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ABSTRACT 

Traumatic brain injury (TBI) is a significant public health concern in the U.S., 

where approximately 1.7 million Americans sustain a TBI annually, an estimated 52,000 

of which lead to death. Almost half (43%) of all TBI patients report experiencing long-

term cognitive and/or motor dysfunction. These long-term deficits are largely due to the 

expansive biochemical injury that underlies the mechanical injury traditionally 

associated with TBI. Despite this, there are currently no clinically available therapies that 

directly address these underlying pathologies. Preclinical studies have looked at stem cell 

transplantation as a means to mitigate the effects of the biochemical injury with 

moderate success; however, transplants suffer very low retention and engraftment rates 

(2-4%). Therefore, transplants need better tools to dynamically respond to the injury 

microenvironment.  

 One approach to develop new tools for stem cell transplants may be to look 

towards the endogenous repair response for inspiration. Specifically, activated cell types 

surrounding the injury secrete the chemokine stromal cell-derived factor-1α (SDF-1α), 

which has been shown to play a critical role in recruiting endogenous neural 

progenitor/stem cells (NPSCs) to the site of injury. Therefore, it was hypothesized that 

improving NPSC response to SDF-1α may be a viable mechanism for improving NPSC 

transplant retention and migration into the surrounding host tissue. To this end, work 

presented here has 1. identified critical extracellular signals that mediate the NPSC 

response to SDF-1α, 2. incorporated these findings into the development of a 

transplantation platform that increases NPSC responsiveness to SDF-1α and 3. observed 

increased NPSC responsiveness to local exogenous SDF-1α signaling following 

transplantation within our novel system. Future work will include studies investigating 

NSPC response to endogenous, injury-induced SDF-1α and the application of this work 
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to understanding differences between stem cell sources and their implications in cell 

therapies.  
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PREFACE 

 

The work represented in this dissertation document has been previously 

published in the form of a review article (Chapter 1, Biomarker Insights, 2015[1]) 

and two original research articles (Chapters 2, 3, Biomaterials, 2014 & 2015[2,3]). 

These published works have been expanded upon and adapted for use in this 

dissertation document.  
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CHAPTER 1 

INTRODUCTION 

1.1. Epidemiology of Traumatic Brain Injury (TBI) 

Within the U.S., approximately 5.3 million individuals are affected by traumatic 

brain injury (TBI) annually, 53,000 of which result in patient death[4-6] . Of the TBI 

patients who survive, 43% report having sustained disabilities one year after injury [7]. 

The incidence of TBI has been on the rise in recent years with wars in Iraq and 

Afghanistan significantly contributing to increased numbers of TBI [4,8]. In total, TBI 

accounts for an estimated $76.5 billion strain on U.S. healthcare and economy each year 

with lifetime cost estimated for TBI exceeding $400 billion[9]. Given the societal and 

financial expense of TBI coupled with its increase in incidence, TBI represents a 

substantial public heath concern that has garnered public attention in recent years.  

1.2. Pathophysiology of Traumatic Brain Injury  

1.2.1. Types of TBI  

While each incident of TBI has its unique parameters, most are either focal or 

diffuse in nature. Focal injuries are characterized by substantial force loading in a small 

area and typically involve skull fracture although fracture does not necessarily translate 

to dural compromise[10]. Injuries that incorporate dural compromise are termed open 

head injuries and these are often accompanied by object penetration within the neural 

tissue[10]. Diffuse injuries are sustained by force loading over a larger area and often 

involve a combination of rotational, translational or shearing forces[10,11]. Diffuse injury 

can be either direct or indirect in nature, meaning that injuries can be sustained after 

head contact with an object (direct) or brain contact with the skull plate without the 

presence of a secondary object (indirect)[8,10]. While diffuse injuries typically stand 
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alone, focal injuries can often incorporate diffuse-type injuries in regions surrounding 

the focal injury lesion further complicating the injury parameters. 

1.2.2. Injury Progression 

  Injury parameters (i.e. focal, diffuse, severity) dictate the injury progression and 

as such there is variability among injuries; however the pathological progression of all 

injuries typically encompasses both a primary injury associated with the initial 

mechanical insult and a secondary injury, which is a result of the primary injury and 

propagates at cellular and subcellular levels (Figure 1.1).  

The primary injury, namely in focal injuries, is characterized by immediate 

contusion, laceration and intracranial hemorrhaging at the tissue level. At the cellular 

level, there is immediate neuronal death (by necrosis) and axonal dysfunction within the 

lesion area. Immediate widespread necrosis is also observed in diffuse injuries as well as 

brain swelling and diffuse axonal injury (DAI), in which shear forces disrupt and 

eventually disintegrate axons.[8,12] 

The hemorrhaging and swelling induced during the primary injury contribute to 

increases in intracranial pressure, which limits cerebral blood flow to the affected areas. 

Cerebral blood flow is also affected by the disregulation of vasoconstriction and 

vasodilation and, in many cases, widespread vasospasms[13,14].  Taken together, these 

sequelae lead to an ischemic injury microenvironment. While ischemia has negative 

effects on all neural cell types, neurons are particularly sensitive to ischemia to the extent 

that ischemia has been identified as a strong prognostic indicator after injury [8,13]. 

 Alongside the ischemic injury there is a significant cellular influx of Ca2+, Na+ and 

K+ ions, which leads to metabolic and ion pump dysfunction [13,15]. While other  
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pathologies also contribute to astrocyte activation, Ca2+ influx is thought to be primarily 

responsible for reactive astrocytes[16]. Under normal physiological conditions, 

astrocytes serve to maintain healthy extracellular concentrations of excitatory 

neurotransmitters and reactive oxygen species (ROS) that may negatively affect the 

surrounding neurons if allowed to accumulate in the extracellular space[17,18]. However 

upon activation, astrocyte efficiency in depleting extracellular glutamate and ROS is 

significantly reduced and accumulation of these molecules leads to neuron excitotoxicity 

and peroxidation of cellular structures, respectively[13,15,17,18]. 

 Increased extracellular ROS is, by itself, quite destructive to cell structure and 

DNA, however it also serves to propagate the inflammatory response, further 

exacerbating the secondary insult[19]. Inflammation following TBI is mediated by both 

the activated resident microglial cells as well as leukocytes and macrophages that 

infiltrate from the breakdown of the blood brain barrier[20-22].  

All of these underlying pathologies ultimately result in the formation of the glial 

scar: a dense, fibrous scar tissue laid down by reactive astrocytes that creates a blockade 

to neural growth and development [23,24]. The glial scar is formed between 7 and 14 

days after the injury is sustained, after which time the potential for therapeutic 

intervention is greatly decreased. Therefore, the “golden window” for cell therapy is 

considered to be the time between the initial wave of necrosis and the formation of the 

glial scar (ranging between 2-7 days after injury)[25]. 

During this time, the injury microenvironment is complex and dynamic and there 

are many active cell types that influence injury progression. Of particular interest to the  
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work presented here are neural progenitor/stem cells for their role in mediating 

endogenous repair after injury. 

1.3. Endogenous Repair Response to Neural Injury and its Mediating Factors  

The capacity for endogenous repair within the adult central nervous system has 

only recently been realized through discoveries of neurogenesis concentrated within 

regions identified as neural niches – the subgranular zone (SGZ), which lines the dentate 

gyrus within the hippocampus, and the subventricular zone (SVZ), which lines the lateral 

ventricle[26-30]. While alteration in both the SGZ and SVZ progenitor populations have 

been reported after TBI, our focus is largely on the SVZ neural niche as its resident 

neural progenitor/stem cells (NPSCs) have been observed to migrate longer distances 

and are therefore more likely to be recruited to the injury penumbra after TBI[31].  

1.3.1. The Subventricular Zone (SVZ) 

The SVZ is closely approximated with vasculature[32-34] where a single cell (type 

B cells) spans its width, extending processes to contact vasculature on one side and the 

lateral ventricle on the other[34,35].  Type B cells thus have access to both ventricular 

and vascular signaling, which is critical to niche maintenance[30,35]. Neural stem cell 

phenotype is thought to be more effectively maintained in close proximity to endothelial 

cells and proliferation within the SVZ arises within 10-15 microns away from blood 

vessels[33,36]. Proliferation within the SVZ is typically observed in type C cells, the 

highly proliferative transit-amplifying cells that arise from type B cells and in turn will 

give rise to type A cells[37,38]. Type A cells are GFAP+ neuroblasts or neural 

progenitor/stem cells (NPSCs) that exit the niche by migrating along the nearby 

vasculature. Under normal physiological conditions migration occurs along the rostral  

 



 

5 

migratory stream to the olfactory bulb where they become interneurons[39]. However, 

following injury the fate of cells derived from the SVZ is altered.  

1.3.2. NPSC Response to Neural Injury 

1.3.2.1. Injury-Induced Changes Within the Niche  

Evidence suggests that the cells of the SVZ undergo proliferative and phenotypic changes 

following a neural injury as the SVZ niche has been shown to increase in size, total 

number of cells, and number of proliferative cells[40-43]. It is thought that the type C 

cells are largely responsible for increased proliferation within the niche after 

injury[42,44]. However, Thomsen et al. have recently proposed a non-proliferative 

mechanism by which the SVZ increases in size and total cell number in which injury-

induced phenotypic subsets of SVZ cells dedifferentiate[42]. While findings of increased 

cell number and SVZ thickness after injury have been robust across the field, these 

injury-induced changes within the niche are complex and there is still much about niche 

dynamics after injury that has yet to be understood.  

1.3.2.2. NPSC Recruitment to Site of Injury  

Neural injury not only affects NPSCs within the niche but also those leaving the niche. 

Following injury, NPSCs stray from their normal physiological migratory route and 

home to the site of injury in a vasophilic manner[40,43,45-48]. While the signals driving 

this behavioral change are still being investigated, it is thought to be driven by 

chemokines and inflammatory factors secreted by activated cell types in the injury 

microenvironment.  
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1.3.3. Injury-induced Factors that Mediate the Endogenous Repair Response  

The active cell types of neural injury create a complex microenvironment through 

the secretion of a myriad of signaling factors that can facilitate and/or mitigate the injury 

progression (Figure 1). These factors range from pro-inflammatory to neurotrophic in 

nature, and it is important to note that there is much interplay between signaling 

molecules that further complicates their respective roles within the injury sequelae. The 

cell source and temporal and spatial expression patterns (Figures 2 and 3) help to inform 

the nature of each signaling molecules’ roles, specifically in mediating the behavior of 

endogenous neural progenitor/stem cells (NPSCs) after injury (see Table 1 for 

breakdown of specific molecules and their effect on NPSCs). For the purpose of this 

review, several extracellular factors and cytokines that have been found to affect NPSCs 

were selected for discussion; however, numerous factors not discussed here, including 

critical transcription factors, can directly or indirectly affect NPSC behavior and it is 

important to acknowledge their effect on endogenous behaviors as well. For a more 

thorough review of signaling factors not described here, interested readers are 

encouraged to refer to recommended reviews[49-51]. 

1.3.3.1. Stromal Cell-Derived Factor 1α (SDF-1α)  

Increased expression of the chemokine SDF-1α has been observed within the 

injury penumbra within 24 hours after neural injury and persists out to 3 days before 

decreasing[52,53]. Both in vitro and in vivo data indicate that local increases in SDF-1α 

after neural injury are generated by reactive astrocytes within the surrounding tissue[54-

56]. Unpublished data from our lab also indicate that SDF-1α protein levels peak within 

the injury penumbra following the controlled cortical impact (CCI) model for TBI at 1 

and 3 days with a decrease at 7 days and a return to baseline at 14 days.  



 

7 

There is compelling evidence that the chemokine SDF-1α plays a critical role in 

recruiting endogenous NPSCs to the site of injury in that the local SDF-1α source within 

the injury microenvironment is thought to be chemottractive to NPSCs leaving the 

niche[53,55]. NPSC chemotactic response to SDF-1α has been well characterized in 

vitro[2,57,58] and has been shown to work synergistically with vascular basement 

membrane protein laminin to increase NPSC migration[2], implicating its relevance to 

vasophilic mechanisms of endogenous NPSC recruitment after injury. Moreover, 

blocking activity of the SDF-1α receptor CXCR4 attenuated the migration of NPSCs to 

the injury environment following stroke[59].  

SDF-1α may also play a role in increased NPSC proliferation observed within the 

SVZ niche after injury as in vitro studies have shown that SDF-1α promotes NPSC 

proliferation[2,58]. However, this relationship has yet to be fully elucidated within the 

context of TBI.   

1.3.3.2. Vascular Endothelial Growth Factor (VEGF)  

Increased expression of VEGF has been observed in several models of TBI.  Much 

like SDF-1α, VEGF secretion is associated with reactive astrocytes and endothelial cells 

within the injury penumbra; however, infiltrating inflammatory cell types also contribute 

significantly to early elevated VEGF levels[60-64]. Neutrophil-derived VEGF is elevated 

within 4 hours after injury and persists out to 2 days[60,61]. At approximately 1 day after 

injury, endothelial cells begin contributing significantly to elevated VEGF levels within 

the injury penumbra and their contribution persists out to 5 days after injury[60]. 

Between 3-7 days after injury, reactive astrocytes appear to secrete VEGF within the 

penumbra[60,62-64] coinciding with macrophage VEGF secretion, which peaks from 4-

6 days after injury[60,62]. 
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VEGF may be chemottractive to NPSCs after injury through both direct and 

indirect mechanisms. In vitro, VEGF has been shown to increase NPSC migration after 

direct stimulation[65] and to promote NPSC migration indirectly through endothelial 

cells and/or other growth factors[66,67]. The concept of indirect VEGF NPSC 

stimulation further underlines the importance of the niche’s close proximity to 

vasculature.  Moreover, VEGF-overexpression in transgenic mice has shown to increase 

NPSC recruitment to ischemic areas after stroke[68].  

 Much like SDF-1α, VEGF may also contribute to NPSC proliferation within the 

SVZ after injury. In vitro, both direct and indirect evidence of VEGF-mediated NPSC 

proliferation have been observed [69,70], and Wang et al. found SVZ proliferation after 

stroke to increase in VEGF-overexpressing transgenic mice[68]. VEGF may not only 

promote proliferation, but may also reduce apoptosis in NPSCs, thus contributing to 

increased SVZ size and survival after neural injury as reduced NPSC apoptosis following 

stroke within neurogenic regions (i.e. SVZ, dentate gyrus, rostral migratory stream, 

olfactory bulb) was observed by Schänzer et al. after VEGF intraventricular 

perfusions[70]. 

1.3.3.3. Epidermal Growth Factor (EGF)  

Increases in EGF after neural injury are relatively short-lived, peaking within the 

first 24 hrs in the injury penumbra, CA3 and dentate gyrus regions and returning to 

baseline levels by 3 days [52,71]. A more sustained EGF increase is observed in the 

hippocampus (CA1 region), increasing from 24 hrs to 3 days and returning to basal levels 

by 7 days[71]. Early increases in EGF have been attributed to neuronal upregulation, 

while the sustained response in the CA1 past 24 hrs has been attributed to glial cells[71].  
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It is important to point out that given the proliferative response to injury within 

the SVZ and the known mitogenic effects of EGF on NPSCs[72,73], one might anticipate 

increases in EGF expression to spatially coincide with this proliferative zone. However, it 

has been proposed that rather than an increased level of EGF, TBI induces increased 

sensitivity of endogenous cell types to EGF signaling by upregulating its receptor, 

EGFR[44,74]. These data paint a complex picture when taken together with those of 

Thomsen et al. that describe a new lineage of EGFR+ neural stem cells that appear to 

arise from de-differentiating neuroblasts after TBI[59]. Regardless of the mechanism by 

which NPSCs respond to EGF after injury, studies in EGF knock-out mice have 

illustrated that EGF plays a critical role in promoting proliferation within the SVZ and in 

mitigating apoptosis within the SVZ and injury penumbra[75].  

1.3.3.4. Fibroblast Growth Factor (FGF)  

Increases in FGF have been shown to occur as early as 4 hrs after injury and 

persist for 14 days following TBI in several models; however, increased FGF expression 

remains spatially restricted to the injury region [76-80]. Early upregulation of FGF is 

due to macrophages and microglia (4 hrs – 3 days), while late FGF upregulation 

originates from reactive astrocytes (7 days – 14 days), alluding to its potential to play 

multiple critical roles during the endogenous repair response [77,80]. 

  Much like EGF, FGF is a well characterized mitogen in vitro where EGF and FGF 

are often used in combination to maintain NPSCs in culture[73,81]. Increased FGF 

following ischemic insult has been observed to increase hippocampal NPSC proliferation 

in vitro and this effect was attenuated in FGF knock-out mice in vivo[82]. Moreover, 

NPSC proliferation following injury was reduced to basal levels upon inhibition of FGF 

indicating that even in the presence of other injury-relevant signaling molecules, FGF 
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appears to play a critical role in regulating injury-induced NPSC proliferation[83]. In the 

same study, injury conditioned media increased NPSC neuronal differentiation; 

however, FGF inhibition was not observed to significantly reduce neuronal 

differentiation[83] suggesting that there are other factors that contribute to neuronal 

differentiation following injury. Nonetheless, FGF is not completely inactive in 

mediating neuronal differentiation as studies have demonstrated its role in 

neurogenesis[13,28]. 

1.3.3.5. Brain-Derived Neurotrophic Factor (BDNF)  

While there is evidence in ischemic injury models of BDNF upregulation within 

the injury penumbra, increased BDNF within the injury region have not yet been 

observed in TBI models [52,84,85]. Following stroke, BDNF in the hypoxic core 

increased by 2 hrs and remained elevated out to 3 days[84,86].  However, following a 

fluid percussion model of TBI, BDNF showed no significant increase within acute 

timepoints after injury [85]. The most robust increases in BDNF after TBI have instead 

been observed in the dentate gyrus and the CA3 regions of the hippocampus[22,87,88].  

Hicks et al. observed an ipsilateral increase in BDNF within the hippocampus 3-6 hrs 

following mild fluid percussion injury model (FPI) and found this trend to extend 

bilaterally after severe FPI in which BDNF increased at 1 hr and was sustained out to 72 

hrs[87]. While studies have been in agreement regarding hippocampal BDNF 

expression, increases within the injury penumbra appear to be largely dependent on the 

injury model where more severe models are more likely to elicit a cortical BDNF 

response[85,89]. Regardless of location, BDNF appears to originate from granule cells 

and activated microglia[85,88,89].  
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BDNF plays a critical role in mediating both the differentiation and survival of 

new neurons. Several studies in vitro have demonstrated that BDNF both suppresses the 

proliferation of undifferentiated NPSCs and promotes the neuronal differentiation of 

NPSCs[90-93]. Moreover, BDNF has been shown to promote the survival of new 

neurons[94-96], a critical characteristic in the context of TBI in which endogenous 

NPSCs face a complex injury microenvironment upon recruitment to the lesion. Gao et 

al. convincingly elucidated this critical role for BDNF after TBI using BDNF conditional 

knockout mice in which the death of new neurons within the dentate gyrus was 

significantly increased compared to wild type mice after injury[95].  

1.4. Stem Cell Transplantation after TBI 

One approach many have taken to enhance the endogenous repair response after 

injury is the introduction of exogenous stem cells. There are still many questions 

surrounding the mechanisms by which stem cell transplants may function to mitigate the 

secondary injury of TBI as well as the fate of these cells (i.e. viability, phenotypic fate) 

after transplantation. In part, these questions arise from the modulation of many 

different transplant parameters and metrics of success in the literature. One of the 

parameters often modulated is stem cell type as both NPSCs and mesenchymal stem cells 

(MSCs) have been observed to differentiate into cells of a neural lineage under the 

appropriate conditions[25,97-101]. For this reason, there have been numerous studies 

investigating the efficacy of NPSC and/or MSC transplantation following neural injury 

and several approaches to transplanting both NPSCs and MSCs will be discussed for the 

purpose of this review. 
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1.4.1. Bolus Stem Cell Transplantation  

Several critical parameters have been observed to influence the survival, 

phenotype and functional benefits of bolus stem cell transplantation following TBI 

including cell type, injury model and severity, and transplant timing and location, among 

others. Studies in MSCs have indicated that they are capable of expressing neuronal 

lineage markers after transplantation into animals that have sustained a 

TBI[97,100,101]and that MSC transplantation may facilitate motor function recovery out 

to 1 month after injury[97,100]. However, concerns have arisen regarding the safety of 

transplanting MSCs into the brain as MSCs have been observed to form masses that elicit 

a significant inflammatory response, where NPSCs transplanted in the same conditions 

did not form such masses[98,99]. Therefore, NPSC transplantation is appealing for both 

its perceived relative safety and the innate neuronal differentiation capacity of NPSCs. 

