1.21), we have

σf =
(2E(γs + γp)

πa

)1/2
(1.22)

The stress intensity factor, K, can be used to predict the stress state near the tip

of a crack subjected to external forces. It is originally developed for isotropic linear

elastic materials. The magnitude of K usually depends on the sample geometry, the

location of the crack tip, the area of the crack surface, and the magnitude of the

external load. In a polar coordinate system (r, θ) with origin at the crack tip, the
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stress field in any linear elastic crack body is given by [81, 82]

σij =
( k√

r

)
fij(θ) +

∞∑

m=0

Amr
m
2 g

(m)
ij (θ) (1.23)

where σij is the stress tensor and fij(θ) is a dimensionless function that varies with

the load and geometry. The second part in equation (1.23) is a higher order term.

Am is the amplitude and g
(m)
ij is a dimensionless function of θ for the mth term. This

relation is no longer true close to the crack tip because as r goes to zero, the stress

σij goes to infinity. Plastic distortion usually occurs at the crack tip and the linear

elastic solution is no longer applicable.

θ

r

Y

X

Z

Crack

Figure 1.8: Polar coordinates at the crack tip.

The stress intensity factor for a through crack of length 2a in an infinite plate sub-

jected to a remote tensile stress σ is

KI = σ
√
πa (1.24)

1.3.2 Weibull Distribution

The Weibull distribution is a continuous probability distribution that has been

proved to be a well empirical statistical distribution for cleavage fracture of brittle

materials [83, 84, 85, 86]. Eckschlager proposed a finite element based approach for

modeling brittle cleavage of spherical particles on the basis of Weibull distribution

[87]. Doremus compared normal, Weibull and Type I extreme value distributions
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using failure strengths of glass [88]. Lu fitted fracture strength data to Weibull and

normal distributions for three types of brittle materials [89], from which he pointed

out that the difference between the two distributions was very small to be clearly

distinguished in the case of SiC. Gao proposed a new way to calibrate Weibull stress

parameters analytically which uses fracture toughness data under both low and high

constraint conditions at the crack front [90]. In his later work [91], the new strategy

was used to calibrate the Weibull stress model used to predict cleavage fracture in

plates containing surface cracks.

Survival probability is used to denote the possibility of a test sample that does

not break under an applied tensile stress. The survival probability can be denoted as

[92]

Ps = exp

(
−
(
σ − σu
σf

)m)
(1.25)

where σf is the nominal ultimate stress of the material and σu is a threshold stress

parameter, which represents a minimum stress below which a test specimen does not

break [93]. The threshold parameter, σu, is usually set to zero. A constant parameter

m is used to represent how rapidly the strength decreases as increasing applied stress

σ. Figure (1.9) shows the survival probability distribution with respect to the applied

tensile stress. When applied tensile stress is zero, the survival probability is one, which

means the sample will be sure to survive. The survival probability decreases to zero

as the tensile stress increases to infinity. The survival probability is about 0.37 when

the applied stress equals to the nominal ultimate stress, σ = σf .
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f

0.37

(MPa)

Figure 1.9: The distribution of Weibull survival probability.

Then, for a uniformly stressed volume in a state of uniaxial tension, the Weibull

fracture probability can be expressed as

Pf = 1− exp

(
−
(
σ − σu
σf

)m)
(1.26)

1.3.3 The Extended Finite Element Method

Implicit microstructure representation combined with the extended finite element

method (XFEM) allows modelers to represent complex material microstructures with

consistent mesh quality and accuracy. In this approach, material geometry can be

implicitly described by a level set field. A signed distance function is a special case

of level set field where the value of the field gives the nearest distance to an interface

and the sign of the field determines whether or not a coordinate is interior or exterior

to the interface [94]. We have presented two methods in our previous work [95] for the

initialization of signed distance functions on adaptively-refined finite element meshes

from segmented X-ray tomographic data.
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The extended finite element method was developed by Belytschko et al. [96] in

order to model crack propagation without needing to remesh the domain as the crack

grows. The central idea of the XFEM is to use enrichments to the finite element ba-

sis that can locally represent discontinuities or other known features of the problem

through a partition of unity [97]. Huynh and Belytschko presented further develop-

ments in the XFEM for fracture problems in composite materials [98]. Ye and Cheng

integrated the XFEM in ABAQUS Subroutine to study the influence of reinforcing

particles to the crack propagation behavior in a metal-matrix composite [99]. Wang

and his coworkers investigated the interaction between a propagating crack and a

single or multiple particles in a brittle matrix using the XFEM technique [100].

(a) Unstructured mesh. (b) Uniform mesh. (c) Oct-tree mesh.

Figure 1.10: A comparison of three types of mesh for a triple sphere model. (a). An

unstructured mesh used in the standard finite element method. (b). Contour plot of

the level set field on a uniform mesh. Interfaces are represented implicitly with zero

level set. (c). Contour plot of the level set field on an oct-tree mesh. Elements close

to interfaces are sorted and refined.
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Chapter 2

GEOMETRY SEGMENTATION

In this work, we develop a robust method to automate geometry segmentation in

segmented tomographic images of three-dimensional materials with discrete inclusions

or particles. The objective of this method is to accurately identify and separate

discrete features in composite materials where limitations in imaging resolution lead to

spurious connections near close contacts. In the method, the betweenness centrality,

a measure of the importance of a node with respect to the connectivity of a network,

is used to identify voxels that create spurious bridges between distinct geometric

features. To facilitate automation of the new algorithm, we develop a non-dimensional

relative centrality metric to allow for the selection of a threshold criteria that is

independent of inclusion shape or volume.

2.1 Voxel Data

In a heterogeneous material, each three-dimensional phase can approximated by

a set of voxels contained within the phase.

vαijk =





1 if xijk ∈ Ωα

0 else
, (2.1)

where Ωα denotes the domain for phase α. The location of each voxel is described by

a 3-tuple of integers such that

xijk = x0 + i∆x + j∆y + k∆z, (2.2)

where x0 is the origin of the voxel data set. The voxel cell length in three directions

is determined by the lengths of the voxel cell vectors, i.e. ‖∆x‖, ‖∆y‖ and ‖∆z‖.
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2.2 Initial Clustering of Voxels into Clusters

Starting from a phase voxel data set, initial clustering is performed to rapidly

split phase voxels into clusters based on their relative spatial connections. This initial

clustering is performed by grouping phase voxels into non-contiguous groups of voxels.

Voxels are considered contiguous if they share a face, but not if they share an edge

or corner, i.e. each voxel has only six connected neighbors. As a result of limited

imaging resolution or poor contrast between adjacent particles, these initial sets of

voxels often contain more than a single particle, connected through spurious bridge

connections. Geometry segmentation will be applied to detect and eliminate those

spurious connections. The initial clustering algorithm can be summarized as follows:

in a loop of all phase voxels, if a voxel is still not accepted by any cluster, initialize a

new cluster and incorporate the voxel into that cluster. Then phase voxels adjacent

to the voxel are then added into the same cluster. The voxel absorption continues

until all phase voxels pertaining to the cluster have been found. Then the algorithm

continues iterating over the set of phase voxels until another unaffilated voxel is

found, and a new cluster is created. This procedure continues until all phase voxels

are mapped to clusters. This procedure is detailed in Algorithm 1.
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Algorithm 1 Fast clustering from phase voxels

Define V → phase voxel set

Define C → cluster set

τ ← empty array

for all v ∈ V do

if v ∈ C then

Continue

C0 ← empty cluster

Insert v into τ

while τ 6= ∅ do

κ← last element in τ

τ ← delete last element

if κ 6∈ C then

µ← phase neighbor voxels of κ

τ ← insert µ

Insert κ into C0

Insert C0 into C

2.3 Graph Construction

After initial clustering, a set of clusters are initialized and each cluster is composed

of a set of phase voxels. We construct an undirected graph network composed of

vertices and edges for each cluster. Each phase voxel is constructed as a vertex

and edges are constructed between all adjacent phase voxels. The constructed graph

network does not incorporate the physical coordinates of each voxel, and the edge

weights in the graph do not correspond to the real distance between voxels. In this
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work, an unweighted graph network is applied and the edges connecting vertices are

considered as binary interactions.

Phase voxels

Matrix voxels

graph-1 voxels

graph-2 voxels

Graph-1 

Graph-2 

Neighbor voxels 

Neighbor graph

Figure 2.1: An illustration of graph initialization from phase voxels. Phase voxels

cluster into two separate graphs since voxels in mutual diagonal position are not

considered as neighbors.

