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ABSTRACT 

Transfer learning refers to statistical machine learning methods that integrate the 

knowledge of one domain (source domain) and the data of another domain (target 

domain) in an appropriate way, in order to develop a model for the target domain that is 

better than a model using the data of the target domain alone. Transfer learning emerged 

because classic machine learning, when used to model different domains, has to take on 

one of two mechanical approaches. That is, it will either assume the data distributions of 

the different domains to be the same and thereby developing one model that fits all, or 

develop one model for each domain independently. Transfer learning, on the other hand, 

aims to mitigate the limitations of the two approaches by accounting for both the 

similarity and specificity of related domains. The objective of my dissertation research is 

to develop new transfer learning methods and demonstrate the utility of the methods in 

real-world applications. Specifically, in my methodological development, I focus on two 

different transfer learning scenarios: spatial transfer learning across different domains and 

temporal transfer learning along time in the same domain. Furthermore, I apply the 

proposed spatial transfer learning approach to modeling of degenerate biological systems. 

Degeneracy is a well-known characteristic, widely-existing in many biological systems, 

and contributes to the heterogeneity, complexity, and robustness of biological systems. In 

particular, I study the application of one degenerate biological system which is to use 

transcription factor (TF) binding sites to predict gene expression across multiple cell 

lines. Also, I apply the proposed temporal transfer learning approach to change detection 

of dynamic network data. Change detection is a classic research area in Statistical Process 

Control (SPC), but change detection in network data has been limited studied. I integrate 
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the temporal transfer learning method called the Network State Space Model (NSSM) 

and SPC and formulate the problem of change detection from dynamic networks into a 

covariance monitoring problem. I demonstrate the performance of the NSSM in change 

detection of dynamic social networks. 
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Chapter 1: Introduction 

1.1 Background 

Transfer learning is a basic learning ability of human beings. It refers to the 

ability that people can intelligently apply knowledge learned in one domain to solve the 

problem in another domain faster or with better solutions. For example, people with prior 

experience on learning music instruments may be found to be a quicker learner of a new 

instrument compared with people who have no experience at all. Transfer learning, in 

statistical machine learning, has a similar nature. It refers to methods that integrate the 

knowledge of one domain (source domain) and the data of another domain (target 

domain) in an appropriate way, in order to develop a model for the target domain that is 

better than a model using the data of the target domain alone. Transfer learning emerged 

because classic machine learning, when used to model different domains, has to take on 

one of two mechanical approaches. That is, it will either assume the data distributions of 

the different domains to be the same and thereby developing one model that fits all, or 

develop one model for each domain independently. Transfer learning, on the other hand, 

aims to mitigate the obvious limitations of the two approaches by accounting for both the 

similarity and specificity of related domains. Transfer learning is especially advantageous 

when the sample size of data in the target domain is too limited to produce a reliable 

model, due to timing, availability, or/and cost. Next, I give a few examples in various 

areas in which transfer learning is desirable: 

Manufacturing: Rapid updating of product generations is a common 

characteristic of various manufacturing industries. When a new generation of a product is 

invented, it needs to be quickly introduced to the market. The production data on the new 
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generation (target domain) could be very limited to allow adequate process modeling, 

control, and optimization. On the other hand, abundant data and knowledge may have 

been accumulated from past generations of the same product (source domain). Transfer 

learning can make use of these past data and knowledge to model the new generation 

better and faster.   

Health care: An important problem in health care especially cancer medicine is 

to use various sources of clinical data, such as imaging, genetics, and demographics, for 

cancer prognostics. In longitudinal studies, a particular interest is to follow along a cohort 

of patients with a specific cancer to model the association between clinical data and 

disease outcomes (e.g., mortality, recurrence) at different stages of the disease 

advancement. Patient drop-off is common, leaving less data for use in modeling later 

stages of the disease (target domain). Transfer learning can play an important role here by 

integrating the limited data with knowledge from the earlier stages (source domain). A 

similar setting is in the study of different subtypes of a cancer. When a new subtype is 

discovered (target domain), the patient number is usually limited. Transfer learning can 

help establish a model for the new subtype timely and reliably by transferring knowledge 

of the known subtypes (source domain) to the modeling of the new subtype.  

1.2 State of the Art 

The existing transfer learning methods primarily fall into three categories: 

instance transfer, feature transfer, and parameter transfer.  

Instance transfer is a major type of transfer learning methods (Liao, Xue, and 

Carin 2005; Dai et al. 2007; Wu and Dietterich 2004). The basic idea is to reuse some 

samples/instances in the source domain as auxiliary data for the target domain. For 
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example, Dai et al. (2007) proposed a boosting algorithm called TrAdaBoost to 

iteratively reweight samples in the source domains to identify samples that are helpful for 

modeling the target domain. Although intuitive, instance transfer may be questioned for 

its validity. For example, if the source and target domains are two subtypes of a cancer, 

using the data of some patients in one subtype to model another subtype implies that 

these patients are misdiagnosed, which is not a reasonable assumption.   

Feature transfer and parameter transfer are two other types of relevant methods. 

Feature transfer aims to identify good feature representations shared by the source and 

target domains. In an earlier work by Caruana (1997), the features are shared hidden 

layers for the neural network models across the domains. More recently, Argyrious et al. 

(2008) and Evgeniou and Pontil (2007) proposed to map the original high-dimensional 

predictor space to a low-dimensional feature space and the mapping is shared across the 

domains. Nonlinear mapping was study by Jebara (2004) for Support Vector Machines 

(SVMs) and by Ruchert and Kramer (2008) who designed a kernel-based approach 

aiming at finding a suitable kernel for the target domain. Interpretability, e.g., physical 

meaning of the shared features, is an issue for feature transfer especially nonlinear 

approaches.  

 Parameter transfer assumes that the old and target domains share some model 

parameters. For example, Liu et al. (2009) adopt L21-norm regularization for linear 

models to encourage the same predictors to be selected across the domains. Regularized 

approaches for nonlinear models like SVMs were also studied (T. Evgeniou and Pontil 

2004). In addition to regularization, Bayesian statistics provide a nice framework by 

assuming the same prior distribution for the model parameters across the domains, which 
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has been adopted for Gaussian process models (Lawrence and Platt 2004; Schwaighofer, 

Tresp, and Yu 2005; Bonilla, Chai, and Williams 2008).  

Limitations of the existing transfer learning methods are: 

First, most existing methods require that the raw data of the source are available 

at the time of modeling the target domain. This can be computationally intensive when 

the source domain has massive amounts of data. Also, this requires keeping the data of 

the source domain in their complete form all the time, which consumes lots of storage. In 

this sense, the existing methods should be more appropriately called multitask learning 

methods. An alternative approach is to discard the data of the source domain but only 

keep the knowledge of a much smaller size to be transferred, which has been less studied 

in the literature.  

Second, when there are more than one source domains, most existing methods 

assume that the relationship between each source domain and the target domain is 

similar. This assumption may not hold well in practice. For examples, there may be some 

source domains whose model parameters are positively correlated with those of the target 

domain, and some with negative correlations, and others with no correlations. A desirable 

approach should be able to automatically learn the different domain relationships from 

data and adaptively decide how much is transferred from each source domain to the target 

domain. This idea has been explored by a few existing methods (Bakker and Heskes 

2003; Xue et al. 2007; Jacob et al. 2009), in which the domains are grouped into clusters 

and domains within each cluster are assumed to have similar relationships with one 

another. However, clustering is only able to reveal domain relationships qualitatively 
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(i.e., whether or not two domains belong to the same cluster), but not quantitatively (i.e., 

to how much extent two domains are related). 

Third, while showing empirically good performance than single-domain learning 

(i.e., machine learning methods that model each domain independently), the existing 

literature lacks theoretical investigation on when and why transfer learning is better than 

single-domain learning.  

1.3 Summary of Original Contributions 

The objective of my dissertation research is to develop new transfer learning 

methods that overcome the aforementioned limitations of the existing methods and 

demonstrate the utility of the methods in real-data applications. In my methodological 

development, I focus on two different transfer learning scenarios: spatial transfer 

learning across different domains and temporal transfer learning along time in the 

same domain.  

The original contributions of my dissertation research are summarized as follows: 

 Spatial transfer learning: I develop a transfer learning method for predictive 

modeling, which can flexibly incorporate the data or knowledge of the source 

domains, whichever available, to the modeling of the target domain. The 

method can automatically estimate the relationship between domains and 

adaptively decide how much information to transfer from each source domain 

to the target domain. The method is also able to model high-dimensional data. 

I develop a computationally efficient algorithm in model estimation. In 

addition, I perform theoretical analysis to answer several important questions, 

such as: What difference it will make by transferring the knowledge/models of 
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the source domains instead of the data? Is transfer learning always better than 

learning using the data of the target domain alone? What knowledge from 

source domains or what type of source domains is most helpful for transfer 

learning?  

 Temporal transfer learning: I develop a transfer learning method called 

Network State Space Model (NSSM) for characterizing the temporal 

evolution of dynamic network data.  NSSM produces a model for the current 

time frame by integrating the current data with a model from the past time 

frame. For tractable parameter estimation of the NSSM, I develop an 

Expectation Propagation (EP) algorithm to produce a multivariate Gaussian 

approximation for the observation equation of the NSSM, and further use an 

Expectation-Maximization (EM) framework integrated with a Bayesian 

optimal smoothing (BOS) algorithm to estimate the parameters.  

 Applications: (1) I apply the proposed spatial transfer learning approach to 

modeling of degenerate biological systems. Degeneracy is a well-known 

characteristic, widely-existing in many biological systems, and contributes to 

the heterogeneity, complexity, and robustness of biological systems. In 

particular, I study the application of one degenerate biological system which is 

to use transcription factor (TF) binding sites to predict gene expression across 

multiple cell lines. The proposed transfer learning method shows better 

prediction accuracy compared with competing methods. The biological 

findings revealed by the proposed method are also consistent with the 

literature. (2) I apply the temporal transfer learning approach, i.e., the NSSM, 
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to change detection in social networks. Change detection is a classic research 

area in Statistical Process Control (SPC), but change detection in network data 

has been little studied. I integrate the NSSM and SPC and formulate the 

problem of change detection from dynamic networks into a covariance 

monitoring problem. I demonstrate the performance of the NSSM by 

extensive simulation experiments and a real-world application on Enron’s 

email communication networks.  

The organization of my dissertation is the following: Chapter 2 presents my 

research development in spatial transfer learning; Chapter 3 presents the application of 

the spatial transfer learning method in modeling of degenerate biological systems. 

Chapter 4 presents my research development in temporal transfer learning, i.e., the 

NSSM, and integration of the NSSM with SPC for change detection in social networks.  
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Chapter 2: Spatial Transfer Learning by a Sparse Matrix-normal Penalized Approach 

2.1 Introduction  

We adopt a Bayesian formulation and develop a unique prior for the model 

coefficients of the source domains and target domain. This prior has two hyper-

parameters respectively encoding the covariance structure of predictor coefficients and 

characterizing the correlation structure of the domains. We propose an efficient algorithm 

that allows estimation of the hyper-parameters together with the model coefficients, so 

that the correlation structure between domains does not need to be specified a priori but 

can be learned from data. We perform theoretical analysis to reveal several important 

questions, such as: what difference it will make by transferring the knowledge/models of 

the source domains instead of the data? Is transfer learning always better than learning 

using the data of the target domain alone? What knowledge from target domains or what 

type of target domains is most helpful for transfer learning? Lastly, we perform 

simulation studies to compare the performance of the transfer learning method with 

single-domain learning. 

2.2 Formulation 

 Let X = (X1, … , XQ) denote Q predictors and Y denote the response. Assume that 

there are K related domains, where domains 1 to K-1 are source domains and domain K is 

a target domain. For each domain k, there is a model that links X to Y by coefficients wk, 

k = 1,… , K. If Y ∈ ℝ, a common model is a linear regression, Y = Xwk + εk . If Y ∈

{−1,1}, a classification model such as a logistic regression applies, e.g., log
P(Y=1)

P(Y=−1)
=

Xwk. We propose the following prior for W = (w1, … ,wK): 
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                p(𝐖|𝛀,𝚽, b) ∝ ∏ Laplace(𝐰k; b)
K
k=1 ×MN(𝐖;0,𝛀,𝚽).              (2.1)  

This prior is formed based on the following considerations: 

 Laplace(wk; b)  is a Laplace distribution for wk , i.e., 

𝑝(𝐰𝑘|𝑏) = (
1

2𝑏
)
𝑄

𝑒𝑥𝑝 (−
1

𝑏
∑ |𝑤𝑞𝑘|
𝑄
𝑞=1 ). 𝑤𝑞𝑘 is the 𝑞-th element of 𝐰𝑘. Using a 

Laplace distribution in the prior is to facilitate “sparsity” in model estimation. The 

most well-known sparse model is probably the lasso model (Tibshirani 1994), 

which impose an L1 penalty on regression coefficients to shrink the estimates for 

many small be exactly zero, thus producing a sparse model. Tibshirani (1994) 

showed that the lasso estimate is equivalent to a Bayesian Maximum-A-Posteriori 

(MAP) estimate with a Laplace prior. Sparsity is an advantageous property for 

high-dimensional problems, which is the target setting of this dissertation.  

 𝑀𝑁(𝐖;𝟎,𝛀,𝚽)  is a zero-mean matrix-variate normal distribution, whose 

probability density function is 𝑝(𝐖|𝛀,𝚽) =
exp(−

1

2
𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇))

(2𝜋)𝑄𝐾 2⁄ |𝛀|𝑄 2⁄ |𝚽|𝐾 2⁄ . |⋅|and 𝑡𝑟(⋅) 

denote the determinant and trace of a matrix, respectively. 𝛀 ∈ ℝ𝐾×𝐾  and 

𝚽 ∈ ℝ𝑄×𝑄 are called column and row covariance matrices, respectively. It can be 

shown that 𝑐𝑜𝑣(𝐰𝑞) = 𝚽𝑞𝑞𝛀 . 𝐰𝑞  is the 𝑞 –th row of 𝐖 , which consists of 

regression coefficients for all the 𝐾 domains corresponding to the 𝑞–th predictor. 

𝚽𝑞𝑞 is the 𝑞–th diagonal element of 𝚽. 𝑐𝑜𝑣(⋅) denotes the covariance matrix of a 

vector. Therefore, 𝛀 encodes the prior knowledge about the correlation structure 

of the domains. Furthermore, it can be shown that 𝑐𝑜𝑣(𝐰𝑘) = 𝛀𝑘𝑘𝚽. Therefore, 

𝚽 encodes the prior knowledge about the correlation structure of the regression 

coefficients. 
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Next, we propose two modeling strategies depending on the availability of data. 

In Case I, data of the source domains 1 to 𝐾-1 is available. In Case II, data of the source 

domains is not available but only the knowledge/models. The latter case is more common 

especially in biology and medicine. At the time a new cell line or a new subtype of a 

disease is being studied, the researcher may only have access to the data of the target 

domain. Although he/she may gather abundant knowledge about existing cell lines or 

disease subtypes from the published works of other researchers, he/she can hardly access 

the data due to ownership or confidentiality.  

Case I: Model the target domain using the data of all the domains 

Let 𝐲𝑘 and 𝐗𝑘 denote the data for the response and predictors of the 𝑘-th domain 

𝑘 = 1,… , 𝐾. The likelihood for 𝐲𝑘 given 𝐗𝑘 and 𝐰𝑘 is 

                                               𝑝(𝐲𝑘|𝐗𝑘, 𝐰𝑘)~𝑁(𝐲𝑘; 𝐗𝑘𝐰𝑘, 𝜎
2 𝐈𝑛𝑘) .                             (2.2) 

The posterior distribution of 𝐖 based on the prior in (2.1) and likelihood in (2.2) is: 

                        𝑝(𝐖|{𝐲𝑘, 𝐗𝑘}𝑘=1
𝐾 , 𝛀,𝚽, 𝑏) ∝ 𝑝(𝐖|𝛀,𝚽, 𝑏)∏ 𝑝(𝐲𝑘|𝐗𝑘, 𝐰𝑘)

𝐾
𝑘=1 .         (2.3) 

One way for estimating the regression coefficients of the target domain, 𝐰𝐾, is to find a 

�̂� that maximizes the posterior distribution of 𝐖 in (2.3), i.e., �̂� is a Bayesian MAP 

estimate for 𝐖 . This will naturally produce an estimate for 𝐰𝐾 , �̂�𝐾 , as in �̂� =

(�̂�1, … , �̂�𝐾) , and estimates for the source domains, �̂�1, … , �̂�𝐾−1 , as a side product. 

Through some algebra, it can be derived that �̂� can be obtained by solving the following 

optimization: 

�̂�I = 

argmin 𝐖 {
1

2𝜎2
∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2

2𝐾
𝑘=1 +

1

𝑏
‖𝐖‖1 +

1

2
(𝑄𝑙𝑜𝑔|𝛀| + 𝐾𝑙𝑜𝑔|𝚽| + 𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇))}.       (2.4) 
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where ‖∙‖2  and ‖∙‖1  denote the L2 and L1 norms, respectively. The superscript “I” is 

used to differentiate this estimate from the one that will be presented in Case II.  

(2.4) assumes that 𝐖 is the only parameter to be estimated whereas 𝜎2 , 𝑏, 𝛀, and 

𝚽 are known. This assumption may be too strict. To relax this assumption, we propose 

the following approach: Let 𝜆1 = 2𝜎
2 𝑏⁄  and 𝜆2 = 𝜎2 . Then, (2.4) is equivalent to (2.5): 

�̂�I = argmin 
W

{∑ ‖𝐲k − 𝐗k𝐰k‖2
2K

k=1 + λ1‖𝐖‖1 + λ2(Qlog|𝛀| + Klog|𝚽| + tr(𝚽
−𝟏𝐖𝛀−𝟏𝐖𝐓))}.   (2.5) 

Here, λ1 ≥ 0 and λ2 ≥ 0 serve as regularization parameters to control the sparsity of �̂�I 

and the amount of prior knowledge used for estimating 𝐖, respectively. λ1 and λ2 can be 

selected by a grid search according to some model selection criterion such as BIC and 

cross validation. This strategy for “estimating” σ2  and b enjoys computational simplicity 

and was also adopted by other papers (Tibshirani 1994; Liu, Ji, and Ye 2009; Genkin, 

Lewis, and Madigan 2007). Furthermore, hyper-parameters 𝚽  and 𝛀  are matrices of 

potentially high dimensionality, the specification of which is more involved and will be 

discussed in detail in Section 2.4. For now, we assume that 𝚽 and 𝛀 are known. 

Note that the MAP estimate for 𝐖 is a point estimate, which would not allow 

statistical inference for characterizing the uncertainty in the estimation. A full Bayesian 

approach would be more preferable in this regard. However, the difficulty is that the 

posterior distribution for 𝐖  in (2.3) does not have a parametric form. Although 

computational algorithms like Markov Chain Monte Carlo (MCMC) may be used, they 

are known to be computationally intensive. Therefore, we choose to use MAP in this 

chapter to gain efficiency (Smith 1998) and leave the full Bayesian approach for future 

investigation.  
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Case II: Model the target domain using data of the target domain and knowledge/models 

of the source domains 

To develop a model for this case, we first re-organize the terms in (2.5) to 

separate the terms involving source domains from those involving only the target domain. 

Denote the objective function in (2.5) by 𝑓(𝐖) . Let �̃� = (𝐰1, … ,𝐰𝐾−1) , so 𝐖 =

(�̃�,𝐰𝐾). Also let 𝛀 = [
�̃� 𝛡𝐾

𝛡𝐾
𝑇 𝜍𝐾

]. Then, it can be shown that (please see details in 

Appendix 2.I): 

                                               𝑓(𝐖) = 𝑓(�̃�) + 𝑔(𝐰𝐾|�̃�).                                        (2.6) 

f(W̃) takes the same form as f(W) but for the K − 1 source domains, i.e.,   

𝑓(�̃�) = ∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2𝐾−1

𝑘=1 + 𝜆1‖W̃‖1 + 𝜆2 (𝑄𝑙𝑜𝑔|�̃�| +
(𝐾 − 1)𝑙𝑜𝑔|𝚽| + 𝑡𝑟(𝚽−1�̃��̃�−1�̃�𝑇)). (2.7) 

and 

             𝑔(𝐰𝐾|�̃�) = ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝑙𝑜𝑔|𝚺𝐾| + (𝐰𝐾 − 𝛍𝐾)

𝑇𝚺𝐾
−1(𝐰𝐾 − 𝛍𝐾)).       (2.8) 

where 

                                                    𝛍𝐾 = �̃��̃�−1𝛡𝐾.                                                        (2.9) 

and  

                                           𝚺𝐾 = (𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾)𝚽.                                              (2.10) 

When data from the source domains is not available but only the 

knowledge/model in the form of �̃� = �̃�∗ , the 𝑓(�̃�∗)  in (2.6) becomes a constant. 