 Several studies have been performed using NPSCs to determine the effect of 

timing and location on transplant fate. Shear et al. found NPSC transplant survival after 

TBI was significantly higher at more acute time points after injury compared to the later 

time points, presumably due to glial scarring[102,103]. With respect to transplant 

location, transplant survival and migration into the surrounding tissue were significantly 

greater in the ipsilateral compared to contralateral hemisphere, in some cases 

accompanied by greater motor and cognitive function recovery[25,104]. Taken together, 

these data illustrate some of the many factors that can modulate the therapeutic benefit 

of stem cell transplantation after TBI. 

 One common thread among the many bolus transplant studies is that very few 

transplants differentiate into new neurons (< 5%)[25,102,104-106]. Most studies have 

observed differentiation into GFAP+ astrocytes to a greater extent than neuronal 
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differentiation (~5-10%); however, many transplanted cells sustain 

undifferentiated/unidentified phenotypes[100,105,106]. These findings have lead 

researchers to hypothesize that the benefit of stem cell therapy may lie in the trophic 

support that they provide to local degenerating neurons[107-109]. As such, a line of 

research has emerged in which stem cell transplants are designed to capitalize on their 

capacity to provide trophic support to cells within the injury microenvironment. 

1.4.2. Modified Stem Cell Transplants Following Neural Injury  

In recent years, several groups have looked at either pre-conditioning or 

genetically modifying cell transplants to prepare them for the cytotoxic injury 

microenvironment and/or increase their capacity for trophic support. This is an 

appealing option as cell transplants can theoretically be used to deliver neuroprotective 

factors while simultaneously providing the benefits of stem cell therapy. This approach 

has shown some promise as BDNF-expressing NSPCs have been observed to enhance 

neuronal differentiation, synaptic plasticity, and the number of transplants retained in 

the lesion site after TBI out to 8 weeks compared to normal NPSCs[110]. These findings 

were accompanied by an improvement in motor function recovery at 7 days compared to 

normal NPSCs, however this increase was insignificant by 4 weeks[110]. BDNF-

expressing MSCs have also been shown to significantly improve neurological function 

compared to normal MSCs out to 90 days after a moderate TBI[111].  

Another approach has been to increase transplant sensitivity to the injury-

relevant factors that have been shown to promote survival, proliferation, migration 

and/or differentiation through overexpression of the appropriate receptor. For example, 

Wang et al. observed attenuation of the inflammatory response after transplanting MSCs 

over-expressing CXCR4, the receptor for SDF-1α, into a lesion area after moderate TBI, 
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and interestingly, also observed local increases in VEGF and BDNF expression[112]. 

Similar work in stroke models has shown CXCR4-expressing MSCs result in increased 

neuronal differentiation, migration into the host tissue, and improved neurological 

function[113].  

The method of “priming” transplants to encourage neuronal differentiation upon 

transplantation is yet another modification that may improve transplant efficacy. Gao et 

al. primed NPSCs by exposing them to laminin, heparin and FGF for several days prior to 

transplantation and observed a post-transplant population that was ~96% positive for 

early neuronal markers, a marked increase over previous work[114]. However, the 

functional integration and neurological benefit have yet to be determined for methods 

such as this.  

Soluble signaling such as neurotrophic factors and chemokines is critically 

important as evidenced by the promise demonstrated in these stem cell modification 

techniques; however, it is also critically important to consider the mechanical and 

integrin-centric signaling that transplants are exposed to. Therefore, another route taken 

for transplant improvement has been the development of scaffolds and novel 

neurotransplantation systems. 

1.4.3. Scaffolds for Stem Cell Transplantation Following Neural Injury  

Given the importance of both mechanical and integrin signaling in regulating cell 

behavior, many efforts have been made to mimic native neural tissue in the construction 

of transplant scaffolds. While there have been some purely synthetic polymeric scaffolds, 

such as the woven poly(glycolic acid) scaffold used for NPSC transplantation by Park et 

al[115], there has been significant attention given to incorporation of extracellular matrix 

(ECM) components within scaffolds to provide integrin signaling to transplants. 
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Moreover, these scaffolds are frequently hydrogels as they can be easily tuned to mimic 

the mechanical properties of native brain[116,117]. Chopp et al. have extensively 

investigated the use of collagen I gels as transplant scaffolds for MSCs and have found 

the scaffolds to increase transplant retention within the lesion site and migration into the 

host tissue, decrease the lesion volume, promote synaptic plasticity within the 

surrounding tissue, and promote cognitive function recovery when compared to bolus 

transplantation[118-121]. Guan et al. have also found MSC’s within collagen I gels to 

display increased viability and neurite outgrowth following transplantation into the 

injury microenvironment[122].  

 While these data are promising, collagen I is not native to neural tissue and as 

such, other groups have looked to incorporating ECM components or binding motifs that 

are less foreign to NPSCs such as laminin. Given the vascular nature of the SVZ, it is 

logical that NPSCs respond favorably to laminin substrates and, as mentioned 

previously, laminin has the capacity to promote neuronal differentiation of 

NPSCs[2,114]. Indeed, increased neuronal differentiation was observed in NPSCs 

transplanted in a self-assembling peptide gel modified with the laminin binding motif 

IKVAV[123]. Moreover, Tate et al. found that NPSC transplants migrated further into the 

host tissue and displayed increased long-term survival when transplanted in collagen I 

gels modified with laminin compared to both collagen I only gels and collagen I gels 

modified with fibronectin[124].  

 Another relevant ECM component that has begun to garner attention within the 

neural tissue engineering field is the glycosaminoglycan hyaluronic acid (HA). Regions 

associated with endogenous NPSC maintenance and migration (i.e. SVZ niche and 

rostral migratory stream, respectively) are HA-rich compared to the rest of the adult  
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brain, making it especially relevant to NSPC transplantation[125,126]. HA transplant 

scaffolds have been used to encapsulate NPSCs in intact brains[127] and in the injured 

spinal cord[128] and to encapsulate mature neurons in an injured brain model[129]. In 

these studies, HA was combined with gelatin, methylcellulose and poly-D-lysine, 

respectively, to promote cell adhesion as HA alone does not do so effectively[130]. While 

HA provides niche-mimetic ECM cues to its encapsulated transplants, these included 

adhesion motifs are not native to the neural niche[34,126]. Therefore, there is room for 

improvement in this arena through thoughtfully designed niche mimetic and/or injury 

relevant adhesion motifs. 

As illustrated, there are many parameters that govern the efficacy of stem cell 

transplantation in mediating repair (i.e. cell type, injury, transplant location and timing, 

cellular modifications, scaffolding, etc.). Therefore, it is critically important to use the 

knowledge available regarding temporal and spatial signaling patterns after injury to 

inform future work in developing stem cell therapies for neural injury so as to have a 

better command of the driving forces behind their outcomes.  

1.5. Objective and Specific Aims 

Current preclinical cell transplantation therapies for TBI suffer from very low 

rates of transplant survival and engraftment within the host tissue. In looking towards 

improving transplant efficacy, it is useful to allow the local signaling that drives 

endogenous repair to inform an intentional design. A therapy that works in concert with 

the local injury signaling, rather than works against or remains indifferent towards these 

critical signals may serve to enhance transplant survival and engraftment after injury.  

Therefore, it was the aim of this project to engineer a transplantation platform that 

provides cell transplants with tools to dynamically respond to injury-related signals. 
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Specifically, inflammatory cell types and activated glia release chemokines, such as SDF-

1α, that recruit endogenous neural stem cells to the injury penumbra. Therefore, 

overexpression of receptors that respond to injury-induced chemotactic gradients may 

be an effective tool for enhancing transplant cell engraftment and diminishing secondary 

injury effects. Transplant viability and retention within the host tissue have also been 

shown to benefit from the structural stability afforded by scaffolding, even when made of 

materials not native to neural tissue. As such, we have worked to consolidate the benefits 

of both modified transplants and scaffolding into one transplantation platform, where 

the primary objective of this work is to develop a smart material that 1. enhances NPSC 

sensitivity to local injury signaling and 2. provides the appropriate infrastructure to 

promote migration into the host tissue. There is a great need for more effective therapies 

to mitigate the long-term dysfunctions associated with TBI and our work lays the 

groundwork for developing effective cellular therapies that target the secondary injury of 

TBI through the three following specific aims: 

1.5.1. Specific Aim 1 

 Determine the critical ECM migratory cues that mediate NPSC response to injury-

relevant chemokine gradients. 

1.5.2. Specific Aim 2 

Develop a neurotransplantation system that promotes NPSC response to critical 

chemotactic signals.  

1.5.3. Specific Aim 3  

Determine the efficacy of transplanting CXCR4 overexpressing NPSCs for enhancing 

NPSC migration in response to injury-relevant chemotactic signaling.   
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1.6. Figures 

 

Figure 1.1: Schematic of primary and secondary injury progression. The primary injury 

results in numerous cellular and subcellular events, collectively termed the secondary 

injury. The secondary injury is largely responsible for long-term neurotoxicity and 

neurodegeneration. 
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Figure 1.2: Endogenous repair signaling after traumatic brain injury. During the 

secondary injury, growth factors and chemokines are acutely upregulated within the 

injury penumbra (A) and the hippocampal niche (B) by local endothelial cells, activated 

glia and by infiltrating systemic inflammatory cell types (C). 

Table 1.1: Current preclinical cell therapies for traumatic brain injury. MSC = 

mesenchymal stem cell; CCI = controlled cortical impact; NPSC = neural 

progenitor/stem cell; BDNF = brain derived neurotrophic factor; FPI = fluid percussion 

injury; EGFR = epidermal growth factor receptor; Fn = fibronectin; Lm = laminin. 

*Other studies from the same group (Michael Chopp) have been published reiterating 

these findings with variations in transplant timing and behavioral test timing, the cited 

studies have been chosen as representatives for this body of work. **This study did not 

compare against non-modified transplants.	   
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CHAPTER 2 

THE ROLE OF SDF-1α-ECM CROSSTALK IN DETERMINING NEURAL STEM CELL 

FATE 

2.1. Introduction 

Central nervous system (CNS) injury, be it neurodegenerative, mechanical, 

and/or ischemic in nature, has permanent and disabling consequences[131]. In recent 

years, the endogenous regenerative capacity of neural tissue has been realized[4] and has 

prompted many groups to investigate potential therapies that interact with the 

endogenous repair response[132]. Specifically in the brain, endogenous neural 

progenitor/stem cells (NPSCs) maintained within the subventricular zone (SVZ) and 

hippocampal niche of the adult brain undergo a change in their migratory behavior 

following neural injury[48,55]. The SVZ residing NPSCs which typically migrate to the 

olfactory bulb and replenish GABAergic granule neurons instead home to regions of 

neural injury during repair[48,133]. The mechanisms behind this behavior are still 

unclear although it is thought that chemotactic signaling of several cytokines initiated by 

surrounding activated microglia play a critical role[134].  

From a regenerative standpoint, it is apparent that the inherent repair response 

falls short of facilitating neural regeneration. However, providing cues to encourage 

cellular migration, neuronal differentiation and proliferation may prove beneficial in 

advancing the efficacy of NPSC recruitment following neural injury. Given the 

complexity of the pathophysiological environment, it is important to consider the 

potential for interactions between multiple signaling inputs to NPSCs when investigating 

appropriate cues. The cytokine stromal derived factor-1α (SDF-1α) has been shown to 

play a vital role in NPSC migratory behavior following neural injury[55,59]. Under 

normal physiological conditions, NPSCs migrate from the SVZ to the olfactory bulb in 
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close approximation with blood vessels; similar vasophilic NPSC migration is observed 

in response to exogenously induced SDF-1α gradients[48,55].  This association suggests 

that NPSC behavior particularly following neural injury may be acted upon by a critical 

crosstalk between SDF-1α and vascular basement membrane extracellular matrix (ECM).   

It is well known that ECM proteins provide integrin-centric signals to cells 

altering numerous behaviors (viability, migration, differentiation, protein production 

etc.)[17-20].  For this reason among others, ECM proteins have been used for the 

development of tissue engineering scaffolds with success in several applications[21,22]. 

The effects of SDF-1α and ECM signaling on NPSC behavior have been investigated 

independently where both SDF-1α and laminin increase NPSC motility[39,55].  Aside 

from cell migration/motility, ECM proteins are well known to alter stem cell 

differentiation profiles, yet the role of SDF-1α in NPSC differentiation has not been 

thoroughly investigated.  Peng et al. observed NPSCs differentially overexpress SDF-1α 

and its corresponding receptor (CXCR4) upon differentiation into astrocytes and 

neurons respectively[27], however, little is known regarding the influence of SDF-1α on 

NPSC differentiation moreover the influence of SDF-1α-ECM crosstalk. 

Mechanistically, SDF-1α and ECM signaling appear to have intersections in the 

MAPK, Akt, JNK, and ROCK pathways with variability among ECM proteins[28,29]. The 

MAPK and Akt pathways are thought to play critical roles in modulating receptor, ligand, 

and integrin production, cell survival, and proliferation[30-32], while the ROCK pathway 

is thought to regulate actin cytoskeletal reorganization[33]. For this reason, inhibition of 

ROCK signaling would provide insight into the mechanisms regulating the actin 

cytoskeleton with regard to its involvement in SDF-1α-ECM signaling crosstalk.  
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Alterations in the cytoskeletal organization of NPSCs may most notably affect migration 

but could also affect other NPSC behaviors such as proliferation and differentiation. 

Pro-regenerative behaviors such as migration, differentiation, and proliferation 

are critical to the efficacy of NPSC-facilitated regeneration and as such a clearer 

understanding of the driving forces behind these behaviors would allow for better 

control over NPSC fate following neural injury.  Based on the many signaling 

intersections and independent behavioral effects of SDF-1α and the ECM on NPSCs, we 

hypothesize that SDF-1α-ECM crosstalk plays a role in directing NPSC fate following 

neural injury and that a better understanding of these axes will set the stage for the 

development of a regenerative intervention strategy for NPSC recruitment following 

neural injury. 

2.2 Experimental Methods 

2.2.1. NPSC isolation and culture 

NPSCs were isolated from the medial and lateral germinal eminences of E14.5 C57BL/6 

mice based on previously published protocols[135] and in accordance with approval by 

the Institutional Animal Care and Use Committee at Arizona State University. Briefly, 

mice were anesthetized at 3% isoflurane, rapidly decapitated, and fetuses were extracted 

from both uterine horns.  Fetal tissue was rinsed in cold Leibovitz medium (Life 

Technologies, Carlsbad, CA) at each stage of the germinal eminence dissection. The 

germinal eminences were rinsed with sterile, cold Leibovitz medium before mechanical 

dissociation in working NPSC medium (glucose (6 ng/mL, Acros Organics, Geel, 

Belgium), HEPES buffer (5mM, Sigma Aldrich, St. Louis, MO), progesterone (62.9 

ng/mL, Sigma Aldrich), putrescine (9.6 µg/mL, Sigma Aldrich), heparin (1.83µg/mL , 

Sigma Aldrich), B27 growth supplement (1X, Life Technologies), epidermal growth factor 
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(20 ng/mL, Sigma Aldrich), fibroblast growth factor (5 ng/mL, Sigma Aldrich), insulin (5 

µg/mL, Sigma Aldrich), transferrin (5 µg/mL, Sigma Aldrich), sodium selenite (5 ng/mL, 

Sigma Aldrich) in Dulbecco's Modified Eagle Medium (Life Technologies))and plated at 

a density of 104 cells/mL in a humidified incubator at 37°C, 20% O2, and 5% CO2. NPSCs 

were cultured as non-adherent neurospheres in working NPSC medium, passaged by 

mechanical dissociation, and utilized for experiments between passages 3 through 6.  

2.2.2. NPSC Migration 

2.2.2.1. Radial NPSC Migration 

 NPSCs were plated in ECM coated 24-well plates at 25 neurospheres per cm2  

(n=4 replicates per group; poly-L-lysine(MP Biomedicals, Solon, OH), human 

fibronectin(BD Biosciences, San Jose, CA), mouse laminin-1(Sigma Aldrich), 

Matrigel(BD Biosciences), bovine gelatin(Fisher Scientific, Houston, TX), chondroitin 6 

sulfate (Sigma Aldrich), bovine heparin sulfate (Sigma Aldrich), human collagen 

IV(Sigma Aldrich), chicken collagen II(Sigma Aldrich); 6 µg/cm2, human vitronectin; 

0.5 µg/cm2(R&D Systems)) in mitogenic growth factor-free media with or without 

supplementation of SDF- 1α (1µg/mL; PeproTech, Rocky Hill, NJ), the CXCR4 inhibitor 

AMD3100 (5µg/mL Santa Cruz Biotechnology, Santa Cruz, CA), and the ROCK inhibitor 

Y-27632 (25µM, Sigma Aldrich). Cultures were imaged via phase contrast microscopy at 

10X once every 24 hours for 6 days allowing for the tracking of radial NPSC migration 

out of the neurosphere. Culture plates were imaged once every 24 hours. Phase contrast 

images (n=6 per sample well) were analyzed for longest sphere diameter as shown in 

Figure 2.2 using a custom-designed MatLab program (MathWorks, Inc., Natick, MA) 

and were normalized to baseline measurements taken 2 hours after plating.  
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2.2.2.2. Chemotactic NPSC Migration  

NPSCs were allowed to migrate through 12µm pore Millicell cell culture inserts 

(Millipore, Temecula, CA) for 3 or 6 days. Insert membranes were coated with ECM 

substrates as described previously and NPSCs were plated in mitogenic growth-factor 

free media at a density of 40 neurospheres/cm2 (n = 3 replicates per group).  SDF-1α 

positive groups were exposed to an SDF-1α sink (1 µg/mL in mitogenic growth-factor 

free media) on the underside of the membrane. At specified end point, non-migratory 

cells were removed from the top of the membrane with a cotton swab and migrated cells 

on the underside of the membrane were visualized with nuclear stain (DAPI, Life 

Technologies).  Thresholded blue channel images (n=3 per sample well) were analyzed 

for migrated cell count, determined using the particle counter in MatLab (MathWorks, 

Inc.). 

2.2.3. NPSC Proliferation 

2.2.3.1. Total Proliferation  

Total proliferation was evaluated with the Quant-iT PicoGreen dsDNA assay kit 

(Life Technologies).  Neurospheres were plated in ECM coated 48 well plates (n=6) at a 

density of 25 neurospheres/cm2 with and without SDF-1α supplementation (1 µg/mL). 

At specified end point (0, 3 and 6 days), plates were scratched and neurospheres were 

lysed for 72 hours in humid conditions at 37°C in Proteinase K buffer and DNA was 

extracted with the DNeasy kit following manufacturer’s instructions (Qiagen, Venlo, 

Limburg) prior to double strand DNA quantification with the Quant-iT PicoGreen 

dsDNA assay kit.  Both λ DNA and cell standards were run and a cell count was  
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calculated for each well based on cell calibration curve.  Experimental groups were 

normalized to their respective cell counts at day 0. 

2.2.3.2. Proliferation Profile of Migrating Cells  

Proliferation of migrated NPSCs was assessed with the Click-iT ® EdU Cell 

Proliferation Assay (Life Technologies). NPSCs that migrated through Millicell cell 

culture inserts as described previously were incubated with EdU for 4 hours in a humid 

environment at 37ºC and visualized with fluorescent reporter AlexaFluor555 using an 

inverted fluorescent microscope (Leica, DMI4000 B, Wetzlar, Germany). Thresholded 

red channel images (n=6) were analyzed in MatLab for particle counts to obtain an EdU 

positive cell count for each experimental group.  