2.4 Betweenness Centrality

In order to locate neck voxels, the betweenness centrality is calculated on each

node in the constructed graph network. In a graph G := (V,E) with V vertices and

E edges, the betweenness centrality of vertex v is defined as [29, 33]

CB(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(2.3)

Where σst is the number of shortest paths between each vertex s ∈ V and t ∈ V ,

and σst(v) is the number of shortest paths passing through vertex v. The maximum

possible absolute centrality for an undirected network with n vertices is [34]

max(CB) =
n2 − 3n+ 2

2
(2.4)

The normalized betweenness centrality can be expressed as

CNB (v) =
2CB(v)

n2 − 3n+ 2
(2.5)
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2.5 Automatic Neck Volume Localization

On the basis of constructing graphs with the same rule, graphs with more vertices

are more likely to possess higher maximum centrality. Therefore, the absolute central-

ity can be influenced by two important aspects: the graph size and the corresponding

network topology. For a cluster composed of two particles, we can try different thresh-

old and remove vertices with absolute centrality higher than the threshold. The trial

process is tedious but feasible for a single cluster. However, for realistic tomography

data with hundreds of clusters, a more robust segmentation algorithm should be able

to distinguish touching clusters and perform segregation automatically regardless of

the cluster size. Compared with the absolute centrality, the normalized centrality is

a better choice which can counteract the influence of graph size to a certain extent.

In an one-dimensional graph composed of aligned vertices, it is not difficult to un-

derstand that the center vertex possesses the maximum centrality and the maximum

value is exactly 0.5 for graphs with odd number of vertices. Similarly in two- and

three-dimensions, the maximum centrality also inclines to appear at the graph center

unless the graph has special configuration such as neck volume. Figure 2.2a shows

the betweenness centrality distribution in a sphere. Centrality decreases gradually

from center to the outside surface. Figure 2.2b is a plot of the maximum normalized

centrality against the number of vertices in spheres. The maximum normalized cen-

trality is fitted by least square regression with respect to the number of vertices in

the network.
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(a) Centrality in a sphere

B (n) = 1.5841 n-0.5757-0.0011

(b) Maximum normalized centrality

Figure 2.2: (a). Scaled betweenness centrality on vertices in a sphere colored by

the blue to red rainbow. Inside vertices contain higher centrality values. (b). Least

square regression of the maximum normalized centrality in spheres with the different

number of vertices.

For an advanced segmentation algorithm, firstly it should decide whether a net-

work possesses neck voxels and if it does, segmentation will be performed automat-

ically. The maximum normalized centrality in a single sphere provides a reference

for the establishment of critical centrality values in segmentation. For a graph with

unknown topology, if its maximum normalized centrality is close to the centrality in

a single sphere with an equal number of vertices, we can deduce that the graph does

not contain any neck volume and no segmentation needs to be applied. Until now,

we still need to develop a general rule to set the critical centrality. The following

part studies the centrality in a couple sphere with two spheres connected by a small

contact volume.
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Sub-cluster-1 Sub-cluster-2

Matrix voxels

Phase voxels

Maximum plane

Contact plane

Figure 2.3: An illustration of couple spheres connected by a small neck. Contact

volume can be increased by decreasing the distance between sphere centers. The

maximum number of contact voxels equals to the voxel number on the maximum

plane.

Contact volume ratio is obtained by dividing the number of voxels on the contact

plane over the voxel number on the maximum plane. Here we introduce a relative

centrality to represent the ratio of the normalized centrality in a network against the

maximum normalized centrality in a single sphere with an equal number of vertices.

The relative centrality of a graph can be expressed as

ĈB(v) =
CNB (v)

B(n) (2.6)

where n is the number of phase voxels in the graph network.
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Figure 2.4: The plot of the maximum relative centrality in couple spheres with differ-

ent contact ratios for three cases with a different number of voxels. Different contact

ratios can be acquired by deleting contact voxel pairs. #v is the number of phase

voxels in the graph network.

Figure 2.4 shows the influence of neck volume ratio on the maximum relative cen-

trality. The non-dimensional relative centrality is an excellent metric that enables to

localize neck voxels automatically. This metric reduces the influence of graph size to

the maximum extent and at the same time, the graph topology can be completely

reflected in the centrality magnitude. Besides that, the magnitude of relative central-

ity has a practical implication. The maximum relative centrality is a unit in single

spheres and the maximum relative centrality increases exponentially with decreasing

contact volume ratio. As shown in Figure 2.4, when contact volume ratio is less than

0.2, the maximum relative centrality is higher than 2, which is large enough for the

localization of neck voxels.
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2.6 Automatic Neck Volume Removal

Graph segmentation indeed can be separated into two processes: voxel localization

and voxel removal. After locating neck voxels, the continued voxel removal is relatively

straightforward. In this work, we use coordination to represent the number of phase

voxels in its six neighbors. The maximum coordination is six in 3D. Voxel removal is

performed based on the conjunction of high relative centrality and low coordination.

Combined with coordination, only boundary voxels can be removed such that we can

avoid introducing cavity inside the cluster. Finally, we loop over all phase voxels

and remove voxels with relative centrality higher than 2, moreover, coordination less

than 6. After each removal of voxels on the outermost layer, neck volume reduces

and the volume decrement will in turn increase the maximum relative centrality on

neck voxels. Hence, graph segmentation will continue until all neck voxels have been

deleted. Detailed segmentation algorithm has been summarized in algorithm (2).
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Algorithm 2 Graph segmentation for clusters

Define C → initial clusters

for all C ∈ C do

while True do

Initialize cut voxel number, n → 0

for all v ∈ C do

if Ĉ(v) > 2 && coordination(v) < 6 then

Remove v from C

n = n + 1

if n = 0 then

Break

C → Redo cluster initialization

C → Recalculate relative centrality

Noted that some neck volumes with small contact ratio possibly contain signif-

icantly high relative centrality. As a side effect, the prominent high centrality is

inclined to raise the centrality of surrounding voxels close to but not belong to the

neck volume. Consequently, overshoot might occur in some graph networks and a few

voxels could be deleted innocently under constant critical centrality. Certainly, we

can define specific critical centrality for each graph network based on its maximum

centrality, or be even more cautious, we can only remove the voxel with the highest

centrality each time. These strategies can avoid deleting innocent voxels but more

deleting times are required, which leads to the corresponding increment in compu-

tational effort. After each time of voxel removal, centrality has to be recalculated

again and the centrality calculation is the most expensive part in geometry segmen-

tation. In addition, the motivation to perform geometry segmentation is the desire to
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counteract the resolution limit of X-ray tomography before implementing voxel data

into the extended finite element (XFEM) analysis. Permissible overshoot is preferred

in geometrical representation of microstructures since too close particles require very

fine XFEM mesh to distinguish the particle boundaries [95]. After trade-off consider-

ations, we set the critical relative centrality to 2, which works well for most practical

problems.

2.7 Gap Expansion

As briefly mentioned, spatially closed particles require very fine finite element

mesh to represent particle geometries accurately. Indeed, we have developed struc-

tured, oct-tree meshes with hanging nodes to represent material geometries [95]. With

the help of oct-tree mesh, it is possible to differentiate close particles with accept-

able computational effort. However, performing gap expansion on segmented voxels

is a better way to avoid unnecessary expense. The basic idea of gap expansion is to

delete voxels within certain distance to other clusters in order to broaden the shortest

distance between clusters.

Gap expansion requires localizing voxels within a certain distance to other clusters

before deleting voxel. Bin table is implemented to improve the efficiency in voxel

localization. Bin table is a uniform grid whose size is several times larger than the

corresponding voxel size. Bin table size can be set close to a critical distance whose

magnitude should be chosen mainly according to the expected gap dimension, or to

be further, the minimum element size in finite element mesh.

The gap expansion algorithm can be summarized as follows: Firstly, construct a

bin table overlapped on the voxel domain. Phase voxels are sorted into corresponding

bins based on their actual positions. In the loop of each cluster, we find boundary

bins possessing any voxel with coordination less than six. Then for each boundary
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bin, loop over its voxels and calculate the distance with respect to other voxels from

the bin as well its neighbor bins. Both voxels are stored in a removal voxel list if their

distance is smaller than the critical value, and moreover, the two voxels should belong

to different clusters. Finally, it is straightforward to remove voxels from corresponding

clusters.

2.8 Example Problem of Multiple Spheres

To conform the geometry segmentation algorithm, geometry segmentation was

performed on a numerical example with multiple spheres. The numerical model is

constituted by six spheres of the same radius randomly distributed inside a unit

cube. The six spheres are initially divided into three clusters with one joined cluster

composed of four spheres connected by some narrow volumes. The corresponding

voxel discretization is 20×20×20 and there are 1286 phase voxels. After geometry

segmentation, the joined cluster is successfully segmented into four at the expense

of 87 voxels deleted, which is only about 6.8% of the total number of phase voxels.