Therefore, minimizing 𝑓(𝐖) becomes minimizing 𝑔(𝐰𝐾|�̃�
∗), i.e.,  

�̂�K
II = argmin 

𝐰K

   g(𝐰K|�̃�
∗) 
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= argmin 𝐰𝐾   ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝑙𝑜𝑔|𝚺𝐾| + (𝐰𝐾 − 𝛍𝐾)

𝑇𝚺𝐾
−1(𝐰𝐾 −

𝛍𝐾)).                                                                                                                                               (2.11) 

with 𝛍𝐾 = �̃�∗�̃�−1𝛡𝐾 and 𝚺𝐾 given in (2.10).  

Finally in this section, we would like to assess the difference between the 

estimates in Case I and Case II, i.e., �̂�𝐾
I  as in �̂�I = (�̂�1

I , … , �̂�𝐾
I ) and �̂�𝐾

II. Theorem 2.1 

shows that the estimate in Case II is no better than Case I in terms of minimizing the 

objective function in the estimation. Case II is only as good as Case I when the 

knowledge/model of the source domains can be provided in its optimal form. The 

intuitive explanation about this finding is that since Case II utilizes the knowledge of the 

source domains, which may contain uncertainty or noise, it is only sub-optimal compared 

with using the data of the source domains directly (i.e., Case I). Please see Appendix A.II 

for a proof of Theorem 2.1.  

Theorem 2.1: 𝑓 ((�̃�∗, �̂�𝐾
II)) ≥ 𝑓(�̂�I) . When �̃�∗ = (�̂�1

I , … , �̂�𝐾−1
I ) , �̂�𝐾

II = �̂�𝐾
I  and 

 𝑓 ((�̃�∗, �̂�𝐾
II)) = 𝑓(�̂�I).  

2.3 Theoretical Properties 

This section aims to perform theoretical analysis to address the following 

questions: Is transfer learning always better than single-domain learning, i.e., learning 

using only the data of the target domain but neither the data nor the knowledge of the 

source domains (Theorem 2.2)? What knowledge from source domains or what type of 

source domains is most helpful for learning of the target domain (Theorems 2.3)? 
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Let (2.12) and (2.13) be the transfer learning and single-domain learning 

formulations targeted in this section, respectively. λ ≥ 0. When λ = 0, (2.12) becomes 

(2.13).    

          �̂�𝐾 = argmin 𝐰𝐾    ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆(𝐰𝐾 − 𝛍𝐾)

𝑇(𝐰𝐾 − 𝛍𝐾)          (2.12) 

                                �̌�𝐾 = argmin 𝐰𝐾    ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2                                   (2.13) 

Comparing (2.12) with (2.11) in the previous section, it can be seen that (2.12) is 

obtained from (2.11) by dropping the L1 norm, ‖wK‖1 , and making Φ = I and  λ =

λ2

ςK−ϖK
TΩ̃−1ϖK

. This is to single out transfer learning from the sparsity and the covariance 

structure of regression coefficients in (2.11), so that the discussion in this section will be 

focused on transfer learning.  Let MSE(∙) denote the Mean Square Error (MSE) of an 

estimator. It is known that the MSE is the sum of the variance and squared bias of an 

estimator, and is a commonly used criterion for comparing/choosing estimators.  

Theorem 2.2: There always exists a 𝝀 > 𝟎 such that 𝑴𝑺𝑬(�̂�𝑲 ) < 𝑴𝑺𝑬(�̌�𝑲 ). 

Please see a proof of this Theorem in Appendix 2.III. Theorem 2.2 provides 

theoretical assurance that the model coefficients of the target domain, 𝐰𝐾, can be better 

estimated by transfer learning than single-domain learning in the sense of a smaller MSE. 

Next, we would like to investigate what type of knowledge from source domains or what 

type of source domains helps learning of the target domain better. Because knowledge 

from source domains is represented by 𝛍𝐾 in (2.9), the question becomes what property 

of 𝛍𝐾 leads to a better transfer learning. Definition 1 defines a distance measure between 

the knowledge from source domains, 𝛍𝐾, and the target domain, 𝐰𝐾, called the transfer 

learning distance.  Theorem 2.3 further proves that the knowledge for source domains 
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that has a smaller transfer learning distance to the target domain will help achieve a 

smaller MSE in modeling the target domain.  

Definition 2.1 (transfer learning distance): Define a transfer learning distance to be  

𝒅(𝛍𝑲; 𝝀) ≜ (𝐰𝑲 − 𝛍𝑲)
𝑻𝐁𝑻𝐁(𝐰𝑲 − 𝛍𝑲), where 𝐁 = (𝐗𝑲

𝑻𝐗𝑲 + 𝝀𝐈)
−𝟏

.  

The geometric interpretation of this distance measure is the following: Let Λ be a 

diagonal matrix of eigenvalues γ1, … , γQ  for XK
TXK  and P  be a matrix consisting of 

corresponding eigenvectors, i.e., ., XK
TXK = PTΛP . Furthermore, let α ≜ P(μK −wK) . 

The elements of α , α1, … , αQ , are indeed projections of μK −wK  onto the principal 

component axes of the data. Furthermore, it can be derived that the transfer learning 

distance is d(μK; λ) = ∑
αi
2

(γi+λ)
2

Q
i=1 . Provided that the predictors are mean-centered, this 

expression of d(μK; λ) implies that the transfer learning distance is a scaled Euclidean 

distance in the principal component space.  

Furthermore, suppose that there are two sets of knowledge from source domains 

to be compared, i.e., 𝛍𝐾
(1)

 and 𝛍𝐾
(2)

. Let 𝑀𝑆𝐸(�̂�𝐾
(𝑖)
; 𝜆) be the MSE of the estimator for 

�̂�𝐾  using (2.9) with 𝛍𝐾 = 𝛍𝐾
(𝑖)

. Let min𝜆𝑀𝑆𝐸(�̂�𝐾
(𝑖)
) denote the smallest MSE over all 

possible values of 𝜆. 𝑖 = 1,2. 

Theorem 2.3: If 𝒅(𝛍𝑲
(𝟏)
; 𝝀) ≤ 𝒅(𝛍𝑲

(𝟐)
; 𝝀)  for ∀𝝀 > 𝟎 , then 𝐦𝐢𝐧𝝀𝑴𝑺𝑬(�̂�𝑲

(𝟏)
) ≤

𝐦𝐢𝐧𝝀𝑴𝑺𝑬(�̂�𝑲
(𝟐)
).  

Please see a proof of this Theorem in Appendix 2.IV. For better illustration, we 

show the comparison of MSEs between five sets of knowledge from source domains in 

Figure 1. This is a simple example which consists of only one predictor. Therefore, 𝐰𝐾 
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and 𝛍𝐾 are scalars,  𝑤𝐾 and 𝜇𝐾. Assume that 𝑤𝐾 = 3. 𝜇𝐾
(1)

 through 𝜇𝐾
(5)

 are 1.3, 1.6, 1.9, 

2.2, 2.5, respectively, i.e., they are more and more close to the target domain in transfer 

learning distance. Figure 1 plots the MSEs of transfer learning using each of the five sets 

of knowledge. The observations are: (i) For each curve, there exists a 𝜆 > 0  whose 

corresponding MSE is smaller than the MSE of single-domain learning (i.e., the intercept 

on the vertical axis). This demonstrates Theorem 2.2. (ii) The smaller the transfer 

learning distance, the smaller the minimum MSE. This demonstrates Theorem 2.3.  

 

Figure 1. Transfer learning MSEs of five sets of knowledge from source 

domains,MSE(ŵK
(i)
), i = 1,… ,5, and single-domain MSE, MSE(w̌K ) with true wK = 3 

Finally, we would like to discuss some practical implication of the Theorems. 

Theorem 2.2 needs little assumption to hold. However, this does not imply that transfer 

learning always gives better results than single-domain learning in practice. This is 

because in practice, 𝜆 is selected by a grid search according to some model selection 

criterion such as BIC and cross-validation. The 𝜆 that makes the MSE of the transfer 

learning estimator smaller than single-domain learning may be missed in this practical 
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search. Furthermore, as indicated by Theorem 2.3 and Figure 1, this risk is higher when 

the knowledge from source domain is farther from the target domain in transfer learning 

distance. For example, in Figure 1, when the knowledge is far away from the target 

domain, e.g., the top red curve, the range of 𝜆 within which the curve falls below the 

MSE of single-domain learning, 𝑀𝑆𝐸(�̌�𝐾 ), is very small. This small range of 𝜆 may be 

easily missed in a practical grid search, thus resulting in a transfer learning approach that 

has worse performance than single-domain learning.  

2.4 Joint Estimation of Hyper-parameters and Parameters 

𝚽 is a hyper-parameter that encodes the correlation structure of the regression 

coefficients. For a specific domain, prior knowledge usually exists to specify 𝚽. This will 

be illustrated in Chapter 3. 𝛀  is another hyper-parameter that encodes the prior 

knowledge about the correlation structure between domains, which is difficult to specify 

precisely. Therefore, we propose an algorithm in this section to estimate both hyper-

parameter 𝛀 and parameter 𝐖 together. This will change (2.4) to (2.14):  

Case III:  

(�̂�III, �̂�III) = argmin 
W,Ω

{∑ ‖𝐲k − 𝐗k𝐰k‖2
2K

k=1 + λ1‖𝐖‖1 + λ2(Qlog|𝛀| + tr(𝚽
−𝟏𝐖𝛀−𝟏𝐖𝐓))} .     (2.14) 

 (2.14) is the same as (2.4) except for treating 𝛀 as unknown.   

Next, we will discuss an algorithm for solving (2.14). (2.14) is not a convex 

optimization with respect to all unknown parameters. However, given 𝛀, it becomes a 

convex optimization with respect to 𝐖, which can be solved efficiently. Furthermore, 

given 𝐖, the optimization problem with respect to Ω can be solved analytically, i.e.,  

                                                                �̂� =
𝐖𝐓𝚽−𝟏𝐖

Q
.                                                (2.15)                      
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Therefore, we propose an iterative algorithm that alternates between two sub-

optimizations: solving 𝐖 with 𝛀 fixed at their estimates in the previous iteration, and 

solving 𝛀  with 𝐖  fixed at its estimate just obtained. Because each sub-optimization 

decreases the objective function, this iterative algorithm is guaranteed to converge to a 

local optimal solution. Note that joint estimation of parameters and hyper-parameters has 

also been adopted by other researchers (Idier 2013; Zhang and Yeung 2010).  

A similar case to Case II (2.11) takes the form of (2.16): 

Case IV:  

(�̂�𝐾
IV, 𝜍�̂�

IV, �̂�𝐾
IV) =

argmin 𝐰𝐾,𝜍𝐾,𝛡𝐾    {

‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 +

𝜆2 (𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾) +

1

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝚽−1(𝐰𝐾 − 𝛍𝐾))

} .         (2.16) 

(2.16) can be solved by an iterative algorithm that alternates between solving 𝐰𝐾 with 𝜍𝐾 

and 𝛡𝐾 fixed – a convex optimization, and solving 𝜍𝐾 and 𝛡𝐾 with 𝐰𝐾fixed analytically 

using (2.17):  

                                   �̂�𝐾 = �̃�
𝑇𝚽−1𝐰𝐾 𝑄⁄ , 𝜍�̂� = 𝐰𝐾

𝑇𝚽−1𝐰𝐾 𝑄⁄ .                      (2.17)                      

The derivation for (2.17) is in Appendix 2.V.  

Finally in Section 2.3, we present the algorithms for solving the proposed transfer 

learning formulations in Case III and Case IV in Figures 2 and 3, respectively. Note that 

the algorithms also work for classification problems which replace the square-error loss 

in Case III and Case IV, ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2 , with a logistic loss, 

∑ 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝 (−𝑦𝑖𝐾𝐱𝑖𝐾𝐰𝐾))
𝑛𝐾
𝑖=1 . Because this loss function is also convex with respect 

to 𝐰𝐾, the convex optimization solver in step 2.2 of Figures 2 and 3 naturally applies. 

Step 2.1 does not involve the loss function so it needs no change.  
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Figure 2. An algorithm for solving the transfer learning formulation in Case III 

 

Figure 3. An algorithm for solving the transfer learning formulation in Case IV 

2.5 Prediction 

Given a new observation in the target domain, 𝐱𝐾
∗ , we can predict its response 

variable by �̂�𝐾
∗ = 𝐱𝐾

∗𝑇�̂�𝐾 . �̂�𝐾  can be the �̂�𝐾
III in Case III or the �̂�𝐾

IV in Case IV, obtained 

from training data. Because the proposed transfer learning method only produces a point 

estimator for 𝐰𝐾 , statistical inference on 𝐰𝐾  and the prediction has to be performed 

using resampling approaches such as bootstrap. This is a similar situation to lasso, for 

Input: data of the source domains and target domain, {𝐲𝑘, 𝐗𝑘}𝑘=1
𝐾 ; regularization 

parameters, 𝜆1 and 𝜆2. 

Step 1: Obtain the covariance matrix 𝚽 of predictor coefficients. 

Step 2: Alternate between 2.1 and 2.2 till convergence. Initialize 𝐖 by fitting a 

lasso to each domain separately. 

2.1: Solve 𝛀 by (2.15).  

2.2: Solve 𝐖 in (2.14) using a convex optimization solver like the 

accelerated gradient method (Liu, Ji, and Ye 2009).  

Output: models of the source domains and target domain, �̂�III; relationship 

between the target domain and the source domains, �̂�III 

 

 

 

Input: knowledge about source domains 1,… , 𝐾 − 1, �̃�∗; data for a target 

domain 𝐾, 𝐗𝐾 and 𝐲𝐾; regularization parameters, 𝜆1 and 𝜆2. 

Step 1: Obtain the predictor covariance matrix 𝚽 of predictor coefficients. 

Step 2: Alternate between 2.1 and 2.2 till convergence. Initialize 𝐰𝐾 by fitting a 

lasso to data 𝐗𝐾 and 𝐲𝐾. 

2.1: Solve 𝜍𝐾 and 𝛡𝐾 by (2.17).  

           2.2: Let 𝛍𝐾 = �̃�∗�̃�−1𝛡𝐾 and solve 𝐰𝐾 in (2.16) by a convex 

optimization solver like the accelerated gradient method (Liu, Ji, and Ye 

2009). 

Output: model of the target domain, �̂�𝐾
IV; covariances between the target domain 

and the source domains, �̂�𝐾
IV

; variance of the target domain, �̂�
𝐾

IV
.  
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which bootstrap-based statistical inference on the model coefficients has been studied by 

a number of papers (Knight and Fu 2000; Chatterjee and Lahiri 2010). Following the 

similar idea, we propose a residual bootstrap procedure to compute the prediction 

interval, which includes nine steps shown in Figure 4.    

 

Figure 4. A residual bootstrap procedure to compute prediction interval 

2.6 Simulation Study 

A real-data application will be presented in the next chapter. In this section, we 

aim to assess the proposed method in aspects that cannot be assessed using real data. 

Prediction accuracy can be assessed using real data by cross validation. However, 

because the ground truth is unknown in real data analysis, variable selection accuracy 

cannot be assessed, including False Positive Rate (FPR) and False Negative Rate (FNR). 

1) Under Case III or IV model, select λ̂1 and λ̂2 by cross-validation. Estimate ŵK  

from training data under λ̂1 and λ̂2. 

2) Compute the residual for each of the n training data points, i.e., rK,i = yK,i −

xK,i
T ŵK , i = 1,… , n 

3) Center the residuals, i.e., eK,i = rK,i − r̅K, where r̅K =
1

n
∑ rK,i
n
i=1 . Pool the 

centered residuals together as {eK,1, … , eK,n}. 

4) Draw a sample of size n from {eK,1, … , eK,n} with replacement, i.e., 

{ẽK,1, … , ẽK,n}. Calculate the bootstrapped version of the response variable in 

the training data as ỹK,i = xK,i
T ŵK + ẽK,i, i = 1,… , n.  

5) Using the bootstrap dataset {(ỹK,i, xK,i
T ): i = 1,… , n} and the λ̂1 and λ̂2 in 1), 

estimate the bootstrap version of wK  using Case III or IV model, w̃K .  

6) Use the bootstrap estimator to predict the new observation, i.e., ŷ̃K
∗ = xK

∗Tw̃K . 

7) Draw a single sample from {eK,1, … , eK,n}, ẽK, and let ỹK
∗ = xK

∗TŵK + ẽK. 

8) Compute the bootstrap prediction error as ŷ̃K
∗ − ỹK

∗ . 

9) Repeat 4)-8) B times and obtain the empirical distribution of the bootstrap 

prediction error, G. Let G−1 (1 −
α

2
) and G−1 (

α

2
) be the (1 −

α

2
) × 100% and 

α

2
× 100% percentiles for G, respectively. Then, the bootstrap prediction 

interval is [xK
∗TŵK − G

−1 (1 −
α

2
) , xK

∗TŵK − G
−1 (

α

2
)]. 
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Here, FPR is the proportion of truly zero regression coefficients that are misidentified to 

be non-zero by the model. FNR is the proportion of truly non-zero regression coefficients 

that are misidentified to be zero by the model. Therefore, the simulation studies in this 

section focus on evaluating these error rates of the proposed method against competing 

methods. In particular, we use Area Under the Curve (AUC), which is an integrated 

measure for FPR and FNR. Another advantage of AUC is that it does not require a 

selection of the regularization parameters, but reflects the overall performance of the 

model over all possible values of the regularization parameters. The theoretically best 

AUC is one; the larger the AUC for a model, the better the performance.  

In this section, we compare the proposed method in Case III with 𝚽 = 𝐈 with 

single domain learning. Note that although we only present the results for Case III due to 

space limit, similar results have been obtained for Case IV.  

Consider three domains and the model, Yk = ∑ wqkXqk
Q
q=1 + εk , k = 1,2,3. In 

each domain, there are 50 predictors, i.e., Q = 50. Domains 1 and 2 are highly correlated 

with each other but little correlated with domain 3. To achieve this, we set the 

coefficients of the first five predictors in domains 1 and 2 to be non-zero, i.e., wqk ≠

0, q = 1,… ,5; k = 1,2. To make the two domains non-identical, we randomly select one 

different predictor from X6 to X50  in each domain to have a non-zero coefficient. For 

domain 3, we set the coefficients wq3 ≠ 0, q = 5,… ,10. Therefore, in each domain, there 

are six predictors with non-zero coefficients and all 44 others with zero coefficients. The 

value of each non-zero coefficient is randomly generated from a normal distribution 

N(5,1). After generating the coefficients, we check the correlation between the three 

domains using their respective coefficients. The correlations are 0.81 between domains 1 
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and 2, and 0.05(0.06) between domain 1(2) and 3, which are good to serve our purpose. 

Next, we generate samples for the 50 predictors from a multivariate normal distribution 

with zero mean and covariance matrix Σij = 0.5
|i−j|, i, j = 1,… ,50. To focus on small-

sample-size scenarios, 50 samples of the predictors are generated for each domain. The 

response variable of each sample is generated by the model Yk = ∑ wqkXqk
Q
q=1 + εk , 

where εk is generated from N(0,15).  

The proposed method of transfer learning is compared with single-domain 

learning, i.e., a lasso model applied to each domain separately, on the simulation dataset. 

The process is repeated for 50 times; the average and standard derivation of the 50 AUCs 

for each method are reported in Table 1. It can be seen that transfer learning has a better 

average AUC performance than single-domain learning. It is also more stable by having a 

smaller standard deviation. Furthermore, having a little-correlated domain, i.e., domain 3, 

does not hurt the performance of transfer learning in domains 1 and 2. This is because the 

proposed transfer learning method can estimate the correlation structure of the domains 

from data, and therefor can adaptively decide how much information to transfer from one 

domain to another.  

Table 1. AUC performances of transfer learning and single-domain learning 

  
Domain 1 Domain 2 Domain 3 

Proposed transfer  

Learning 

Average 0.943447 0.955568 0.949735 

Standard deviation 0.042415 0.037728 0.041266 

Single-domain  

learning 

Average 0.871061 0.868485 0.889432 

Standard deviation 0.099003 0.101911 0.084644 
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Chapter 3: Application of Spatial Transfer Learning in Predictive Modeling of 

Degenerate Biological Systems 

3.1 Introduction 

We apply the proposed method in Chapter 2 to an application on predictive 

modeling of degenerate biological systems. Degeneracy exists in many biological 

systems and processes, and is referred to as the phenomenon that structurally different 

elements perform the same/similar function or yield the same/similar output. Degeneracy 

contributes to the heterogeneity, complexity, and robustness of biological systems. 

Specifically, we propose to use a graph to represent the qualitative knowledge about 

degeneracy with uncertainty, and set the corresponding hyper-parameter to be the 

Laplacian matrix of the graph. We theoretically prove that this has an effect of pushing 

the coefficients of degenerate elements to be similar, thus nicely reflecting the nature of 

degenerate elements that they perform the similar function. Then, we apply the proposed 

method integrating degeneracy and transfer learning to a real-world application of using 

TF binding sites to predict gene expression across multiple cell lines. The proposed 

method shows better prediction accuracy compared with competing methods. The 

biological findings revealed by the proposed model are also consistent with the literature. 

3.2 Need of Transfer Learning in Modeling Biological Systems 

An essential problem in biological system informatics is to build a predictive 

model with high-dimensional predictors. This can be a challenging problem for a target 

domain in which the data is scarce due to resource limitation or timing of the modeling. 

