
A Probabilistic Framework of Transfer Learning –

Theory and Application

by

Na Zou

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the

Graduate Supervisory Committee:

Jing Li, Chair

Mustafa Baydogan

Connie Borror

Douglas Montgomery

Teresa Wu

ARIZONA STATE UNIVERSITY

December 2015

i

ABSTRACT

Transfer learning refers to statistical machine learning methods that integrate the

knowledge of one domain (source domain) and the data of another domain (target

domain) in an appropriate way, in order to develop a model for the target domain that is

better than a model using the data of the target domain alone. Transfer learning emerged

because classic machine learning, when used to model different domains, has to take on

one of two mechanical approaches. That is, it will either assume the data distributions of

the different domains to be the same and thereby developing one model that fits all, or

develop one model for each domain independently. Transfer learning, on the other hand,

aims to mitigate the limitations of the two approaches by accounting for both the

similarity and specificity of related domains. The objective of my dissertation research is

to develop new transfer learning methods and demonstrate the utility of the methods in

real-world applications. Specifically, in my methodological development, I focus on two

different transfer learning scenarios: spatial transfer learning across different domains and

temporal transfer learning along time in the same domain. Furthermore, I apply the

proposed spatial transfer learning approach to modeling of degenerate biological systems.

Degeneracy is a well-known characteristic, widely-existing in many biological systems,

and contributes to the heterogeneity, complexity, and robustness of biological systems. In

particular, I study the application of one degenerate biological system which is to use

transcription factor (TF) binding sites to predict gene expression across multiple cell

lines. Also, I apply the proposed temporal transfer learning approach to change detection

of dynamic network data. Change detection is a classic research area in Statistical Process

Control (SPC), but change detection in network data has been limited studied. I integrate

ii

the temporal transfer learning method called the Network State Space Model (NSSM)

and SPC and formulate the problem of change detection from dynamic networks into a

covariance monitoring problem. I demonstrate the performance of the NSSM in change

detection of dynamic social networks.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jing Li, for her guidance, encouragement,

and support during my dissertation research. She is an outstanding mentor and the most

dedicated and diligent researcher I have ever known. Her responsibility and positive life

attitude influence me profoundly and become my lifelong assets. I would like to thank

my dissertation committee members, Dr. Mustafa Baydogan, Dr. Connie Borror, Dr.

Douglas Montgomery and Dr. Teresa Wu, for their valuable interactions and feedback.

They provide helpful suggestions and insightful comments for my dissertation.

Members of AMIIL lab inspired me a lot through discussions, seminars, and

project collaborations, and I would like to thank the following people for their valuable

suggestions: Fei Gao, Min Zhang, Nathan Gaw, Yinlin Fu, Kung Wang, Shuluo Ning,

Hyunsoo Yoon, Can Cui, Bing Si, Congzhe Su, Xiaonan Liu. I have been working

closely with many colleagues from ASU and outside ASU during my Ph.D. I want to

thank Yun Zhu, Wei Wang, Ji Zhu, Igor Yakushev, Dmitry Titov.

Last but not the least, I would like to thank my family: my husband for supporting

me spiritually, my parents and parents-in-law for unconditionally and attentively taking

care of my son.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION ... 1

Background ... 1

State of the Art .. 2

Summary of Original Contributions ... 5

2 SPATIAL TRANSFER LEARNING BY A SPARSE MATRIX-NORMAL

PENALIZED APPROACH ... 8

Introduction ... 8

Formulation ... 8

Theoretical Properties ... 13

Joint Estimation of Hyper-parameters and Parameters ... 17

Prediction .. 19

Simulation Study ... 20

3 APPLICATION OF SPATIAL TRANSFER LEARNING IN PREDICTIVE

MODELING OF DEGENERATE BIOLOGICAL SYSTEMS 23

Introduction ... 23

Need of Transfer Learning in Modeling Biological Systems 23

Degenerate Biological Systems .. 24

Modeling of Degeneracy... 27

v

CHAPTER Page

Simulation Study ... 30

Application of Gene Expression Prediction by Transcription Factors 31

4 TEMPORAL TRANSFER LEARNING FOR MODELING AND CHANGE

DETECTION OF DYNAMIC NETWORKS BY A NETWORK STATE SPACE

MODEL .. 42

Introduction ... 42

Related Work in Network Modeling and SPC .. 46

Overview of the Proposed Methodology .. 48

NSSM for Characterizing Natural Evolution of Dynamic Networks 49

Change Detection in Dynamic Networks by Integrating NSSM and SPC 59

Case Studies .. 61

REFERENCES ... 74

APPENDIX

A DERIVATION IN CHAPTER 2... 79

B DERIVATION IN CHAPTER 3 ... 87

C DERIVATION IN CHAPTER 4 ... 92

vi

LIST OF TABLES

Table Page

 1. AUC Performances of Transfer Learning and Single-domain Learning 22

 2. Best AUC Performances of Proposed Model Considering Degeneracy and Lasso 31

 3. Comparison of Three Methods by MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ ... 34

 4. Correlation between Model Coefficients of the Target Domain with and without

Shuffled Noisy Source Domains .. 36

 5. Comparison between Transfer Learning with Shuffled Noisy Source Domains and

Single-domain Learning ... 36

 6. Classification Performance for GM12878 Treated as the Target Domain 37

 7. Clusters of 7-mers and Matching with Known TFs for GM12878 41

 8. Average (Standard Deviation) AUC of Prediction Over the Time Range of the

Dynamic Networks with 20 Nodes .. 66

 9. Average (Standard Deviation) AUC of Prediction Over the Time Range of the

Dynamic Networks with 50 Nodes .. 66

 10. Average (Standard Deviation) AUC of Prediction Over the Time Range of the

Dynamic Networks with Two Communities (20 Nodes in Each Community) 67

 11. Probability of Detecting the Structural Shift at the First Time Point After the Shift

with 𝛼 = 0.005 (𝛼 = 0.05) ... 69

vii

LIST OF FIGURES

Figure Page

1. Transfer Learning MSEs of Five Sets of Knowledge from Source Domains

MSE(ŵK
(i)
), i = 1,… ,5 and Single-domain MSE MSE(w̌K) with true wK = 3 16

2. An Algorithm for Solving Transfer Learning Formulation in Case III 19

3. An Algorithm for Solving Transfer Learning Formulation in Case IV 19

4. A Residual Bootstrap Procedure to Compute Prediction Interval 20

5. Proposed Methodological Framework ... 49

6. Probability Contour Plots of the Proposed Observation Equation in (4.4) with Two

Different Measurement Noise Levels: (a) 𝜎𝛿 = 1; and (b) 𝜎𝛿 = 3 51

7. Estimated P6
−1 to Reflect a Hub Forming Process in Dynamic Networks By (a) BOF

Under NSSM, (b) A Method Using the Network Data at 𝑡 = 6 Alone, and (c) A Method

Counting Frequency of Occurrence of Edges. ... 63

8. Estimated P4
−1 to Reflect a Community Forming Process in Dynamic Networks By (a)

BOF Under NSSM, (b) A Method Using the Network Data at 𝑡 = 4 Alone, and (c) A

Method Counting Frequency of Occurrence of Edges. .. 64

9. Dynamic Networks with Natural Evolution at Three Time Snapshots 66

10. Dynamic Networks with A Structural Shift at 𝑡 = 16 ... 68

11. QQ Plot on the Monitoring Statistics Derived From In-control Networks 69

12. Monitoring and Change Detection of the Enron Dynamic Email Networks 71

1

Chapter 1: Introduction

1.1 Background

Transfer learning is a basic learning ability of human beings. It refers to the

ability that people can intelligently apply knowledge learned in one domain to solve the

problem in another domain faster or with better solutions. For example, people with prior

experience on learning music instruments may be found to be a quicker learner of a new

instrument compared with people who have no experience at all. Transfer learning, in

statistical machine learning, has a similar nature. It refers to methods that integrate the

knowledge of one domain (source domain) and the data of another domain (target

domain) in an appropriate way, in order to develop a model for the target domain that is

better than a model using the data of the target domain alone. Transfer learning emerged

because classic machine learning, when used to model different domains, has to take on

one of two mechanical approaches. That is, it will either assume the data distributions of

the different domains to be the same and thereby developing one model that fits all, or

develop one model for each domain independently. Transfer learning, on the other hand,

aims to mitigate the obvious limitations of the two approaches by accounting for both the

similarity and specificity of related domains. Transfer learning is especially advantageous

when the sample size of data in the target domain is too limited to produce a reliable

model, due to timing, availability, or/and cost. Next, I give a few examples in various

areas in which transfer learning is desirable:

Manufacturing: Rapid updating of product generations is a common

characteristic of various manufacturing industries. When a new generation of a product is

invented, it needs to be quickly introduced to the market. The production data on the new

2

generation (target domain) could be very limited to allow adequate process modeling,

control, and optimization. On the other hand, abundant data and knowledge may have

been accumulated from past generations of the same product (source domain). Transfer

learning can make use of these past data and knowledge to model the new generation

better and faster.

Health care: An important problem in health care especially cancer medicine is

to use various sources of clinical data, such as imaging, genetics, and demographics, for

cancer prognostics. In longitudinal studies, a particular interest is to follow along a cohort

of patients with a specific cancer to model the association between clinical data and

disease outcomes (e.g., mortality, recurrence) at different stages of the disease

advancement. Patient drop-off is common, leaving less data for use in modeling later

stages of the disease (target domain). Transfer learning can play an important role here by

integrating the limited data with knowledge from the earlier stages (source domain). A

similar setting is in the study of different subtypes of a cancer. When a new subtype is

discovered (target domain), the patient number is usually limited. Transfer learning can

help establish a model for the new subtype timely and reliably by transferring knowledge

of the known subtypes (source domain) to the modeling of the new subtype.

1.2 State of the Art

The existing transfer learning methods primarily fall into three categories:

instance transfer, feature transfer, and parameter transfer.

Instance transfer is a major type of transfer learning methods (Liao, Xue, and

Carin 2005; Dai et al. 2007; Wu and Dietterich 2004). The basic idea is to reuse some

samples/instances in the source domain as auxiliary data for the target domain. For

3

example, Dai et al. (2007) proposed a boosting algorithm called TrAdaBoost to

iteratively reweight samples in the source domains to identify samples that are helpful for

modeling the target domain. Although intuitive, instance transfer may be questioned for

its validity. For example, if the source and target domains are two subtypes of a cancer,

using the data of some patients in one subtype to model another subtype implies that

these patients are misdiagnosed, which is not a reasonable assumption.

Feature transfer and parameter transfer are two other types of relevant methods.

Feature transfer aims to identify good feature representations shared by the source and

target domains. In an earlier work by Caruana (1997), the features are shared hidden

layers for the neural network models across the domains. More recently, Argyrious et al.

(2008) and Evgeniou and Pontil (2007) proposed to map the original high-dimensional

predictor space to a low-dimensional feature space and the mapping is shared across the

domains. Nonlinear mapping was study by Jebara (2004) for Support Vector Machines

(SVMs) and by Ruchert and Kramer (2008) who designed a kernel-based approach

aiming at finding a suitable kernel for the target domain. Interpretability, e.g., physical

meaning of the shared features, is an issue for feature transfer especially nonlinear

approaches.

 Parameter transfer assumes that the old and target domains share some model

parameters. For example, Liu et al. (2009) adopt L21-norm regularization for linear

models to encourage the same predictors to be selected across the domains. Regularized

approaches for nonlinear models like SVMs were also studied (T. Evgeniou and Pontil

2004). In addition to regularization, Bayesian statistics provide a nice framework by

assuming the same prior distribution for the model parameters across the domains, which

4

has been adopted for Gaussian process models (Lawrence and Platt 2004; Schwaighofer,

Tresp, and Yu 2005; Bonilla, Chai, and Williams 2008).

Limitations of the existing transfer learning methods are:

First, most existing methods require that the raw data of the source are available

at the time of modeling the target domain. This can be computationally intensive when

the source domain has massive amounts of data. Also, this requires keeping the data of

the source domain in their complete form all the time, which consumes lots of storage. In

this sense, the existing methods should be more appropriately called multitask learning

methods. An alternative approach is to discard the data of the source domain but only

keep the knowledge of a much smaller size to be transferred, which has been less studied

in the literature.

Second, when there are more than one source domains, most existing methods

assume that the relationship between each source domain and the target domain is

similar. This assumption may not hold well in practice. For examples, there may be some

source domains whose model parameters are positively correlated with those of the target

domain, and some with negative correlations, and others with no correlations. A desirable

approach should be able to automatically learn the different domain relationships from

data and adaptively decide how much is transferred from each source domain to the target

domain. This idea has been explored by a few existing methods (Bakker and Heskes

2003; Xue et al. 2007; Jacob et al. 2009), in which the domains are grouped into clusters

and domains within each cluster are assumed to have similar relationships with one

another. However, clustering is only able to reveal domain relationships qualitatively

5

(i.e., whether or not two domains belong to the same cluster), but not quantitatively (i.e.,

to how much extent two domains are related).

Third, while showing empirically good performance than single-domain learning

(i.e., machine learning methods that model each domain independently), the existing

literature lacks theoretical investigation on when and why transfer learning is better than

single-domain learning.

1.3 Summary of Original Contributions

The objective of my dissertation research is to develop new transfer learning

methods that overcome the aforementioned limitations of the existing methods and

demonstrate the utility of the methods in real-data applications. In my methodological

development, I focus on two different transfer learning scenarios: spatial transfer

learning across different domains and temporal transfer learning along time in the

same domain.

The original contributions of my dissertation research are summarized as follows:

 Spatial transfer learning: I develop a transfer learning method for predictive

modeling, which can flexibly incorporate the data or knowledge of the source

domains, whichever available, to the modeling of the target domain. The

method can automatically estimate the relationship between domains and

adaptively decide how much information to transfer from each source domain

to the target domain. The method is also able to model high-dimensional data.

I develop a computationally efficient algorithm in model estimation. In

addition, I perform theoretical analysis to answer several important questions,

such as: What difference it will make by transferring the knowledge/models of

6

the source domains instead of the data? Is transfer learning always better than

learning using the data of the target domain alone? What knowledge from

source domains or what type of source domains is most helpful for transfer

learning?

 Temporal transfer learning: I develop a transfer learning method called

Network State Space Model (NSSM) for characterizing the temporal

evolution of dynamic network data. NSSM produces a model for the current

time frame by integrating the current data with a model from the past time

frame. For tractable parameter estimation of the NSSM, I develop an

Expectation Propagation (EP) algorithm to produce a multivariate Gaussian

approximation for the observation equation of the NSSM, and further use an

Expectation-Maximization (EM) framework integrated with a Bayesian

optimal smoothing (BOS) algorithm to estimate the parameters.

 Applications: (1) I apply the proposed spatial transfer learning approach to

modeling of degenerate biological systems. Degeneracy is a well-known

characteristic, widely-existing in many biological systems, and contributes to

the heterogeneity, complexity, and robustness of biological systems. In

particular, I study the application of one degenerate biological system which is

to use transcription factor (TF) binding sites to predict gene expression across

multiple cell lines. The proposed transfer learning method shows better

prediction accuracy compared with competing methods. The biological

findings revealed by the proposed method are also consistent with the

literature. (2) I apply the temporal transfer learning approach, i.e., the NSSM,

7

to change detection in social networks. Change detection is a classic research

area in Statistical Process Control (SPC), but change detection in network data

has been little studied. I integrate the NSSM and SPC and formulate the

problem of change detection from dynamic networks into a covariance

monitoring problem. I demonstrate the performance of the NSSM by

extensive simulation experiments and a real-world application on Enron’s

email communication networks.

The organization of my dissertation is the following: Chapter 2 presents my

research development in spatial transfer learning; Chapter 3 presents the application of

the spatial transfer learning method in modeling of degenerate biological systems.

Chapter 4 presents my research development in temporal transfer learning, i.e., the

NSSM, and integration of the NSSM with SPC for change detection in social networks.

8

Chapter 2: Spatial Transfer Learning by a Sparse Matrix-normal Penalized Approach

2.1 Introduction

We adopt a Bayesian formulation and develop a unique prior for the model

coefficients of the source domains and target domain. This prior has two hyper-

parameters respectively encoding the covariance structure of predictor coefficients and

characterizing the correlation structure of the domains. We propose an efficient algorithm

that allows estimation of the hyper-parameters together with the model coefficients, so

that the correlation structure between domains does not need to be specified a priori but

can be learned from data. We perform theoretical analysis to reveal several important

questions, such as: what difference it will make by transferring the knowledge/models of

the source domains instead of the data? Is transfer learning always better than learning

using the data of the target domain alone? What knowledge from target domains or what

type of target domains is most helpful for transfer learning? Lastly, we perform

simulation studies to compare the performance of the transfer learning method with

single-domain learning.

2.2 Formulation

 Let X = (X1, … , XQ) denote Q predictors and Y denote the response. Assume that

there are K related domains, where domains 1 to K-1 are source domains and domain K is

a target domain. For each domain k, there is a model that links X to Y by coefficients wk,

k = 1,… , K. If Y ∈ ℝ, a common model is a linear regression, Y = Xwk + εk . If Y ∈

{−1,1}, a classification model such as a logistic regression applies, e.g., log
P(Y=1)

P(Y=−1)
=

Xwk. We propose the following prior for W = (w1, … ,wK):

9

 p(𝐖|𝛀,𝚽, b) ∝ ∏ Laplace(𝐰k; b)
K
k=1 ×MN(𝐖;0,𝛀,𝚽). (2.1)

This prior is formed based on the following considerations:

 Laplace(wk; b) is a Laplace distribution for wk , i.e.,

𝑝(𝐰𝑘|𝑏) = (
1

2𝑏
)
𝑄

𝑒𝑥𝑝 (−
1

𝑏
∑ |𝑤𝑞𝑘|
𝑄
𝑞=1). 𝑤𝑞𝑘 is the 𝑞-th element of 𝐰𝑘. Using a

Laplace distribution in the prior is to facilitate “sparsity” in model estimation. The

most well-known sparse model is probably the lasso model (Tibshirani 1994),

which impose an L1 penalty on regression coefficients to shrink the estimates for

many small be exactly zero, thus producing a sparse model. Tibshirani (1994)

showed that the lasso estimate is equivalent to a Bayesian Maximum-A-Posteriori

(MAP) estimate with a Laplace prior. Sparsity is an advantageous property for

high-dimensional problems, which is the target setting of this dissertation.

 𝑀𝑁(𝐖;𝟎,𝛀,𝚽) is a zero-mean matrix-variate normal distribution, whose

probability density function is 𝑝(𝐖|𝛀,𝚽) =
exp(−

1

2
𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇))

(2𝜋)𝑄𝐾 2⁄ |𝛀|𝑄 2⁄ |𝚽|𝐾 2⁄ . |⋅|and 𝑡𝑟(⋅)

denote the determinant and trace of a matrix, respectively. 𝛀 ∈ ℝ𝐾×𝐾 and

𝚽 ∈ ℝ𝑄×𝑄 are called column and row covariance matrices, respectively. It can be

shown that 𝑐𝑜𝑣(𝐰𝑞) = 𝚽𝑞𝑞𝛀 . 𝐰𝑞 is the 𝑞 –th row of 𝐖 , which consists of

regression coefficients for all the 𝐾 domains corresponding to the 𝑞–th predictor.

𝚽𝑞𝑞 is the 𝑞–th diagonal element of 𝚽. 𝑐𝑜𝑣(⋅) denotes the covariance matrix of a

vector. Therefore, 𝛀 encodes the prior knowledge about the correlation structure

of the domains. Furthermore, it can be shown that 𝑐𝑜𝑣(𝐰𝑘) = 𝛀𝑘𝑘𝚽. Therefore,

𝚽 encodes the prior knowledge about the correlation structure of the regression

coefficients.

10

Next, we propose two modeling strategies depending on the availability of data.

In Case I, data of the source domains 1 to 𝐾-1 is available. In Case II, data of the source

domains is not available but only the knowledge/models. The latter case is more common

especially in biology and medicine. At the time a new cell line or a new subtype of a

disease is being studied, the researcher may only have access to the data of the target

domain. Although he/she may gather abundant knowledge about existing cell lines or

disease subtypes from the published works of other researchers, he/she can hardly access

the data due to ownership or confidentiality.

Case I: Model the target domain using the data of all the domains

Let 𝐲𝑘 and 𝐗𝑘 denote the data for the response and predictors of the 𝑘-th domain

𝑘 = 1,… , 𝐾. The likelihood for 𝐲𝑘 given 𝐗𝑘 and 𝐰𝑘 is

 𝑝(𝐲𝑘|𝐗𝑘, 𝐰𝑘)~𝑁(𝐲𝑘; 𝐗𝑘𝐰𝑘, 𝜎
2 𝐈𝑛𝑘) . (2.2)

The posterior distribution of 𝐖 based on the prior in (2.1) and likelihood in (2.2) is:

 𝑝(𝐖|{𝐲𝑘, 𝐗𝑘}𝑘=1
𝐾 , 𝛀,𝚽, 𝑏) ∝ 𝑝(𝐖|𝛀,𝚽, 𝑏)∏ 𝑝(𝐲𝑘|𝐗𝑘, 𝐰𝑘)

𝐾
𝑘=1 . (2.3)

One way for estimating the regression coefficients of the target domain, 𝐰𝐾, is to find a

�̂� that maximizes the posterior distribution of 𝐖 in (2.3), i.e., �̂� is a Bayesian MAP

estimate for 𝐖 . This will naturally produce an estimate for 𝐰𝐾 , �̂�𝐾 , as in �̂� =

(�̂�1, … , �̂�𝐾) , and estimates for the source domains, �̂�1, … , �̂�𝐾−1 , as a side product.

Through some algebra, it can be derived that �̂� can be obtained by solving the following

optimization:

�̂�I =

argmin 𝐖 {
1

2𝜎2
∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2

2𝐾
𝑘=1 +

1

𝑏
‖𝐖‖1 +

1

2
(𝑄𝑙𝑜𝑔|𝛀| + 𝐾𝑙𝑜𝑔|𝚽| + 𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇))}. (2.4)

11

where ‖∙‖2 and ‖∙‖1 denote the L2 and L1 norms, respectively. The superscript “I” is

used to differentiate this estimate from the one that will be presented in Case II.