2.2.4. NPSC Differentiation  

2.2.4.1. Western Blot Analysis  

NPSCs were cultured on ECM substrates for 3 and 6 days with or without SDF-1α 

supplementation. At the specified end point, NSPCs were lysed by mechanical agitation 

and incubation in cold RIPA lysis buffer (150mM NaCl, 50 mM Tris pH 8.0, 0.5% 

sodium deoxycholate, 1% NP-40, 1% protease inhibitor cocktail (all reagents from Sigma 

Aldrich)). Protein concentration was quantified by bicinchoninic acid protein assay (G-

Biosciences, St. Louis, MO). SDS-PAGE gel electrophoresis and Western blotting were 

performed on 8% Bis-Acrylamide gels for the detection of phenotypic proteins indicative 

of NPSCs (rabbit anti-nestin, Abcam, ab27952, 177kDa) and young neurons (rabbit anti-

β III tubulin, Millipore, MAB1637, 55kDa) and on 12% Bis-Acrylamide gels for the 

detection of astrocytes (mouse anti-GFAP, Millipore, MAB3402, 50kDa) and 

oligodendrocytes (mouse anti-Olig2, Millipore, AB9610, 32kDa). β-actin was used as an  
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internal control for all blots (rabbit anti-β-actin, LI-COR (Lincoln, NE), 926-42210, 

45kDa).  Goat anti-rabbit IRDye 800 (NC0217916, LI-COR) and goat anti-mouse IRDye 

680 (926-32220, LI-COR) secondary antibodies were used appropriately. Membranes 

were blocked with 5% bovine serum albumin (BSA, Sigma Aldrich) in TBS-T (15.4mM 

Trizma-HCl (Sigma Aldrich), 137mM NaCl (Sigma Aldrich), 0.1% Tween 20(Bio-Rad, 

Hercules, CA)) and probed with the appropriate antibody dilutions in 2.5% BSA, TBS-T 

buffer.  Band detection was performed using the LI-COR Odyssey far infrared scanner 

and Image Studio software (LI-COR) was used for band intensity quantification. Band 

intensity was normalized to β-actin expression.   

2.2.4.2. Immunocytochemistry  

NPSCs were cultured on ECM coated glass coverslips as described previously in 

24-well plates (n=4 replicates per group) for 3 and 6 days with or without SDF-1α 

(1µg/mL), AMD3100 (5mM), and Y-27632 (25mM) supplementation every 48 hours. At 

specified end points, NPSCs were fixed with 3.7% paraformaldehyde (Sigma Aldrich), 

permeabilized with 0.1% Triton X 100 (Fisher Scientific), and probed for proteins 

indicative of astrocytes (rabbit anti-GFAP, Millipore, AB5804), young neurons (mouse 

anti-β III Tubulin, Millipore, MAB1637), NPSCs (rabbit anti-nestin, Abcam, ab27952), 

and oligodendrocytes (mouse anti-O4, Millipore, MAB345).  AlexaFluor488-conjugated 

goat anti-rabbit (Invitrogen, A11034) and AlexaFluor555-conjugated goat anti-mouse 

(Invitrogen, A21422) secondaries were used appropriately. DAPI (Life Technologies) was 

used for visualization of cell nuclei.  Samples were imaged at 10X via fluorescence 

microscopy  (n=3 images per well; Leica, DMI4000 B). 
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2.2.5. Statistical Analysis 

Statistical analysis was performed on all quantitative assays. The appropriate 

one-way or two-way ANOVA followed by Tukey post hoc tests were run to determine 

statistical significance with p < 0.05 considered significant (GraphPad Prism, La Jolla, 

CA). Multiplicity adjusted p-values reported for Tukey post hoc comparisons. 

2.3. Results 

2.3.1. SDF-1α-ECM crosstalk has a significant and synergistic effect on NPSC 

migration.  

NPSC radial migration on gelatin, chondroitin 6 sulfate, heparin sulfate, collagen 

IV, and collagen I showed no significant increases compared to poly-L-lysine and 

fibronectin did not appear to act synergistically with SDF-1α; these substrates were 

therefore omitted from subsequent SDF-1α supplementation and inhibition studies (data 

not shown). With basal media treatment, radial NPSC migration significantly increased 

on Matrigel and laminin at all time points compared to poly-L-lysine controls (p<0.0001 

for both Matrigel and laminin at all time points; Figure 2.1, 2.3). NPSC radial migration 

on vitronectin supplemented with SDF-1α significantly increased at all time points 

compared to poly-L-lysine controls (day 1: p=0.021; day 3: p=0.0253; day 6: p<0.0001). 

Significant and synergistic increases in NPSC radial migration were observed on 

Matrigel and laminin supplemented with SDF-1α at all time points compared to their 

appropriate substrate samples without SDF-1α supplementation as shown in Figures 2.1 

and 2.3 (day 1: p=0.0011, 0.002; day 3: p<0.0001 for both; day 6: p<0.0001, p=0.0152 

respectively). Moreover, upon the addition of CXCR4 antagonist (AMD3100), NPSC 

migration returned to basal substrate migration levels regardless of SDF-1α 

supplementation on Matrigel and laminin at all time points as shown in Figure 2.2 and 



 

29 

2.3. CXCR4 receptors are expressed on the membrane of NPSCs[136] and SDF-1α is its 

only known ligand[36] making the effects of its inhibition an indicator of SDF-1α-CXCR4 

axis involvement in NPSC behavioral signaling.  ROCK inhibition with Y-27632 appeared 

to increase NPSC radial migration on laminin at all days, significantly at day 3 (Figure 

2.4, 2.5 p=0.0261).  However, Y-27632 in combination with SDF-1α supplementation 

was observed to significantly reduce radial NPSC migration back to basal levels on 

Matrigel, laminin, and vitronectin at days 3 and 6(Figure 2.4, 2.5, p=0.038, 0.0001 

respectively). Chemotactic migration results shown in Figure 2.6 further supported the 

radial migration data in which SDF-1α-ECM crosstalk significantly and synergistically 

increased NPSC chemotactic migration on Matrigel, laminin, and vitronectin at 3 days 

(p=0.0494, p<0.0001, p=0.0374 respectively) and on Matrigel and laminin at 6 days 

(p=0.0471, 0.001 respectively) compared to their respective substrate samples without 

SDF-1α supplementation. In comparison to poly-L-lysine controls, NPSC chemotactic 

migration in the presence of SDF-1α on Matrigel, laminin, and vitronectin was 

significantly increased at 3 days (p<0.0001,p<0.0001, p=0.0012 respectively) and this 

was maintained on Matrigel and laminin out to 6 days (p=0.0471, 0.0003 respectively). 

2.3.2. SDF-1α significantly affects NPSC proliferation.   

NPSC total proliferation as measured with PicoGreen significantly increased on 

poly-L-lysine, Matrigel, and laminin substrates supplemented with SDF-1α at 3 days 

compared to the appropriate substrate samples without SDF-1α supplementation (Figure 

2.7, p=0.0076; 0.0009; 0.0064 respectively); this trend was also observed at 6 days 

however was not significant. The Millicell culture insert chemotactic migration assay 

allowed for analysis of the proliferation profile of the migrating subset of cells. 

Proliferation of migrated NPSCs on Matrigel coated culture inserts was significantly  



 

30 

increased when supplemented with SDF-1α at both days 3 and 6 compared to poly-L-

lysine controls (p<0.0001; p=0.0163 respectively) and to Matrigel samples without SDF-

1α supplementation (p<0.0001; p=0.0163 respectively) as shown in Figure 2.7. Similarly 

to total NPSC proliferation observations, the migrating subset of NPSCs on Matrigel, 

laminin, and vitronectin supplemented with SDF-1α appeared to support increased 

proliferation compared to samples without SDF-1α supplementation at day 3, however 

these differences were insignificant.  

2.3.3. SDF-1α-ECM crosstalk significantly and synergistically alters differentiation 

profiles of NPSCs.  

Neuronal differentiation was enhanced on laminin-based substrates (Matrigel 

and laminin) supplemented with SDF-1α compared to the appropriate substrate samples 

without SDF-1α. Western blotting demonstrated significant and synergistic increases in β 

III tubulin production on Matrigel and laminin supplemented with SDF-1α at day 3 

(Figure 2.8, p=0.0342, 0.006 respectively). Increases in β III tubulin production with the 

addition of SDF-1α were observed for all samples at day 6 however they were not 

significant.  Similar findings were observed in the quantification of 

immunocytochemistry where β III tubulin normalized positive area was significantly 

increased with the addition of SDF-1α on Matrigel at 3 days (Figure 2.9, 8A, p=0.0004); 

an increase was also observed on laminin at 3 days however insignificant (Figure 2.9, 8A, 

p=0.0938). This effect was abrogated with the addition of AMD3100 on Matrigel 

(p=0.0007) and laminin at 3 days. The synergistic increase in neuronal differentiation 

appeared to be acute in nature as significance was lost for all samples at day 6. Astrocyte 

and stem cell phenotypes did not differ significantly regardless of substrate, 

supplementation, or time point as indicated both by normalized positive GFAP and  
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nestin staining in ICC samples (Figures 2.9, 2.10, 2.11) and by protein expression in  

Western blotting (Figure 2.8 A, C, & E). A significant increase in oligodendrocyte 

differentiation at day 3 was observed on vitronectin supplemented with SDF-1α in 

Western blotting samples probed for Olig2 (Figure 2.8 A,D, p=0.0435).  Insignificant 

acute increases in O4 positive staining were observed on vitronectin with and without 

SDF-1α supplementation as well (Figure 2.10C, 2.11). 

2.4. Discussion  

Following TBI, endogenous NPSCs migrate towards the site of injury in close 

proximity to vasculature[46]. Similarly, Kokovay et al. demonstrated that exogenous 

NPSCs transplanted into the SVZ associate with SVZ vasculature, potentially mediated 

by SDF-1α release from ependymal cells within the niche[48].  These vasophilic NPSC 

tendencies in vivo reflect the observations we identified in the present study regarding 

NPSC migration on laminin-based substrates supplemented with SDF-1α. Previous 

studies investigating the recruitment of endogenous NPSC after neural injury have 

established that the SDF-1α-CXCR4 axis plays a critical role in in vivo NPSC 

homing[48].  SDF-1α -ECM synergy has been observed in populations of thymocytes by 

Yanagawa et al.[39], but the data reported here are the first, to our knowledge, to 

investigate the combinatorial effects of NPSC association with the ECM in response to 

SDF-1α gradients similar to those established in the context of neural injury. A greater 

understanding of the driving forces behind NPSC behavior following neural injury may 

open the door to regenerative therapies which allow for greater control over the fate of 

endogenous NPSCs. 

Regenerative strategies for neural injury/disease also include stem cell 

transplantation paradigms; however, such approaches are plagued with low cell survival  
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rates and high percentages of glial differentiation with minimal neuronal 

differentiation[137,138].  Laminin is well known to induce NPSC neuronal differentiation 

in vitro[139,140]. Laminin’s role as a guidewire for NPSC migration after injury raises 

questions regarding its role in the integration of endogenous NPSCs recruited to the site 

of injury such as that observed by Hou et al. in their stroke model and Magavi et al. 

following induced cortical neuron apoptosis[43,44]. Therefore, the synergistic increase 

in neuronal differentiation observed on laminin-based substrates with SDF-1α 

supplementation is of great interest to the field both in its elucidation of NPSC behavior 

following neural injury and the opportunity it provides for increasing the neuronal 

differentiation NPSC transplantation therapy. However given the acute nature of SDF-

1α-ECM mediated enhancement of neuronal differentiation, it is possible that other 

signaling factors are needed to sustain this level of neuronal differentiation. We also 

observed differences in the spatial distribution of neuronal differentiation relative to the 

core neurosphere in samples supplemented with SDF-1α compared to those without, 

specifically on laminin-based substrates. More new neurons on the periphery of the 

central neurosphere were observed on laminin-based substrates supplemented with 

SDF-1α and to a lesser extent on vitronectin samples supplemented with SDF-1α. We 

postulate that NPSCs underwent neuronal differentiation at higher rates peripherally to 

the neurosphere due to increased exposure to both integrin and SDF-1α signaling than 

those remaining within the neurosphere, a notion supported by the high concentration of 

nestin positive cells within the center of the neurosphere (Figure 2.9).  Furthermore, 

previous research inducing neuronal differentiation of adult human neural progenitor 

cells and adult and neonatal rat stem cells found that laminin substrates increased 

efficacy compared to tissue culture or poly-L-lysine substrates due to cell spreading and 

the resultant uniformity of exposure to neuronal induction factors[45-47]. Within the 
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SVZ niche, laminin is closely associated with ependymal cells, fibroblast, and 

macrophages all of which secrete factors regulating NPSC migration and 

differentiation[141]. As mentioned previously, ependymal cells in close proximity to SVZ 

vasculature release SDF-1α which may also serve as a regulator of NPSC migration, 

differentiation, and proliferation[48]. However, the effect of SDF-1α-ECM crosstalk on 

neuronal differentiation in any cell lines has yet to be investigated and as such our 

findings build motivation for a myriad of investigations into the effect of this crosstalk on 

the differentiation of other stem/progenitor cell lines.  

Alongside increasing neuronal differentiation and integration, increasing 

proliferation may be a potent mechanism to enhance the number of NPSCs at the site of 

injury both in endogenous and transplantation systems. The increases we observed in 

total proliferation across several substrates support data reported by other groups in 

which SDF-1α appeared to play a critical role in stimulating NPSC proliferation[55] as 

well as the proliferation of other cell types[50,51]. While SDF-1α plays a role in 

stimulating NPSC proliferation, this effect does not have a synergistic relationship with 

ECM signaling to the extent observed in migration or differentiation experiments. We 

observed higher proliferation on poly-L-lysine and vitronectin samples compared to 

those on laminin-based substrates due to the minimal NPSC migration out of the 

neurosphere on said substrates.  Spatial observations of the immunocytochemistry 

staining for nestin indicate that the majority of nestin positive cells were confined within 

the center of the neurosphere, which provides a vastly different NPSC microenvironment 

than that external to the neurosphere. The inherent differences between environments 

within and external to the neurosphere are of interest to the field and are being 

investigated by other groups[52-55]. For example, Bez et al. reported neurospheres 

plated on Matrigel resulted in a higher density of BrdU positive cells within the 
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neurosphere center compared to the distal edges of the neurosphere[53].  In the context 

of the niche wherein maintenance of a stem cell phenotype is positively correlated with 

proliferation, these observations are coherent. NPSC proliferation within the SVZ is 

maintained mainly by soluble signaling factors EGF and FGF and also by Noggin; these 

factors in combination are largely responsible for the maintenance of multipotency of 

NPSCs in the SVZ [34,72].  Given the dual role of these signaling factors, inducing 

increases in both proliferation and neuronal differentiation is inherently problematic. 

Thus furthering the notion that low levels of NPSC proliferation external to the 

neurosphere on laminin-based samples is due to increased neuronal differentiation.  

To evaluate the potential effect of SDF-1α – ECM crosstalk on proliferation 

independent of the neurosphere microenvironment, we also investigated the 

proliferation profile of NPSCs in a chemotactic Millicell insert assay. Interestingly, we 

observed significant increases in migrated NPSC proliferation only on Matrigel when 

supplemented with SDF-1α. BD Matrigel used in these experiments was comprised 

largely of laminin and collagen IV as well as heparin sulfate proteoglycans, and 

enactin[59].  It also contains levels of transforming growth factor-beta (TGF-β), 

epidermal growth factor (EGF), insulin-like growth factor, fibroblast growth factor 

(FGF), tissue plasminogen activator, and other growth factors naturally occurring in the 

Engelbreth-Holm-Swarm mouse tumor[60,61].  These growth factors present in Matrigel 

may have contributed to the synergistic increase of migrated NPSC proliferation since no 

such increase was observed on laminin, an abundant protein in Matrigel.  Our 

observations of minimal NPSC migration on collagen IV and heparin sulfate and the 

known effects of TGF-β, EGF, and FGF on cellular proliferation further support this 

conclusion (data not shown)[142,143].  
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The mechanistic crosstalk implicated in our observations may be due to direct 

regulation of the SDF-1α/CXCR4 axis by integrin signaling and/or vice versa. Direct 

communication between axes has been observed in other cell types, however 

investigations into such a hypothesis have not yet been pursued in the context of NPSCs. 

In pancreatic cancer cells, Grzesiak et al. demonstrated that laminin-1 binding results in 

the upregulation of CXCR4[65]. Conversely, exposure of prostate cancer cells to SDF-1α 

has been shown to increase αvβ3 expression, an integrin which binds to fibronectin and 

vitronectin[66]. These findings taken together with our reported findings may point 

towards a similar means of protein regulation, which may play a role in the synergistic 

NPSC migration response we observed on laminin-based substrates.   

 From a mechanistic perspective, we observed that the RhoA/ROCK signaling 

pathway may not play a critical role in regulating the synergistic effects on SDF-1α/ECM 

directed NPSC migration or differentiation. The inhibition of ROCK with Y-27632 has 

previously been shown to increase NPSC neurite outgrowth[67,68].  Our radial 

migration results support this finding in the absence of SDF-1α, but were then abrogated 

with the addition of SDF-1α and Y-27632. Radial migration measurement is a common 

means of monitoring NPSC migration out of neurospheres[65], however, it does not 

account for significant variability among cell morphologies and as such, immunostaining 

was performed to better visualize the effect of ROCK inhibition on NPSC morphology. 

Increases in neurite outgrowth on samples supplemented with Y-27632 are visible in 

immunocytochemistry samples, which may aid in the interpretation of radial migration 

results. Previous studies focusing on ROCK signaling demonstrated that this signaling 

molecule plays a key role in regulating cellular migration through the dissolution of actin 

stress fibers at the retracting edge and the increase in integrin interactions at the leading 

edge of migrating cells[67,71,72].  In the context of the neurosphere, increases in leading 



 

36 

edge integrin interactions to a certain degree may serve to enhance migration out of the 

center of the neurosphere when exposed to an ECM substrate.  In this light, the increase 

in NPSC radial migration on laminin supplemented with ROCK inhibitor Y-27632 is a 

consistent result. However, we hypothesize that in the presence of both SDF-1α and Y-

27632, further potential increases in integrin interactions due to both SDF-1α and Y-

27632 may serve only to immobilize NPSCs which have left the neurosphere, yielding 

comparable NPSC radial migration to that observed on laminin-based substrates without 

any supplementation[73]. While ROCK signaling is well known to be involved in actin 

cytoskeleton reorganization[33], its role in SDF-1α-ECM crosstalk may be restricted to 

regulating the cytoskeleton and may be minimally influenced by SDF-1α signaling. Other 

groups have found that Akt and MAPK pathways may play a critical role in SDF-

1α/CXCR4-mediated NPSC migration[74,75]. Historically, Akt and MAPK pathways 

have a larger regulatory influence on proliferation, differentiation, and gene expression 

than on actin cytoskeleton reorganization[30,31] reinforcing the notion that ROCK-

mediated cytoskeleton reorganization may not play a critical regulatory role in the 

observed SDF1-1α-ECM crosstalk phenomena.  Akt and MAPK pathways may be 

activated by integrin interactions as well[76,77] and as such, data reported by Li et al. 

and Ganju et al. taken together with our findings suggests that SDF-1α-ECM crosstalk 

may be acting largely through regulation of DNA-based cellular activities rather than 

through actin cytoskeleton reorganization. 

2.5. Conclusion  

Endogenous NPSCs are known to associate with vasculature during recruitment 

up SDF-1α gradients towards the site of a neural injury.  However, our results indicate 

that the relationship between these two mediators of NPSC recruitment is synergistic  
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rather than combinatorial in its effect on NPSC migration and neuronal differentiation. 

SDF-1α-ECM crosstalk does not appear to have a synergistic effect on NPSC 

proliferation, however SDF-1α alone increases proliferation in NPSCs. Moreover, the 

most significant results were observed on laminin-based substrates, which complements 

the in vivo behavior of NPSCs following neural injury. These results have implications in 

better understanding the mechanisms behind the endogenous repair response as well as 

improving current approaches to stem cell transplantation as a therapy for neural injury 

and neurodegenerative diseases. 
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2.6 Figures 
 

 
Figure 2.1: Morphology of migrating NPSCs supplemented with and without SDF-1α. 