All removed voxels are around narrow connections as expected. The critical distance

in gap expansion is set to four times of voxel size but not absolutely necessary. The

critical distance can be changed primarily based on the minimum finite element size

expected to use.
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(a) Initial centrality (b) Centrality removal (c) Gap expansion removal

Figure 2.5: Geometry segmentation for spheres. (a). Rescaled relative centrality on

initial spheres with opacity proportional to centrality magnitude. High centrality is

concentrated on narrow connections and the maximum relative centrality is about

12.3 before rescale. (b). Clusters after geometry segmentation with removed voxels

highlighted in black. Remaining voxels are colored by corresponding cluster id. The

maximum relative centrality is about 1.7 after segmentation. (c). Clusters after gap

expansion with removed voxels highlighted in gray. Critical gap distance is four times

of the voxel size.

2.9 Example Problem of SiC Particles

To demonstrate the applicability of our algorithm for practical microstructures

with complex geometries, we applied the algorithm on X-ray tomography data of SiC

particles. The material used was a 2080 aluminum alloy reinforced with 20 vol.% SiC

particles (average particle size of 25 µm). The materials were processed by blend-

ing SiC and Al powders, compaction of the powder mixture, hot pressing, and hot

extrusion (Alcoa Inc., Alcoa, PA). Details of the powder metallurgy process for fabri-

cation of these composite materials can be found elsewhere [101]. X-ray synchrotron

tomography was performed at the 2BM beamline of the Advanced Photon Source

(APS) at Argonne National Laboratory. Details of the APS beamline 2-BM have
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been described elsewhere [13, 102]. Using a standard detector, a 2048×2048 pixel

CoolSnap K4 CCD camera coupled with a LuAG:Ce scintillator screen, a specimen

pixel size of 1.47 µm was achieved. 2D projections were collected at angular incre-

ments of 0.125o over a range of 180o. These 2D projections were then reconstructed

in 3D using a filtered back-projection algorithm. The tomography was completed in

about 15 minutes.

A representative 2D slice of the reconstructed images is shown in Figure 2.6a. It

can be clearly seen that the centers of the SiC particles have the similar gray values

to that of the Al alloy matrix, however, the boundary between the Al matrix and SiC

particles are clearly distinguishable. Due to the similar gray values of the center of

the particles and the matrix, conventional segmentation techniques, such as thresh-

olding, could not be used to separate the SiC particles from the matrix. Instead, a

semi-automatic segmentation algorithm known as Livewire was used (Mimics, Ma-

terialise, Ann Arbor, MI), which is based on the sharp gradient in gray scale values

observed along the boundaries of the SiC particles and the Al alloy matrix. The

Livewire technique has been explained elsewhere in detail [103]. A selected volume

320 ×650×104 µm3 was cropped from the 3D reconstructed volume for the segmen-

tation. The representative 2D slice after segmentation is shown in Figure 2.6b. The

obtained voxel data was imported into our algorithm to perform geometry segmenta-

tion.

35



Figure 2.6: (a). Reconstructed 2D tomographic slice of SiC particle reinforced Al

alloy matrix composite. (b). SiC phase voxels after image segmentation. The red

lines circle some spurious connections.

After image segmentation, we acquired a voxel data with 1,121,582 SiC phase vox-

els. After applied the initial clustering, phase voxels initially cluster into 126 clusters

including about 1% of gigantic clusters composed of more than ten thousands voxels.

Three tiny clusters with less than five voxels are abandoned. In parallel computing,

since geometry segmentation is performed independently on each individual cluster,

the segmentation of one cluster can be completely isolated from others, therefore, the

initialized clusters can be evenly distributed into processors in parallel. This feature is

very attractive in parallel computing for practical problems with hundreds of clusters.

Figure 2.7a shows the centrality distribution on initial phase voxels. After performing

geometry segmentation, initial clusters are separated into 237 clusters at the expense

of 11577 voxels removed, which accounts for about 1% of the initial phase voxels.

Figure 2.7b and 2.7c exhibit segmented clusters and removed voxels, respectively.

The maximum cluster contains 24,013 voxels after geometry segmentation, compared

with 114,412 voxels initially. Cluster volume distribution is shown in Figure 2.7d.
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(a) Initial centrality (b) Clusters after segmentation

(c) Removed voxels
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(d) Cluster distribution

Figure 2.7: Geometry segmentation on SiC particles. (a). Rescaled relative cen-

trality on initial clusters with opacity proportional to centrality magnitude. Initial

maximum centrality is about 483. (b). Clusters after geometry segmentation. There

are 237 separated clusters (126 clusters, initially). (c). All removed voxels in ge-

ometry segmentation. (d). Cluster volume distribution before and after geometry

segmentation.

Figure 2.8 and 2.9 exhibit geometry segmentation in more details for two specific

initialized clusters, respectively. From these two examples, it is distinct to distinguish

the locations of neck volumes, centrality concentration, and removed voxels. As can

be seen, neck volumes tend to possess higher relative centrality and all deleted voxels

are located around neck volumes. The geometry segmentation algorithm is capable of
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segmenting joined clusters with a minimal number of voxels removed, moreover, the

geometrical characteristics of original clusters are maintained at the maximum extent.

Critical relative centrality is 2 for all examples used in this work. Therefore, the

segmentation can be performed automatically for different clusters without tweaking

the critical value. Gap expansion is an optional process after geometry segmentation.

Voxels within a certain distance to other clusters are deleted to enlarge the distance

among clusters. The critical distance was set to four times of the voxel size in both

examples.

(a) Cluster-a (b) Centrality cut (c) Gap expansion cut

Figure 2.8: Geometry segmentation on an example cluster. (a). Rescaled relative cen-

trality on one cluster with opacity proportional to centrality magnitude. The initial

maximum centrality is about 59. (b). Separated clusters after geometry segmentation

with removed voxels highlighted in gray. (c). Separated clusters after gap expansion

with removed voxels highlighted in gray.
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(a) Cluster-b (b) Centrality cut (c) Gap expansion cut

Figure 2.9: Geometry segmentation on an example cluster. (a). Rescaled relative

centrality on one cluster with opacity proportional to centrality magnitude. The

initial maximum centrality is about 260. (b). Separated clusters after geometry

segmentation with removed voxels highlighted in black. (c). Separated clusters after

gap expansion with removed voxels highlighted in black.
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Chapter 3

EFFICIENT METHODS FOR IMPLICIT GEOMETRY REPRESENTATION

In this section, the evolution equation for initializing distance fields is developed and

transformed into a weak form for solution by Galerkin’s method. A second approach

for computing distance fields is to initialize the fields with the fast marching method

(FMM) on a uniform grid and project the solution to a finite element mesh by least-

squares.

3.1 Distance Field Initialization

In this section, the evolution equation for initializing distance fields from seg-

mented voxel data is developed and transformed into a weak form for solution by

Galerkin’s method.

3.1.1 Level Set Equations

A level set function represents fronts or material interfaces, denoted by C, as the

zero level set C(t) = {x|φ(t,x) = 0} of a continuous level set function φ(x, t). The

evolution equation for a level set function φ(x, t) can be written in the general form

∂φ

∂t
+ F |∇φ| = 0, (3.1)

where F is a velocity field function that defines the motion of the interface along

its normal direction. In this work, the velocity field is chosen so that the evolution

equation reaches a stationary point when the level set function is a signed distance

function. A signed distance function is a special case of a level set function where

the value of the field gives the nearest distance to an interface and the sign of the

40



field determines whether or not a coordinate is interior or exterior to the interface.

By definition, the magnitude of the gradient of a signed distance function is unity, so

the velocity field is defined to enforce this condition.

F = sign(φ)

(
1− 1

|∇φ|

)
(3.2)

The second criterion for the evolution equation is to ensure that the distance field

is negative at any voxel location within the microphase and positive exterior to the

microphase. To enforce this criterion, a penalty term is introduced that decreases the

level set function at any voxel that is within the microphase if the level set field is

positive. To reduce spurious oscillations in the distance field caused by shocks that

arise as a result of the hyperbolic nature of the evolution equation, a shock capturing

viscosity is added to penalize the curvature of the distance field. Lastly, a fill ratio

corrective term is added that uniformly shrinks the microphase domains if the total

volume fill ratio, γ, exceeds the fill ratio computed from the voxel data, γV . The

resulting evolution equation is

∂φ

∂t
+ sign(φ) (|∇φ| − 1)︸ ︷︷ ︸

Distance

+α
∑

V

δ(x− xv)H(φ)h3e

︸ ︷︷ ︸
Voxel penalty

= ν∇2φ︸ ︷︷ ︸
Viscosity

+ β(γ − γV )H(γ − γV )︸ ︷︷ ︸
Fill ratio corrector

(3.3)

where ν is the viscosity, H(·) and δ(·) are the Heaviside and Dirac delta functions

respectively, α and β are user-specified weighting parameters, and he is the element

size. The voxel penalty term is a sum over the set V of segmented microphase voxels,

each located at xv. The solution of (3.3) will develop shocks at points equidistant from

two interface points, and, therefore, the numerical solution requires regularization by

a viscosity-like term. Hansbo proposed a non-linear artificial viscosity [104] which

was later applied by Chessa in a stabilized Galerkin least-squares method to solve
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a solidification problem [105]. For meshes with large variation in element size such

as the adaptively refined meshes used in this work, a scalar viscosity field defined as

ν = η min(h2e) is effective for damping out shocks. Here, η is a user-specified viscosity

factor, and min(he) is the minimum element size.

