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ABSTRACT 
 

Waste heat energy conversion remains an inviting subject for research, given the 

renewed emphasis on energy efficiency and carbon emissions reduction.  Solid-state 

thermoelectric devices have been widely investigated, but their practical application 

remains challenging because of cost and the inability to fabricate them in geometries that 

are easily compatible with heat sources.  An intriguing alternative to solid-state 

thermoelectric devices is thermogalvanic cells, which include a generally liquid 

electrolyte that permits the transport of ions.  Thermogalvanic cells have long been 

known in the electrochemistry community, but have not received much attention from the 

thermal transport community.  This is surprising given that their performance is highly 

dependent on controlling both thermal and mass (ionic) transport.  This research will 

focus on a research project, which is an interdisciplinary collaboration between 

mechanical engineering (i.e. thermal transport) and chemistry, and is a largely 

experimental effort aimed at improving fundamental understanding of thermogalvanic 

systems.  The first part will discuss how a simple utilization of natural convection within 

the cell doubles the maximum power output of the cell.  In the second part of the 

research, some of the results from the previous part will be applied in a feasibility study 

of incorporating thermogalvanic waste heat recovery systems into automobiles.  Finally, 

a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a 

mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented.  

Ultimately, a summary of these results as well as possible future work that can be formed 

from these efforts is discussed.  
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NOMENCLATURE 

A cross-sectional area of the electrode, and of the salt bridge [m-2] 

C concentration [mol L-1] 

E potential difference [V] 

F Faraday constant 

I current [A] 

j current density [A m-2] 

k thermal conductivity [W m-1 K-1] 

n number of electrons involved in the reaction 

P power output [W] 

R universal gas constant, resistance [Ω] 

S partial molar entropy [J mol-1 K-1] 

S* Eastman entropy [J mol-1 K-1] 

𝑆𝑆𝑒̿𝑒 total transported entropy of the electrons in metal leads [J mol-1 K-1] 

T temperature [K] 

x inter-electrode spacing [m] 

Z figure of merit of thermoelectric devices [K-1] 

 

Greek symbols 

α Seebeck coefficient [V K-1] 

γ activity coefficient 

σ electrical (ionic) conductivity [S m-1] 



xviii 

η power conversion efficiency [%] 

Ω ohmic 

 

Subscripts 

a activation 

amb ambient 

ext external 

int internal 

m mass transport 

oc open-circuit 

op operating 

sc short-circuit 

th thermal 

∞ steady state 
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1. INTRODUCTION 

Thermogalvanic cells have recently received significant attention because of their 

immense potential in converting low-temperature waste heat to electricity (see, e.g., [1-

26]).  There is a huge amount of waste heat available from industrial sources [27], 

automobiles [28], buildings [29], etc., as well as heat available from solar thermal energy.  

The $ value of such waste heat conversion is difficult to estimate, but the International 

Energy Agency projects that world-wide demand for energy will increase by one third 

from 2010 to 2035, and will require an investment of $38 trillion [30].  Indeed, the 

United Nations has declared the decade 2014-2024 as the “Decade of Sustainable Energy 

for All” [31]. 

A thermogalvanic cell is defined by Agar [32] as “a galvanic cell in which the 

temperature is not uniform.  In practice, such cell will consist of two metallic electrodes, 

not necessarily reversible or chemically identical, immersed in electrolyte, which may or 

may not be homogenous in composition, and in which selectively permeable membranes 

might be interposed.” (p. 32)  Figure 1 on the next page shows schematically a cell 

system using copper (Cu) electrodes in an aqueous solution of copper sulfate (CuSO4). 
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The temperature difference between the cold and the hot Cu electrodes creates a 

potential difference that is directly proportional to the change in entropy of the redox 

reaction in the cell.  If these electrodes are connected to a load, this potential difference 

drives the oxidation of Cu on the cold electrode (anode) [1]: 

 Cu → Cu2+ + 2 e ‒ (1) 

and the reduction of Cu2+ cations on the hot electrode (cathode): 

 Cu2+ + 2 e ‒ → Cu (2) 

so that electrical current and power can be delivered, thus converting thermal energy into 

electrical energy (see Figure 2 in the next page).  History notes that the first experiments 

of thermogalvanic cells in 1825, which were performed on the electrode-electrolyte Cu-

CuSO4 and Zn-ZnSO4 systems, were inspired by the principle of the first solid 

metal/metal junction thermocouple invented by Thomas Johann Seebeck four years 

earlier in 1821 [33].  However, at the interface between the electrodes and the electrolyte, 

the passage of current will change from an electronic to an ionic current, which 

Figure 1.  Schematic Drawing of a Thermogalvanic Cell Using Cu Electrodes in an 
Aqueous Solution of CuSO4. 
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distinguishes such cells from their solid-state siblings [32].  Although the nature of the 

effects are different, this temperature dependence of the electrode potential is often 

referred to as the Seebeck coefficient. 

 

 

 

Figure 2.  Plots of Temperature Difference ∆T (top), Corresponding Potential Difference 
Across the Cell ∆E (middle), and Corresponding Temperature Dependence of the 
Potential—that is, Seebeck Coefficient α = ∆E/∆T (bottom) vs. Time, for a 
Thermogalvanic Cell with Cu Electrodes in 0.01 M CuSO4 + 0.1 M H2SO4 Aqueous 
Electrolyte.  The Dotted Straight Green Line is the Seebeck Coefficient for a 
Bi2Te3/Sb2Te3 Superlattice Solid-State Thermoelectric, which is ~0.243 mV K-1 [34]. 
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Indeed, the scientific community has recently discussed the larger role 

thermogalvanic cells should have in harvesting low-grade thermal energy, such as waste 

heat co-generation [5] and low-temperature geothermal resources [35], but also in solar 

thermal energy conversion systems [2, 36].  Most of the time, the Seebeck coefficient of 

thermogalvanic cells reaches three or four times that of solid thermoelectrics (Figure 3).  

It has a quadratic effect on the maximum power output of the cell, which will be 

described in Section 2.2.  Therefore, the Seebeck coefficient is an essential factor in the 

operation of a practical device. 

 

1.1 Why Aren’t We Using Thermogalvanic Cells Today? 

Unfortunately, the performance of thermogalvanic cells depends not only on the 

Seebeck coefficient, but also on the internal and thermal resistances of the cell.  Even 
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though thermogalvanic cells have very promising Seebeck coefficients, the high internal 

resistances of the cell systems inhibit the maximum power outputs of such cells [4, 8, 37-

40].  In theory, as long as the system is in thermal and electrochemical equilibrium, the 

choice of electrode materials and cell configurations should not affect the Seebeck 

coefficient of the cell, as the thermodynamic factor, i.e. the change in entropy of the 

redox reaction in the cell, is the governing factor [5, 6].  This will be detailed in Section 

2.1.  Nevertheless, the value of the internal resistance highly depends on the cell 

configuration [8, 38, 41]. 

 

Figure 4.  Reducing the Length between the Electrodes, L (left figure) Reduces the 
Internal Resistance (Rint), thus Increases the Power Output of the Cell (right figure).  
However, It also Reduces the Thermal Resistance, which Increases the Heat Flux Across 
the Cell and Eventually Lowers the Power Conversion Efficiency ηr of the Cell.  The 
Right Figure is Taken from a Parametric Study for a Ferro/Ferricyanide Thermogalvanic 
Cell that Shows as L Increases, ηr Reach a Peak Value, where the Positive Effect of 
Natural Convection in Suppressing Rint Balances the Negative Effect of the Increased 
Electrode Spacing in Building Up the Rint (see Chapter 3 for details).  Thus, further 
Enhancing the Convection by Increasing L Beyond this Point would not Improve ηr, 
instead, It would Decrease It [40, 42]. 
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Ideally, a thermogalvanic cell will use an electrolyte with the largest Seebeck 

coefficient, and a cell configuration that has the lowest intrinsic internal resistance.  The 

ideal cell will also be capable of maintaining current flow continuously.  Reducing the 

distance between the electrodes, for example, reduces the internal resistance (see Figure 

4).  However, one should note that the thermal resistance will also be reduced at the same 

time, which eventually lowers the power conversion efficiency of the cell system.  

Alternatively, one can increase the electrolyte concentration, which would not 

significantly impact the thermal resistance. 

On the other hand, thermal transport is just as important as ionic transport for a 

thermogalvanic cell to generate electric power efficiently.  As pictured schematically in 

Figure 1, maintaining a temperature difference between the hot and cold electrodes is 

fundamental to the operation of a thermogalvanic cell.  Keeping the thermal resistance 

high, however, runs counter to the goal of decreasing the internal resistance.  Thus, the 

challenge is to do both simultaneously. 

1.2 Motivation 

Indeed, it has been two decades since Kuzminskii et al. [3] and Quickenden and 

Mua [2] published their review articles on various thermogalvanic cells.  However, since 

Hu and Cola’s seminal publication in 2010 [5], the annual amount of published work 

dealing with thermogalvanic cells has increased rapidly—growing at an average of 

around 45% per year for the past five years.  Figure 5 shows the growth in 

thermogalvanic research since 1995 (based on a 2015 Google Scholar search).  However, 

it is only a conservative estimate of the body of thermogalvanic research, because a 
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variety of other terms, such as ‘thermoelectrochemical cells’, ‘thermo-electrochemical 

cells’, and ‘thermocells’, are also used to describe thermogalvanic cells. 

 

Figure 5.  Significant Growth in Thermogalvanic Publications for the Past Five Years 
(2010 – 2015), as Indicated by Google Scholar. 

Thermogalvanic cells remain intriguing and largely unexploited, in part because 

of the lack of fundamental understanding concerning some aspects of their operation.  

Although they have been the object of considerable study (Figure 5), a number of 

questions remain to be addressed before their practical application can be realized.  Some 

of these questions were brought up in a 1995 seminal review article [2], and many of 

those remain relevant today.  How can mass (ionic) transport be enhanced, while limiting 

thermal transport?  Can a practical, inexpensive electrode be found (or developed) that 

can deliver high surface area and low activation energy, while allowing for good heat 

transfer with the heat source and sink, and good mass transfer with the electrolyte?  Is 

there an advantage to “one-way” flow of ions, as compared to “two-way” flow?  Can the 



8 

Soret effect (the diffusion of ions in response to a thermal gradient) be enhanced so that it 

adds significantly to the generated power?  And finally, as mentioned in [2], can the 

thermogalvanic effect be reversed by inputting electric current, enabling a 

thermogalvanic cell to generate cooling rather than electric power?  Answering this last 

question could result in the novel application of a flowing liquid that provides both 

convective and thermogalvanic cooling. 

The great attraction of thermogalvanic cells is not that their power conversion 

efficiency will eventually exceed that of conventional solid-state thermoelectric devices, 

but rather that their fluid nature and potential to be manufactured inexpensively will lead 

to widespread applications.  The fluid (liquid) nature of the electrolyte enables a 

thermogalvanic device to conform to the shape of the heat source, much more readily 

than a solid-state thermoelectric device.  For example, an annular thermogalvanic cell has 

already been demonstrated that can be affixed to the outside of a hot pipe, such as an 

automotive exhaust pipe [5, 43, 44]. 

Its power level―currently on the order of microwatts―is sufficient to power low-

power applications, such as wrist watches [45].  Im et al. recently demonstrated that a 

Fe(CN)6
4-/Fe(CN)6

3- thermogalvanic cell can be embedded on a T-shirt and is flexible 

enough to optimally harness heat from a human body and store it into a capacitor for later 

use [43].  Motivated by this result, more studies on flexible thermogalvanic devices have 

been published in the past year [46-50]. 

In addition, with the development of nanotechnology, researchers have become 

interested again in not just focusing on increasing the system’s efficiency, but also in 

finding cheaper electrolyte/electrode materials to make systems cost competitive with 
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solid thermoelectric devices.  Hu et al. [5] has set a benchmark of five dollars per Watt 

($5.14/W).  That is, the benchmark is the cost per Watt of active materials, i.e. electrode 

and electrolyte only, for thermogalvanic devices with carbon-multiwalled nanotube 

buckypaper electrodes in a ferro/ferricyanide (Fe(CN)6
4-/Fe(CN)6

3-) aqueous electrolyte 

operating at a temperature difference of 60 oC.  They estimated that this price will go 

down to $2.76/W based on the future projected prices of multiwalled carbon nanotube 

electrode materials.  They also set a notable (highest) maximum power output density of 

1.8 W m-2 corresponding to a power conversion efficiency relative to that of a Carnot 

engine operating between the same temperatures, ηr = η/(1 – Tcold/Thot) = 1.4%, as 

highlighted by Nature Materials [51].  Their results have helped pave the way for many 

published works using carbon-nanomaterial electrodes in the past five years.  On the 

other hand, MacFarlane et al. have consistently pursued and reported new experimental 

data for ionic liquid thermogalvanic cells [6, 11, 14, 52-55].  Expensive, clean-room-

based manufacturing processes are not required for these thermogalvanic cells, meaning 

that their production costs are likely to be substantially lower than for high-performance 

solid-state thermoelectrics. 

1.3 Research Objective 

Recent development of new electrolytes and electrode materials has shifted the 

research focus away from other routes to improved thermogalvanic cells.  The objective 

of this interdisciplinary research is therefore to explore those alternative routes to 

improve the performance of thermogalvanic systems, namely the Seebeck coefficient and 

maximum power output.  More recently, Kang and Baughman [8] stated that 
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“experimental measurements may be the only reliable way to determine power generation 

rates and efficiency of a thermocell.” (p. 478) Therefore this thesis is focused on a largely 

experimental approach, but with appropriate application of theory to analyze the data and 

to suggest new directions for research, with the goal being to make possible future 

practical energy conversion devices.  The following research questions will be addressed: 

1. How does incorporating natural convection within a cell improve the 

maximum power output of the cell?  Does it enhance the mass (ionic) 

transport, while limiting thermal transport?  Is there an advantage to “one-

way” flow of ions, as compared to “two-way” flow1? 

2. What is the potential for applying a thermogalvanic cell to harvest waste heat 

energy from a vehicle’s exhaust pipe? 

3. How does adding polyelectrolytes or mixed-ligand complexes to conventional 

electrolytes affect the Seebeck coefficient? 

Each of the above questions is essentially answered as a complete chapter in this 

dissertation.  Chapter 2 will present several important definitions.  Consecutively, chapter 

3 presents how a simple utilization of natural convection within the cell doubles the 

maximum power output of the cell.  Chapter 4 uses some of the results from the previous 

chapter in a feasibility study of incorporating thermogalvanic waste heat recovery 

systems into automobiles.  Along the same lines as chapter 3, chapter 5 presents a novel 

approach to enhance Seebeck coefficient, up to 160% improvement, by tuning the 

                                                 

1 Cu-CuSO4 (or Cu/Cu2+) system, which as shown schematically in Figure 1 results in a “one-way” flow of 
Cu2+ ions from the cold to the hot electrode.  Conversely, the Fe(CN)6

4-/Fe(CN)6
3- redox reaction yields a 

“two-way” flow of ions: Fe(CN)6
4- from the cold to the hot electrode, and Fe(CN)6

3- in the other direction. 



11 

configurational entropy of polyelectrolytes or mixed-ligand complex formation of CuSO4 

electrolytes.  Finally, chapters 6 and 7 will discuss the conclusions and possible future 

work that can be formed from these efforts.  
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2. THEORETICAL BACKGROUND 

Thermogalvanic cells are typically compared using the Seebeck coefficient (α) 

and the maximum power output (Pmax) of the cells.  Before this study is described further, 

these two important metrics will first be presented. 