(2.4) assumes that 𝐖 is the only parameter to be estimated whereas 𝜎2 , 𝑏, 𝛀, and

𝚽 are known. This assumption may be too strict. To relax this assumption, we propose

the following approach: Let 𝜆1 = 2𝜎
2 𝑏⁄ and 𝜆2 = 𝜎2 . Then, (2.4) is equivalent to (2.5):

�̂�I = argmin
W

{∑ ‖𝐲k − 𝐗k𝐰k‖2
2K

k=1 + λ1‖𝐖‖1 + λ2(Qlog|𝛀| + Klog|𝚽| + tr(𝚽
−𝟏𝐖𝛀−𝟏𝐖𝐓))}. (2.5)

Here, λ1 ≥ 0 and λ2 ≥ 0 serve as regularization parameters to control the sparsity of �̂�I

and the amount of prior knowledge used for estimating 𝐖, respectively. λ1 and λ2 can be

selected by a grid search according to some model selection criterion such as BIC and

cross validation. This strategy for “estimating” σ2 and b enjoys computational simplicity

and was also adopted by other papers (Tibshirani 1994; Liu, Ji, and Ye 2009; Genkin,

Lewis, and Madigan 2007). Furthermore, hyper-parameters 𝚽 and 𝛀 are matrices of

potentially high dimensionality, the specification of which is more involved and will be

discussed in detail in Section 2.4. For now, we assume that 𝚽 and 𝛀 are known.

Note that the MAP estimate for 𝐖 is a point estimate, which would not allow

statistical inference for characterizing the uncertainty in the estimation. A full Bayesian

approach would be more preferable in this regard. However, the difficulty is that the

posterior distribution for 𝐖 in (2.3) does not have a parametric form. Although

computational algorithms like Markov Chain Monte Carlo (MCMC) may be used, they

are known to be computationally intensive. Therefore, we choose to use MAP in this

chapter to gain efficiency (Smith 1998) and leave the full Bayesian approach for future

investigation.

12

Case II: Model the target domain using data of the target domain and knowledge/models

of the source domains

To develop a model for this case, we first re-organize the terms in (2.5) to

separate the terms involving source domains from those involving only the target domain.

Denote the objective function in (2.5) by 𝑓(𝐖) . Let �̃� = (𝐰1, … ,𝐰𝐾−1) , so 𝐖 =

(�̃�,𝐰𝐾). Also let 𝛀 = [
�̃� 𝛡𝐾

𝛡𝐾
𝑇 𝜍𝐾

]. Then, it can be shown that (please see details in

Appendix 2.I):

 𝑓(𝐖) = 𝑓(�̃�) + 𝑔(𝐰𝐾|�̃�). (2.6)

f(W̃) takes the same form as f(W) but for the K − 1 source domains, i.e.,

𝑓(�̃�) = ∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2𝐾−1

𝑘=1 + 𝜆1‖W̃‖1 + 𝜆2 (𝑄𝑙𝑜𝑔|�̃�| +
(𝐾 − 1)𝑙𝑜𝑔|𝚽| + 𝑡𝑟(𝚽−1�̃��̃�−1�̃�𝑇)). (2.7)

and

 𝑔(𝐰𝐾|�̃�) = ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝑙𝑜𝑔|𝚺𝐾| + (𝐰𝐾 − 𝛍𝐾)

𝑇𝚺𝐾
−1(𝐰𝐾 − 𝛍𝐾)). (2.8)

where

 𝛍𝐾 = �̃��̃�−1𝛡𝐾. (2.9)

and

 𝚺𝐾 = (𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾)𝚽. (2.10)

When data from the source domains is not available but only the

knowledge/model in the form of �̃� = �̃�∗ , the 𝑓(�̃�∗) in (2.6) becomes a constant.

Therefore, minimizing 𝑓(𝐖) becomes minimizing 𝑔(𝐰𝐾|�̃�
∗), i.e.,

�̂�K
II = argmin

𝐰K

 g(𝐰K|�̃�
∗)

13

= argmin 𝐰𝐾 ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝑙𝑜𝑔|𝚺𝐾| + (𝐰𝐾 − 𝛍𝐾)

𝑇𝚺𝐾
−1(𝐰𝐾 −

𝛍𝐾)). (2.11)

with 𝛍𝐾 = �̃�∗�̃�−1𝛡𝐾 and 𝚺𝐾 given in (2.10).

Finally in this section, we would like to assess the difference between the

estimates in Case I and Case II, i.e., �̂�𝐾
I as in �̂�I = (�̂�1

I , … , �̂�𝐾
I) and �̂�𝐾

II. Theorem 2.1

shows that the estimate in Case II is no better than Case I in terms of minimizing the

objective function in the estimation. Case II is only as good as Case I when the

knowledge/model of the source domains can be provided in its optimal form. The

intuitive explanation about this finding is that since Case II utilizes the knowledge of the

source domains, which may contain uncertainty or noise, it is only sub-optimal compared

with using the data of the source domains directly (i.e., Case I). Please see Appendix A.II

for a proof of Theorem 2.1.

Theorem 2.1: 𝑓 ((�̃�∗, �̂�𝐾
II)) ≥ 𝑓(�̂�I) . When �̃�∗ = (�̂�1

I , … , �̂�𝐾−1
I) , �̂�𝐾

II = �̂�𝐾
I and

 𝑓 ((�̃�∗, �̂�𝐾
II)) = 𝑓(�̂�I).

2.3 Theoretical Properties

This section aims to perform theoretical analysis to address the following

questions: Is transfer learning always better than single-domain learning, i.e., learning

using only the data of the target domain but neither the data nor the knowledge of the

source domains (Theorem 2.2)? What knowledge from source domains or what type of

source domains is most helpful for learning of the target domain (Theorems 2.3)?

14

Let (2.12) and (2.13) be the transfer learning and single-domain learning

formulations targeted in this section, respectively. λ ≥ 0. When λ = 0, (2.12) becomes

(2.13).

 �̂�𝐾 = argmin 𝐰𝐾 ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆(𝐰𝐾 − 𝛍𝐾)

𝑇(𝐰𝐾 − 𝛍𝐾) (2.12)

 �̌�𝐾 = argmin 𝐰𝐾 ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 (2.13)

Comparing (2.12) with (2.11) in the previous section, it can be seen that (2.12) is

obtained from (2.11) by dropping the L1 norm, ‖wK‖1 , and making Φ = I and λ =

λ2

ςK−ϖK
TΩ̃−1ϖK

. This is to single out transfer learning from the sparsity and the covariance

structure of regression coefficients in (2.11), so that the discussion in this section will be

focused on transfer learning. Let MSE(∙) denote the Mean Square Error (MSE) of an

estimator. It is known that the MSE is the sum of the variance and squared bias of an

estimator, and is a commonly used criterion for comparing/choosing estimators.

Theorem 2.2: There always exists a 𝝀 > 𝟎 such that 𝑴𝑺𝑬(�̂�𝑲) < 𝑴𝑺𝑬(�̌�𝑲).

Please see a proof of this Theorem in Appendix 2.III. Theorem 2.2 provides

theoretical assurance that the model coefficients of the target domain, 𝐰𝐾, can be better

estimated by transfer learning than single-domain learning in the sense of a smaller MSE.

Next, we would like to investigate what type of knowledge from source domains or what

type of source domains helps learning of the target domain better. Because knowledge

from source domains is represented by 𝛍𝐾 in (2.9), the question becomes what property

of 𝛍𝐾 leads to a better transfer learning. Definition 1 defines a distance measure between

the knowledge from source domains, 𝛍𝐾, and the target domain, 𝐰𝐾, called the transfer

learning distance. Theorem 2.3 further proves that the knowledge for source domains

15

that has a smaller transfer learning distance to the target domain will help achieve a

smaller MSE in modeling the target domain.

Definition 2.1 (transfer learning distance): Define a transfer learning distance to be

𝒅(𝛍𝑲; 𝝀) ≜ (𝐰𝑲 − 𝛍𝑲)
𝑻𝐁𝑻𝐁(𝐰𝑲 − 𝛍𝑲), where 𝐁 = (𝐗𝑲

𝑻𝐗𝑲 + 𝝀𝐈)
−𝟏

.

The geometric interpretation of this distance measure is the following: Let Λ be a

diagonal matrix of eigenvalues γ1, … , γQ for XK
TXK and P be a matrix consisting of

corresponding eigenvectors, i.e., ., XK
TXK = PTΛP . Furthermore, let α ≜ P(μK −wK) .

The elements of α , α1, … , αQ , are indeed projections of μK −wK onto the principal

component axes of the data. Furthermore, it can be derived that the transfer learning

distance is d(μK; λ) = ∑
αi
2

(γi+λ)
2

Q
i=1 . Provided that the predictors are mean-centered, this

expression of d(μK; λ) implies that the transfer learning distance is a scaled Euclidean

distance in the principal component space.

Furthermore, suppose that there are two sets of knowledge from source domains

to be compared, i.e., 𝛍𝐾
(1)

 and 𝛍𝐾
(2)

. Let 𝑀𝑆𝐸(�̂�𝐾
(𝑖)
; 𝜆) be the MSE of the estimator for

�̂�𝐾 using (2.9) with 𝛍𝐾 = 𝛍𝐾
(𝑖)

. Let min𝜆𝑀𝑆𝐸(�̂�𝐾
(𝑖)
) denote the smallest MSE over all

possible values of 𝜆. 𝑖 = 1,2.

Theorem 2.3: If 𝒅(𝛍𝑲
(𝟏)
; 𝝀) ≤ 𝒅(𝛍𝑲

(𝟐)
; 𝝀) for ∀𝝀 > 𝟎 , then 𝐦𝐢𝐧𝝀𝑴𝑺𝑬(�̂�𝑲

(𝟏)
) ≤

𝐦𝐢𝐧𝝀𝑴𝑺𝑬(�̂�𝑲
(𝟐)
).

Please see a proof of this Theorem in Appendix 2.IV. For better illustration, we

show the comparison of MSEs between five sets of knowledge from source domains in

Figure 1. This is a simple example which consists of only one predictor. Therefore, 𝐰𝐾

16

and 𝛍𝐾 are scalars, 𝑤𝐾 and 𝜇𝐾. Assume that 𝑤𝐾 = 3. 𝜇𝐾
(1)

 through 𝜇𝐾
(5)

 are 1.3, 1.6, 1.9,

2.2, 2.5, respectively, i.e., they are more and more close to the target domain in transfer

learning distance. Figure 1 plots the MSEs of transfer learning using each of the five sets

of knowledge. The observations are: (i) For each curve, there exists a 𝜆 > 0 whose

corresponding MSE is smaller than the MSE of single-domain learning (i.e., the intercept

on the vertical axis). This demonstrates Theorem 2.2. (ii) The smaller the transfer

learning distance, the smaller the minimum MSE. This demonstrates Theorem 2.3.

Figure 1. Transfer learning MSEs of five sets of knowledge from source

domains,MSE(ŵK
(i)
), i = 1,… ,5, and single-domain MSE, MSE(w̌K) with true wK = 3

Finally, we would like to discuss some practical implication of the Theorems.

Theorem 2.2 needs little assumption to hold. However, this does not imply that transfer

learning always gives better results than single-domain learning in practice. This is

because in practice, 𝜆 is selected by a grid search according to some model selection

criterion such as BIC and cross-validation. The 𝜆 that makes the MSE of the transfer

learning estimator smaller than single-domain learning may be missed in this practical

17

search. Furthermore, as indicated by Theorem 2.3 and Figure 1, this risk is higher when

the knowledge from source domain is farther from the target domain in transfer learning

distance. For example, in Figure 1, when the knowledge is far away from the target

domain, e.g., the top red curve, the range of 𝜆 within which the curve falls below the

MSE of single-domain learning, 𝑀𝑆𝐸(�̌�𝐾), is very small. This small range of 𝜆 may be

easily missed in a practical grid search, thus resulting in a transfer learning approach that

has worse performance than single-domain learning.

2.4 Joint Estimation of Hyper-parameters and Parameters

𝚽 is a hyper-parameter that encodes the correlation structure of the regression

coefficients. For a specific domain, prior knowledge usually exists to specify 𝚽. This will

be illustrated in Chapter 3. 𝛀 is another hyper-parameter that encodes the prior

knowledge about the correlation structure between domains, which is difficult to specify

precisely. Therefore, we propose an algorithm in this section to estimate both hyper-

parameter 𝛀 and parameter 𝐖 together. This will change (2.4) to (2.14):

Case III:

(�̂�III, �̂�III) = argmin
W,Ω

{∑ ‖𝐲k − 𝐗k𝐰k‖2
2K

k=1 + λ1‖𝐖‖1 + λ2(Qlog|𝛀| + tr(𝚽
−𝟏𝐖𝛀−𝟏𝐖𝐓))} . (2.14)

 (2.14) is the same as (2.4) except for treating 𝛀 as unknown.

Next, we will discuss an algorithm for solving (2.14). (2.14) is not a convex

optimization with respect to all unknown parameters. However, given 𝛀, it becomes a

convex optimization with respect to 𝐖, which can be solved efficiently. Furthermore,

given 𝐖, the optimization problem with respect to Ω can be solved analytically, i.e.,

 �̂� =
𝐖𝐓𝚽−𝟏𝐖

Q
. (2.15)

18

Therefore, we propose an iterative algorithm that alternates between two sub-

optimizations: solving 𝐖 with 𝛀 fixed at their estimates in the previous iteration, and

solving 𝛀 with 𝐖 fixed at its estimate just obtained. Because each sub-optimization

decreases the objective function, this iterative algorithm is guaranteed to converge to a

local optimal solution. Note that joint estimation of parameters and hyper-parameters has

also been adopted by other researchers (Idier 2013; Zhang and Yeung 2010).

A similar case to Case II (2.11) takes the form of (2.16):

Case IV:

(�̂�𝐾
IV, 𝜍�̂�

IV, �̂�𝐾
IV) =

argmin 𝐰𝐾,𝜍𝐾,𝛡𝐾 {

‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 +

𝜆2 (𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾) +

1

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝚽−1(𝐰𝐾 − 𝛍𝐾))

} . (2.16)

(2.16) can be solved by an iterative algorithm that alternates between solving 𝐰𝐾 with 𝜍𝐾

and 𝛡𝐾 fixed – a convex optimization, and solving 𝜍𝐾 and 𝛡𝐾 with 𝐰𝐾fixed analytically

using (2.17):

 �̂�𝐾 = �̃�
𝑇𝚽−1𝐰𝐾 𝑄⁄ , 𝜍�̂� = 𝐰𝐾

𝑇𝚽−1𝐰𝐾 𝑄⁄ . (2.17)

The derivation for (2.17) is in Appendix 2.V.

Finally in Section 2.3, we present the algorithms for solving the proposed transfer

learning formulations in Case III and Case IV in Figures 2 and 3, respectively. Note that

the algorithms also work for classification problems which replace the square-error loss

in Case III and Case IV, ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2 , with a logistic loss,

∑ 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝 (−𝑦𝑖𝐾𝐱𝑖𝐾𝐰𝐾))
𝑛𝐾
𝑖=1 . Because this loss function is also convex with respect

to 𝐰𝐾, the convex optimization solver in step 2.2 of Figures 2 and 3 naturally applies.

Step 2.1 does not involve the loss function so it needs no change.

19

Figure 2. An algorithm for solving the transfer learning formulation in Case III

Figure 3. An algorithm for solving the transfer learning formulation in Case IV

2.5 Prediction

Given a new observation in the target domain, 𝐱𝐾
∗ , we can predict its response

variable by �̂�𝐾
∗ = 𝐱𝐾

∗𝑇�̂�𝐾 . �̂�𝐾 can be the �̂�𝐾
III in Case III or the �̂�𝐾

IV in Case IV, obtained

from training data. Because the proposed transfer learning method only produces a point

estimator for 𝐰𝐾 , statistical inference on 𝐰𝐾 and the prediction has to be performed

using resampling approaches such as bootstrap. This is a similar situation to lasso, for

Input: data of the source domains and target domain, {𝐲𝑘, 𝐗𝑘}𝑘=1
𝐾 ; regularization

parameters, 𝜆1 and 𝜆2.

Step 1: Obtain the covariance matrix 𝚽 of predictor coefficients.

Step 2: Alternate between 2.1 and 2.2 till convergence. Initialize 𝐖 by fitting a

lasso to each domain separately.

2.1: Solve 𝛀 by (2.15).

2.2: Solve 𝐖 in (2.14) using a convex optimization solver like the

accelerated gradient method (Liu, Ji, and Ye 2009).

Output: models of the source domains and target domain, �̂�III; relationship

between the target domain and the source domains, �̂�III

Input: knowledge about source domains 1,… , 𝐾 − 1, �̃�∗; data for a target

domain 𝐾, 𝐗𝐾 and 𝐲𝐾; regularization parameters, 𝜆1 and 𝜆2.

Step 1: Obtain the predictor covariance matrix 𝚽 of predictor coefficients.

Step 2: Alternate between 2.1 and 2.2 till convergence. Initialize 𝐰𝐾 by fitting a

lasso to data 𝐗𝐾 and 𝐲𝐾.

2.1: Solve 𝜍𝐾 and 𝛡𝐾 by (2.17).

 2.2: Let 𝛍𝐾 = �̃�∗�̃�−1𝛡𝐾 and solve 𝐰𝐾 in (2.16) by a convex

optimization solver like the accelerated gradient method (Liu, Ji, and Ye

2009).

Output: model of the target domain, �̂�𝐾
IV; covariances between the target domain

and the source domains, �̂�𝐾
IV

; variance of the target domain, �̂�
𝐾

IV
.

20

which bootstrap-based statistical inference on the model coefficients has been studied by

a number of papers (Knight and Fu 2000; Chatterjee and Lahiri 2010). Following the

similar idea, we propose a residual bootstrap procedure to compute the prediction

interval, which includes nine steps shown in Figure 4.

Figure 4. A residual bootstrap procedure to compute prediction interval

2.6 Simulation Study

A real-data application will be presented in the next chapter. In this section, we

aim to assess the proposed method in aspects that cannot be assessed using real data.

Prediction accuracy can be assessed using real data by cross validation. However,

because the ground truth is unknown in real data analysis, variable selection accuracy

cannot be assessed, including False Positive Rate (FPR) and False Negative Rate (FNR).

1) Under Case III or IV model, select λ̂1 and λ̂2 by cross-validation. Estimate ŵK

from training data under λ̂1 and λ̂2.

2) Compute the residual for each of the n training data points, i.e., rK,i = yK,i −

xK,i
T ŵK , i = 1,… , n

3) Center the residuals, i.e., eK,i = rK,i − r̅K, where r̅K =
1

n
∑ rK,i
n
i=1 . Pool the

centered residuals together as {eK,1, … , eK,n}.

4) Draw a sample of size n from {eK,1, … , eK,n} with replacement, i.e.,

{ẽK,1, … , ẽK,n}. Calculate the bootstrapped version of the response variable in

the training data as ỹK,i = xK,i
T ŵK + ẽK,i, i = 1,… , n.

5) Using the bootstrap dataset {(ỹK,i, xK,i
T): i = 1,… , n} and the λ̂1 and λ̂2 in 1),

estimate the bootstrap version of wK using Case III or IV model, w̃K .

6) Use the bootstrap estimator to predict the new observation, i.e., ŷ̃K
∗ = xK

∗Tw̃K .

7) Draw a single sample from {eK,1, … , eK,n}, ẽK, and let ỹK
∗ = xK

∗TŵK + ẽK.

8) Compute the bootstrap prediction error as ŷ̃K
∗ − ỹK

∗ .

9) Repeat 4)-8) B times and obtain the empirical distribution of the bootstrap

prediction error, G. Let G−1 (1 −
α

2
) and G−1 (

α

2
) be the (1 −

α

2
) × 100% and

α

2
× 100% percentiles for G, respectively. Then, the bootstrap prediction

interval is [xK
∗TŵK − G

−1 (1 −
α

2
) , xK

∗TŵK − G
−1 (

α

2
)].

21

Here, FPR is the proportion of truly zero regression coefficients that are misidentified to

be non-zero by the model. FNR is the proportion of truly non-zero regression coefficients

that are misidentified to be zero by the model. Therefore, the simulation studies in this

section focus on evaluating these error rates of the proposed method against competing

methods. In particular, we use Area Under the Curve (AUC), which is an integrated

measure for FPR and FNR. Another advantage of AUC is that it does not require a

selection of the regularization parameters, but reflects the overall performance of the

model over all possible values of the regularization parameters. The theoretically best

AUC is one; the larger the AUC for a model, the better the performance.

In this section, we compare the proposed method in Case III with 𝚽 = 𝐈 with

single domain learning. Note that although we only present the results for Case III due to

space limit, similar results have been obtained for Case IV.

Consider three domains and the model, Yk = ∑ wqkXqk
Q
q=1 + εk , k = 1,2,3. In

each domain, there are 50 predictors, i.e., Q = 50. Domains 1 and 2 are highly correlated

with each other but little correlated with domain 3. To achieve this, we set the

coefficients of the first five predictors in domains 1 and 2 to be non-zero, i.e., wqk ≠

0, q = 1,… ,5; k = 1,2. To make the two domains non-identical, we randomly select one

different predictor from X6 to X50 in each domain to have a non-zero coefficient. For

domain 3, we set the coefficients wq3 ≠ 0, q = 5,… ,10. Therefore, in each domain, there

are six predictors with non-zero coefficients and all 44 others with zero coefficients. The

value of each non-zero coefficient is randomly generated from a normal distribution

N(5,1). After generating the coefficients, we check the correlation between the three

domains using their respective coefficients. The correlations are 0.81 between domains 1

22

and 2, and 0.05(0.06) between domain 1(2) and 3, which are good to serve our purpose.

Next, we generate samples for the 50 predictors from a multivariate normal distribution

with zero mean and covariance matrix Σij = 0.5
|i−j|, i, j = 1,… ,50. To focus on small-

sample-size scenarios, 50 samples of the predictors are generated for each domain. The

response variable of each sample is generated by the model Yk = ∑ wqkXqk
Q
q=1 + εk ,

where εk is generated from N(0,15).