3.1.2 Weak Form and Discretization

In order to solve the evolution equation on a finite element mesh, equation (3.3)

is transformed into a weak form by multiplying by a test function ω and integrating

over the domain.

∫

Ω

ω

[
∂φ

∂t
+ sign(φ)(|∇φ| − 1)

]
dΩ+ α

∫

Ω

ω
∑

V

δ(x− xv)H(φ)h3e dΩ

= ν

∫

Ω

ω∇2φ dΩ+ β

∫

Ω

ω(γ − γV )H(γ − γV ) dΩ (3.4)

After integration by parts and rearranging terms, equation (3.4) becomes

∫

Ω

ω
∂φ

∂t
dΩ = −

∫

Ω

ω sign(φ)(|∇φ| − 1)dΩ− α
∑

V

ωH(φ)h3e

+ ν

∫

Γ

ω∇φ · n dΓ− ν
∫

Ω

∇ω∇φ dΩ+ β

∫

Ω

ω(γ − γV )H(γ − γV ) dΩ (3.5)

where ω and φ are C0 continuous test and trial functions, respectively. The Neumann

boundary conditions must be integrated over the boundary Γ with normal n.

The resulting semi-discretized equations for the level set update are

Mφφ̇ = fBC + ff − fφ − fSC − fv (3.6)
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where

Mφ =

∫

Ω

NTN dΩ (3.7)

fφ =

∫

Ω

NT sign(φ) ( |∇φ| − 1) dΩ (3.8)

fSC =

∫

Ω

ν∇NT · ∇φ dΩ (3.9)

fBC =

∫

Γ

νNT∇φn dΓ (3.10)

fv = α
∑

V

NTH(φ)h3e (3.11)

ff = β

∫

Ω

NT (γ − γV )H(γ − γV ) dΩ, (3.12)

and N are the nodal shape functions. The global matrices and vectors are denoted

analogously to their equivalents for explicit finite element simulation of elastodynam-

ics, i.e. Mφ is analogous to a mass matrix, and is similarly lumped by row summation

into a diagonal matrix to avoid solving a large linear system. The force terms of the

semi-discrete equations, are defined in (3.8-3.12). The derivatives in time are then

discretized by a forward-Euler integration

Φn+1 = Φn − ∆t

Mφ
(fnφ + fnSC − fnBC + fnv − fnf ) (3.13)

where the superscript indicates the time step, i.e. Φn = Φ(n∆t).

3.1.3 Critical Time Step

While the evolution equation (3.3) can be characterized as a hyperbolic partial

differential equation, the viscous term adds a parabolic component to the system. The

critical time step, computed from the CFL condition, for the hyperbolic component

of equation (3.3) is

∆th = min
e

h(e)

F (e)
(3.14)
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where h(e) is the element size for element e and F (e) is the corresponding velocity.

As for the parabolic part, some simplifications can be made [106] based on the

assumption that element size h is sufficiently small leading to

∆tp = min
e

h2(e)

2ν
=

1

2η
for ν(φ, t) > 0 (3.15)

The combination of the critical time steps of the hyperbolic and parabolic parts of

the evolution equation lead to a transition between a constant critical time step for

large elements, and a linear relationship between the element size and velocity for

small elements.

3.2 Fast Marching Method

In the FMM, upwind finite differences are taken discretizing (1.12) to solve the

hyperbolic partial differential equation without regularization. For initializing a dis-

tance field, the upwind direction is always oriented toward the nearest interface, or

toward the direction of smaller absolute value of the field. A key aspect of the method

is the order in which the unknown grid points are computed to maintain the validity

in the upwind differences. It is straightforward to develop the discretization of (1.12)

for three dimensions. Suppose for the computation of point xijk, the correct upwind

directions are (−x,−y,−z). The first-order discretization of (1.12) reduces to the

quadratic equation

(
1

∆x2
+

1

∆y2
+

1

∆z2
)φ2

ijk − 2(
φi−1jk

∆x2
+
φij−1k

∆y2
+
φijk−1

∆z2
)φijk

+
φ2
i−1jk

∆x2
+
φ2
ij−1k

∆y2
+
φ2
ijk−1

∆z2
− 1 = 0 (3.16)

where ∆x, ∆y and ∆z are the grid discretization sizes in each dimension.

In the FMM, a set of grid points must first be computed directly in order for

subsequent points to have valid upwind differences. These initial points are found
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Accepted (+½h)

Accepted (-½h)

Tentative

Figure 3.1: Initialization of boundary points in the FMM. Grid points adjacent to the

voxel boundary are initialized and accepted. All neighboring points to these newly

accepted points have tentative values computed.

by iterating over the set of voxels belonging to the microphase and searching for

neighboring voxels that do not belong to the phase. The interface is assumed to

pass halfway between these points so that each can be initialized as one-half the

voxel spacing distance. The sign of these newly initialized points is chosen to reflect

whether or not they belong to a microphase’s voxels. The initialization process is

shown in Figure 3.1. The newly initialized values are then placed in a set of accepted

grid points and all neighboring points that are not yet accepted are placed in a

tentative set and their values are computed by the discretization of (1.12).

After directly initializing the band of grid points around the interface, the remain-

ing grid points are computed in the order of smallest absolute value. In order for the

method to scale efficiently, the tentative set of grid points in this method is stored in

a binary tree. The FMM is summarized in Algorithms 3 and 4, where h represents

the appropriate grid size, ∆x, ∆y or ∆z. Generally, the grid size should be equal to

the size of the discretized voxel set, however, to reduce the computational cost of the

distance field initialization, a coarser grid could be applied.
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Algorithm 3 Initialize level set field by FMM

Define min(T) → the voxel with the minimum tentative value

Define V → filled voxel set

for all v ∈ V do

for all µ ∈ neighbors of v such that µ 6∈ V do

φ(v)← −h/2

φ(µ)← +h/2

Insert v and µ into A

for all v ∈ A do

for all n ∈ neighbors of v do

φ(n)← tentative value(n)

T← T ∪ n

while T 6= ∅ do

v ← min (T)

Move v from T to A

for all µ ∈ neighbors of v such that µ 6∈ A do

φ(n)← tentative value(µ)

Move v from T to A

To reduce the steep gradients caused by the stepwise nature of the segmented

voxel data, the distance function is smoothed by a 3×3×3 weighted kernel. After

the distance field is computed and smoothed on the uniform grid, the finite element

mesh is refined by interpolating the distance function at the center of each element

from the uniform grid and refining the element if the absolute value of the distance

function is below a threshold, i.e. elements near the material interfaces are refined.

The threshold distance can be set to limit refinement to a single band of elements or
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Algorithm 4 Compute tentative value at grid point

function tentative value(v)

Set up discretization equation: aφ2 + bφ+ c = 0 by equation (3.16)

∆← b2 − 4ac

if ∆ ≥ 0 then

return
max(|−b−

√
∆|, |−b+

√
∆|)

2a

else

τ ← empty array

for all µ ∈ neighbors of v such that µ ∈ A do

τ ←insert{φ(µ) + sign(φ(µ))h}

return min(τ)

to a region of specified thickness centered at the interfaces. The nodal distance values

are then computed on the refined mesh by least-squares projection. The projection

operator is

φI =

(
∑

ijk

NI(xijk)NJ(xijk)

)−1∑

ijk

NJ(xijk)φijk, (3.17)

where φI are the nodal values of the distance function and N are the nodal shape

functions evaluated at each voxel grid point. The summations are over all points in

the uniform grid.

3.3 Mesh Refinement with Hanging Node

Approximation of the displacement and stress fields at equilibrium in complex

microstructured materials can pose significant computational challenges when the

microstructure of the material is geometrically complex. It is often the case that

the optimal discretization is nonuniform throughout the domain. For example, the

density of finite elements required to resolve stress concentrations near irregularly-
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shaped inclusions may be significantly higher than in a bulk matrix material. In this

case, a uniformly structured mesh is far from optimal. Instead, we construct the

implicit representation of the material geometry on structured, oct-tree meshes with

hanging nodes [107].

In this approach, the starting point is a coarse, uniform structured mesh, which

can only roughly approximate the distance field. For level set evolution, a stationary

point is found for the distance field at this coarse scale and the error in each element is

estimated by the number of voxel points within the element that have an incorrectly

signed distance. Elements are selected and refined by either a threshold percentile

or by a maximum allowable element error. These elements are refined and a new

stationary point is found on the refined mesh. This procedure is then repeated either

until the error is minimized to a prescribed tolerance or until a maximum number of

mesh elements is reached.