2.1 Seebeck Coefficient 

For a practical thermogalvanic cell, a reasonable approximation of Seebeck 

coefficient is determined by the difference between the standard molar entropies of 

products and reactants [56].  If one considers a cell where the hypothetical reduction-

oxidation (redox) reaction is 

A + n e- ⇌ B 

Then, the Seebeck coefficient α is given by [2]: 

 
𝛼𝛼 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
(𝑆𝑆𝐵𝐵 + 𝑆𝑆𝐵𝐵

∗) − (𝑆𝑆𝐴𝐴 + 𝑆𝑆𝐴𝐴
∗) − 𝑛𝑛𝑆𝑆𝑒̿𝑒

𝑛𝑛𝑛𝑛
 (3) 

where E is the potential difference, T the temperature, SA and SB the partial molar 

entropies of species A and B, SA
* and SB

* the respective Eastman entropies of the 

designated ions, n the number of electrons involved in the redox reaction above, F the 

Faraday constant, and 𝑆𝑆𝑒̿𝑒 the total transported entropy of the electrons in the metal leads.  

The latter is usually negligible, since it usually contributes only 1% of α [56, 1].  The 

contributions of SA
* and SB

* are also relatively small.  Consequently, a simpler 

approximation of α can be derived by neglecting those three parameters [1, 2, 56, 57]: 

 
𝛼𝛼 ≅

𝑆𝑆𝐵𝐵 − 𝑆𝑆𝐴𝐴

𝑛𝑛𝑛𝑛
 (4) 
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Figure 6, for example, shows some experimental results of Seebeck coefficients 

for various CuSO4 concentrations taken from [4].  For the investigated ∆T of 10 – 50 oC, 

the open circuit potential (Eoc) increased linearly with ∆T, suggesting that α was constant 

for every concentration tested.  Eoc is therefore expressed as α ∙ ΔT. 

 

As shown in the inset of Figure 6, these values of α are in good agreement with 

the calculated Seebeck coefficient of a standard Cu/Cu2+ cell at 25 oC, i.e. α0 = ∂E0/∂T = 

0.879 mV K-1 from [1].  In addition, deBethune et al. [1] and Kuz’minskii [58] suggested 
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that each α for each molar concentration of CuSO4 can be approximated with the 

modified Nernst equation: 

 
𝐸𝐸 = 𝐸𝐸0 +

𝑅𝑅𝑅𝑅
2𝐹𝐹

ln
γCu2+𝐶𝐶Cu2+

γCu𝐶𝐶Cu
 (5) 

where E is the half-cell (reduction) potential, E0 the standard half-cell (reduction) 

potential, R the universal gas constant, T the absolute temperature, γ the activity 

coefficients for the relevant species, C the molar concentrations, and the remaining terms 

have their usual meanings.  Differentiating Eq. (5) with temperature (𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) will give 

(Note: γCu𝐶𝐶Cu is equal to 1) 

 
𝛼𝛼 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝐸𝐸0

𝜕𝜕𝜕𝜕
+

𝑅𝑅
2𝐹𝐹

ln(γCu2+𝐶𝐶Cu2+) (6) 

where the activity coefficient γCu2+ varies with the molar concentrations of CuSO4 

aqueous electrolyte 𝐶𝐶Cu2+. 

2.2 Maximum Power Output 

When determining and evaluating the power-generating abilities of 

thermogalvanic cells, it is best to make direct measurement of the current output.  

Therefore, experimentally the current was obtained by simply placing a variable external 

load resistance (Rext) in series with the cell and measuring the cell potential (E).  Power 

output (P) was calculated from Ohm’s law: 

 I = 
E

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
 (7) 

 
𝑃𝑃 = 𝐸𝐸 ∙ 𝐼𝐼 =

𝐸𝐸2

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
 

(8) 
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The same nondimensional figure of merit ZT = α2σT/k [2], which is used to 

describe the performance of solid thermoelectric devices, is quite commonly used to 

express the performance of thermogalvanic cells, where σ and k are the electrical (ionic) 

and thermal conductivity of the electrolyte, respectively.  However, one should note that 

in the case of thermogalvanic cell systems, σ is not necessarily constant nor necessarily 

ohmic in nature.  Therefore, it is suggested to avoid calculating ZT when determining the 

power conversion efficiency of a thermogalvanic cell [56]. 

In cases where the E-I curve shows an approximately linear relationship (e.g., 

Figure 7 on the next page), the maximum power (Pmax) is simply given by the rectangle 

of the greatest area under the E-I curve.  Current density (j) was used as the x-axis, 

instead of the corresponding current (I).  The greatest area occurred at E = ½Eoc, where 

the internal resistance (Rint) of the cell was equal to the external resistance, Rint = Rext.  

Consequently, Pmax can be calculated as [2] 

 
Pmax = �

Eoc

2
� �

Isc

2
�  = 

Eoc
2

4Rint
 (9) 

where Isc is the short-circuit (limiting) current delivered by the cell.  In addition, because 

Pmax occurs where Rint = Rext, Rint can be calculated using Eoc and E measured with that 

specific Rext  [59]: 

 Rint =
𝐸𝐸𝑜𝑜𝑜𝑜

𝐸𝐸
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 (10) 
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Figure 7.  Characteristic E-j Curve of a Thermogalvanic Cell Using Cu Electrodes and 
{1.0 M CuSO4 + 0.1 M H2SO4} Aqueous Electrolyte with ΔT = 40 oC [4].  Data Points 
and Error Bars Represent the Average and 95% Confidence Levels of Three 
Experiments, Respectively.  Error Bars are not Visible because They are Smaller than the 
Corresponding Markers. 

In the case where the E-I characteristic curves are nonlinear, Pmax can still be 

conveniently determined from the maximum peak of the power output (P) plot, 

calculated using Eq. (8) as can be seen in Figure 8. 
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Figure 8.  Experimental Results of Power Output (P) vs. Current Density (j) for Various 
Concentrations of CuSO4 Solutions (0.01, 0.05, 0.3, 0.7, 1.0 M), Showing the 
Concentration Dependence of Thermogalvanic Power Generation [4]. 

2.3 Internal Resistance and Power Conversion Efficiency 

Although it is not typically used to compare thermogalvanic cells, it is very 

important to understand the relationship between internal resistance and the discharge 

behavior of the cell to improve the thermogalvanic cell performance. 

Generally, there are three primary internal resistances (see Figure 9 on the next 

page), i.e. activation (Ra), ohmic (RΩ), and mass transport (Rm) resistances, which can be 

expressed as [39]: 

 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑎𝑎 + 𝑅𝑅Ω + 𝑅𝑅𝑚𝑚 (11) 
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Figure 9.  Three Components of the Internal Resistances in, for example, Cu-CuSO4 
Thermogalvanic Cell (left), i.e. Activation (𝑅𝑅𝑎𝑎), Mass Transfer (Rm), and Ohmic (RΩ) 
Resistances.  The Relative Magnitude of the Overpotentials Associated with These 
Primary Internal Resistances in the Ferro/Ferricyanide Thermogalvanic Cell with Pt 
Electrodes is Taken from a Parametric Study (right) [40, 42]. 

Activation overpotential represents voltage that is sacrificed to overcome the 

activation barrier associated with the electron transfer reactions at the 

electrode/electrolyte interface.  This value can be estimated from the low-field 

approximation to the Butler-Volmer equation [39], which gives the activation resistance 

(Ra) as [39]: 

 
𝑅𝑅𝑎𝑎 ≡ �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑎𝑎

=
𝑅𝑅𝑅𝑅

𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗𝑜𝑜
 (12) 

where E is electrode potential, I electrode current, R the universal gas constant, T 

absolute temperature, A electrode surface area, n the number of electrons involved in the 

electrode reaction, F the Faraday constant, and jo exchange current density.  In addition 

to exchange current density, the charge transfer coefficients are another example of 

important kinetic parameters that are related to the activation overpotential.  Therefore, 

increasing the electrode surface area (reaction sites), using higher reactant concentration, 
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increasing ∆T and operating temperature, and using catalytic electrodes have been 

applied [5, 8] to decrease the contribution to cell resistance associated with the activation 

barrier. 

Ohmic overpotential is developed from several parts connected in series: the 

resistance of the electrolyte, the resistance of the electrode materials (usually negligible), 

and the resistance of wires and junctions.  It represents the amount of voltage lost in order 

to force electrical current (electrons in electrodes, wires, and junction; ions in electrolyte) 

to flow in the cell.  For thermogalvanic cells with aqueous electrolyte, however, the 

ohmic overpotential is mainly dominated by the electrolyte (or ionic) resistance [8, 39], 

 𝑅𝑅Ω =
𝐿𝐿

𝐴𝐴𝐴𝐴
 (13) 

where L is the inter-electrode spacing and σ is the ionic conductivity of the electrolyte, 

which can be measured experimentally using a conductivity meter or estimated from 

literature data. 

The mass transport overpotential (or concentration polarization [8]) is highly 

affected by the mass (ionic) transport process in the electrolyte.  In order to maintain 

continuous operation (current flow) of a thermogalvanic cell, reaction product formed at 

one electrode has to be essentially transported to the other electrode.  Both activation and 

ohmic overpotential are influenced by mass transport overpotential.  However, no direct 

expression derived from mass-transport theory has been published for the mass transport 

resistance Rm.  Nevertheless, by summing Ra and RΩ (from Eqs. (12 and (13) and 

subtracting this from measured Rint (Eq. (11)), Rm can be obtained [39]. 
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Although it is not one of the goals of this thesis to investigate the power 

conversion efficiency of a thermogalvanic cell, η, and power conversion efficiency 

relative to that of a Carnot engine operating between the same temperatures, ηr = η/(1 – 

Tcold/Thot), these two metrics will be presented for future reference.  They are rarely 

mentioned in the recent published works, which are mostly fundamental, but for practical 

applications, they are as critical as Rint but are captured in neither α nor Pmax.  

Furthermore, ηr can be used to compare such systems against other power generation 

technologies. 

Most values of η and ηr that were published prior to [4] were still calculated by 

assuming no convection occurs.  This may not always be valid.  Therefore, a more 

general way to express η is 

 η = 
Pmax

𝑄̇𝑄
 = 

PmaxRth

ΔT
 (14) 

where now the rate of heat flux through the cell, 𝑄̇𝑄 , is more generally described as 𝑄̇𝑄 =

Δ𝑇𝑇 𝑅𝑅𝑡𝑡ℎ⁄  , which recognizes that thermal transport in thermogalvanic cells is not limited to 

thermal conduction, as [2] suggests.  Rather, thermal transport in such cells will be 

determined by a combination of thermal conduction, thermal convection, and even 

thermal radiation for high-temperature applications. 

Combining Eqs. (9), (14), and Eoc = α ∙ ΔT yields a succinct expression for the 

power conversion efficiency: 

 
η =  

𝛼𝛼2RthΔT
4Rint

 (15) 
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Clearly, thermogalvanic cells benefit by maximizing the ratio Rth/Rint, that is, maximizing 

ionic transport while minimizing thermal transport.  The challenge, again, is to do both 

simultaneously. 
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3. POWER OUTPUT ENHANCEMENT BY NATURAL CONVECTION 

Due to the fact that advanced electrolyte and electrode materials represent a clear 

path to high performance, geometry and operational characteristics of the cell have been 

largely overlooked as an improvement route.  In particular, we argue here that design 

configurations which utilize natural convection are a viable way to increase energy 

transfer within the cell. 

Forced convection using rotating electrodes [60], pumps or flow cells [61], and 

the application of external current onto the electrodes (to generate concentration 

difference) [60, 62-66] to enhance convection have also been investigated by various 

researchers.  However, these external power consumptions can be parasitic and may lead 

to an unfair comparison in terms of power conversion efficiency between thermogalvanic 

devices when energy audits are to be carried out [2, 38].  Additionally, such systems have 

limited practical appeal since they require moving parts to convert heat into electricity. 

The aim of this study is to demonstrate that, in general, thermogalvanic power 

generation can be enhanced by designing an optimum cell geometry that controls and 

utilizes natural convection, without external forces of any kind, to increase energy and 

mass transfer within the cell.  This study will also try to present a simple theoretical 

treatment aimed to provide future researchers and engineers with a useful preliminary 

design metric for constructing the optimum cell architecture.  Before looking at our 

results to see if they support this hypothesis, we will first review the literature for 

evidence of Pmax enhancements within cells with natural convection. 
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3.1 Review of Limited Existing Literature 

There is relatively little evidence in the literature that discusses and validates the 

potential performance enhancement achievable by designing thermogalvanic cells which 

take advantage of natural convection.  There are two numerical [40, 67] and three 

experimental [8, 38, 39] papers, and a PhD thesis [37].  Table 1 summarizes the literature 

results. 

3.1.1 Numerical Literature 

In his theoretical study, Sokirko [67] derived a simple analytical model to 

calculate the relative efficiency ηr, from general properties of thermogalvanic cells, to 

find the optimum parameters of the cells.  This first half of the study confirmed a 

previous empirical conclusion by Ikeshoji et al. [62-64] that the increase in power 

generation due to convection was greater than that of heat flux, which was drawn from an 

observation that mass diffusivity (DAB) was smaller compared with the thermal 

diffusivity (a).  This conclusion could be translated to high Lewis number (Le), where Le 

= a /DAB [68], whose significance in increasing power generation will be apparent in the 

simple expressions that we derive as the discussion proceeds.  In addition, the author 

presented a more detailed analytical model to calculate concentration distribution and the 

current density vs. cell potential (I–E) curve to further obtain a more accurate evaluation 

of ηr. 
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The calculation [67] was based on a two-dimensional rectangular aqueous 

thermogalvanic cell using the Fe(CN)6
4-/Fe(CN)6

3- redox couple with Pt electrodes 

(Pt|Fe(CN)6
4-/3-, H2O|Pt) and ΔT = 30 oC, and which was performed for three cases: hot-

above-cold (Figure 10a), cold-above-hot (Figure 10b), and horizontal (Figure 10c) 

orientations.  The height of the electrodes (H) was kept constant at 1 mm, while the 

electrode spacing (L) was much less than H and varied so that the aspect ratio of the cell 

was more than 1 (H/L > 1).  The author concluded that the geometrical aspects of the cell, 

in particular, the electrode spacing L, had only a small influence on ηr.  Unfortunately, 

the author provided only limited results and discussion regarding the effect of convection 

on ηr and the current generation of the cell.  There was also not enough comparison 

between the prediction and experimental data from other literature provided in the paper; 

thus, formulating the general algorithm to find the optimum parameters of 

thermogalvanic cells has remained a challenge. 

 

Figure 10.  Three Different Cell Orientations Used in the Present Experiments: (a) Hot-
above-Cold, (b) Cold-above-Hot, and (c) Horizontal. 