Often times, there may be some source domains related to but not exactly the same as the 

target domain, in which abundant knowledge have existed. This makes transfer learning 

highly desirable. Next, we give three examples:   
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(i) Modeling the predictive relationship between transcription factors (TFs) and 

gene expression is of persistent interest in system biology. TFs are proteins that bind to 

the upstream region of a gene and regulate the expression level of the gene. Knowledge 

of TFs-expression relationship may have existed for a number of known cell lines. To 

model a new cell line, it is advantageous to adopt transfer learning to make good use of 

the existing knowledge of the known cell lines, because the experimental data for the new 

cell line may be limited.   

(ii) In cancer genomics, a prominent interest is to use gene expression to predict 

disease prognosis. Knowledge may have existed for several known subtypes of a cancer. 

When a new subtype is discovered, the patient number is usually limited. Transfer 

learning can help establish a model for the new subtype timely and reliably by 

transferring knowledge of the known subtypes to the modeling of the new subtype.  

(iii) Biomedical imaging, such as Positron Emission Tomography (PET) and 

Magnetic Resonance Imaging (MRI), has been used to predict cognitive performance. In 

longitudinal studies, a particular interest is to follow along a cohort of patients with a 

brain disease such as the Alzheimer’s disease to identify the imaging-cognition 

associations at different stages of the disease advancement. Patient drop-off is common, 

leaving less data for use in modeling later stages of the disease. Transfer learning can 

play an important role here by integrating the limited data with knowledge from the 

earlier stages. 

3.3 Degenerate Biological Systems 

This chapter focuses on transfer learning in degenerate biological systems. 

Degeneracy is a well-known characteristic of biological systems. In the seminal paper by 
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Edelman and Gally (2001), degeneracy was referred to as the phenomenon that 

structurally different elements perform the same/similar function or yield the 

same/similar output. The paper also provided ample evidence to show that degeneracy 

exists in many biological systems and processes. Degeneracy contributes to the 

heterogeneity, complexity, and robustness of biological systems. 

A closely related concept to degeneracy is redundancy, which may be more 

familiar to the engineering society. Degeneracy is different from redundancy in three 

major aspects:  

(a) Degeneracy is a characteristic for structurally different elements, whereas 

redundancy is one for structurally identical elements. In fact, although prevalent in 

engineering systems, true redundancy hardly exists in biological systems due to the rare 

presence of identical elements.  

(b) Degenerate elements work in a stochastic fashion, whereas redundant 

elements work according to deterministic design logic, e.g., A will work if B fails.  

(c) Degenerate elements deliver the same/similar function under some condition. 

When the condition changes, these degenerate elements may deliver different functions. 

This property leads to strong selection under environmental changes. In essence, 

degeneracy is a prerequisite for natural selection and evolution. Redundancy, on the other 

hand, does not have such a strong tie to environment.  

Degeneracy exists all the three example presented earlier. In (i), due to the 

difficulty of measuring TFs directly and precisely, the association between TFs and gene 

expression is usually studied by modeling the association between TF binding sites and 

gene expression. The binding site of a TF is a short DNA sequence where the TF binds. It 
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is known that the same TF can have alternative binding sites (F. Li and Zhang 2010), and 

as a result, these alternative binding sites should have the similar association with gene 

expression. The alternative binding sites of the same TF are degenerate elements. In (ii), 

genes in the same pathway may be degenerate elements in the sense that different genes 

in the pathway may have similar association with disease prognosis. This explains the 

growing interest in cancer genomics that aims at identifying how gene pathway as a 

whole affects prognosis rather than the effect of individual genes (Vogelstein and Kinzler 

2004). In (iii), brain regions that are strongly connected in a brain connectivity network 

may be degenerate elements because their functions may have similar association with 

cognition (Huang et al. 2012). 

Although degeneracy has been extensively discussed in the biological literature, 

its implication to statistical modeling has not been rigorously defined. Consider a 

biological system with Q elements, X1, … , XQ, jointly performing a function or yielding 

an output Y. For example, X1, … , XQ  may be Q potential binding sites of some TFs of 

interest which bind to the upstream region of a gene to regulate the gene’s expression. Y 

is expression level of the gene. In the context of a predictive model, X1, … , XQ  are 

predictors and Y  is the response variable. If a subset {X(1), … , X(q)} ⊂ {X1, … , XQ} 

consists of degenerate elements, e.g., they are potential binding sites of a TF, then 

according to the definition of degeneracy, {X(1), … , X(q)} should satisfy two conditions: 

(1) they are structurally different; (2) they perform the similar function, which means that 

their respective coefficients, {w(1), … ,w(q)}, that link them to Y should satisfy ‖w(i) −

w(j)‖ < ϵ , ∀i, j ∈ {1, … , q}, i ≠ j . ‖∙‖  is an appropriate norm and ϵ  is a biologically 
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defined threshold. A degenerate system may contain more than one subset of degenerate 

elements such as the subsets corresponding to different TFs. The challenge in modeling a 

degenerate system is how to build the biological knowledge about the degeneracy into 

statistical modeling, especially considering that the knowledge is often qualitative and 

with uncertainty.  

3.4 Modeling of Degeneracy 

Recall that the proposed transfer learning method in Chapter 2 includes a hyper-

parameter, 𝚽, that encodes the prior knowledge about the correlation structure of the 

regression coefficients. This is indeed the prior knowledge about degeneracy. In real-

world applications, it is common that some qualitative knowledge about the degeneracy 

exists, which can be represented by a graph 𝐺 = {𝐗, 𝐄}. The nodes in the graph are 

elements of the system, i.e., predictors 𝐗 in the predictive model. 𝐄 = {𝑋𝑖 ~𝑋𝑗} is a set of 

edges. 𝑎𝑖𝑗 is the edge weight. No edge between two nodes implies that the nodes are not 

degenerate elements to each other. If there is an edge between two nodes, the edge weight 

reflects the level of certainty that the nodes are degenerate elements. Next, we will 

discuss how to construct such a graph for the three examples presented previously: 

In (i), nodes/predictors are potential TF binding sites. A potential binding site is a 

short DNA sequence in the upstream promoter region of a gene, e.g., ACGCGT, 

ATGCGC. The letters in each word (i.e., each binding site) can only be from the DNA 

alphabet {𝐴, 𝐶, 𝐺, 𝑇}. If focusing on all 𝜅-letter-long words, called 𝜅-mers, there will be 

4𝜅 nodes in the graph. It is known that the binding sites with similar word composition 

are more likely to be alternative binding sites of the same TF (X. Li et al. 2010). The 

similarity between two binding sites can be measured by the number of letters they have 
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in common in their respective words. For example, the similarity between ACGCGT and 

ATGCGC is 4, because they share four letters in the same position. A formal definition 

of this similarity between two binding sites 𝑋𝑖  and 𝑋𝑗  is 𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗}. 𝐻{𝑋𝑖, 𝑋𝑗} is the 

so-called Hemming distance defined as 𝐻{𝑋𝑖, 𝑋𝑗} = ∑ 𝐼(𝑐𝑖𝑙 ≠ 𝑐𝑗𝑙)
𝐿
𝑙=1  (Li and Zhang 

2010). 𝐼(∙) is an indicator function. 𝑐𝑖𝑙  is the 𝑙-th letter in the word of binding site 𝑋𝑖 . 

Using this similarity measure, two nodes 𝑋𝑖 and 𝑋𝑗 do not have an edge if they do not 

have any common letter in the same position; they have an edge otherwise and the edge 

weight is their similarity. Likewise, in example (ii), nodes of the graph are genes and 

edges can be put between genes according to known pathway databases such as KEGG 

(http://www.genome.jp/kegg/) and BioCarta (http://www.biocarta.com/). In example (iii), 

nodes of the graph are brain regions and edges can be put between brain regions with 

known functional or anatomical connectivity (Huang et al. 2010).To incorporate the 

graph into our model, the graph is first converted to a Laplacian matrix, 𝐋, i.e.,  

                                        𝐋𝑖𝑗 = {
𝑑𝑖                                        𝑖𝑓 𝑖 = 𝑗
−𝑎𝑖𝑗                 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑋𝑖 ~𝑋𝑗 

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                           (3.1) 

where 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
 is called the degree of node 𝑋𝑖. It is known that 𝐋 is always non-

negative definite and it encodes many properties of the graph (Chung 1999). If the graph 

encodes the degeneracy of the system, 𝐋 can be reasonably used to replace the 𝚽−1 in the 

optimization problems in Case III and Case IV of chapter 2. Then, we obtain the 

following optimization problems for Case V and Case VI, respectively.  

Case V:  

�̂�V = argmin 
𝐖

{∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2𝐾

𝑘=1 + 𝜆1‖𝐖‖1 + 𝜆2(𝑄𝑙𝑜𝑔|𝛀| + 𝑡𝑟(𝐋𝐖𝛀
−1𝐖𝑇))},  

http://www.genome.jp/kegg/
http://www.biocarta.com/
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(3.2) 

Case VI:  

�̂�𝐾
VI = argmin 𝐰𝐾    

{
 
 

 
 ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 +

𝜆2 (𝑄𝑙𝑜𝑔 (𝜍𝐾 −𝛡𝐾
𝑇�̃�

−1
𝛡𝐾) +

1

𝜍𝐾−𝛡𝐾
𝑇 �̃�

−1
𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾))

}
 
 

 
 

.(3.3) 

Case V and Case VI can be solved by the algorithm in Figures 2 and 3. 

Next, we would like to provide some theoretical analysis to reveal the role of the 

graph in the optimizations/estimations. We will focus on Case VI; a similar result can be 

obtained for Case V. For notation simplicity, we further simply (3.3) into:  

�̂�𝐾
VI = argmin 𝐰𝐾    {‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)}.   (3.4) 

by dropping the constant 𝑄𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾)  and re-using 𝜆2  to represent 

𝜆2

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

 in (3.3).  

Lemma 3.1: The optimization in (3.4) is equivalent to: 

�̂�𝐾
VI = argmin 𝐰𝐾    {‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 − 𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))
2

𝑋𝑖 ~𝑋𝑗
} .  (3.5) 

(3.5) enables a clear interpretation for the role of the graph. That is, the edge 

weight between two nodes/predictors, 𝑎𝑖𝑗 , plays an role of regulating the closeness 

between the estimated coefficients of the two predictors, 𝑤𝑖𝐾 and 𝑤𝑗𝐾, after adjusting for 

the knowledge transferred from source domains that is embraced in 𝜇𝑖𝐾  and 𝜇𝑗𝐾 . 

Consider a special case of no transfer learning, i.e., 𝜇𝑖𝐾 = 0  and 𝜇𝑗𝐾 = 0 . Then, the 

larger the edge weight 𝑎𝑖𝑗, the closer the estimated 𝑤𝑖𝐾  and 𝑤𝑗𝐾  should be in order to 

achieve the minimization in (3.5).  Theorem 3.1 below shows the existence of an upper 
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bound for the difference between the estimated 𝑤𝑖𝐾  and 𝑤𝑗𝐾 , and this upper bound is 

inversely related to the edge weight 𝑎𝑖𝑗.   

Theorem 3.1: Let �̂�𝑖𝑘
𝑉𝐼 , �̂�𝑗𝑘

𝑉𝐼 ∈ �̂�𝐾
VI

  be the estimated coefficients for predictors 𝑋𝑖 and 𝑋𝑗. 

Let 𝐱𝑖𝐾 and 𝐱𝑗𝐾 be the data vectors for 𝑋𝑖 and 𝑋𝑗, respectively. Suppose that �̂�𝑖𝑘
𝑉𝐼�̂�𝑗𝑘

𝑉𝐼 > 0 

and 𝑎𝑖𝑗 ≫ 𝑎𝑢𝑣. 𝑎𝑢𝑣 is the weight of any edge other than 𝑋𝑖 ~𝑋𝑗. Then, for fixed 𝜆1 and 𝜆2 

and a square-error loss, 

              |(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝐱𝑖𝐾−𝐱𝑗𝐾‖2

 

2𝜆2
× √

‖𝐲𝐾‖2
2

𝑎𝑖𝑗
2 +

2𝜆2(𝜇𝑖𝐾−𝜇𝑗𝐾)
2

𝑎𝑖𝑗
.      (3.6) 

The proof for Lemma 3.1 and Theorem 3.1 can be found in Appendix 3.I. In the 

upper bound in (3.6), the data for the target domain, 𝐱𝑖𝐾 , 𝐱𝑗𝐾 , and 𝐲𝐾 , knowledge 

transferred from the source domains, 𝜇𝑖𝐾  and 𝜇𝑗𝐾 , and 𝜆2  can be considered as given. 

Then, the upper bound is inversely related to the edge weight 𝑎𝑖𝑗.  

3.5 Simulation Study 

In this section, we use AUC previously mentioned in chapter 2 to compare models 

with degeneracy modeling (the proposed method) and without degeneracy modeling 

(lasso). 

Consider a single domain and the model Y = ∑ wqXq
Q
q=1 + ε with 50 predictors, 

i.e., Q = 50. Suppose that the 50 predictors fall into 10 non-overlapping subsets; each 

subset consists of five predictors as its degenerate elements. Coefficients of the first two 

subsets, {w1, w2, w3, w4, w5}  and {w6, w7, w8, w9, w10}   are non-zero and generated 

from N(5,1) and N(1,1), respectively. Coefficients of the rest three subsets are zero. This 

is to reflect the reality that some degenerate elements of the system may not relate to the 
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particular response of interest. Next, we want to generate samples for the 50 predictors. 

The way these samples are generated must follow the biology of how the degenerate 

elements are formed, so it is different from chapter 2. Specifically, assuming that the 10 

subsets correspond to 10 TFs, we first generate 10 TFs, TF1, … , TF10 ,  from N(0,1). 

Next, to reflect the stochastic nature of the degenerate elements corresponding to each 

TFi , we generate TFi’s corresponding five predictors/degenerate elements from N(ρ ×

TFi, 1 − ρ
2) . ρ  corresponds to the correlation between TFi  and its corresponding 

degenerate elements. We try different correlation levels for generality. 50 samples are 

generated for each correlation level.  

Table 2. Best AUC performances of proposed model considering degeneracy and lasso 

ρ 

Proposed model  

considering degeneracy 

Lasso (no  

consideration of degeneracy) 

0.6 0.8138 0.6963 

0.7 0.8475 0.6875 

0.8 0.8388 0.6888 

 

To apply the proposed method, we first build a graph that puts an edge between 

each pair of predictors in each of the five subsets (no edge between the subsets) to 

represent the qualitative prior knowledge about the degeneracy. The edge weight is set to 

be one. The graph is then converted to a Laplacian matrix L and used in the proposed 

method. A lasso model is also applied to the simulation datasets as a model not taking the 

degeneracy into account. The process is repeated for 50 times. The average AUC 

performances of the two methods are comparable. However, when the best AUC 
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performances of the two methods are compared, the proposed method is significantly 

better, as can be seen in Table 2.  

3.6 Application of Gene Expression Prediction by Transcription Factors 

We present an application of modeling the predictive relationship between TFs 

and gene expression. Potential TF binding sites are predictors and gene expression is the 

response. Eight human cell lines (H1, K562, GM12878, HUVEC, HSMM, NHLF, 

NHEF, and HMEC) are considered as eight domains. Since the simulation studies 

presented the results for Case V, here we present the results for Case VI. To apply the 

model in Case VI, one cell line is treated as the target domain and all the others are 

treated as the source domains. The data for the predictors are obtained as follows: We 

download the RefSeq Gene annotation track for human genome sequence (hg19) from the 

University of California Santa Cruz Genome Browser (USCS, http://genome.ucsc.edu).  

Then, we scan the promoter region of each gene (i.e., 1000bp upstream of the 

transcription state site) and count the occurrence of each 𝜅-mer. Recall that a 𝜅-mer is a 

𝜅-letter-long word describing a potential binding site. We do this for 𝜅 = 6 and obtain 

data for 46  predictors, and for 𝜅 = 7  and obtain data for 47  predictors. 𝜅 = 6,7  are 

common choices for binding site studies (X. Li et al. 2010). A minor technical detail is 

that in human cell lines, a word and its reverse complement should be considered the 

same predictor. This reduces the 6-mer predictors to 2080 and 7-mer predictors to 8192. 

Furthermore, we obtain data for the response variable, i.e., gene expression, for the eight 

cell lines from the Gene Expression Omnibus (GEO) database under the accession 

number GSE26386 (Ernst et al. 2011). A total of 16324 genes on all chromosomes are 

included. This is the sample size.  

http://genome.ucsc.edu/
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Recall in Section 3.4, we mentioned that a graph can be constructed to represent 

the prior knowledge about the degeneracy. Nodes are predictors, i.e., 𝜅 -mers. The 

similarity between two 𝜅-mers is 𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗}. 𝐻{𝑋𝑖, 𝑋𝑗} is the Hamming distance. We 

consider an unweighted graph here. Specifically, there is an edge between 𝑋𝑖 and 𝑋𝑗, if 

𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗} ≥ 𝑠 , i.e., 𝑋𝑖  and 𝑋𝑗  share at least 𝑠  letters in the same position of their 

respective words. There is no edge between 𝑋𝑖 and 𝑋𝑗 otherwise. 𝑠 is a tuning parameter 

in our method.  

3.6.1 Comparison to Methods without Transfer Learning or without Degeneracy 

Modeling 

The method without degeneracy modeling is the model in Case VI but with 𝐋 = 𝐈. 

The method without transfer learning is a lasso model applied to data of the target 

domain alone. Each method has some tuning parameters to select. For example, the 

tuning parameters for the proposed method include 𝜆1, 𝜆2, and 𝑠. We find that 𝑠 = 5 is a 

consistently good choice across different choices for 𝜆1 and 𝜆2. 𝜆1 and 𝜆2 can be selected 

based on model selection criteria such as BIC and AIC. However, each criterion has some 

known weakness and there is no such a criterion that works universally well under all 

situations. To avoid drawing biased conclusion, we do not stick to any single model 

selection criterion. Instead, we run the model on a wide range of values for 𝜆1 and 𝜆2, 

i.e., 𝜆1 , 𝜆2 ∈ [10
−5, 103] , and report the average performance. Similar strategies are 

adopted for the two competing methods. This is indeed a common practice for 

comparison of different methods each of which has parameters to be tuned (Wang et al. 

2012).  
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All 2080 6 -mers are used as predictors. To compare the three methods in 

challenging predictive problems, i.e., problems with small sample sizes, only the 1717 

genes on chromosome 1 are included. Furthermore, one cell line is treated as the target 

domain and all the other cell lines are treated as the source domains. The knowledge of 

the source domains, i.e., �̃�∗, is obtained using the model in Case VI applied to the data 

of the source domains. The data of the target domain is divided into 10 folds. Nine folds 

of data are used, together with �̃�∗, to train a model, and the model is applied to the 

remaining one fold to compute a performance metric such as the MSE. The average 

MSE, MSE̅̅ ̅̅ ̅̅ , over the 10 folds is computed. This entire procedure is repeated for each of 

the eight cell lines as the target domain and the eight MSE̅̅ ̅̅ ̅̅ 𝑠  are averaged to get MSE̿̿ ̿̿ ̿̿ . 

This MSE̿̿ ̿̿ ̿̿  can be obtained for each pair of 𝜆1  and 𝜆2  in their range [10−5, 103] . 

Averaging the MSE̿̿ ̿̿ ̿̿ 𝑠 over the range gives MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ . Table 3 shows the results of comparison. 

It is clear that both transfer learning and degeneracy modeling in the proposed method 

help prediction in the target domain. Transfer learning is crucially important, without 

which the prediction is significantly impaired.   