For the FMM construction of the signed distance function, elements are selected

for refinement based on their distance to the zero level set of the distance functions.

The initialization adaptivity is driven by the nearest distance to material interfaces.

To simplify the enforcement of compatibility and continuity of the distance fields,

the refined meshes are restricted to 1-irregular which only allow for hanging nodes to

be located at the center of an element face or edge. After each element is subdivided

into eight child elements, the neighboring elements of the original parent element are

checked to ensure that the 1-irregular property is maintained. If necessary, neighbor-

ing elements are also refined in order to maintain this restriction.

To enforce compatibility and continuity of the distance fields, two operations are

defined in order to restrict the value at a hanging node to be the average of its

neighbors. Hanging nodes at a face are restricted to the average of the four corner

nodes on the face. Hanging nodes on an element edge are the average of the two
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nodes on the edge. The first operation is a scatter operation used to distribute nodal

values accumulated by integration of element domains, i.e. this operation is used to

scatter the terms that contribute to the time derivative of the distance function.

φi ← φi +
1

n
φh for i ∈ H, (3.18)

where H is the set, of length n, of shared nodes that are coupled to the hanging node,

h.

The other operation interpolates the value of the hanging nodes from their sur-

rounding shared nodes.

φh =
1

n

∑

i∈H
φi (3.19)

3.4 Verification Problems

To verify the distance field evolution equation developed in Section 2, numerical

experiments were conducted for simple two- and three-dimensional microstructures.

Linear elements, four-node quadrilaterals in 2D and eight-node hexahedral elements

in 3D were used. The error in the distance function was assessed by two metrics.

The first is the ratio of voxels whose interpolated value has the incorrect sign with

respect to the segmented data set. This metric is a function only of the distance field

and converges quadratically with respect to element size for the linear elements used.

The second metric measures the deviation of the solution from a distance field by

computing the ℓ2 error norm of the distance field

eℓ2 =

√∫
Ω
(‖∇φ‖ − 1)2 dΩ∫

Ω
dΩ

(3.20)

This distance error is a function of the gradient of the solution, and analogous to the

energy error in elastic problems, the rate of convergence of the distance error is linear

with respect to the element size.
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3.4.1 Circular Inclusion

Figure 3.2a shows the initialized level set contours for a circular inclusion. The

simulation domain is a bi-unit square with a center circular inclusion. The normalized

distance error (3.20), is less than 2% at the stationary value with mesh dimension

50× 50.

(a) Circular inclusion (b) Triangular inclusion

Figure 3.2: Level set contours for two-dimensional circular and triangular inclusions.

3.4.2 Triangular Inclusion

The evolution equation was tested with a triangular inclusion to determine whether

the shock capturing operator successfully eliminates the oscillations caused by sharp

corners. In choosing the viscosity parameter, a trade-off is made between reducing

oscillations and avoiding excessive rounding of the corners in the data. Figure 3.2b

shows the stationary contours for a center triangle model containing sharp corners.

The mesh dimension used here is 60 × 60 and the viscosity factor η, voxel penalty

factor α and fill force factor β were set to 5, 0.01, and 0.001, respectively. Figure

3.3a shows the convergence of the distance error for both the level set and the FMM.
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Both methods have optimal convergence rates, however the FMM is superior in accu-

racy. Figure 3.3b shows the numerically determined critical time closely follows the

analytical bounds determined earlier for the triangular inclusion model.
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Figure 3.3: Observed convergence and critical time step for the triangular inclusion

model.

3.4.3 Three-dimensional Tetrahedral Inclusion

The evolution equation was tested in three dimensions with a tetrahedral inclu-

sion. The sharp edges of the tetrahedron present a challenging case due to the high

curvature in the distance field. A dataset of segmented voxels was created within a

cube of unit length such that the voxel resolution was 300× 300× 300 and the final

distance field was computed for both uniform and refined meshes. The uniform mesh

contained 64,000 elements, and the refined oct-tree mesh was initialized with 8,000

elements and refined in two iterations, resulting in a total of 25,175 elements.

The viscosity factor η, voxel penalty factor α, and fill force factor β were set to 30,

0.03, and 0.001, respectively for both meshes. Figure 3.4 shows that oct-tree mesh

can represent sharp corners better than the uniform mesh despite having less than
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half the total number of elements. The voxel errors were 0.29% and 0.24% for the

uniform and refined tree meshes, respectively.

(a) Uniform mesh (b) Refined tree mesh

Figure 3.4: Final zero level set of the distance field on uniform and refined meshes.

3.5 Distance Field Initialization for a Wrought Al7075 Alloy Model

To demonstrate the applicability of implicit geometrical representation for com-

plex material microstructures, we applied both methods on X-ray tomography data

of an aluminum alloy. The material used in this study is a commercially available,

wrought 7075-T651 aluminum alloy. The specimen was machined by electro-discharge

machining for microstructural characterization with X-ray synchrotron tomography.

X-ray tomography was performed at the 2-BM beamline at the Advanced Photon

Source (APS) in Argonne National Laboratory. The tomography system at APS

has been described in detail elsewhere [108]. The beam was focused on the speci-

men and a CdWO4 scintillator screen was used to convert the transmitted X-rays

to visible light. This was coupled with an objective lens and a CoolSnap K4 CCD

camera to achieve pixel sizes of 1.8 µm. 2D projections were collected at an angular
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increment of 0.12◦. The 3D reconstruction of 2D projections was performed using a

filtered-back-projection algorithm.

The domain dimensions of the alloy model are 369×703.8×864 µm and the corre-

sponding voxel discretization is 205×391×480. A fine uniform mesh can pose signifi-

cant computational inefficiency due to the wide range of inclusion sizes. The largest

cluster in this dataset contains over 9000 voxels while the smallest are composed of

several voxels. Figure 3.5 shows the overall distribution of the cluster volume for both

Fe-rich and Si-rich phases.
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Figure 3.5: Distribution of filled cluster volume.

3.5.1 Evolution Equation Initialization

In the solution of the distance field evolution equation, the optimization of vis-

cosity and penalty parameters was performed on a small subset of the model. Due to

the wide range of inclusion sizes, optimized parameters were updated after each mesh

refinement to capture the smaller inclusions more precisely. The viscosity parameter

η was initially chosen as 5.0 and was increased by a factor of two for each successive

refinement. The optimized voxel penalty factor α varied between 2.0 and 10.0 for
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the Si-rich and Fe-rich phases. The weighting of the fill ratio corrector was kept at a

constant value of 50.0.

An initial uniform mesh of 20×39×48 elements was created for the distance field

evolution and subsequently refined based on the previously described refinement al-

gorithms. Figure 3.6 shows the initialized Fe-rich inclusion geometries on the refined

mesh wireframe. After three iterations of mesh refinement, the mesh contained nearly

1.6 million elements. A uniform mesh with an element size equal to the finest ele-

ments would contain nearly 19 million elements. The resulting voxel error reached

was 1.71% with a fill ratio of 1.89%, compared to the 1.91% ratio of segmented voxels.

On a 16-core server, the level set initialization of the Fe-rich phase took 18 hours in

total.

Figure 3.7 shows the final Si-rich inclusion geometries on the refined mesh. The

number of elements is about 0.7 million after three times of mesh refinement. Finally

the voxel error is about 0.52% and the fill ratio is about 0.41% (0.41% actual). On a

16-core server, the time required to initialize the distance field was 9 hours.
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(a) Full domain. (b) 2D slice of the domain.

Figure 3.6: Implicit geometry on refined mesh wireframe showing Fe-rich inclusions.

In the 2D slice view, segmented voxels for each inclusion are drawn in white and the

zero level sets are highlighted with thick lines.

(a) Full domain. (b) 2D slice of the domain.

Figure 3.7: Implicit geometry on refined mesh wireframe showing Si-rich inclusions.

In the 2D slice view, segmented voxels for each inclusion are drawn in white and the

zero level sets are highlighted with thick lines.
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3.5.2 Fast Marching Method Initialization

The FMM was applied for the same aluminum alloy dataset. The distance fields

were initialized on a fine uniform grid with spacing equal to the voxel dataset. Tri-

linear smoothing was performed as previously described to smooth the high gradients

resulting from the discretized voxel geometry. An initially uniform, 15×30×36 mesh

was refined in three iterations such that elements bisected by interfaces were chosen

for refinement, resulting in a mesh containing 1.8 million elements. The smoothed

distance fields for each phase were then projected by least-squares to the refined finite

element mesh.

Figure 3.8 shows the zero contours of the final distance fields for both phases.