A comprehensive answer to the above challenge has been recently brought by 

Salazar et al. [40].  In their parametric study, the authors developed a multiphysics model 

to simulate power generation and conversion efficiency of a stagnant, a series-stacked, 
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and a flow Pt|Fe(CN)6
4-/3-, H2O|Pt cell using COMSOL®.  While many researchers have 

used nanoparticles to enhance electrical and thermal properties [69], the authors assumed 

multiwall carbon nanotube (MWCNT) electrodes in their simulation because of their high 

kinetic reactivity and use in previous experimental works [5, 9].  Their results showed 

that, in general, natural convection compressed concentration boundary layers, thus 

reducing mass-transfer (or concentration) overpotential at the electrodes that was growing 

and suppressing the power generation over time.  The authors reported that natural 

convection in a 1 mm x 1mm square, stagnant, horizontal cell with ΔT of 60 oC increased 

Pmax up to 8 times higher, from 56 to 461 μW cm-2, while it only increased the heat flux 

1.5 times higher, compared to the cell without natural convection.  The ηr of the cell also 

increased from 0.009% to 0.049%.  This once again could be explained by the high Le in 

their calculation, which other than the definition of Le = a / DAB that has been mentioned 

above, high Le could also be translated into a thicker thermal boundary layer (δthermal) 

relative to the concentration boundary layer (δconcentration) in the vicinity of the electrodes, 

where Le = (δthermal/δconcentration)3 [68].  Because the actual heat transfer rate from the hot 

to the cold electrode is essentially impeded by the thermal boundary layers in the vicinity 

of both electrodes, as emphasized by Bejan [70] for natural convection within enclosures 

heated from below, the resulting increase in heat flux is indeed lower than the increase in 

Pmax caused by the thinner δconcentration.  Therefore, an electrolyte with high Le would be 

preferable, because the δconcentration that impedes the diffusion rate of ionic species towards 

the electrodes would be compressed, thus reducing the mass-transfer overpotential and 

consequently increasing Pmax.  At the same time, the δthermal that impedes the heat flux 

would be made as large as possible, in order to maximize ηr.  The model was validated 
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using experimental data from [62] and [39] for the cold-above-hot cells.  The authors 

noted a slight overprediction (~22%) when they were comparing the predicted Pmax = 9 

μW cm-2 with the experimental Pmax = 7.4 μW cm-2 from [62].  They also noted a similar 

overprediction (17–21%) when they were comparing the predicted current density with 

the experimental current density from [39].  They attributed the latter discrepancy to 

additional boundary layers at the side walls of the cylindrical cell, which was used by 

[39] for their experiments, but were not considered in their model.  We assume the same 

is true in the former case.  Overall, based on these comparisons, the authors concluded 

that natural convection significantly increases Pmax of the cell, however, increasing 

electrode spacing L will decrease Pmax.  This happens because as L increases the ohmic 

overpotentials start to grow and reduce Pmax.  The authors thus noted that there is a 

‘‘fundamental limit’’, where any form of convection would not improve the performance 

of the cell past this point, such as an optimum L of 1 mm that they calculated and that 

gave an optimum ηr of 6% in their study.  In addition, the authors simulated series-

stacking up to six stagnant 5 mm x 5 mm square thermogalvanic cells, which showed the 

potential to increase ηr by 100%, from ~3% to ~6%, when the cell was split in equal-

sized cells and stacked in four- or five-series configuration.  The authors noted, however, 

that consecutive cell splitting decreased the input heat flux, the power density, and 

eventually the efficiency, because the reduced L in the intermediate cells decreased the 

natural convection in them.  Additionally, a cell design with forced convection using a 

flow cell was simulated and evaluated.  We do not tabulate the results from this specific 

cell, because of the nature of the convection. 
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3.1.2 Experimental Literature 

Quickenden and Mua [38] were among the first to study the potential benefits of 

natural convection on thermogalvanic power generation.  They conducted experiments 

using a cylindrical Pt|Fe(CN)6
4-/3-, H2O|Pt cell, with aqueous solution of KCl as a 

background electrolyte.  The ΔT between the hot and cold electrodes (L = 100 mm) were 

maintained at 20 oC.  The geometric reactive area of each Pt electrode was 1 cm2.  The 

authors tested the three orientations: hot-above-cold, cold-above-hot, and horizontal.  By 

heating up the upper electrode, in which limited or no convection takes place, they 

observed that current density went down to ~40% of the initial value in 55 min, from 

~500 to ~200 μA cm-2.  In contrast, they observed a constant current density in the cells 

with convection, that is, when the lower electrode was heated, and when both electrodes 

were facing each other horizontally.  The authors also calculated and observed that the ηr 

of the hot-above-cold cell went down over time, compared to the cold-above-hot and 

horizontal cells.  However, since the ηr values were calculated by assuming that no 

convection occurs, which may not always be valid as we noted in [4], we do not discuss 

much of the details here.  The authors concluded that ohmic resistance RΩ = L/Aσ (i.e. 

Eq. (13)), where A is the electrode area, and σ the solution conductivity (including any 

ohmic contributions from the anions and/or the background electrolyte) represents the 

largest fraction, i.e. 83–84%, of the internal resistance (Rint) in the cells with convection, 

because the mass-transfer overpotential which increases over time is suppressed by the 

convection.  The authors suggested that using a background electrolyte with higher σ 

would help reduce RΩ.  The authors also suggested that operating the cell at higher ΔT 

would further enhance the convection and electrolyte mixing, which would considerably 
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suppress δconcentration at the electrodes and consequently reduce the mass-transfer 

overpotential even more and thus improve the power generation and ηr of the cell.  This 

conclusion again matches with our discussion so far that higher Le will ultimately lead to 

higher power generation. 

In a separate study, Mua and Quickenden [39] observed the effect of the electrode 

spacing L on the performance of the cold-above-hot cell.  The Pmax decreased ~99% with 

L to a value of 0.14–0.36 μW cm-2 at L = 1500 mm from 20 μW cm-2 at L = 3 mm.  They 

anticipated these results because, as they had predicted in their previous study [38] above, 

as the inter-electrode spacing increases, the current and power density decrease due to an 

increase of the Rint of the cell, mainly the RΩ where RΩ = L/Aσ.  Likewise, the authors 

observed that ηr increased substantially with L, then started to level off after about L = 

100 mm.  This observation agreed very well with the Salazar et al.’s [40] conclusion 

described in Section 3.1.1 that as L increases, there exists an equilibrium point which 

they called as a ‘‘fundamental limit’’, where the positive effect of natural convection in 

suppressing the mass-transfer overpotential balances the negative effect of the increased 

electrode spacing in building up the RΩ.  Thus, further enhancing the convection by 

increasing L beyond this point would not improve ηr, instead, it would decrease it.  

However, since the ηr values were again calculated by assuming that no convection 

occurs, we do not discuss the details here.  Nonetheless, the authors concluded that high 

Pmax does not necessarily yield high ηr. 

A more recent study by Kang et al. [8] observed similar dependences of cell 

orientation and L on power density and ηr for the same Fe(CN)6
4-/Fe(CN)6

3- cell.  

However, instead of using expensive Pt electrodes, they used in-house prepared carbon-
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based nanostructured electrodes.  For testing the cell orientation effect, they employed a 

cylindrical cell with the L kept constant at 40 mm, ΔT = 20 oC, and single-walled carbon 

nanotube (SWCNT) electrodes with an area of 0.25 cm2 each.  They observed the same 

value of Pmax = 7.2 μW cm-2 for both cold-above-hot and horizontal cells, which were 

140% higher than the Pmax = 3 μW cm-2 for a hot-above-cold cell.  Moreover, since they 

noticed a slight fluctuation of Rint in the cold-above-hot cell due to vigorous convective 

mixing of the electrolyte, they conducted the following experiments to test the electrode 

spacing effect on cell performance using the horizontal orientation.  The Pmax went down 

~28% from ~13.88 to ~10 μW cm-2, as L increased from 10 to 40 mm.  They did not 

specifically discuss the effect of cell orientation on ηr.  Although, as reported by the other 

authors above, they showed that ηr increased substantially with L.  They did not, 

however, observe that the ηr leveled off or decreased with L, because it seems that their 

maximum L = 40 mm was still below the equilibrium point.  However, since the ηr 

values were also calculated by assuming that no convection occurs, we again do not 

discuss the details here. 

All the articles above [8, 38, 39, 40, 67], so far, reached the same conclusion that 

natural convection is beneficial for Fe(CN)6
4-/Fe(CN)6

3- cells because it helps electrolyte 

mixing and reduces the mass-transfer potential at the electrodes, thus increasing Pmax and 

ηr.  However, these articles also noted that increasing L would reduce Pmax of the 

Fe(CN)6
4-/Fe(CN)6

3- cells.  In contrast, Holeschovsky [37] concluded that convection, 

either forced or natural, did not increase Pmax of Cu/Cu2+ cells.  The experimental data 

were obtained using a cylindrical cell filled with pure CuSO4 aqueous electrolyte, 

without background electrolyte, operating at ΔT = 60 oC.  The author tested the cells in 
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the hot-above-cold and the horizontal orientations, however, the author did not vary the 

inter-electrode spacing L, but kept both Cu electrodes at L = 20 mm.  The surface area of 

the electrodes was noted to be 15 cm2.  The author reported the same values of Pmax = 

1.67 μW cm-2 for both orientations, which he attributed to the high activation 

overpotentials at the electrolyte-electrode surfaces.  While this observation is different 

compared to those previously reported for the Fe(CN)6
4-/Fe(CN)6

3- cells, we also observe 

the same phenomenon in the present study with our Cu/Cu2+ cell.  However, we vary the 

L of our cell to further understand its cause.  And as L increases, we find out that Pmax 

also increases.  More detailed discussions about the dependence of L on the power 

generation of Cu/Cu2+ cells are described later in Section 3.4.2. 

Indeed, it has been noted by Quickenden and Mua [2] that ‘‘various facets of 

thermogalvanic cell operation are still poorly understood’’ (p. 3985), which although 

written in 1995 would still seem true today.  Therefore, we present an experimental 

study, by varying both the operating orientation and electrode spacing, to look more in 

depth at how natural convection affects the transport mechanisms in the cell, which 

eventually affects the power output of a thermogalvanic generator.  We choose a Cu/Cu2+ 

cell in the present experiment because we already have considerable experience with the 

Cu/Cu2+ system [4, 41, 44].  Moreover, Holeschovsky [37] mentioned that ‘‘with the 

exception of copper formate cells, data for power densities in Cu/Cu2+ cells are only 

available from patents’’ (p. 128).  Furthermore, while in Fe(CN)6
4-/Fe(CN)6

3- cells the 

Fe(CN)6
4- and Fe(CN)6

3- anions need to be circulated two ways in order to continuously 

produce electricity [5], it should be noted that in Cu/Cu2+ thermogalvanic cells, 

continuous current and power delivery require the Cu2+ cations to be transferred one way 
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from the cold anode to the hot cathode (refer back to Figure 1).  In view of the absence of 

the literature and the difference in ionic transfer mechanism, studying the underdeveloped 

Cu/Cu2+ system with one-way ionic transport is important to further improve and 

complete our understanding on the overall thermogalvanic cell operation.  Continuous 

steady-state power generation, however, will eventually oxidize the cold Cu anode.  

While this is a considerable inconvenience in a practical device, this can be hindered by 

periodically reversing the hot and the cold electrodes, for example, as suggested by 

Quickenden and Vernon [56]. 

3.2 Experimental Testing 

A cell (Figure 11) was designed specifically based on our previous experience [4] 

and inspiration from others [38, 39], to test various operational configurations to control 

the relative importance of natural convection occurring within a thermogalvanic cell. 

3.2.1 Experimental Setup 

Our cylindrical cell design, with inner diameter (ID) of 27 mm and outer diameter 

(OD) of 34 mm, has three compartments made of Pyrex glass tubes with flanges 

(Chemglass Life Sciences, Vineland, NJ).  Six small ID 5 mm glass tubes (two on each 

compartment) were made as inlets/outlets for fluid and wiring. 
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Figure 11.  3D CAD Drawings of the Cell.  (a) Cross-Sectional Diagram of the Three 
Compartments of the Cell; (b) Three Interchangeable Middle Compartments are Made to 
Accommodate Variable Electrode Spacing; (c) The Assembled Cell is Held by a Clamp 
Arm in either Horizontal or Vertical Orientation, to Accommodate the Three Cell 
Orientations Described in Figure 10. 

Circular metal electrodes were located between flanges, and O-rings (Chemglass Life 

Sciences, Vineland, NJ) were placed between the electrodes and the flanges.  Two large 
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polytetrafluoroethylene (PTFE) clamps (Chemglass Life Sciences, Vineland, NJ) fixed 

the three compartments together tightly to prevent any leakage. 

The schematic diagram of the cell’s internal structure and the positions of each 

component mentioned above are shown in Figure 11a.  Cold water was pumped in 

through polyethylene (PE) tubing to the cold bath on the right; a nichrome wire heater 

(Lakeshore, Westerville, OH) was immersed into warm propylene glycol (Amresco, 

Solon, OH, 99.5% purity) as the hot bath on the left.  A Protek P6000 programmable 

direct current (d.c.) power supply was used to drive the wire heater in order to minimize 

alternating current (a.c.) noise.  Three middle compartments of 46, 80, and 100 mm in 

length were made to vary the electrode spacing (Figure 11b).  The electrodes were 

connected to a Fluke 8846A Digital Multimeter to measure the cell potentials.  Two 

OMEGA type-T thermocouples were directly attached onto the outer surfaces of the 

electrodes to measure the temperature of the electrodes.  A Campbell Scientific CR23X 

Micrologger was used to monitor and record the temperature differences.  In all 

experiments, the temperature difference (ΔT) between the hot (Th) and the cold (Tc) 

electrode was maintained around 60 oC.  The 60 oC temperature difference was used 

because it was stable and easily maintained with the current setup.  It should be noted that 

the cell was not insulated.  When ΔT was increased further (usually by increasing Th) it 

also increased Tc, even though the temperature of the cold bath’s reservoir was well-

maintained.  The cell was held externally by a clamp arm in either horizontal or vertical 

orientation to vary the cell orientation (Figure 11c). 
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3.2.2 Electrolyte and Electrode Preparation 

The CuSO4 aqueous electrolyte was prepared by dissolving 99% pure 

CuSO4.5H2O salt (PTI Process Chemicals, Ringwood, IL) into deionized water, and 0.1 

M of H2SO4 (Amresco, Solon, OH, >95% purity) was added as a background electrolyte.  

The circular metal electrodes were copper (Cu), which were cut and prepared from ~0.5 

mm thick ultra-conductive copper soft sheet (99.99%, McMaster-Carr, Santa Fe Springs, 

CA).  Before each measurement, the electrodes were polished with 600 grit sandpaper 

(McMaster-Carr, Santa Fe Springs, CA) to remove any rust and reaction product, then 

rinsed with methanol and deionized water to wash away polish residue, and finally dried 

with compressed air.  The geometric reactive area of each copper electrode was ~11.25 

cm2. 

3.2.3 Experimental Procedure 

After the electrolyte was added into the middle compartment, the cell was left idle 

(usually for 30 min) to allow the cell’s open-circuit potential Eoc to reach steady state.  

Once the Eoc reading reached steady state, the hot electrode was heated up and the 

temperature difference (ΔT) between the hot and the cold electrode was maintained 

around 60 oC.  After the Eoc reading became steady (usually requiring another 20–60 

min), an Elenco RS-500 variable resistor box was then connected in parallel with the two 

electrodes and the digital multimeter to measure the power.  The digital multimeter 

showed and recorded the corresponding cell potentials (E) for different resistance loads 

(Rext) for later calculation of power output, P = E2/Rext (Eq. (8)).  The corresponding 

steady-state potentials were recorded every second and averaged over about 60–80 s, 
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before switching to the next resistance load.  Thus, each tabulated power output, P, 

represents an average of 60–80 data points. 

3.3 Analytical Model 

A simple analytical expression that can be used to show directly the benefit of 

natural convection on power generation of a thermogalvanic cell, for any given geometry, 

will be very useful in the initial design stage of the cell.  Here, we modify the power 

conversion efficiency expression by Salazar et al. [40], which was derived by including 

the effect of natural convection within the cell, to come up with a simpler ratio between 

the maximum power output of a thermogalvanic generator with and without convection 

(Pmax,conv/Pmax,cond) as a function of Sherwood number (Sh), Nusselt (Nu), and Lewis (Le) 

numbers. 