Table 3. Comparison of three methods by MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿  

 
Proposed method vs. 

transfer learning without 

degeneracy 

Proposed method 

vs. lasso (no transfer 

learning) 

MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (competing) − MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (proposed )

MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (proposed )
× 100% 

16.25% 920.44% 

 
3.6.2 Robustness of the Proposed Method to Noisy Source Domains 

One distinguished feature of the proposed method is the ability to learn the 

relationship between each source domain and the target domain from data, and adaptively 
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decide how much knowledge to transfer from each source domain. To test this, we can 

include some “noisy” source domains. If the proposed method has the ability it claims to 

have, it should transfer little knowledge from the noisy domains and its performance 

should not be affected much. Specifically, we create the noisy source domains by 

destroying the correspondence between the response and predictors of each gene in these 

domains. For example, if we want to create a noisy source domain out of a cell line, we 

shuffle the gene expression data of that cell line. Next, we apply the proposed method to 

the data of the target domain with transfer learning from the source domains (note that 

some of the source domains have been shuffled to become noisy source domains). We 

compare the estimated model coefficients of the target domain and those obtained by 

keeping all the source domains as they are (i.e., no shuffling) by calculating their 

correlation coefficient. Table 4 shows this correlation coefficient with four, five, and six 

source domains shuffled. Cell line GM12878 is the target domain. When applying the 

proposed method, 𝜆1 and 𝜆2 are selected by 10-fold cross validation. It can be seen that 

the proposed method is almost not affected when less than five out of seven source 

domains are noisy domains. Furthermore, we also compute the correlation between the 

model coefficients of the target domain with and without transfer learning (no shuffling) 

and this correlation is 0.793765, which is at the similar level to that when there are more 

than five noisy domains. Finally, we would like to know if transfer learning can still 

outperform single-domain learning (i.e., lasso for the target domain) even with 

knowledge transferred from noisy domains. This result is summarized in Table 5, which 

further demonstrates the robustness of the proposed method.   
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Table 4. Correlation between model coefficients of the target domain with and without 

shuffled noisy source domains 

Four out of seven 

source domains are 

shuffled 

Five out of seven 

source domains are 

shuffled 

Six out of seven 

source domains are 

shuffled 

0.998065 0.816133 0.763273 

 

Table 5. Comparison between transfer learning with shuffled noisy source domains and 

single-domain learning 

 
Four out of 

seven source 

domains are 

shuffled 

Five out of 

seven source 

domains are 

shuffled 

Six out of seven 

source domains 

are shuffled 

MSE̿̿ ̿̿ ̿̿ (lasso) − MSE̿̿ ̿̿ ̿̿ (transfer learning)

MSE̿̿ ̿̿ ̿̿ (transfer learning )
× 100% 

22.42% 20.26% 19.95% 

 

3.6.3 Understanding the Degenerate System 

The purpose of predictive modeling is not only to predict a response but also to 

facilitate understanding of the problem domain. To achieve this, we apply the proposed 

method to one cell line, GM12878, treating this cell line as the target domain and all 

other cell lines as the source domains. Predictors are all 8192 7-mers. 7-mers contain 

richer binding site information than 6-mers, but analysis of 7-mers has been limited 

because of the dimension. Focusing on 7-mers can also test the capability of our method 

in handling very large dimensional predictors. The response is a binary indicator variable 

that indicates if a gene is expressed or unexpressed, so a logistic loss function is used in 

our method. This has a purpose of testing the capability of our method in classification 

problems. Also, it is more reasonable to assume that binding site counts like 7-mers can 

explain a majority of the variability in expressed/unexpressed genes than the variability in 

the numerical gene expression levels. The latter is more involved, as the expression level 
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is affected by a variety of other factors than binding site counts. 16324 genes on all 

chromosomes are included in the analysis.  

Unlike Section 3.6.1 in which comparison of prediction accuracy between 

methods is the primary goal, here we want to obtain a model for the 7-mer-gene-

expression relationship, and based on the identified relationship, to understand the system 

better. For this purpose, model selection is unavoidable. We use 10-fold cross validation 

to choose the optimal 𝜆1 and 𝜆2, which are ones giving the smallest average classification 

error over the 10 folds. Table 6 shows the classification performance of our method in 

terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy. The 

definition of TPR is: among all the genes classified as expressed, the proportion that is 

truly expressed. TNR is: among all the genes classified as unexpressed, the proportion 

that is truly unexpressed. Accuracy is the proportion of correctly classified genes. An 

observation is that TPR is higher than TNR, which is expected, because classification of 

unexpressed genes is supposed to be harder than expressed genes. The accuracy is 0.70, 

which is satisfactory in this application, considering the complexity of the biological 

system. Given satisfactory accuracy, we can now proceed and use the model for 

knowledge discovery. To do this, we use all the data of GM12878 to fit a model under 

the optimal 𝜆1 and 𝜆2, which is called “the model” in the subsequent discussion. 

Table 6. Classification performance for GM12878 treated as the target domain  

TPR TNR Accuracy 

0.84 0.60 0.70 

 

In knowledge discovery, our goal is to characterize the degeneracy of the target 

domain, i.e., GM12878. Note that although we have used a graph to encode the 
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degeneracy, it is before seeing any data and is only qualitative. It can now be better 

characterized by the model that incorporates both the graph and the data of the target 

domain as well as knowledge transferred from the source domains. Specifically, the 

following steps are performed:  

First, we examine the estimated coefficients of the 7-mers and eliminate those 7-

mers with zero coefficients from the graph. These 7-mers are considered not significantly 

affecting gene expression. Then, we rank the remaining 7-mers according to the 

magnitudes of their coefficients and choose the top 50 7-mers for the subsequent analysis. 

This helps us focus on identifying the degeneracy most relevant to gene expression.  

Some of the 50 7-mers are connected in the graph and some are not; in fact, they fall into 

different clusters. We define a cluster to be a group of 7-mers, each of which is connected 

with at least one other 7-mer in the group. The clusters are shown in Table 7. Each cluster 

is suspected to correspond to a TF and the 7-mers in the cluster are believed to be 

alternative binding sites of the TF. To verify this, we compute a Position Specific Scoring 

Matrix (PSSM) for each cluster. PSSM has been commonly used to characterize binding 

site uncertainty (X. Li et al. 2010). A PSSM is a 𝜅 × 4  matrix. 𝜅  is the number of 

positions in a 𝜅-mer. 𝜅 = 7 in our case. Each row of a PSSM is a probability distribution 

over {𝐴, 𝐶, 𝐺, 𝑇}. Let 𝑝𝑖(𝑠) denote the probability of 𝑠, 𝑠 = {𝐴, 𝐶, 𝐺, 𝑇}, for row/position 

𝑖, 𝑖 = 1, … , 𝜅. ∑ 𝑝𝑖(𝑠)𝑠={𝐴,𝐶,𝐺,𝑇} = 1. 𝑝𝑖(𝑠) can be calculated by 𝑝𝑖(𝑠) =
𝑛𝑖(𝑠)

𝐶
, where 𝐶 is 

the cluster size and 𝑛𝑖(𝑠) is the number of occurrences of 𝑠 at position 𝑖 among all the 7-

mers in the cluster. Because our model outputs an estimated coefficient for each 7-mer, 

we modify this conventional formula by 𝑝𝑖(𝑠) =
∑ �̂�𝑐 𝐼(𝐫𝑐𝑖=𝑠)
𝐶
𝑐=1

∑ �̂�𝑐
𝐶
𝑐=1

. �̂�𝑐  is the estimated 
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coefficient for the 𝑐-th 7-mer in the cluster. 𝐼(⋅) is an indicator function. 𝐫𝑐𝑖 is the letter at 

the 𝑖 -th position of the 𝑐 -th 7-mer. This modified formula works better in our case 

because it takes the response variable into consideration by incorporating the model 

coefficients. Taking cluster 1 of GM12878 in Table 7 as an example, the PSSM is:  

                                                 A       C        G       T 

[
 
 
 
 
 
0.88
0.12
0
0
0
0
0

   

0.12
0.88
0
0
0.65
1
0

   

0
0
0.47
0
0.23
0
0.34

   

0
0
0.53
1
0.12
0
0.66]

 
 
 
 
 

 

 

A PSSM can be represented in a compact form by a motif logo, which stacks up the four 

letters {𝐴, 𝐶, 𝐺, 𝑇} at each position 𝑖 and the letter height is proportional to its probability 

𝑝𝑖(𝑠). Please see Table 7 for the PSSM motif logos for all the clusters.  

Furthermore, the PSSM of each cluster can be compared with databases of known 

TFs to see if there is a match. We used the Motif-based Sequence Analysis Tools 

(http://meme.nbcr.net/meme) for the matching. Table 7 shows the top five matched TFs 

for each cluster, according to the significance level of each match. If less than five 

matched TFs are found, then all the matched TFs will be shown. If no match is found, 

there is a “N/A”.  Out of the eight clusters, six have at least one match with known TFs. 

Clusters 1, 2, and 6 are enriched with SPI1, Ets, Elk, , FLI1, FEV, GABP, and EHF, 

which are well-known TFs for important basic cell functions. Cluster 3 is enriched with 

AP-1 and NF-E2, which are related to Golgi membrane and nucleus that are also basic 

cell functions. Clusters 5 and 7 are enriched with Zfx and CNOT3.  CNOT3 is a 

Leukocyte Receptor Cluster Member 2 and Zfx is required for the renewal process in 

http://meme.nbcr.net/meme/tomtom-intro.html
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hematopoietic cells. As GM12878 is a lymphocyte cell, these blood transcription factors 

are specific to this cell line. Clusters 4 and 5 do not match with any known TFs. 

However, only 10-20% of total human TFs are known so far. The unmatched clusters 

indeed present an interesting opportunity for identifying new TFs.  

This entire analysis for GM12878 is also performed for other cell lines. For each 

cell line, clusters of 7-mers exist and a large majority of the clusters can be matched to 

known TFs. Also, some clusters are common across the cell lines. These are the clusters 

whose matched TFs are related to basic cell functions. There are also some cell-line-

specific clusters such as clusters 5 and 7 for GM12878. As other examples, there is a 

cluster enriched with CTF1 for HMEC. CTF1 is known to be in entracellar region. As 

HMEC is an epithelial cell, CTF1 is specific to this cell line. In addition, there is a cluster 

enriched with MyoD and another cluster enriched with MEF-2 for HSMM. MyoD is 

related to muscle cell differentiation and MEF-2 is a myocyte enhancer factor, both being 

specific to HSMM. The identified common and cell-line-specific cluster structures 

verifies transfer learning’s ability of modeling related but not exactly the same domains. 
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Table 7. Clusters of 7-mers and matching with known TFs for GM12878 

Clusters 7-mers Est. 

coeff. 

Motif logo Matched known TFs 

1 

AAGTGCT 0.005808 

 

SPI1, Ets, Elk-1, FLI1, 

FEV 

 

 

ACGTGCT 0.005497 

ACGTTCT 0.005367 

ACGTCCT 0.005963 

ACTTCCT 0.009086 

ACTTCCG 0.010709 

CCTTCCG 0.005685 

2 

GGCGGAA 0.007632 

 

GABP, Elk-1, 

Ehf_primary, Eip74EF, 

ERF 

GCCGGAA 0.006837 

ACCGGAA 0.006497 

CCCGGAA 0.006982 

TCCGGAA 0.005488 

3 
ACTAAGT 0.005597 

 

AP-1, NF-E2 ACTCAGT 0.005881 

ACCCAGT 0.006013 

4 
ATGACAT -0.00594 

 

N/A 
ATCACAT -0.00588 

5 
CAGGCCG 0.006636 

 

Zfx, CNOT3 
AAGGCCG 0.00586 

6 
CCGGAAG 0.009778 

 

ELK-1, GABPA, 

Eip74EF, SAP-1a, EHF CCGGAGG 0.005296 

7 
AGGCCGC 0.005775 

 

Zfx 
AGGCCGG 0.005715 

8 
TAGACTA 0.006607 

 

N/A 

TAAACTA 0.006447  
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Chapter 4: Temporal Transfer Learning for Modelling and Change Detection of Dynamic 

Networks by a Network State Space Model 

4.1 Introduction  

In many data-rich domains, the data exist in the form of a network that consists of 

nodes and edges. Typical examples include social networks, gene networks, brain 

networks, and supply networks. A network naturally evolves over time: people’s 

interaction in a social network may become more and more often as they become more 

acquainted with each other; functional connectivity of a human brain may become more 

and more sparse with aging; a supply network may have seasonality. This results in a 

time series of networks, also referred to as dynamic networks in this paper. Dynamic 

Network Modeling (DNM) has been a popular research area in Computer Science (CS) in 

recent years (McCallum, Corrada-Emmanuel, and Wang 2005). Most existing methods 

extend previously developed models on cross-sectional or static network data (i.e., data in 

the form of a network at a single time point or at an aggregate view) to temporal models. 

DNM is typically used for community detection, prediction, characterization of temporal 

trends, and visualization.  

In addition to the variability of natural evolution, another type of variability in 

dynamic network data is associated with assignable causes. The latter variability is what 

we refer to as “changes” in this paper. Examples of assignable causes include preparation 

for a terrorist attack that leads to changes in the social network of members in the terrorist 

group, a brain disease that leads to changes in a person’s brain connectivity network, and 

new government regulation that leads to changes in a supply network. Accurate and 

timely change detection from dynamic network data is of critical importance in many 

practical domains: it can generate alerts for a potential terrorist attack, preparing the 
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authorities and people to properly respond; it can detect the onset of a brain disease, 

making treatment and disease management more effective. However, change detection 

has been little addressed by the existing DNM research.  

Change detection is a classic research area in Statistical Process Control (SPC). 

Numerous approaches have been developed for change detection from univariate or 

multivariate time series data (Alwan and Roberts 1988; Apley and Shi 1999; Berthouex, 

Hunter, and Pallesen 1978; Dooley and Kapoor 1990; Dooley et al. 1986), but not from 

time series of networks. Change detection from network data has been studied by a 

number of researchers in recent years. Most of the research shares a similar logical 

procedure that first extracts aggregated measures of network topology (e.g., density, 

degree, clustering coefficient, and scan statistics) and then treats these measures as 

univariate or multivariate data to which conventional SPC approaches become 

immediately applicable (Marchette 2012; McCulloh and Carley 2011; Neil et al. 2013; 

Park et al. 2013; Priebe et al. 2005). A different line of work monitors the formation 

mechanism of network topology. For example, Azarnoush et al. (2015) proposed a 

method that relates the edge probability to node attributes by a logistic regression and 

formulates a likelihood ratio test to detect changes in the regression coefficients. 

However, in all the aforementioned research, network data collected at different temporal 

snapshots are not treated as time series but independent observations, i.e., the natural 

evolution of the dynamic networks is not modeled in development of the change 

detection methods.  

In this paper, we study change detection from dynamic (i.e., time series) network 

data. There are two essential steps in the methodological development: First, we need to 
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develop a model capable of characterizing the natural evolution of dynamic networks 

with high accuracy. This would provide a proper baseline model against which changes 

can be detected. Second, we need to develop a change detection method capable of 

combining the baseline model with new data in a principled way to detect changes with 

statistical rigor. Additionally, because the baseline model developed in the first step will 

be used in the change detection in the second step, it is important that the baseline model 

takes a form that not only ensures high accuracy in fitting the network data with natural 

evolution but also facilitates detection of various changes in new data.   

To serve the purpose of the first step, we propose a State Space Model (SSM), 

called Network SSM (NSSM), to characterize the natural evolution of dynamic networks 

by attributing the observed network evolution to the evolution of latent state vectors that 

represent the “social propensities” of nodes. SSM is a classic modelling approach for 

multivariate time series data when the data are noisy and there is difficulty for directly 

characterizing the evolution of the observed data (Shi 2006). These conditions are clearly 

true for network data. In addition, defining the latent state vectors to be social 

propensities of nodes in the NSSM shares a similar idea to (Azarnoush et al. 2015) that 

elucidates the formation of edges in the networks, i.e., two nodes with more similar social 

propensities should be more likely to have an edge. The difference is that the method in 

Azarnoush et al. (2015) requires the social propensities to be observed node attributes, 

whereas the NSSM assumes them to be latent state vectors. Because the state vectors are 

not observed, we have the flexibility of assuming their probability distribution to make 

the subsequent modeling more convenient. Specifically, we assume that the state vectors 

are multivariate Gaussian and their temporal evolution is characterized by a linear 



                                                                                                                             

45 

Markovian state equation. Also, we propose a novel observation equation of the NSSM to 

link the state vectors of nodes to the observed edges in the network at each time point. 

The form of the observation equation allows us to further develop an Expectation 

Propagation (EP) algorithm to adequately approximate it by a multivariate Gaussian 

distribution of the state vectors. Utilizing the Gaussian approximation, parameter 

estimation for the NSSM becomes tractable. For parameter estimation, we adopt the 

Expectation-Maximization (EM) framework but develop a Bayesian optimal smoothing 

(BOS) algorithm to compute the expectation in the E-step that suits the NSSM. We call 

this integrated algorithm an EM-BOS algorithm in this paper.  

Furthermore, after an NSSM is estimated from dynamic network data with natural 

evolution, we propose to integrate the NSSM into the logical procedure of SPC to detect 

changes in new networks. Specifically, we propose to compare a predicted covariance 

matrix of the state vector at a future time 𝑡∗  using the NSSM with an estimated 

covariance matrix using the network data at 𝑡∗ alone. Covariance monitoring is a well-

established research area in SPC. Many approaches have been developed to detect 

various changes in a covariance matrix of multivariate data with statistical rigor. The 

state space formulation of the NNSM allows these approaches to be adopted to detect 

various changes in network data.  

Finally, we would like to stress that the NSSM is flexible in the sense that it can 

be easily extended to model a broad spectrum of network data and to integrate network 

and non-network data, such as networks with hyper-edges, multi-dimensional networks, 

and integration of node attributes and external/environmental factors with network data. 
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This would allow for monitoring and change detection in a variety of application 

domains. 

4.2 Related Work in Network Modeling and SPC  

Network modeling: This is a popular research area in CS with most motivation 

examples and applications in social networks. Earlier research focused on static 

networks. Because of the static nature, the research typically modelled the network at a 

single time point or at an aggregate view. Classic approaches include the Exponential 

Random Graph Model (ERGM) and extensions (Hanneke, Fu, and Xing 2010) which are 

descriptive in nature, and the Stochastic Block Model (SBM) and extensions (Airoldi et 

al. 2009; Nowicki and Snijders 2001) that aim for community detection. Another popular 

approach is the Latent Space Model (LSM) (Handcock, Raftery, and Tantrum 2007; 

Hoff, Raftery, and Handcock 2002; Globerson et al. 2007; Miller, Griffiths, and Jordan 

2009). LSM works by embedding nodes of the network into a low-dimensional latent 

space in which the relative positions of the nodes reflect their relationship in the observed 

network. LSM is flexible in the sense that once the latent positions of the nodes are 

estimated, they can be used to achieve various goals such as visualization, community 

detection, and link prediction.  

DNM has attracted much attention in recent years. Research has been done to 

extend the models previously developed for static networks to modelling of time series 

data in the form of networks. For example, a temporal ERGM (TERGM) (Hanneke, Fu, 

and Xing 2010) was developed as an extension to the original static ERGM. The static 

ERGM considers the probability distribution of the network to follow that from an 

exponential family, in which the sufficient statistics are pre-defined graph statistics such 
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as the number of edges, number of k-stars, and number of triangles. In the TERGM, the 

sufficient statistics are defined on two successive networks to characterize their temporal 

evolution, such as the stability, reciprocity, and transitivity statistics. Also, several 

methods have been developed to extend the static SBM to temporal models. Xing, Fu, 

and Song (2010) and Ho, Song, and Xing (2011) proposed temporal extensions of a 

mixed-membership version of the static SBM using linear state space models for the real-

valued class memberships. In (Yang et al. 2011), Yang et al. proposed a temporal 

extension of the static SBM that explicitly models nodes changing between classes over 

time by using a transition matrix that specifies the probability that a node in class 𝑖 at 

time 𝑡 switches to class 𝑗 at time 𝑡 + 1 (Xu and Hero 2014). In addition, temporal LSMs 

for dynamic networks have also been developed. Hoff (2011) proposed a dynamic latent 

factor model analogous to an eigenvalue decomposition with time-invariant eigenvectors 

and time-varying eigenvalues. The model is applicable to many types of data in the form 

of multi-way arrays, including dynamic networks. Lee and Priebe (2011) proposed a 

latent process model for multi-relational dynamic networks using random dot product 

spaces. Sarkar and Moore (2005) proposed to embed nodes of the dynamic networks into 

a 𝑝-dimensional Euclidian latent space and use a temporal transition model to prohibit 

large movement of each node along successive time points. Goals of the aforementioned 

dynamic network models include characterization of the temporal trend, prediction, and 

visualization, but not change detection.  

Monitoring and change detection in statistical process control (SPC): Two related 

research areas to this paper are SPC for time series data and SPC for network data. 

Numerous SPC control charts have been developed for univariate and multivariate time 
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series data (Alwan and Roberts 1988; Apley and Shi 1999; Berthouex, Hunter, and 

Pallesen 1978; Dooley and Kapoor 1990; Dooley et al. 1986). These methods are not 

applicable to time series in the form of networks. On the other hand, SPC methods for 

network data have been developed by a number of researchers in recent years. Most 

existing research applies SPC to aggregated measures of network topology, such as 

density, number of triangles, global clustering coefficient, and scan statistics (Marchette 

2012; McCulloh and Carley 2011; Neil et al. 2013; Park et al. 2013; Priebe et al. 2005). 

Azarnoush et al. (2015) recently developed a method with a different perspective, which 

monitors the formation mechanism of network topology. By attributing the formation of 

network topology to node attributes, the method adopts a logistic regression to link edge 

probability with node attributes and uses a likelihood ratio test to detect changes. 

However, all the aforementioned SPC methods for network data do not consider the 

networks to be time series, but independent observations.  

4.3 Overview of the Proposed Methodology 

Figure 5 shows the proposed methodological framework. Two key components of 

the methodology include development of the NSSM, which is presented in Section 4.4, 

and development of the change detection method by integrating the NSSM and SPC, 

which is presented in Section 4.5. Furthermore, Section 4.6 presents simulation 

experiments and a real-data application. Section 7 is the conclusion.  
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Figure 5. Proposed methodological framework 

4.4 NSSM for Characterizing Natural Evolution of Dynamic Networks 

In this section, we first present the mathematical formulation of the NSSM 

(Section 4.4.1). Then, we present the development of an EP algorithm for approximating 

the observation equation of the NSSM (Section 4.4.2). Next, we discuss several 

extensions of the NSSM to model various types of network data and incorporate non-

network data with network data (Section 4.4.3). Finally, we present the development of 

an EM-BOS algorithm for parameter estimation of the NSSM (Section 4.4.4). 