The resulted voxel errors are about 2.8% and 0.49% for Fe-rich and Si-rich inclusions

respectively. The FMM was not implemented in parallel however the projection to

the finite element mesh was parallelized. On a 16-core server, the time required to

initialize the distance field for both phases and project the solution to the FEM mesh

was five minutes.
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Figure 3.8: Implicit geometry showing Fe-rich inclusions (yellow) and Si-rich inclu-

sions (red). For clarity, the mesh element edges are shown only within a small layer

at the bottom of the domain.
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Chapter 4

FRACTURE ANALYSIS OF METAL MATRIX COMPOSITES

MMCs exhibit three basic mechanisms for the initiation and growth of damage: Cleav-

age fracture of the brittle particles, debonding at the interface between matrix and

reinforced particles, and after that, cavities and voids nucleate and grow in the matrix

that leads to the ductile failure of the matrix ligaments between particles [87, 109].

In this work, only the first stage of fracture is considered. Brittle particles are consid-

ered as isotropic before cleavage fracture. Matrix deforms plastically according to a

nonlinear J2 plastic law fitted from a stress-strain curve of 2080-T6 aluminum [110].

Reinforced particles and matrix are perfectly bonded all the time during fracture.

Failure strengths of brittle materials vary unpredictably in a wide range from speci-

men to specimen even though samples are manufactured in the same way and tested

under the same condition [89, 88]. Therefore, fracture statistics has to be applied to

the failure strengths of brittle reinforced particles.

4.1 Level Set Geometry Representation

In this work, level sets are employed to represent microstructures implicitly. Level

set methods provide a concise way to describe complex microstructures with con-

sistent mesh quality and level set fields can be conveniently applied in enrichments.

Level sets have been introduced for material interface modeling [111, 55] and crack

modeling [112, 113]. The phase interfaces are represented by the zero level set of a

continuous level set function

f int
α (x) = 0, α = 1 . . . nint (4.1)

58



where nint is the number of reinforcing phases. For each phase, one level set can

represent all interfaces of that phase. If point x is inside phase α, we set f int
α (x) to

be negative, otherwise, f int
α (x) is set to be positive. We have presented two methods

in previous work [95] for level set initialization of complex material interfaces. In the

first method, a level set evolution equation is formulated and solved by the Galerkin

method. In the second approach, we initialize the distance field by the fast marching

method [58, 59] on a uniform grid, and then project the solution onto the finite element

mesh by least squares. The second approach is superior in speed and accuracy, which

is applied to initialize the matrix/reinforcement interfaces.

To represent crack surface on a fractured particle, a similar level set function is

introduced for each particle.

f cr
β (x) = 0, β = 1 . . . npar (4.2)

where β is a particle id, npar is the total number of particles, and the zero level set

gives the crack surface of the particle. The above level set field defines a surface

gliding through the whole simulation model. In order to restrict crack surfaces within

the particle, one more level set function is used to define the location of the crack tip.

gcrβ (x) < 0, if x is inside of particle β (4.3)

gcrβ (x) > 0, if x is outside of particle β (4.4)

gcrβ (x) = 0, if x is on the interface of particle β (4.5)

Finally, the crack surface on particle β can be represented by the combination of two

level set fields, f cr
β (x) = 0 and at the same time, gcrβ (x) ≤ 0.

4.2 Formulation of XFEM for Discontinuities

In traditional finite element models, discontinuities must reside along element faces

such that the discontinuities can be represented explicitly in finite element models.
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In the XFEM, interior discontinuities are represented implicitly by level set fields

and the displacement field approximates by a discontinuous displacement enrichment

[96] based on a local partition of unity [97]. Given a finite element model Ω ∈ R3,

partitioned into finite elements, let S be the set of all finite element nodes, Scr be the

set of nodes of elements whose edges are intersected by a crack surface Γcr, and S int

be the set of nodes of elements intersected by a material interface Γint. The XFEM

displacement field can be expressed by

uh(x, t) =
∑

I∈S
NI(x)uI +

∑

J∈Scr

φJ(x)qJ +
∑

K∈S int

NK(x)ψ(x)qK (4.6)

where uI are the nodal displacements and NI(x) are finite element shape functions.

Additional enriched degrees of freedom qJ and qK are for crack and material inter-

faces, respectively. The function φJ(x) represents jump enrichment which introduces a

discontinuity in the displacement at the crack surface. For a strongly-bonded material

interface, the displacement field remains continuous, but strain can be discontinuous

on the interface. The function ψ(x) represents kink enrichment which introduces

a discontinuity in the gradient of displacement at a material interface. The jump

enrichment function for a crack is [114]

φJ(x) = NJ(x)
[
H
(
f cr(x)

)
−H

(
f cr(xJ)

)]
H
(
− gcrβ (x)

)
(4.7)

where H(·) is the Heaviside step function given by

H(x) =





1 if x > 0

0 otherwise

(4.8)

The simplest kink enrichment function is an absolute value function [115, 111, 55].

Modeling interface with the absolute value function is troublesome because it does

not vanish at the edges of the elements intersected by the interfaces. Moës proposed
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a modified kink enrichment function [116] to preserve the ridge at interfaces, but also

vanish at the edges of enriched elements. The enrichment function is given as

ψ(x) =
∑

I

∣∣f int(x)
∣∣NI(x)−

∣∣∣
∑

I

f int(x)NI(x)
∣∣∣ (4.9)

This enrichment function eliminates the need of blending elements such that only

elements intersected by interfaces are enriched.

4.3 Implementation of Weibull Distribution Model

Due to the high brittleness of the embedded particle, once fracture happens, the

crack will immediately expand through the whole particle, leading to the total split-

ting. While the particle and matrix are always perfectly bonded, the cracks are

assumed to be arrested at the particle-matrix interface. The Weibull distribution

model [117] has been widely used to predict the fracture probability of brittle par-

ticles in ductile matrix [118, 119]. The Weibull distribution function gives a simple

but appropriate mathematical expression that can automatically account for the size

effect on failure in particles. The Weibull model is based on the weakest link statistics

in which the interaction between flaws can be neglected. A particle can be analogous

to a chain consisting of several links and each link is analogous to a flaw in the par-

ticle. The chain fails as soon as a single link fails such that the failure probability

of the chain is primarily dominated by the weakest link. If we want to calculate the

probability of failure Pn of a chain consisting of n links, and assume the links are

identical with the probability of failure P , the probability of not failure of the chain,

1 − Pn, is equal to the probability of the simultaneous not failure of all the links,

1−Pn = (1−P )n. The central idea of Weibull distribution is to define a distribution

function in an exponential form [117]

P (X ≤ x) = 1− e−f(x) (4.10)
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where f(x) can be any positive, nondecreasing function which should vanish at a value.

The exponential form of the distribution function has intrinsic merits to account for

the size effect since the cumulative failure probability can be easily denoted as

Pn(X ≤ x) = 1− e−nf(x) (4.11)

The cumulative Weibull probability can automatically account for the particle size

effect. The critical flaw size will simply decrease and the particle strength becomes

larger as the particle volume shrinks [120]. Therefore, the probability of fracture is

larger when the particle size increases or the stress acting on the particle becomes

larger [121]. When the critical flaw size is smaller than most of particle sizes, a

Weibull distribution is suitable to describe the strength distribution of particles. The

cumulative Weibull fracture probabilities were evaluated for each particle i at each

load increment by using the expression [87, 120]

P i = 1− exp

(
− 1

V0

∫

ΩPi

(
σ1(x)

σf

)m

dΩPi

)
(4.12)

where V0 is a reference volume, σ1 is the maximum principal stress at x, σf and m are

the characteristic strength and Weibull modulus, respectively. The Weibull modulus

is a measure of the degree of strength dispersion. Large Weibull modulus will narrow

down the probability distribution [89]. To create a fracture plane in particle Pi, an

on-plane point at coordinate xf and the plane normal direction nf are needed. The

cleavage point and the normal direction of the fracture surface can be denoted as

xf =

∫
ΩPi

x · σ1(x) dΩPi∫
ΩPi

σ1(x) dΩPi

nf =

∫
ΩPi

n1 · σ1(x) dΩPi

‖
∫
ΩPi

n1 · σ1(x) dΩPi
‖

(4.13)

The overall algorithm can be summarized as
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Algorithm 5 Particle fracture approximation

Identify all Pi ⊂ R3 as intact particles

Assign a random probability ri ∈ [0, 1] to each particle Pi

for Quasi-static load step i = 1 to n do

Calculate stress field σ from XFEM solution

if No intact particle left in the domain then

Continue to next step i = i+1

for Pi ⊂ R3 do

Compute Weibull fracture probability P i
f

if max(P i
f − ri)>0 then

Break the particle Pi with the max(P i
f − ri)

Create a strong discontinuous plane at xf with normal direction nf

Mark Pi as failed particle, Pi 6⊂ R3

Roll back and resolve load step i

else

Continue to next step i+1

4.4 Example Problem of SiC Particle Reinforced Aluminium

To demonstrate the applicability of our XFEM algorithm for the fracture analysis

of particle reinforced MMCs, we applied our method on X-ray tomography data of

2080 aluminum alloy (3.6% Cu, 1.9% Mg, 0.25% Zr) reinforced with 20 vol.% SiC

particles (average particle size of 25 µm) was used in this study. The materials were

processed by blending SiC and Al powders, compaction of the powder mixture, hot

pressing, and hot extrusion (Alcoa Inc., Alcoa, PA). Details of the powder metallurgy

process for fabrication of these composite materials can be found elsewhere [101].
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Electro discharge machining (EDM) was used to obtain dog-bone specimens with a

gage length of 2.5 mm and a 0.75 mm square cross-section. Specimens were machined

parallel to the extrusion axis. In- situ uniaxial tensile tests were carried out on these

specimens in the synchrotron using the loading stage shown in Figure 4.1. The load

cell had a 500 N capacity, and the stepper motor had a captive linear actuator capable

of 8 µm per step and 12 mm stroke. Actuator was moved to apply load on the sample.