3.3.1 Analogy between Nusselt Number and Sherwood Number 

For a given geometry, the average Nu in natural convection depends on the solutal 

Grashof number (GrC) and Prandtl number (Pr), whereas the average Sh depends on the 

GrC and Schmidt number (Sc). That is [68], 

 Nu = 𝑓𝑓(GrC, Pr)  

 Sh = 𝑓𝑓(GrC, Sc)  

where the functional form f is an empirical correlation for that geometry, provided that 

the thermal and concentration boundary conditions are of the same type.  Therefore, Sh 

can be obtained from the Nu correlation by simply replacing Pr by Sc.  For natural 

convection inside enclosures, GrC, Pr, and Sc are defined by [68] 
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GrC =

𝑔𝑔(∆𝜌𝜌 𝜌𝜌⁄ )𝐿𝐿3

𝜈𝜈2 =
𝑔𝑔�𝜌𝜌𝑎𝑎,𝑜𝑜 − 𝜌𝜌𝑐𝑐,𝑜𝑜�𝐿𝐿3

𝜌𝜌∞𝜈𝜈2  (16) 

 Pr =
𝜈𝜈
𝑎𝑎

 (17) 

 Sc =
𝜈𝜈

 𝐷𝐷𝐴𝐴𝐴𝐴
 (18) 

where g is gravitational acceleration, ρa,o and ρc,o are the density of the electrolyte at the 

anode and cathode’s surface, respectively, ρ∞ the density of the bulk electrolyte 

(including the anions and/or the background electrolyte), L the distance between the hot 

and cold electrodes (the electrode spacing), ν the kinematic viscosity, a the thermal 

diffusivity, and DAB the diffusion coefficient (or mass diffusivity) of species A (Cu2+) in 

mixture B (bulk electrolyte).  Equation (16) is applicable to both temperature and/or 

concentration-driven natural convection flow, commonly known as non-homogenous 

fluids [68].  Since density differences in the bulk electrolyte of a thermogalvanic cell are 

due to the combined effects of temperature and concentration differences, the Δρ/ρ term 

cannot be replaced by βΔT, such as in the homogenous fluids case where GrC can be 

simplified and defined as thermal Grashof number, GrT = gβ(Th - Tc)L3/v2; β is the 

coefficient of volume expansion [68]. 

We need no empirical correlations for the case of the hotter electrode being at the 

top, because no convection occurs in this case [68]; thus, Nu = Sh = 1.  However, for the 

horizontal orientation, Bejan and Tien [71] recommend the following Nu correlation: 
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Nu

𝐿𝐿
𝐻𝐻

= 1 + ��
�(GrCPr) 𝐻𝐻/𝐿𝐿�

2

362880
�

−0.386

+ �0.623 (GrCPr)1 5⁄ 𝐿𝐿
𝐻𝐻

�
−0.386

�

1 −0.386⁄

, GrCPr ≲ 109 

(19a) 

Applying the analogy between Nu and Sh yields 

 
Sh

𝐿𝐿
𝐻𝐻

= 1 + ��
�(GrCSc) 𝐻𝐻/𝐿𝐿�

2

362880
�

−0.386

+ �0.623 (GrCSc)1 5⁄ 𝐿𝐿
𝐻𝐻

�
−0.386

�

1 −0.386⁄

, GrCSc ≲ 109 

(19b) 

where H is the diameter of the geometric reactive area of each copper electrode (~37.85 

mm), which gives our cells an aspect ratio of less than 1 (H/L < 1).  While natural 

convection may be a classic subject, we could not find an empirical correlation for the 

cold-above-hot orientation that was derived specifically from an experiment using an 

enclosure with H/L < 1.  Therefore, as pointed out by Bejan [70], we use the most fitting 

correlation for this unique case of natural convection, which is taken from a 1978 review 

article on the hierarchy of flow regimes and various transitions in Bénard convection by 

Busse [72]: 

 Nu = 0.147 (GrCPr)0.247, 2 x 104 < GrCPr < 5 x 105 (20a) 

and similarly: 

 Sh = 0.147 (GrCSc)0.247, 2 x 104 < GrCSc < 5 x 105 (20b) 
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3.3.2 Ratio between the Maximum Power Output of a Thermogalvanic Generator With 
and Without Convection 

It makes intuitive sense to maximize the efficiency of a generator, however, it is 

sometimes desirable instead to maximize its power output [73].  Solid-state 

thermoelectric generators, for example, which have similar energy conversion principles 

as thermogalvanic generators, can be operated at maximum power or maximum 

efficiency [74].  Where the heat source is essentially free, the minimum overall $ per W 

cost is achieved by operating at maximum power (not at the maximum efficiency) [75].  

Since we envision that the first applications of thermogalvanic generators will be for 

harvesting waste heat, where the heat source is indeed free, the present treatment is 

limited to the maximum power operation case and the power conversion efficiency of a 

thermogalvanic cell (η) is defined as η operated at maximum power output (ηmp): 

 
𝜂𝜂𝑚𝑚𝑚𝑚 =

max. electrical power output
thermal power input

=
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑞̇𝑞𝐻𝐻
 (21) 

According to Salazar et al [40], the thermal power input 𝑞̇𝑞𝐻𝐻 is the sum of convective heat 

transfer due the presence of ΔT (𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), heat flux due to the Dufour effect, reversible 

heat due to electrochemical reactions, irreversible heat due to activation overpotential, 

and Joule heating.  However, since the heat produced by the other thermal input 

components is ~3 orders of magnitude smaller compared to 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the ηmp for the cell 

with natural convection (ηmp,conv) can be simply represented in the following form [40]: 

 
𝜂𝜂𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≅

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=

𝐸𝐸 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (22) 

where 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = Nu 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is conductive heat transfer, and jmax,conv the experimental 

maximum local current density of the cell with convection that corresponds to Pmax,conv. 
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It should be noted that jmax,conv does not necessarily have to be equal to the 

limiting current density jl,conv.  The latter can be simply calculated by jl,conv = Sh n F DAB 

C∞/Lc [76], where n is the number of electrons involved in the reduction/oxidation 

reaction, F Faraday constant, C∞ bulk electrolyte concentration, and Lc the characteristic 

length. The characteristic length for the case of natural convection inside enclosures is the 

electrode spacing L [68], which should not be confused with the electrode diameter H as 

written in [76] for free convection conditions.  When no convection occurs within the 

cell, Sh = 1; thus, the relation between the limiting current density between the cell with 

and without convection can be written as [64, 40] 

 𝑗𝑗𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑗𝑗𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Sh (23) 

We observe that our experimental jmax,conv (for the horizontal and cold-above-hot cells) is 

three orders of magnitude lower than the calculated jl,conv (≤ 0.5% of jl,conv), while jmax,cond 

is only one order of magnitude lower than the calculated jl,cond (> 33% of jl,cond), which 

agrees with Prentice [76] that the convective flow will cause jl,conv to increase 

substantially compared with jl,cond.  While in the latter case we can safely assume that 

jmax,cond ≈ jl,cond, the relation between jmax,conv and jl,conv can be expressed as jmax,conv = 

jl,conv (C∞ - Co)/C∞ [76], where Co is the concentration of the electrolyte at the electrode’s 

surface, i.e. the hot cathode in the case of the Cu/Cu2+ thermogalvanic cell discussed 

here.  Since density and concentration of a mixture are related to each other by ρ = C M, 

where M is the molar mass of the mixture [68], the relation between jmax,conv and jl,conv can 

also be written as 

 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑗𝑗𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

�𝜌𝜌∞ − 𝜌𝜌𝑐𝑐,𝑜𝑜�
𝜌𝜌∞

= 𝑗𝑗𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 (24) 
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where constant γ = (ρ∞ - ρc,o)/ρ∞. 

Substituting Eqs. (23) and (24) into Eq. (22) by assuming jmax,cond ≈ jl,cond yields 

 
𝜂𝜂𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

𝐸𝐸 𝑗𝑗𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Sh 𝛾𝛾
𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Nu

= 𝜂𝜂𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Sh
Nu

𝛾𝛾 (25) 

Subsequently, redefining ηmp,conv and ηmp,con d in Eq. (25) using Eq. (22) gives 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Sh
Nu

𝛾𝛾 (26) 

Consequently, rearranging the terms and using the definition of 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = Nu 

reduces Eq. (26) to 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= Nu

Sh
Nu

 𝛾𝛾 = Nu �
Sc
Pr

�
𝑥𝑥

𝛾𝛾 = Nu �
𝑎𝑎

𝐷𝐷𝐴𝐴𝐴𝐴
�

𝑥𝑥
𝛾𝛾 = Nu Le𝑥𝑥 𝛾𝛾 (27) 

which is recommended if the empirical correlation for Nu and Sh are only a simple power 

law function, such as Eq. (20a) and (20b); where Le = Sc/Pr = a/DAB [68], and the power 

x is the power quantity of the empirical correlation being used.  For example, x is equal to 

0.247 if Nu in Eq. (27) is calculated using Eqs. (20a).  Or, since the Nu correlation in 

peculiar situations such as ours (with H/L <1) is sometimes more complicated, e.g., Eq. 

(19a), the derivation of x becomes not so trivial; thus, we recommend using a simpler 

form of Eq. (27): 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= Sh 𝛾𝛾 (28) 

It should be noted that operating a thermogalvanic cell close to its limiting current density 

(ρc,o → 0) will give γ = (ρ∞ - ρc,o)/ρ∞ → 1 that ultimately yields Pmax,conv/Pmax,cond = Nu 

Lex = Sh, which represents the upper limit for Pmax enhancement within our model. 
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3.4 Results and Discussion 

In order to validate the analytical expression developed above, which is derived 

under the maximum power operation case, we first run experiments to find the optimum 

concentration of the CuSO4 aqueous electrolyte. 

3.4.1 Dependence of CuSO4 Concentration on Maximum Power Output 

Using the same 0.1 M concentration of H2SO4 as background electrolyte, the 

shortest middle cell (L = 46 mm), constant ΔT = ~60 oC (Tc is maintained at around room 

temperature and Th at ~85 oC); we observe the concentration dependence of the power 

generation and find that 0.7 M CuSO4 produces the highest maximum power density of 

3.12 μW cm-2 (Figure 12).  For each power measurement, three rounds of load-voltage 

testing with different resistor sequences are performed.  Between each round, the resistor 

box is unplugged to allow the system to return to equilibrium.  The results show that the 

deviation between each round is less than 5%.  The trend of these initial results agrees 

surprisingly well with the trend from our study [4] using a different cell setup, which was 

two beakers connected via a salt bridge of the same CuSO4 mixture.  The maximum 

power output (Pmax) value increases with increasing CuSO4 concentration until reaching 

0.7 M, then it levels off and declines as the concentration is increased further to 1.0 M.  

For these experiments, however, only the cells with natural convection—that is, cold-

above-hot (Figure 10b) and horizontal orientations (Figure 10c)—are tested.  These cells 

are expected to generate higher P and Pmax than the hot-above-cold cell with limited 

natural convection (Figure 10a). 
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Figure 12.  Concentration Dependence of Power Generation of Cu/Cu2+ Thermogalvanic 
Cells.  (a) Power Density vs. Current Density for Various Concentrations of CuSO4 
Solutions (0.001, 0.01, 0.05, 0.1, 0.3, 0.7, 1.0 M); (b) and (c) are the Zoomed-In Views of 
the Dashed Rectangles in (a).  Dashed and Solid Lines Indicate Cold-above-Hot and 
Horizontal Orientations, Respectively. 
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3.4.2 Dependence of Cell Orientation and Electrode Spacing on Maximum Power 
Output 

The main experiments are carried out using the optimum 0.7 M CuSO4, with the 

same 0.1 M H2SO4 as background electrolyte.  The three orientations are varied for each 

electrode spacing, L = 46, 80, and 100 mm, to observe the natural convection effect on 

the power generation.  At this point, however, Tc and Th are held at lower temperatures of 

~5 oC and ~65 oC, respectively, thus maintaining the 60 oC temperature difference.  The 

experimental results are shown in Figure 13. 

Figure 13 shows that the lower average cell temperature Tavg = (Tc + Th)/2 of 

35 oC compared to 55 oC gives a respectively lower Pmax of ~1.09 μW cm-2 compared to 

~3.12 μW cm-2 from the earlier experiments (Figure 12a) with the same molar 

concentration, electrode spacing, and orientation, which is consistent with Kang et al.’s 

[8] observation for the Fe(CN)6
4-/Fe(CN)6

3- thermogalvanic cell.  Moreover, the trend of 

power density vs. current density (j) curves in Figure 13a agrees very well with the trend 

of the same curves for the same molar concentration of 0.7 M CuSO4 in Figure 12a, i.e. 

the horizontal cell has higher P and Pmax compared to the cold-above-hot cell.  As 

mentioned earlier, data for power densities in Cu/Cu2+ cells are only available from 

patents [37].  Therefore, these patent data, together with data in Holeschovsky’s thesis 

[37], Tester et al. [59], and data from our previous study [4] are summarized in Table 2 

for comparison.  Our Pmax results agree very well with Peck, Tester et al. [59], and 

Holeschovsky’s [37].  The higher Pmax reported by Clampitt came from the use of higher 

concentrations of saturated CuSO4 and 2.0 M of H2SO4, as well as higher ΔT of 80 oC, as 

pointed out by Holeschovsky [37]. 
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Figure 13.  Power Density vs. Current Density Curves for 0.7 M CuSO4 + 0.1 M H2SO4 
Aqueous Solution with Cu Electrode in Three Different Cell Orientations, and at Three 
Different Electrode Spacing: (a) L = 46 mm, (b) L = 80 mm, and (c) L = 100 mm. 
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Furthermore, the Pmax values from our previous study [4] were quite low because of the 

very high internal resistance (on the order of 10 kΩ), which was imposed by the salt 

bridge arrangement. 

Table 3.  Parameters of Water and CuSO4 Aqueous Electrolyte. 
Parameter Symbol Value 

For water at 35oC [68]   
Prandtl number Pr 4.83 
Density of bulk electrolyte ρ∞ 994 kg m-3 
Dynamic viscosity μ 7.2 x 10-4 kg m-1 s-1 
Kinematic viscositya ν 7.243 x 10-7 m2 s-1 
Schmidt number--by Eq. (18) Sc 985.5 
Thermal conductivity k 0.623 W m-1 K-1 
Specific heat cp 4178 J kg-1 K-1 
Thermal diffusivityb a 1.5 x 10-7 m2 s-1 
   
For water at 5oC [68]   
Density of electrolyte at the anode ρa,o 999.9 kg m-3 
   
For water at 65oC [68]   
Density of electrolyte at the cathode ρc,o 980.4 kg m-3 
   
Other   
Mass diffusivity of species A (Cu2+) in mixture B (bulk 
electrolyte) [77] DAB 7.35 x 10-6 cm2 s-1 

a  Kinematic viscosity, ν = μ/ρ∞   
b  Thermal diffusivity. a = k/ρ∞cp 

  

No theoretical treatments of Cu/Cu2+ thermogalvanic power generation are 

available in the literature.  Consequently, we compare the simple treatment of Eq. (27) 

and (28) with the experimental results.  Ideally, the electrolyte properties at the average 

cell temperature of 35 ℃, where Tc = 5 ℃ and Th = 65 ℃, are to be used in the analysis.  

However, because the values for properties of the 0.7 M CuSO4 in 0.1 M H2SO4 aqueous 

solution are not readily available, nor easily measured, we use values of water.  These 

values and other parameters are listed in Table 3.  Considering that the water content of 



 

50 

the electrolytes is at least 87.5 wt. % (0.7 M CuSO4 equals ~11.13 wt. %, and 0.1 M 

H2SO4 equals only ~0.98 wt. %), the resulting errors are expected to be relatively small. 

The values of GrCPr and GrCSc, which are calculated using Eqs. (16)–(18), are on 

the order of 108 – 109 and 1010 – 1011, respectively.  These values are beyond the range of 

GrCPr in Eq. (20a) and GrCSc in Eqs. (19b) and (20b).  However, it was noted by Bejan 

and Tien [71] that for laminar natural convection in a horizontal shallow (H/L < 1) 

enclosure, the internal flow is expected to become turbulent above GrCPr ≈ 109.  In 

addition, Prentice [76] noted that when the product of GrC and Sc is between 104 and 

1012, the flow is still considered to be laminar.  Since we did not observe any sign of 

turbulence in our cell, we believe that Eqs. (19b), (20a) and (20b) hold very well to 

estimate Nu and Sh in our study. 