4.4.1 Model Formulation 

A general SSM includes a state equation and an observation equation. The state 

equation models the dynamics of latent state variables. The observation equation links the 
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latent state variables with observational data. In the proposed NSSM, a network observed 

at time 𝑡 is represented by 𝐺𝑡 = {𝐯, 𝐲𝑡}. 𝐯 is a set of 𝑛 nodes . 𝐲𝑡 consists of the edges. In 

this paper, we focus on unweighted undirected networks. So, each edge in 𝐲𝑡, i.e., 𝑦𝑖𝑗,𝑡, is 

treated as a Bernoulli random variable and 𝑖 < 𝑗. Furthermore, based on the notion that 

the probability of having an edge between two nodes should be related to the states of the 

nodes, we propose one state variable for each node, 𝑥𝑖, 𝑖 = 1, . . , 𝑛. 𝑥𝑖 reflects a node’s 

propensity of interacting with others, called “social propensity” in this paper. Let 

𝐱𝑡 = (𝑥1𝑡, … , 𝑥𝑛𝑡)
𝑇  be the state vector at time 𝑡 . The temporal evolution of the state 

vector can be represented by a linear model in (4.1), which is the state equation of the 

NSSM:  

𝐱𝑡 = 𝐀𝑡−1𝐱𝑡−1 + 𝐪𝑡−1.                                                (4.1) 

𝐪𝑡−1~𝑁(𝟎,𝐐𝑡−1).  𝐀𝑡−1  is a matrix of linear coefficients. The initial state vector is 

assumed to follow a zero-mean multivariate Gaussian distribution, i.e., 𝐱1~𝑁(𝟎, 𝚺). To 

link the state vector with the network data at time 𝑡, an “ideal” observation equation can 

take the following form: 

𝑝𝑖𝑑𝑒𝑎𝑙(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = {
1   𝑖𝑓 𝑥𝑖𝑡𝑥𝑗𝑡 > 0

0   𝑖𝑓 𝑥𝑖𝑡𝑥𝑗𝑡 < 0
.                            (4.2) 

That is, there is an edge between two nodes if their respective states have the same sign. 

(4.2) is called the “ideal” observation equation because it does not consider the 

measurement noise in network data. To account for the measurement noise, we propose 

the following observation equation: 

𝑝(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = ∬𝑝𝑖𝑑𝑒𝑎𝑙(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 + 𝛿𝑖, 𝑥𝑗𝑡 + 𝛿𝑗)𝑁(0, 𝜎𝛿
2)𝑁(0, 𝜎𝛿

2) 𝑑𝛿𝑖𝑑𝛿𝑗, 

(4.3) 
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where 𝛿𝑖 , 𝛿𝑗~𝑁(0, 𝜎𝛿
2)  represent measurement noise. Through some algebra, we can 

simplify (4.3) into:   

𝑝(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = 𝜙 (
𝑥𝑖𝑡

𝜎𝛿
)𝜙 (

𝑥𝑗𝑡

𝜎𝛿
) + {1 − 𝜙 (

𝑥𝑖𝑡

𝜎𝛿
)} {1 − 𝜙 (

𝑥𝑗𝑡

𝜎𝛿
)}.            (4.4) 

𝜙(∙) is the cumulative density function (CDF) of the standard normal distribution. To 

understand the properties of (4.4), we plot the probability contours of (4.4) with two 

noise levels in Figure 6. The observations are: 1) Nodes whose states have the same sign 

have a higher probability of having an edge than nodes having opposite signs. 2) The 

magnitude of states affects the probability of having an edge in a positive way if the 

states of two variables have the same sign, i.e., the greater the magnitude, the higher the 

probability, but in a negative way if the states have opposite signs. 3) The probability of 

having an edge decreases as the measurement noise level increases.  

Finally, based on the edge-specific observation equation in (4.4) and the 

assumption that the edges are independent of each other given the states of their 

respective nodes, we can write the observation equation of the network as follows: 

𝑝( 𝐲𝑡|𝐱𝑡) = ∏ 𝑝(𝑦𝑖𝑗,𝑡 |𝑥𝑖𝑡, 𝑥𝑗𝑡).𝑖𝑗                                             (4.4*) 

 

Figure 6. Probability contour plots of the proposed observation equation in (4.4) with two 

different measurement noise levels: (a) 𝜎𝛿 = 1; and (b) 𝜎𝛿 = 3 
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4.4.2 Gaussian Approximation of the Observation Equation by an EP Algorithm 

To preserve computational tractability in the subsequent parameter estimation and 

change detection, we consider 𝑝( 𝐲𝑡|𝐱𝑡)  as a function of 𝐱𝑡  when the network 𝐲𝑡  is 

observed, and approximate 𝑝( 𝐲𝑡|𝐱𝑡) by a multivariate Gaussian distribution of 𝐱𝑡. The 

fact that the observation equation is composed by Gaussian CDFs also supports the 

validity of a Gaussian approximation. Among approximation algorithms such as Laplace 

(Shun and McCULLAGH 1995), variational Bayes (Cevher et al. 2008), and EP, EP is 

known to work well when the original/exact distribution takes the form of a factorization 

(T. P. Minka 1999) (please see a brief introduction of EP in Appendix C). This makes EP 

an ideal choice for our case because the joint distribution of the edges in a network can be 

written as a product of the edges’ respective distributions according to the observation 

equation in (4.4*). We develop an EP algorithm to find a Gaussian approximation for the 

observation equation of the NSSM. The result is presented in Proposition 4.1 and the 

detailed derivation for finding the approximation is provided in Appendix C.  

Proposition 4.1: A Gaussian approximation for the observation equation 𝑝( 𝐲𝑡|𝐱𝑡) in the 

NSSM is given by: 

𝑝( 𝐲𝑡|𝐱𝑡) ≈ 𝑁(𝐱𝑡|𝟎, 𝚷𝑡
−1), 

where 𝚷𝑡  is a function of 𝐲𝑡 and 𝜎𝛿 , and is found by EP. 

4.4.3 Model Extensions 

The NSSM proposed in Section 4.4.1 can be extended in several ways to model a 

broad spectrum of network data and to integrate network and non-network data. 

Specifically, we propose four extended NSSM as follows:  
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1) Networks with hyperedges.   An edge connects two nodes, while a hyperedge 

can connect/include any number of nodes. An edge characterizes only pair-wise 

interaction, but a hyperedge can characterize the complex interaction among the members 

in a group, e.g., people attending the same meeting. A network consisting of hyperedges 

is called a hypergraph (Kalman 1960). Many social networks and biological networks 

take the form of a hypergraph. To model a hypergraph, we can use the same state 

equation as (4.1) but modify the observation equation as follows: Let 𝑒𝑘 be a hyperedge 

that connects/includes nodes {𝑥𝑘1 , … , 𝑥𝑘𝑛}. Then, we adopt the same idea as (4.2) and 

assume that there is a hyperedge on the nodes if the nodes’ respective states have the 

same sign, i.e.,  

𝑝𝑖𝑑𝑒𝑎𝑙(𝑒𝑘,𝑡 = 1 |𝑥𝑘1,𝑡, … , 𝑥𝑘𝑛,𝑡) = {
1 𝑖𝑓 𝑠𝑖𝑔𝑛(𝑥𝑘1,𝑡) = ⋯𝑠𝑖𝑔𝑛(𝑥𝑘𝑛,𝑡)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Furthermore, considering measurement noise in network data, we can obtain the 

observation equation in a similar format to (4.4):  

𝑝(𝑒𝑘,𝑡 = 1 |𝑥𝑘1,𝑡, … , 𝑥𝑘𝑛,𝑡) = 𝜙 (
𝑥𝑘1,𝑡

𝜎𝛿
) × …× 𝜙 (

𝑥𝑘𝑛,𝑡

𝜎𝛿
) + {1 − 𝜙 (

𝑥𝑘1,𝑡

𝜎𝛿
)} × …×

{1 − 𝜙 (
𝑥𝑘𝑛,𝑡

𝜎𝛿
)}.                                                                                              (4.5) 

2) Multi-dimensional networks.  At each time 𝑡, there may be more than one 

network for the same set of nodes. For example, a group of people may interact with each 

other through multi-media such as phone call, email, facebook, and twitter. We call each 

of these networks a “dimension” in this paper. To model multi-dimensional networks, we 

can use the same state equation as (4.1), but have one observation equation for each 

dimension of the networks. This is to assume the multi-dimensional networks to be 
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different realizations for the underlying social propensities (i.e., states) of the nodes. 

Specifically, the observation equation for the 𝑘-th dimension of the networks is:  

 𝑝(𝑦𝑖𝑗,𝑡
(𝑘)
= 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = 𝜙 (

𝑥𝑖𝑡

𝜎
𝛿
(𝑘))𝜙 (

𝑥𝑗𝑡

𝜎
𝛿
(𝑘)) + {1 − 𝜙 (

𝑥𝑖𝑡

𝜎
𝛿
(𝑘))} {1 − 𝜙 (

𝑥𝑗𝑡

𝜎
𝛿
(𝑘))}, 𝑘 = 1,… , 𝐾.    

(4.6) 

If any of the dimensions is a hypergraph, (4.5) can be used as the observation equation 

corresponding to that dimension.  

3) Incorporation of node attributes.  In addition to the dynamic network data, we 

may also have multivariate data of a set of attributes for each node, 𝐳𝑖 , such as age, 

gender, and education background. The attributes of a node typically do not change over 

time, so we can incorporate them into the initial state of the NSSM by using them to 

define the covariance matrix of the initial state vector, i.e., 𝚺𝑖𝑗 = 𝜅(𝐳𝑖, 𝐳𝑗). 𝜅(∙) is an 

appropriate kernel function. This is to consider that two nodes with similar attribute 

profiles should have more correlated initial states.  

4) Incorporation of external/environmental factors.  External factors may affect 

the social propensities (i.e., the states) of some or all the nodes in the network. For 

example, in a social network, external factors may be regulation or political climate; in a 

biological network, external factors may be exposure to environmental hazards or a 

disease process. External factors, denoted by 𝐮𝑡−1 , can be incorporated into the state 

equation as 𝐱𝑡 = 𝐀𝑡−1𝐱𝑡−1 + 𝐁𝑡−1𝐮𝑡−1 + 𝐪𝑡−1.  

4.4.4 Parameter Estimation for the NSSM by an EM-BOS Algorithm 

In this section, we will discuss parameter estimation for the basic NSSM in (4.1) 

and (4.4), leaving the parameter estimation for the four extended NSSMs for future work. 
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The parameters in the NSSM include 𝐀𝑡−1, 𝐐𝑡−1, and 𝜎𝛿
2. Given that network data have 

been collected at 𝜏  past time points, i.e., = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇 , our objective is to estimate 

𝐀𝑡−1 , 𝐐𝑡−1 , 𝑡 = 2,… , 𝜏 , and 𝜎𝛿
2  from the data. 𝜎𝛿

2  is the variance of measure noise. 

Because it is just a scalar, we will treat it as a tuning parameter and use a simple line 

search to select it. This will avoid complicated mathematical estimation. 𝐀𝑡−1 and 𝐐𝑡−1 

are 𝑛 × 𝑛 matricies that cannot be treated as tuning parameters and need to be estimated 

from data. Treating the 𝐀𝑡−1 and 𝐐𝑡−1 at different time points as different parameters 

results in a saturated model that is of little use. To tackle this problem, a general principle 

in SSM is to represent the time-varying parameters as functions of a small set of 

hyperparameters, 𝛉, i.e., 𝐀𝑡−1 = 𝐀𝑡−1(𝛉) and 𝐐𝑡−1 = 𝐐𝑡−1(𝛉). 𝐀𝑡−1(∙) and 𝐐𝑡−1(∙) are 

functions of 𝛉 given by domain knowledge. In this paper, we focus on the functions that 

are time-invarying, which reduces the parameters to A and 𝐐. To estimate A and 𝐐, we 

adopt the EM framework that treats 𝐲 = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇  as the observed data and 𝐱 = 

[𝐱1
𝑇 , … , 𝐱𝜏

𝑇]𝑇 as the missing data. EM is an iterative procedure for finding the maximum 

likelihood estimates of model parameters from data with missing values (Dempster, 

Laird, and Rubin 1977). It iterates between an E-step that finds the expectation of the 

complete-data log-likelihood with respect to the missing data given the observed data and 

the current parameter estimates, and an M-step that finds parameter estimates that 

maximize the expectation in the E-step. Under the EM framework, the complete-data log-

likelihood function of the NSSM is: 

𝑙(𝐀,𝐐|𝐲, 𝐱) = 𝑙𝑜𝑔 𝑝(𝐲, 𝐱|𝐀,𝐐) = 𝑙𝑜𝑔 𝑝(𝐱|𝐀,𝐐) + 𝑙𝑜𝑔 𝑝(𝐲|𝐱) 

                 = ∑ log 𝑝(𝐱𝑡|𝐱𝑡−1, 𝐀, 𝐐)
𝜏
𝑡=2 + log 𝑝(𝐱1) + ∑ 𝑙𝑜𝑔 𝑝( 𝐲𝑡|𝐱𝑡)

𝜏
𝑡=1 .  (4.7) 
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Using the state equation and the EP approximation for the observation equation and 

omitting constants, (4.7) becomes: 

𝑙(𝐀,𝐐|𝐲, 𝐱) = −
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ (𝐱𝑡 − 𝐀𝐱𝑡−1)

𝑇𝐐−1(𝐱𝑡 − 𝐀𝐱𝑡−1)
𝜏
𝑡=2 −

1

2
𝐱1
𝑇𝚺−1𝐱1 −

1

2
∑ 𝐱𝑡

𝑇𝚷𝑡 𝐱𝑡
𝜏
𝑡=1 .   

In the E-step, we compute the expectation of 𝑙(𝐀, 𝐐|𝐲, 𝐱) with respect to 𝐱, given 

𝐲 and the A and 𝐐 estimated from the previous iteration, 𝐀∗and 𝐐∗, i.e.,  

𝑓(𝐀,𝐐) ≜ E𝐱|𝐲,𝐀∗,𝐐∗  {𝑙(𝐀,𝐐|𝐲, 𝐱)} 

 = {
−
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ 𝑡𝑟((𝐱𝑡 −𝐀𝐱𝑡−1)

𝑇𝐐−1(𝐱𝑡 − 𝐀𝐱𝑡−1))
𝜏
𝑡=2

−
1

2
𝑡𝑟(𝐱1

𝑇𝚺−1𝐱1) −
1

2
∑ 𝑡𝑟(𝐱𝑡

𝑇𝚷𝑡 𝐱𝑡)
𝜏
𝑡=1

}.    (4.8) 

𝑡𝑟(∙) is the trace operator. Using the communicative property of expectation and trace,  

(4.8) can be further written as: 

𝑓(𝐀,𝐐) = −
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ 𝑡𝑟𝜏
𝑡=2 (𝐬𝑡𝐐

−1 − 𝐀𝐬𝑡−1,𝑡𝐐
−1 − 𝐬𝑡−1,𝑡𝐀

𝑇𝐐−1 +

𝐀𝐬𝑡−1𝐀
𝑇𝐐−1) −

1

2
𝑡𝑟(𝚺−1𝐬1) −

1

2
∑ 𝑡𝑟𝜏
𝑡=1 (𝚷𝑡 𝐬𝑡),                                            (4.9) 

where 𝐬𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡
𝑇) and 𝐬𝑡−1,𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1𝐱𝑡

𝑇). In the M-step, we find the 

A and 𝐐 that maximize 𝑓(𝐀,𝐐) using the gradient method, i.e.,  

�̂� = {∑ 𝐬𝑡−1,𝑡
𝜏
𝑡=2 }{∑ 𝐬𝑡−1

𝜏
𝑡=2 }−1,                                  (4.10) 

�̂� =
1

(𝜏−1)
∑ (𝐬𝑡 − �̂�𝐬𝑡−1,𝑡 − 𝐬𝑡−1,𝑡�̂�

𝑇 + �̂�𝐬𝑡−1�̂�
𝑇)𝜏

𝑡=2 .                (4.11) 

The E-step and M-step will be iteratively applied until convergence.  

The challenging part in this EM framework is how to compute the expectations, 

𝐬𝑡  and 𝐬𝑡−1,𝑡, in the E-step. Using the joint posterior distribution of the state vectors at all 

time points, i.e., 𝑝(𝐱|𝐲, 𝐀∗, 𝐐∗) , to derive the expectations is mathematically and 
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computationally intractable. To tackle this challenge, we develop a BOS algorithm to 

compute the expectations using recursive equations. A brief introduction to the general 

concept of BOS is provided in Appendix C. Next, we present the details for the 

development of a BOS algorithm in our context:    

According to the definitions of 𝐬𝑡  and 𝐬𝑡−1,𝑡, we get: 

𝐬𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡
𝑇) = E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡

𝑇) 

= Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) + E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)
𝑇,                    (4.12) 

𝐬𝑡−1,𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1𝐱𝑡
𝑇) 

= Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) + E𝐱𝑡−1|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1)E𝐱𝑡|𝐲𝐀∗,𝐐∗(𝐱𝑡)
𝑇.             (4.13) 

It is easy to show that E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) = 0 because the initial state vector 𝐱1 has a zero 

mean. Therefore, the key to obtaining 𝐬𝑡 and 𝐬𝑡−1,𝑡  is to obtain Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)  and  

Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡). We develop an BOS algorithm to compute Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) 

and Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) .  The result is presented in Proposition 4.2. The 

development of the BOS algorithm needs to use the results from a Bayesian optimal 

prediction (BOP) algorithm and a Bayesian optimal filtering (BOF) algorithm, which are 

presented in Lemma 1. The detailed derivations for Lemma 4.1 and Proposition 4.2 are 

given in Appendix C.  

Lemma 4.1 (BOP and BOF): Let 𝐏𝑡
− ≜ Var𝐱𝑡|𝐲1:𝑡−1,𝐀∗,𝐐∗(𝐱𝑡)  and 

𝐏𝑡 ≜ Var𝐱𝑡|𝐲1:𝑡,𝐀∗,𝐐∗(𝐱𝑡), where 𝐲1:𝑡 = [𝐲1
𝑇 , … , 𝐲𝑡

𝑇]𝑇 . Then, the recursive equations for 

computing 𝐏𝑡
− and  𝐏𝑡 are given by: 

𝐏𝑡
− = 𝐀∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗, 

𝐏𝑡 = (𝚷𝑡 + (𝐏𝑡
−)−1)−1, 
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where 𝚷𝑡 is the approximate covariance matrix obtained by EP in Proposition 4.1. The 

recursions are started from the first time point with 𝐏0 = 𝚺. 

Proposition 4.2 (BOS): Let 𝐏𝑡
𝑠 ≜ Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and 

𝐏𝑡−1,𝑡
𝑠 ≜ Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡). The backward recursive equations for computing 𝐏𝑡

𝑠 

and 𝐏𝑡−1,𝑡
𝑠  are given by: 

𝐏𝑡
𝑠 = 𝐏𝑡 + 𝐇𝑡(𝐏𝑡+1

𝑠 − 𝐀∗𝐏𝑡𝐀
∗𝑇 − 𝐐∗)𝐇𝑡

𝑇, 

𝐏𝑡−1,𝑡
𝑠 = 𝐏𝑡

𝑠𝐇𝑡−1
𝑇 , 

where 𝐇𝑡 = 𝐏𝑡𝐀
∗𝑇(𝐀∗𝐏𝑡𝐀

∗𝑇 + 𝐐∗)−1. The backward recursions are started from the last 

time point 𝜏, with 𝐏 𝜏
𝑠 = 𝐏 𝜏 .  

Finally in this section, we summarize the steps of the aforementioned algorithm, 

called the EM-BOS algorithm, for estimating the parameters A and 𝐐 of the NSSM.  The 

algorithm takes network data collected at 𝜏 past time points, 𝐲 = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇, as input.  

Step 1. Specify the covariance matrix of the initial state vector, 𝚺, and let 𝐏0 = 𝚺. 

Also specify the initial values for A and 𝐐, i.e., 𝐀∗ and 𝐐∗.  

Step 2. Approximate the observation equation at each time point 𝑡 using the EP 

result in Proposition 4.1 and obtain the approximate inverse covariance matrix 𝚷𝑡 , 𝑡 =

1, … , 𝜏. 

Step 3. Use the 𝚷𝑡  obtained from Step 2 together with the 𝐀∗ and 𝐐∗ in Step 1 to 

obtain Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡), i.e., 𝐏𝑡
𝑠  and 𝐏𝑡−1,𝑡

𝑠 , according to 

the BOS algorithm in Proposition 4.2, , 𝑡 = 2,… , 𝜏. 
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Step 4. Use the 𝐏𝑡
𝑠  and 𝐏𝑡−1,𝑡

𝑠  obtained from Step 3 to compute 𝐬𝑡  and 𝐬𝑡−1,𝑡 

according to (4.11) and (4.12), respectively, and to further compute �̂� and �̂� according to 

(4.9) and (4.10).  