NPSCs supplemented without SDF-1α migrating at day 1 (A-D), day 3 (I-L) and day 6 (Q-

T) compared to those supplemented with SDF-1α at day 1 (E-H), day 3 (M-P), and day 6 

(U-X). Scale bar is 250 µm. 
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Figure 2.2: Morphology of migrating NPSCs on extracellular matrix substrates with or 

without SDF-1 α or AMD3100 supplementation. NPSCs supplemented AMD3100 

without SDF-1α migrating at day 1 (A-D), day 3 (I-L) and day 6 (Q-T) compared to those 

supplemented with AMD3100 and SDF-1α at day 1 (E-H), day 3 (M-P), and day 6 (U-X). 

Scale bar is 250 µm. 
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Figure 2.3: NPSC radial migration with and without SDF-1α or AMD3100 

supplementation. Radial NPSC migration was determined by the longest outer diameter 

of neurosphere migration normalized to inner sphere diameter and reported in microns 

(A). Direct comparisons of NPSC radial migration on poly-L-lysine, Matrigel, laminin, 

and vitronectin with and without SDF-1α or AMD3100 supplementation at days 1, 3, and 

6 (B-D). $p<=0.01 compared to poly-L-lysine controls; *p<=0.05;**p<=0.01 compared 

to all other supplementation within substrate groups unless specified otherwise. 
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Figure 2.4: Morphology of migrating NPSCs supplemented with Y-27632 and with and 

without SDF-1α. NPSCs supplemented with Y-27632 without SDF-1α migrating at day 1 

(A-D), day 3 (I-L) and day 6 (Q-T) compared to those supplemented with Y-27632 and 

SDF-1α at day 1 (E-H), day 3 (M-P), and day 6 (U-X). Scale bar is 250 µm. 
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Figure 2.5: NPSC radial migration with and without SDF-1α or Y-27632 

supplementation. Direct comparisons of NPSC radial migration on poly-L-lysine, 

Matrigel, laminin, and vitronectin with and without SDF-1α or Y-27632 supplementation 

at days 1, 3, and 6 (B-D). $p<=0.01 compared to poly-L-lysine controls; 

*p<=0.05;**p<=0.01 compared to all other supplementation within substrate groups 

unless specified otherwise. 

 
Figure 2.6: Chemotactic NPSC Migration on poly-L-lysine, Matrigel, laminin, and 

vitronectin with and without SDF-1α supplementation. Schematic depicting Millicell 

culture insert experimental set-up for chemotactic migration and migrated NSPC 

proliferation studies (A). Migrated cell counts were quantified by the particle counter in 

MatLab (B) for thresholded images of DAPI positive cells on the underside of the  
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Millicell culture insert membrane(C). $p<=0.01 compared to poly-L-lysine controls; 

*p<=0.05 compared to appropriate substrate groups without SDF-1α supplementation. 

 

 
Figure 2.7: The effect of SDF-1α on proliferation of NPSCs cultured on poly-L-lysine, 

Matrigel, laminin, and vitronectin. Total NPSC proliferation was determined using the 

PicoGreen dsDNA quantification kit to calculate total cell number at days 3 and 6 (A, B 

respectively). NPSCs which migrated through Millicell culture inserts towards an SDF-1α 

sink (1µg/mL) were incubated with EdU for 4 hrs. Thresholded images of EdU positive 

cells were analyzed using the particle counter in MatLab for number of cells at 3 and 6 

days (C, D respectively). $p<=0.05 compared to poly-L-lysine controls; *p<=0.05; 

**p<=0.01 compared to appropriate substrate groups without SDF-1α supplementation. 
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Figure 2.8: Western blot analysis of relative protein expression in NPSCs cultured on 

poly-L-lysine, Matrigel, laminin, and vitronectin. Phenotypic probes included β III 

tubulin (A,B), GFAP (A,C), Olig2 (A,D), and nestin (A,E), proteins indicative of young 

neurons, astrocytes, oligodendrocytes and NPSCs, respectively. Bands were analyzed 

using the LI-COR ImageStudio software for relative density and normalized to β-actin 

controls (B-E).  $p<=0.05 compared to poly-L-lysine controls; *p<=0.05 compared to 

appropriate substrate groups without SDF-1α supplementation.  Note that representative 

Western Blots for NPSC lysates presented were truncated to exclude extraneous sample 

groups (A). 
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Figure 2.9: Immunocytochemistry for astrocytes and new neurons at day 3. Samples 

were probed for GFAP (green channel) and β III tubulin (red channel) indicative of 

astrocytes and young neurons, respectively. NPSCs were cultured on poly-L-lysine, 

Matrigel, laminin, and vitronectin without any supplementation (A-D); with SDF-1α (E-

H); with AMD3100 (I-L); or with  SDF-1α and AMD3100 (M-P). All scale bars are 100 

µm. 
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Figure 2.10: Immunocytochemistry for oligodendrocytes and NPSCs at day 3. Samples 

were probed for O4 (red channel) and nestin (green channel) indicative of 

oligodendrocytes and NPSCs, respectively. NPSCs were cultured on poly-L-lysine, 

Matrigel, laminin, and vitronectin without any supplementation (A-D); with SDF-1α (E-

H); with AMD3100 (I-L); or with SDF-1α and AMD3100 (M-P). All scale bars are 100 

µm. 

 



 

47 

 
Figure 2.11: Quantification of immunocytochemistry positive staining. Thresholded 

images of independent color channels were quantified by summation of pixel value of the 

channel of interest and normalized to DAPI (blue channel) to determine relative levels of 

positive staining for β III tubulin (A), GFAP (B), O4 (C), and nestin (D). **p<=0.01 

compared to all other supplementation within substrate group. 
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CHAPTER 3 

ENHANCING NEURAL STEM CELL RESPONSE TO SDF-1α THROUGH 

HYALURONIC ACID-LAMININ HYDROGELS 

3.1 Introduction 

The impact of traumatic brain injury (TBI) has only recently garnered recognition 

from many social and healthcare communities despite its long-standing prevalence in 

the U.S. Approximately 1.7 million people sustain a TBI annually and the costs associated 

with TBI create a $76.5 billion strain on the American healthcare system and economy 

[4,6,144]. Long-term dysfunctions associated with TBI (e.g. chronic traumatic 

encephalopathy and motor impairment) [131,145,146] are largely due to the secondary, 

biochemical injury that follows the primary, mechanical insult; however, no clinical 

treatments directly target these underlying pathologies associated with TBI. Pre-clinical 

studies have investigated stem cell transplantation as a means to mitigate the effects of 

the secondary injury, but have suffered from staggeringly low rates of cell survival and 

engraftment (2-4%) [104-106,137].  This major limitation is mainly attributed to the 

cytotoxic injury microenvironment created by a systemic and neural inflammatory 

response, which is mediated by inflammatory cells that infiltrate the blood brain barrier 

and locally activated glia, respectively [20,22,147]. Activated glia also secrete factors that 

promote the endogenous repair response including the chemokine stromal cell-derived 

factor 1α (SDF-1α), which has been shown to play a critical role in recruitment of 

endogenous neural progenitor/stem cells (NPSCs) to the site of injury [53,55]. Exploiting 

this endogenous SDF-1α signaling paradigm for exogenous transplant strategies may 

serve to increase NPSC migration and engraftment into the surrounding tissue following  
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transplantation. As such, we aimed to develop a neurotransplantation platform that 

promotes exogenous cell response to injury-relevant SDF-1α signaling. 

Tissue-engineered constructs have been used previously in an attempt to create a 

permissive transplant microenvironment; often in the form of hydrogels as their 

mechanical and cellular adhesion properties are easily tuned to mimic native neural 

tissue. The extracellular matrix (ECM) of native brain tissue is largely comprised of 

proteoglycans (e.g. lecticans), hyaluronic acid and tenascin C and R [148,149]. 

Specifically, the glycosaminoglycan hyaluronic acid (HA) is prominently expressed near 

neural stem cell niches and neuroblast migration routes (within the subventricular zone 

and rostral migratory stream, respectively) [125]. HA-based hydrogels are therefore a 

natural extension into mimicking the native neural ECM, and numerous groups have 

reported that HA-based hydrogels support survival, differentiation and proliferation of 

neural cell types in vitro and in vivo[129,150-152]. However, the effect of HA on NPSC 

migration remains largely unexplored despite the knowledge that normal physiological 

NPSC migration in vivo follows an HA-rich route [125]. Given these findings, the benefit 

of elucidating the relationship between HA and NPSC migration becomes evident. 

Recent cell signaling studies have identified crosstalk between HA and the injury-

related chemokine SDF-1α in mesenchymal (MSCs)[153] and hematopoietic stem cells 

(HSCs)[154,155] that resulted in heightened responsiveness to SDF-1α gradients. For 

example, MSCs cultured on HA substrate upregulate the SDF-1α receptor CXCR4, 

indicative of signaling crosstalk between HA and SDF-1α-axes [153]. The probability for 

similar HA-SDF-1α crosstalk mechanisms to exist in NPSCs is high, as NPSCs inherently 

express CXCR4 and the primary HA receptor CD44 [156,157]. Previous HA hydrogel 

platforms for neural tissue engineering considered HA a “blank slate” where tethered  
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protein or peptide-binding motifs serve as the primary cellular interfacing domains. 

However, we postulate that rather than serving as a “blank slate”, HA will actively 

contribute to promoting NPSC chemotactic migration through HA-SDF-1α crosstalk.  

Knowledge of HA-SDF-1α crosstalk will significantly inform next generation 

hydrogel systems capable of biochemically priming neurotransplants to dynamically 

respond to the local injury environment. We acknowledge that HA alone, however, is not 

sufficient to promote NPSC adhesion and migration effectively[130]. Thus, incorporation 

of an ECM protein known to support NPSC migration may provide the appropriate 

infrastructure for NPSCs to respond to SDF-1α gradients. We have previously reported 

that laminin and SDF-1α work synergistically to increase NPSC migration in vitro [2]. 

Therefore, in this work we have investigated a dual-purpose hydrogel system comprised 

of both HA (to modulate CXCR4 expression) and laminin (to provide adhesive cues). We 

hypothesize that HA-laminin hydrogels will 1. increase NPSC responsiveness to SDF-1α 

gradients and 2. provide a substrate that facilitates NPSC migration in response to injury 

relevant SDF-1α gradients, thereby equipping NPSCs with tools to dynamically respond 

to the neural injury environment. 

3.2 Experimental Methods 

3.2.1. Materials for polymer synthesis 

3,3 Dithiopropionic acid (DTPA), anhydrous methanol, anhydrous ethanol, 

hydrazine hydrate (HH), hexane, concentrated sulfuric acid, ethyl ether, hydrochloric 

acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), hyaluronic acid sodium 

salt (HA) from Streptococcus equi, N-3-dimethylaminopropyl-N′-ethylcarbodiimide 

hydrochloride (EDC), 5,5'-dithiobis-2-nitrobenzoic acid (Ellman’s reagent), and laminin-

111 were purchased from Sigma Aldrich (St. Louis, MO, USA). Dithiothreitol (DTT) was 
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purchased from Gold Biotechnology (St. Louis, MO, USA). Poly(ethylene glycol) divinyl 

sulfone (PEGDVS) 5 kDa was purchased from JenKem Technology USA (Allen, TX, 

USA). 

3.2.2. HA-Lm Gel Formation 

Dithiopropionic dihydrazide (DTPH) was synthesized from DTPA and HH in a 

two-step reaction as previously described [158]. High molecular weight HA was 

functionalized with thiol groups through conjugation of the terminal hydrazides on 

DTPH to the carboxyl groups on HA using EDC chemistry and subsequent reduction of 

disulfide bonds using DTT as previously described [159]. 1H NMR spectra was collected 

in D2O (400 MHz Varian liquid state NMR, Agilent Technologies, Santa Clara, CA, USA), 

and Ellman’s reagent test was used to quantify the concentration of conjugated thiols 

[160].  HA-S was sterilized by ethylene oxide gas and stored at -20°C.  

HA-S hydrogels were formed via Michael-type addition crosslinking with 

PEGDVS as previously reported[116]. Briefly, PEGDVS was dissolved in media at a 

concentration that yielded an equimolar ratio of thiol-reactive groups to thiols present 

on the HA-S. HA-S was dissolved in pH 3 mitogenic growth factor-free culture media 

(formulation described under section 2.2 NPSC isolation and culture) and titrated 

between pH 7 and pH 8 with 1 M NaOH using phenol red as a colorimetric indicator of 

pH. The HA-S solution was mixed with an equal volume of crosslinker solution and 

vortex mixed for 15 seconds prior to plating.  

Laminin was determined to have free thiols available for binding by Ellman’s 

reagent test, presumably from its cysteine-rich β chain (data not shown). Laminin was 

conjugated to PEGDVS via Michael addition at 0.01 wt% and 0.10 wt% respectively in 

PBS for 15 minutes at room temperature. The solution was purified by dialysis against 

Tris-buffered saline to remove unbound PEGDVS and freeze dried. Capacity for covalent 
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immobilization of laminin was evaluated by 1H NMR spectra in D2O. Spectra were 

analyzed for ratio of PEG groups to vinyl groups and compared to non-reacted PEGDVS 

spectra to observe differences in vinyl groups available for binding. Based on data 

presented in section 3.1, laminin was incorporated within the gel at pre-determined 

concentrations by mixing with PEGDVS media solution and allowed to react 15 minutes 

at room temperature prior to mixing with HA-S solution, where PEGDVS concentration 

was adjusted to account for laminin incorporation.  

3.2.3. NPSC isolation and culture 

NPSCs were isolated from the medial and lateral germinal eminences of E14.5 C57BL/6 

mice based on previously published protocols[135] and in accordance with a protocol 

approved by the Institutional Animal Care and Use Committee at Arizona State 

University. Briefly, mice were anesthetized at 3% isoflurane, rapidly decapitated, and 

fetuses were extracted from both uterine horns.  Fetal tissue was rinsed in cold Leibovitz 

medium (Life Technologies, Carlsbad, CA) at each stage of the germinal eminence 

dissection. The germinal eminences were rinsed with sterile, cold Leibovitz medium 

before mechanical dissociation in working NPSC medium (glucose (6 mg/mL, Acros 

Organics, Geel, Belgium), HEPES buffer (5mM), progesterone (62.9 ng/mL), putrescine 

(9.6 µg/mL), heparin (1.83µg/mL), B27 growth supplement (1X, Life Technologies), 

epidermal growth factor (20 ng/mL), fibroblast growth factor (5 ng/mL), insulin (5 

µg/mL), transferrin (5 µg/mL), sodium selenite (5 ng/mL) in Dulbecco's Modified Eagle 

Medium (Life Technologies), reagents from Sigma Aldrich unless otherwise specified) 

and plated at a density of 104 cells/mL in a humidified incubator at 37°C, 20% O2, and 

5% CO2. NPSCs were cultured as non-adherent neurospheres in working NPSC medium, 

passaged by mechanical dissociation, and utilized for experiments between passages 3 

through 6.  
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3.2.4. NPSC Response to Varied HA-Lm Gel Formulations 

Gels were varied in HA and laminin concentration (Table 3.1) and optimized based on 

cellular response—i.e. NPSC viability, density and chain formation. HA concentrations 

(1.75 wt%, 2.00 wt%, 2.25 wt%) were selected based on previously reported rheological 

data for HA-PEGDVS gels [116] to mimic the stiffness of native neural tissue (0.2-

1.0kPa) [117] and on observations that gels below 1.75 wt% HA did not support effective 

NPSC encapsulation necessary for transplantation. Laminin concentrations (0%, 

0.005%, 0.01%, 0.015%) were selected based on hydrogels in the literature and as an 

extrapolation of our 2D ECM culture model[2,159,161]. HA-Lm gel films (100 µm 

thickness) were formed in 24-well plates (occupying approximately 85% of the well 

bottom) at 37 °C for 15 hours, and single cell NPSC suspensions (2x103 cells/well) were 

seeded directly on top of the gel. NPSCs were incubated for 1 hour to allow for adherence 

to the HA-Lm gel prior to the addition of 500 µL of mitogenic growth factor-free NPSC 

media to each well. NPSCs were cultured for 72 hours prior to analysis of viability, 

density, and chain formation. 

3.2.4.1. Cell Density and Viability  

After rinsing HA-Lm gels with sterile phosphate buffered saline, NPSCs were 

stained with Live/Dead assay (Biotium, Hayward, CA). Live cell counts were used to 

calculate cell density (cells/cm2) as a measure of cell attachment to the HA-Lm gel. 

Fluorescent red (dead) and green (live) channel images (n=6 gels per goup, n=3 ROI per 

gel) were analyzed for number of positively stained cells using the particle counter plugin 

for Image J (NIH, Bethesda, MD) and reported as percent viability.  
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3.2.4.2. Chain Length  

 It was observed that gel formulations that supported high cell density and 

viability also supported the formation of chain-like NPSC assemblies as defined by two 

or more NPSCs visibility connected by continuous outgrowth in a linear fashion. 

Therefore, NPSC chain length was measured in MatLab as a tertiary metric for gel 

formulation optimization after 72 hours of culture on HA-Lm gels. Live cell images (n=6 

gels per goup, n=3 ROI per gel) were analyzed for longest linear chain length in each 

frame. 

3.2.5. Physical Properties of HA-Lm Gel 

3.2.5.1. HA-Lm gel stiffness  

Parallel plate rheological measurements were used to determine the storage and 

loss moduli of HA-Lm gels during gelation (Physica MCR101, Anton Paar, Graz, Austria). 

Briefly, 500 µL HA-Lm solutions were pipetted onto the fixed plate immediately 

following mixing and the moving plate was lowered to a height of 0.5mm. The gels were 

tested at 0.5 % strain with an oscillatory frequency of 1 Hz. The stage was heated to 37°C 

and maintained within a humid environmental chamber. Storage and loss moduli 

measurements were taken continuously for 6 hrs. 

3.2.5.2. HA-Lm gel porosity and microstructure  

HA-Lm gels (7 mm thickness) were formed in 96 well plates for 15 hours, 

dehydrated through immersion in a series of ethanol washes and subsequently dried 

with the Balzers CPD020 critical point dryer (Balzers Union Ltd., Liechtenstein) using 

liquid carbon dioxide as the transition solvent. Samples were cut open to expose interior 

microstructures, sputter coated with gold/palladium (60:40) using a Technics Hummer  
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Sputter Coater (Anatech Ltd., Alexandria, VA) and imaged via scanning electron 

microscopy (SEM) on an XL30 ESEM-FEG (FEI, Hillsboro, OR) with a 5kV beam and 

spot size of 3. Images were analyzed in Matlab for pore diameter and aspect ratio (n=3 

images, 90-120 pores quantified per image).  

3.2.6. NPSC CXCR4 Expression on HA-Lm Gel 

3.2.6.1. Temporal CXCR4 Expression  

HA-Lm gel films (Low HA/Moderate Lm, 100 µm thickness) were formed in the 

bottom of 6 well plates and allowed to gel for 15 hours in humid conditions at 37°C 

(n=3). NPSCs were seeded in mitogenic growth factor-free media as single cell 

suspension (5 x 105 cells/mL) directly on top of the films. NPSCs seeded on poly-L-lysine 

coating (PLL, 10µg/cm2, MP Biomedicals, Solon, OH) or maintained in non-adherent 

conditions served as controls. NPSCs were allowed to adhere for 1 hour prior to taking 

baseline samples (time 0). After culture for 0, 24, 48 and 72 hours, cells were lysed by 

mechanical agitation in cold RIPA buffer (Bioworld, Dublin, OH) containing proteinase 

inhibitor cocktail (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA1, % NP-40, 0.5% 

Sodium Deoxycholate, 0.1% SDS, 0.1% protease inhibitor cocktail (Sigma)). Protein 

concentration was determined by bicinchoninic acid assay (G-Biosciences, St. Louis, 

MO) prior to SDS-PAGE electrophoresis in 12% bis-acrylamide gels and western blotting 

for NPSC CXCR4 expression using β-actin to control for loading variability (rabbit anti-

CXCR4, 39 kDa, cat no: 2074, Abcam, Cambridge, England; mouse anti-β-actin, 45 kDa, 

cat no: 926-42212, LI-COR, Lincoln, NE). The Odyssey Infrared Imaging System (LI-

COR) was used to visualize bands stained with appropriate secondary antibodies 

(donkey anti-rabbit IRDye 800; donkey anti-mouse IRDye 680, LI-COR). Band density 

was quantified with the Image Studio software (LI-COR), normalized internally to β-
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actin and externally to non-adherent control culture samples and reported as relative 

density. 