Figure 14 on the next page demonstrates that, for the given cell’s conditions and 

geometries, the predicted Pmax ratio matches reasonably well with the experimental data.  

As we discussed earlier, the Pmax ratio between the cold-above-hot and the hot-above 

cold cells is calculated by using Eq. (27) with Nu and Lex, because of the simplicity of 

the power law function of Eq. (20a).  However, for the horizontal and the hot-above cold 

cells, the Pmax ratio is calculated by applying Eq. (28) with the Sh correlation of Eq. 

(19b).  To test the consistency between Eqs. (27) and (28), we cross-calculate both ratios 

and find that the deviation is < 0.008%. 
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Figure 14.  Comparison of Experimental Data with Prediction from the Nondimensional 
Analytical Expression.  The y-axis Represents the Pmax,conv /Pmax,cond Ratio Calculated 
from Experimental Data in Table 2; the x-axis Represents the Pmax,conv /Pmax,cond Ratio 
Calculated Using Eqs. (27) and (20a) for the Cold-above-Hot/Hot-above-Cold Cells, and 
Eqs. (28) and (19b) for the Horizontal/Hot-above-Cold Cells. 

While the power outputs of the Fe(CN)6
4-/Fe(CN)6

3- cell in both the old-above-

hot and the horizontal orientations were reported to be the same [8], it is expected that the 

power output of a Cu/Cu2+ cell in the cold-above-hot orientation should be lower than in 

the horizontal orientation.  It happens because, in the former orientation, even though 

convection helps to eliminate the mass-transfer overpotential, the direction of the natural 

convection current from the hot cathode to the cold anode presumably opposes the Cu2+ 

cations transport (Figure 15a).  In the latter orientation (Figure 15b), natural convection 

not only helps to mix the electrolyte, but it also helps deliver the Cu2+ cations from the 
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cold anode to the hot cathode.  Nonetheless, even though these two systems have 

completely different charge-species transfer mechanisms, i.e. one-way vs. two-ways, we 

observed the same magnitude (~2-fold) of the positive amplifying effect of natural 

convection on the power generation of Cu/Cu2+ cell as has been seen for the 

Fe(CN)6
4-/Fe(CN)6

3- cells [8]. 

 

Figure 15.  Illustration of Natural Convection within the (a) Cold-above-Hot and (b) 
Horizontal Cell Orientations. 

Referring back to Figure 13a, we show that the values of Pmax for the hot-above-

cold and the horizontal orientations are almost the same, which agrees with 

Holeschovsky’s observation [37] earlier that convection did not increase the Pmax of 

Cu/Cu2+ cells.  However, when L increases (Figure 13b and c), the Pmax for the cells with 

convection, i.e. horizontal and cold-above-hot cells, also increases.  These results reveal a 

completely different dependence of the electrode spacing L on the power generation of 

the Cu/Cu2+ cells, compared to the Fe(CN)6
4-/Fe(CN)6

3- cells, which we believe are also 

caused by the difference in the ionic transfer mechanism.  We depict the results in Figure 
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16 and compare with those of the Fe(CN)6
4-/Fe(CN)6

3- cells [8, 39, 40] that we reviewed 

earlier to clearly show that as L increases, the Pmax (or current density) of the Cu/Cu2+ 

cells increases, while those of the Fe(CN)6
4-/Fe(CN)6

3- cells decreases. 

 

Figure 16.  Comparison between the Dependence of Electrode Spacing on Power (or 
Current) Generation of Cu/Cu2+ and Fe(CN)6

4-/Fe(CN)6
3- Cells.  The Values of 

Maximum Current Density are Used whenever the Values of Maximum Power Density 
are not Included in the Literature.  The y-axis Represents Maximum Power (or Current) 
Density Values that are Normalized by the Value Measured for the Same Cell with the 
Smallest Electrode Spacing; the x-axis Represents the Values of Electrode Spacing (L) 
that are Normalized by the Electrode Diameter (H) of the Same Cell. 

The deviation of lower P and Pmax that is observed for the 80-mm horizontal cell in 

Figure 13b (also shown in Figure 16) is most likely caused by imprecise temperature 

control of Th and Tc (and thus, Tavg) during the experiment, which has been described 

earlier to greatly affect the power generation of the cell.  This also explains the relatively 

(Mua & Quickenden, 1996) 

(Salazar et al. 2014) 

(Kang et al. 2012) 
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large overprediction of Pmax ratios for the 80-mm cells in Figure 14.  While Salazar et al. 

[40] suggested that this overprediction can be reduced with more geometrically-accurate 

numerical modeling, such as including the additional boundary layers at the side walls of 

the cylindrical cell, this discrepancy seems to be plausible concerning the simplicity of 

our expressions.  Conversely, in the cell without convection (hot-above-cold orientation), 

Nu and Sh are equal to 1, which indicates that no bulk fluid motion is occurring; thus, no 

mixing happens.  Furthermore, the cell discussed here is already ohmic-limited in nature, 

which is represented by the linear I–E curves (see Figure 17). 

 

Figure 17.  Cell Potential vs. Current Density (or similarly I-E) Curves for 0.7 M CuSO4 
+ 0.1 M H2SO4 Aqueous Solution with Cu Electrodes in Three Different Cell 
Orientations, and at Three Different Electrode Spacing: (a) L = 46 mm, (b) L = 80 mm, 
and (c) L = 100 mm. 
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It is therefore quite obvious that when L increases, Pmax decreases further, following the 

trend of Fe(CN)6
4-/Fe(CN)6

3- cells, because of the increasing ohmic overpotential of the 

bulk electrolyte and the mass-transfer overpotential. 

3.5 Summary 

As an alternative to electrolyte and electrode materials development, I have 

shown that natural convection can be controlled and has a significant effect on increasing 

the power generation of Cu/Cu2+ thermogalvanic cells.  With the controllable 

experimental configuration shown in Figure 11, which was built to allow for testing a 

wide variety of operational conditions, natural convection within the cell amplifies Pmax 

up to 100%, from ~0.8 to ~1.6 μW cm-2.  In addition, Pmax of the Cu/Cu2+ cell increases 

with the electrode spacing because of the one-way ionic transfer mechanism that fully 

utilizes the natural convection flow within the cell.  This dependence of electrode spacing 

on thermogalvanic power generation suggests that the power generation of Cu/Cu2+ cells 

may not be limited by the cell geometry, which does restrict that of the more 

conventional Fe(CN)6
4-/Fe(CN)6

3- cell.  Throughout our experiments, I also found that 

the optimum CuSO4 concentration, for the Cu/Cu2+ thermogalvanic cells, is 0.7 M, with 

0.1 M H2SO4 as the background electrolyte.  The average cell temperature also has a 

significant effect on Pmax.  Higher Tavg of 55 ℃ resulted in higher Pmax of 3.12 μW cm-2, 

while lower Tavg of 35 ℃ resulted in lower Pmax of 1.09 μW cm-2, which is consistent 

with Kang et al.’s [8] observation for Fe(CN)6
4-/Fe(CN)6

3- cells.  Moreover, the simple 

analytical expressions that we derived as a function of Sh, or Nu and Le numbers 

suggests that, an electrolyte with high Le and a generator with as high Sh and Nu as 



 

56 

possible, are necessary in order to maximize the power generation of thermogalvanic 

generators.  I have not extended the analytical model beyond the case of the CuSO4 

aqueous electrolyte system, however, I hope that the present study will improve our 

understanding of the energy transfer mechanisms underlying thermogalvanic energy 

conversion and provide alternative approaches for future researchers and engineers to 

further optimize this technology. 
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4. WASTE HEAT RECOVERY APPLICATION IN AUTOMOBILES 

Waste heat energy conversion remains an inviting subject for research, given the 

renewed emphasis on energy efficiency and carbon emissions reduction.  The U.S. 

Department of Energy (DOE) has recently identified capturing waste heat in automobiles 

to be one of the few examples of breakthroughs—a potential game-changing solution to 

significantly improving today’s engine and vehicle technologies [78, 79].  Solid-state 

thermoelectric devices have been widely investigated [80], but their practical application 

remains challenging due to high cost and the inability to fabricate them in geometries that 

are easily compatible with heat sources.  An alternative to thermoelectric devices are 

thermogalvanic cells [4]. 

Thermogalvanic cells have recently received significant attention because of their 

immense potential in converting low-grade thermal energy to electricity (refer back to 

Figure 5).  Hu et al. [5] and Im et al. [43] have demonstrated the feasibility of 

incorporating such systems to recover thermal energy from exhaust pipes using water-

jacketed apparatuses.  The previous chapter 3 just showed that incorporating natural 

convection within a Cu/Cu2+ cell, which compressed the concentration boundary layers in 

the vicinity of the electrodes and thus reduced the mass-transfer (or concentration) 

overpotential, improved the maximum power output of the cell up to 100% [41]. 

Motivated by this result, here we investigate the feasibility of incorporating a 

thermogalvanic system into automobiles.  The experimental setup is designed to provide 

an equivalent real-world condition.  We simulate three temperature differences based on 

quad-monthly average ambient temperatures in Phoenix, AZ.  The lower average ambient 

temperature in November-February, compared to May-August, is expected to impose a 
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higher temperature difference, which is expected to produce higher power output.  

However, the experimental results suggest that average cell temperature, which has in 

general been ignored, may play a bigger role when designing a practical system to ensure 

optimum power generation. 

4.1 Experimental Testing 

4.1.1 Annular Thermogalvanic Cell 

 

Figure 18.  Cross-Sectional Diagram of the Annular Cu/Cu2+ Thermogalvanic Cell.  The 
Cold Outer Cu Pipe Acts as the Anode, and the Hot Inner Cu Pipe the Cathode.  The 
Dotted Fill Denotes the Electrolyte. 

The annular cell (Figure 18) consisted of two concentric Cu pipes (>99.9%, 

Thomas Pipe & Supply LLC, Phoenix, AZ) bounded by 2.5-cm-thick high-temperature 

chlorinated polyvinyl chloride (CPVC) bulkheads (McMaster-Carr, Santa Fe Springs, 

CA), all sealed with household GE Silicone II Almond sealant.  The inner diameter (ID) 

of the outer Cu pipe, i.e. the cold electrode, was 99 mm and the pipe wall was 3 mm 

thick.  The outer diameter (OD) of the inner Cu pipe, the hot electrode, was 54 mm and 
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the wall was 2 mm thick.  The two CPVC bulkheads were approximately 60 mm apart.  

Two 22 gauge OMEGA type-K thermocouples and two OMEGA hermetically sealed 

type-K thermocouples were epoxied onto the air sides and electrolyte sides of the 

electrodes, respectively, to measure the temperatures of the hot (Th) and the cold (Tc) 

electrodes.  These and other thermocouples, which will be discussed in the next 

subsection, were read and recorded every second and averaged over 60 s intervals by a 

Campbell Scientific CR23X Micrologger with built-in compensation.  However, it should 

be noted that one of the hermetically sealed thermocouples, which was initially epoxied 

onto the electrolyte side of the cold electrode, was found detached and could not be put 

back together without dismantling the cell.  Cell potentials were probed every second by 

a Fluke 8846A Digital Multimeter, which then were downloaded and recorded on a PC 

using LabView.  A small polyvinyl chloride (PVC) pipe (The Home Depot, Tempe, AZ) 

was attached on top of the cell as a filling tube, and a nylon screw was used to plug the 

drain hole on the bottom. 

4.1.2 Climate-Controlled Wind Tunnel 

A closed-loop, climate-controlled wind tunnel (Figure 19) was built to provide 

equivalent conditions to the ambient air stream under the car.  The air was driven by a 

2700 CFM Dri-Eaz Sahara Pro X3 115V blower.  The average air velocity was observed 

to be 6 m s-1, which is equivalent to 13 mph, at a window in the test section via a UEI 

DAFM3 anemometer.  Ambient air temperature (Ta) inside the wind tunnel was 

controlled using a combination of 12,000 Btu hr-1 LG LW1214ER window air 

conditioner for cooling and a Master Appliance HG-201A heat gun for heating.  These 

temperatures were measured 70 cm upwind of the test section by two 30 gauge OMEGA 
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type-K thermocouples sheathed in stainless steel tubing.  Another heat gun was used to 

provide the equivalent of a low-temperature exhaust gas stream of 110 oC, and was 

monitored using the same type of thermocouples located at 5 and 10 cm upwind and 

downwind of the cell inside the inner Cu pipe.  This heat gun was connected to a PVC 

pipe, which was routed through 60 cm of straight section into the cell, to make sure that 

the flow is fully developed when entering the inner pipe of the cell. 

 

Figure 19.  Isometric View and Top View of the Climate-Controlled Wind Tunnel 

4.1.3 Electrolyte and Electrode Preparations 

The copper sulfate (CuSO4) aqueous electrolyte was prepared identically as 

described in section 3.2.2.  After each measurement, the cell was flushed with technical-

grade methanol and deionized water to wash away the reaction product. 
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4.1.4 Experimental Procedure 

After the electrolyte was added into the cell, the cell was left idle, usually for 30 

minutes, to make sure there is no leak and to allow the cell’s open-circuit potential (Eoc) 

to reach steady state.  Once the Eoc reading reached steady state, the blower, the window 

air conditioner and the heat gun were turned on.  It took another 30-60 minutes for Ta and 

Th to reach the expected set temperatures.  Consecutively, after the Eoc reading became 

steady (usually requiring another 20-60 minutes), an Elenco RS-500 variable resistor box 

was then connected in parallel with the two electrodes and the digital multimeter to 

measure the power.  The digital multimeter showed and recorded the corresponding cell 

potentials (E) for different resistance loads (Rext), as Rext was manually varied down to 

1.1 Ω, for later calculation of power outputs, P = E2/Rext (Eq. (8).  The corresponding 

steady-state potentials E(Rext) were recorded every second and averaged over 80 s, before 

switching to the next resistance load.  The power density was subsequently calculated 

based on the geometric reactive area of the hot Cu electrode, the cathode, of ~101.8 cm2, 

where the heat is captured.  At least two runs of experiments were performed; thus, each 

plotted power density represents an average of 160 data points.  The results show that the 

deviation was usually smaller than 20% but was as high as 64% in some cases.  

Nevertheless, the cell potential vs. current density (or E-I) curves showed an 

approximately linear relationship, which are consistent with our previous observations [4, 

41]. 

During the potential sampling phase of the experiment, instead of a thermal 

steady state, compressor cycling led to a limit cycle.  The thermal limit cycle period did 

not match the potential sampling period; therefore during each 80-s averaging window, 
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temperature was unsteady, with phase changing at each sampling period.  However, only 

one averaged temperature data point was recorded per 60 s interval.  This causes a loss of 

information that prevents the independent calculation of electrode temperature bias and 

noise uncertainties associated with each E-I data point and is considered to be the primary 

source of uncertainty.  The uncertainty calculation could be made possible by increasing 

the rate of temperature data recordings, and uncertainty could be reduced by replacing the 

off-the-shelf window cooler with a unit utilizing variable compression ratio or otherwise 

improved range and controls. 

4.2 Thermal Resistance Model 

A simple thermal network analysis can be used to better understand the thermal 

behavior of the cell and provide insight into design optimization of the experimental 

setup in the future.  Figure 20 on the next page shows the thermal resistance network of 

the thermogalvanic cell with the associated parameters used in the thermal resistance 

model. 

The heat is transferred from the hot air stream (Tha) to the cold air stream (Ta) 

through three convection resistances, which are associated with internal forced 

convection between the inner Cu pipe (Th) and the hot air stream (Rconv,1), natural 

convection of the electrolyte in the annular space between the pipes (Rconv,el), and another 

internal forced convection between the outer Cu pipe (Tc) and the cold air stream 

(Rconv,2).  The conduction resistances of the Cu pipes are neglected in the model because 

they are calculated to be four orders of magnitude smaller compared to the three 

convection resistances. 
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Figure 20.  One-Dimensional Thermal Resistance Model of the Thermogalvanic Cell. 