Step 5. Update the estimates for A and 𝐐 by setting 𝐀∗ = �̂� and 𝐐∗ = �̂�, and 

repeat Steps 3-4 until convergence. 

4.5 Change Detection in Dynamic Networks by Integrating NSSM and SPC  

Change detection by SPC has two phases: At phase I, a monitoring statistic is 

defined and in-control data are used to establish a control chart with control limits for the 

monitoring statistic. At phase II, new data are collected, for which the monitoring 

statistics are computed and compared with the control limits established at phase I, and a 

change is declared if the monitoring statistics of the new data exceed the control limits. 

The key to successfully applying this general SPC procedure to our specific problem is to 

define a proper monitoring statistic. When the data are univariate or multivariate time 

series, a typical approach is to define the monitoring statistic to be a “residual” that 

reflects the distance between the observed data at time 𝑡 and the prediction using a time 

series model. We follow a similar idea and define a distance metric as the monitoring 

statistic for dynamic network data in the following way:  

Once the network at time 𝑡 is observed, we can estimate the covariance matrix of 

the state vector based on this network alone, i.e., Var𝐱𝑡|𝐲𝑡(𝐱𝑡), by EP. Meanwhile, we can 

obtain a predicted covariance matrix of the state vector using an NSSM that has been 

developed based on dynamic network data with natural evolution but no change (i.e., the 

in-control data), i.e., Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡). The intuition is that if there is no change, the 
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“distance” between Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡) and Var𝐱𝑡|𝐲𝑡(𝐱𝑡) should be small; a large distance 

implies an abnormal change. To develop a meaningful distance metric between two 

covariance matrices, there are a number of options, which were mainly discussed in the 

SPC literature for covariance monitoring. We choose to apply singular value 

decomposition (SVD) to each covariance matrix, keep the first singular vector of each 

matrix, which is the most informative in terms of characterizing the structure of a 

covariance matrix, and compute the Euclidean distance between the two singular vectors. 

Specifically, we propose the following distance metric: 

𝑤𝑡 ≜ log‖𝐮1 (Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡)) − 𝐮1 (Var𝐱𝑡|𝐲𝑡(𝐱𝑡))‖2

2

,                  (4.14) 

where 𝐮1(∙) denotes the first singular vector from an SVD on a covariance matrix and 

‖∙‖2
2  denotes the Euclidean distance. The natural logarithm is used to transform the 

Euclidean distance to be approximate Gaussian. Other transformations could be adopted 

for Gaussian approximation and a normality check using a QQ plot is recommended to 

choose a proper transformation. We found that the natural logarithm transformation 

worked reasonably well in both the simulation studies and the real-data application that 

will be presented in the next section.  

Once a monitoring statistic is defined, the choice of a control chart depends on the 

magnitude or type of changes that are targeted for detection. For example, CUSUM and 

EWMA charts are proper choices for detecting small changes, whereas Shewhart charts 

may be used for detecting greater changes. The focus of this paper is not to design 

various types of control charts, but instead lays out a general framework for change 

detection on dynamic network data. Therefore, we focus on a Shewhart chart for the 
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remaining of the discussion, whereas other types of control charts can be easily “plugged 

in” this framework.   

To establish control limits for a Shewhart chart with the monitoring statistic 

defined in (14), we can obtain an 𝑤𝑡 for each time point during the in-control time period 

except the first time point, i.e., 𝑡 = 2,… , 𝜏. Then, we can compute the mean and standard 

deviation over the set of (𝑤1,, … , 𝑤𝜏), 𝜇𝑤  and 𝜎𝑤 . The upper control limit (UCL) is: 

𝑈𝐶𝐿 = 𝜇𝑤 + 𝑘𝜎𝑤 . An lower control limit (LCL) would not be necessary because the 

monitoring statistic is a distance. 𝑘 is chosen to satisfy a pre-defined type I error, 𝛼 . 

Because the monitoring statistic is approximately Gaussian, 𝑘 = 𝜙−1(1 − 𝛼). 𝜙−1(∙) is 

the inverse CDF of the standard normal distribution. This completes the developmental 

work at phase I. At phase II, i.e., when a new network is observed at time 𝑡 + 1, 𝑤𝑡+1 can 

be computed using (14) and compared with the 𝑈𝐶𝐿. A change is declared if 𝑤𝑡+1 >

𝑈𝐶𝐿. 

4.6 Case Studies 

4.6.1 Simulation Studies 

We perform simulation studies to serve three purposes: 1) revealing insights on 

the NSSM in modeling natural evolution of dynamic networks; 2) assessing the accuracy 

of the NSSM in modeling natural evolution of dynamic networks; 3) assessing the 

performance of the change detection method in Section 4.5 in detecting various types of 

changes. These studies are presented in Sections 4.6.1.1-3, respectively.  

4.6.1.1 Insights on the NSSM 

We focus on two typical types of natural evolution of dynamic networks: hub 

forming and community forming. To generate network data that reflect hub forming, we 
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adopt the following approach: The network includes 10 nodes with 𝑣1 being a hub node. 

To mimic the evolution process that 𝑣1 is becoming a hub, we start with a network (i.e., 

the network at 𝑡 = 1) in which 𝑣1 is only connected with one other node, and add one 

more node to be connected with 𝑣1 in the network at each of five subsequent time points. 

To mimic the reality that non-hub nodes can also interact with each other, we randomly 

add two edges between the non-hub nodes at each time point. In this way, we generate 

networks at six time points. Then, we fit an NSSM on the six networks, based on which 

we further apply the BOF algorithm in Lemma 1 to estimate the covariance matrix of the 

state vector at 𝑡 = 6 , i.e., 𝐏6 . We plot 𝐏6
−1  as a color matrix in Figure 7(a). Each 

row/column corresponds to a node. Only the upper triangular part of the symmetric 

matrix is shown. The level of darkness reflects the magnitude of the entries in 𝐏6
−1. It can 

be clearly seen that 𝑣1 is a hub node. Furthermore, the varying levels of darkness on the 

first row reveal the evolution process of how other nodes became connected with 𝑣1, i.e., 

the darker a node, the earlier it became connected with 𝑣1. For comparison, we estimate 

𝐏6
−1 by two intuitive methods: One method uses the network at 𝑡 = 6 alone to estimate 

𝐏6
−1 , i.e., no network data in the previous time points are used. The other method 

estimates each entry in 𝐏6
−1  by counting the frequency of occurrence for the edge 

corresponding to that entry in networks at the six time points. The results by the two 

methods are shown in Figure 7(b) and (c), respectively. The limitations of the two 

methods are obvious: Using the network at 𝑡 = 6 alone sheds little light on the evolution 

process of how other nodes became connected with 𝑣1. The result is only able to show 

which nodes are connected with the hub but not the time sequence of the connections. 

The other method that counts the frequency of occurrence makes identification of the hub 
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node difficult, because it is not able to “forget” the edges randomly appeared between 

non-hub nodes.   

 

              (a)                           (b)                           (c) 

Figure 7. Estimated 𝐏6
−1 to reflect a hub forming process in dynamic networks by (a) 

BOF under NSSM, (b) a method using the network data at 𝑡 = 6 alone, and (c) a method 

counting frequency of occurrence of edges. 

 Furthermore, we generate another set of network data that reflect a community 

forming process. The network includes 10 nodes with {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}  being a 

community. To mimic the evolution process of the community forming, we start with a 

network in which there are only two edges in the community, and add two more edges in 

the network at each of three subsequent time points. To mimic the reality that nodes 

outside the community can also interact with each other and with the nodes in the 

community, we randomly add two edges not inside the community at each time point. In 

this way, we generate networks at four time points. Then, we fit an NSSM on the four 

networks, based on which we further apply the BOF algorithm in Lemma 1 to estimate 

the covariance matrix of the state vector at 𝑡 = 4, i.e., 𝐏4. We plot 𝐏4
−1 as a color matrix 

in Figure 8(a). For comparison, we also estimate 𝐏4
−1 by the two methods used in the 

previous hub forming experiment, and show the results in Figure 8(b) and (c). We can 

draw a similar conclusion to the previous experiment that the NSSM is able to capture the 

evolution process of how the nodes in the community became connected, whereas the 

time sequence of the connections is lost by the method in Figure 8(b) and the method in 
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Figure 8(c) cannot distinguish between the connections in a community that are more 

persistent and other non-community related random connections, making it difficult to 

identify the community.    

 

                                               (a)                           (b)                           (c)  

Figure 8. Estimated 𝐏4
−1 to reflect a community forming process in dynamic networks by 

(a) BOF under NSSM, (b) a method using the network data at 𝑡 = 4 alone, and (c) a 

method counting frequency of occurrence of edges. 

4.6.1.2 Accuracy of NSSM 

To simulate naturally-evolving (i.e., no-change) dynamic networks, we must find 

an approach to link the probability that two nodes have an edge at time 𝑡, i.e., 𝑝(𝑦𝑖𝑗,𝑡 =

1), with the existence/non-existence of an edge between the two nodes in all previous 

time points. We choose to link 𝑝(𝑦𝑖𝑗,𝑡 = 1)  with an exponentially weighted average 

(EWA) of the edge variables in all previous time points, i.e.,  

𝑝(𝑦𝑖𝑗,𝑡 = 1) = 𝛼0 + ∑ 𝜆(1 − 𝜆)𝑠𝑦𝑖𝑗,𝑡−𝑠
𝑡−1
𝑠=1 .                      (4.15) 

𝜆 ∈ (0,1) is a smoothing parameter. The EWA approach weights the edge variables at 

different past time points in geometrically decreasing order so that the most recent edge 

variables are weighted most highly while the most distant edge variables contribute very 

little. 𝛼0 is a small constant probability for generating “noise” edges. A noise edge in 

dynamic networks is one that appears at time 𝑡 even though there is no edge between the 



                                                                                                                             

65 

two nodes at any previous time point. There are always noise edges in real-world 

dynamic networks.  

In the first experiment, we simulate dynamic networks of 20 nodes. First, the 

networks at the first five time points are independently generated with each including 10 

randomly selected edges. Then, (4.15) with 𝜆 = 0.1 and 𝛼0 = 0.1 is recursively applied 

to generate dynamic networks at 𝑡 = 6,… ,15.  Next, at each time point 𝑡 = 6, . . ,15, we 

fit an NSSM using the networks at all previous time points. Based on the NSSM, we can 

further obtain a prediction for the probability that two nodes will have an edge at 𝑡, i.e.,  

𝑝(𝑦𝑖𝑗,𝑡|𝐲1:𝑡−1) =
1

2
+
𝑎𝑟𝑐𝑠𝑖𝑛𝜌𝑖𝑗

𝜋
,                                          (4.16) 

where 𝜌𝑖𝑗 is the entry at the 𝑖-th row and 𝑗-th column of 𝐏𝑡
−. The derivation for (4.16) is 

skipped. We use (4.16) for every pair of nodes in the network, compare the predicted 

probability with the true existence of the edge, and assess the prediction accuracy for the 

network at 𝑡 by Area Under the Curve (AUC). For comparison, we also compute the 

AUC of two completing methods: One method computes the predicted probability using 

the network at the immediate previous network; the other method uses the frequency of 

edge occurrence in all the previous networks as an estimate for the predicted probability. 

Table 8 summarizes the AUC performance of the three methods. In the second 

experiment, we simulate dynamic networks of a larger size, i.e., with 50 nodes. Figure 9 

shows the networks at three time snapshots. The AUC performances of the three methods 

are shown in Table 9.  
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                  𝑡 = 10                                     𝑡 = 12                                    𝑡 = 14      

Figure 9. Dynamic networks with natural evolution at three time snapshots 

In the third experiment, we simulate dynamic networks with two evolving 

communities, with each community consisting of 20 nodes. The natural evolution within 

each community is simulated in the same way as the first experiment. Furthermore, we 

add two random edges between the two communities at each time point to account for 

between-community interaction. The AUC performances of the three methods are shown 

in Table 10. It can be seen that the NSSM outperforms the two competing methods in all 

three experiments.  

Table 8. Average (standard deviation) AUC of prediction over the time range of the 

dynamic networks with 20 nodes 

NSSM Competing method 1 

(use the immediate previous 

network) 

Competing method 2 

(use the frequency of edge 

occurrence) 

0.86 (0.02) 0.77 (0.03) 0.56 (0.01) 

 

Table 9. Average (standard deviation) AUC of prediction over the time range of the 

dynamic networks with 50 nodes 

NSSM Competing method 1 

(use the immediate previous 

network) 

Competing method 2 

(use the frequency of edge 

occurrence) 

0.84 (0.02) 0.72 (0.02) 0.55 (0.005) 



                                                                                                                             

67 

 

Table 10. Average (standard deviation) AUC of prediction over the time range of the 

dynamic networks with two communities (20 nodes in each community) 

NSSM Competing method 1 

(use the immediate previous 

network) 

Competing method 2 

(use the frequency of edge 

occurrence) 

0.84 (0.02) 0.76 (0.03) 0.52 (0.002) 

 
4.6.1.3 Performance of the Change Detection Method 

The dynamic networks generated in the first experiment of Section 4.6.1.2 are 

treated as in-control data, based on which we can obtain the 𝑈𝐶𝐿 according to the change 

detection method in Section 4.5. Starting from 𝑡 = 16, the network has a structural shift 

that 𝛿% of the nodes belonging to the community of the in-control networks drop from 

the community and the same number of new nodes are added into the community. We try 

𝛿% = 20%, 40%, 60%, 80%. The larger the 𝛿%, the more dramatic the structural shift. 

Note that we focus on “structural shifts” that are not easily detected by visual inspection; 

nor can they be detected by monitoring summary statistics of the networks like the 

network density. Figure 10 shows the networks at four time points: the first three 

networks are from the in-control time period; the last network is immediately after a shift 

with 𝛿% = 20%.  The shift is one that two new nodes (green nodes at 𝑡 = 16) join the 

community of the in-control networks, while two old nodes who have been in the 

community (red nodes at 𝑡 = 10,12,14) are swapped out.  



                                                                                                                             

68 

 

                        𝑡 = 10                        𝑡 = 12                          𝑡 = 14                        𝑡 = 16   

Figure 10. Dynamic networks with a structural shift at 𝑡 = 16 

For each value of 𝛿% , we compute the monitoring statistic for 𝑡 = 16  using 

(4.14) and compare it with the 𝑈𝐶𝐿. We repeat this experiment for ten times and record 

the proportion of times that the monitoring statistic at 𝑡 = 16 excceds the 𝑈𝐶𝐿 . This 

proportion reflects the probability that the structural shift is successfully detected on the 

first time point after it happens. We report this probability for type I error 𝛼 = 0.005 and 

𝛼 = 0.05 in Table 11. It can be seen that our approach is able to detect the shift with 

probability one at all shift magnitudes when 𝛼 = 0.05. With a smaller type I error, i.e, 

𝛼 = 0.005, the detection probability decreases as the shift magnitude decreases. Finally, 

we check the validity of the assumption that the monitoring statistic during the in-control 

time period follows a Gaussian distribution by generating a QQ plot on the monitoring 

statistics derived from all the in-control networks and performing a Kolmogorov-Smirnov 

(KS) test. The close-to-straightline pattern in the QQ plot in Figure 11 and the large p-

value of the KS test (p=0.97) provides strong evidence that the Gaussian assumption is 

valid.  
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Table 11. Probability of detecting the structural shift at the first time point after the shift 

with 𝛼 = 0.005 (𝛼 = 0.05) 

Structural shift magnitude 𝛿% 

20% 40% 60% 80% 

0.7 (1) 0.8 (1) 1 (1) 1 (1) 

  

 

Figure 11. QQ plot on the monitoring statistics derived from in-control networks 

4.6.2 Application to Change Detection on Enron Dynamic Email Networks 

Enron Corporation was an energy and trading company ranked as the seventh 

largest in the US in 2000. On 12/1/2001, Enron filed for bankruptcy. This sudden 

collapse cast suspicions and promoted federal investigation. During the investigation, the 

courts subpoenaed extensive email logs from most of Enron's employees, and the Federal 

Energy Regulatory Commission (FERC) published the database online. In this section, 

we use the dynamic email communication networks between the Enron 

employees(McCallum, Corrada-Emmanuel, and Wang 2005). We focus on a small subset 

of the network that consists of 16 employees associated with the Transwestern Pipeline 
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Division within Enron. The networks with natural evolution, i.e., the in-control data, 

include monthly email communications between the 16 employees within eight months 

from 09/2000 to 04/2001.  

First, we would like to assess the accuracy of the NSSM in fitting the in-control 

data. We adopt a similar approach to Section 4.6.1.1. That is, at each of the eight time 

point, 𝑡, we fit an NSSM using the networks at all previous time points. Based on the 

NSSM, we further obtain a prediction for the probability that two nodes will have an edge 

at 𝑡 using (4.16). We use (4.16) for every pair of nodes in the network, compare the 

predicted probability with the true existence of the edge, and assess the prediction 

accuracy for the network at 𝑡 by AUC. The mean and standard deviation of the AUC over 

the in-control time period are 0.88 and 0.1, respectively. We consider this accuracy to be 

satisfactory and proceed to use the fitted NSSM to detect changes. To establish a control 

limit, 𝑈𝐶𝐿, we compute the monitoring statistic defined in (4.14) for each time point 

during the in-control time period except the first time point. The 𝑈𝐶𝐿 based on these 

monitoring statistics with a type I error 𝛼 = 0.005 is found to be 𝑈𝐶𝐿 = −0.09.  

Furthermore, we extract the network data for two new months, 05/2001 and 

10/2001, in which two known changes occurred. The change in 05/2001 was that the 

CEO of the Division had more communication with the employees although his “in-

control” pattern in previous networks was more communication with the CFO and VP of 

the Division. This change was probably due to the launch of a new initiative or project. 

Another change was in 10/2001 when the Enron’s scandal was revealed and every 

division of the corporation experienced changes. We compute the monitoring statistic 

using (4.14) for each new network and compare it with the 𝑈𝐶𝐿. Figure 12 shows the 
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results of change detection for the two new networks. It is clear that the monitoring 

statistics at the in-control time period all fall below the 𝑈𝐶𝐿, while those corresponding 

to the two changes are far above the 𝑈𝐶𝐿. That is, both changes can be successfully 

detected.  

 
Figure 12. Monitoring and change detection of the Enron dynamic email networks 
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Conclusion:  

In my dissertation research, I developed new transfer learning methods and 

demonstrated the utility of the methods in real-world applications. For spatial transfer 

learning across different domains, I developed a predictive model that can flexibly 

incorporate the data or knowledge of the source domains, whichever available, to the 

modeling of the target domain. I developed a computationally efficient algorithm in 

model estimation and performed theoretical analysis. For temporal transfer learning, I 

developed an NSSM for characterizing the temporal evolution of dynamic network data. I 

developed an EP algorithm and an EM-BOS algorithm for tractable parameter estimation 

of the NSSM. Furthermore, I applied the proposed spatial transfer learning approach to 

modeling of degenerate biological systems, and applied the NSSM to change detection in 

dynamic social network data. 

The research can be extended in several directions:  

 For spatial transfer learning, the proposed method was formulated under a 

Bayesian framework but solved from an optimization point of view to gain 

efficiency. A Bayesian estimation approach such as empirical Bayes and 

hierarchical Bayes could allow better characterization of the uncertainty. 

Second, a similar approach may be developed for predictive modeling of 

nonlinear relationships. Third, future engineering system design may 

adopt biological principles like degeneracy in order to be more robust and 

adaptive to unpredictable environmental situations. By that time, it will be 

very interesting to study how to migrate the proposed approach to 

engineering systems. 
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 For temporal transfer learning or NSSM, Section 4.4.3 discussed several 

extended NSSM, for which parameter estimation and change detection can 

be further pursued. We adopted an SVD-based covariance monitoring 

approach to compare the predicted and estimated state vectors at each time 

point, which is suitable for detecting structural changes in the dynamic 

network data. Other covariance monitoring approaches can be adopted to 

detect other types of changes. Computational efficiency of the parameter 

estimation could be further improved by taking advantage of modern 

machine learning developments such as sparse learning. 
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I: Derivation for (2.6). 

f(W), according to its definition in Case II, is  

f(W) = ∑ ‖yk − Xkwk‖2
2K

k=1 + λ1‖W‖1 + λ2(Qlog|Ω| + Klog|Φ| + tr(Φ
−1WΩ−1WT)).                             

(A-1) 

Furthermore, |Ω| = |Ω̃| (ςK −ϖK
TΩ̃−1ϖK). Then,  

Qlog|Ω| + Klog|Φ|  

= Qlog|Ω̃| + Qlog(ςK −ϖK
TΩ̃−1ϖK) + (K − 1)log|Φ| + log|Φ|  

= Qlog|Ω̃| + (K − 1)log|Φ| + log {(ςK −ϖK
TΩ̃−1ϖK)

Q
|Φ|}  

= Qlog|Ω̃| + (K − 1)log|Φ| + log|ΣK|.                                                                    (A-2) 

 ΣK is defined in (2.10).  