Scans were taken at different displacements until failure. The details of the loading

stage has been provided elsewhere [12].

PMMA sleeve

with cutouts for

sample loading

Stepper motor with 

linear actuator

Specimen clamped 

between actuator 

and load cell

Load cell (cannot 

be seen in image)

Base plate

Figure 4.1: In situ loading stage to perform tensile testing on MMCs.

4.4.1 Numerical Modeling

The domain dimensions of the specimen gage section are 750×750×2500 µm. As

shown in Figure 4.2, the fractured plane in the experiment is closed to one end of

the gage section in the loading direction [122]. X-ray tomography is performed on a

selected volume in the gage section and the relative position of the selected volume is

shown in Figure 4.2. The selected volume is used as our simulation volume and the

domain dimensions are 190×370×100 µm.
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Figure 4.2: An illustration of domain dimensions and the relative location of the

simulation volume in the gage section of specimen.

Brittle SiC particles are considered as linear isotropic before cleavage fracture. The

Young’s modulus and Poison’s ratio of SiC particles are 410 GPa and 0.19, respectively

[122]. Weibull distribution model is used to estimate the fracture probability of SiC

particles by equation (4.12). The reference volume V0, characteristic strength σf

and Weibull modulus m are three material probabilities used to characterize the

strength of brittle particles [118]. The different sets of the three parameters should

obey V0 σ
m
f = V0 σ

m
f . Llorca has estimated the three parameters for SiC particles in

Al matrix [123]. In his work, the estimated Weibull modulus m is 6, characteristic

strength σf is 1323 MPa, and the reference volume is set to be average particle volume,

which is estimated as 7.53 µm3. In this work, the average particle volume is 16800

µm3, the Weibull modulus is 6, and the characteristic strength is calculated to be

715 MPa based on the relationship of the three parameters. The Young’s modulus

and Poison’s ratio of the aluminum matrix are 74 GPa and 0.33, respectively. The

aluminum matrix deforms plastically according to a nonlinear J2 plastic law fitted
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from an experimental stress-train curve of 2080-T6 aluminum [110]. The stress-strain

relationship is fitted as σy(γ) = C(1 − e−bγ) + σy0 , where σy is the yield stress, γ is

the plastic strain, C =185.1 MPa, b =23.9 and the initial yield stress σy0 is 370 MPa.

Figure 4.3 compares the fitted stress-strain curve with the experimental data.
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Figure 4.3: Fitted stress-strain curve of 2080-T6 aluminum.

4.4.2 Convergence Study of Weibull Probability

Weibull fracture probability of a particle is calculated by an integration of the

stress field over all elements inside or partially inside the particle. The stress field is

solved on a finite element mesh and the stress magnitude at a point is different under

different mesh sizes, but the magnitude will converge to a value with more and more

elements if there is not crack in the particle. We found that the fracture probability

of a particle decreases with finer mesh used. However, it is hard to calculate the

convergence rate of the fracture probability directly since the exact probability is

an unknown value. It is reasonable to assume that the numerical Weibull fracture

probability P is a summation of an exact probability P exact and a probability error

66



e(h). This relationship can be expressed as

P (h) = P exact + e(h) (4.14)

The exact Weibull probability is constant for a particle while the numerical Weibull

probability and the error is a function of element size h. Taking derivative of equation

(4.14) with respect to element size, we have

dP (h)

dh
=
de(h)

dh
(4.15)

In a log-log scale, if we can express the derivative of Weibull probability as a linear

function with respect to element size, we have

log10

(
dP (h)

dh

)
= β + α log10 (h) = log10

(
10βhα

)
(4.16)

where α is the slope of the fitted line and β is the y-axis intercept. Combine equation

(4.15) and equation (4.16), the probability error can be estimated as

de(h)

dh
= 10βhα (4.17)

e(h) =
10β

α + 1
hα+1 (4.18)

Therefore, the convergence rate of the fracture probability is α + 1, where α is

the convergence rate of the derivative of fracture probability. In the following, we

studied the convergence of dP/dh for particles with different geometries. Figure 4.4

shows four particle geometries used in the convergence study. Figure 4.4a shows a

sphere particle located at the center of a cube with length of 60 µm. The ratio of the

sphere radius over the cube length is 0.3 and the sphere volume is 24429 µm3. Figure

4.4b, 4.4c and 4.4d are three particles with realistic geometries. The three particles

are shifted to the center and the domain lengths are chosen to maintain the same

padding distance of matrix in three directions. The volume of the three particles are
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27143, 23570 and 16424 µm3, respectively. For all cases, only rigid body motions are

fixed and traction is applied in Y direction. The applied traction is increased linearly

from 0 to 400 MPa in four load steps. Oct-tree mesh is used and elements close to

a material interface or inside a particle are sorted and refined with one time. Figure

4.5a shows the fitted convergence rates for the four particles. The convergence rates

of dP/dh are close to 1. Therefore, the convergence rates of Weibull probability are

approximate to 2, which equals to the convergence rate of L2 error in linear elements.

The fitted lines are y = 0.99x − 1.19, y = 0.85x − 1.21, y = 0.99x − 1.27, and

y = 0.94x − 2.01, respectively. Figure 4.5b shows a relative probability error with

respect to the element size used for particles. The relative error is calculated by the

ratio of e(p) over the fracture probability when element size is 0.5 µm. Particles

with realistic geometry have higher probability error than the sphere under the same

element size. When the element size is close to 1 µm, the probability error is less

than 10 %.

(a) Sphere (b) Particle-a (c) Particle-b (d) Particle-c

Figure 4.4: XY view of particles in mesh wireframe that used in the convergence

study.
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Figure 4.5: Convergence of the derivative of Weibull fracture probability in particles

with different geometries and the corresponding estimated probability error.

4.4.3 Result and Discussion

Figure 4.2 shows the domain size of the simulation volume and its relative po-

sition in the experimental specimen. We apply symmetric boundary conditions in

the fracture analysis and the traction is applied on the top surface of the volume as

shown in Figure 4.2. Quasistatic analysis is performed and the traction is increased

linearly from 0 to 405 MPa in 18 steps. Oct-tree mesh is implemented and the initial

uniform discretization is 19×10×37. Elements close to material interfaces or inside

particles are sorted and refined. After three times of mesh refinement, the simulation

volume is discretized with 560,226 elements and the element size used for particles is

1.25 µm. There are 41 particles in total and finally there are 31 fractured particles

in the end. Figure 4.6a shows the 41 particle geometries in the mesh wireframe along

with 31 crack surfaces denoted in black. Figure 4.6b shows axial stress distribution

on particles. Blue stands for zero stress and the maximum axial stress is scaled to 1

GPa. The normal direction of fracture surfaces are computed by equation (4.13) and
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the numerical normal directions are close to the loading direction. Figure 4.6c and

4.6d are contours of effective strain and axial stress on a slice at the last load step,

respectively.

(a) Particle geometries. (b) Axial stress distribution.

(c) Effective strain. (d) Axial stress.

Figure 4.6: (a) Particle geometries in the oct-tree mesh wireframe. Break surfaces

are denoted in black. (b) Axial stress distribution on particles. (c) Effective strain

on a slice parallel to the loading direction. The traction is applied on left surface and

the maximum effective strain is scaled to 0.008. (d) Axial stress on a slice parallel

to the loading direction. The maximum axial stress is scaled to 1 GPa. The stress

releases to zero on crack surfaces inside fractured particles.

Then, we compared our numerical stress-strain curve with the experimental result.

In the experiment, the onset of damage in the specimen appears to begin close to 440
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MPa [122]. In the numerical model, we still use the same simulation volume and the

same mesh scheme, but increasing the traction from 0 to 450 MPa in 20 steps. Figure

4.7 shows the stress-strain comparison with the experiment. The numerical curve

is a little above the experimental curve after yielding. In this work, only the first

stage of fracture is modeled. Particle and matrix are considered as perfectly bonded

and the matrix is idealized without fracture. However, in the experiment, there are

localized void growth and the failure of matrix can increase the strain under the same

traction [13]. Since there are some other fracture mechanisms that play a role in the

experiment but not considered in the numerical model, the numerical stress-strain

curve is a little higher in the yielding region.
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Figure 4.7: Comparison of numerical and experimental strain-stress curves.