The proposed method of transfer learning is compared with single-domain

learning, i.e., a lasso model applied to each domain separately, on the simulation dataset.

The process is repeated for 50 times; the average and standard derivation of the 50 AUCs

for each method are reported in Table 1. It can be seen that transfer learning has a better

average AUC performance than single-domain learning. It is also more stable by having a

smaller standard deviation. Furthermore, having a little-correlated domain, i.e., domain 3,

does not hurt the performance of transfer learning in domains 1 and 2. This is because the

proposed transfer learning method can estimate the correlation structure of the domains

from data, and therefor can adaptively decide how much information to transfer from one

domain to another.

Table 1. AUC performances of transfer learning and single-domain learning

Domain 1 Domain 2 Domain 3

Proposed transfer

Learning

Average 0.943447 0.955568 0.949735

Standard deviation 0.042415 0.037728 0.041266

Single-domain

learning

Average 0.871061 0.868485 0.889432

Standard deviation 0.099003 0.101911 0.084644

23

Chapter 3: Application of Spatial Transfer Learning in Predictive Modeling of

Degenerate Biological Systems

3.1 Introduction

We apply the proposed method in Chapter 2 to an application on predictive

modeling of degenerate biological systems. Degeneracy exists in many biological

systems and processes, and is referred to as the phenomenon that structurally different

elements perform the same/similar function or yield the same/similar output. Degeneracy

contributes to the heterogeneity, complexity, and robustness of biological systems.

Specifically, we propose to use a graph to represent the qualitative knowledge about

degeneracy with uncertainty, and set the corresponding hyper-parameter to be the

Laplacian matrix of the graph. We theoretically prove that this has an effect of pushing

the coefficients of degenerate elements to be similar, thus nicely reflecting the nature of

degenerate elements that they perform the similar function. Then, we apply the proposed

method integrating degeneracy and transfer learning to a real-world application of using

TF binding sites to predict gene expression across multiple cell lines. The proposed

method shows better prediction accuracy compared with competing methods. The

biological findings revealed by the proposed model are also consistent with the literature.

3.2 Need of Transfer Learning in Modeling Biological Systems

An essential problem in biological system informatics is to build a predictive

model with high-dimensional predictors. This can be a challenging problem for a target

domain in which the data is scarce due to resource limitation or timing of the modeling.

Often times, there may be some source domains related to but not exactly the same as the

target domain, in which abundant knowledge have existed. This makes transfer learning

highly desirable. Next, we give three examples:

24

(i) Modeling the predictive relationship between transcription factors (TFs) and

gene expression is of persistent interest in system biology. TFs are proteins that bind to

the upstream region of a gene and regulate the expression level of the gene. Knowledge

of TFs-expression relationship may have existed for a number of known cell lines. To

model a new cell line, it is advantageous to adopt transfer learning to make good use of

the existing knowledge of the known cell lines, because the experimental data for the new

cell line may be limited.

(ii) In cancer genomics, a prominent interest is to use gene expression to predict

disease prognosis. Knowledge may have existed for several known subtypes of a cancer.

When a new subtype is discovered, the patient number is usually limited. Transfer

learning can help establish a model for the new subtype timely and reliably by

transferring knowledge of the known subtypes to the modeling of the new subtype.

(iii) Biomedical imaging, such as Positron Emission Tomography (PET) and

Magnetic Resonance Imaging (MRI), has been used to predict cognitive performance. In

longitudinal studies, a particular interest is to follow along a cohort of patients with a

brain disease such as the Alzheimer’s disease to identify the imaging-cognition

associations at different stages of the disease advancement. Patient drop-off is common,

leaving less data for use in modeling later stages of the disease. Transfer learning can

play an important role here by integrating the limited data with knowledge from the

earlier stages.

3.3 Degenerate Biological Systems

This chapter focuses on transfer learning in degenerate biological systems.

Degeneracy is a well-known characteristic of biological systems. In the seminal paper by

25

Edelman and Gally (2001), degeneracy was referred to as the phenomenon that

structurally different elements perform the same/similar function or yield the

same/similar output. The paper also provided ample evidence to show that degeneracy

exists in many biological systems and processes. Degeneracy contributes to the

heterogeneity, complexity, and robustness of biological systems.

A closely related concept to degeneracy is redundancy, which may be more

familiar to the engineering society. Degeneracy is different from redundancy in three

major aspects:

(a) Degeneracy is a characteristic for structurally different elements, whereas

redundancy is one for structurally identical elements. In fact, although prevalent in

engineering systems, true redundancy hardly exists in biological systems due to the rare

presence of identical elements.

(b) Degenerate elements work in a stochastic fashion, whereas redundant

elements work according to deterministic design logic, e.g., A will work if B fails.

(c) Degenerate elements deliver the same/similar function under some condition.

When the condition changes, these degenerate elements may deliver different functions.

This property leads to strong selection under environmental changes. In essence,

degeneracy is a prerequisite for natural selection and evolution. Redundancy, on the other

hand, does not have such a strong tie to environment.

Degeneracy exists all the three example presented earlier. In (i), due to the

difficulty of measuring TFs directly and precisely, the association between TFs and gene

expression is usually studied by modeling the association between TF binding sites and

gene expression. The binding site of a TF is a short DNA sequence where the TF binds. It

26

is known that the same TF can have alternative binding sites (F. Li and Zhang 2010), and

as a result, these alternative binding sites should have the similar association with gene

expression. The alternative binding sites of the same TF are degenerate elements. In (ii),

genes in the same pathway may be degenerate elements in the sense that different genes

in the pathway may have similar association with disease prognosis. This explains the

growing interest in cancer genomics that aims at identifying how gene pathway as a

whole affects prognosis rather than the effect of individual genes (Vogelstein and Kinzler

2004). In (iii), brain regions that are strongly connected in a brain connectivity network

may be degenerate elements because their functions may have similar association with

cognition (Huang et al. 2012).

Although degeneracy has been extensively discussed in the biological literature,

its implication to statistical modeling has not been rigorously defined. Consider a

biological system with Q elements, X1, … , XQ, jointly performing a function or yielding

an output Y. For example, X1, … , XQ may be Q potential binding sites of some TFs of

interest which bind to the upstream region of a gene to regulate the gene’s expression. Y

is expression level of the gene. In the context of a predictive model, X1, … , XQ are

predictors and Y is the response variable. If a subset {X(1), … , X(q)} ⊂ {X1, … , XQ}

consists of degenerate elements, e.g., they are potential binding sites of a TF, then

according to the definition of degeneracy, {X(1), … , X(q)} should satisfy two conditions:

(1) they are structurally different; (2) they perform the similar function, which means that

their respective coefficients, {w(1), … ,w(q)}, that link them to Y should satisfy ‖w(i) −

w(j)‖ < ϵ , ∀i, j ∈ {1, … , q}, i ≠ j . ‖∙‖ is an appropriate norm and ϵ is a biologically

27

defined threshold. A degenerate system may contain more than one subset of degenerate

elements such as the subsets corresponding to different TFs. The challenge in modeling a

degenerate system is how to build the biological knowledge about the degeneracy into

statistical modeling, especially considering that the knowledge is often qualitative and

with uncertainty.

3.4 Modeling of Degeneracy

Recall that the proposed transfer learning method in Chapter 2 includes a hyper-

parameter, 𝚽, that encodes the prior knowledge about the correlation structure of the

regression coefficients. This is indeed the prior knowledge about degeneracy. In real-

world applications, it is common that some qualitative knowledge about the degeneracy

exists, which can be represented by a graph 𝐺 = {𝐗, 𝐄}. The nodes in the graph are

elements of the system, i.e., predictors 𝐗 in the predictive model. 𝐄 = {𝑋𝑖 ~𝑋𝑗} is a set of

edges. 𝑎𝑖𝑗 is the edge weight. No edge between two nodes implies that the nodes are not

degenerate elements to each other. If there is an edge between two nodes, the edge weight

reflects the level of certainty that the nodes are degenerate elements. Next, we will

discuss how to construct such a graph for the three examples presented previously:

In (i), nodes/predictors are potential TF binding sites. A potential binding site is a

short DNA sequence in the upstream promoter region of a gene, e.g., ACGCGT,

ATGCGC. The letters in each word (i.e., each binding site) can only be from the DNA

alphabet {𝐴, 𝐶, 𝐺, 𝑇}. If focusing on all 𝜅-letter-long words, called 𝜅-mers, there will be

4𝜅 nodes in the graph. It is known that the binding sites with similar word composition

are more likely to be alternative binding sites of the same TF (X. Li et al. 2010). The

similarity between two binding sites can be measured by the number of letters they have

28

in common in their respective words. For example, the similarity between ACGCGT and

ATGCGC is 4, because they share four letters in the same position. A formal definition

of this similarity between two binding sites 𝑋𝑖 and 𝑋𝑗 is 𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗}. 𝐻{𝑋𝑖, 𝑋𝑗} is the

so-called Hemming distance defined as 𝐻{𝑋𝑖, 𝑋𝑗} = ∑ 𝐼(𝑐𝑖𝑙 ≠ 𝑐𝑗𝑙)
𝐿
𝑙=1 (Li and Zhang

2010). 𝐼(∙) is an indicator function. 𝑐𝑖𝑙 is the 𝑙-th letter in the word of binding site 𝑋𝑖 .

Using this similarity measure, two nodes 𝑋𝑖 and 𝑋𝑗 do not have an edge if they do not

have any common letter in the same position; they have an edge otherwise and the edge

weight is their similarity. Likewise, in example (ii), nodes of the graph are genes and

edges can be put between genes according to known pathway databases such as KEGG

(http://www.genome.jp/kegg/) and BioCarta (http://www.biocarta.com/). In example (iii),

nodes of the graph are brain regions and edges can be put between brain regions with

known functional or anatomical connectivity (Huang et al. 2010).To incorporate the

graph into our model, the graph is first converted to a Laplacian matrix, 𝐋, i.e.,

 𝐋𝑖𝑗 = {
𝑑𝑖 𝑖𝑓 𝑖 = 𝑗
−𝑎𝑖𝑗 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑋𝑖 ~𝑋𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.1)

where 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
 is called the degree of node 𝑋𝑖. It is known that 𝐋 is always non-

negative definite and it encodes many properties of the graph (Chung 1999). If the graph

encodes the degeneracy of the system, 𝐋 can be reasonably used to replace the 𝚽−1 in the

optimization problems in Case III and Case IV of chapter 2. Then, we obtain the

following optimization problems for Case V and Case VI, respectively.

Case V:

�̂�V = argmin
𝐖

{∑ ‖𝐲𝑘 − 𝐗𝑘𝐰𝑘‖2
2𝐾

𝑘=1 + 𝜆1‖𝐖‖1 + 𝜆2(𝑄𝑙𝑜𝑔|𝛀| + 𝑡𝑟(𝐋𝐖𝛀
−1𝐖𝑇))},

http://www.genome.jp/kegg/
http://www.biocarta.com/

29

(3.2)

Case VI:

�̂�𝐾
VI = argmin 𝐰𝐾

{

 ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 +

𝜆2 (𝑄𝑙𝑜𝑔 (𝜍𝐾 −𝛡𝐾
𝑇�̃�

−1
𝛡𝐾) +

1

𝜍𝐾−𝛡𝐾
𝑇 �̃�

−1
𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾))

}

.(3.3)

Case V and Case VI can be solved by the algorithm in Figures 2 and 3.

Next, we would like to provide some theoretical analysis to reveal the role of the

graph in the optimizations/estimations. We will focus on Case VI; a similar result can be

obtained for Case V. For notation simplicity, we further simply (3.3) into:

�̂�𝐾
VI = argmin 𝐰𝐾 {‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)}. (3.4)

by dropping the constant 𝑄𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾) and re-using 𝜆2 to represent

𝜆2

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

 in (3.3).

Lemma 3.1: The optimization in (3.4) is equivalent to:

�̂�𝐾
VI = argmin 𝐰𝐾 {‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2

2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 − 𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))
2

𝑋𝑖 ~𝑋𝑗
} . (3.5)

(3.5) enables a clear interpretation for the role of the graph. That is, the edge

weight between two nodes/predictors, 𝑎𝑖𝑗 , plays an role of regulating the closeness

between the estimated coefficients of the two predictors, 𝑤𝑖𝐾 and 𝑤𝑗𝐾, after adjusting for

the knowledge transferred from source domains that is embraced in 𝜇𝑖𝐾 and 𝜇𝑗𝐾 .

Consider a special case of no transfer learning, i.e., 𝜇𝑖𝐾 = 0 and 𝜇𝑗𝐾 = 0 . Then, the

larger the edge weight 𝑎𝑖𝑗, the closer the estimated 𝑤𝑖𝐾 and 𝑤𝑗𝐾 should be in order to

achieve the minimization in (3.5). Theorem 3.1 below shows the existence of an upper

30

bound for the difference between the estimated 𝑤𝑖𝐾 and 𝑤𝑗𝐾 , and this upper bound is

inversely related to the edge weight 𝑎𝑖𝑗.

Theorem 3.1: Let �̂�𝑖𝑘
𝑉𝐼 , �̂�𝑗𝑘

𝑉𝐼 ∈ �̂�𝐾
VI

 be the estimated coefficients for predictors 𝑋𝑖 and 𝑋𝑗.

Let 𝐱𝑖𝐾 and 𝐱𝑗𝐾 be the data vectors for 𝑋𝑖 and 𝑋𝑗, respectively. Suppose that �̂�𝑖𝑘
𝑉𝐼�̂�𝑗𝑘

𝑉𝐼 > 0

and 𝑎𝑖𝑗 ≫ 𝑎𝑢𝑣. 𝑎𝑢𝑣 is the weight of any edge other than 𝑋𝑖 ~𝑋𝑗. Then, for fixed 𝜆1 and 𝜆2

and a square-error loss,

 |(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝐱𝑖𝐾−𝐱𝑗𝐾‖2

2𝜆2
× √

‖𝐲𝐾‖2
2

𝑎𝑖𝑗
2 +

2𝜆2(𝜇𝑖𝐾−𝜇𝑗𝐾)
2

𝑎𝑖𝑗
. (3.6)

The proof for Lemma 3.1 and Theorem 3.1 can be found in Appendix 3.I. In the

upper bound in (3.6), the data for the target domain, 𝐱𝑖𝐾 , 𝐱𝑗𝐾 , and 𝐲𝐾 , knowledge

transferred from the source domains, 𝜇𝑖𝐾 and 𝜇𝑗𝐾 , and 𝜆2 can be considered as given.

Then, the upper bound is inversely related to the edge weight 𝑎𝑖𝑗.

3.5 Simulation Study

In this section, we use AUC previously mentioned in chapter 2 to compare models

with degeneracy modeling (the proposed method) and without degeneracy modeling

(lasso).

Consider a single domain and the model Y = ∑ wqXq
Q
q=1 + ε with 50 predictors,

i.e., Q = 50. Suppose that the 50 predictors fall into 10 non-overlapping subsets; each

subset consists of five predictors as its degenerate elements. Coefficients of the first two

subsets, {w1, w2, w3, w4, w5} and {w6, w7, w8, w9, w10} are non-zero and generated

from N(5,1) and N(1,1), respectively. Coefficients of the rest three subsets are zero. This

is to reflect the reality that some degenerate elements of the system may not relate to the

31

particular response of interest. Next, we want to generate samples for the 50 predictors.

The way these samples are generated must follow the biology of how the degenerate

elements are formed, so it is different from chapter 2. Specifically, assuming that the 10

subsets correspond to 10 TFs, we first generate 10 TFs, TF1, … , TF10 , from N(0,1).

Next, to reflect the stochastic nature of the degenerate elements corresponding to each

TFi , we generate TFi’s corresponding five predictors/degenerate elements from N(ρ ×

TFi, 1 − ρ
2) . ρ corresponds to the correlation between TFi and its corresponding

degenerate elements. We try different correlation levels for generality. 50 samples are

generated for each correlation level.

Table 2. Best AUC performances of proposed model considering degeneracy and lasso

ρ

Proposed model

considering degeneracy

Lasso (no

consideration of degeneracy)

0.6 0.8138 0.6963

0.7 0.8475 0.6875

0.8 0.8388 0.6888

To apply the proposed method, we first build a graph that puts an edge between

each pair of predictors in each of the five subsets (no edge between the subsets) to

represent the qualitative prior knowledge about the degeneracy. The edge weight is set to

be one. The graph is then converted to a Laplacian matrix L and used in the proposed

method. A lasso model is also applied to the simulation datasets as a model not taking the

degeneracy into account. The process is repeated for 50 times. The average AUC

performances of the two methods are comparable. However, when the best AUC

32

performances of the two methods are compared, the proposed method is significantly

better, as can be seen in Table 2.

3.6 Application of Gene Expression Prediction by Transcription Factors

We present an application of modeling the predictive relationship between TFs

and gene expression. Potential TF binding sites are predictors and gene expression is the

response. Eight human cell lines (H1, K562, GM12878, HUVEC, HSMM, NHLF,

NHEF, and HMEC) are considered as eight domains. Since the simulation studies

presented the results for Case V, here we present the results for Case VI. To apply the

model in Case VI, one cell line is treated as the target domain and all the others are

treated as the source domains. The data for the predictors are obtained as follows: We

download the RefSeq Gene annotation track for human genome sequence (hg19) from the

University of California Santa Cruz Genome Browser (USCS, http://genome.ucsc.edu).

Then, we scan the promoter region of each gene (i.e., 1000bp upstream of the

transcription state site) and count the occurrence of each 𝜅-mer. Recall that a 𝜅-mer is a

𝜅-letter-long word describing a potential binding site. We do this for 𝜅 = 6 and obtain

data for 46 predictors, and for 𝜅 = 7 and obtain data for 47 predictors. 𝜅 = 6,7 are

common choices for binding site studies (X. Li et al. 2010). A minor technical detail is

that in human cell lines, a word and its reverse complement should be considered the

same predictor. This reduces the 6-mer predictors to 2080 and 7-mer predictors to 8192.

Furthermore, we obtain data for the response variable, i.e., gene expression, for the eight

cell lines from the Gene Expression Omnibus (GEO) database under the accession

number GSE26386 (Ernst et al. 2011). A total of 16324 genes on all chromosomes are

included. This is the sample size.

http://genome.ucsc.edu/

33

Recall in Section 3.4, we mentioned that a graph can be constructed to represent

the prior knowledge about the degeneracy. Nodes are predictors, i.e., 𝜅 -mers. The

similarity between two 𝜅-mers is 𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗}. 𝐻{𝑋𝑖, 𝑋𝑗} is the Hamming distance. We

consider an unweighted graph here. Specifically, there is an edge between 𝑋𝑖 and 𝑋𝑗, if

𝜅 − 𝐻{𝑋𝑖, 𝑋𝑗} ≥ 𝑠 , i.e., 𝑋𝑖 and 𝑋𝑗 share at least 𝑠 letters in the same position of their

respective words. There is no edge between 𝑋𝑖 and 𝑋𝑗 otherwise. 𝑠 is a tuning parameter

in our method.

3.6.1 Comparison to Methods without Transfer Learning or without Degeneracy

Modeling

The method without degeneracy modeling is the model in Case VI but with 𝐋 = 𝐈.

The method without transfer learning is a lasso model applied to data of the target

domain alone. Each method has some tuning parameters to select. For example, the

tuning parameters for the proposed method include 𝜆1, 𝜆2, and 𝑠. We find that 𝑠 = 5 is a

consistently good choice across different choices for 𝜆1 and 𝜆2. 𝜆1 and 𝜆2 can be selected

based on model selection criteria such as BIC and AIC. However, each criterion has some

known weakness and there is no such a criterion that works universally well under all

situations. To avoid drawing biased conclusion, we do not stick to any single model

selection criterion. Instead, we run the model on a wide range of values for 𝜆1 and 𝜆2,

i.e., 𝜆1 , 𝜆2 ∈ [10
−5, 103] , and report the average performance. Similar strategies are

adopted for the two competing methods. This is indeed a common practice for

comparison of different methods each of which has parameters to be tuned (Wang et al.

2012).

34

All 2080 6 -mers are used as predictors. To compare the three methods in

challenging predictive problems, i.e., problems with small sample sizes, only the 1717

genes on chromosome 1 are included. Furthermore, one cell line is treated as the target

domain and all the other cell lines are treated as the source domains. The knowledge of

the source domains, i.e., �̃�∗, is obtained using the model in Case VI applied to the data

of the source domains. The data of the target domain is divided into 10 folds. Nine folds

of data are used, together with �̃�∗, to train a model, and the model is applied to the

remaining one fold to compute a performance metric such as the MSE. The average

MSE, MSE̅̅ ̅̅ ̅̅ , over the 10 folds is computed. This entire procedure is repeated for each of

the eight cell lines as the target domain and the eight MSE̅̅ ̅̅ ̅̅ 𝑠 are averaged to get MSE̿̿ ̿̿ ̿̿ .

This MSE̿̿ ̿̿ ̿̿ can be obtained for each pair of 𝜆1 and 𝜆2 in their range [10−5, 103] .

Averaging the MSE̿̿ ̿̿ ̿̿ 𝑠 over the range gives MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ . Table 3 shows the results of comparison.

It is clear that both transfer learning and degeneracy modeling in the proposed method

help prediction in the target domain. Transfer learning is crucially important, without

which the prediction is significantly impaired.