Also,  

tr(Φ−1WΩ−1WT)  

= tr(Φ−1(W̃,wK) [
Ω̃−1 +

Ω̃−1ϖKϖK
TΩ̃−1

ςK−ϖK
TΩ̃−1ϖK

−
Ω̃−1ϖK

ςK−ϖK
TΩ̃−1ϖK

−
ϖK
TΩ̃−1

ςK−ϖK
TΩ̃−1ϖK

1

ςK−ϖK
TΩ̃−1ϖK

] (W̃,wK)
T
).                  (A-3) 

Expanding the block matrix multiplication within the trace and simplifying the result, we 

can get: 

        𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇) = 𝑡𝑟(𝚽−1�̃��̃�−1�̃�𝑇) + (𝐰𝐾 − 𝛍𝐾)
𝑇𝚺𝐾

−1(𝐰𝐾 − 𝛍𝐾).      (A-4) 

𝛍𝐾 is defined in (2.9). Inserting (A-4) and (A-2) into (A-1) and re-organizing the terms, 

(2.6) can be obtained.       ∆ 

II: Proof of Theorem 2.1. 
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(2.5) is a convex optimization, which can be solved by a Block Coordinate 

Descent (BCD) algorithm. We consider two coordinates in our problem, source domains 

1, … , K − 1  as a whole and the target domain, respectively. Then, BCD works by 

alternately optimizing each coordinate. Specifically, at the n-the iteration, n = 1,2,3, …, 

BCD solves the following two optimizations: 

                             𝑤𝐾
(𝑛)

= 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑤𝐾

𝑓 ((�̃�(𝑛−1), 𝑤𝐾)),                                        (A-5) 

                          �̃�(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛 
�̃�

𝑓 ((�̃�, 𝑤𝐾
(𝑛)
)).                                           (A-6) 

(A-5) is to optimize the target domain, wK, treating source domains as fixed by using 

estimates from the previous iteration, W̃(n−1).  (A-6) then optimizes the source domains, 

W̃, treating the target domain as fixed by using the estimate from (A-5), wK
(n)

.   

The objective function in (2.5), i.e., 𝑓(𝐖), consists of a non-differentiable term, 

‖𝐖‖1 . According to the seminal work by Tseng (2001), when a convex objective 

function includes a non-differentiable term, BCD will converge to the optimal solution if 

the term is separable according to the coordinates. This is exactly our case, i.e., ‖𝐖‖1 =

‖�̃�‖
1
+ ‖𝐰𝐾‖1 . Therefore, the BCD in (A-5) and (A-6) will converge to the global 

optimal solution �̂�I (i.e., the solution to (2.5) in Case I). Furthermore, the convergence 

enjoys a monotone property (Tseng 2001), i.e.,  

     𝑓 ((�̃�(0), 𝒘𝐾
(1)
)) ≥ 𝑓 ((�̃�(1), 𝒘𝐾

(1)
)) ≥ 𝑓 ((�̃�(1), 𝒘𝐾

(2)
)) ≥ 𝑓 ((�̃�(2), 𝒘𝐾

(2)
)) ≥ ⋯ ≥

𝑓(�̂�𝐼).                                                                                                                                 (A-7) 

Let the initial values, W̃(0), be the knowledge of source domains in Case II, i.e., W̃(0) =

W̃∗. Then, (A-7) gives:  
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                                                         f ((W̃∗, wK
(1)
)) ≥ f(ŴI).                                   (A-8) 

Next, according to (A-5), wK
(1)

 is 

𝐰𝐾
(1)
= argmin 𝐰𝐾 𝑓 ((�̃�

(0), 𝐰𝐾)) = argmin 𝐰𝐾{𝑓(�̃�
(0)) + 𝑔(𝐰𝐾|�̃�

(0))} =

argmin 𝐰𝐾 𝑔(𝐰𝐾|�̃�
(0)). The second “=” follows from (2.6). 𝑓(�̃�(0)) is dropped in the 

last equation because it is a constant. Comparing (A-8) and (2.11), we get 𝐰𝐾
(1)
= �̂�𝐾

II. 

Therefore, (A-8) becomes 𝑓 ((�̃�∗, �̂�𝐾
II )) ≥ 𝑓(�̂�I) . When �̃�∗ = (�̂�1

I , … , �̂�𝐾−1
I ) , it 

means that BCD attains the optimal solution in one coordinate (the source domains). 

Then, it must attain the optimal solution in the other coordinate (the target domain), i.e., 

�̂�𝐾
II = �̂�I. This completes the proof for Theorem 2.1.       ∆ 

III: Proof of Theorem 2.2. 

Both (2.12) and (2.13) can be solved analytically, i.e., ŵK = (XK
TXK +

λI)
−1
(XK

TyK + λμK)  and w̌K = (XK
TXK)

−1
(XK

TyK)  Let B ≜ (XK
TXK + λI)

−1
and  Z ≜

(XK
TXK + λI)

−1
(XK

TXK). Then, it can be derived that Z = I − λB. Using B and Z, we can 

show that ŵK = Zw̌K + λBμK. Therefore, 

MSE(ŵK ) = E {(ŵK −wK)
T
(ŵK −wK)} 

= E {(Zw̌K + λBμK −wK)
T
(Zw̌K + λBμK −wK)} 

= E {(Zw̌K − ZwK + ZwK + λBμK −wK)
T
(Zw̌K − ZwK + ZwK + λBμK −wK)} 

= E {((Zw̌K − ZwK) + (ZwK −wK + λBμK))
T

((Zw̌K − ZwK)

+ (ZwK −wK + λBμK))} 
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= E {(Zw̌K − ZwK)
T
(Zw̌K − ZwK)} + (ZwK −wK + λBμK)

T(ZwK −wK + λBμK).        

(A-9) 

In the last equation in (A-9), the cross-product, 2(ZwK −wK + λBμK)
TZ E(w̌K −wK), 

is omitted. This is because w̌K , as an ordinary least squares estimator, is unbiased, and 

therefore E(w̌K −wK) = 0. Continuing the derivation in (A-9), we can obtain: 

MSE(ŵK ) = E {(w̌K −wK)
T
ZTZ(w̌K −wK)} + λ

2(μK −wK)
TBTB(μK −wK) 

= σ2 tr {(XK
TXK)

−1
ZTZ} + λ2(μK −wK)

TBTB(μK −wK) 

= σ2 tr{B(I − λB)} + λ2(μK −wK)
TBTB(μK −wK) 

= σ2tr(B)  − σ2λtr(B2) + λ2(μK −wK)
TBTB(μK −wK).                                          (A-10) 

Perform an eigen-decomposition for XK
TXK, i.e., XK

TXK = P
TΛP. Λ is a diagonal matrix of 

eigenvalues γ1, … , γQ. PT  consists of corresponding eigenvectors. Then the tr(∙) in (A-

10) can be shown to be: 

                              tr(B) = ∑
1

γi+λ

Q
i=1  and tr(B2) = ∑

1

(γi+λ)
2

Q
i=1 .                                    (A-11) 

Furthermore, let 𝛂 ≜ 𝐏(𝛍𝐾 −𝐰𝐾) and denote the elements of 𝛂 by 𝛼1, … , 𝛼𝑄. Then, the 

last term in (A-10) can be shown to be: 

                               (μK −wK)
TBTB(μK −wK) = ∑

αi
2

(γi+λ)
2

Q
i=1  .                                   (A-12) 

Inserting (A-12) and (A-11) into (A-10),  

MSE(ŵK ) = σ
2∑

1

γi + λ

Q

i=1
 − σ2λ∑

1

(γi + λ)2

Q

i=1
+ λ2∑

αi
2

(γi + λ)2

Q

i=1
 

= σ2∑
1

γi + λ

Q

i=1
 − σ2λ∑

1

(γi + λ)2

Q

i=1
+ λ2∑

αi
2

(γi + λ)2

Q

i=1
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                          = ∑
σ2γi+λ

2αi
2

(γi+λ)
2

Q
i=1  .                                                                                (A-13) 

When λ = 0, MSE(ŵK ) = MSE(w̌K ). To show that MSE(ŵK ) < MSE(w̌K ) at some 

λ > 0, we only need to show that there exists a λ∗  such that 
∂ MSE(ŵK )

∂λ
< 0 for 0 < λ <

λ∗.  To make 
∂ MSE(ŵK )

∂λ
= 2∑

γi(λαi
2−σ2)

(γi+λ)
3

Q
i=1 < 0, a sufficient condition is to make every 

term in the summation smaller than zero, i.e., λ <
σ2

αi
2, or equivalently, λ <

σ2

maxi(αi
2)

. This 

proves the existence of λ∗ =
σ2

maxi(αi
2)

 and thereby proves Theorem 1.       ∆ 

IV: Proof of Theorem 2.3. 

According to (A-10), for a fixed λ , MSE(ŵK )  changes only with respect to 

(μK −wK)
TBTB(μK −wK). The smaller the (μK −wK)

TBTB(μK −wK), the smaller the 

MSE(ŵK ). According to Definition 1, (μK −wK)
TBTB(μK −wK) is the transfer learning 

distance d(μK; λ). Therefore, the smaller the transfer learning distance, the smaller the 

MSE(ŵK ). This gives  

                              𝑀𝑆𝐸(�̂�𝐾
(1)
; 𝜆) ≤ 𝑀𝑆𝐸(�̂�𝐾

(2)
; 𝜆).                                            (A-14) 

Let λ(1)∗ = argminλMSE(ŵK
(1)
)  and λ(2)∗ = argminλMSE(ŵK

(2)
) . Then, 

MSE(ŵK
(1)
; λ(1)∗) ≤ MSE(ŵK

(1)
; λ(2)∗) ≤ MSE(ŵK

(2)
; λ(2)∗) . The second inequality 

follows from (A-14). This completes the proof for Theorem 2.3.        ∆ 

 

V: Obtaining (2.17) by the Gradient method.  

Given 𝐰𝐾, the optimization problem in (2.17) with respect to 𝜍𝐾 and 𝛡𝐾 is: 
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min 
𝜍𝐾,𝛡𝐾

𝜑(𝜍𝐾, 𝛡𝐾)

= min 
𝜍𝐾,𝛡𝐾

   {𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

+
1

𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝚽−𝟏(𝐰𝐾 − 𝛍𝐾)} 

Using the gradient method, set the partial derivatives of 𝜑(𝜍𝐾, 𝛡𝐾) to be zero: 

                                                          {
𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝜍𝐾⁄ = 0

𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝝕𝐾⁄ = 0
,  

i.e.,  

    𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝜍𝐾⁄ =
𝑄

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

−
(𝐰𝐾−𝛡𝐾

𝑇 �̃�−1𝛡𝐾)
𝑇
𝚽−𝟏(𝐰𝐾−𝛡𝐾

𝑇 �̃�−1𝛡𝐾)

(𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

𝟐 = 0,  (A-15) 

𝜕𝜑(𝜍𝐾 , 𝝕𝐾) 𝜕𝝕𝐾⁄ =

−
2𝑄�̃�−1𝛡𝐾

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

−
2�̃�−1�̃�𝑇𝚽−𝟏(𝐰𝐾−�̃��̃�

−1𝛡𝐾)

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

+
2�̃�−1𝛡𝐾(𝐰𝐾−�̃��̃�

−1𝛡𝐾)
𝑇
𝚽−𝟏(𝐰𝑲−�̃��̃�

−𝟏𝛡𝑲)

(𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

𝟐 = 0.              

(A-16) 

From (A-15), we can get: 

          𝑄(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾) = (𝐰𝐾 − �̃��̃�

−1𝛡𝐾)
𝑇
𝚽−1(𝐰𝐾 − �̃��̃�

−1𝛡𝐾).        (A-17) 

Inserting (A-17) into the third term of (A-16) and through some algebra, we can get: 

                                    �̃�−1�̃�𝑇𝚽−1𝐰𝐾 − �̃�
−1�̃�𝑇𝚽−1�̃��̃�−1𝛡𝐾 = 0.                (A-18) 

According to (2.15), �̃�𝑇𝚽−1�̃� = 𝑄�̃� . Using this in (A-18), 

                                                          �̂�𝐾 = �̃�
𝑇𝚽−1𝐰𝐾 𝑄⁄ .                                    (A-19) 

Furthermore, according to (A-17), 

𝜍𝐾 =
1

𝑄
(𝐰𝐾 − �̃��̃�

−1𝛡𝐾)
𝑇
Φ−1(𝐰𝐾 − �̃��̃�

−1𝛡𝐾) + 𝛡𝐾
𝑇 �̃�−1𝛡𝐾  

=
1

𝑄
𝐰𝐾

𝑇Φ−1𝐰𝐾 −
2

𝑄
𝐰𝐾

𝑇Φ−1W̃Ω̃−1ϖK +
1

Q
ϖK
TΩ̃−1W̃TΦ−1�̃��̃�−1𝛡𝐾 +𝛡𝐾

𝑇 �̃�−1𝛡𝐾  
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=
1

𝑄
wK

TΦ−1wK −
2

Q
wK

TΦ−1W̃�̃�−1𝛡𝐾 + 2𝛡𝐾
𝑇 �̃�−1𝛡𝐾. 

Using (A-19) in the second term, we can get 𝜍�̂� =
1

𝑄
𝐰𝐾

𝑇𝚽−1𝐰𝐾.                    

Finally, in order to prove that the ϖ̂K and ς̂K are optimal solutions for a minimization 

problem, we will need to show {
∂φ2(ςK, ϖK) ∂ςK

2⁄ |ς̂K,ϖ̂K > 0

∂φ2(ςK, ϖK) ∂ϖK
2⁄ |ς̂K,ϖ̂K ≻ 0

. “ ≻” denotes a matrix 

being positive definite. It can be derived that: 

∂φ2(ςK, ϖK) ∂ςK
2⁄ |ς̂K,ϖ̂K =

Q

(ςK−ϖK
TΩ̃−1ϖK)

2 > 0. 

Furthermore,  

∂φ2(ςK, ϖK) ∂ϖK
2⁄ |ς̂K,ϖ̂K =

2Q

(ςK−ϖK
TΩ̃−1ϖK)

2 Ω̃
−1ϖKϖK

TΩ̃−1 +
2Q

ςK−ϖK
TΩ̃−1ϖK

Ω̃−1,  

where Ω̃−1ϖKϖK
TΩ̃−1 ≻ 0 and Ω̃−1 ≻ 0. So ∂φ2(ςK, ϖK) ∂ϖK

2⁄ |ς̂K,ϖ̂K ≻ 0.          ∆ 
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To prove Lemma 3.1 is to prove (𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾) = ∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 −𝑋𝑖 ~𝑋𝑗

𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))
2

. Start from the left-hand side. Write 𝐋 = 𝐃 − 𝐀 , where 𝐃  is a 

diagonal matrix of the nodes’ degrees, i.e., 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑄). 𝐀 is matrix of the edge 

weights, i.e., 𝐀 = {𝑎𝑖𝑗}. The diagonal elements of 𝐀 are zero. Then,  

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)  

= (𝐰𝐾 − 𝛍𝐾)
𝑇𝐃(𝐰𝐾 − 𝛍𝐾) − (𝐰𝐾 − 𝛍𝐾)

𝑇𝐀(𝐰𝐾 − 𝛍𝐾) = ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2𝑄

𝑖=1 𝑑𝑖 −

∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗
(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗.                                                                             (B-1) 

Plugging in the definition that 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
, (B-1) becomes 

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)  

=∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2

𝑄

𝑖=1
∑ 𝑎𝑖𝑗

𝑋𝑖 ~𝑋𝑗

−∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗 

=∑ ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2𝑎𝑖𝑗

𝑋𝑖 ~𝑋𝑗

𝑄

𝑖=1
−∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗 

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑗𝑖𝑋𝑗 ~𝑋𝑖
) − ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗.                                                                                                                         (B-2) 

Because the graph is unidirectional, 𝑎𝑗𝑖 = 𝑎𝑖𝑗, (B-2) becomes 

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)  

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
) − ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗  

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗

− 2∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗
(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗)  
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=
1

2
(∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 − 𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))

2

𝑋𝑖 ~𝑋𝑗
) . 

The 1 2⁄  can be absorbed by 𝜆2.                          

Next, we prove Theorem 3.1. Denote the objective function in (3.5) by 𝜓(𝐰𝐾), 

i.e.,  

 𝜓(𝐰𝐾) = ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2∑ 𝑎𝑙ℎ((𝑤𝑙𝐾 − 𝜇𝑙𝐾) − (𝑤ℎ𝐾 − 𝜇ℎ𝐾))

2

𝑋𝑙 ~𝑋ℎ
.   

Because �̂�𝑖𝑘
𝑉𝐼 and �̂�𝑗𝑘

𝑉𝐼 are solutions to the optimization problem in (3.5) and they are non-

zero, they should satisfy:  
𝜕𝑓(𝐰𝐾)

𝜕𝑤𝑖𝐾
|
�̂�K
𝑉𝐼
= 0 and 

𝜕𝑓(𝐰𝐾)

𝜕𝑤𝑗𝐾
|
�̂�𝐾
𝑉𝐼
= 0, i.e.,  

𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2
2

𝜕𝑤𝑖𝐾
|
�̂�𝐾
VI
+ 𝜆1𝑠𝑔𝑛(�̂�𝑖𝑘

𝑉𝐼) + 2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�ℎ𝑘

𝑉𝐼 − 𝜇ℎ𝐾))𝑋𝑖 ~𝑋ℎ
= 0,         

(B-3) 

 
𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2

2

𝜕𝑤𝑗𝐾
|
�̂�𝐾
II
+ 𝜆1𝑠𝑔𝑛(�̂�𝑗𝑘

𝑉𝐼) − 2𝜆2∑ 𝑎𝑙𝑗 ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾))𝑋𝑙 ~𝑋𝑗
= 0.          

(B-4) 

Focusing on (B-3), the third term on the left-hand side can be written into: 

2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�ℎ𝑘

𝑉𝐼 − 𝜇ℎ𝐾))𝑋𝑖 ~𝑋ℎ
  

= 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)) + 2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) −𝑋𝑖 ~𝑋ℎ,ℎ≠𝑗

(�̂�ℎ𝑘
𝑉𝐼 − 𝜇ℎ𝐾))  

≈ 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)).                                                                  (B-5) 

The last step follows from the given assumption that 𝑎𝑖𝑗 ≫ 𝑎𝑖ℎ. Similarly, the third term 

on the left-hand side of (B-4) can be written into  

2𝜆2∑ 𝑎𝑙𝑗 ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾))𝑋𝑙 ~𝑋𝑗
= 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)).  
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(B-6) 

Considering (B-5) and (B-6) and taking the difference between (B-3) and (B-4), 

𝜆1𝑠𝑔𝑛(�̂�𝑖𝑘
𝑉𝐼) cancels with 𝜆1𝑠𝑔𝑛(�̂�𝑗𝑘

𝑉𝐼) because it is known that �̂�𝑖𝑘
𝑉𝐼�̂�𝑗𝑘

𝑉𝐼 > 0, and we get: 

𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2
2

𝜕𝑤𝑖𝐾
|
�̂�𝐾
𝑉𝐼
−
𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2

2

𝜕𝑤𝑗𝐾
|
�̂�𝐾
𝑉𝐼
+ 4𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)) = 0.  

(B-7) 

−2(𝒙𝑖𝐾
𝑇 − 𝒙𝑗𝐾

𝑇 )(𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼) + 4𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)) = 0.         (B-8) 

Furthermore, we can get: 

                     |(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝒙𝑖𝐾−𝒙𝑗𝐾‖2

 ×‖𝐲𝐾−𝐗𝐾�̂�𝐾
𝑉𝐼‖

2

2𝜆2

1

𝑎𝑖𝑗
.            (B-9)   

We would like to have an upper bound that does not include �̂�𝐾
𝑉𝐼. To achieve this, we 

adopt the following strategy: Because �̂�𝐾
𝑉𝐼 is the optimal solution, 𝜓(�̂�𝐾

𝑉𝐼) should be the 

smallest. Therefore, 𝜓(�̂�𝐾
𝑉𝐼) ≤ 𝜓(0), i.e.,  

𝜓(�̂�𝐾
𝑉𝐼) = ‖𝐲𝐾 − 𝐗𝐾�̂�𝐾

𝑉𝐼‖2
2 + 𝜆1‖�̂�𝐾

𝑉𝐼‖1 + 𝜆2∑ 𝑎𝑙ℎ ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�ℎ𝑘

𝑉𝐼 −𝑋𝑙 ~𝑋ℎ

𝜇ℎ𝐾))
2

  ≤ 𝑓(0) = ‖𝐲𝐾‖2
2 + 𝜆2∑ 𝑎𝑙ℎ(𝜇𝑙𝐾 − 𝜇ℎ𝐾)

2
𝑋𝑙 ~𝑋ℎ

 .                                      (B-10) 

Then,  

‖𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼‖2

2 ≤ ‖𝐲𝐾‖2
2 + 𝜆2∑ 𝑎𝑙ℎ(𝜇𝑙𝐾 − 𝜇ℎ𝐾)

2
𝑋𝑙 ~𝑋ℎ

≈ ‖𝐲𝐾‖2
2 + 2𝜆2𝑎𝑖𝑗(𝜇𝑖𝐾 −

𝜇𝑗𝐾)
2
, and 

‖𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼‖2

2 ≤ √‖𝐲𝐾‖2
2 + 2𝜆2𝑎𝑖𝑗(𝜇𝑖𝐾 − 𝜇𝑗𝐾)

2
 .                       (B-11) 

Inserting (B-11) into (B-9), we get 
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|(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝐱𝑖𝐾−𝐱𝑗𝐾‖2

 

2𝜆2
× √

‖𝐲𝐾‖2
2

𝑎𝑖𝑗
2 +

2𝜆2(𝜇𝑖𝐾−𝜇𝑗𝐾)
2

𝑎𝑖𝑗
.         ∆ 
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I. Introduction to EP 

Expectation Propagation (EP) is a method in approximate Bayesian inference that 

uses a deterministic algorithm to approximate the true posterior distribution with an 

exponential-family distribution (T. P. Minka 1999). It is applicable when the true 

posterior distribution takes the form of a factorization, i.e.,   

𝑝(𝜃|𝐳) =
1

𝑝(𝐳)
∏ 𝑓𝑘(𝜃)
𝑛
𝑘=0 .                                         (C-1)  

𝐳 is the observational data. 𝜃 is the parameter whose distribution is to be infer. 𝑓0(𝜃) is 

the prior. 𝑓𝑘(𝜃) = 𝑝(𝑧𝑘|𝜃), 𝑘 ≥ 1 , is the likelihood corresponding to the 𝑘 -th 

observation. When 𝑓𝑘(𝜃) takes a complicated form, computing the posterior 𝑝(𝜃|𝐳) is 

difficult. EP approximates 𝑝(𝜃|𝐳)  with a mathematically tractable distribution𝑞(𝜃) =

1

𝐶
∏ 𝑓𝑘(𝜃)
𝑛
𝑘=0 , with each  𝑓𝑘(𝜃) being a member of an exponential family, so that the 

resulting 𝑞(𝜃)  belongs to the same exponential family. The approximation by EP is 

known to be better when the number of factors in the factorization, 𝑛, gets larger.  