The first internal forced convection resistance Rconv,1 is given by 

 
𝑅𝑅conv,1 =

1
ℎ1𝐴𝐴𝑠𝑠,1

 (29) 

where  

 
ℎ1 =

Nuℎ𝑎𝑎𝑘𝑘ℎ𝑎𝑎

𝐷𝐷1
 (30) 

 𝐴𝐴𝑠𝑠,1 = 𝜋𝜋𝐷𝐷1𝐿𝐿 (31) 

h1 is the heat transfer coefficient, As, 1 the heat transfer surface area, Nuha the Nusselt 

number, kha the thermal conductivity of the hot air stream, D1 (= 2r1) the mean diameter 
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of the inner Cu pipe, and L the length of the thermogalvanic cell, that is the distance 

between the CPVC bulkheads.  Assuming that the hot air stream is turbulent, where 

Reynolds number, Reha = 4𝑚̇𝑚ℎ𝑎𝑎/μhaπD1, is larger than 4000; 𝑚̇𝑚ℎ𝑎𝑎 and μha are 

respectively the mass flow rate and the dynamic viscosity of the hot air stream, Çengel 

and Ghajar [81] recommend the following Nuha correlation: 

 

Nuℎ𝑎𝑎 =
�𝑓𝑓ℎ𝑎𝑎

8 � (Reℎ𝑎𝑎 − 1000)Prℎ𝑎𝑎

1 + 12.7 �𝑓𝑓ℎ𝑎𝑎
8 �

0.5
�Prℎ𝑎𝑎

2
3 − 1�

 (32) 

assuming that the surface of the Cu pipe is smooth, the friction factor (fha) is given by 

[81] 

 𝑓𝑓ℎ𝑎𝑎 =  (0.79 ln Reℎ𝑎𝑎 − 1.64)−2 (33) 

This Nuha correlation in Eq. (32) is applicable for Reynolds and Prandtl number values 

between 3 x 103 ≤ Reha ≤ 5 x 106 and 0.5 ≤ Prha ≤ 2000, respectively. 

Next, the natural convection resistance of the electrolyte Rconv,el is given by [81] 

 
𝑅𝑅conv,el =

ln(𝐷𝐷2/𝐷𝐷1)
2𝜋𝜋𝜋𝜋𝑒𝑒𝑒𝑒Nu𝑒𝑒𝑒𝑒𝐿𝐿𝑐𝑐

 (34) 

where D2 (= 2r2) is the mean diameter of the outer Cu pipe, and kel the thermal 

conductivity of the electrolyte.  The characteristic length (Lc) is the spacing between the 

two Cu pipes, Lc = (D2 – D1)/2.  The Nuel correlation is given by [81] 

 
Nu𝑒𝑒𝑒𝑒 = 0.386 �

Pr𝑒𝑒𝑒𝑒

0.861 + Pr𝑒𝑒𝑒𝑒
�

1/4

�𝐹𝐹cylRa𝐿𝐿,𝑒𝑒𝑒𝑒�
1/4

 (35) 

where Fcyl is the geometric factor for concentric cylinders given by 

 
𝐹𝐹cyl =

[ln(𝐷𝐷2/𝐷𝐷1)]4

𝐿𝐿𝑐𝑐
3�𝐷𝐷1

−3/5 + 𝐷𝐷2
−3/5�

5 , (36) 
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and RaL,el is the Rayleigh number for an enclosure which is determined from 

 
Ra𝐿𝐿,𝑒𝑒𝑒𝑒 =  

g𝛽𝛽𝑒𝑒𝑒𝑒(𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐)𝐿𝐿𝑐𝑐
3

𝜈𝜈𝑒𝑒𝑒𝑒
2 Pr𝑒𝑒𝑒𝑒 (37) 

where g is gravitational acceleration, βel the coefficient of volume expansion of the 

electrolyte, Th and Tc are respectively the temperature of the inner (hot) and outer (cold) 

Cu pipes, Prel the Prandtl number of the electrolyte, and νel the kinematic viscosity of the 

electrolyte.  The Nuel correlation in Eq. (35) is applicable for 0.7 ≤ Prel ≤ 6000 and 102 ≤ 

FcylRaL,el ≤ 107. 

Ideally, the electrolyte properties at the average cell temperature Tavg are to be 

used in the analysis.  However, because the values for properties of the 0.7 M CuSO4 in 

0.1 M H2SO4 aqueous solution are not readily available, nor easily measured, we again 

use values of water (see Table 3).  Considering that the water content of the electrolytes 

is at least 87.5 wt.% (0.7 M CuSO4 equals ~11.13 wt.%, and 0.1 M H2SO4 equals only 

~0.98 wt.%), the resulting errors are expected to be relatively small.  

Finally, the second internal forced convection resistance Rconv,2 is given by 

 
𝑅𝑅conv,2 =

1
ℎ2𝐴𝐴𝑠𝑠,2

 (38) 

where 

 
ℎ2 =

Nu∞𝑘𝑘∞

𝐷𝐷ℎ,2
 (39) 

 𝐴𝐴𝑠𝑠,2 = 𝜋𝜋𝐷𝐷2𝐿𝐿 (40) 

Assuming that the cold air stream is also turbulent, the space between the cell and the 

surrounding walls of the wind tunnel can be treated as a non-circular duct with a 

hydraulic diameter, Dh, 2, given by [81] 
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 𝐷𝐷ℎ,2 = 𝐷𝐷ℎ,duct − 𝐷𝐷2 (41) 

where the hydraulic diameter of the wind tunnel (Dh,duc t) is given by 

 
𝐷𝐷ℎ,duct =

2𝑎𝑎𝑎𝑎
𝑎𝑎 + 𝑏𝑏

 
(42) 

a and b are respectively the height and the width of the square cross-section of the wind 

tunnel, where a = b = 30 cm.  The Nu∞ is calculated using the same Nusselt number 

correlation described in Eq. (32) by simply substituting the values of fha, Reha, and Prha 

with f∞, Re∞, and Pr∞, respectively. 

Noting that all three resistances are in series, the total resistance is 

 𝑅𝑅total = 𝑅𝑅conv,1 + 𝑅𝑅conv,el + 𝑅𝑅conv,2 (43) 

Then the steady rate of heat transfer through the cell (𝑄̇𝑄cell) becomes 

 
𝑄̇𝑄cell =

𝑇𝑇ℎ𝑎𝑎 − 𝑇𝑇𝑎𝑎

𝑅𝑅total
 (44) 

By keeping Tha constant at 110 oC while varying Ta, the temperatures of the hot (Th) and 

the cold (Tc) electrodes are solved in an iterative method with updating the 

thermophysical parameters at each iteration step via Engineering Equation Solver (EES) 

v.9.699. 

4.3 Results and Discussion 

The experiments are carried out using the optimum concentrations of 0.7 M 

CuSO4, with 0.1 M H2SO4 as background electrolyte, which was found and described in 

the previous study (see section 3.4.1).  Tc is varied based on the quad-monthly average 

ambient air temperature Ta in Phoenix, AZ of 32, 23, and 14 oC.  The experimental 

values of Th and Tc are shown next to their resultant plots in Figure 21.  Since the 
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resistance loads Rext in the current Elenco RS-500 resistor box could only be varied down 

to 1.1 Ω, we could not admit enough current to show the maximum power output (Pmax) 

peaks for Ta values of 32 and 23 oC. 

 

Figure 21.  Power Density vs. Current Density Curves for the Annular Cu/Cu2+ 
Thermogalvanic System Tested at Three Average Ambient Temperatures Ta of (a) 32, (b) 
23, and (c) 14 oC.  Th and Tc are Respectively the Temperatures of the Hot and Cold 
Electrodes.  The Inset Shows Historical Data of Average Ambient Air Temperature in the 
Greater Phoenix Area, AZ from July 1, 2013 to June 30, 2014, Imported from the 
Arizona State University Weather Station [82]; Solid and Dotted Lines in the Inset 
Indicate Bi-Monthly and Quad-Monthly Average Ambient Air Temperatures, 
Respectively. 

It was expected that the lower average ambient temperature Ta would impose 

higher temperature difference (ΔT), thus producing higher maximum power output Pmax.  

However, these results conversely show that higher Ta yields a higher power density, 

because of the higher average cell temperature, Tavg = (Th + Tc)/2.  Increasing Tavg, i.e. 

increasing both Th and Tc, increases the redox reactivity at these electrodes, as well as the 

ionic conductivity of the electrolyte, while simultaneously reduces the mass-transfer 

resistance of the cell [8, 41].  Moreover, changing the temperature has an exponential 

effect on the exchange current density as described by the Bulter–Volmer equation [8]. 
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This trend agrees with our previous study [41] and another observation for a cell 

using conventional Fe(CN)6
4-/Fe(CN)6

3- redox couple [8].  In addition, the magnitudes of 

power output P and Pmax are consistent with ours and other previously reported studies of 

Cu/Cu2+ cells that had been reviewed in Table 2.  A summary of the dependence of 

temperatures on maximum power output of the Cu/Cu2+ thermogalvanic waste heat 

recovery system is provided in Table 4. 

Table 4.  Summary of the Dependence of Temperatures on Maximum Power Output of 
the Cu/Cu2+ Thermogalvanic Waste Heat Recovery System. 

Ta Th Tc ΔT Tavg Pmax 
(oC) (oC) (oC) (oC) (oC) (μW cm-2) 
14 40 21 19 30.5 ~0.04 
23 49 31 18 40 ~0.11 
32 57 39 18 48 N/A 

 

The results of the simple thermal resistance analysis, which includes all 

temperatures that are tabulated in Table 4 minus the maximum power output (Pmax), in 

comparison to the experimental results for the three quad-monthly average ambient air 

temperature Ta, are shown in Figure 22. 
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Figure 22.  Comparison between Experimental Data (markers) and Calculated Results 
(lines) of Dependence of Ambient Air Temperature (Ta) on Temperatures of the Cold 
(Tc) and Hot (Th) Electrodes, Temperature Difference (ΔT), and Average Cell 
Temperature (Tavg) of the Cell.  Error Bars Represent 95% Confidence Intervals.  Most of 
the Error Bars are not Visible because They are Smaller than the Corresponding Markers. 

This simple model is shown to be in fair agreement with the experiments.  The bigger 

discrepancy between the calculated and experimental values of the cold electrode 

temperature Tc is most likely caused by the inaccuracy in the measurement.  As we 

mentioned earlier in the experimental setup section, we lost the thermocouple reading on 

the electrolyte side of the cold electrode.  Therefore, the experimental data of Tc 

(rectangular markers) is lower than the calculated data (double-dotted dashed line) 

because it represents only the air-side temperature of the cold electrolyte, instead of the 

average temperature between the air-side and the electrolyte-side, which is exposed to the 

cooler ambient air temperature Ta.  The average temperature different between the air-

side and the electrolyte-side of the hot electrode throughout the experiments, for an 

example, is ~10 oC.  This error is being carried over in the following calculations of ΔT 

and Tavg, which also causes the discrepancy between their calculated and experimental 

values.  Nevertheless, the figure shows that both Tc and Th increase linearly with Ta, 
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hence, the average cell temperature Tavg also increases.  On the other hand, the 

temperature difference between the electrodes, ΔT, decreases slightly with the increasing 

of Ta, which also agrees very well with the trend of the experimental data. 

It should also be noted that the measured ΔT for the three cases are almost the 

same.  It is probably caused by the lost reading of the temperature of the electrolyte side 

of the cold electrode.  Nonetheless, the errors are expected to be relatively small.  

Moreover, the temperatures of the hot electrode Th are measured to be much lower than 

the hot air stream’s temperature of 110 oC.  This happens because heat is lost due to 

convection along the inner Cu pipe.  The simple thermal resistance analysis shows that 

the convection resistance between the inner Cu pipe and the hot air stream (Rconv,1) 

contribute up to 75% of the total thermal resistance, while the convection resistance 

between the outer Cu pipe and the cold air stream (Rconv,2) and the convection resistance 

of the electrolyte (Rconv,el) contributes only up to 20% and 5% of the the total thermal 

resistance, respectively.  This translates into, approximately, only 31–38% of the total 

thermal energy from the hot air stream that is captured and transferred through the cell. 

 𝑄̇𝑄cell

𝑄̇𝑄total
=

Eq.  (44)
𝑚̇𝑚ℎ𝑎𝑎𝑐𝑐𝑝𝑝,ℎ𝑎𝑎(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) ≈ 38%  

where 𝑄̇𝑄cell is the steady rate of heat transfer through the cell that is calculated using Eq. 

(44), 𝑚̇𝑚ℎ𝑎𝑎 the mass flow rate of the hot air stream through the inner Cu pipe of the cell, 

𝑐𝑐𝑝𝑝,ℎ𝑎𝑎 the constant pressure specific heat of hot air at the average temperature of 110 oC, 

Tin and Tout are the temperature of the hot air stream at the inlet and outlet of the inner Cu 

pipe of the cell, respectively. 
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More thermal energy, up to 38%, is captured and transferred through the cell at 

lower ambient temperature Ta because of the slightly higher ΔT.  However, since it has 

been shown that the dependence of power generation on the average cell temperature Tavg 

is stronger than on ΔT, especially in this particular annular thermogalvanic cell, this does 

not translate into a higher power output, Pmax.  Further improvement of this system 

requires designing an optimum heat exchanger that will maximize the heat transfer from 

the hot air stream to the hot electrode, especially, and from the ambient air to the cold 

electrode.  This will maximize the ΔT across the cell; thus, maximizing the electric power 

output. 



 

72 

 

Figure 23.  Comparison of Normalized Specific Power Density (a) and Pure Material 
Costs (b) between the Cu/Cu2+ Annular Thermogalvanic Waste Heat Recovery System 
and Solid-State Thermoelectric Generators (TEGs). 

To illustrate a simple economic assessment, Figure 23a shows the comparison 

between normalized specific power density  (Pmax/ΔT2) of Cu/Cu2+ annular 

thermogalvanic waste heat recovery system that we assembled and tested, and data from 

solid-state thermoelectric generators (TEGs) that are currently being implemented and 

tested for a light-duty vehicle by General Motors, Honda, BMW and Ford.  The TEG data 

are adapted from the Fiscal Year 2014 Annual Progress Report for the Advanced 

Combustion Engine R&D program, which was published recently by the DOE Vehicle 

Technologies Office [83].  The power density of the TEGs is calculated based on 



 

73 

geometric area of the hot side of the devices where heat is captured.  Per data from the 

DOE report [83], unless otherwise stated specifically by the manufacturer, all TEGs are 

assumed to be operating with a ‘cold’ side temperature of 100 oC, and ‘hot’ side 

temperature of 500 oC.  Figure 23a may not show the highest achievable experimental 

data of the TEGs because more tests are still underway.  Additionally, since the 

dimensions of the geometric area of the hot side of Honda’s TEG are unavailable in the 

report, the plotted data are adapted from a paper published by their university partner 

[84].  This comparison shows that the power density of thermogalvanic cells is 4 to 5 

orders of magnitude lower compared to the TEGs.  Figure 23b puts the comparison in 

monetary forms based on the cost of the raw materials alone.  It indicates that the costs of 

the raw materials for both the Cu/Cu2+ thermogalvanic cells (the electrolyte) and the 

TEGs are almost the same.  The prices of skutterudite and no/low Hf Half-Housler are 

adapted from [85]. 

Indeed, Joshi et al. [84] mentioned that raw material contributes only ~10% of the 

total produced energy cost ($ per W) of TEGs.  The rest of the cost is contributed by 

other processes such as material processing, device assembly and system integration.  