Table 3. Comparison of three methods by MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿

Proposed method vs.

transfer learning without

degeneracy

Proposed method

vs. lasso (no transfer

learning)

MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (competing) − MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (proposed)

MSE̅̅ ̅̅ ̅̅̿̿ ̿̿ ̿̿ (proposed)
× 100%

16.25% 920.44%

3.6.2 Robustness of the Proposed Method to Noisy Source Domains

One distinguished feature of the proposed method is the ability to learn the

relationship between each source domain and the target domain from data, and adaptively

35

decide how much knowledge to transfer from each source domain. To test this, we can

include some “noisy” source domains. If the proposed method has the ability it claims to

have, it should transfer little knowledge from the noisy domains and its performance

should not be affected much. Specifically, we create the noisy source domains by

destroying the correspondence between the response and predictors of each gene in these

domains. For example, if we want to create a noisy source domain out of a cell line, we

shuffle the gene expression data of that cell line. Next, we apply the proposed method to

the data of the target domain with transfer learning from the source domains (note that

some of the source domains have been shuffled to become noisy source domains). We

compare the estimated model coefficients of the target domain and those obtained by

keeping all the source domains as they are (i.e., no shuffling) by calculating their

correlation coefficient. Table 4 shows this correlation coefficient with four, five, and six

source domains shuffled. Cell line GM12878 is the target domain. When applying the

proposed method, 𝜆1 and 𝜆2 are selected by 10-fold cross validation. It can be seen that

the proposed method is almost not affected when less than five out of seven source

domains are noisy domains. Furthermore, we also compute the correlation between the

model coefficients of the target domain with and without transfer learning (no shuffling)

and this correlation is 0.793765, which is at the similar level to that when there are more

than five noisy domains. Finally, we would like to know if transfer learning can still

outperform single-domain learning (i.e., lasso for the target domain) even with

knowledge transferred from noisy domains. This result is summarized in Table 5, which

further demonstrates the robustness of the proposed method.

36

Table 4. Correlation between model coefficients of the target domain with and without

shuffled noisy source domains

Four out of seven

source domains are

shuffled

Five out of seven

source domains are

shuffled

Six out of seven

source domains are

shuffled

0.998065 0.816133 0.763273

Table 5. Comparison between transfer learning with shuffled noisy source domains and

single-domain learning

Four out of

seven source

domains are

shuffled

Five out of

seven source

domains are

shuffled

Six out of seven

source domains

are shuffled

MSE̿̿ ̿̿ ̿̿ (lasso) − MSE̿̿ ̿̿ ̿̿ (transfer learning)

MSE̿̿ ̿̿ ̿̿ (transfer learning)
× 100%

22.42% 20.26% 19.95%

3.6.3 Understanding the Degenerate System

The purpose of predictive modeling is not only to predict a response but also to

facilitate understanding of the problem domain. To achieve this, we apply the proposed

method to one cell line, GM12878, treating this cell line as the target domain and all

other cell lines as the source domains. Predictors are all 8192 7-mers. 7-mers contain

richer binding site information than 6-mers, but analysis of 7-mers has been limited

because of the dimension. Focusing on 7-mers can also test the capability of our method

in handling very large dimensional predictors. The response is a binary indicator variable

that indicates if a gene is expressed or unexpressed, so a logistic loss function is used in

our method. This has a purpose of testing the capability of our method in classification

problems. Also, it is more reasonable to assume that binding site counts like 7-mers can

explain a majority of the variability in expressed/unexpressed genes than the variability in

the numerical gene expression levels. The latter is more involved, as the expression level

37

is affected by a variety of other factors than binding site counts. 16324 genes on all

chromosomes are included in the analysis.

Unlike Section 3.6.1 in which comparison of prediction accuracy between

methods is the primary goal, here we want to obtain a model for the 7-mer-gene-

expression relationship, and based on the identified relationship, to understand the system

better. For this purpose, model selection is unavoidable. We use 10-fold cross validation

to choose the optimal 𝜆1 and 𝜆2, which are ones giving the smallest average classification

error over the 10 folds. Table 6 shows the classification performance of our method in

terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy. The

definition of TPR is: among all the genes classified as expressed, the proportion that is

truly expressed. TNR is: among all the genes classified as unexpressed, the proportion

that is truly unexpressed. Accuracy is the proportion of correctly classified genes. An

observation is that TPR is higher than TNR, which is expected, because classification of

unexpressed genes is supposed to be harder than expressed genes. The accuracy is 0.70,

which is satisfactory in this application, considering the complexity of the biological

system. Given satisfactory accuracy, we can now proceed and use the model for

knowledge discovery. To do this, we use all the data of GM12878 to fit a model under

the optimal 𝜆1 and 𝜆2, which is called “the model” in the subsequent discussion.

Table 6. Classification performance for GM12878 treated as the target domain

TPR TNR Accuracy

0.84 0.60 0.70

In knowledge discovery, our goal is to characterize the degeneracy of the target

domain, i.e., GM12878. Note that although we have used a graph to encode the

38

degeneracy, it is before seeing any data and is only qualitative. It can now be better

characterized by the model that incorporates both the graph and the data of the target

domain as well as knowledge transferred from the source domains. Specifically, the

following steps are performed:

First, we examine the estimated coefficients of the 7-mers and eliminate those 7-

mers with zero coefficients from the graph. These 7-mers are considered not significantly

affecting gene expression. Then, we rank the remaining 7-mers according to the

magnitudes of their coefficients and choose the top 50 7-mers for the subsequent analysis.

This helps us focus on identifying the degeneracy most relevant to gene expression.

Some of the 50 7-mers are connected in the graph and some are not; in fact, they fall into

different clusters. We define a cluster to be a group of 7-mers, each of which is connected

with at least one other 7-mer in the group. The clusters are shown in Table 7. Each cluster

is suspected to correspond to a TF and the 7-mers in the cluster are believed to be

alternative binding sites of the TF. To verify this, we compute a Position Specific Scoring

Matrix (PSSM) for each cluster. PSSM has been commonly used to characterize binding

site uncertainty (X. Li et al. 2010). A PSSM is a 𝜅 × 4 matrix. 𝜅 is the number of

positions in a 𝜅-mer. 𝜅 = 7 in our case. Each row of a PSSM is a probability distribution

over {𝐴, 𝐶, 𝐺, 𝑇}. Let 𝑝𝑖(𝑠) denote the probability of 𝑠, 𝑠 = {𝐴, 𝐶, 𝐺, 𝑇}, for row/position

𝑖, 𝑖 = 1, … , 𝜅. ∑ 𝑝𝑖(𝑠)𝑠={𝐴,𝐶,𝐺,𝑇} = 1. 𝑝𝑖(𝑠) can be calculated by 𝑝𝑖(𝑠) =
𝑛𝑖(𝑠)

𝐶
, where 𝐶 is

the cluster size and 𝑛𝑖(𝑠) is the number of occurrences of 𝑠 at position 𝑖 among all the 7-

mers in the cluster. Because our model outputs an estimated coefficient for each 7-mer,

we modify this conventional formula by 𝑝𝑖(𝑠) =
∑ �̂�𝑐 𝐼(𝐫𝑐𝑖=𝑠)
𝐶
𝑐=1

∑ �̂�𝑐
𝐶
𝑐=1

. �̂�𝑐 is the estimated

39

coefficient for the 𝑐-th 7-mer in the cluster. 𝐼(⋅) is an indicator function. 𝐫𝑐𝑖 is the letter at

the 𝑖 -th position of the 𝑐 -th 7-mer. This modified formula works better in our case

because it takes the response variable into consideration by incorporating the model

coefficients. Taking cluster 1 of GM12878 in Table 7 as an example, the PSSM is:

 A C G T

[

0.88
0.12
0
0
0
0
0

0.12
0.88
0
0
0.65
1
0

0
0
0.47
0
0.23
0
0.34

0
0
0.53
1
0.12
0
0.66]

A PSSM can be represented in a compact form by a motif logo, which stacks up the four

letters {𝐴, 𝐶, 𝐺, 𝑇} at each position 𝑖 and the letter height is proportional to its probability

𝑝𝑖(𝑠). Please see Table 7 for the PSSM motif logos for all the clusters.

Furthermore, the PSSM of each cluster can be compared with databases of known

TFs to see if there is a match. We used the Motif-based Sequence Analysis Tools

(http://meme.nbcr.net/meme) for the matching. Table 7 shows the top five matched TFs

for each cluster, according to the significance level of each match. If less than five

matched TFs are found, then all the matched TFs will be shown. If no match is found,

there is a “N/A”. Out of the eight clusters, six have at least one match with known TFs.

Clusters 1, 2, and 6 are enriched with SPI1, Ets, Elk, , FLI1, FEV, GABP, and EHF,

which are well-known TFs for important basic cell functions. Cluster 3 is enriched with

AP-1 and NF-E2, which are related to Golgi membrane and nucleus that are also basic

cell functions. Clusters 5 and 7 are enriched with Zfx and CNOT3. CNOT3 is a

Leukocyte Receptor Cluster Member 2 and Zfx is required for the renewal process in

http://meme.nbcr.net/meme/tomtom-intro.html

40

hematopoietic cells. As GM12878 is a lymphocyte cell, these blood transcription factors

are specific to this cell line. Clusters 4 and 5 do not match with any known TFs.

However, only 10-20% of total human TFs are known so far. The unmatched clusters

indeed present an interesting opportunity for identifying new TFs.

This entire analysis for GM12878 is also performed for other cell lines. For each

cell line, clusters of 7-mers exist and a large majority of the clusters can be matched to

known TFs. Also, some clusters are common across the cell lines. These are the clusters

whose matched TFs are related to basic cell functions. There are also some cell-line-

specific clusters such as clusters 5 and 7 for GM12878. As other examples, there is a

cluster enriched with CTF1 for HMEC. CTF1 is known to be in entracellar region. As

HMEC is an epithelial cell, CTF1 is specific to this cell line. In addition, there is a cluster

enriched with MyoD and another cluster enriched with MEF-2 for HSMM. MyoD is

related to muscle cell differentiation and MEF-2 is a myocyte enhancer factor, both being

specific to HSMM. The identified common and cell-line-specific cluster structures

verifies transfer learning’s ability of modeling related but not exactly the same domains.

41

Table 7. Clusters of 7-mers and matching with known TFs for GM12878

Clusters 7-mers Est.

coeff.

Motif logo Matched known TFs

1

AAGTGCT 0.005808

SPI1, Ets, Elk-1, FLI1,

FEV

ACGTGCT 0.005497

ACGTTCT 0.005367

ACGTCCT 0.005963

ACTTCCT 0.009086

ACTTCCG 0.010709

CCTTCCG 0.005685

2

GGCGGAA 0.007632

GABP, Elk-1,

Ehf_primary, Eip74EF,

ERF

GCCGGAA 0.006837

ACCGGAA 0.006497

CCCGGAA 0.006982

TCCGGAA 0.005488

3
ACTAAGT 0.005597

AP-1, NF-E2 ACTCAGT 0.005881

ACCCAGT 0.006013

4
ATGACAT -0.00594

N/A
ATCACAT -0.00588

5
CAGGCCG 0.006636

Zfx, CNOT3
AAGGCCG 0.00586

6
CCGGAAG 0.009778

ELK-1, GABPA,

Eip74EF, SAP-1a, EHF CCGGAGG 0.005296

7
AGGCCGC 0.005775

Zfx
AGGCCGG 0.005715

8
TAGACTA 0.006607

N/A

TAAACTA 0.006447

42

Chapter 4: Temporal Transfer Learning for Modelling and Change Detection of Dynamic

Networks by a Network State Space Model

4.1 Introduction

In many data-rich domains, the data exist in the form of a network that consists of

nodes and edges. Typical examples include social networks, gene networks, brain

networks, and supply networks. A network naturally evolves over time: people’s

interaction in a social network may become more and more often as they become more

acquainted with each other; functional connectivity of a human brain may become more

and more sparse with aging; a supply network may have seasonality. This results in a

time series of networks, also referred to as dynamic networks in this paper. Dynamic

Network Modeling (DNM) has been a popular research area in Computer Science (CS) in

recent years (McCallum, Corrada-Emmanuel, and Wang 2005). Most existing methods

extend previously developed models on cross-sectional or static network data (i.e., data in

the form of a network at a single time point or at an aggregate view) to temporal models.

DNM is typically used for community detection, prediction, characterization of temporal

trends, and visualization.

In addition to the variability of natural evolution, another type of variability in

dynamic network data is associated with assignable causes. The latter variability is what

we refer to as “changes” in this paper. Examples of assignable causes include preparation

for a terrorist attack that leads to changes in the social network of members in the terrorist

group, a brain disease that leads to changes in a person’s brain connectivity network, and

new government regulation that leads to changes in a supply network. Accurate and

timely change detection from dynamic network data is of critical importance in many

practical domains: it can generate alerts for a potential terrorist attack, preparing the

43

authorities and people to properly respond; it can detect the onset of a brain disease,

making treatment and disease management more effective. However, change detection

has been little addressed by the existing DNM research.

Change detection is a classic research area in Statistical Process Control (SPC).

Numerous approaches have been developed for change detection from univariate or

multivariate time series data (Alwan and Roberts 1988; Apley and Shi 1999; Berthouex,

Hunter, and Pallesen 1978; Dooley and Kapoor 1990; Dooley et al. 1986), but not from

time series of networks. Change detection from network data has been studied by a

number of researchers in recent years. Most of the research shares a similar logical

procedure that first extracts aggregated measures of network topology (e.g., density,

degree, clustering coefficient, and scan statistics) and then treats these measures as

univariate or multivariate data to which conventional SPC approaches become

immediately applicable (Marchette 2012; McCulloh and Carley 2011; Neil et al. 2013;

Park et al. 2013; Priebe et al. 2005). A different line of work monitors the formation

mechanism of network topology. For example, Azarnoush et al. (2015) proposed a

method that relates the edge probability to node attributes by a logistic regression and

formulates a likelihood ratio test to detect changes in the regression coefficients.

However, in all the aforementioned research, network data collected at different temporal

snapshots are not treated as time series but independent observations, i.e., the natural

evolution of the dynamic networks is not modeled in development of the change

detection methods.

In this paper, we study change detection from dynamic (i.e., time series) network

data. There are two essential steps in the methodological development: First, we need to

44

develop a model capable of characterizing the natural evolution of dynamic networks

with high accuracy. This would provide a proper baseline model against which changes

can be detected. Second, we need to develop a change detection method capable of

combining the baseline model with new data in a principled way to detect changes with

statistical rigor. Additionally, because the baseline model developed in the first step will

be used in the change detection in the second step, it is important that the baseline model

takes a form that not only ensures high accuracy in fitting the network data with natural

evolution but also facilitates detection of various changes in new data.

To serve the purpose of the first step, we propose a State Space Model (SSM),

called Network SSM (NSSM), to characterize the natural evolution of dynamic networks

by attributing the observed network evolution to the evolution of latent state vectors that

represent the “social propensities” of nodes. SSM is a classic modelling approach for

multivariate time series data when the data are noisy and there is difficulty for directly

characterizing the evolution of the observed data (Shi 2006). These conditions are clearly

true for network data. In addition, defining the latent state vectors to be social

propensities of nodes in the NSSM shares a similar idea to (Azarnoush et al. 2015) that

elucidates the formation of edges in the networks, i.e., two nodes with more similar social

propensities should be more likely to have an edge. The difference is that the method in

Azarnoush et al. (2015) requires the social propensities to be observed node attributes,

whereas the NSSM assumes them to be latent state vectors. Because the state vectors are

not observed, we have the flexibility of assuming their probability distribution to make

the subsequent modeling more convenient. Specifically, we assume that the state vectors

are multivariate Gaussian and their temporal evolution is characterized by a linear

45

Markovian state equation. Also, we propose a novel observation equation of the NSSM to

link the state vectors of nodes to the observed edges in the network at each time point.

The form of the observation equation allows us to further develop an Expectation

Propagation (EP) algorithm to adequately approximate it by a multivariate Gaussian

distribution of the state vectors. Utilizing the Gaussian approximation, parameter

estimation for the NSSM becomes tractable. For parameter estimation, we adopt the

Expectation-Maximization (EM) framework but develop a Bayesian optimal smoothing

(BOS) algorithm to compute the expectation in the E-step that suits the NSSM. We call

this integrated algorithm an EM-BOS algorithm in this paper.

Furthermore, after an NSSM is estimated from dynamic network data with natural

evolution, we propose to integrate the NSSM into the logical procedure of SPC to detect

changes in new networks. Specifically, we propose to compare a predicted covariance

matrix of the state vector at a future time 𝑡∗ using the NSSM with an estimated

covariance matrix using the network data at 𝑡∗ alone. Covariance monitoring is a well-

established research area in SPC. Many approaches have been developed to detect

various changes in a covariance matrix of multivariate data with statistical rigor. The

state space formulation of the NNSM allows these approaches to be adopted to detect

various changes in network data.

Finally, we would like to stress that the NSSM is flexible in the sense that it can

be easily extended to model a broad spectrum of network data and to integrate network

and non-network data, such as networks with hyper-edges, multi-dimensional networks,

and integration of node attributes and external/environmental factors with network data.

46

This would allow for monitoring and change detection in a variety of application

domains.

4.2 Related Work in Network Modeling and SPC

Network modeling: This is a popular research area in CS with most motivation

examples and applications in social networks. Earlier research focused on static

networks. Because of the static nature, the research typically modelled the network at a

single time point or at an aggregate view. Classic approaches include the Exponential

Random Graph Model (ERGM) and extensions (Hanneke, Fu, and Xing 2010) which are

descriptive in nature, and the Stochastic Block Model (SBM) and extensions (Airoldi et

al. 2009; Nowicki and Snijders 2001) that aim for community detection. Another popular

approach is the Latent Space Model (LSM) (Handcock, Raftery, and Tantrum 2007;

Hoff, Raftery, and Handcock 2002; Globerson et al. 2007; Miller, Griffiths, and Jordan

2009). LSM works by embedding nodes of the network into a low-dimensional latent

space in which the relative positions of the nodes reflect their relationship in the observed

network. LSM is flexible in the sense that once the latent positions of the nodes are

estimated, they can be used to achieve various goals such as visualization, community

detection, and link prediction.

DNM has attracted much attention in recent years. Research has been done to

extend the models previously developed for static networks to modelling of time series

data in the form of networks. For example, a temporal ERGM (TERGM) (Hanneke, Fu,

and Xing 2010) was developed as an extension to the original static ERGM. The static

ERGM considers the probability distribution of the network to follow that from an

exponential family, in which the sufficient statistics are pre-defined graph statistics such

47

as the number of edges, number of k-stars, and number of triangles. In the TERGM, the

sufficient statistics are defined on two successive networks to characterize their temporal

evolution, such as the stability, reciprocity, and transitivity statistics. Also, several

methods have been developed to extend the static SBM to temporal models. Xing, Fu,

and Song (2010) and Ho, Song, and Xing (2011) proposed temporal extensions of a

mixed-membership version of the static SBM using linear state space models for the real-

valued class memberships. In (Yang et al. 2011), Yang et al. proposed a temporal

extension of the static SBM that explicitly models nodes changing between classes over

time by using a transition matrix that specifies the probability that a node in class 𝑖 at

time 𝑡 switches to class 𝑗 at time 𝑡 + 1 (Xu and Hero 2014). In addition, temporal LSMs

for dynamic networks have also been developed. Hoff (2011) proposed a dynamic latent

factor model analogous to an eigenvalue decomposition with time-invariant eigenvectors

and time-varying eigenvalues. The model is applicable to many types of data in the form

of multi-way arrays, including dynamic networks. Lee and Priebe (2011) proposed a

latent process model for multi-relational dynamic networks using random dot product

spaces. Sarkar and Moore (2005) proposed to embed nodes of the dynamic networks into

a 𝑝-dimensional Euclidian latent space and use a temporal transition model to prohibit

large movement of each node along successive time points. Goals of the aforementioned

dynamic network models include characterization of the temporal trend, prediction, and

visualization, but not change detection.

Monitoring and change detection in statistical process control (SPC): Two related

research areas to this paper are SPC for time series data and SPC for network data.

Numerous SPC control charts have been developed for univariate and multivariate time

48

series data (Alwan and Roberts 1988; Apley and Shi 1999; Berthouex, Hunter, and

Pallesen 1978; Dooley and Kapoor 1990; Dooley et al. 1986). These methods are not

applicable to time series in the form of networks. On the other hand, SPC methods for

network data have been developed by a number of researchers in recent years. Most

existing research applies SPC to aggregated measures of network topology, such as

density, number of triangles, global clustering coefficient, and scan statistics (Marchette

2012; McCulloh and Carley 2011; Neil et al. 2013; Park et al. 2013; Priebe et al. 2005).

Azarnoush et al. (2015) recently developed a method with a different perspective, which

monitors the formation mechanism of network topology. By attributing the formation of

network topology to node attributes, the method adopts a logistic regression to link edge

probability with node attributes and uses a likelihood ratio test to detect changes.

However, all the aforementioned SPC methods for network data do not consider the

networks to be time series, but independent observations.

4.3 Overview of the Proposed Methodology

Figure 5 shows the proposed methodological framework. Two key components of

the methodology include development of the NSSM, which is presented in Section 4.4,

and development of the change detection method by integrating the NSSM and SPC,

which is presented in Section 4.5. Furthermore, Section 4.6 presents simulation

experiments and a real-data application. Section 7 is the conclusion.

49

Figure 5. Proposed methodological framework

4.4 NSSM for Characterizing Natural Evolution of Dynamic Networks

In this section, we first present the mathematical formulation of the NSSM

(Section 4.4.1). Then, we present the development of an EP algorithm for approximating

the observation equation of the NSSM (Section 4.4.2). Next, we discuss several

extensions of the NSSM to model various types of network data and incorporate non-

network data with network data (Section 4.4.3). Finally, we present the development of

an EM-BOS algorithm for parameter estimation of the NSSM (Section 4.4.4).