3.2.6.2. Mechanistic CXCR4 Expression  

HA-Lm gels were formed as in the temporal CXCR4 expression experiments. 

NPSCs (5 x 105 cells/mL) were seeded on HA-Lm gels or on HA only gels. Prior to 

seeding, NPSCs were either pre-treated with anti-CD44 (100µg/mL) to inhibit HA 

interactions or its isotype control for 45 minutes at 37°C (rat anti-CD44, Millipore, 

Darmstadt, Germany; rat IgG1 κ isotype control, BioLegend, San Diego, CA) or received 

no pre-treatment.  NPSCs were cultured for 0 and 48 hours, lysed and analyzed by 

western blotting for CXCR4 expression as reported for temporal CXCR4 expression 

experiments (rabbit anti-CXCR4, Abcam; mouse anti-beta actin, LI-COR).  

3.2.7. Chemotactic NPSC Migration 

HA-Lm gels (1 mm thickness) were formed at the bottom of 24 well plate 8 µm 

pore size Transwell inserts (Corning Inc., Corning, NY) and allowed to gel for 15 hours at 

37°C in humid conditions (n=3 per group).  Groups included HA only gels, HA-Lm gels 

only or HA-Lm gels impregnated with the CXCR4 antagonist AMD3100 (5 µg/mL; Santa 

Cruz Biotechnology, Santa Cruz, CA), rat anti-CD44 (100 µg/mL; Millipore), or an anti-

CD44 isotype control (100 µg/mL; rat IgG1 κ BioLegend). NPSCs were then seeded 

directly on top of the gels (105 cells/mL) and cultured for 24 and 48 hours in mitogenic 

growth factor-free media. NPSCs seeded onto impregnated gels were incubated with 

their respective supplementation at the appropriate concentration for 45 minutes at 37 

°C prior to seeding. HA-only or HA-Lm gels were exposed to no SDF-1α, uniform SDF-1α 

or a gradient of SDF-1α. Uniform SDF-1α gels were allowed to saturate with SDF-1α (1 

µg/mL; PeproTech Inc., Rocky Hill, NJ) prior to NPSC seeding and supplemented with 1 
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µg/mL SDF-1α in both the top and bottom Transwell chambers, while gradient SDF-1α 

gels were not pre-saturated and the gradient was maintained out to 48 hours. SDF-1α 

concentration of 1 µg/mL was determined based on previous studies in NPSCs[2]. 

Effective SDF-1α gradient maintenance out to 48 hours was validated by enzyme-linked 

immunosorbent assay (ELISA, Figure 3.8). Briefly, gels were formed in Transwell inserts 

and exposed to SDF-1α gradients as in chemotactic experiments for 12, 24 or 48 hours 

(n=3 per time point). SDF-1α concentration of both the lower chamber (donor) and 

upper chamber (receptor) of the Transwell insert (Figure 3.8) were determined by 

ELISA. At 24 and 48 hours, NPSCs that had migrated through the gel to the Transwell 

membrane were stained with DAPI and counted using the cell counter ImageJ plugin 

(NIH, Bethesda, MD). 

3.2.8. Statistical Analysis 

Two-way ANOVA with Tukey’s post hoc test was performed for all experiments 

where statistical analysis was used (NPSC density, viability, chain length, temporal 

CXCR4 expression and mechanistic CXCR4 expression), where α=0.05 in Prism 6 

(GraphPad, Inc., La Jolla, CA). 

3.3. Results 

3.3.1. Formation of HA-Lm Gel Components 

Successful thiolation of HA was evidenced by the appearance of thiol peaks (2.5 

and 2.7 ppm) in the 1H NMR spectrum of HA-S compared to that of HA prior to 

thiolation (Figure 3.1A). Moreover, covalent immobilization of laminin to PEG-DVS was 

apparent through both the appearance of peptide peaks in the NMR spectrum of PEG-

DVS (Figure 3.1B) and the reduction of free vinyl groups relative to PEG groups in PEG- 
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DVS (Figure 3.1C). Collectively, these data indicate that our methods for formulating 

HA-Lm gel components enable the covalent immobilization of laminin within an HA 

hydrogel.  

3.3.2. NPSCs Survive and Spread on HA-Lm Gels at 72 hours  

NPSC density after 72 hours of culture on HA-Lm gels was found to be 

significantly higher on gels with lower HA concentrations and higher laminin 

concentrations (Low HA/ Moderate and High Lm) compared to all other groups, as 

illustrated in Figure 3.2A and Figure 3.3 (p<0.0001). Moreover, Low HA/ Moderate and 

High Lm gels were the only gels to support NPSC density increase above the initial 

plating density (Figure 3.2A). In quantifying percent viability, groups with low cell 

density yielded high variance in percent viability; therefore, groups with a coefficient of 

variance above 30% were omitted from statistical analysis (omitted groups included 

High HA gels and No Lm gels). NPSC viability was significantly higher on gels with lower 

HA concentrations and higher Lm concentrations (Low HA/Moderate and High Lm) 

compared to all other groups (p=0.0177, 0.0026, respectively). Moreover, NPSC chain 

length was significantly higher on gels that supported high NPSC density and viability 

(Low HA/ Moderate and High Lm) as compared to all other groups (p<0.0001) and on 

Moderate HA/ High Lm gels compared to all other Moderate HA gels (p=0.0016; Figure 

3.4). Overall, Low HA/Moderate and High Lm gels supported the highest NPSC density 

and viability and longest NPSC chain length. The Low HA/Moderate Lm gel formulation 

was chosen for subsequent experimentation to minimize laminin reagent consumption.  
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3.3.3. HA-Lm Gel Physical Properties are Relevant to Native Neural Tissue 

The storage modulus of HA-Lm gels (Low HA/Moderate Lm) was measured as 

1.02 kPa by rheology after gelation for 6 hours (G’, Figure 3.5A), which mimics the 

stiffness of native neural tissue (0.2-1kPa) [117]. Gelation time was 24 minutes at 37°C in 

humid conditions as indicated by the increase in storage modulus over the loss modulus 

(Figure 5A). SEM images illustrated a highly porous microstructure within the HA-Lm 

gel with pore size ranging from 2-17 µm and an average aspect ratio of 2.12 (Figure 3.5B), 

providing appropriate porosity for cellular infiltration.  

3.3.4. HA-Lm Gel Upregulates NPSC CXCR4 Protein Expression 

NPSC CXCR4 expression was significantly increased after 48 hours of culture on 

HA-Lm gel compared to NPSCs cultured on poly-L-lysine (PLL) at all time points 

(p=0.0408) and to NPSCs cultured on HA-Lm gel for 24 (p=0.0145) and 72 hours 

(p=0.0097). After 72 hours of culture, CXCR4 expression on HA-Lm gel returned to 

basal PLL CXCR4 expression levels (Figure 3.6). The significant increase in CXCR4 

expression observed at 48 hours on HA-Lm gel was abrogated by inhibiting HA 

interactions with anti-CD44 (Figure 3.7A,B). CXCR4 expression after 48 hours of culture 

on HA-Lm gel impregnated with anti-CD44 was significantly reduced compared to that 

on HA-Lm gel without supplementation (p<0.0001) and was not significantly different 

from CXCR4 expression on PLL at 48 hours (Figure 3.7B).  Moreover, this reduction was 

due to HA interaction inhibition and not simply to antibody supplementation as CXCR4 

expression on gels impregnated with anti-CD44 isotype control was not significantly 

different from that on HA-Lm gels without supplementation (Figure 3.7B). NPSC 

adherence, and subsequently cell lysate protein concentration, was too low on HA only 

gels to allow for visualization of CXCR4 expression by western blotting.  
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3.3.5. HA-Lm Gel Promotes NPSC Chemotactic Migration in Response to SDF-1α 

Gradients 

The Transwell culture set-up successfully maintained an SDF-1α concentration 

gradient throughout the experiment, as determined by ELISA. After 48 hours, the SDF-

1α concentration in the donor (lower chamber) was 1.6-fold higher than that in the 

receptor (upper chamber) (Figure 3.8).  Correspondingly, NPSC migration in response to 

SDF-1α gradient was significantly increased at 48 hours when compared either to 24 

hours of migration in a gradient, or to any time point in response to uniform SDF-1α 

concentration or no SDF-1α (Figure 3.9A-C,J; p=0.0067,<0.0001 respectively). A 3.8-

fold increase in migration over uniform and no SDF-1α was also observed at 24 hours, 

however it was not significant (p=0.0676). Moreover, SDF-1α gradients play a critical 

role in mediating this response as evidenced by the reduction of NPSC migration to basal 

levels with the addition of the CXCR4 antagonist AMD3100 (Figure 3.9D,H). The 

addition of AMD3100 significantly reduced NPSC migration compared to HA-Lm gels 

without AMD3100 at both 24 and 48 hours (Figure 3.9J, p=0.0299, <0.0001 

respectively). Conversely, NPSC migration in HA-Lm gels+AMD3100 was not 

significantly different from uniform and no SDF-1α groups at either 24 or 48 hours.  

3.3.6. Enhanced NPSC Chemotactic Response in HA-Lm Gel Requires both HA and Lm  

NPSC chemotactic migration was attenuated when laminin was excluded from 

the gel and abrogated when HA interactions were blocked with an antibody against HA 

receptor CD44 (Figure 3.10). At both 24 and 48 hours, NPSC chemotactic migration was 

significantly reduced on HA-only gels compared to HA-Lm gels (p=.0085,<0.0001 

respectively). Interestingly, in HA-only gels NPSC migration at 48 hours increased 4.7-

fold over that at 24 hours, although the difference was not statistically significant. While 
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a low level of chemotactic migration was preserved in the absence of laminin, inhibiting 

HA interactions with anti-CD44 abrogated NPSC chemotactic migration such that it was 

10- and 8-fold less than NPSC chemotactic migration on HA-Lm gels at 24 and 48 hours, 

respectively. This significant decrease in NPSC migration in HA-Lm+anti-CD44 gels 

compared to HA-Lm gels at 24 and 48 hours (p=0.0046, <0.0001 respectively) was 

specifically due to HA interaction inhibition rather than to antibody supplementation as 

the isotype control for anti-CD44 did not affect NPSC migration. 

3.4 Discussion 

Historically, neural progenitor/stem cell (NPSC) transplantation following TBI 

has been plagued by low survival rates (2-4%) and poor engraftment into the 

surrounding tissue, which has impeded the full realization of NPSC transplant potential 

as a therapeutic intervention following TBI[25,102,106]. Some groups have turned to 

tissue engineered scaffolding to improve cell transplant survival and engraftment 

following TBI[122,124,162], while others have primed transplants biochemically for the 

injury microenvironment (i.e. CXCR4-overexpressing transplants) and observed 

increased viability and engraftment in the surrounding tissue[112,163]. While both 

approaches have yielded moderate improvements in transplant survival and 

engraftment, a dual-purpose hydrogel that simultaneously primes NPSC transplants for 

the injury microenvironment and provides the appropriate ECM infrastructure could 

offer the benefits of a multi-component transplant system while minimizing complexity. 

Neural tissue engineered scaffolds have largely focused on mimicking the neural 

niche environment so as to provide cell transplants with an environment permissive to 

NPSC survival and engraftment. The mechanical properties of the niche are most often 

re-created in hydrogels for neural tissue engineering as they can be tuned to mimic the 
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stiffness of native neural tissue. Our HA-Lm gel has mechanical properties similar to the 

neural niche (1.02 kPa storage modulus[117], Figure 3.5), providing the appropriate 

mechanical cues to NPSCs. This point is reflected in the significantly higher NPSC 

viability and density observed on low HA gels compared to moderate and high HA gels 

(Figure 3.2). Given that HA content correlates with gel stiffness [116], it can be 

postulated that the mechanical properties of the low HA gels are better suited for 

maintenance of NPSC culture than those of the higher HA content gels. However, the 

niche provides more than just mechanical cues to its resident NPSCs; it also provides 

critical ECM and soluble signals.  

Others have looked at incorporating peptide binding motifs (i.e. RGD or laminin 

binding domain[130,151]) and ECM proteins (i.e. fibronectin, collagen I, 

laminin[118,120,124,164]) within hydrogels to promote cell adhesion, however peptide 

binding motifs may not fully capture the functionality of the ECM protein they are 

intended to mimic and fibronectin and collagen I are not native to neural tissue. The 

vascular basement membrane protein laminin provides relevant ECM signaling to 

NPSCs in the subventricular niche where endogenous NPSCs have been shown to leave 

and home to the site of injury by way of the surrounding vasculature[32,48,165,166]. In 

our system, the inclusion of laminin significantly increased NPSC density, viability and 

chain formation compared to HA gels without laminin (Figures 3.2 and 3.4). Moreover, 

we have previously observed that signaling crosstalk between laminin and SDF-1α 

synergistically increases NPSC chemotactic migration[2]. Collectively, these data 

illustrate the significant role that laminin plays in regulating NPSC migratory behaviors 

in response to injury-relevant signaling.   

 



 

63 

Laminin alone does not comprise the niche and, as such, will not fully 

recapitulate the niche ECM environment for NPSC transplants. Within the 

subventricular niche, the glycosaminoglycan hyaluronic acid (HA) has been found at 

higher concentrations than elsewhere in the adult brain [125,126]. Interestingly, 

evidence of signaling crosstalk between the HA receptor CD44 and laminin was observed 

by Deboux et al., in which CD44-overexpressing NPSCs plated on laminin were observed 

to increase spreading and outgrowth [167], suggesting that the roles of laminin and HA 

in regulating NPSC fate within the niche environment may be more interconnected than 

previously described. Our data illustrate the critical individual roles that laminin and HA 

play in providing NPSCs with a substrate to support adherence and migration (laminin) 

and a substrate to regulate the NPSC receptor expression profile (HA).  Upon inhibiting 

HA interactions, NPSCs remained adhered to the HA-Lm gel but their CXCR4 protein 

expression was significantly attenuated whereas excluding laminin abrogated NPSC 

adherence, leaving the system irrelevant for transplantation applications (Figure 3.6). 

CXCR4 protein expression within the adult brain is restricted to NPSCs, as such, 

maintenance of this phenotypic marker without compromising NPSC adhesion and 

migration may be attributed to the specialized microenvironment of the niche [136]. 

Therefore, we postulate that the ECM signals provided to NPSCs by the HA-Lm gel are 

more comprehensive in their recapitulation of the niche ECM environment than 

previously developed hydrogel systems. 

Increases in CXCR4 protein expression on the HA-Lm gel directly correlated with 

increased NPSC chemotactic migration in response to gradients of the injury-relevant 

chemokine SDF-1α. Inhibiting NPSC interaction with either component of the gel 

significantly reduced chemotactic migration in response to SDF-1α gradients indicating 

the synergistic effect that HA and laminin have on promoting NPSC chemotactic 
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response to SDF-1α (Figure 3.10). Previous studies on NPSC migration in response to 

SDF-1α gradients when plated on laminin in 2D yielded data similar to that observed 

here for HA-Lm gels impregnated with anti-CD44 [2]. Increased NPSC chemotactic 

migration on HA-Lm gels is critically dependent on SDF-CXCR4 interactions as 

inhibition of this signaling axis with CXCR4 antagonist AMD3100 reduced NPSC 

migration to levels comparable to that on HA-Lm gel with either uniform or no SDF-1α 

(Figure 3.10); however, it is important to consider alternative mechanisms that may 

contribute to increased NPSC migration within the HA-Lm gel. CD44 interaction with 

HA has been observed to precede and facilitate the formation of focal adhesions in other 

cell types [168,169] and it is thought that CD44 works closely with integrin β1 to promote 

transmigration of intravenously injected NPSCs as they migrate towards regions of 

neural injury [167,170]. Therefore, the role of HA within the HA-Lm gel may not only be 

to promote CXCR4 expression but also to promote adhesion and migration on laminin. 

To this end, the results of using of laminin peptide sequences instead of full-length 

laminin could raise interesting questions regarding the distinct roles of HA and laminin 

within the gel. Given the mechanistic ambiguity surrounding potential crosstalk between 

HA and laminin, we feel that the inclusion of full-length laminin may more effectively 

allow these signaling events to occur. However, future mechanistic studies investigating 

the distinct role of laminin within the gel may utilize such peptides. 

Interestingly, NPSC chemotactic response to SDF-1α was not completely 

abrogated after 48 hours of culture on HA-only gels (Figure 3.10). NPSCs cannot form 

focal adhesions to HA alone as HA interactions are mediated by receptor CD44 and the 

hyaluronan-mediated motility receptor (RHAMM), not by integrins [171]. Given that 

NPSC migration in 2D is typically focal adhesion-dependent[172,173], the chemotactic 

migration of NPSCs within an HA-only gel was a very intriguing finding. Moreover, 
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NPSC adherence to HA only gels in the absence of SDF-1α was minimal (Figure 3.7), 

leading us to suspect an interaction between HA and SDF-1α that may alter NPSC 

adhesion and migration behaviors. We postulate two potential scenarios in which NPSCs 

may migrate through HA-only gels in the presence of SDF-1α: 1. HA may promote NPSC 

ECM production and 2. NPSCs may exhibit migratory mode plasticity dependent on 

environmental conditions. HA has been observed to induce the production of integrin-

binding osteopontin and collagens in other cell types [174,175]. Moreover, astrocytes are 

known to secrete ECM in vitro [176] and given the heterogeneous nature of the 

neurosphere assay [177,178], there may be a subset of NPSCs capable of secreting ECM 

within the HA only gel. NPSC migration through HA only gels was only observed after 48 

hours, thus it is feasible that matrix is being produced on which the NPSCs are then able 

to migrate in a more typical focal adhesion-mediated manner, however further 

investigation is necessary to elucidate the potential formation of focal adhesions in this 

context, particularly in light of low NPSC adherence to HA only gels in the absence of 

SDF-1α. Alternatively, NPSC migration mechanisms may be more adaptive than 

previously described as environment-dependent migration mode plasticity has been 

observed in other cell types (i.e. 2D versus 3D [179,180]). In 3D, cells do not appear to 

form stable focal adhesions during migration but may instead depend on pseudopodia to 

move through the ECM [181,182]. Transient cell-matrix and cell-cell adhesion is also 

found in NPSCs migrating by chain migration mechanisms through the rostral migratory 

stream (RMS), an area with high concentrations of HA in the adult brain [125].  While 

chain migration on HA in the RMS draws an interesting conceptual parallel with data 

presented here, NPSC chain migration has been observed to be dependent on β1 integrin 

signaling and as such would still require a substrate that supports β1 integrin binding 

[39]. Interestingly, Avigdor et al. have proposed that SDF-1α may function to increase 
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CD44 avidity to HA in HSCs, allowing for increased HSC retention in SDF-1α rich niches 

independent of integrin anchoring[155]. Investigating HA-SDF-1α interaction by this 

mechanism and probing for the formation of focal adhesions in NPSCs migrating on HA-

only gels in response to SDF-1α gradients would enlighten these postulations and 

provide insight into the mechanisms by which NPSCs are migrating in this context.  

Regardless of mechanism, the capacity of NPSCs to migrate through the bulk of 

the HA-Lm gel, as opposed to on top of it or along an interface, indicates the relevancy of 

the gel to in vivo transplantation applications as these cells would be tasked with 

migration through the bulk of the gel into the surrounding tissue post-transplantation. 

Thus, NSPC migration through the HA-Lm gel provides motivation for future work 

investigating its effects after neural injury. 