Therefore, we calculated and estimated the cost to build our Cu/Cu2+ thermogalvanic cell 

to be around $36 in total (see Table 5).  Expensive, cleanroom-based manufacturing 

processes are not required for assembling the cell.  Additionally, we have demonstrated 

that the fluid (liquid) nature of the electrolyte enables a thermogalvanic device to be 

integrated seamlessly onto a car’s exhaust pipe.  The highest reported maximum power 

output, a Pmax of 1.8 W m-2 corresponding to a power conversion efficiency relative to 

that of a Carnot engine operating between the same temperatures, ηr = η/(1 – Tc/Th) = 
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1.4%, was achieved by [5] with carbon-multiwalled nanotubes buckypaper electrodes in a 

Fe(CN)6
4-/Fe(CN)6

3- aqueous electrolyte.  In that case, if we assume that this Pmax can 

still be further improved, it is feasible to ultimately achieve energy production cost of 

about $1/Watt. 

Table 5.  Total Cost to Build Our Cu/Cu2+ Annular Thermogalvanic Waste Heat 
Recovery System. 

Material Needed (approx.) Est. $ 

Electrodes 

Inner Cu pipe 25 cm $ 14.27 

Outer Cu pipe 8 cm $ 15.00 

Electrolyte 

CuSO4∙5H2O salts 61.17 gram $  2.43 

H2SO4 solution 3.43 gram $  0.05 

Misc. 

CPVC bulkhead 55.64 cm2 $  4.07 

Silicone sealant  (negligible) 

TOTAL $ 35.81 

4.4 Summary 

We have discussed the feasibility of incorporating Cu/Cu2+ thermogalvanic 

system into automobiles, to recover waste heat energy from exhaust gases.  The power 

outputs are typically small, between a tenth and tens of mW m-2, but as pointed out by 

Ball [51], aside from the initial outlay on the cell, that energy is essentially free when it 

comes from an exhaust pipe of a car that would otherwise just be left to warm the air.  It 

was also found that the average cell temperature, Tavg = (Th + Tc)/2, had a more 

substantial effect on the power generation than the temperature difference did.  
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Furthermore, the fluid (liquid) nature of the electrolyte and potential to be manufactured 

inexpensively will lead to widespread applications.  These have also resulted in 

thermogalvanic cells becoming an intriguing alternative to solid-state thermoelectric 

devices. 
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5. SEEBECK COEFFICIENT ENHANCEMENTS BY NOVEL ELECTROLYTES 

Ideally, an electrolyte for a thermogalvanic cell should have high intrinsic 

Seebeck coefficient, in addition to high intrinsic Rth/Rint ratio.  However, identifying such 

an ideal system is not an easy task.  There are lots of options available out there; some of 

them can be bought off-the-shelf, but others can only be manufactured in particular labs. 

Based on our recent review article [4], between 1995 and 2013 four studies have 

reported results using molten salt and ionic liquids [6, 86-88], two have pursued and 

reported results for non-aqueous (organic) redox couple electrolytes [7, 15], and six have 

chosen to continue using aqueous redox couples [5, 8, 58, 39, 89].  These numbers have 

grown considerably since as shown in Figure 5 on p. 7. 

The Seebeck coefficient of a thermogalvanic cell is directly proportional to the 

change in entropy of the redox reaction in the cell through the relation α = ∂E/∂T = ΔS/nF 

(Eq. (4)).  In an ideal thermogalvanic cell, one therefore prefers to employ a redox couple 

exhibiting the largest ΔS, which leads to a correspondingly largest α.  Therefore, this 

study focuses on ways to couple the Cu/Cu2+ redox process to solution phase 

complexation to increase the entropy change (ΔS) for the electron transfer process.  The 

idea is to complex the Cu2+ species with a dissolved polymer, such as poly(acrylic acid) 

(PAA), that will be cross-linked by the metal dication (Figure 24). 
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The density of configurational states of the polymer, which is expressed as S 

(entropy), will be substantially decreased in the complexed state [90]: 

 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≪ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (45) 

Reduction of Cu2+ to Cu metal will release the complexed polymer, resulting in a 

dramatic increase in the configurational entropy of the polymer,  

 ∆𝑆𝑆[PAA+Cu, Cu2+] = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (46) 

Figure 24.  Illustration of the Complexation of the Cu2+ Species with Dissolved Polymer 
(e.g., PAA) that is Cross-Linked by Metal Dication.  The Density of Final 
Configurational States Sfinal (a) is much Lower than the Density of Initial Configurational 
States Sinitial (b), which Leads to an “Amplified” Entropy Change ΔS, and 
Correspondingly Larger α. Inset (c) Shows the Chemical Structure of PAA. 
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leading to an “amplified” entropy change for the redox process, 

 ∆𝑆𝑆[PAA+Cu, Cu2+] ≫ ∆𝑆𝑆[Cu, Cu2+(without PAA)] (47) 

 and a correspondingly larger Seebeck coefficient: 

 ∆𝑆𝑆[PAA+Cu, Cu2+]

𝑛𝑛𝑛𝑛
= 𝛼𝛼 ↑ (48) 

Previous studies have described solution conditions under which Cu2+ and PAA can 

coexist in solution [91], which will be a starting point for this part of our study.  We are 

not aware of any previous investigations of the use of such “amplified” entropy changes 

in thermogalvanic cells, so this work will represent a completely new approach to 

enhancing Seebeck coefficients. 

5.1 Experimental Testing 

We choose to focus on the Cu/Cu2+ cell because we already have considerable 

experience with the Cu/Cu2+ system [4, 41], which has a relatively simple 

electrochemical behavior and the ion can be chelated with chemical agents like 

Ethylenediaminetetraacetic acid (EDTA) [92] to explore the role of the entropy change in 

the generation of thermoelectric power. 

5.1.1 Experimental Setup 

The experimental setup (Figure 25) was inspired by [61] and [6].  The electrolyte 

was contained in two 10-ml glass beakers, with a stopper holding an electrode and a 

thermocouple in each beaker.  A 14-cm-long tubing (Tygon R-3603, Cole-Parmer, 

Vernon Hills, IL) filled with the same electrolyte connected the two beakers as a salt 

bridge.  A Keithley 6517B Electrometer/High Resistance Meter was used to measure the 
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cell potentials.  A thermoelectric cooler (TE Technology, Inc.CP-031) was attached at the 

bottom of the hot beaker with Arctic Silvers thermal paste (Arctic Silver, Inc., Visalia, 

CA) to enhance heat conductance.  The thermoelectric cooler was controlled by a 

programmable Newport 3040 temperature controller.  The cold side was maintained at 

room temperature by natural cooling. 

OMEGA hermetically sealed type-T thermocouples were connected to a 

Campbell Scientific CR23X Micrologger to monitor and record temperature differences.  

This temperature measurement system was calibrated, and its mean relative error was 

estimated to be around ± 1.0%, and with a maximum uncertainty of ± 1.3%. 

 

Figure 25.  (a) Photograph of the Cell Configuration for the Current Experiment.  (b) 
Schematic Diagram of the Overall System. 

5.1.2 Electrolyte and Electrode Preparation 

Copper sulfate (CuSO4) solution was prepared by dissolving 99% purity 

CuSO4.5H2O salt (PTI Process Chemicals, Ringwood, IL) into deionized water.  The 

polymer electrolyte (polyelectrolyte) was prepared by dissolving Polyacrylic acid sodium 
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salt (Sigma-Aldrich, average molecular weight (Mw) ~2,100) into the CuSO4 aqueous 

solution, and stirring the solution slowly.  After the stirring process, 0.1 M K2SO4 was 

added into the solution as a background electrolyte.  Ionic conductivity and pH of the 

polyelectrolyte were measured using a Hach CO150 Conductivity Meter and a Hach 

EC10 pH Meter, respectively.  Thirty-centimeter-long Cu electrodes were prepared by 

winding 22 American Wire Gauge bare copper wires (99.9%, Arcor Electronics, 

Northbrook, IL).  The Cu electrodes were rinsed with methanol and deionized water at 

the onset of each experiment, and were used immediately after air drying. 

 

Figure 26.  Plots of Temperature Difference ∆T and Corresponding Potential Difference 
Across the Cell ∆E vs. Time, for a Thermogalvanic Cell with Cu Electrodes in 1 mM 
CuSO4 + 100 mM PAA Aqueous Electrolyte.  The Solution Contained 0.1 M Potassium 
Sulfate and was at Its Natural pH of ~8.0. 

5.1.3 Experimental Procedure 

Figure 26 shows an example of one complete run.  After the electrolyte was added 

into the cell, the cell was left idle (usually for 30 min) to allow the cell’s open-circuit 
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potential (Eoc) to reach steady state.  Once the Eoc reading reached steady state, the hot 

electrode was heated up and the temperature difference (ΔT) between the hot and the cold 

electrode was maintained around 10 oC.  After the ΔT and Eoc readings became steady, 

i.e. when the readings varied between ± ~0.3 oC and ± ~2.5 mV over the average values, 

respectively, the hot electrode was heated up to the next ΔT of 20 oC.  This usually 

required another 55–65 min.  The same procedure was repeated for the following ΔTs of 

30 and 40 oC.  In addition, for reversibility check, the ΔT was consecutively brought 

down to 30, 20, 10, and back to 0 oC by following the same procedure, but with less time 

(~40 min) in between ΔT’s. 

5.2 Results and Discussion 

We use a low concentration of CuSO4 (i.e. 1 mM) to avoid precipitation issues 

with the polymer.  For a first approximation, we calculate the Seebeck coefficient (α) of 1 

mM CuSO4 aqueous solution using Eq. (6) [1]: 

 
𝛼𝛼 =

𝜕𝜕𝐸𝐸0

𝜕𝜕𝜕𝜕
+

𝑅𝑅
𝑛𝑛𝑛𝑛

ln(γCu2+𝐶𝐶Cu2+) 

= 0.879 +
𝑅𝑅

2𝐹𝐹
ln(1.674 × 0.001) = 0.604 mV K−1 

(49) 

where ∂E0/∂T = 0.879 mV K-1, again, is the Seebeck coefficient of a standard Cu/Cu2+ 

cell at 25 oC taken from [1], R the universal gas constant, n the number of electrons 

involved in the redox reaction, F the Faraday constant, 𝐶𝐶Cu2+ the molar concentration of 

the CuSO4 aqueous solution, and γCu2+ the activity coefficient for the cupric ion.  

deBethune et al. [1] only listed the values of γCu2+ for 𝐶𝐶Cu2+ between 0.08 and 1.4 M.  

Therefore, the γCu2+value for 1 mM CuSO4 above is quantified using a best-fit curve. 
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We consequently run an experiment in order to validate the approximate value of 

α = 0.604 mV K-1 from Eq. (49).  As noted by deBethune et al [1], the calculation agrees 

very well within ± 0.05 mV K-1 with the experimental value depicted in Figure 27 below.  

We therefore use this experimental value of α = 0.619 mV K-1 as a benchmark for the 

following discussion. 

 

Figure 27.  Seebeck Coefficient (α = Eoc/ΔT) of 1 mM CuSO4 Aqueous Electrolyte in a 
Thermogalvanic Cell with Cu Electrodes.  The Solution Contained 0.1 M Potassium 
Sulfate and was Adjusted to pH 5, from the Natural pH of ~5.7, Using 0.1 M Sulfuric 
Acid.  Error Bars Represent 95% Confidence Intervals.  Most of the Error Bars are not 
Visible because They are Smaller than the Corresponding Markers. 

5.2.1 Aqueous Polyelectrolytes 

Figure 26 has previously shown a typical Seebeck coefficient measurement for 

aqueous polyelectrolyte with Cu/Cu2+ redox process complexed with a polymer, i.e. 
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poly(acrylic acid) or PAA.  The temperature dependence of the electrode potential of this 

particular polyelectrolyte is unfortunately irreversible, as shown below in Figure 28. 

 

Figure 28.  Seebeck Coefficient (α = Eoc/ΔT) of 1 mM CuSO4 + 100 mM PAA Aqueous 
Electrolyte.  The Plot was Depicted from ΔE and ΔT vs. Time Data for the Same 
Electrolyte in Figure 26.  Error Bars Represent 95% Confidence Intervals.  Most of the 
Error Bars are not Visible because They are Smaller than the Corresponding Markers.  
Dotted Lines were Added to Guide the Eye. 

We have attempted to solve this irreversibility issue by shortening the total 

experiment time, in addition to varying the pH and the molar concentration ratio of 

PAA:CuSO4.  The concentration of CuSO4 is kept constant at all times at 1 mM to avoid 

the aforementioned precipitation issue.  Nevertheless, we observe the same behavior of 

the corresponding open-circuit voltage of the cell (see Figure 29).  The cell potential, or 

the open-circuit voltage Eoc, starts to deviate when the temperature difference ΔT reaches 

40 oC, as indicated by the grey rectangle in Figure 29a.  This phenomenon was also 
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observed in Figure 26, for different molar concentration ratio of PAA:CuSO4, pH, and 

longer total experiment time.  The Seebeck coefficients of these aqueous polyelectrolytes 

are therefore invalid.  It should be noted, however, that the Seebeck coefficients between 

the CuSO4 (Figure 27) and the CuSO4-PAA (Figure 28) are opposite in sign.  This 

change of sign will be discussed later in the following section. 

 

Figure 29.  (a) Shortening the Total Experiment Time for a Thermogalvanic Cell with Cu 
Electrodes in 1 mM CuSO4 + 10 mM PAA Aqueous Electrolyte.  The Solution Contained 
0.1 M Potassium Sulfate and was at Its Natural pH of ~6.8.  (b) Seebeck Coefficient Plot 
for the Same Electrolyte Depicted from (a).  Error Bars Represent 95% Confidence 
Intervals.  Most of the Error Bars are not Visible because They are Smaller than the 
Corresponding Markers.  Dotted Lines were Added to Guide the Eye. 

5.2.2 Mixed-Ligand Complexes Aqueous Electrolytes 

Since we found out that there was an irreversibility issue in the Seebeck 

coefficient measurement of Cu/Cu2+ redox process with PAA, we use a simpler chelating 

agent, i.e. Ethylenediaminetetraacetic acid (EDTA), instead to explore the role of the 

entropy change in the generation of thermoelectric power.  Using the same experimental 

setup, electrolyte and electrode preparation, as well as experimental procedure, we 
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observe no irreversibility issue of the temperature dependence of the electrode potential 

of the Cu-EDTA aqueous electrolyte in eight independent runs (Figure 30). 

 

 

Figure 30.  Temperature Difference (above) and Open-Circuit Potential (below) of Cu-
EDTA Experiments, Showing Reproducibility.  There is a Small, Systematic Issue with 
the Initial and Final Thermal Situation in the Cell, but It is Negligible. 
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It seems pretty clear that the new data are reproducible.  There is no deviation in 

the open-circuit voltage versus time plot that results for the aqueous polyelectrolyte cells, 

when temperature difference reached 40 oC (Figure 26 and Figure 29a).  There are small 

systematic issues with the initial and final thermal situation in the cell, however, they are 

trivial as the data are consequently compiled and depicted in Figure 31, then Figure 32 

below. 

 

Figure 31.  Plots of Average Open-Circuit Voltage Eoc vs. Temperature Difference ∆T of 
Eight Independent Runs from Figure 30, of a Thermogalvanic Cell with Cu Electrodes in 
10 mM EDTA + 1 mM CuSO4 Aqueous Electrolyte.  These Data are Summarized in a 
More Concise Figure 32, with More Details Regarding the Electrolyte in the Caption. 

Figure 32 provides more concrete evidence of irreversibility.  We find no 

evidence of irreversibility, which was found in the aqueous polyelectrolyte cells (Figure 

28 and Figure 29b).  In addition, this set of results shows that the averaged experimental 

run of Cu-EDTA aqueous electrolyte gives a Seebeck coefficient (|α| = 1.108 mV K-1) 
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that is much larger than the traditional 1 mM CuSO4 result of  0.619 mV K-1, an 80% 

increase. 