4.4.1 Model Formulation

A general SSM includes a state equation and an observation equation. The state

equation models the dynamics of latent state variables. The observation equation links the

50

latent state variables with observational data. In the proposed NSSM, a network observed

at time 𝑡 is represented by 𝐺𝑡 = {𝐯, 𝐲𝑡}. 𝐯 is a set of 𝑛 nodes . 𝐲𝑡 consists of the edges. In

this paper, we focus on unweighted undirected networks. So, each edge in 𝐲𝑡, i.e., 𝑦𝑖𝑗,𝑡, is

treated as a Bernoulli random variable and 𝑖 < 𝑗. Furthermore, based on the notion that

the probability of having an edge between two nodes should be related to the states of the

nodes, we propose one state variable for each node, 𝑥𝑖, 𝑖 = 1, . . , 𝑛. 𝑥𝑖 reflects a node’s

propensity of interacting with others, called “social propensity” in this paper. Let

𝐱𝑡 = (𝑥1𝑡, … , 𝑥𝑛𝑡)
𝑇 be the state vector at time 𝑡 . The temporal evolution of the state

vector can be represented by a linear model in (4.1), which is the state equation of the

NSSM:

𝐱𝑡 = 𝐀𝑡−1𝐱𝑡−1 + 𝐪𝑡−1. (4.1)

𝐪𝑡−1~𝑁(𝟎,𝐐𝑡−1). 𝐀𝑡−1 is a matrix of linear coefficients. The initial state vector is

assumed to follow a zero-mean multivariate Gaussian distribution, i.e., 𝐱1~𝑁(𝟎, 𝚺). To

link the state vector with the network data at time 𝑡, an “ideal” observation equation can

take the following form:

𝑝𝑖𝑑𝑒𝑎𝑙(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = {
1 𝑖𝑓 𝑥𝑖𝑡𝑥𝑗𝑡 > 0

0 𝑖𝑓 𝑥𝑖𝑡𝑥𝑗𝑡 < 0
. (4.2)

That is, there is an edge between two nodes if their respective states have the same sign.

(4.2) is called the “ideal” observation equation because it does not consider the

measurement noise in network data. To account for the measurement noise, we propose

the following observation equation:

𝑝(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = ∬𝑝𝑖𝑑𝑒𝑎𝑙(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 + 𝛿𝑖, 𝑥𝑗𝑡 + 𝛿𝑗)𝑁(0, 𝜎𝛿
2)𝑁(0, 𝜎𝛿

2) 𝑑𝛿𝑖𝑑𝛿𝑗,

(4.3)

51

where 𝛿𝑖 , 𝛿𝑗~𝑁(0, 𝜎𝛿
2) represent measurement noise. Through some algebra, we can

simplify (4.3) into:

𝑝(𝑦𝑖𝑗,𝑡 = 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = 𝜙 (
𝑥𝑖𝑡

𝜎𝛿
)𝜙 (

𝑥𝑗𝑡

𝜎𝛿
) + {1 − 𝜙 (

𝑥𝑖𝑡

𝜎𝛿
)} {1 − 𝜙 (

𝑥𝑗𝑡

𝜎𝛿
)}. (4.4)

𝜙(∙) is the cumulative density function (CDF) of the standard normal distribution. To

understand the properties of (4.4), we plot the probability contours of (4.4) with two

noise levels in Figure 6. The observations are: 1) Nodes whose states have the same sign

have a higher probability of having an edge than nodes having opposite signs. 2) The

magnitude of states affects the probability of having an edge in a positive way if the

states of two variables have the same sign, i.e., the greater the magnitude, the higher the

probability, but in a negative way if the states have opposite signs. 3) The probability of

having an edge decreases as the measurement noise level increases.

Finally, based on the edge-specific observation equation in (4.4) and the

assumption that the edges are independent of each other given the states of their

respective nodes, we can write the observation equation of the network as follows:

𝑝(𝐲𝑡|𝐱𝑡) = ∏ 𝑝(𝑦𝑖𝑗,𝑡 |𝑥𝑖𝑡, 𝑥𝑗𝑡).𝑖𝑗 (4.4*)

Figure 6. Probability contour plots of the proposed observation equation in (4.4) with two

different measurement noise levels: (a) 𝜎𝛿 = 1; and (b) 𝜎𝛿 = 3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.1

0.3

0.5

0.7

0.9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.1

0.3

0.5

0.7

0.9

52

4.4.2 Gaussian Approximation of the Observation Equation by an EP Algorithm

To preserve computational tractability in the subsequent parameter estimation and

change detection, we consider 𝑝(𝐲𝑡|𝐱𝑡) as a function of 𝐱𝑡 when the network 𝐲𝑡 is

observed, and approximate 𝑝(𝐲𝑡|𝐱𝑡) by a multivariate Gaussian distribution of 𝐱𝑡. The

fact that the observation equation is composed by Gaussian CDFs also supports the

validity of a Gaussian approximation. Among approximation algorithms such as Laplace

(Shun and McCULLAGH 1995), variational Bayes (Cevher et al. 2008), and EP, EP is

known to work well when the original/exact distribution takes the form of a factorization

(T. P. Minka 1999) (please see a brief introduction of EP in Appendix C). This makes EP

an ideal choice for our case because the joint distribution of the edges in a network can be

written as a product of the edges’ respective distributions according to the observation

equation in (4.4*). We develop an EP algorithm to find a Gaussian approximation for the

observation equation of the NSSM. The result is presented in Proposition 4.1 and the

detailed derivation for finding the approximation is provided in Appendix C.

Proposition 4.1: A Gaussian approximation for the observation equation 𝑝(𝐲𝑡|𝐱𝑡) in the

NSSM is given by:

𝑝(𝐲𝑡|𝐱𝑡) ≈ 𝑁(𝐱𝑡|𝟎, 𝚷𝑡
−1),

where 𝚷𝑡 is a function of 𝐲𝑡 and 𝜎𝛿 , and is found by EP.

4.4.3 Model Extensions

The NSSM proposed in Section 4.4.1 can be extended in several ways to model a

broad spectrum of network data and to integrate network and non-network data.

Specifically, we propose four extended NSSM as follows:

53

1) Networks with hyperedges. An edge connects two nodes, while a hyperedge

can connect/include any number of nodes. An edge characterizes only pair-wise

interaction, but a hyperedge can characterize the complex interaction among the members

in a group, e.g., people attending the same meeting. A network consisting of hyperedges

is called a hypergraph (Kalman 1960). Many social networks and biological networks

take the form of a hypergraph. To model a hypergraph, we can use the same state

equation as (4.1) but modify the observation equation as follows: Let 𝑒𝑘 be a hyperedge

that connects/includes nodes {𝑥𝑘1 , … , 𝑥𝑘𝑛}. Then, we adopt the same idea as (4.2) and

assume that there is a hyperedge on the nodes if the nodes’ respective states have the

same sign, i.e.,

𝑝𝑖𝑑𝑒𝑎𝑙(𝑒𝑘,𝑡 = 1 |𝑥𝑘1,𝑡, … , 𝑥𝑘𝑛,𝑡) = {
1 𝑖𝑓 𝑠𝑖𝑔𝑛(𝑥𝑘1,𝑡) = ⋯𝑠𝑖𝑔𝑛(𝑥𝑘𝑛,𝑡)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

Furthermore, considering measurement noise in network data, we can obtain the

observation equation in a similar format to (4.4):

𝑝(𝑒𝑘,𝑡 = 1 |𝑥𝑘1,𝑡, … , 𝑥𝑘𝑛,𝑡) = 𝜙 (
𝑥𝑘1,𝑡

𝜎𝛿
) × …× 𝜙 (

𝑥𝑘𝑛,𝑡

𝜎𝛿
) + {1 − 𝜙 (

𝑥𝑘1,𝑡

𝜎𝛿
)} × …×

{1 − 𝜙 (
𝑥𝑘𝑛,𝑡

𝜎𝛿
)}. (4.5)

2) Multi-dimensional networks. At each time 𝑡, there may be more than one

network for the same set of nodes. For example, a group of people may interact with each

other through multi-media such as phone call, email, facebook, and twitter. We call each

of these networks a “dimension” in this paper. To model multi-dimensional networks, we

can use the same state equation as (4.1), but have one observation equation for each

dimension of the networks. This is to assume the multi-dimensional networks to be

54

different realizations for the underlying social propensities (i.e., states) of the nodes.

Specifically, the observation equation for the 𝑘-th dimension of the networks is:

 𝑝(𝑦𝑖𝑗,𝑡
(𝑘)
= 1 |𝑥𝑖𝑡 , 𝑥𝑗𝑡) = 𝜙 (

𝑥𝑖𝑡

𝜎
𝛿
(𝑘))𝜙 (

𝑥𝑗𝑡

𝜎
𝛿
(𝑘)) + {1 − 𝜙 (

𝑥𝑖𝑡

𝜎
𝛿
(𝑘))} {1 − 𝜙 (

𝑥𝑗𝑡

𝜎
𝛿
(𝑘))}, 𝑘 = 1,… , 𝐾.

(4.6)

If any of the dimensions is a hypergraph, (4.5) can be used as the observation equation

corresponding to that dimension.

3) Incorporation of node attributes. In addition to the dynamic network data, we

may also have multivariate data of a set of attributes for each node, 𝐳𝑖 , such as age,

gender, and education background. The attributes of a node typically do not change over

time, so we can incorporate them into the initial state of the NSSM by using them to

define the covariance matrix of the initial state vector, i.e., 𝚺𝑖𝑗 = 𝜅(𝐳𝑖, 𝐳𝑗). 𝜅(∙) is an

appropriate kernel function. This is to consider that two nodes with similar attribute

profiles should have more correlated initial states.

4) Incorporation of external/environmental factors. External factors may affect

the social propensities (i.e., the states) of some or all the nodes in the network. For

example, in a social network, external factors may be regulation or political climate; in a

biological network, external factors may be exposure to environmental hazards or a

disease process. External factors, denoted by 𝐮𝑡−1 , can be incorporated into the state

equation as 𝐱𝑡 = 𝐀𝑡−1𝐱𝑡−1 + 𝐁𝑡−1𝐮𝑡−1 + 𝐪𝑡−1.

4.4.4 Parameter Estimation for the NSSM by an EM-BOS Algorithm

In this section, we will discuss parameter estimation for the basic NSSM in (4.1)

and (4.4), leaving the parameter estimation for the four extended NSSMs for future work.

55

The parameters in the NSSM include 𝐀𝑡−1, 𝐐𝑡−1, and 𝜎𝛿
2. Given that network data have

been collected at 𝜏 past time points, i.e., = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇 , our objective is to estimate

𝐀𝑡−1 , 𝐐𝑡−1 , 𝑡 = 2,… , 𝜏 , and 𝜎𝛿
2 from the data. 𝜎𝛿

2 is the variance of measure noise.

Because it is just a scalar, we will treat it as a tuning parameter and use a simple line

search to select it. This will avoid complicated mathematical estimation. 𝐀𝑡−1 and 𝐐𝑡−1

are 𝑛 × 𝑛 matricies that cannot be treated as tuning parameters and need to be estimated

from data. Treating the 𝐀𝑡−1 and 𝐐𝑡−1 at different time points as different parameters

results in a saturated model that is of little use. To tackle this problem, a general principle

in SSM is to represent the time-varying parameters as functions of a small set of

hyperparameters, 𝛉, i.e., 𝐀𝑡−1 = 𝐀𝑡−1(𝛉) and 𝐐𝑡−1 = 𝐐𝑡−1(𝛉). 𝐀𝑡−1(∙) and 𝐐𝑡−1(∙) are

functions of 𝛉 given by domain knowledge. In this paper, we focus on the functions that

are time-invarying, which reduces the parameters to A and 𝐐. To estimate A and 𝐐, we

adopt the EM framework that treats 𝐲 = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇 as the observed data and 𝐱 =

[𝐱1
𝑇 , … , 𝐱𝜏

𝑇]𝑇 as the missing data. EM is an iterative procedure for finding the maximum

likelihood estimates of model parameters from data with missing values (Dempster,

Laird, and Rubin 1977). It iterates between an E-step that finds the expectation of the

complete-data log-likelihood with respect to the missing data given the observed data and

the current parameter estimates, and an M-step that finds parameter estimates that

maximize the expectation in the E-step. Under the EM framework, the complete-data log-

likelihood function of the NSSM is:

𝑙(𝐀,𝐐|𝐲, 𝐱) = 𝑙𝑜𝑔 𝑝(𝐲, 𝐱|𝐀,𝐐) = 𝑙𝑜𝑔 𝑝(𝐱|𝐀,𝐐) + 𝑙𝑜𝑔 𝑝(𝐲|𝐱)

 = ∑ log 𝑝(𝐱𝑡|𝐱𝑡−1, 𝐀, 𝐐)
𝜏
𝑡=2 + log 𝑝(𝐱1) + ∑ 𝑙𝑜𝑔 𝑝(𝐲𝑡|𝐱𝑡)

𝜏
𝑡=1 . (4.7)

56

Using the state equation and the EP approximation for the observation equation and

omitting constants, (4.7) becomes:

𝑙(𝐀,𝐐|𝐲, 𝐱) = −
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ (𝐱𝑡 − 𝐀𝐱𝑡−1)

𝑇𝐐−1(𝐱𝑡 − 𝐀𝐱𝑡−1)
𝜏
𝑡=2 −

1

2
𝐱1
𝑇𝚺−1𝐱1 −

1

2
∑ 𝐱𝑡

𝑇𝚷𝑡 𝐱𝑡
𝜏
𝑡=1 .

In the E-step, we compute the expectation of 𝑙(𝐀, 𝐐|𝐲, 𝐱) with respect to 𝐱, given

𝐲 and the A and 𝐐 estimated from the previous iteration, 𝐀∗and 𝐐∗, i.e.,

𝑓(𝐀,𝐐) ≜ E𝐱|𝐲,𝐀∗,𝐐∗ {𝑙(𝐀,𝐐|𝐲, 𝐱)}

 = {
−
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ 𝑡𝑟((𝐱𝑡 −𝐀𝐱𝑡−1)

𝑇𝐐−1(𝐱𝑡 − 𝐀𝐱𝑡−1))
𝜏
𝑡=2

−
1

2
𝑡𝑟(𝐱1

𝑇𝚺−1𝐱1) −
1

2
∑ 𝑡𝑟(𝐱𝑡

𝑇𝚷𝑡 𝐱𝑡)
𝜏
𝑡=1

}. (4.8)

𝑡𝑟(∙) is the trace operator. Using the communicative property of expectation and trace,

(4.8) can be further written as:

𝑓(𝐀,𝐐) = −
(𝜏−1)

2
𝑙𝑜𝑔|𝐐| −

1

2
∑ 𝑡𝑟𝜏
𝑡=2 (𝐬𝑡𝐐

−1 − 𝐀𝐬𝑡−1,𝑡𝐐
−1 − 𝐬𝑡−1,𝑡𝐀

𝑇𝐐−1 +

𝐀𝐬𝑡−1𝐀
𝑇𝐐−1) −

1

2
𝑡𝑟(𝚺−1𝐬1) −

1

2
∑ 𝑡𝑟𝜏
𝑡=1 (𝚷𝑡 𝐬𝑡), (4.9)

where 𝐬𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡
𝑇) and 𝐬𝑡−1,𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1𝐱𝑡

𝑇). In the M-step, we find the

A and 𝐐 that maximize 𝑓(𝐀,𝐐) using the gradient method, i.e.,

�̂� = {∑ 𝐬𝑡−1,𝑡
𝜏
𝑡=2 }{∑ 𝐬𝑡−1

𝜏
𝑡=2 }−1, (4.10)

�̂� =
1

(𝜏−1)
∑ (𝐬𝑡 − �̂�𝐬𝑡−1,𝑡 − 𝐬𝑡−1,𝑡�̂�

𝑇 + �̂�𝐬𝑡−1�̂�
𝑇)𝜏

𝑡=2 . (4.11)

The E-step and M-step will be iteratively applied until convergence.

The challenging part in this EM framework is how to compute the expectations,

𝐬𝑡 and 𝐬𝑡−1,𝑡, in the E-step. Using the joint posterior distribution of the state vectors at all

time points, i.e., 𝑝(𝐱|𝐲, 𝐀∗, 𝐐∗) , to derive the expectations is mathematically and

57

computationally intractable. To tackle this challenge, we develop a BOS algorithm to

compute the expectations using recursive equations. A brief introduction to the general

concept of BOS is provided in Appendix C. Next, we present the details for the

development of a BOS algorithm in our context:

According to the definitions of 𝐬𝑡 and 𝐬𝑡−1,𝑡, we get:

𝐬𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡
𝑇) = E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡𝐱𝑡

𝑇)

= Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) + E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)
𝑇, (4.12)

𝐬𝑡−1,𝑡 ≜ E𝐱|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1𝐱𝑡
𝑇)

= Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) + E𝐱𝑡−1|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1)E𝐱𝑡|𝐲𝐀∗,𝐐∗(𝐱𝑡)
𝑇. (4.13)

It is easy to show that E𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) = 0 because the initial state vector 𝐱1 has a zero

mean. Therefore, the key to obtaining 𝐬𝑡 and 𝐬𝑡−1,𝑡 is to obtain Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and

Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡). We develop an BOS algorithm to compute Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡)

and Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) . The result is presented in Proposition 4.2. The

development of the BOS algorithm needs to use the results from a Bayesian optimal

prediction (BOP) algorithm and a Bayesian optimal filtering (BOF) algorithm, which are

presented in Lemma 1. The detailed derivations for Lemma 4.1 and Proposition 4.2 are

given in Appendix C.

Lemma 4.1 (BOP and BOF): Let 𝐏𝑡
− ≜ Var𝐱𝑡|𝐲1:𝑡−1,𝐀∗,𝐐∗(𝐱𝑡) and

𝐏𝑡 ≜ Var𝐱𝑡|𝐲1:𝑡,𝐀∗,𝐐∗(𝐱𝑡), where 𝐲1:𝑡 = [𝐲1
𝑇 , … , 𝐲𝑡

𝑇]𝑇 . Then, the recursive equations for

computing 𝐏𝑡
− and 𝐏𝑡 are given by:

𝐏𝑡
− = 𝐀∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗,

𝐏𝑡 = (𝚷𝑡 + (𝐏𝑡
−)−1)−1,

58

where 𝚷𝑡 is the approximate covariance matrix obtained by EP in Proposition 4.1. The

recursions are started from the first time point with 𝐏0 = 𝚺.

Proposition 4.2 (BOS): Let 𝐏𝑡
𝑠 ≜ Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and

𝐏𝑡−1,𝑡
𝑠 ≜ Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡). The backward recursive equations for computing 𝐏𝑡

𝑠

and 𝐏𝑡−1,𝑡
𝑠 are given by:

𝐏𝑡
𝑠 = 𝐏𝑡 + 𝐇𝑡(𝐏𝑡+1

𝑠 − 𝐀∗𝐏𝑡𝐀
∗𝑇 − 𝐐∗)𝐇𝑡

𝑇,

𝐏𝑡−1,𝑡
𝑠 = 𝐏𝑡

𝑠𝐇𝑡−1
𝑇 ,

where 𝐇𝑡 = 𝐏𝑡𝐀
∗𝑇(𝐀∗𝐏𝑡𝐀

∗𝑇 + 𝐐∗)−1. The backward recursions are started from the last

time point 𝜏, with 𝐏 𝜏
𝑠 = 𝐏 𝜏 .

Finally in this section, we summarize the steps of the aforementioned algorithm,

called the EM-BOS algorithm, for estimating the parameters A and 𝐐 of the NSSM. The

algorithm takes network data collected at 𝜏 past time points, 𝐲 = [𝐲1
𝑇 , … , 𝐲𝜏

𝑇]𝑇, as input.

Step 1. Specify the covariance matrix of the initial state vector, 𝚺, and let 𝐏0 = 𝚺.

Also specify the initial values for A and 𝐐, i.e., 𝐀∗ and 𝐐∗.

Step 2. Approximate the observation equation at each time point 𝑡 using the EP

result in Proposition 4.1 and obtain the approximate inverse covariance matrix 𝚷𝑡 , 𝑡 =

1, … , 𝜏.

Step 3. Use the 𝚷𝑡 obtained from Step 2 together with the 𝐀∗ and 𝐐∗ in Step 1 to

obtain Var𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and Cov𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡), i.e., 𝐏𝑡
𝑠 and 𝐏𝑡−1,𝑡

𝑠 , according to

the BOS algorithm in Proposition 4.2, , 𝑡 = 2,… , 𝜏.

59

Step 4. Use the 𝐏𝑡
𝑠 and 𝐏𝑡−1,𝑡

𝑠 obtained from Step 3 to compute 𝐬𝑡 and 𝐬𝑡−1,𝑡

according to (4.11) and (4.12), respectively, and to further compute �̂� and �̂� according to

(4.9) and (4.10).

Step 5. Update the estimates for A and 𝐐 by setting 𝐀∗ = �̂� and 𝐐∗ = �̂�, and

repeat Steps 3-4 until convergence.

4.5 Change Detection in Dynamic Networks by Integrating NSSM and SPC

Change detection by SPC has two phases: At phase I, a monitoring statistic is

defined and in-control data are used to establish a control chart with control limits for the

monitoring statistic. At phase II, new data are collected, for which the monitoring

statistics are computed and compared with the control limits established at phase I, and a

change is declared if the monitoring statistics of the new data exceed the control limits.

The key to successfully applying this general SPC procedure to our specific problem is to

define a proper monitoring statistic. When the data are univariate or multivariate time

series, a typical approach is to define the monitoring statistic to be a “residual” that

reflects the distance between the observed data at time 𝑡 and the prediction using a time

series model. We follow a similar idea and define a distance metric as the monitoring

statistic for dynamic network data in the following way:

Once the network at time 𝑡 is observed, we can estimate the covariance matrix of

the state vector based on this network alone, i.e., Var𝐱𝑡|𝐲𝑡(𝐱𝑡), by EP. Meanwhile, we can

obtain a predicted covariance matrix of the state vector using an NSSM that has been

developed based on dynamic network data with natural evolution but no change (i.e., the

in-control data), i.e., Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡). The intuition is that if there is no change, the

60

“distance” between Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡) and Var𝐱𝑡|𝐲𝑡(𝐱𝑡) should be small; a large distance

implies an abnormal change. To develop a meaningful distance metric between two

covariance matrices, there are a number of options, which were mainly discussed in the

SPC literature for covariance monitoring. We choose to apply singular value

decomposition (SVD) to each covariance matrix, keep the first singular vector of each

matrix, which is the most informative in terms of characterizing the structure of a

covariance matrix, and compute the Euclidean distance between the two singular vectors.