3.5 Conclusion 

Given the local increases in SDF-1α after brain injury and the critical role that others 

have found SDF-1α to play in regulating NPSC fate after brain injury, increasing NPSC 

response to SDF-1α may serve as a viable approach to improving NPSC transplant 

efficacy following TBI. We have shown here that our HA-Lm gel both biochemically 

primes NPSCs for the injury microenvironment by upregulating the SDF-1α receptor 

CXCR4 and provides the appropriate ECM cues to promote migration in response to 

SDF-1α. Therefore, this platform may serve to improve transplant efficacy by providing 

transplants with the tools to dynamically respond to the injury microenvironment. 
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3.6 Figures 

 

Figure 3.1: Gel formulation proof of concept. Successful HA thiolation was evidenced by 

the appearance of thiol group peaks (red rectangle) in the NMR spectra of HA-S 

compared to HA (A). Laminin was covalently immobilized to PEGDVS as evidenced by 

the appearance of peptide peaks (red rectangles) in the NMR spectra of PEGDVS-Lm 

compared to PEGDVS (B). The PEGDVS-Lm spectra had a marked reduction in the ratio 

of free vinyl groups to PEG groups compared to PEGDVS (C), indicative of vinyl groups 

having bound to laminin free thiols.  

Table 3.1: HA-Lm gel formulation naming convention. NPSC response was studied on all 

combinations of HA and laminin w/v percentages. Gel formulations will be referenced 

according to labels that provide relative descriptions of HA and laminin content. For 

example, a 1.75% HA/0.010% Lm gel will be referenced as a Low HA/Moderate Lm gel 

throughout the text.   
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Figure 3.2: NPSC density and viability after 72 hours of culture on a spectrum of gel 

formulations. NPSC density was significantly higher on gels with low HA and moderate 

and high Lm content compared to all other gels formulations and these were the only 

formulations in which density increased over the plating density (A). Moderate HA/High 

Lm supported significantly higher NPSC density than other moderate HA formulations, 

but it did not exceed the initial plating density. Low HA/Moderate and High Lm gels 

supported significantly higher NPSC viability compared to the Low HA/Low Lm gel and 

to the Moderate HA/Low and Moderate Lm gels (B). **p<0.01 compared to Low HA/No 

and Low Lm gel, all Moderate and High HA gels; #p<0.05 compared to other Moderate 

HA gels;*p<0.05 compared to all Low Lm gels and Moderate HA/Moderate Lm gel. 
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Figure 3.3: NPSC viability and density after 72 hours of culture on a spectrum of gel 

formulations. Live/dead assay images of Low HA gels (A-D), Moderate HA gels (E-H) 

and High HA gels (I-L) with No laminin (A,E,I), Low laminin (B,F,J), Moderate laminin 

(C,G,K) and High laminin (D,H,L). Density and viability are notably higher on Low 

HA/Moderate and High Lm gels and on Moderate HA/High Lm gels. Scale bars are 150 

microns. 

 

 

Figure 3.4: NPSC chain length after 72 hours of culture on a spectrum of gel 

formulations. Chain length was measured in Matlab as a tertiary metric for gel 

optimization, where chainlike assemblies were defined as one or more NPSCs 
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continuously connected via neurite outgrowth in a linear fashion (A,B). Chain length on 

low HA/Moderate and High Lm gels was significantly longer compared to all other gel 

formulations (C). Chain length on Moderate HA/High Lm gels was significantly longer 

than all other Moderate HA gels. **p<0.01 compared to Low HA/No and Low Lm gel, all 

Moderate and High HA gels; #p<0.05 compared to other Moderate HA gels. Scale bar is 

100 microns. 

 

 

Figure 3.5: Physical properties of the Low HA/Moderate Lm gel. HA-Lm gel storage 

modulus was 1.02 kPa, which is similar to that to native neural tissue (0.2-1.0 kPa) and 

gelation time was 24 minutes(A).   SEM images illustrate that the microstructure is 

highly porous with interconnected pores ranging from 2-17  µm with an average aspect 

ratio of 2.12. Scale bar is 20 µm  
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Figure 3.6: HA-Lm gel promotes NPSC CXCR4 upregulation after 48 hours of culture. As 

determined by western blotting, NPSC CXCR4 protein expression on HA-Lm gel (Low 

HA/Moderate Lm) is significantly increased compared to PLL at all time points and to 

HA-Lm gel at all other times points (A,B). CXCR4 expression normalized internally to 

beta-actin expression and externally to CXCR4 expression in non-adherent culture (NA). 

*p<0.05 compared to all other time points and culture conditions.  

 

 

Figure 3.7: HA-Lm gel-mediated NPSC CXCR4 upregulation is critically dependent on 

HA. Inhibition of HA with function blocking anti-CD44 abrogates CXCR4 upregulation 

at 48h (A,B). These differences were specifically due to HA inhibition as CXCR4  



 

72 

expression with isotype control supplementation was not significantly different from 

HA-Lm gel at 48h (B). Exclusion of Lm within the gel did not allow for sufficient 

adherence of NPSCs to the gel and thus protein levels were too low for effective detection 

by western blotting, leaving the system irrelevant for transplantation. *p<0.05 compared 

to HA-Lm gel at 48 hr; ns = not significantly different from HA-Lm gel at 48 hr.  

 

 

Figure 3.8: SDF-1α gradient maintenance in Transwell set up out to 48 hours. SDF-1α 

was allowed to diffuse across the gel within the Transwell set up and SDF-1α 

concentration within the donor (lower chamber) and receptor (upper chamber) was 

measured by ELISA at 0, 12, 24, and 48 hours (inset). SDF-1α concentration after 48 

hours remained 1.6-fold higher in the donor compared to receptor. 
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Table 3.2: Experimental groups used to characterize NPSC chemotactic migration 

through the HA-Lm gel. NPSCs were either exposed to no SDF-1α (Group 1), uniform 

SDF-1α (Group 2) or a gradient of SDF-1α (Groups 3-7). NPSCs were seeded on either an 

HA-Lm gel (Groups 1-6) or an HA only gel (Group 7). Moreover, NPSCs exposed to a 

gradient of SDF-1α and seeded on an HA-Lm gel were supplemented with either 

AMD3100 (Group 4), anti-CD44 (Group 5), or an isotype control (Group 6). 

 

 

 

Figure 3.9: HA-Lm gel supports NPSC chemotactic migration in response to SDF-1α 

gradients. NPSC migration within Transwell set up (I) is not significantly different in the 

absence of SDF-1α (A,E) compared to uniform SDF-1α concentration (B,F) at 24 and 48 

h. In response to a SDF-1α gradient, NPSC migration increases at 24 h and significantly 

increases at 48 h compared to NPSCs not exposed to a SDF-1α gradient (J). This 

response is specifically mediated by SDF-1α as inhibiting its activity with AMD3100 
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reduced NPSC migration to levels observed in the absence of SDF-1α gradients. Scale bar 

is 150 microns, **p<0.01 compared to all other groups. 

 

Figure 3.10: NPSC chemotactic migration within HA-Lm gel is critically dependent on 

both HA and laminin. NPSC migration is significantly decreased on HA only gels 

compared to on HA-Lm gels at both 24 (A,D) and 48 hours(E,H). Moreover, NPSC 

migration is significantly decreased when HA signaling is inhibited with anti-CD44 at 24 

(B) and 48 (F) hours compared to migration on HA-Lm gel (I). Reduced NPSC migration 

is due specifically to CD44 inhibition as the appropriate isotype control does not 

significantly affect NPSC migration. Scale bar is 150 microns, *p<0.01 compared to other 

groups of same time point, #p<0.005 compared to HA-Lm at 48 hours, ns = not 

significantly different from HA-Lm gel group of same time point. 
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CHAPTER 4 

INCREASING NEURAL STEM CELL TRANSPLANT REPONSE TO SDF-1α 

GRADIENTS AFTER TRAUMATIC BRAIN INJURY 

4.1. Introduction 

Traumatic brain injury (TBI) is a significant public health concern in the U.S., 

where approximately 1.7 million Americans sustain a TBI annually, leading to an 

estimated 52,000 deaths and creating a significant strain on the U.S. healthcare and 

economy[4-6]. TBI is characterized by a primary, mechanical insult that results in an 

expansive biochemical insult at the cellular and subcellular levels, known collectively as 

the secondary injury[8]. The secondary injury creates a highly cytotoxic injury 

microenvironment in which pro-inflammatory and excitotoxic signals as well as reactive 

oxygen species are secreted by the surrounding activated astrocytes and 

microglia[13,183]. Moreover, breakdown of the blood-brain barrier after TBI allows for 

infiltration of inflammatory cells types that further exacerbate the injury[14]. Taken 

together, this creates a microenvironment that is not supportive of stem cell transplants. 

This is reflected in the low rates of stem cell survival, retention and engraftment 

following transplantation into an injury environment. Previous preclinical 

transplantation paradigms have shown moderate success after injury; however the full 

potential of these therapies has yet to be realized. Harting et al. reported a 1.9% retention 

rate at 48 hours after subacute transplantation into a controlled cortical impact model of 

TBI[106]. Similarly, Tate et al. reported survival rates of 2-3% at 1 week after NPSC 

subacute transplantation after controlled cortical impact[124]. We postulate that a viable 

approach to increasing transplant retention and engraftment may be increasing 

transplant responsiveness to the endogenous repair signaling that occurs parallel to the 

secondary injury.   
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Specifically, the chemokine stromal cell-derived factor-1α (SDF-1α) has been 

shown to play a critical role in recruiting endogenous neural progenitor/stem cells 

(NPSCs) to the site of injury[48,184,185]. In stroke models, SDF-1α has been shown to 

be upregulated by activated astrocytes and microglia within the injury penumbra, 

creating a chemoattractive source for endogenous NPSCs[55,56,186]. Simlarly, Itoh et al. 

have observed increased SDF-1α within the injury penumbra after TBI; however, the 

mechanism of increase in this context was not explicated identified[53]. As such, some 

groups have looked to capitalize on this endogenous SDF-1α source by transplanting 

cells that overexpress the receptor for SDF-1α, CXCR4. Studies to-date in CXCR4 

overexpression for transplantation have all been in mesenchymal stem cells (MSCs) as 

these cells are known to respond to SDF-1α, yet lose their CXCR4 expression in culture. 

Systemically administered CXCR4-transduced MSCs have been shown to improve 

homing within the brain as well as promote neuroprotective and anti-inflammatory 

effects after TBI[112]. Similarly in a stroke model, Yu et al. observed improved transplant 

retention and motor function recovery after CXCR4-transfection in MSC 

transplants[163]. These studies have shown improvement in transplant efficacy, however 

they’ve utilized time- and cost-prohibitive techniques (i.e. transfection, transduction), 

which may create obstacles in scaling up technologies for clinical use. Moreover, while 

MSCs may be capable of differentiation down a neural lineage, NPSCs are inherently 

more inclined to give rise to neural cell types than MSCs and may be less inclined to form 

masses within the brain as has been observed with transplanted MSCs[98,187,188]. 

These technologies are also void of an equivalently promising approach to 

improving transplant efficacy: providing structural support to transplants. Increased 

NPSC transplant survival and enhanced distribution within the host tissue was observed 

by Tate et al. as a function of transplanting NPSCs within extracellular matrix (ECM) 
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scaffolds after TBI[124]. Alternatively, transplant scaffolding decorated with ECM 

peptides have been shown by Cheng et al. to increase NPSC transplant neuronal 

differentiation after TBI[123]. Therefore, providing the benefits of both CXCR4 

overexpression and structural support in one transplantation platform would minimize 

technological complexity. 

For these reasons, we have previously developed a dual-purpose hyaluronic acid-

laminin (HA-Lm) hydrogel that serves to 1. increase NPSC sensitivity to SDF-1α 

gradients by upregulating CXCR4 and 2. provide the appropriate infrastructure to 

support NPSC migration[3]. The design of this hydrogel was driven by mechanistic data 

illustrating the effect of its individual components, hyaluronic acid (HA) and laminin, on 

NPSC response to SDF-1α gradients. We found that the HA component induced CXCR4 

upregulation in NPSCs[3], while the laminin component engaged in a signaling crosstalk 

with SDF-1α that synergistically increased NPSC migration[2].  

Based on previous studies indicating the critical role of SDF-1α in promoting 

endogenous NPSC recruitment and studies illustrating the benefit of transplanting 

CXCR4-overexpressing MSCs after TBI, we postulate that transplanting CXCR4-

overexpressing NPSCs will enhance transplant efficacy after TBI. Specifically, we 

hypothesize that transplanting NPSCs within the HA-Lm gel will enhance their response 

to local SDF-1α signaling, thereby increasing transplant retention and migration into the 

surrounding host tissue after injury.  

4.2. Experimental Methods 

4.2.1. HA-Lm Gel Formation 

HA-Lm gel was formed as previously described[3]. Briefly, dithiopropionic 

dihydrazide (DTPH) was synthesized from DTPA and HH in a two-step reaction as 

previously described [158]. High molecular weight HA was functionalized with thiol 



 

78 

groups through conjugation of the terminal hydrazides on DTPH to the carboxyl groups 

on HA using EDC chemistry and subsequent reduction of disulfide bonds using DTT as 

previously described [159]. 1H NMR spectra was collected in D2O (400 MHz Varian 

liquid state NMR, Agilent Technologies, Santa Clara, CA, USA), and Ellman’s reagent 

test was used to quantify the concentration of conjugated thiols [160](data not shown).  

HA-S was sterilized by ethylene oxide gas and stored at -20°C.  

HA-S hydrogels were formed via Michael-type addition crosslinking with 

PEGDVS as previously reported[3,116]. Briefly, PEGDVS was dissolved in media at a 

concentration that yielded an equimolar ratio of thiol-reactive groups to thiols present 

on the HA-S. HA-S was dissolved in pH 3 mitogenic growth factor-free culture media 

(formulation described under section 2.2 NPSC isolation and culture) and titrated 

between pH 7 and pH 8 with 1 M NaOH using phenol red as a colorimetric indicator of 

pH. The HA-S solution was mixed with an equal volume of crosslinker solution and 

vortex mixed for 15 seconds prior to plating.  

Laminin was determined to have free thiols available for binding by Ellman’s 

reagent test, presumably from its cysteine-rich β chain (data not shown). Laminin was 

conjugated to PEGDVS via Michael addition at 0.01 wt% and 0.10 wt% respectively in 

PBS for 15 minutes at room temperature. Based on previous experiments[3], laminin was 

incorporated within the gel at 1.75 wt/v% by mixing with PEGDVS media solution and 

allowed to react 15 minutes at room temperature prior to mixing with HA-S solution, 

where PEGDVS concentration was adjusted to account for laminin incorporation.  

4.2.2. NPSC Isolation and Culture 

NPSCs were isolated from the medial and lateral germinal eminences of E14.5 C57BL/6 

mice based on previously published protocols[135] and in accordance with a protocol 

approved by the Institutional Animal Care and Use Committee at Arizona State 
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University. Briefly, mice were anesthetized at 3% isoflurane, rapidly decapitated, and 

fetuses were extracted from both uterine horns.  Fetal tissue was rinsed in cold Leibovitz 

medium (Life Technologies, Carlsbad, CA) at each stage of the germinal eminence 

dissection. The germinal eminences were rinsed with sterile, cold Leibovitz medium 

before mechanical dissociation in working NPSC medium (formulation described in 

Section 2.2) and plated at a density of 104 cells/mL in a humidified incubator at 37°C, 

20% O2, and 5% CO2. NPSCs were cultured as non-adherent neurospheres in working 

NPSC medium, passaged by mechanical dissociation, and utilized for experiments 

between passages 3 through 6.  

4.2.3. NPSC and SDF-1α dual injections into an intact brain 

 All transplantation studies were performed in accordance with the 

Arizona State University Institutional Animal Care and Use Committee. Immediately 

prior to transplantation, NPSCs were labeled with QTracker 655 according to the 

manufacturer protocol (Life Technologies). Labeling with QTracker 655 did not 

adversely affect NPSC viability, proliferation, migration or capacity for differentiation as 

determined by Live/Dead assay, MTT assay, a radial migration assay and 

immunocytochemistry, respectively (data not shown). For all experiments, NPSCs were 

transplanted at a density of 3 × 104 cells/µL.  

Transplantation into an intact brain was performed to determine the efficacy of 

the HA-Lm gel in promoting NPSC response to exogenous SDF-1α gradients without 

confounding effects from a TBI. For these experiments, adult male C57/BL 6 mice (n=3 

per group) were anesthetized and a craniotomy performed as in the CCI procedure and 2 

µL of NPSC suspension was transplanted bolus, within the HA-Lm gel, or within the HA-

Lm gel impregnated with the CXCR4 antagonist AMD3100 at 1.5 mm anterior of 
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bregma, 1.5 mm lateral of midline and a depth of 0.8 mm. Immediately following NPSC 

transplantation, 2 µL of exogenous SDF-1α (100 µg/mL) was injected 0.5 mm away from 

the NPSCs (at 1.5 mm anterior to bregma, 2.0 mm lateral of midline) at a depth of 0.8 

mm. Separate 5 µL Hamilton syringes were used for bolus NPSC and SDF-1α injections 

and a 25 µL Hamilton syringe was used for HA-Lm gel injections to accommodate the 

higher viscosity of the HA-Lm solution (Hamilton, Reno, NV). The needle was 

stereotaxically placed before lowering 0.5 mm into the cortical tissue at a rate of 0.15 

mm/min, held for 1 min, retracted to 0.3 mm and syringe contents injected at 0.5 

µL/min and held again for 1 min before retracting, where the entire injection occurred 

over a span of 10 minutes per injection. At 1, 3, and 7 days post-injection, the mice were 

sacrificed by pericardial perfusion and post-fixed in 4% paraformaldehyde.  

4.2.4. NPSC Retention and Chemotactic Migration in an Intact Brain 

Following fixation, intact brains mice that received NPSC and SDF-1α dual 

injections were saturated with 30% sucrose, frozen and serially sectioned. Sections were 

blocked with goat serum, but not permeabilized, to maintain QTracker 655 retention 

within the transplanted NPSCs. Sections were stained for SDF-1α (rabbit anti-SDF-1α, 

Abcam; AlexaFluor-488 conjugated anti-rabbit, Life Technologies) and visualized using 

fluorescence microscopy (DMI6000B, Leica). Specifically, for each section both needle 

tracks and the area between them were imaged by taking three 40X tile scan images of 

0.23 mm width each to span the entire injection area as illustrated in Figure 4.2 (n=6 per 

animal). Images were analyzed for retention within the brain and chemotactic migration 

away from their injection site and towards the exogenous SDF-1α injection site. Cell 

retention was defined as the labeled NPSC count per section for all three tile scans, while 

migrating NPSCs were defined as the labeled NPSCs per section within the central tile  
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scan only (excluding cells remaining within the needle track), as illustrated in Figure 

4.2B,C. Conditions for counting labeled NPSCs were set to minimize the incidence of 

false positives where a DAPI stained nuclei was required to be less than 10 µm away from 

two or more positive punctate 655 signals that were greater than 1 pixel in size. 

Moreover, if the positive 655 signal within one cell was sharing a border with a second 

cell, then it was only counted as a single labeled cell. Examples of NPSCs that do and do 

not satisfy the conditions for being counted are shown in Figure 4.3.  

4.2.5. Controlled Cortical Impact Model 

 The controlled cortical impact model (CCI) was used to impart unilateral 

frontoparietal cortex contusions in mice in accordance with the Arizona State University 

Institutional Animal Care and Use Committee[189]. Briefly, adult male C57/BL 6 mice 

were anesthetized using isoflurane and immobilized in a stereotaxic frame (Leica, 

Wetzlar, Germany). A 3 mm diameter craniotomy was performed using a biopsy punch, 

keeping the dura mater intact, centered 1.5 mm anterior of bregma and 1.5 mm lateral of 

midline. Following craniotomy, a 2 mm diameter electromagnetically driven piston was 

centered 1.5 mm anterior of bregma and 1.5 mm lateral of midline and impacted 1 mm 

into the cortical tissue at a velocity of 6 m/s for a duration of 200 ms (ImpactOne, Leica). 

Bleeding was stopped using a cellulose sponge prior to closing the incision.  

4.2.6. Spatial and Temporal Distribution of SDF-1α after CCI 

 The brains of mice that received CCI only were used to determine the spatial and 

temporal distribution of SDF-1α after injury. Animals were sacrificed at 1, 3 and 7 days 

after CCI by pericardial perfusion. Following fixation, brains were saturated with 30% 

sucrose, frozen and serially sectioned. Sections were blocked with 8% goat serum and 

permeabilized with Triton-X 100(Fisher Scientific, Houston, TX) prior to staining 
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against SDF-1α (rabbit anti-SDF-1α, Abcam, Cambridge, England; AlexaFluor-555 

conjugated anti-rabbit, Life Technologies, Carlsbad, CA) and visualized via fluorescence 

microscopy (DMI6000B, Leica). 