The best approximation 𝑞(𝜃) found by EP is one that minimizes the Kullback–

Leibler (KL) divergence 𝐾𝐿(𝑝||𝑞)  (T. Minka 2008). To find the 𝑞(𝜃) , a plausible 

algorithm would be to approximate each factor in 𝑝(𝜃|𝐳) using one factor in 𝑞(𝜃) by 

matching the moments between 𝑓𝑘(𝜃) and 𝑓𝑘(𝜃). However, this algorithm limits itself to 

a small subset of feasible solutions, i.e., it eliminates many candidate solutions that 

effectively minimize 𝐾𝐿(𝑝||𝑞), but for which the individual moments of 𝑓 do not match 

those of 𝑓. This requires a more sophisticated algorithm than simply matching moments 

factor-by-factor, which leads to EP. Specifically, at each iteration of EP, we pick some 𝑙, 

and include all the factors except 𝑓𝑙(𝜃), and then match moments for the distributions 
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with 𝑓𝑙(𝜃) and 𝑓𝑙(𝜃) omitted. Because the moment matching includes a large number of 

factors (all factors except one), a better approximation is guaranteed.  EP iterates with 

one factor omitted at each iteration until convergence.  

II. Introduction to Bayesian optimal filtering and smoothing 

Bayesian optimal filtering and smoothing refers to the methodology that can be 

used for estimating the states (𝐱1,⋯ , 𝐱𝜏) of a time-varying system, which are indirectly 

observed through noisy measurements (𝐲1, ⋯ , 𝐲𝜏) (Kitagawa 1996; Crassidis and Junkins 

2011). It computes three marginal posterior distributions to avoid inefficient and 

unnecessary computing of the joint posterior distribution of the states at all time points, 

𝑝(𝐱1,⋯ , 𝐱𝜏|𝐲1,⋯ , 𝐲𝜏). The three marginal posterior distributions are: 1) the filtering 

distribution, i.e., the marginal posterior distribution of the current state given the previous 

measurements, 𝑝(𝐱𝑡|𝐲1, ⋯ , 𝐲𝑡), 𝑡 = 1,… , 𝜏 ; 2) the prediction distribution, i.e., the 

posterior marginal distribution of a future state given the previous measurements, 

𝑝(𝐱𝑡+𝑛|𝐲1, ⋯ , 𝐲𝑡), 𝑛 ≥ 1; and 3) the smoothing distribution, i.e., the posterior marginal 

distribution of a state given a certain interval of measurements, i.e., 𝑝(𝐱𝑘|𝐲1,⋯ , 𝐲𝑡), 

𝑘 < 𝑡. Bayesian optimal filtering and smoothing uses recursive equations to compute the 

three marginal posterior distributions under the assumption that the states at successive 

time points have a Markovian property.  

III. Proof of Proposition 4.1 

Our use of EP in this paper has a small twist from its original purpose as 

illustrated in (I). We use EP to find an approximate Gaussian distribution of the state 

vector 𝐱𝑡  based on the observation equation 𝑝( 𝐲𝑡|𝐱𝑡)  in (4*). Because the same EP 

algorithm is applied to every time point, we omit the subscript “𝑡” in the rest of this proof 
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for notation simplicity. Mapping to the generic notations of EP defined in (C-1), this is to 

consider the state vector 𝐱 as the “𝜃”, the network 𝐲 as the “𝐳”, and “𝑓0(𝜃)” and “𝑝(𝐳)” 

being constants.  Then, the EP in our case is to find a distribution 𝑞(𝐱) = ∏ 𝑓(𝐱𝑖𝑗)𝑖𝑗  to 

approximate 𝑝( 𝐲𝑡|𝐱𝑡) = ∏ 𝑓(𝐱𝑖𝑗)𝑖𝑗 , where 𝐱𝑖𝑗 = [𝑥𝑖 , 𝑥𝑗]
T , 𝑓(𝐱𝑖𝑗)  is the edge-specific 

observation equation given in (4), and 𝑓(𝐱𝑖𝑗)  is zero-mean Gaussian, i.e., 𝑓(𝐱𝑖𝑗) =

𝑠𝑖𝑗𝑒𝑥𝑝 (−
1

2
𝐱𝑖𝑗
𝑇𝛑𝑖𝑗𝐱𝑖𝑗) . Consequently,  𝑞(𝐱)  is zero-mean Gaussian, i.e., 𝑞(𝐱) =

𝐶 𝑒𝑥𝑝 (−
1

2
𝐱𝑇𝚷𝐱) , where 𝚷 = ∑ 𝚷𝑖𝑗𝒊𝒋  and 𝚷𝑖𝑗  is an 𝑛 × 𝑛  matrix with four non-zero 

entries augmented from the 2 × 2 matrix 𝛑𝑖𝑗. The goal of EP is to find 𝚷, or equivalently, 

𝐕 = 𝚷−1.  

Before deriving the EP, we define some additional notations and relations that 

will be used throughout the derivation. Let 𝐯𝑖𝑗 = 𝛑𝑖𝑗
−1 and 𝐕𝑖𝑗  be an 𝑛 × 𝑛 matrix with 

four non-zero entries augmented from the 2 × 2 matrix 𝐯𝑖𝑗 . It is easy to show that the 

following relations between 𝐯𝑖𝑗 and 𝐕𝑖𝑗 hold:  

𝐕𝑖𝑗
−1 = 𝐝𝑖𝑗𝐯𝑖𝑗

−1𝐝𝑖𝑗
𝑇 ,                                                (C-2) 

𝐯𝑖𝑗 = 𝐝𝑖𝑗
𝑇 𝐕𝑖𝑗𝐝𝑖𝑗,                                               (C-3) 

where 𝐝𝑖𝑗 is a 𝑛 × 2 vector whose first column has one at the 𝑖-th position and zeros 

otherwise, and second column has one at the j-th position and zeros otherwise.  

At each iteration of EP, one factor is omitted from 𝑞(𝐱). Let 𝑞\𝑖𝑗(𝐱) denote the 

distribution where factor 𝑓(𝐱𝑖𝑗) is omitted, i.e., 𝑞\𝑖𝑗(𝐱) =
𝑞(𝐱)

�̃�(𝐱𝑖𝑗)
. The covariance matrix 

of 𝑞\𝑖𝑗(𝐱) can be derived as follows: 

𝐕\𝑖𝑗 = ((𝐕∗)−1 − 𝐕𝑖𝑗
−1)

−1
= 𝐕∗ + (𝐕∗𝐝𝑖𝑗)(𝐯𝑖𝑗 − 𝐝𝑖𝑗

𝑇 𝐕∗𝐝𝑖𝑗)
−1
(𝐝𝑖𝑗

𝑇 𝐕∗), 
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where 𝐕∗ is the approximation for 𝐕 obtained in the previous iteration. Using (C-3), we 

can get: 

𝐯\𝑖𝑗 = 𝐝𝑖𝑗
𝑇 𝐕\𝑖𝑗𝐝𝑖𝑗 . 

Next, we define 𝑞∗(𝐱) to be the distribution that combines 𝑞\𝑖𝑗(𝐱) and the true factor 

𝑓(𝐱𝑖𝑗), i.e., 𝑞∗(𝐱) =
1

𝑍𝑖𝑗
𝑞\𝑖𝑗(𝐱)𝑓(𝐱𝑖𝑗). 𝑍𝑖𝑗 is a normalizing constant. Then, we can obtain 

an updated 𝑞(𝐱), 𝑞𝑛𝑒𝑤(𝐱), by minimizing the KL divergence between 𝑞∗(𝐱) and 𝑞(𝐱), 

i.e.,  

𝑞𝑛𝑒𝑤(𝐱) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐾𝐿(𝑞∗(𝐱)||𝑞(𝐱)). 

Since we know that 𝑞𝑛𝑒𝑤(𝐱) is zero-mean Gaussian, the key is to find the covariance 

matrix of 𝑞𝑛𝑒𝑤(𝐱), 𝐕𝑛𝑒𝑤. 𝐕𝑛𝑒𝑤 is related to the normalizing constant 𝑍𝑖𝑗 through (C-4): 

𝐕𝑛𝑒𝑤 = 𝐕\𝑖𝑗 − 𝐕\𝑖𝑗𝐝𝑖𝑗(−2∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗)𝐝𝑖𝑗
𝑇 𝐕\𝑖𝑗 ,                        (C-4) 

where ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 denotes the derivative of 𝑙𝑜𝑔𝑍𝑖𝑗 with respect to 𝐯\𝑖𝑗. This means that 

the EP is complete as long as we can derive ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 . The rest of this section is 

devoted to the derivation for ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗:  

According to the definition of 𝑍𝑖𝑗, 

𝑍𝑖𝑗 = ∫𝑓(𝐱𝑖𝑗)𝑞
\𝑖𝑗(𝐱)𝑑𝐱 

= ∫{𝜙 (
𝑥𝑖

𝜎𝛿
)𝜙 (

𝑥𝑗

𝜎𝛿
) + (1 − 𝜙 (

𝑥𝑖

𝜎𝛿
)) (1 − 𝜙 (

𝑥𝑗

𝜎𝛿
))} × 𝑁(𝐱|𝟎, 𝐕\𝑖𝑗)𝑑𝐱  

= ∫{𝜙 (
𝑥𝑖

𝜎𝛿
)𝜙 (

𝑥𝑗

𝜎𝛿
) + (1 − 𝜙 (

𝑥𝑖

𝜎𝛿
)) (1 − 𝜙 (

𝑥𝑗

𝜎𝛿
))} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗  
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=

∫{∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

+

(1 − ∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

) (1 − ∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

)} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯
\𝑖𝑗)𝑑𝐱𝑖𝑗  

= ∫{1 + 2∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

− ∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

− ∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

} ×

𝑁(𝐱𝑖𝑗|𝟎, 𝐯
\𝑖𝑗)𝑑𝐱𝑖𝑗  

= ∫ {1 + 2∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
∫ 𝑁 (𝑢|−

𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
− ∫ 𝑁 (𝑣|−

𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
−

∫ 𝑁 (𝑢|−
𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
}  × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗.                                                             (C-5) 

Let 

𝑔(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
∫ 𝑁 (𝑢|−

𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 , 

𝑙(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 ,  and 

ℎ(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑢|−
𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 . Then, (C-5) becomes 

𝑍𝑖𝑗 = 1 + 2𝑔(𝐯
\𝑖𝑗) − 𝑙(𝐯\𝑖𝑗) − ℎ(𝐯\𝑖𝑗) . It is not difficult to find that 𝑙(𝐯\𝑖𝑗) =

ℎ(𝐯\𝑖𝑗) = 0.5. Therefore,  

𝑍𝑖𝑗 = 2𝑔(𝐯
\𝑖𝑗).                                                     (C-6) 

Next, we derive 𝑔(𝐯\𝑖𝑗). Define 𝐰 = [𝑣, 𝑢]𝑇. Then,  

𝑔(𝐯\𝑖𝑗) =

∫ {∫
1

2𝜋
𝑒𝑥𝑝 (−

1

2
(𝐱𝑖𝑗 +𝐰𝜎𝛿)

𝑇
(𝜎𝛿

2)
−1
(𝐱𝑖𝑗 +𝐰𝜎𝛿))𝑑𝐰

0

−∞
}  × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗   

= 𝜎𝛿
2 ∫ ∫ {

1

2𝜋𝜎𝛿
2 𝑒𝑥𝑝 (−

1

2
(𝐱𝑖𝑗 +𝐰𝜎𝛿)

𝑇
(𝜎𝛿

2)
−1
(𝐱𝑖𝑗 +𝐰𝜎𝛿)) × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)}  𝑑𝐱𝑖𝑗𝑑𝐰
0

−∞
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=

𝜎𝛿
2 ∫ ∫𝑁(𝐱𝑖𝑗|− (

1

𝜎𝛿
2 𝐈 + (𝐯

\𝑖𝑗)
−1
)
−1

(𝜎𝛿
2)
−1
𝐰𝜎𝛿 , (

1

𝜎𝛿
2 𝐈 +

0

−∞

(𝐯\𝑖𝑗)
−1
)
−1

)𝑁(−𝐰𝜎𝛿|0, 𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗)  𝑑𝐱𝑖𝑗𝑑𝐰   

= 𝜎𝛿
2 ∫ 𝑁(−𝐰𝜎𝛿|0, 𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)𝑑𝐰
0

−∞
.                                                                                    (C-7) 

Inserting (C-7) into (C-6), we further derive ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗:  

∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 =
1

𝑍𝑖𝑗
(2∇𝐯\𝑖𝑗𝑔(𝐯

\𝑖𝑗))  

= 𝜎𝛿
2 ∫

1

2𝜋|𝜎𝛿
2𝐈+𝐯\𝑖𝑗|

1/2 𝑒𝑥𝑝 (−
1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
0

−∞
(−

𝜎𝛿
2

2
) (−(𝜎𝛿

2𝐈 +

𝐯\𝑖𝑗)−1𝐰𝐰𝑇(𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗)−1) + 𝑒𝑥𝑝 (−

1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
1

2𝜋
(−

1

2
|𝜎𝛿
2𝐈 +

𝐯\𝑖𝑗|
−3/2

|𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗|(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1)𝑑𝐰  

=

𝜎𝛿
2

2
𝜎𝛿
2(𝜎𝛿

2𝐈 +

𝐯\𝑖𝑗)−1 ∫
1

2𝜋|𝜎𝛿
2𝐈+𝐯\𝑖𝑗|

1/2 𝑒𝑥𝑝 (−
1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
0

−∞
(𝑣

2 𝑢𝑣
𝑢𝑣 𝑢2

) 𝑑𝐰(𝜎𝛿
2𝐈 +

𝐯\𝑖𝑗)−1 −
1

2
(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝑔(𝐯\𝑖𝑗)                                                                                           (C-8) 

Using (C-8), ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 can be obtained numerically.          ∆ 

IV. Proof of Lemma 1 

We first derive the prediction distribution 𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗): 

𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) = ∫𝑃(𝐱𝑡|𝐱𝑡−1, 𝐀

∗, 𝐐∗)𝑃(𝐱𝑡−1|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗)𝑑𝐱𝑡−1  

= ∫𝑁(𝐱𝑡|𝐀
∗𝐱𝑡−1, 𝐐

∗)𝑁(𝐱𝑡−1|𝟎, 𝐏𝑡−1)𝑑𝐱𝑡−1  
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= ∫𝑁(((𝐱𝑡−1
𝑇 , 𝐱𝑡

𝑇)𝑇|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗)|𝟎, (

𝐏𝑡−1 𝐏𝑡−1𝐀
∗𝑇

𝐀∗𝐏𝑡−1 𝐀∗𝐏𝑡−1𝐀
∗𝑇 + 𝐐∗

))𝑑𝐱𝑡−1  

= 𝑁(𝐱𝑡|𝟎, 𝐀
∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗                                                                                          (C-9) 

Let 𝐏𝑡
− = 𝐀∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗ . Next, we derive the distribution 

𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗): 

𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) = 𝑃(𝐲𝑡|𝐱𝑡)𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀

∗, 𝐐∗).                    (C-10) 

Inserting (C-9) into the right hand side of (C-10), we get: 

 𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) ≈ 𝐶𝑡𝑒𝑥𝑝 (−

1

2
𝐱𝑡
𝑇𝚷𝑡𝐱𝑡) × 𝑆𝑡𝑒𝑥𝑝 (−

1

2
𝐱𝑡
𝑇(𝐏𝑡

−)−1𝐱𝑡) 

                           = 𝐶𝑡𝑆𝑡 𝑒𝑥𝑝 (−
1

2
𝐱𝑡
𝑇(𝚷𝑡 + (𝐏𝑡

−)−1)𝐱𝑡). 

Furthermore, because 𝑝(𝐱𝑡|𝐲1:𝑡, 𝐀
∗, 𝐐∗) ∝ 𝑝(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀

∗, 𝐐∗) , we get 𝐏𝑡 =

(𝚷𝑡 + (𝐏𝑡
−)−1)−1.             ∆ 

V. Proof of Theorem 2 

According to the third equation in (C-8), we can get the joint posterior distribution 

of the states at time 𝑡  and 𝑡 + 1  as 

𝑝((𝐱𝑡
𝑇 , 𝐱𝑡+1

𝑇)𝑇|𝐲1:𝑡, 𝐀
∗, 𝐐∗) = 𝑁((𝐱𝑡

𝑇 , 𝐱𝑡+1
𝑇)𝑇|𝟎, �̇�1), where 

�̇�1 = (
𝐏𝑡 𝐏𝑡𝐀

∗𝑇

𝐀∗𝐏𝑡 𝐀∗𝐏𝑡𝐀
∗𝑇 + 𝐐∗

). Then, the conditional posterior distribution of 𝐱𝑡|𝐱𝑡+1 can 

be found to be: 

𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲1:𝑡, 𝐀
∗, 𝐐∗) =  𝑁(𝐱𝑡|𝟎, �̇�2),                   

where �̇�2 = 𝐏𝑡 − 𝐇𝑡(𝐀
∗𝐏𝑡𝐀

∗𝑇 + 𝐐∗)𝐇𝑡
𝑇 and 𝐇𝑡 = 𝐏𝑡𝐀

∗𝑇(𝐀∗𝐏𝑡𝐀
∗𝑇 + 𝐐∗)−1. 

Furthermore, due to the Markovian property of the SSM, we can get:  

𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲, 𝐀
∗, 𝐐∗) = 𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲1:𝑡, 𝐀

∗, 𝐐∗) =  𝑁(𝐱𝑡|𝟎, �̇�2).                  (C-11) 
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Using (C-11), we can further derive:  

𝑝((𝐱𝑡
𝑇 , 𝐱𝑡+1

𝑇)𝑇|𝐲, 𝐀∗, 𝐐∗) = 𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲, 𝐀
∗, 𝐐∗)𝑝(𝐱𝑡+1|𝐲, 𝐀

∗, 𝐐∗) =

 𝑁(𝐱𝑡|𝟎, �̇�2)𝑁(𝐱𝑡+1|𝟎, 𝐏𝑡+1
𝑠 ) = 𝑁(𝟎, �̇�3),        

where �̇�3 = (
�̇�2 + 𝐇𝑡𝐏𝑡+1

𝑠 𝐇𝑡
𝑇 𝐏𝑡+1

𝑠 𝐇𝑡
𝑇

𝐇𝑡𝐏𝑡+1
𝑠 𝐏𝑡+1

𝑠 ). In �̇�3 , �̇�2 + 𝐇𝑡𝐏𝑡+1
𝑠 𝐇𝑡

𝑇  is Var̂𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and 

𝐏𝑡+1
𝑠 𝐇𝑡

𝑇  is Cov̂𝐱𝑡,𝐱𝑡+1|𝐲,𝐀∗,𝐐∗(𝐱𝑡, 𝐱𝑡+1) . That is, 𝐏𝑡
𝑠 ≜ Var̂𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) = �̇�2 +

𝐇𝑡𝐏𝑡+1
𝑠 𝐇𝑡

𝑇 = 𝐏𝑡 + 𝐇𝑡(𝐏𝑡+1
𝑠 − 𝐀∗𝐏𝑡𝐀

∗𝑇 − 𝐐∗)𝐇𝑡
𝑇  and 

𝐏𝑡−1,𝑡
𝑠 ≜ Cov̂𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) = 𝐏𝑡

𝑠𝐇𝑡−1
𝑇  .           ∆ 

 