Specifically, we propose the following distance metric:

𝑤𝑡 ≜ log‖𝐮1 (Var𝐱𝑡|𝐲1:𝑡−1,�̂�,�̂�(𝐱𝑡)) − 𝐮1 (Var𝐱𝑡|𝐲𝑡(𝐱𝑡))‖2

2

, (4.14)

where 𝐮1(∙) denotes the first singular vector from an SVD on a covariance matrix and

‖∙‖2
2 denotes the Euclidean distance. The natural logarithm is used to transform the

Euclidean distance to be approximate Gaussian. Other transformations could be adopted

for Gaussian approximation and a normality check using a QQ plot is recommended to

choose a proper transformation. We found that the natural logarithm transformation

worked reasonably well in both the simulation studies and the real-data application that

will be presented in the next section.

Once a monitoring statistic is defined, the choice of a control chart depends on the

magnitude or type of changes that are targeted for detection. For example, CUSUM and

EWMA charts are proper choices for detecting small changes, whereas Shewhart charts

may be used for detecting greater changes. The focus of this paper is not to design

various types of control charts, but instead lays out a general framework for change

detection on dynamic network data. Therefore, we focus on a Shewhart chart for the

61

remaining of the discussion, whereas other types of control charts can be easily “plugged

in” this framework.

To establish control limits for a Shewhart chart with the monitoring statistic

defined in (14), we can obtain an 𝑤𝑡 for each time point during the in-control time period

except the first time point, i.e., 𝑡 = 2,… , 𝜏. Then, we can compute the mean and standard

deviation over the set of (𝑤1,, … , 𝑤𝜏), 𝜇𝑤 and 𝜎𝑤 . The upper control limit (UCL) is:

𝑈𝐶𝐿 = 𝜇𝑤 + 𝑘𝜎𝑤 . An lower control limit (LCL) would not be necessary because the

monitoring statistic is a distance. 𝑘 is chosen to satisfy a pre-defined type I error, 𝛼 .

Because the monitoring statistic is approximately Gaussian, 𝑘 = 𝜙−1(1 − 𝛼). 𝜙−1(∙) is

the inverse CDF of the standard normal distribution. This completes the developmental

work at phase I. At phase II, i.e., when a new network is observed at time 𝑡 + 1, 𝑤𝑡+1 can

be computed using (14) and compared with the 𝑈𝐶𝐿. A change is declared if 𝑤𝑡+1 >

𝑈𝐶𝐿.

4.6 Case Studies

4.6.1 Simulation Studies

We perform simulation studies to serve three purposes: 1) revealing insights on

the NSSM in modeling natural evolution of dynamic networks; 2) assessing the accuracy

of the NSSM in modeling natural evolution of dynamic networks; 3) assessing the

performance of the change detection method in Section 4.5 in detecting various types of

changes. These studies are presented in Sections 4.6.1.1-3, respectively.

4.6.1.1 Insights on the NSSM

We focus on two typical types of natural evolution of dynamic networks: hub

forming and community forming. To generate network data that reflect hub forming, we

62

adopt the following approach: The network includes 10 nodes with 𝑣1 being a hub node.

To mimic the evolution process that 𝑣1 is becoming a hub, we start with a network (i.e.,

the network at 𝑡 = 1) in which 𝑣1 is only connected with one other node, and add one

more node to be connected with 𝑣1 in the network at each of five subsequent time points.

To mimic the reality that non-hub nodes can also interact with each other, we randomly

add two edges between the non-hub nodes at each time point. In this way, we generate

networks at six time points. Then, we fit an NSSM on the six networks, based on which

we further apply the BOF algorithm in Lemma 1 to estimate the covariance matrix of the

state vector at 𝑡 = 6 , i.e., 𝐏6 . We plot 𝐏6
−1 as a color matrix in Figure 7(a). Each

row/column corresponds to a node. Only the upper triangular part of the symmetric

matrix is shown. The level of darkness reflects the magnitude of the entries in 𝐏6
−1. It can

be clearly seen that 𝑣1 is a hub node. Furthermore, the varying levels of darkness on the

first row reveal the evolution process of how other nodes became connected with 𝑣1, i.e.,

the darker a node, the earlier it became connected with 𝑣1. For comparison, we estimate

𝐏6
−1 by two intuitive methods: One method uses the network at 𝑡 = 6 alone to estimate

𝐏6
−1 , i.e., no network data in the previous time points are used. The other method

estimates each entry in 𝐏6
−1 by counting the frequency of occurrence for the edge

corresponding to that entry in networks at the six time points. The results by the two

methods are shown in Figure 7(b) and (c), respectively. The limitations of the two

methods are obvious: Using the network at 𝑡 = 6 alone sheds little light on the evolution

process of how other nodes became connected with 𝑣1. The result is only able to show

which nodes are connected with the hub but not the time sequence of the connections.

The other method that counts the frequency of occurrence makes identification of the hub

63

node difficult, because it is not able to “forget” the edges randomly appeared between

non-hub nodes.

 (a) (b) (c)

Figure 7. Estimated 𝐏6
−1 to reflect a hub forming process in dynamic networks by (a)

BOF under NSSM, (b) a method using the network data at 𝑡 = 6 alone, and (c) a method

counting frequency of occurrence of edges.

 Furthermore, we generate another set of network data that reflect a community

forming process. The network includes 10 nodes with {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} being a

community. To mimic the evolution process of the community forming, we start with a

network in which there are only two edges in the community, and add two more edges in

the network at each of three subsequent time points. To mimic the reality that nodes

outside the community can also interact with each other and with the nodes in the

community, we randomly add two edges not inside the community at each time point. In

this way, we generate networks at four time points. Then, we fit an NSSM on the four

networks, based on which we further apply the BOF algorithm in Lemma 1 to estimate

the covariance matrix of the state vector at 𝑡 = 4, i.e., 𝐏4. We plot 𝐏4
−1 as a color matrix

in Figure 8(a). For comparison, we also estimate 𝐏4
−1 by the two methods used in the

previous hub forming experiment, and show the results in Figure 8(b) and (c). We can

draw a similar conclusion to the previous experiment that the NSSM is able to capture the

evolution process of how the nodes in the community became connected, whereas the

time sequence of the connections is lost by the method in Figure 8(b) and the method in

64

Figure 8(c) cannot distinguish between the connections in a community that are more

persistent and other non-community related random connections, making it difficult to

identify the community.

 (a) (b) (c)

Figure 8. Estimated 𝐏4
−1 to reflect a community forming process in dynamic networks by

(a) BOF under NSSM, (b) a method using the network data at 𝑡 = 4 alone, and (c) a

method counting frequency of occurrence of edges.

4.6.1.2 Accuracy of NSSM

To simulate naturally-evolving (i.e., no-change) dynamic networks, we must find

an approach to link the probability that two nodes have an edge at time 𝑡, i.e., 𝑝(𝑦𝑖𝑗,𝑡 =

1), with the existence/non-existence of an edge between the two nodes in all previous

time points. We choose to link 𝑝(𝑦𝑖𝑗,𝑡 = 1) with an exponentially weighted average

(EWA) of the edge variables in all previous time points, i.e.,

𝑝(𝑦𝑖𝑗,𝑡 = 1) = 𝛼0 + ∑ 𝜆(1 − 𝜆)𝑠𝑦𝑖𝑗,𝑡−𝑠
𝑡−1
𝑠=1 . (4.15)

𝜆 ∈ (0,1) is a smoothing parameter. The EWA approach weights the edge variables at

different past time points in geometrically decreasing order so that the most recent edge

variables are weighted most highly while the most distant edge variables contribute very

little. 𝛼0 is a small constant probability for generating “noise” edges. A noise edge in

dynamic networks is one that appears at time 𝑡 even though there is no edge between the

65

two nodes at any previous time point. There are always noise edges in real-world

dynamic networks.

In the first experiment, we simulate dynamic networks of 20 nodes. First, the

networks at the first five time points are independently generated with each including 10

randomly selected edges. Then, (4.15) with 𝜆 = 0.1 and 𝛼0 = 0.1 is recursively applied

to generate dynamic networks at 𝑡 = 6,… ,15. Next, at each time point 𝑡 = 6, . . ,15, we

fit an NSSM using the networks at all previous time points. Based on the NSSM, we can

further obtain a prediction for the probability that two nodes will have an edge at 𝑡, i.e.,

𝑝(𝑦𝑖𝑗,𝑡|𝐲1:𝑡−1) =
1

2
+
𝑎𝑟𝑐𝑠𝑖𝑛𝜌𝑖𝑗

𝜋
, (4.16)

where 𝜌𝑖𝑗 is the entry at the 𝑖-th row and 𝑗-th column of 𝐏𝑡
−. The derivation for (4.16) is

skipped. We use (4.16) for every pair of nodes in the network, compare the predicted

probability with the true existence of the edge, and assess the prediction accuracy for the

network at 𝑡 by Area Under the Curve (AUC). For comparison, we also compute the

AUC of two completing methods: One method computes the predicted probability using

the network at the immediate previous network; the other method uses the frequency of

edge occurrence in all the previous networks as an estimate for the predicted probability.

Table 8 summarizes the AUC performance of the three methods. In the second

experiment, we simulate dynamic networks of a larger size, i.e., with 50 nodes. Figure 9

shows the networks at three time snapshots. The AUC performances of the three methods

are shown in Table 9.

66

 𝑡 = 10 𝑡 = 12 𝑡 = 14

Figure 9. Dynamic networks with natural evolution at three time snapshots

In the third experiment, we simulate dynamic networks with two evolving

communities, with each community consisting of 20 nodes. The natural evolution within

each community is simulated in the same way as the first experiment. Furthermore, we

add two random edges between the two communities at each time point to account for

between-community interaction. The AUC performances of the three methods are shown

in Table 10. It can be seen that the NSSM outperforms the two competing methods in all

three experiments.

Table 8. Average (standard deviation) AUC of prediction over the time range of the

dynamic networks with 20 nodes

NSSM Competing method 1

(use the immediate previous

network)

Competing method 2

(use the frequency of edge

occurrence)

0.86 (0.02) 0.77 (0.03) 0.56 (0.01)

Table 9. Average (standard deviation) AUC of prediction over the time range of the

dynamic networks with 50 nodes

NSSM Competing method 1

(use the immediate previous

network)

Competing method 2

(use the frequency of edge

occurrence)

0.84 (0.02) 0.72 (0.02) 0.55 (0.005)

67

Table 10. Average (standard deviation) AUC of prediction over the time range of the

dynamic networks with two communities (20 nodes in each community)

NSSM Competing method 1

(use the immediate previous

network)

Competing method 2

(use the frequency of edge

occurrence)

0.84 (0.02) 0.76 (0.03) 0.52 (0.002)

4.6.1.3 Performance of the Change Detection Method

The dynamic networks generated in the first experiment of Section 4.6.1.2 are

treated as in-control data, based on which we can obtain the 𝑈𝐶𝐿 according to the change

detection method in Section 4.5. Starting from 𝑡 = 16, the network has a structural shift

that 𝛿% of the nodes belonging to the community of the in-control networks drop from

the community and the same number of new nodes are added into the community. We try

𝛿% = 20%, 40%, 60%, 80%. The larger the 𝛿%, the more dramatic the structural shift.

Note that we focus on “structural shifts” that are not easily detected by visual inspection;

nor can they be detected by monitoring summary statistics of the networks like the

network density. Figure 10 shows the networks at four time points: the first three

networks are from the in-control time period; the last network is immediately after a shift

with 𝛿% = 20%. The shift is one that two new nodes (green nodes at 𝑡 = 16) join the

community of the in-control networks, while two old nodes who have been in the

community (red nodes at 𝑡 = 10,12,14) are swapped out.

68

 𝑡 = 10 𝑡 = 12 𝑡 = 14 𝑡 = 16

Figure 10. Dynamic networks with a structural shift at 𝑡 = 16

For each value of 𝛿% , we compute the monitoring statistic for 𝑡 = 16 using

(4.14) and compare it with the 𝑈𝐶𝐿. We repeat this experiment for ten times and record

the proportion of times that the monitoring statistic at 𝑡 = 16 excceds the 𝑈𝐶𝐿 . This

proportion reflects the probability that the structural shift is successfully detected on the

first time point after it happens. We report this probability for type I error 𝛼 = 0.005 and

𝛼 = 0.05 in Table 11. It can be seen that our approach is able to detect the shift with

probability one at all shift magnitudes when 𝛼 = 0.05. With a smaller type I error, i.e,

𝛼 = 0.005, the detection probability decreases as the shift magnitude decreases. Finally,

we check the validity of the assumption that the monitoring statistic during the in-control

time period follows a Gaussian distribution by generating a QQ plot on the monitoring

statistics derived from all the in-control networks and performing a Kolmogorov-Smirnov

(KS) test. The close-to-straightline pattern in the QQ plot in Figure 11 and the large p-

value of the KS test (p=0.97) provides strong evidence that the Gaussian assumption is

valid.

69

Table 11. Probability of detecting the structural shift at the first time point after the shift

with 𝛼 = 0.005 (𝛼 = 0.05)

Structural shift magnitude 𝛿%

20% 40% 60% 80%

0.7 (1) 0.8 (1) 1 (1) 1 (1)

Figure 11. QQ plot on the monitoring statistics derived from in-control networks

4.6.2 Application to Change Detection on Enron Dynamic Email Networks

Enron Corporation was an energy and trading company ranked as the seventh

largest in the US in 2000. On 12/1/2001, Enron filed for bankruptcy. This sudden

collapse cast suspicions and promoted federal investigation. During the investigation, the

courts subpoenaed extensive email logs from most of Enron's employees, and the Federal

Energy Regulatory Commission (FERC) published the database online. In this section,

we use the dynamic email communication networks between the Enron

employees(McCallum, Corrada-Emmanuel, and Wang 2005). We focus on a small subset

of the network that consists of 16 employees associated with the Transwestern Pipeline

70

Division within Enron. The networks with natural evolution, i.e., the in-control data,

include monthly email communications between the 16 employees within eight months

from 09/2000 to 04/2001.

First, we would like to assess the accuracy of the NSSM in fitting the in-control

data. We adopt a similar approach to Section 4.6.1.1. That is, at each of the eight time

point, 𝑡, we fit an NSSM using the networks at all previous time points. Based on the

NSSM, we further obtain a prediction for the probability that two nodes will have an edge

at 𝑡 using (4.16). We use (4.16) for every pair of nodes in the network, compare the

predicted probability with the true existence of the edge, and assess the prediction

accuracy for the network at 𝑡 by AUC. The mean and standard deviation of the AUC over

the in-control time period are 0.88 and 0.1, respectively. We consider this accuracy to be

satisfactory and proceed to use the fitted NSSM to detect changes. To establish a control

limit, 𝑈𝐶𝐿, we compute the monitoring statistic defined in (4.14) for each time point

during the in-control time period except the first time point. The 𝑈𝐶𝐿 based on these

monitoring statistics with a type I error 𝛼 = 0.005 is found to be 𝑈𝐶𝐿 = −0.09.

Furthermore, we extract the network data for two new months, 05/2001 and

10/2001, in which two known changes occurred. The change in 05/2001 was that the

CEO of the Division had more communication with the employees although his “in-

control” pattern in previous networks was more communication with the CFO and VP of

the Division. This change was probably due to the launch of a new initiative or project.

Another change was in 10/2001 when the Enron’s scandal was revealed and every

division of the corporation experienced changes. We compute the monitoring statistic

using (4.14) for each new network and compare it with the 𝑈𝐶𝐿. Figure 12 shows the

71

results of change detection for the two new networks. It is clear that the monitoring

statistics at the in-control time period all fall below the 𝑈𝐶𝐿, while those corresponding

to the two changes are far above the 𝑈𝐶𝐿. That is, both changes can be successfully

detected.

Figure 12. Monitoring and change detection of the Enron dynamic email networks

72

Conclusion:

In my dissertation research, I developed new transfer learning methods and

demonstrated the utility of the methods in real-world applications. For spatial transfer

learning across different domains, I developed a predictive model that can flexibly

incorporate the data or knowledge of the source domains, whichever available, to the

modeling of the target domain. I developed a computationally efficient algorithm in

model estimation and performed theoretical analysis. For temporal transfer learning, I

developed an NSSM for characterizing the temporal evolution of dynamic network data. I

developed an EP algorithm and an EM-BOS algorithm for tractable parameter estimation

of the NSSM. Furthermore, I applied the proposed spatial transfer learning approach to

modeling of degenerate biological systems, and applied the NSSM to change detection in

dynamic social network data.

The research can be extended in several directions:

 For spatial transfer learning, the proposed method was formulated under a

Bayesian framework but solved from an optimization point of view to gain

efficiency. A Bayesian estimation approach such as empirical Bayes and

hierarchical Bayes could allow better characterization of the uncertainty.

Second, a similar approach may be developed for predictive modeling of

nonlinear relationships. Third, future engineering system design may

adopt biological principles like degeneracy in order to be more robust and

adaptive to unpredictable environmental situations. By that time, it will be

very interesting to study how to migrate the proposed approach to

engineering systems.

73

 For temporal transfer learning or NSSM, Section 4.4.3 discussed several

extended NSSM, for which parameter estimation and change detection can

be further pursued. We adopted an SVD-based covariance monitoring

approach to compare the predicted and estimated state vectors at each time

point, which is suitable for detecting structural changes in the dynamic

network data. Other covariance monitoring approaches can be adopted to

detect other types of changes. Computational efficiency of the parameter

estimation could be further improved by taking advantage of modern

machine learning developments such as sparse learning.

74

References

Airoldi, Edoardo M, David M Blei, Stephen E Fienberg, and Eric P Xing. 2009. “Mixed

Membership Stochastic Blockmodels.” In Advances in Neural Information

Processing Systems, 33–40.

Alwan, Layth C., and Harry V. Roberts. 1988. “Time-Series Process Modeling for

Statistical Control.” Journal of Business Economics and Statistics 6 (1): 87–95.

Apley, Daniel W, and Jianjun Shi. 1999. “The GLRT for Statistical Process Control of

Autocorrelated Processes.” IIE Transactions 31 (12): 1123–34.

Argyriou, Andreas, Charles Micchelli, Massimiliano Pontil, and Yiming Ying. 2008. “A

Spectral Regularization Framework for Multi-Task Structure Learning.” Advances

in Neural Information Processing Systems, 1–8.

Azarnoush, B., K. Paynabar, J. Bekki, and G. C. Runger. 2015. “Monitoring Temporal

Homogeneity in Network Streams.” Journal of Quality Technology.

Bakker, Bart, and Tom Heskes. 2003. “Task Clustering and Gating for Bayesian

Multitask Learning.” Journal of Machine Learning Research 4 (1): 83–99.

Berthouex, P M, W G Hunter, and L Pallesen. 1978. “Monitoring Sewage-Treatment

Plants-Some Quality-Control Aspects.” Journal of Quality Technology 10: 139–49.

Bonilla, Edwin, Kian Ming Chai, and Christopher Williams. 2008. “Multi-Task Gaussian

Process Prediction.” Advances in Neural Information Processing Systems 20: 153–

60.

Caruana, Rich. 1997. “Multitask Learning.” Machine Learning 28 (1): 41–75.

Cevher, Volkan, D Kahle, K Tsianos, and T Saleem. 2008. “Variational Bayes

Approximation.” Annals of Mathematical Statistics, no. 1: 1–7.

Chatterjee, A, and S Lahiri. 2010. “Asymptotic Properties of the Residual Bootstrap for

Lasso Estimators.” Proceedings of the American Mathematical Society 138 (12):

4497–4509.

Chung, F R K. 1999. “Spectral Graph Theory.” American Methematical Society 92.

Crassidis, John L, and John L Junkins. 2011. Optimal Estimation of Dynamic Systems.

CRC press.

Dai, Wenyuan, Qiang Yang, Gui-Rong Xue, and Yong Yu. 2007. “Boosting for Transfer

Learning.” In Proceedings of the 24th International Conference on Machine

Learning, 193–200.

75

Dempster, Arthur P, Nan M Laird, and Donald B Rubin. 1977. “Maximum Likelihood

from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical

Society. Series B (methodological), 1–38.

Dooley, K J, and S G Kapoor. 1990. “An Enhanced Quality Evaluation System for

Continuous Manufacturing Processes, Part 2: Application.” Journal of

Manufacturing Science and Engineering 112: 63–68.

Dooley, K J, S G Kapoor, M I Dessouky, and R E DeVor. 1986. “An Integrated Quality

Systems Approach to Quality and Productivity Improvement in Continuous

Manufacturing Processes.” Journal of Manufacturing Science and Engineering 108:

322–27.

Edelman, G M, and J a Gally. 2001. “Degeneracy and Complexity in Biological

Systems.” Proceedings of the National Academy of Sciences of the United States of

America 98 (24): 13763–68.

Ernst, Jason, Pouya Kheradpour, Tarjei S Mikkelsen, Noam Shoresh, Lucas D Ward,

Charles B Epstein, Xiaolan Zhang, et al. 2011. “Mapping and Analysis of Chromatin

State Dynamics in Nine Human Cell Types.” Nature 473 (7345): 43–49.

Evgeniou, A, and Massimiliano Pontil. 2007. “Multi-Task Feature Learning.” Advances

in Neural Information Processing Systems 19: 41.

Evgeniou, Theodoros, and M Pontil. 2004. “Regularized Multi – Task Learning.”

International Conference on Knowledge Discovery and Data Mining, 109–17.

Genkin, Alexander, David D Lewis, and David Madigan. 2007. “Large-Scale Bayesian

Logistic Regression for Text Categorization.” Technometrics 49 (3): 291–304.

Globerson, A, G Chechik, F Pereira, N Tishby, M S Handcock, A E Raftery, J M

Tantrum, and A Series. 2007. “Euclidean Embedding of Co-Occurrence Data.” In

Advances in Neural Information Processing Systems 170: 497–504.

Handcock, Mark S., Adrian E. Raftery, and Jeremy M. Tantrum. 2007. “Model-Based

Clustering for Social Networks.” Journal of the Royal Statistical Society. Series A:

Statistics in Society 170 (2): 301–54.

Hanneke, S, W Fu, and E P Xing. 2010. “Discrete Temporal Models of Social

Networks.” Electronic Journal of Statistics, 585–605.

Ho, Q, L Song, and E P Xing. 2011. “Evolving Cluster Mixed-Membership Blockmodel

for Time-Varying Networks.” Proceedings of the 14th International Conference on

Artifical Intelligence and Statistics, 342–50.