4.2.7. NPSC transplantation into an injured brain 

 A CCI was administered to adult male C57/BL 6 mice as described previously. 

Three days after injury, mice (n=4 per group) were anesthetized and stabilized using a 

stereotaxic frame before receiving 4 µL of either vehicle (mitogenic growth-factor free 

NPSC media), bolus NPSCs or HA-Lm gel only. Transplantations were stereotaxically 

oriented at 1.5 mm anterior to bregma, 1.5 mm lateral of midline and a depth of 0.3 mm.  

As during transplantation into an intact brain, separate Hamilton syringes were used for 

each group (5 µL syringes for vehicle and bolus groups; 25 µL for gel only and NPSC in 

gel groups), where the needle was lowered 0.5 mm into the cortical tissue at 0.15 

mm/min, held for 1 min, retracted to 0.3 mm, syringe contents expelled at 0.5 µL/min 

and held again for 1 min before retracting, where the entire injection occurred over 15 

minutes. At 1, 3, and 7 days post-transplantation, mice were sacrificed by pericardial 

perfusion and post-fixed in 4% paraformaldehyde.  

4.2.8. NPSC Survival and Migration into Host Tissue in an Injured Brain 

 Injured brains that received bolus or HA-Lm gel encapsulated NPSCs were 

processed and stained as those used in Section 4.2.6. The injury penumbra was divided 

into 3 regions of 0.23 mm width each that were categorized as the proximal, medial and 

distal regions relative to the lesion.  Within each region, 40X images were acquired (n=4 

per region) and analyzed for number of labeled NSPCs. NPSC transplant survival was 

assessed by TUNEL staining for apoptotic cells.  
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4.2.9. Statistical Analysis 

 One-tailed t-tests were performed to compare bolus to HA-Lm encapsulated 

NPSCs in all studies where α=0.05 and the null hypothesis was that HA-Lm gel 

encapsulation would not increase NPSC retention/chemotactic migration. Error was 

reported as standard error of the mean and all statistical analysis was performed in 

Prism 6 (GraphPad Inc., La Jolla, CA) 

4.3. Results 

4.3.1. SDF-1α is Acutely Upregulated Within the Injury Penumbra after CCI 

 Qualitative assessment of SDF-1α expression within the injury penumbra 

indicated that SDF-1α expression increased acutely after the CCI mouse model of TBI. 

Local, penumbral increase in SDF-1α peaked at 1 day after CCI compared to sham 

(Figure 4.1A,D). Increased SDF-1α expression was sustained at 3 days after CCI 

compared to sham brains; however, the spatial distribution of SDF-1α was concentrated 

within the cortical tissue along the edge of the injury lesion rather than directly ventral of 

the lesion within the penumbra as seen in day 1(Figure 4.1B,D). Both day 1 and day 3 

ispilateral SDF-1α expression increased compared to appropriate contralateral controls 

(Figure 4.1A,B,E,F). At 7 days after CCI, increased SDF-1α expression was more diffuse 

in nature compared to at days 1 and 3 and appeared to have minimally increased 

compared to contralateral SDF-1α expression levels(Figure 4.1C,G).  However, SDF-1α 

expression at day 7 did remain elevated compared to sham brains(Figure 4.1C,D,G,H). 
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4.3.2. HA-Lm gel significantly increases NPSC transplant acute retention within intact 

brain 

Average NPSC transplant retention was significantly higher at 1 and 3 days when 

transplanted in the HA-Lm gel compared to bolus transplantation (p=0.0029,.0296 

respectively, Figure 4.4, 4.5A). By day 7, there was no significant difference between 

bolus and HA-Lm gel transplanted NPSCs (p=0.2461, Figure 4.4, 4.5A). NPSC count per 

mm2 when transplanted bolus was 293.0±39.11, 372.5±3.62, and 418.6±19.11 at days 1, 

3, and 7, respectively. When transplanted within the HA-Lm gel, NPSC count per mm2 

was 572.6±32.60, 572.6±88.53, and 454.1±35.62 at days 1, 3, and 7, respectively. 

4.3.3. HA-Lm gel significantly increases NPSC transplant acute chemotactic migration 

within intact brain 

 NPSC migration out of the transplantation site towards the exogenous SDF-1α 

injection site was significantly increased at days 1 and 3 when transplanted within the 

HA-Lm gel compared to bolus (p= 0.0432, 0.0081, respectively, Figure 4.5B). NPSC 

transplant chemotactic migration was not significantly different by day 7 between HA-

Lm gel and bolus transplants (p=0.2627, Figure 4.5B).  When transplanted as bolus 

injection, migrating NPSC count per mm2 was 100.7±15.73, 122.3±2.71, and 151.2±11.34 

at days 1, 3, and 7, respectively. When transplanted within the HA-Lm gel, migrating 

NPSC count per mm2 was 166.7±3.10, 187.7±16.14, and 160.0±3.04 at 1, 3, and 7 days, 

respectively. 

4.3.4. HA-Lm gel did not mitigate NPSC transplant apoptosis after 7 days 

 Based on morphological observations of NPSC transplants at 7 days after 

transplantation, it appeared that NPSCs were undergoing apoptosis in both the bolus  
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and HA-Lm gel transplant groups (Figure 4.6). Specifically, a large portion of labeled 

NPSC transplants at the 7 day time point had a multi-nucleated morphology, as 

illustrated in Figures 4.3D and 4.6. Both the bolus and HA-Lm gel groups displayed an 

increase in multi-nucleated cells with positive QTracker 655 labeling at 7 days after 

transplantation compared to 1 and 3 days after transplantation. 

4.4. Discussion 

 The need for improved therapies following TBI is evidenced by the high 

percentage of patients suffering long-term dysfunction after injury[7]. Current stem cell 

transplantation paradigms have demonstrated that cell therapy may be a viable approach 

to mitigating the deleterious effects of the secondary injury; however, transplants suffer 

from low rates of survival and engraftment[25,106,124,137]. To this end, researchers 

have looked to increase transplant efficacy through several means. One approach is to 

utilize the transplants as delivery devices where transplants are engineered to 

constitutively overexpress growth and/or trophic factors (i.e. fibroblast growth factor, 

brain-derived neurotrophic factor)[110,111,190]. While this approach has shown 

improvement in transplant engraftment and increased extracellular levels of their 

respective protein it does not enable dynamic transplant interaction with and response 

to the injury microenvironment. Given the transient and dynamic nature of injury-

induced signaling, the capacity to dynamically respond to the injury microenvironment 

may prove beneficial to transplants. One approach that provides transplants with the 

means to respond to the injury microenvironment is enhancing transplant 

responsiveness/sensitivity to endogenous signaling factors within the injury 

environment, typically through genetic manipulation (i.e. transfection, 

transduction)[112,163]. Alternatively, transplants may be provided a scaffold 

environment as a tool to enable their retention and survival after injury. Transplant 
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scaffolds will also serve to modulate transplant response to the injury; however, 

scaffolding is typically not thought to do so through biochemical priming of transplants 

to enhance responsiveness/sensitivity to the injury environment. Rather, the main 

mechanism of benefit of scaffolding has previously been viewed as its capacity to create a 

permissive transplant environment that provides structural support and beneficial 

insoluble signaling to transplants[191]. Our approach has been to investigate scaffolding 

as a means to enhance transplant responsiveness to endogenous repair signaling within 

the injury microenvironment. In this way we have looked to provide transplants with a 

dual-purpose tool that combines the benefits of a permissive scaffolding environment 

with increased capacity to dynamically respond to injury-induced signaling. 

 Specifically, enhancing NPSC transplant responsiveness to the chemokine SDF-

1α may prove beneficial based on its critical role in mediating NPSC behavior after 

neural injury[48,53,55] and based on previous studies in CXCR4-overexpressing 

MSCs[112,163]. Our data demonstrate that the HA-Lm gel does enhance NPSC 

transplant chemotactic migration in response to SDF-1α gradients in vivo. These 

findings illustrate the feasibility of using a transplant scaffold to modulate NPSC 

responsiveness to injury-relevant signaling. However, in order for our transplantation 

platform to be effective in the context of an injury, transplants need exposure to SDF-1α 

signaling.  

To this end, we observed a prominent increase in SDF-1α positive stain within the 

injury penumbra after our small animal model of TBI. Specifically, SDF-1α expression 

within the injury penumbra peaked at 1-3 days after injury and remained elevated out to 

7 days. These findings have been validated by unpublished quantitative enzyme-linked 

immunosorbent assay data within our lab. Previous work by Shear et al. demonstrated  
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that transplanting 2-7 days after injury yielded the highest rates of transplant survival, 

illustrating a temporal “window” for transplantation[25]. This temporal transplant 

window is framed by a robust inflammatory response within the first 24 hours after 

injury and by the onset of glial scar formation at 7-14 days after injury[103,192]. 

Therefore, SDF-1α upregulation within the range of 2-7 days after injury demonstrates 

that SDF-1α will be available within a time frame that is relevant to NPSC 

transplantation. 

Another critical component of the transplant microenvironment is the 

inflammatory response. Our system may be interacting with the inflammatory response 

in a manner that could be contributing to enhanced transplant retention and 

chemotactic migration. Specifically, high molecular weight HA, such as that used to form 

the HA-Lm gel, serves an anti-inflammatory purpose within the brain and may also serve 

to reduce the formation of the glial scar after TBI[193,194]. Moreover, as we move 

towards transplantation after TBI it will be critical to consider that the transplants 

themselves have the capacity to modulate inflammation. This modulation of the injury 

environment has been called the “bystander effect,” in which transplants do not actively 

replace cells, but rather provide support to host cells through trophic and/or growth 

factor signaling and reducing pro-inflammatory signaling[195,196]. 

To this end, an unexpected observation included the apoptotic transplant 

morphology seen at day 7 in both the bolus and HA-Lm gel NPSC transplants; however, 

apoptotic staining (i.e. TUNEL) will need to be performed to confirm these observations. 

At 7 days after transplantation, we observed positively labeled, multi-nucleated cells as 

illustrated in Figure 4.3D, 4.6. These observations may be indicative that the HA-Lm gel 

does not enhance NPSC transplant survival at a subacute, 7 day time and/or that by 7  
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days the QTracker 655 gets expelled from transplants and phagocytosed by multi-

nucleated inflammatory cell types. TUNEL staining will elucidate the survival of NPSC 

transplants as a function of the HA-Lm gel platform. 

In this light, a more robust method for tracking cells (i.e. GFP labeling) may help 

to minimize confusion regarding label retention moving forward. The NPSCs used in 

these studies were primary fetal-derived cells, which are highly sensitive to their 

extracellular environment. This, taken together with our need to maintain labeling out to 

7 days, restricted available labeling methods. Of the available labeling methods, 

QTracker 655 yielded the highest NPSC viability without adverse effects on NPSC 

migration, proliferation and capacity for differentiation. GFP-labeled NPSCs would allow 

for monitoring transplant morphology and would eliminate the need for the cell counting 

conditions currently required to minimize incidences of false positives with QTracker 

655. 

4.5. Conclusion 

While several questions remain open-ended regarding the effect of the HA-Lm 

gel on NPSC transplants, specifically within the context of an injury environment, the 

HA-Lm gel acutely enhanced NPSC transplant retention and chemotactic migration in 

response to SDF-1α gradients as was its design goal. We look forward to data illustrating 

the effect of the HA-Lm gel on NPSC transplants after TBI. 
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4.6. Figures 

 

Figure 4.1: Qualitative assessment of the spatial and temporal distribution of SDF-1α 

after CCI. Prominent increases in SDF-1α expression were observed within the injury 

penumbra after CCI at 1 and 3 days (A,B) compared to the contralateral cortex (E,F,) and 

to sham brains (D,H). A diffuse increase was maintained at 7 days after CCI in both the 

ipsilateral (C) and contralateral cortices (G) compared to sham brains (D,H). 

 

Figure 4.2: Schematic illustrating the spatial transplantation parameters and NPSC 

counting regions. NPSCs were transplanted 0.5 mm medial to the exogenous SDF-1α 

injection site(A). NPSC retention was calculated by counting both the NPSCs retained 
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within their injection site and the NPSCs migrate towards the SDF-1α injection site (B). 

Migrating NPSCs were counted as only those NPSCs migrating away from their injection 

site towards the exogenous SDF-1α injection site(C).  

 

Figure 4.3: Examples illustrating the different criteria for counting labeled NPSC 

transplants. An example of a labeled cell (�) next to an unlabeled cell (°) based on the 

criteria outlined in section 4.2.4.(A). An example of a labeled NPSC sharing a boundary 

with another NPSC, counting as only one labeled cell (arrowhead indicates boundary, B). 

An example of extracellular QTracker 655 that is not affiliated with an NPSC transplant 

(arrowheads, C). An example of a labeled, but multi-nucleated cell, indicating that it is 

apoptotic or an inflammatory cell type has phagocytosed extracellular QTracker 655 

(white boundary, D). 

Figure 4.4: NPSC transplant retention and migration within an intact brain. At days 1 

and 3 there was enhanced QTracker 655 positive transplant retention (overview) 
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and migration (inset) when transplanted within the HA-Lm gel (B,D) as compared to the 

bolus transplants (A,C). Differences between retention and migration at 7 days post-

transplant in the bolus (E) and HA-Lm gel (F) groups are less robust. Moreover, the 

QTracker 655 positive signal appears to be less concentrated within cells and there are 

visible multi-nucleated cells with positive QTracker 655 signal. Overview scale bar is 250 

µm; inset scale bar is 100 µm. 

 

 

 

 

 

 

 

 

Figure 4.5: NPSC transplant apoptotic morphology at 7 days. Insets of bolus (A) and HA-

Lm gel (B) transplants within the active migration region displaying multi-nucleated 

DAPI staining (red arrowheads) and increased extracellular QTracker 655 positive signal 

(yellow arrowheads). Scale bar is 100 µm. 
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Figure 4.6: Quantification of NPSC transplant retention and migration within an intact 

brain. Transplantation within the HA-Lm gel significantly increased NPSC transplant 

retention (A) and chemotactic migration (B) compared to bolus transplant controls at 1 

and 3 days. *,**p<0.05, 0.01, respectively, compared to bolus of same time point.   
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

5. 1. Summary of Findings 

5.1.1. Aim 1: Determine the critical ECM migratory cues that mediate NPSC response to 

injury-relevant chemokine gradients. 

 We determined that the vascular basement membrane protein laminin engages in 

a signaling crosstalk with the injury-relevant chemokine, SDF-1α, that significantly and 

synergistically increased NPSC migration. SDF-1α-laminin crosstalk also significantly 

increased neuronal differentiation of NPSCs, however it did not have a synergistic effect 

on NPSC proliferation. SDF-1α enhanced NPSC proliferation regardless of extracellular 

matrix substrate. The most robust effect of SDF-1α-ECM crosstalk was observed in 

increased NPSC migration and as such, the remaining work was focused on enhancing 

NPSC chemotactic migration.  

5.1.2. Aim 2: Develop a neurotransplantation system that promotes NPSC response to 

critical chemotactic signals. 

 A hydrogel comprised of hyaluronic acid and laminin (HA-Lm gel) was developed 

and characterized that induced the upregulation of SDF-1α receptor CXCR4 in NPSCs. 

This upregulation was critically dependent on the HA component of the gel as blocking 

NPSC interaction with HA abrogated CXCR4 upregulation. Without the laminin 

component, NPSCs could not effectively adhere to the gel making both gel components 

critical for in vivo relevancy. Moreover, NPSC chemotactic migration through the HA-

Lm gel was significantly enhanced in response to SDF-1α in a manner that was critically 

dependent on the SDF-1α gradient, HA, and laminin. Therefore, the HA-Lm gel 

represented a scaffolding transplantation platform capable of enhancing NPSC response 

to injury-relevant signaling. 
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5.1.3. Aim 3: Determine the efficacy of transplanting CXCR4 overexpressing NPSCs for 

enhancing NPSC migration in response to injury-relevant chemotactic signaling. 

 The HA-Lm gel served to acutely increased NPSC transplant retention within an 

intact brain compared to bolus NPSC transplants. Moreover, transplantation within the 

HA-Lm gel significantly increased NPSC transplant migration towards an exogenous 

source of SDF-1α compared to bolus NPSC transplant chemotactic migration. Our 

animal model of TBI was found to increase SDF-1α expression within the injury 

penumbra at equivalent time points post-injury. Therefore, our TBI model can serve as a 

viable source for SDF-1α to NPSC transplants in ongoing studies post-injury. 

5. 2. Discussion 

The mechanisms behind NPSCs response to and mitigation of the secondary 

injury of TBI remain poorly understood. As such, many groups are actively working to 

understand the signals that attract endogenous NPSCs to the injury. We’ve chosen to 

investigate combinations of soluble and insoluble signaling pathways as mediators of 

NPSC recruitment. This research direction was derived from the migratory route 

undertaken by endogenous NPSCs; specifically, the tendency by NPSCs to affiliate with 

vasculature as they leave the neural niche and home to the injury environment[47,48]. 

By migrating along the vasculature, NPSCs are taking advantage of the unique 

extracellular matrix (or insoluble signaling) of the vascular basement membrane. 

Previous studies in the literature had also illustrated the critical dependence of 

endogenous NPSC recruitment on injury-induced SDF-1α upregulation (or soluble 

signaling)[55]. Taken together, these findings led us to hypothesize that there may be 

something specific about the interaction between soluble SDF-1α signaling and insoluble 

vascular basement membrane signaling that modulates NPSC behavior. Indeed, we 

found that there was a signaling crosstalk between SDF-1α and vascular basement 
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membrane protein laminin that significantly and synergistically increased NPSC 

migration. For our purposes, this data informed the focus of our transplantation 

platform development to enhance migration. For the field, this data served as valuable 

information regarding the mechanism of endogenous repair by NPSC recruitment to the 

site of injury.  

We used this information to guide the development of a novel transplantation 

platform that served to both increase the expression of the SDF-1α receptor, CXCR4, and 

to provide the laminin signaling previously determined to be an insoluble signal that 

mediated NPSC response to SDF-1α. In looking to develop a novel neurotransplantation 

platform, we looked to the neural niche for guidance and inspiration. The niche is highly 

vascularized (providing further motivation to expose transplants to laminin signaling) 

and also contains the glycosaminoglycan hyaluronic acid (HA) at higher concentrations 

than elsewhere in the adult brain[125,126]. Previous work in the literature indicated that 

HA increased responsiveness and/or sensitivity to SDF-1α in other stem cell types (i.e. 

MSCs, HSCSs)[154,155,197]. Therefore, we investigated the capacity of HA to increase 

NPSC responsiveness to SDF-1α and found that interaction with an HA hydrogel induces 

NPSC upregulation of the SDF-1α receptor CXCR4. Other methods for increasing NPSC 

responsiveness/sensitivity to SDF-1α were explored (i.e. hypoxic preconditioning, 

transfection); however, interaction with an HA hydrogel was the most appealing 

approach due to its relative simplicity and capacity to serve as a hydrogel transplantation 

scaffold. While hypoxic preconditioning has been shown to upregulate CXCR4, it may 

also have detrimental side effects on other cell signaling pathways. Transfection would 

allow for targeted CXCR4 overexpression; however, this option is time- and cost-

prohibitive when considering translation to the clinic. The complexity represented by 

these two methods (from the cell signaling and technological perspectives, respectively) 
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was avoided by modulating the extracellular environment with HA. Moreover, HA 

allowed us to combine the benefits of biochemical priming with the benefits of a 

transplantation scaffold into one comparably simple technology. Therefore, the HA 

hydrogel enabled us to probe an outside-in signaling mechanism to modulate CXCR4 

expression in NPSCs.  