There are 41 particles in the simulation model and the particle volume ranges from

1420.54 µm3 to 36350.3 µm3. The Weibull fracture model can account for particle

size effect automatically. Large particles contain more defects and their Weibull

fracture probabilities are correspondingly higher than small particles. Therefore,

large particles tend to fracture before small particles. Figure 4.8 shows the average
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volume of fractured particles under different applied loads. Particles start to break

when the applied traction is 247.5 MPa. There are more small particles break under

higher applied tractions and the average volume of fractured particles decreases along

with traction.

Figure 4.8: The average volume of fractured particles in each load step.

Figure 4.6a shows all break surfaces on 3D particles, but it is not straightforward

to see the relative position of break particles since particles can interrupt the view

of others. In order to distinctly visualize the relative positions of break particles,

we projected the centroid positions of all particles to an XY plane, in which the Y

direction is the loading direction. Figure 4.9 shows the particle centroid positions on

a projected XY plane under three load steps. Each marker stands for one particle

centroid and particles are split into three types: not cracked, cracked in previous load

steps and cracked in current load step. Due to the randomness of critical fracture

probability assigned on each particle, the sequence of cracked particles in a load step

does not follow a straightforward order. But there are still some patterns we can find

here: Particles tend to break in groups and particles adjacent to previously cracked
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particles are more inclined to break. After one particle break, the stress field in an

adjacent region surrounding the cracked particle will be redistributed and some not

cracked particles in that region are inclined to support extra strength released by the

broken particle. As a consequence, the stress on some adjacent particles will increase

after one particle break, and the fracture probability on those particles become larger,

correspondingly.
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(a) Traction is 337.5 MPa.
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(b) Traction is 360 MPa.
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(c) Traction is 405 MPa.

Figure 4.9: Graphical representation of the relative position of SiC particle centroids

on a projected XY plane that parallels to the loading direction. Solid circles colored in

white represent particle centroids that are not cracked. Green circles and red squares

are particle centroids that are ”previously” cracked and ”newly” cracked, respectively,

relative to the previous load step.

In order to study the influence of one cracked particle on others, we calculated

the change of fracture probability on not cracked particles before and after one par-

ticle break. Figure 4.10 shows particle centroid positions projected on an XY plane

and the centroids are colored by ∆P , where ∆P is the change of fracture proba-

bility before and after one particle break. Figure 4.10a-4.10d show the distribution

of ∆P on not cracked particle centroids after four broken particles. The fractured
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particle can exert influences on particles not far away and the imposed influences can

either increase or decrease the fracture probability on other particles. The fracture

probability tends to increase on a particle that closes to the newly cracked particle

and in the meantime, they are on the same XZ plane perpendicular to the loading

direction. This tendency is straightforward to understand because the force on each

cross section should be constant and balance the external applied load. After one

particle break, the remaining particles on the same XZ plane have to support extra

strength to keep the balance. While the fracture probability is inclined to decrease

on a particle that is not far away to the newly cracked particle but their relative

position is parallel to the loading direction. This tendency is caused by the change

of stress flow before and after fracture. Before fracture, the top and bottom parts of

the particle in the loading direction tend to have higher stress than the middle part.

After the fracture, the stress flows to the crack tip and particles usually break around

a cross section in the middle of the loading direction. Since the stress unloading of

the top and bottom parts, the adjacent particles close to the top and bottom parts

tend to withstand more strength.
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(a) (b) (c) (d)

Figure 4.10: The influence of one newly cracked particle on the Weibull fracture

probability of not cracked particles. Previously cracked particles are denoted in solid

white circles. The newly cracked particle is denoted in a solid yellow circle with

a black break surface. Not cracked particles are colored by the change of Weibull

fracture probability before and after fracture.

In order to characterize the influence of particle geometry on particle fracture

probability, we studied Weibull fracture probability versus applied traction for sev-

eral particle geometries separately. As shown in Figure 4.12a, Weibull probability

increases much more rapidly along with traction for some particles. The three realis-

tic particles, as shown in Figure 4.11, have much higher Weibull probability compared

with sphere when traction is higher than 200 MPa. Particle-m has a narrow volume

and its fracture probability is higher than others. Particle-n is flatter than particle-p

and the corresponding fracture probability is higher under the same applied traction.

In order to characterize the influence of particle geometry on the fracture probability,

we studied the Weibull probability with respect to aspect ratio for about one hundred

particles when applied traction is 400 MPa. The particle volumes range from 5192

µm3 to 28350 µm3. The particle aspect ratio is calculated by the ratio of the longest
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ferret distance over the shortest ferret distance. As shown in Figure 4.12b, particles

are separated into three groups with equal volume interval. Large particles generally

have higher fracture probability and the fitted slopes are close for the three volume

intervals. The coefficient of determination, denoted as R2, is a number from 0 to 1,

which can be used to indicate how well the regression line fits the data [124]. An

R2 of 1 indicates that the regression line perfectly fits the data. The R2 of the three

fitted lines are 0.71, 0.67 and 0.76, respectively. Each particle is shifted to the center

of the simulation volume and the domain sizes of the volume are set to maintain a

constant fill ratio for all cases.

(a) Particle-m (b) Particle-n (c) Particle-p

Figure 4.11: Particle geometries in mesh wireframe that used in history plot of fracture

probability. Rigid body motions are fixed and traction is applied on both left and

right surfaces.
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Figure 4.12: Characteristic study of the influence of particle geometry on the magni-

tude of Weibull fracture probability.
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Chapter 5

CONCLUSIONS

5.1 Summary

In summary, we have developed robust, accurate and adaptive algorithms in the

framework of extended finite element method for the fracture analysis of highly het-

erogeneous materials with complex internal geometries. The algorithms are developed

to automate the simulation of experiments and numerical solutions are compared and

validated with experimental results.

In Chapter 2, we have developed an adaptive and parallelled geometry segmen-

tation algorithm to robustly identify and separate discrete features from segmented

tomography image data. The concept of betweenness centrality is introduced as an

effective metric to identify narrow connecting regions between inclusions. The non-

dimensional relative centrality is developed as a tool to identify bridge voxels, which

reduces the influence of particle volume on centrality to the maximum extent and

at the same time, graph topology can be completely reflected. With the help of

relative centrality, our algorithm is capable to automatically detect narrow bridges

for any particle regardless its geometry and volume. Besides that, the segmentation

is performed at the cost of the minimum number of removed voxels and the initial

geometrical characteristics of particles are maintained at the maximum extent. In

the consideration of the XFEM modelling, a gap expansion algorithm is also devel-

oped and presented. The gap expansion is an optional process and the expected gap

distance can be easily reset on the demand of users. The algorithm is demonstrated

in 3D examples, but it can also segment 2D problems straightforwardly. More impor-
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tantly, the algorithm is not restricted for one specific type of materials, but for any

microstructure with spurious connections required to be segmented.

In Chapter 3, we have presented two level set techniques to construct distance

fields for multiphase materials containing multiple, geometrically-complex phases.

Both methods are implemented for oct-tree meshes with hanging nodes to resolve

the fine details of the inclusion geometry efficiently. For the problems that were

considered, the FMM is optimal in speed and accuracy for initializing the distance

fields. Utilizing upwind finite differences eliminates the need for artificial viscosity

which tends to round edges and artificially shrink small inclusions if the user-specified

parameter is set too large.

In Chapter 4, we have implemented theWeibull distribution model in the LSM/XFEM

algorithm for the modeling of fracture in brittle reinforced particles. The convergence

rate of Weibull probability has been studied based on a single sphere and several

particles with realistic geometry. The simulation volume used in fracture analysis is

created with internal realistic particle geometries segmented in the gage section of the

experimental specimen. Our numerical stress-strain curve can generally match with

experimental result. We studied the histogram of fractured particles under different

applied load and the influence of one fractured particle on its adjacent particles are

discussed and presented. Finally, we applied characteristic study of particle geometry

on the fracture probability.

5.2 Future Work

For the LSM developed in Chapter 3, the general approach of formulating an evo-

lution equation based on the LSM affords greater flexibility. For instance, additional

terms could easily be added to eliminate possible overlap between inclusions. Further-

more, other post processing, such as eliminating spurious bridges between adjacent
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inclusions or particles resulting from errors in the image segmentation process can be

devised for the LSM.

In the fracture model developed in Chapter 4, only the first stage of fracture is

modeled. Particle and matrix are considered as perfectly bonded and the matrix

is idealized without fracture. However, in the experiment, there are localized void

growth and the failure of matrix can significantly increase the strain under the same

traction. New algorithms need to be incorporated to account for the material interface

debonding and the fracture of plastic matrix.
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