Hoff, P D. 2011. “Hierarchical Multilinear Models for Multiway Data.” Computational

Statistics Data Analysis 55: 530–43.

76

Hoff, P D, A E Raftery, and M S Handcock. 2002. “Latent Space Approaches to Social

Network Analysis.” Journal of the American Statistical Association 97: 1090–98.

Huang, Shuai, Jing Li, Liang Sun, Jieping Ye, Adam Fleisher, Teresa Wu, Kewei Chen,

and Eric Reiman. 2010. “Learning Brain Connectivity of Alzheimer’s Disease by

Sparse Inverse Covariance Estimation.” NeuroImage 50 (3): 935–49.

Huang, Shuai, Jing Li, Jieping Ye, Adam Fleisher, Kewei Chen, Teresa Wu, and Eric

Reiman. 2012. “A Sparse Structure Learning Algorithm for Gaussian Bayesian

Network Identification from High-Dimensional Data.” IEEE Transactions on

Pattern Analysis and Machine Intelligence 35 (6): 1328–42.

Idier, Jérôme. 2013. Bayesian Approach to Inverse Problems. John Wiley & Sons.

Jacob, Laurent, Jean-philippe Vert, Francis R Bach, and Jean-philippe Vert. 2009.

“Clustered Multi-Task Learning: A Convex Formulation.” In Advances in Neural

Information Processing Systems, 745–52.

Jebara, Tony. 2004. “Multi-Task Feature and Kernel Selection for SVMs.” In

Proceedings of the Twenty-First International Conference on Machine Learning, 55.

Kalman, R.E. 1960. “A New Approach to Linear Filtering and Prediction Problems.”

Journal of Basic Engineering 82 (1): 35–45.

Kitagawa, Genshiro. 1996. “Monte Carlo Filter and Smoother for Non-Gaussian

Nonlinear State Space Models.” Journal of Computational and Graphical Statistics

5 (1): 1–25.

Knight, Keith, and Wenjiang Fu. 2000. “Asymptotics for Lasso-Type Estimators.”

Annals of Statistics 28 (5): 1356–78.

Lawrence, Dr Neil, and John Platt. 2004. “Learning to Learn with the Informative Vector

Machine.” Twentyfirst International Conference on Machine Learning, 65.

Lee, N H, and C E Priebe. 2011. “A Latent Process Model for Time Series of Attributed

Random Graphs.” Statistical Inference for Stochastic Processes 14 (3). Springer:

231–53.

Li, Fan, and Nancy R. Zhang. 2010. “Bayesian Variable Selection in Structured High-

Dimensional Covariate Spaces With Applications in Genomics.” Journal of the

American Statistical Association 105 (491): 1202–14.

Li, Xuejing, Casandra Panea, Chris H Wiggins, Valerie Reinke, and Christina Leslie.

2010. “Learning ‘Graph-Mer’ Motifs That Predict Gene Expression Trajectories in

Development.” PLoS Computational Biology 6 (4): e1000761.

77

Liao, Xuejun, Ya Xue, and Lawrence Carin. 2005. “Logistic Regression with an

Auxiliary Data Source.” In International Conference on Machine Learning, 505–12.

Liu, Jun, Shuiwang Ji, and Jieping Ye. 2009. “Multi-Task Feature Learning Via Efficient

L2,1-Norm Minimization.” Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence, 339–48.

Marchette, D. 2012. “Scan Statistics on Graphs.” Computational Statistics 4: 466–73.

McCallum, A, A Corrada-Emmanuel, and X Wang. 2005. “Topic and Role Discovery in

Social Networks.” Computer Science Department Faculty Publication Series 30: 3.

McCulloh, I, and K M Carley. 2011. “Detecting Change in Longitudinal Social

Networks.” Journal of Social Structure 12: 1–37.

Miller, Kurt T., Thomas L. Griffiths, and Michael I. Jordan. 2009. “Nonparametric Latent

Feature Models for Link Prediction.” Advances in Neural Information Processing

Systems 10 (1): 1–9.

Minka, Thomas P. 1999. “Expectation Propagation for Approximate Bayesian

Inference.” Statistics 17 (2): 362–69.

Minka, Tp. 2008. “EP: A Quick Reference.” Citeseer 2008 (17): 1–7.

Neil, J, C Hash, A Brugh, M Fisk, and C B Storlie. 2013. “Scan Statistics for the Online

Detection of Locally Anomalous Subgraphs.” Technometrics 55: 403–14.

Nowicki, Krzysztof, and Tom a. B Snijders. 2001. “Estimation and Prediction for

Stochastic Blockstructures.” Journal of the American Statistical Association 96

(455): 1077–87.

Park, Y, C E Priebe, A Youssef, and IEEE. 2013. “Anomaly Detection in Time Series of

Graphs Using Fusion of Graph Invariants.” Selected Topics in Signal Processing of

7: 67–75.

Priebe, C E, J M Conroy, D J Marchette, and Y Park. 2005. “Scan Statistics on Enron

Graphs.” Computational Mathematical Organization Theory 11: 229–47.

Rückert, Ulrich, and Stefan Kramer. 2008. “Kernel-Based Inductive Transfer.” Machine

Learning and Knowledge Discovery in Databases, 220–33.

Sarkar, P, A W Moore, A C M, and SIGKDD. 2005. “Dynamic Social Network Analysis

Using Latent Space Models.” 7: 31–40.

Schwaighofer, Anton, V. Tresp, and K. Yu. 2005. “Learning Gaussian Process Kernels

via Hierarchical Bayes.” Advances in Neural Information Processing Systems 17:

1209–16.

78

Shi, Jianjun. 2006. Stream of Variation Modeling and Analysis for Multistage

Manufacturing Processes. CRC press.

Shun, Zhenming, and PETER McCULLAGH. 1995. “Laplace Approximation of High

Dimensional Integrals.” Journal of the Royal Statistical Society. Series B

(Methodological). JSTOR, 749–60.

Smith, Richard L. 1998. “Bayesian and Frequentist Approaches to Parametric Predictive

Inference.” In Bayesian Statistics, 589–612.

Tibshirani, Robert. 1994. “Regression Selection and Shrinkage via the Lasso.” Journal of

the Royal Statistical Society B.

Vogelstein, Bert, and Kenneth W Kinzler. 2004. “Cancer Genes and the Pathways They

Control.” Nature Medicine 10 (8): 789–99.

Wang, Hua, Feiping Nie, Heng Huang, Shannon L. Risacher, Andrew J. Saykin, and Li

Shen. 2012. “Identifying Disease Sensitive and Quantitative Trait-Relevant

Biomarkers from Multidimensional Heterogeneous Imaging Genetics Data via

Sparse Multimodal Multitask Learning.” Bioinformatics 28 (12): 127–36.

Wu, Pengcheng, and Thomas G. Dietterich. 2004. “Improving SVM Accuracy by

Training on Auxiliary Data Sources.” Proceedings of the Twenty-First International

Conference on Machine Learning, 110.

Xing, E P, W Fu, and L Song. 2010. “A State-Space Mixed Membership Blockmodel for

Dynamic Network Tomography.” The Annals of Applied Statistics 4: 535–66.

Xu, Kevin S., and Alfred O. Hero. 2014. “Dynamic Stochastic Blockmodels for Time-

Evolving Social Networks.” IEEE Journal on Selected Topics in Signal Processing

8 (4): 552–62.

Xue, Ya, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. 2007. “Multi-Task

Learning for Classification with Dirichlet Process Priors.” The Journal of Machine

Learning Research 8: 35–63.

Yang, T, Y Chi, S Zhu, Y Gong, and R Jin. 2011. “Detecting Communities and Their

Evolutions in Dynamic Social Networks—A Bayesian Approach.” Machine

Learning 82: 157–89.

Zhang, Yu, and Dit-yan Yeung. 2010. “A Convex Formulation for Learning Task

Relationships in Multi-Task Learning.” Proceedings of the Twenty-Sixth Conference

Annual Conference on Uncertainty in Artificial Intelligence, 733–442.

79

APPENDIX A

DERIVATION IN CHAPTER 2

80

I: Derivation for (2.6).

f(W), according to its definition in Case II, is

f(W) = ∑ ‖yk − Xkwk‖2
2K

k=1 + λ1‖W‖1 + λ2(Qlog|Ω| + Klog|Φ| + tr(Φ
−1WΩ−1WT)).

(A-1)

Furthermore, |Ω| = |Ω̃| (ςK −ϖK
TΩ̃−1ϖK). Then,

Qlog|Ω| + Klog|Φ|

= Qlog|Ω̃| + Qlog(ςK −ϖK
TΩ̃−1ϖK) + (K − 1)log|Φ| + log|Φ|

= Qlog|Ω̃| + (K − 1)log|Φ| + log {(ςK −ϖK
TΩ̃−1ϖK)

Q
|Φ|}

= Qlog|Ω̃| + (K − 1)log|Φ| + log|ΣK|. (A-2)

 ΣK is defined in (2.10).

Also,

tr(Φ−1WΩ−1WT)

= tr(Φ−1(W̃,wK) [
Ω̃−1 +

Ω̃−1ϖKϖK
TΩ̃−1

ςK−ϖK
TΩ̃−1ϖK

−
Ω̃−1ϖK

ςK−ϖK
TΩ̃−1ϖK

−
ϖK
TΩ̃−1

ςK−ϖK
TΩ̃−1ϖK

1

ςK−ϖK
TΩ̃−1ϖK

] (W̃,wK)
T
). (A-3)

Expanding the block matrix multiplication within the trace and simplifying the result, we

can get:

 𝑡𝑟(𝚽−1𝐖𝛀−1𝐖𝑇) = 𝑡𝑟(𝚽−1�̃��̃�−1�̃�𝑇) + (𝐰𝐾 − 𝛍𝐾)
𝑇𝚺𝐾

−1(𝐰𝐾 − 𝛍𝐾). (A-4)

𝛍𝐾 is defined in (2.9). Inserting (A-4) and (A-2) into (A-1) and re-organizing the terms,

(2.6) can be obtained. ∆

II: Proof of Theorem 2.1.

81

(2.5) is a convex optimization, which can be solved by a Block Coordinate

Descent (BCD) algorithm. We consider two coordinates in our problem, source domains

1, … , K − 1 as a whole and the target domain, respectively. Then, BCD works by

alternately optimizing each coordinate. Specifically, at the n-the iteration, n = 1,2,3, …,

BCD solves the following two optimizations:

 𝑤𝐾
(𝑛)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤𝐾

𝑓 ((�̃�(𝑛−1), 𝑤𝐾)), (A-5)

 �̃�(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛
�̃�

𝑓 ((�̃�, 𝑤𝐾
(𝑛)
)). (A-6)

(A-5) is to optimize the target domain, wK, treating source domains as fixed by using

estimates from the previous iteration, W̃(n−1). (A-6) then optimizes the source domains,

W̃, treating the target domain as fixed by using the estimate from (A-5), wK
(n)

.

The objective function in (2.5), i.e., 𝑓(𝐖), consists of a non-differentiable term,

‖𝐖‖1 . According to the seminal work by Tseng (2001), when a convex objective

function includes a non-differentiable term, BCD will converge to the optimal solution if

the term is separable according to the coordinates. This is exactly our case, i.e., ‖𝐖‖1 =

‖�̃�‖
1
+ ‖𝐰𝐾‖1 . Therefore, the BCD in (A-5) and (A-6) will converge to the global

optimal solution �̂�I (i.e., the solution to (2.5) in Case I). Furthermore, the convergence

enjoys a monotone property (Tseng 2001), i.e.,

 𝑓 ((�̃�(0), 𝒘𝐾
(1)
)) ≥ 𝑓 ((�̃�(1), 𝒘𝐾

(1)
)) ≥ 𝑓 ((�̃�(1), 𝒘𝐾

(2)
)) ≥ 𝑓 ((�̃�(2), 𝒘𝐾

(2)
)) ≥ ⋯ ≥

𝑓(�̂�𝐼). (A-7)

Let the initial values, W̃(0), be the knowledge of source domains in Case II, i.e., W̃(0) =

W̃∗. Then, (A-7) gives:

82

 f ((W̃∗, wK
(1)
)) ≥ f(ŴI). (A-8)

Next, according to (A-5), wK
(1)

 is

𝐰𝐾
(1)
= argmin 𝐰𝐾 𝑓 ((�̃�

(0), 𝐰𝐾)) = argmin 𝐰𝐾{𝑓(�̃�
(0)) + 𝑔(𝐰𝐾|�̃�

(0))} =

argmin 𝐰𝐾 𝑔(𝐰𝐾|�̃�
(0)). The second “=” follows from (2.6). 𝑓(�̃�(0)) is dropped in the

last equation because it is a constant. Comparing (A-8) and (2.11), we get 𝐰𝐾
(1)
= �̂�𝐾

II.

Therefore, (A-8) becomes 𝑓 ((�̃�∗, �̂�𝐾
II)) ≥ 𝑓(�̂�I) . When �̃�∗ = (�̂�1

I , … , �̂�𝐾−1
I) , it

means that BCD attains the optimal solution in one coordinate (the source domains).

Then, it must attain the optimal solution in the other coordinate (the target domain), i.e.,

�̂�𝐾
II = �̂�I. This completes the proof for Theorem 2.1. ∆

III: Proof of Theorem 2.2.

Both (2.12) and (2.13) can be solved analytically, i.e., ŵK = (XK
TXK +

λI)
−1
(XK

TyK + λμK) and w̌K = (XK
TXK)

−1
(XK

TyK) Let B ≜ (XK
TXK + λI)

−1
and Z ≜

(XK
TXK + λI)

−1
(XK

TXK). Then, it can be derived that Z = I − λB. Using B and Z, we can

show that ŵK = Zw̌K + λBμK. Therefore,

MSE(ŵK) = E {(ŵK −wK)
T
(ŵK −wK)}

= E {(Zw̌K + λBμK −wK)
T
(Zw̌K + λBμK −wK)}

= E {(Zw̌K − ZwK + ZwK + λBμK −wK)
T
(Zw̌K − ZwK + ZwK + λBμK −wK)}

= E {((Zw̌K − ZwK) + (ZwK −wK + λBμK))
T

((Zw̌K − ZwK)

+ (ZwK −wK + λBμK))}

83

= E {(Zw̌K − ZwK)
T
(Zw̌K − ZwK)} + (ZwK −wK + λBμK)

T(ZwK −wK + λBμK).

(A-9)

In the last equation in (A-9), the cross-product, 2(ZwK −wK + λBμK)
TZ E(w̌K −wK),

is omitted. This is because w̌K , as an ordinary least squares estimator, is unbiased, and

therefore E(w̌K −wK) = 0. Continuing the derivation in (A-9), we can obtain:

MSE(ŵK) = E {(w̌K −wK)
T
ZTZ(w̌K −wK)} + λ

2(μK −wK)
TBTB(μK −wK)

= σ2 tr {(XK
TXK)

−1
ZTZ} + λ2(μK −wK)

TBTB(μK −wK)

= σ2 tr{B(I − λB)} + λ2(μK −wK)
TBTB(μK −wK)

= σ2tr(B) − σ2λtr(B2) + λ2(μK −wK)
TBTB(μK −wK). (A-10)

Perform an eigen-decomposition for XK
TXK, i.e., XK

TXK = P
TΛP. Λ is a diagonal matrix of

eigenvalues γ1, … , γQ. PT consists of corresponding eigenvectors. Then the tr(∙) in (A-

10) can be shown to be:

 tr(B) = ∑
1

γi+λ

Q
i=1 and tr(B2) = ∑

1

(γi+λ)
2

Q
i=1 . (A-11)

Furthermore, let 𝛂 ≜ 𝐏(𝛍𝐾 −𝐰𝐾) and denote the elements of 𝛂 by 𝛼1, … , 𝛼𝑄. Then, the

last term in (A-10) can be shown to be:

 (μK −wK)
TBTB(μK −wK) = ∑

αi
2

(γi+λ)
2

Q
i=1 . (A-12)

Inserting (A-12) and (A-11) into (A-10),

MSE(ŵK) = σ
2∑

1

γi + λ

Q

i=1
 − σ2λ∑

1

(γi + λ)2

Q

i=1
+ λ2∑

αi
2

(γi + λ)2

Q

i=1

= σ2∑
1

γi + λ

Q

i=1
 − σ2λ∑

1

(γi + λ)2

Q

i=1
+ λ2∑

αi
2

(γi + λ)2

Q

i=1

84

 = ∑
σ2γi+λ

2αi
2

(γi+λ)
2

Q
i=1 . (A-13)

When λ = 0, MSE(ŵK) = MSE(w̌K). To show that MSE(ŵK) < MSE(w̌K) at some

λ > 0, we only need to show that there exists a λ∗ such that
∂ MSE(ŵK)

∂λ
< 0 for 0 < λ <

λ∗. To make
∂ MSE(ŵK)

∂λ
= 2∑

γi(λαi
2−σ2)

(γi+λ)
3

Q
i=1 < 0, a sufficient condition is to make every

term in the summation smaller than zero, i.e., λ <
σ2

αi
2, or equivalently, λ <

σ2

maxi(αi
2)

. This

proves the existence of λ∗ =
σ2

maxi(αi
2)

 and thereby proves Theorem 1. ∆

IV: Proof of Theorem 2.3.

According to (A-10), for a fixed λ , MSE(ŵK) changes only with respect to

(μK −wK)
TBTB(μK −wK). The smaller the (μK −wK)

TBTB(μK −wK), the smaller the

MSE(ŵK). According to Definition 1, (μK −wK)
TBTB(μK −wK) is the transfer learning

distance d(μK; λ). Therefore, the smaller the transfer learning distance, the smaller the

MSE(ŵK). This gives

 𝑀𝑆𝐸(�̂�𝐾
(1)
; 𝜆) ≤ 𝑀𝑆𝐸(�̂�𝐾

(2)
; 𝜆). (A-14)

Let λ(1)∗ = argminλMSE(ŵK
(1)
) and λ(2)∗ = argminλMSE(ŵK

(2)
) . Then,

MSE(ŵK
(1)
; λ(1)∗) ≤ MSE(ŵK

(1)
; λ(2)∗) ≤ MSE(ŵK

(2)
; λ(2)∗) . The second inequality

follows from (A-14). This completes the proof for Theorem 2.3. ∆

V: Obtaining (2.17) by the Gradient method.

Given 𝐰𝐾, the optimization problem in (2.17) with respect to 𝜍𝐾 and 𝛡𝐾 is:

85

min
𝜍𝐾,𝛡𝐾

𝜑(𝜍𝐾, 𝛡𝐾)

= min
𝜍𝐾,𝛡𝐾

 {𝑙𝑜𝑔(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

+
1

𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾

(𝐰𝐾 − 𝛍𝐾)
𝑇𝚽−𝟏(𝐰𝐾 − 𝛍𝐾)}

Using the gradient method, set the partial derivatives of 𝜑(𝜍𝐾, 𝛡𝐾) to be zero:

 {
𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝜍𝐾⁄ = 0

𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝝕𝐾⁄ = 0
,

i.e.,

 𝜕 𝜑(𝜍𝐾, 𝝕𝐾) 𝜕𝜍𝐾⁄ =
𝑄

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

−
(𝐰𝐾−𝛡𝐾

𝑇 �̃�−1𝛡𝐾)
𝑇
𝚽−𝟏(𝐰𝐾−𝛡𝐾

𝑇 �̃�−1𝛡𝐾)

(𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

𝟐 = 0, (A-15)

𝜕𝜑(𝜍𝐾 , 𝝕𝐾) 𝜕𝝕𝐾⁄ =

−
2𝑄�̃�−1𝛡𝐾

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

−
2�̃�−1�̃�𝑇𝚽−𝟏(𝐰𝐾−�̃��̃�

−1𝛡𝐾)

𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾

+
2�̃�−1𝛡𝐾(𝐰𝐾−�̃��̃�

−1𝛡𝐾)
𝑇
𝚽−𝟏(𝐰𝑲−�̃��̃�

−𝟏𝛡𝑲)

(𝜍𝐾−𝛡𝐾
𝑇 �̃�−1𝛡𝐾)

𝟐 = 0.

(A-16)

From (A-15), we can get:

 𝑄(𝜍𝐾 −𝛡𝐾
𝑇 �̃�−1𝛡𝐾) = (𝐰𝐾 − �̃��̃�

−1𝛡𝐾)
𝑇
𝚽−1(𝐰𝐾 − �̃��̃�

−1𝛡𝐾). (A-17)

Inserting (A-17) into the third term of (A-16) and through some algebra, we can get:

 �̃�−1�̃�𝑇𝚽−1𝐰𝐾 − �̃�
−1�̃�𝑇𝚽−1�̃��̃�−1𝛡𝐾 = 0. (A-18)

According to (2.15), �̃�𝑇𝚽−1�̃� = 𝑄�̃� . Using this in (A-18),

 �̂�𝐾 = �̃�
𝑇𝚽−1𝐰𝐾 𝑄⁄ . (A-19)

Furthermore, according to (A-17),

𝜍𝐾 =
1

𝑄
(𝐰𝐾 − �̃��̃�

−1𝛡𝐾)
𝑇
Φ−1(𝐰𝐾 − �̃��̃�

−1𝛡𝐾) + 𝛡𝐾
𝑇 �̃�−1𝛡𝐾

=
1

𝑄
𝐰𝐾

𝑇Φ−1𝐰𝐾 −
2

𝑄
𝐰𝐾

𝑇Φ−1W̃Ω̃−1ϖK +
1

Q
ϖK
TΩ̃−1W̃TΦ−1�̃��̃�−1𝛡𝐾 +𝛡𝐾

𝑇 �̃�−1𝛡𝐾

86

=
1

𝑄
wK

TΦ−1wK −
2

Q
wK

TΦ−1W̃�̃�−1𝛡𝐾 + 2𝛡𝐾
𝑇 �̃�−1𝛡𝐾.

Using (A-19) in the second term, we can get 𝜍�̂� =
1

𝑄
𝐰𝐾

𝑇𝚽−1𝐰𝐾.