Our first in vivo study aimed to evaluate the efficacy of the HA-laminin hydrogel 

in the absence of an injury microenvironment. The many confounding variables of an 

injury microenvironment would complicate our ability to directly evaluate the efficacy of 

our gel in promoting migration in response to SDF-1α signaling specifically. Therefore, 

the success of the HA-Lm gel in promoting NPSC migration in response to exogenous 

SDF-1α signaling in an intact brain indicates that the hydrogel platform is effective in its 

design and we are currently looking at its effect on NPSC transplants in the context of an 

injury microenvironment. By first evaluating the HA-laminin transplantation system in a 

more simplistic intact brain model, results with a pre-clinical small animal model of TBI 

will be informative to the field regardless of the outcome. In this way, observing no effect 

of the HA-Lm gel on NPSC transplants in an injury context will indicate that the field 

needs to look towards a therapy that is able to respond to multiple dynamic variables 

within the injury microenvironment.  

Alternatively, future studies with the HA-Lm gel as a transplant platform may 

require that the focus shift away from enhanced chemotactic migration as a means to 

enhance engraftment and promote survival. An interesting alternative may be that the 

HA-Lm gel promotes chemotactic migration in an attempt to enhance cellular “cargo” 

delivery. Specifically, the aforementioned bystander effect may prove to be more widely 

distributed and effective if NPSC transplants are able to leave the transplantation site 

with enhanced efficacy at acute time points. Given that the HA-Lm gel may not have 
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been able to mitigate subacute transplant apoptosis, its mechanism of benefit within the 

injury environment may be to encourage NPSC migration into the surrounding tissue 

prior to releasing their growth and/or trophic factor “cargo.”[195]  

 Since the onset of this work, the volume of work on HA scaffolding for neural 

stem cells within the field has significantly increased, specifically HA-laminin hydrogels, 

as evidenced by recent conference papers (Society for Biomaterials 2015, Biomedical 

Engineering Society 2015, abstracts unpublished). As such, our work contributes 

meaningful knowledge to an emerging area of interest within the biomaterials and neural 

tissue engineering communities.  

Moreover, this work has applications in many other fields of inquiry, as SDF-1α 

signaling is not exclusive to the neural injury environment. The SDF-1α -CXCR4 axis has 

been shown to play a complex role in the development of several pathologies including 

atherosclerosis[198,199] and subsequently, myocardial infarctions[200], and most 

notably tumor growth, vascularization and metastasis[201-203]. SDF-1α has also been 

implicated as a critical mediator of bone marrow-derived progenitor/stem cell homing to 

regions of stress and injury[204-208]. In these pathological contexts, the HA-Lm gel 

represents a tool to both develop a therapeutic intervention and to probe disease 

pathophysiology and progression.  

For example, following myocardial infarction (MI), SDF-1α is acutely upregulated 

within the infarct and border regions out to 3 days[209-211]. In this context, SDF-1α 

plays a critical role in recruiting systemic mesenchymal stem cells (MSCs) to aid in 

remodeling after MI[209,210]. The development of the HA-Lm gel was based, in part, on 

literature demonstrating that HA interactions induce CXCR4 overexpression in 

MSCs[153]. Therefore, the benefit of developing the HA-Lm gel for use as an MSC 

transplant scaffold post-MI is self-evident. Based on the roles of SDF-1α after MI 
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established in the literature, it is hypothesized that the HA-Lm gel may serve to 1) 

increase MSC transplant retention and survival 2) improve SDF-1α-induced re-

vascularization within the infarct region and 3) facilitate SDF-1α-mediated remodeling of 

the infarct region. Delivery of the HA-Lm gel without cell cargo may also be beneficial in 

itself after MI as it may serve to enhance responsiveness to local SDF-1α signaling in 

both local cardiac stem cell populations[212,213] and systemic MSC populations.  

However, the function of SDF-1α signaling extends beyond pathologies and as 

such, our HA-Lm gel may also be useful in probing and/or enhancing the homeostatic 

roles for SDF-1α. Specifically, SDF-1α -CXCR4 signaling plays critical roles in 

maintaining bone marrow and neural stem cell niches [214-217] and mediating 

inflammation[218-220] under normal physiological conditions. In this homeostatic 

context, the HA-Lm gel may be optimized for use as an artificial niche with the goal of 

probing niche dynamics. A more thorough understanding of stem cell niche dynamics 

would inform therapies that aim to enhance the endogenous stem cell response to injury. 

While our work has been focused on the development of a platform to facilitate repair 

following traumatic brain injury, we believe the HA-Lm gel to be relevant to a broader 

scientific community given the diverse nature of SDF-1α signaling.     

5.3. Future Work 

5.3.1. NPSC Transplant Response to Injury-Induced SDF-1α Gradients 

 Our completed data sets have demonstrated the efficacy of the HA-Lm gel in 

enhancing transplant retention and migration in response to exogenous SDF-1α 

gradients in vivo. Based on data obtained in Aim 1, we focused our efforts on enhancing 

NPSC transplant chemotactic migration towards SDF-1α and were successful in doing so 

without the confounding variables of the injury microenvironment. However, a more 

complete recapitulation of the injury microenvironment is necessary in moving this 
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technology towards clinical relevancy. Therefore, current studies are investigating the 

efficacy of our HA-Lm gel transplant system in an animal model of TBI. 

 Methods outlined in Section 4.2 describe an ongoing study that employs a 

controlled cortical impact model of TBI to model the injury microenvironment prior to 

transplantation. This study will determine the effect of the HA-Lm gel on transplant 

retention and migration into the surrounding tissue as a function of endogenous, local 

SDF-1α signaling. Moreover, we will also investigate how the HA-Lm gel affects 

inflammation after TBI. Recent work within the field indicates that transplants may 

contribute to repair after TBI through the “bystander effect” (i.e. modulation of 

inflammation and local trophic signaling) rather than cell replacement. Therefore, 

probing inflammatory metrics may provide a more complete understanding of the ways 

in which our transplantation system is interacting with and modulating the injury 

microenvironment. 

5.3.2. Human Induced Pluripotent Stem Cells as an Alternative Cell Source for 

Transplantation 

 Our current body of work investigates NPSC transplant response to injury-

relevant signaling after TBI as a function of transplant microenvironment with the long-

term goal of clinical translation. However, this work was focused on the response of 

fetal-derived NPSCs, which does not represent a clinically relevant cell source. First, 

these cells cannot be sustainably sourced and appropriately scaled in a human model due 

to scarcity of tissue and ethical concerns. Second, the NPSC phentoype is heterogeneous 

and will give rise to all cell types of the central nervous system, creating an 

uncontrollable variable during transplantation. Therefore, we have looked to an 

alternative cell source with increased clinical relevancy.  
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Specifically, we have begun collaboration with Dr. David Brafman at ASU to 

investigate the behavior of human induced pluripotent stem cell-derived neural 

progenitor cells (hNPCs) within our novel transplantation platform. These cells can be 

sourced from patient fibroblasts, representing a cell source that is not only more 

sustainable and less ethically controversial, but also has the potential to be patient-

specific. The combination of these traits (sustainability and patient specificity) makes 

this cell source an attractive candidate in moving towards a more clinically relevant stem 

cell transplantation population. 

To this end, ongoing work is investigating 1. the level of expression of CXCR4 in hNPC 

populations and 2. the effect of SDF-1α-laminin crosstalk on hNPC migration. 

Preliminary data indicate a basal level of CXCR4 expression within the hNPC population 

and that there may be a synergistic relationship between SDF-1α and laminin that 

enhances hNPC migration. However, migration of hNPCs in this context is lower than 

that observed for mouse NPSCs. As such, work in the immediate future will focus on 

continued probing of the hNPC response to SDF-1α-laminin crosstalk. Longer-term work 

will look towards the behavior of hNPCs within the HA-Lm gel and its regulation of their 

CXCR4 expression. 
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APPENDIX A 

DETAILED PROTOCOLS 
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A.1 Western Blotting and Sample Preparation from Neural Stem Cells 

Seeded on Hyaluronic Acid-Laminin 

A2.1.1. Required Materials 

80 µL HA-Lm gel per sample (see Chapter 3: Section 3.2.2. for material list, 

manufacturer information, monomer and crosslinker preparation, and method for gel 

preparation) 

Sterile 6-well plate 

Accutase* 

Millipore centrifugal filter units† (0.5 mL) 

Cold RIPA buffer (see Chapter 3: Section 3.2 for manufacturer) 

Protease inhibitor cocktail (see Chapter 3: Section 3.2 for manufacturer and working 

concentration) 

8 or 12% Bis-acrylamide gel (depedent on protein of interest) 

Note: western blotting reagents should be optimized based on target protein. Listed 

below are those used commonly by me and may be used as a starting point for 

optimization. 

PVDF transfer membranes 

Blocking buffer (5 w/v% non-fat dry milk in 0.1% Tween-20, 1X Tris-buffered 

saline(TBST)) 

Wash solution (1X TBST) 

Antibody diluent (1 w/v% non-fat dry milk in 1X TBST) 

*Accutase was not used in the original experiments, however its use is recommended 

(see Notes) 

†Will need if Accutase is not used 

A2.1.2. Methods 
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Notes: 

1. When forming HA-Lm gels on the bottom of the 6-well plate, make sure not to extend 

gel entirely to edge of well as this will create a meniscus around the well perimeter and 

may alter plating surface.  

2. Accutase may be used according to manufacturer instructions to lift cells off of HA-Lm 

gel prior to lysing with cold RIPA buffer. Trypsin-EDTA is not recommended as it is too 

harsh for the NPSCs and may have adverse effects. To use Accutase,  incubate according 

to manufacturer protocol and ensure cells have detached from HA-Lm gel prior to 

collecting into a centrifuge tube and spinning down at 170 rcf for 3 min. Gently remove 

supernatant and add cold RIPA buffer, indicated in step 5. If Accutase is not used, cell 

lysate will most likely need to be concentrated using Millipore centrifugal filter units as 

described in the protocol.  

Protocol 

1. Form 80 µL HA-Lm gel films on the bottom of a 6-well plate, making sure not to 

extend the gel to the perimenter of the well. 

2. Allow gel to form in cell incubator for 15 hours prior to seeding. 

a. HA-Lm gel is fully formed at 6 hours and plating at this point would be fine as 

long as consistent across samples. Typically 15 hours of gelation can allow for 

overnight incubation.  

3. Seed 5 × 105 NPSCs in 200 µL directly on top of the HA-Lm gel and allow to adhere 

within the cell incubator for 1-2 hours (as long as consistent across all samples in 

studies) before adding remaining media (most likely mitogenic growth-factor free, but 

dependent on study design) on top of NPSCs.  

4. At study time point, remove excess media from well. If using Accutase, incubate with 

Accutase at this point. 
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5. Add 300 µL cold RIPA buffer supplemented with protease cocktail inhibitor (100 µL if 

using Accutase method) and rock on ice for 30 minutes.  

a. If using Accutase method, vortex at 0 and 15 minutes into incubation. 

b. If not using Accutase method, gently encourage cell removal from gel by 

pipetting RIPA buffer across the gel without disrupting gel too severely at same 

time points. If gel becomes too disrupted, it will become very difficult to spin 

down and separate gel from cell lysate. 

6. Transfer lysate to cold, autoclaved 0.65 mL microcentrifuge tube and spin down at 

13000 rpm for 5 min at 4°C. 

7. If using Accutase method, aliquot supernatant and store at -80°C. If not using 

Accutase method, you will most likely need to concentrate your supernatant using the 

Millipore centrifugal filter units according to manufacturer’s protocol. Be sure to keep 

the filter tubes/units cold throughout. Following concentration, aliquot and store at -

80°C. 

a. Supernatant will not be easy to visibly discern. It is useful to keep track of the 

direction in which you place your tube into the centrifuge so that you will know 

where the insoluble protein pellet will form. I will typically pull off ~80% of the 

total volume to store as supernatant, being sure to avoid the tube area where I 

anticipate the pellet to have formed. 

8. Quantify protein concentration using the bicinchoninic acid (BCA) assay, prepare bis-

acrylamide gels of appropriate percentage, and prepare lysate samples with sample 

buffer. 

9. The gel electrophoresis parameters can be optimized (i.e. when targeting smaller 

proteins, the gel may need longer), but gels were typically run at 120 V for 70 min.  

10. Gel transfer time may also require optimization, however gels were typically 
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transferred for 9 minutes using the standard voltage and amperage. Protein transfer was 

ensured by Simply Blue stain. 

11. Wash membranes with 1X TBST to remove any remaining SDS prior to blocking for 1 

hour rocking at room temperature in a solution of 5w/v% non-fat dry milk in 1X TBST. 

12. Rinse once between blocking and primary antibody staining. Primary antibodies were 

added at optimized dilutions to a solution of 1 w/v% non-fat dry milk in 1X TBST and 

rocked overnight at 4°C. Antibodies and their concentrations used for publications were 

as follows: 

a. anti-CXCR4 @ 1:500 (abcam, cat no: ab2074)  

b. anti-nestin @1:250 (abcam, cat no: ab27952) 

c. anti-β III tubulin @1:1000 (EMD Millipore, cat no: MAB1637) 

d. anti-GFAP@1:1000 (EMD Millipore, cat no: MAB3402) 

e. anti-Olig2@1:500 (EMD Millipore, cat no: AB9610) 

13. Wash membranes 3x for 5 minutes each prior to incubating with secondary antibody. 

Secondary antibodies were added at optimized dilutions to a solution of 1 w/v% non-fat 

dry milk in 1X TBST and rocked in the dark at room temperature for 2 hours, followed by 

a final rinse before imaging with LI-COR Odyssey scanner. Antibodies and their 

concentrations used for publications were as follows: 

a.  IRDye 800 anti-rabbit@1:50k (LICOR, cat no: NC0217916) 

b. IRDye 680 anti-mouse@1:50k (LICOR, cat no: 926-32220) 

A.2 Preparation and Transplantation of Neural Stem Cells Within 

Hyaluronic Acid-Laminin Hydrogels 

A2.2.1. Required Materials 

A2.2.1.1. Materials needed during transplantation 

Stereotaxic frame 
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Stereotaxic needle holder 

Surgical tools and consumables 

25 µL Hamilton syringe 

Blunt (point style 3) 22G Hamilton needle 

Tapered (point style 2) 26G Hamilton needle* 

Tapered (point style 2) 22G Hamilton needle† 

Micropipette tips (to fit P20 and P2) 

Micropipette (P20 and P2) 

*Must use 26G if transplanting into intact brain 

†Okay (and easier) to use 22G if transplanting into injured brain if needed, although 26G 

is recommended 

1M NaOH 

A2.2.1.2. Materials needed during preparation 

Sterile microcentrifuge tubes (2 mL and 0.2 mL) 

Sterile centrifuge tubes (15 mL) 

Sterile serological pipettes (10 mL) 

Micropipettes (P1000, P20, and P2) 

Sterile micropipette tips (to fit P1000, P20 and P2) 

Sterile Pasteur pipettes 

Sterile filters (0.22 µm pore) 

Fine tip forceps 

Sterile thiolated hyaluronic acid (HA-S) 

Poly(ethylene glycol)-divinyl sulfone (PEGDVS) 

Growth-factor free NSC media (see section 2.2.1.) 

Growth-factor free NSC media titrated to pH 2 - 4 (yellow in color) 
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A2.2.2. Methods 

Notes: 

1. HA-S and PEGDVS must be dissolved immediately prior to transplantation. 

Rheological tests run 1 hour after dissolution indicated that the stiffness of the formed 

gel was significantly lower. 

2. If using QTracker kit to label and track cells, cells must be labeled the day of use 

exactly as per manufacturer protocol. Labeling cells and then maintaining in growth 

media for prolonged periods of time will result in lost signal due to proliferation. 

3. Counting and calculating amount of cell suspension to pull from incubator per animal 

is useful to perform at the beginning of the day. Either aliquoting cells per animal or 

keeping volume per animal written nearby during preparation is useful.  

4. Weighing out HA-S per animal into 2 mL centrifuge tubes at the beginning of the day 

is useful. Avoid stock HA-S freeze/thaw by aliquotting all at once and storing in freezer 

until needed per animal.  

5. While PEGDVS freeze/thaw is not as detrimental as HA-S, aliquotting likewise is 

useful to minimize work between animals and to conserve reagent. Prepare 300 µL of 

PEGDVS solution, sterile filter through 0.22 µm syringe filter and aliquot into sterile 

0.65 mL microcentrifuge tubes. 

5. Determine the exact volume of 1M NaOH needed to titrate pH 2-4 media (volume 

calculated by HA-Lm hydrogel template for NPSC encapsulation) until media turns 

orange/pink. Subtract this NaOH volume from the calculated volume of HA-S solution to 

determine the volume of pH 2-4 media in which to dissolve HA-S.  

Protocol 

1.  All materials listed for preparation will be used in the biosafety cabinet/tissue culture 

hood. 
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2.  HA-S and PEGDVS concentrations should be calculated using HA-Lm hydrogel for 

NPSC encapsulation. 

3.  Add pH 2-4 media to HA-S (volume calculated in Notes) and vortex for at least 1 min. 

4. Remove appropriate volume/aliquot of labeled cells and spin down at 170 rcf for 3 

min.  

a. During centrifugation, mix PEGDVS and laminin in sterile 0.2 mL 

microcentrifuge tube and pipette up and down several times with micropipette. 

b. During centrifugation, mix HA-S solution by pipetting up and down with 

micropipette several times and vortexing where appropriate. 

5. Aspirate old media, resuspend NPSCs in less than 200 µL of growth factor-free NPSC 

media with micropipette, and transfer to sterile 0.2 mL microcentrifuge tube. 

6. Spin down NPSCs at 170 rcf for 3 min. 

 a. Continue to vortex HA-S during centrifugation. 

7. Gently aspirate off almost all of old media with micropipette, leaving 15 µL or less in 

tube. 

8. Resuspend NPSCs in remaining media, being sure to get NSPCs off the side of the 

tube. Determine volume of NSPC suspension and bring up to 15 µL (or alternative 

volume as determined by HA-Lm hydrogel template for NPSC encapsulation). 

9. Add NPSCs to PEGDVS-Lm solution at appropriate volume and pipette up and down 

several times with micropipette. 

10. Take NPSC-PEGDVS-Lm solution and HA-S solution to surgical table in separate 

tubes. 

11. Prior to craniotomy, clean Hamilton syringe and needles with 70% EtOH. Leave to 

dry during craniotomy. 
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12. Following craniotomy, add 1M NaOH as calculated in Notes and mix thoroughly with 

micropipette. 

a. Puncturing dura is easier if dura is not allowed to dry out. Add warm saline to 

brain surface immediately following craniotomy while the gel is prepared. 

13. Add appropriate volume of titrated HA-S to NPSC-EPGDVS-Lm solution and mix 

thoroughly with micropipette. 

14. Immediately following mixing, use blunt needle to pull NPSC-HA-Lm gel solution 

into syringe. 

a. Ensure that needle tip avoids touching the bottom of the microcentrifuge tube 

to minimize bending the needle. 

b. Ensure that no bubbles are pulled into syringe. 

15. Change needles to tapered needle and depress plunger until NPSC-HA-Lm gel 

solution fills needle. 

16. Place Hamilton syringe into needle holder with the eye of the needle facing towards 

the microscope such that it is clearly visible through the scope. 

17. Stereotactically place needle and lower into cortical tissue until dura is punctured and 

eye of needle is fully hidden by cortical tissue, monitoring needle eye through 

microscope. 

a. Puncturing dura is similar to puncturing a balloon in that the cortical surface 

will depress significantly (~0.5 mm) prior to puncture. During this time, it is 

easiest to continue lowering slowly but steadily rather than pausing. Immediately 

after dura is punctured, stop lowering and allow dura to relax for ~30 s before 

continuing if needed until the eye of the needle is completely covered by cortical 

tissue (as seen under microscope). This is considered “zero”; the dorsal/ventral  
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coordinates should be reset at this point and the time of injection should be 

recorded. 

18. Lower into cortical tissue at a rate of 0.15 mm every 30 s. Upon reaching appropriate 

depth, hold for 1 min prior to injecting. 

19. Inject at a rate of 0.25 µL every 30 s. After entire volume is injected, hold for 1 min 

prior to retracting needle. 

20. Retract needle at a rate of 0.15 mm every 30 s, watching for eye of needle under the 

microscope. 

21. Clean Hamilton syringe both tapered and blunt needles immediately after injection 

with 70% EtOH to avoid clogging due to gelation.  

a. Clogging will still occur after several transplants and it is recommended to use 

the wire needle cleaners as needed to minimize clogging. 

	  