 

Figure 32.  Seebeck Coefficient of 10 mM EDTA + 1 mM CuSO4.  The Solution 
Contained 0.1 M Potassium Sulfate and was Adjusted to pH 6, from the Natural pH of 
~3.6, Using 0.1 M Sodium Hydroxide.  Error Bars Represent 95% Confidence Intervals.  
Some Error Bars are not Visible because They are Smaller than the Corresponding 
Markers.  Dotted Lines were Added to Guide the Eye. 

Furthermore, we are motivated by unusually large entropic contributions from 

2CuEDTA-(CH2)2(NH2)2 and 2CuEDTA-(CH2)6(NH2)2 dimers compared to the 

monomeric case [92, 93].  These papers suggested that, for example, adding half of mole 

fraction of 1,6-diaminohexane, i.e. (CH2)6(NH2)2, into the Cu-EDTA experiments will 

result in a dimeric species of EDTACu-H2N(CH2)6NH2-CuEDTA, where the two ends 

of diamine (i.e. NH2) bridge between the Cu centers.  Consequently, the formation of the 

dimeric species of 2CuEDTA-(CH2)6(NH2)2 results in a large negative entropy change 
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(∆S) of -145.2 J mol-1 K-1, while the ∆S for the formation of the dimeric species of 

2CuEDTA-(CH2)2(NH2)2  is -75.1 J mol-1 K-1; a smaller but still a negative entropy. 

Therefore, we do eight independent runs for each 2CuEDTA-(CH2)6(NH2)2 and 

2CuEDTA-(CH2)2(NH2)2 aqueous electrolyte to check the irreversibility of the Seebeck 

coefficient measurements.  The results are shown in Figure 33 and Figure 34. 

 

Figure 33.  Seebeck Coefficient of 0.5 mM (NH2)2(CH2)6 + 10 mM EDTA + 1 mM 
CuSO4.  The Solution Contained 0.1 M Potassium Sulfate and was Adjusted to pH 6, 
from the Natural pH of ~4, Using 0.1 M Sodium Hydroxide.  Error Bars Represent 95% 
Confidence Intervals.  Some Error Bars are not Visible because They are Smaller than the 
Corresponding Markers.  Dotted Lines were Added to Guide the Eye. 

As expected, there is no sign of irreversibility found in both the Seebeck 

measurements of 2CuEDTA-(CH2)6(NH2)2 and 2CuEDTA-(CH2)2(NH2)2 aqueous 

electrolytes.  Figure 33 shows that simply adding a half mole fraction of 1,6-

diaminohexane into a Cu-EDTA aqueous electrolyte further increases the Seebeck 
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coefficient of traditional 1 mM CuSO4 aqueous electrolyte up to |α| = 1.303 mV K-1, 

which is more than double the traditional value of 0.619 mV K-1. 

 

Figure 34.  Seebeck Coefficient of 0.5 mM (NH2)2(CH2)2 + 10 mM EDTA + 1 mM 
CuSO4.  The Solution Contained 0.1 M Potassium Sulfate and was Adjusted to pH 6, 
from the Natural pH of ~4, Using 0.1 M Sodium Hydroxide.  Error Bars Represent 95% 
Confidence Intervals.  Some Error Bars are not Visible because They are Smaller than the 
Corresponding Markers.  Dotted Lines were Added to Guide the Eye. 

Moreover, adding the same half mole fraction of 1,2-diaminoethane, i.e. 

(CH2)2(NH2)2, into a Cu-EDTA aqueous electrolyte amplifies the Seebeck coefficient to 

an even higher value of |α| = 1.635 mV K-1.  This value is higher than the benchmark 

value of 1.4 – 1.5 mV K-1, which is the Seebeck coefficient of ferro/ferricyanide 

(Fe(CN)6
4-/Fe(CN)6

3-) aqueous electrolyte [2, 8, 9, 94]. 

These Seebeck coefficient values together with their corresponding change of 

entropy are tabulated in Table 6 for comparison. 
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Table 6.  Summary of Standard Change of Entropy at 25oC (ΔSo) and Seebeck 
Coefficient (α) for Cu2+ (only), Cu-EDTA, Its Complexes, and Ferro/Ferricyanide 
Thermogalvanic Cell Systems. 

Electrolyte ΔSo 
(J mol-1 K-1) 

α 
(mv K-1) 

Cu + 4H2O ↔ 4Cu(H2O)2+ + 2e- +130.4a +0.62 

Cu + EDTA2- ↔ CuEDTA2- + 2e- -326.2b -1.16 

2CuEDTA2- + (NH2)2(CH2)6 ↔ (CuEDTA)2(NH2)2(CH2)6
4- -145.2c -1.30 

2CuEDTA2- + (NH2)2(CH2)2 ↔ (CuEDTA)2(NH2)2(CH2)2
4- -75.1c -1.63 

Fe(CN)64- ↔ Fe(CN)63- + e- - +1.4d – 1.5e 
a ΔSo = So(Cu) – So (Cu2+); So values are taken from [95] 
b unpublished computational results 
c Table 4 of Bazanova et al. [93] 
d taken from Hu et al. [5] 
e taken from Salazar et al. [9] 

5.3 Summary 

Measurement of Seebeck coefficients in simple electrochemical systems with 

mixed-ligand complex formations of Cu/Cu+2 electrolyte suggests that these electrolytes 

improve the thermoelectric power (or Seebeck coefficient) of the Cu/Cu2+ system up to 

160% (Figure 35).  This is an important step in understanding the much more complex 

behavior of polyelectrolytes, which show reproducibility issues whose origin needs 

further investigation.  I have also found that the Seebeck coefficient between the CuSO4 

and the CuSO4-EDTA, CuSO4-EDTA-1,6-diaminohexane, or CuSO4-EDTA-1,2-

diaminoethane are opposite in sign.  This will allow construction of thermodynamically 

more efficient thermogalvanic devices, such as a thermally regenerative electrochemical 

cycle (TREC), which utilizes two copper-based half-cells that have opposite signs of 

Seebeck coefficients, in which electrodes discharged at a low temperature can be 

recharged at a higher temperature [96-98].  The 160% enhancement of Seebeck 
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coefficient of Cu/Cu2+ electrolyte will also benefit another similar thermally regenerative 

ammonia-based battery (TRAB), which is also copper based [99, 100]. 

 

Figure 35.  Seebeck Coefficient Comparison between Aqueous CuSO4 Electrolyte and Its 
Mixed-Ligand Complexes with EDTA, EDTA+1,6-Diaminohexane, and EDTA+1,2-
Diaminoethane in Thermogalvanic Cells Using Cu Electrodes and 0.1 M Potassium 
Sulfate as Background Electrolyte. 
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6. CONCLUSIONS 

As an alternative to electrolyte and electrode materials development, I have 

shown that natural convection can be controlled and has a significant effect on increasing 

the power generation of Cu/Cu2+ thermogalvanic cells.  I concluded that natural 

convection, which could be induced by orienting the cell either horizontally or vertically, 

and heating the bottom electrode at the same time, is a plausible aid to improve power 

generation of thermogalvanic cells.  I observed the same magnitude (~2-fold) of the 

positive amplifying effect of natural convection on the power generation of Cu/Cu2+ cell 

as has been reported for the Fe(CN)6
4-/Fe(CN)6

3- cells in the literature (Figure 36). 

 

Figure 36.  Graphical Summary of Chapter 3: Power Output Enhancement by Natural 
Convection. 

Moreover, I developed a simple analytical model that predicts the ratio between the Pmax 

of a thermogalvanic generator with and without convection in terms of Sherwood, 

Nusselt, and Lewis numbers.  The predictions are in reasonable agreement with our 

experimental data; they show that convection is primarily responsible for the 
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enhancement in Pmax of thermogalvanic generators.  Comparison with the conventional 

Fe(CN)6
4-/Fe(CN)6

3- cells revealed a completely different dependence of the electrode 

spacing on the power generation of Cu/Cu2+ thermogalvanic cells, namely that the 

maximum power output (Pmax) of Cu/Cu2+ cell increases, instead of decreasing, with the 

electrode spacing because of the one-way ionic transfer mechanism that fully utilizes the 

natural convection flow within the cell.  This dependence of electrode spacing on 

thermogalvanic power generation suggests that the power generation of Cu/Cu2+ cells 

may not be limited by the cell geometry, which restricts that of the more conventional 

Fe(CN)6
4-/Fe(CN)6

3- cells.  Based on literature review (section 3.1), I confirmed the 

expectation that the enhancement in mass (ionic) transport, caused by the natural 

convection, dominates the enhancement in heat transfer.  This has also been proven in the 

analytical model, which shows that higher Lewis number (Le = a /DAB) will ultimately 

lead to higher power generation; a is thermal diffusivity and DAB mass diffusivity.  

Throughout my experiments, I also found that the optimum CuSO4 concentration, for the 

Cu/Cu2+ thermogalvanic cells, is 0.7 M, with 0.1 M H2SO4 as the background electrolyte.  

The average cell temperature also has a significant effect on Pmax.  Higher Tavg of 55 oC 

resulted in higher Pmax of 3.12 μW cm-2, while lower Tavg of 35 oC resulted in lower Pmax 

of 1.09 μW cm-2, which is consistent with Kang et al.’s [8] observation for 

Fe(CN)6
4-/Fe(CN)6

3- cells.  The achieved Pmax still has room to improve by designing a 

system which uses an electrolyte with higher Lewis number and a generator with 

Sherwood and Nusselt numbers as high as possible, a prediction from the simple 

analytical method that I developed.  Moreover, the Pmax in this system can potentially be 

improved by increasing the mean electrolyte temperature (Tavg), either by adopting a 
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pressurized container and/or alternatively adding propylene glycol to the electrolyte.  

Although it may increase the complexity of the system, increasing the Tavg will increase 

its thermal efficiency.  These results improve our understanding of the energy transfer 

mechanisms underlying thermogalvanic energy conversion and provide alternative 

approaches for future researchers and engineers to further optimize this technology. 

 

Figure 37.  Graphical Summary of Chapter 4: Waste Heat Recovery Application in 
Automobiles. 

In addition, Chapter 4 (Figure 37), which details the feasibility of incorporating a 

thermogalvanic system into automobiles that would convert waste thermal energy from 

vehicles’ exhaust pipes into electricity, has demonstrated that the liquid nature of the 
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electrolyte enables a thermogalvanic device to conform to the shape of automotive 

exhaust pipes much more readily than a solid-state thermoelectric device.  Expensive, 

cleanroom-based manufacturing processes are not required for constructing the cell, 

which means that their production costs are likely to be substantially lower than for high-

performance solid-state thermoelectrics.  The power outputs are typically small, between 

a tenth and tens of mW m-2, but as pointed out by Ball [51], aside from the initial outlay 

on the cell, that energy is essentially free when it comes from an exhaust pipe of a car 

that would otherwise just be left to warm the air.  The achieved power density indeed still 

has room to improve.  Moreover, more waste thermal energy from the car’s radiator can 

be harvested by designing and developing a flowing cell.  Although it may increase the 

complexity of the system, it will also potentially increase the total thermal efficiency of 

the system. 

Finally, this research has identified simple electrochemical systems with mixed-

ligand complex formations of Cu/Cu+2 electrolyte, which improve the thermoelectric 

power (or Seebeck coefficient) of the Cu/Cu2+ system up to 160% (Figure 38).  This 

finding has shined some light on the influence of the entropy on the thermoelectric power 

using simple chelating agents like Ethylenediaminetetraacetic acid (EDTA). 
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Figure 38.  Graphical Summary of Chapter 5: Seebeck Coefficient Enhancements by 
Novel Electrolytes. 

This is an important step in understanding the much more complex behavior of 

polyelectrolytes, which show reproducibility issues whose origin needs further 

investigation.  It has a huge potential to open a new field of energy conversion 

application of polymer science.  It should also be noted that it will be the sustainable and 

renewable energy application field, because, first, I have envisioned that the first 

applications of thermogalvanic generators will be for waste heat cogeneration, e.g., from 

vehicle exhaust pipes.  It is also be renewable, because this concept could be applied to 

other reversible redox couple and electrode pairs, such as the ferro/ferricyanide redox 

couple with carbon-nanotubes electrodes.  I have shown that the Seebeck coefficient 

between CuSO4 and the CuSO4-EDTA, CuSO4-EDTA-1,6-diaminohexane, or CuSO4-
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EDTA-1,2-diaminoethane are opposite in sign.  This will allow construction of 

thermodynamically more efficient thermogalvanic devices, such as MIT-Stanford’s 

thermally regenerative electrochemical cycle (TREC), which utilizes two copper-based 

half-cells that have opposite signs of Seebeck coefficients, in which electrodes discharged 

at a low temperature can be recharged at a higher temperature [96-98].  The 160% 

enhancement of Seebeck coefficient of Cu/Cu2+ electrolyte will also benefit another 

similar thermally regenerative ammonia-based battery (TRAB), that is also copper based, 

which was recently proposed by Penn State University [99, 100].  On a bigger picture, 

this finding has paved a way for the development of ‘materials by design’ approach to 

thermogalvanic materials that would enable researchers to predict from theory the 

expected thermoelectric power, meaning that theory could be used to screen large 

numbers of compounds without ever having to walk into the lab. 

  



 

98 

7. FUTURE WORK 

The experimental and analytical work presented here has shown some of the 

potential improvements afforded by using thermogalvanic cells for waste heat recovery 

systems.  A variety of questions and further improvements still remain which should be 

addressed in future work to bring this concept to real-world applications: 

1. Nanostructured Carbon Membrane: Recent reports [101-104] observed that 

liquid (water) transport through multistep-process-fabricated membranes, in 

which vertically aligned multi-walled carbon nanotubes (MWCNTs) were 

grown across a thin permeable polymer film, is orders of magnitude larger 

than in any other known materials with nanometer-scale pores.  On the other 

hand, however, the thermal conductivity k of a packed bed of randomly 

oriented three-dimensional random networks of single and multi-walled CNTs 

has been reported to be smaller than that of thermally insulating amorphous 

polymers [105, 106].  Consequently, how can nanostructured membranes be 

used to limit the thermal transport while enhancing the mass (ionic) transport? 

2. Nanofluids-enhanced thermogalvanic cell: Will mixing specific nanoparticles 

into the electrolyte (nanofluids) enhance the performance of a thermogalvanic 

system [16], e.g., sub-freezing thermogalvanic cell using graphene-based 

nanofluid [107]? 

3. Thermally Regenerative Electrochemical Cycle (TREC) and Thermally 

Regenerative Ammonia-based Battery (TRAB): Both TREC and TRAB that 

were recently discussed in the literature [96-100] are utilizing copper-based 

aqueous electrolytes.  For a TREC device operating between 283 K and 333 K 
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[96], the theoretical efficiency is Carnot efficiency, i.e. 15%.  However this 

rejuvenated technology is limited by certain physical parameters, such as the 

heat capacity of materials, the internal resistance of the cell, and the 

effectiveness of thermal management [96-98].  To date, the highest 

demonstrated thermal efficiency (ηth) of TREC has been 3.7% [96].  While the 

highest demonstrated ηth of a non-optimized TRAB is lower (i.e. 0.86%) for a 

device operating between 298 K and 323 K [99], it produces higher maximum 

power density [100] and shows greater scalability potential than the TRECs.   

4. Thermally Chargeable Supercapacitor (TCS) or Thermal Chargeable 

Capacitor (TCC): This thermal-to-electrical energy conversion system has 

also been recently discussed in the literature [108-110].  It works based on the 

temperature dependence of surface ion density in the vicinity of the electrode 

(i.e. capacitive effect), which relatively distinguish it from thermogalvanic 

cells. 

5. Novel application: Since this work only showed a prototype of automotive 

thermogalvanic waste heat recovery system, which produced electrical power 

between 0.1 – 10 mW m-2, other applications such as body-heat powered 

wearable electronics will be more suitable for this magnitude of converted 

electrical power. 
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