Finally, in order to prove that the ϖ̂K and ς̂K are optimal solutions for a minimization

problem, we will need to show {
∂φ2(ςK, ϖK) ∂ςK

2⁄ |ς̂K,ϖ̂K > 0

∂φ2(ςK, ϖK) ∂ϖK
2⁄ |ς̂K,ϖ̂K ≻ 0

. “ ≻” denotes a matrix

being positive definite. It can be derived that:

∂φ2(ςK, ϖK) ∂ςK
2⁄ |ς̂K,ϖ̂K =

Q

(ςK−ϖK
TΩ̃−1ϖK)

2 > 0.

Furthermore,

∂φ2(ςK, ϖK) ∂ϖK
2⁄ |ς̂K,ϖ̂K =

2Q

(ςK−ϖK
TΩ̃−1ϖK)

2 Ω̃
−1ϖKϖK

TΩ̃−1 +
2Q

ςK−ϖK
TΩ̃−1ϖK

Ω̃−1,

where Ω̃−1ϖKϖK
TΩ̃−1 ≻ 0 and Ω̃−1 ≻ 0. So ∂φ2(ςK, ϖK) ∂ϖK

2⁄ |ς̂K,ϖ̂K ≻ 0. ∆

87

APPENDIX B

DERIVATION IN CHAPTER 3

88

To prove Lemma 3.1 is to prove (𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾) = ∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 −𝑋𝑖 ~𝑋𝑗

𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))
2

. Start from the left-hand side. Write 𝐋 = 𝐃 − 𝐀 , where 𝐃 is a

diagonal matrix of the nodes’ degrees, i.e., 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑄). 𝐀 is matrix of the edge

weights, i.e., 𝐀 = {𝑎𝑖𝑗}. The diagonal elements of 𝐀 are zero. Then,

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)

= (𝐰𝐾 − 𝛍𝐾)
𝑇𝐃(𝐰𝐾 − 𝛍𝐾) − (𝐰𝐾 − 𝛍𝐾)

𝑇𝐀(𝐰𝐾 − 𝛍𝐾) = ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2𝑄

𝑖=1 𝑑𝑖 −

∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗
(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗. (B-1)

Plugging in the definition that 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
, (B-1) becomes

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)

=∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2

𝑄

𝑖=1
∑ 𝑎𝑖𝑗

𝑋𝑖 ~𝑋𝑗

−∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗

=∑ ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)
2𝑎𝑖𝑗

𝑋𝑖 ~𝑋𝑗

𝑄

𝑖=1
−∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 − 𝜇𝑗𝐾)𝑎𝑖𝑗

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑗𝑖𝑋𝑗 ~𝑋𝑖
) − ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗. (B-2)

Because the graph is unidirectional, 𝑎𝑗𝑖 = 𝑎𝑖𝑗, (B-2) becomes

(𝐰𝐾 − 𝛍𝐾)
𝑇𝐋(𝐰𝐾 − 𝛍𝐾)

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
) − ∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗

(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗

=
1

2
(∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)

2𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗
+ ∑ (𝑤𝑗𝐾 − 𝜇𝑗𝐾)

2
𝑎𝑖𝑗𝑋𝑖 ~𝑋𝑗

− 2∑ (𝑤𝑖𝐾 − 𝜇𝑖𝐾)𝑋𝑖 ~𝑋𝑗
(𝑤𝑗𝐾 −

𝜇𝑗𝐾)𝑎𝑖𝑗)

89

=
1

2
(∑ 𝑎𝑖𝑗 ((𝑤𝑖𝐾 − 𝜇𝑖𝐾) − (𝑤𝑗𝐾 − 𝜇𝑗𝐾))

2

𝑋𝑖 ~𝑋𝑗
) .

The 1 2⁄ can be absorbed by 𝜆2.

Next, we prove Theorem 3.1. Denote the objective function in (3.5) by 𝜓(𝐰𝐾),

i.e.,

 𝜓(𝐰𝐾) = ‖𝐲𝐾 − 𝐗𝐾𝐰𝐾‖2
2 + 𝜆1‖𝐰𝐾‖1 + 𝜆2∑ 𝑎𝑙ℎ((𝑤𝑙𝐾 − 𝜇𝑙𝐾) − (𝑤ℎ𝐾 − 𝜇ℎ𝐾))

2

𝑋𝑙 ~𝑋ℎ
.

Because �̂�𝑖𝑘
𝑉𝐼 and �̂�𝑗𝑘

𝑉𝐼 are solutions to the optimization problem in (3.5) and they are non-

zero, they should satisfy:
𝜕𝑓(𝐰𝐾)

𝜕𝑤𝑖𝐾
|
�̂�K
𝑉𝐼
= 0 and

𝜕𝑓(𝐰𝐾)

𝜕𝑤𝑗𝐾
|
�̂�𝐾
𝑉𝐼
= 0, i.e.,

𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2
2

𝜕𝑤𝑖𝐾
|
�̂�𝐾
VI
+ 𝜆1𝑠𝑔𝑛(�̂�𝑖𝑘

𝑉𝐼) + 2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�ℎ𝑘

𝑉𝐼 − 𝜇ℎ𝐾))𝑋𝑖 ~𝑋ℎ
= 0,

(B-3)

𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2

2

𝜕𝑤𝑗𝐾
|
�̂�𝐾
II
+ 𝜆1𝑠𝑔𝑛(�̂�𝑗𝑘

𝑉𝐼) − 2𝜆2∑ 𝑎𝑙𝑗 ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾))𝑋𝑙 ~𝑋𝑗
= 0.

(B-4)

Focusing on (B-3), the third term on the left-hand side can be written into:

2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�ℎ𝑘

𝑉𝐼 − 𝜇ℎ𝐾))𝑋𝑖 ~𝑋ℎ

= 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)) + 2𝜆2∑ 𝑎𝑖ℎ ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) −𝑋𝑖 ~𝑋ℎ,ℎ≠𝑗

(�̂�ℎ𝑘
𝑉𝐼 − 𝜇ℎ𝐾))

≈ 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)). (B-5)

The last step follows from the given assumption that 𝑎𝑖𝑗 ≫ 𝑎𝑖ℎ. Similarly, the third term

on the left-hand side of (B-4) can be written into

2𝜆2∑ 𝑎𝑙𝑗 ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾))𝑋𝑙 ~𝑋𝑗
= 2𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)).

90

(B-6)

Considering (B-5) and (B-6) and taking the difference between (B-3) and (B-4),

𝜆1𝑠𝑔𝑛(�̂�𝑖𝑘
𝑉𝐼) cancels with 𝜆1𝑠𝑔𝑛(�̂�𝑗𝑘

𝑉𝐼) because it is known that �̂�𝑖𝑘
𝑉𝐼�̂�𝑗𝑘

𝑉𝐼 > 0, and we get:

𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2
2

𝜕𝑤𝑖𝐾
|
�̂�𝐾
𝑉𝐼
−
𝜕‖𝐲𝐾−𝐗𝐾𝐰𝐾‖2

2

𝜕𝑤𝑗𝐾
|
�̂�𝐾
𝑉𝐼
+ 4𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)) = 0.

(B-7)

−2(𝒙𝑖𝐾
𝑇 − 𝒙𝑗𝐾

𝑇)(𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼) + 4𝜆2𝑎𝑖𝑗 ((�̂�𝑖𝑘

𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘
𝑉𝐼 − 𝜇𝑗𝐾)) = 0. (B-8)

Furthermore, we can get:

 |(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝒙𝑖𝐾−𝒙𝑗𝐾‖2

 ×‖𝐲𝐾−𝐗𝐾�̂�𝐾
𝑉𝐼‖

2

2𝜆2

1

𝑎𝑖𝑗
. (B-9)

We would like to have an upper bound that does not include �̂�𝐾
𝑉𝐼. To achieve this, we

adopt the following strategy: Because �̂�𝐾
𝑉𝐼 is the optimal solution, 𝜓(�̂�𝐾

𝑉𝐼) should be the

smallest. Therefore, 𝜓(�̂�𝐾
𝑉𝐼) ≤ 𝜓(0), i.e.,

𝜓(�̂�𝐾
𝑉𝐼) = ‖𝐲𝐾 − 𝐗𝐾�̂�𝐾

𝑉𝐼‖2
2 + 𝜆1‖�̂�𝐾

𝑉𝐼‖1 + 𝜆2∑ 𝑎𝑙ℎ ((�̂�𝑙𝑘
𝑉𝐼 − 𝜇𝑙𝐾) − (�̂�ℎ𝑘

𝑉𝐼 −𝑋𝑙 ~𝑋ℎ

𝜇ℎ𝐾))
2

 ≤ 𝑓(0) = ‖𝐲𝐾‖2
2 + 𝜆2∑ 𝑎𝑙ℎ(𝜇𝑙𝐾 − 𝜇ℎ𝐾)

2
𝑋𝑙 ~𝑋ℎ

 . (B-10)

Then,

‖𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼‖2

2 ≤ ‖𝐲𝐾‖2
2 + 𝜆2∑ 𝑎𝑙ℎ(𝜇𝑙𝐾 − 𝜇ℎ𝐾)

2
𝑋𝑙 ~𝑋ℎ

≈ ‖𝐲𝐾‖2
2 + 2𝜆2𝑎𝑖𝑗(𝜇𝑖𝐾 −

𝜇𝑗𝐾)
2
, and

‖𝐲𝐾 − 𝐗𝐾�̂�𝐾
𝑉𝐼‖2

2 ≤ √‖𝐲𝐾‖2
2 + 2𝜆2𝑎𝑖𝑗(𝜇𝑖𝐾 − 𝜇𝑗𝐾)

2
 . (B-11)

Inserting (B-11) into (B-9), we get

91

|(�̂�𝑖𝑘
𝑉𝐼 − 𝜇𝑖𝐾) − (�̂�𝑗𝑘

𝑉𝐼 − 𝜇𝑗𝐾)| ≤
‖𝐱𝑖𝐾−𝐱𝑗𝐾‖2

2𝜆2
× √

‖𝐲𝐾‖2
2

𝑎𝑖𝑗
2 +

2𝜆2(𝜇𝑖𝐾−𝜇𝑗𝐾)
2

𝑎𝑖𝑗
. ∆

92

APPENDIX C

DERIVATION IN CHAPTER 4

93

I. Introduction to EP

Expectation Propagation (EP) is a method in approximate Bayesian inference that

uses a deterministic algorithm to approximate the true posterior distribution with an

exponential-family distribution (T. P. Minka 1999). It is applicable when the true

posterior distribution takes the form of a factorization, i.e.,

𝑝(𝜃|𝐳) =
1

𝑝(𝐳)
∏ 𝑓𝑘(𝜃)
𝑛
𝑘=0 . (C-1)

𝐳 is the observational data. 𝜃 is the parameter whose distribution is to be infer. 𝑓0(𝜃) is

the prior. 𝑓𝑘(𝜃) = 𝑝(𝑧𝑘|𝜃), 𝑘 ≥ 1 , is the likelihood corresponding to the 𝑘 -th

observation. When 𝑓𝑘(𝜃) takes a complicated form, computing the posterior 𝑝(𝜃|𝐳) is

difficult. EP approximates 𝑝(𝜃|𝐳) with a mathematically tractable distribution𝑞(𝜃) =

1

𝐶
∏ 𝑓𝑘(𝜃)
𝑛
𝑘=0 , with each 𝑓𝑘(𝜃) being a member of an exponential family, so that the

resulting 𝑞(𝜃) belongs to the same exponential family. The approximation by EP is

known to be better when the number of factors in the factorization, 𝑛, gets larger.

The best approximation 𝑞(𝜃) found by EP is one that minimizes the Kullback–

Leibler (KL) divergence 𝐾𝐿(𝑝||𝑞) (T. Minka 2008). To find the 𝑞(𝜃) , a plausible

algorithm would be to approximate each factor in 𝑝(𝜃|𝐳) using one factor in 𝑞(𝜃) by

matching the moments between 𝑓𝑘(𝜃) and 𝑓𝑘(𝜃). However, this algorithm limits itself to

a small subset of feasible solutions, i.e., it eliminates many candidate solutions that

effectively minimize 𝐾𝐿(𝑝||𝑞), but for which the individual moments of 𝑓 do not match

those of 𝑓. This requires a more sophisticated algorithm than simply matching moments

factor-by-factor, which leads to EP. Specifically, at each iteration of EP, we pick some 𝑙,

and include all the factors except 𝑓𝑙(𝜃), and then match moments for the distributions

94

with 𝑓𝑙(𝜃) and 𝑓𝑙(𝜃) omitted. Because the moment matching includes a large number of

factors (all factors except one), a better approximation is guaranteed. EP iterates with

one factor omitted at each iteration until convergence.

II. Introduction to Bayesian optimal filtering and smoothing

Bayesian optimal filtering and smoothing refers to the methodology that can be

used for estimating the states (𝐱1,⋯ , 𝐱𝜏) of a time-varying system, which are indirectly

observed through noisy measurements (𝐲1, ⋯ , 𝐲𝜏) (Kitagawa 1996; Crassidis and Junkins

2011). It computes three marginal posterior distributions to avoid inefficient and

unnecessary computing of the joint posterior distribution of the states at all time points,

𝑝(𝐱1,⋯ , 𝐱𝜏|𝐲1,⋯ , 𝐲𝜏). The three marginal posterior distributions are: 1) the filtering

distribution, i.e., the marginal posterior distribution of the current state given the previous

measurements, 𝑝(𝐱𝑡|𝐲1, ⋯ , 𝐲𝑡), 𝑡 = 1,… , 𝜏 ; 2) the prediction distribution, i.e., the

posterior marginal distribution of a future state given the previous measurements,

𝑝(𝐱𝑡+𝑛|𝐲1, ⋯ , 𝐲𝑡), 𝑛 ≥ 1; and 3) the smoothing distribution, i.e., the posterior marginal

distribution of a state given a certain interval of measurements, i.e., 𝑝(𝐱𝑘|𝐲1,⋯ , 𝐲𝑡),

𝑘 < 𝑡. Bayesian optimal filtering and smoothing uses recursive equations to compute the

three marginal posterior distributions under the assumption that the states at successive

time points have a Markovian property.

III. Proof of Proposition 4.1

Our use of EP in this paper has a small twist from its original purpose as

illustrated in (I). We use EP to find an approximate Gaussian distribution of the state

vector 𝐱𝑡 based on the observation equation 𝑝(𝐲𝑡|𝐱𝑡) in (4*). Because the same EP

algorithm is applied to every time point, we omit the subscript “𝑡” in the rest of this proof

95

for notation simplicity. Mapping to the generic notations of EP defined in (C-1), this is to

consider the state vector 𝐱 as the “𝜃”, the network 𝐲 as the “𝐳”, and “𝑓0(𝜃)” and “𝑝(𝐳)”

being constants. Then, the EP in our case is to find a distribution 𝑞(𝐱) = ∏ 𝑓(𝐱𝑖𝑗)𝑖𝑗 to

approximate 𝑝(𝐲𝑡|𝐱𝑡) = ∏ 𝑓(𝐱𝑖𝑗)𝑖𝑗 , where 𝐱𝑖𝑗 = [𝑥𝑖 , 𝑥𝑗]
T , 𝑓(𝐱𝑖𝑗) is the edge-specific

observation equation given in (4), and 𝑓(𝐱𝑖𝑗) is zero-mean Gaussian, i.e., 𝑓(𝐱𝑖𝑗) =

𝑠𝑖𝑗𝑒𝑥𝑝 (−
1

2
𝐱𝑖𝑗
𝑇𝛑𝑖𝑗𝐱𝑖𝑗) . Consequently, 𝑞(𝐱) is zero-mean Gaussian, i.e., 𝑞(𝐱) =

𝐶 𝑒𝑥𝑝 (−
1

2
𝐱𝑇𝚷𝐱) , where 𝚷 = ∑ 𝚷𝑖𝑗𝒊𝒋 and 𝚷𝑖𝑗 is an 𝑛 × 𝑛 matrix with four non-zero

entries augmented from the 2 × 2 matrix 𝛑𝑖𝑗. The goal of EP is to find 𝚷, or equivalently,

𝐕 = 𝚷−1.

Before deriving the EP, we define some additional notations and relations that

will be used throughout the derivation. Let 𝐯𝑖𝑗 = 𝛑𝑖𝑗
−1 and 𝐕𝑖𝑗 be an 𝑛 × 𝑛 matrix with

four non-zero entries augmented from the 2 × 2 matrix 𝐯𝑖𝑗 . It is easy to show that the

following relations between 𝐯𝑖𝑗 and 𝐕𝑖𝑗 hold:

𝐕𝑖𝑗
−1 = 𝐝𝑖𝑗𝐯𝑖𝑗

−1𝐝𝑖𝑗
𝑇 , (C-2)

𝐯𝑖𝑗 = 𝐝𝑖𝑗
𝑇 𝐕𝑖𝑗𝐝𝑖𝑗, (C-3)

where 𝐝𝑖𝑗 is a 𝑛 × 2 vector whose first column has one at the 𝑖-th position and zeros

otherwise, and second column has one at the j-th position and zeros otherwise.

At each iteration of EP, one factor is omitted from 𝑞(𝐱). Let 𝑞\𝑖𝑗(𝐱) denote the

distribution where factor 𝑓(𝐱𝑖𝑗) is omitted, i.e., 𝑞\𝑖𝑗(𝐱) =
𝑞(𝐱)

�̃�(𝐱𝑖𝑗)
. The covariance matrix

of 𝑞\𝑖𝑗(𝐱) can be derived as follows:

𝐕\𝑖𝑗 = ((𝐕∗)−1 − 𝐕𝑖𝑗
−1)

−1
= 𝐕∗ + (𝐕∗𝐝𝑖𝑗)(𝐯𝑖𝑗 − 𝐝𝑖𝑗

𝑇 𝐕∗𝐝𝑖𝑗)
−1
(𝐝𝑖𝑗

𝑇 𝐕∗),

96

where 𝐕∗ is the approximation for 𝐕 obtained in the previous iteration. Using (C-3), we

can get:

𝐯\𝑖𝑗 = 𝐝𝑖𝑗
𝑇 𝐕\𝑖𝑗𝐝𝑖𝑗 .

Next, we define 𝑞∗(𝐱) to be the distribution that combines 𝑞\𝑖𝑗(𝐱) and the true factor

𝑓(𝐱𝑖𝑗), i.e., 𝑞∗(𝐱) =
1

𝑍𝑖𝑗
𝑞\𝑖𝑗(𝐱)𝑓(𝐱𝑖𝑗). 𝑍𝑖𝑗 is a normalizing constant. Then, we can obtain

an updated 𝑞(𝐱), 𝑞𝑛𝑒𝑤(𝐱), by minimizing the KL divergence between 𝑞∗(𝐱) and 𝑞(𝐱),

i.e.,

𝑞𝑛𝑒𝑤(𝐱) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐾𝐿(𝑞∗(𝐱)||𝑞(𝐱)).

Since we know that 𝑞𝑛𝑒𝑤(𝐱) is zero-mean Gaussian, the key is to find the covariance

matrix of 𝑞𝑛𝑒𝑤(𝐱), 𝐕𝑛𝑒𝑤. 𝐕𝑛𝑒𝑤 is related to the normalizing constant 𝑍𝑖𝑗 through (C-4):

𝐕𝑛𝑒𝑤 = 𝐕\𝑖𝑗 − 𝐕\𝑖𝑗𝐝𝑖𝑗(−2∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗)𝐝𝑖𝑗
𝑇 𝐕\𝑖𝑗 , (C-4)

where ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 denotes the derivative of 𝑙𝑜𝑔𝑍𝑖𝑗 with respect to 𝐯\𝑖𝑗. This means that

the EP is complete as long as we can derive ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 . The rest of this section is

devoted to the derivation for ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗:

According to the definition of 𝑍𝑖𝑗,

𝑍𝑖𝑗 = ∫𝑓(𝐱𝑖𝑗)𝑞
\𝑖𝑗(𝐱)𝑑𝐱

= ∫{𝜙 (
𝑥𝑖

𝜎𝛿
)𝜙 (

𝑥𝑗

𝜎𝛿
) + (1 − 𝜙 (

𝑥𝑖

𝜎𝛿
)) (1 − 𝜙 (

𝑥𝑗

𝜎𝛿
))} × 𝑁(𝐱|𝟎, 𝐕\𝑖𝑗)𝑑𝐱

= ∫{𝜙 (
𝑥𝑖

𝜎𝛿
)𝜙 (

𝑥𝑗

𝜎𝛿
) + (1 − 𝜙 (

𝑥𝑖

𝜎𝛿
)) (1 − 𝜙 (

𝑥𝑗

𝜎𝛿
))} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗

97

=

∫{∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

+

(1 − ∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

) (1 − ∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

)} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯
\𝑖𝑗)𝑑𝐱𝑖𝑗

= ∫{1 + 2∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

− ∫ 𝑁(𝑣|0,1)𝑑𝑣
𝑥𝑖
𝜎𝛿
−∞

− ∫ 𝑁(𝑢|0,1)𝑑𝑢

𝑥𝑗

𝜎𝛿
−∞

} ×

𝑁(𝐱𝑖𝑗|𝟎, 𝐯
\𝑖𝑗)𝑑𝐱𝑖𝑗

= ∫ {1 + 2∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
∫ 𝑁 (𝑢|−

𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
− ∫ 𝑁 (𝑣|−

𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
−

∫ 𝑁 (𝑢|−
𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗. (C-5)

Let

𝑔(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
∫ 𝑁 (𝑢|−

𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 ,

𝑙(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑣|−
𝑥𝑖

𝜎𝛿
, 1) 𝑑𝑣

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 , and

ℎ(𝐯\𝑖𝑗) = ∫ {∫ 𝑁 (𝑢|−
𝑥𝑗

𝜎𝛿
, 1) 𝑑𝑢

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗) 𝑑𝐱𝑖𝑗 . Then, (C-5) becomes

𝑍𝑖𝑗 = 1 + 2𝑔(𝐯
\𝑖𝑗) − 𝑙(𝐯\𝑖𝑗) − ℎ(𝐯\𝑖𝑗) . It is not difficult to find that 𝑙(𝐯\𝑖𝑗) =

ℎ(𝐯\𝑖𝑗) = 0.5. Therefore,

𝑍𝑖𝑗 = 2𝑔(𝐯
\𝑖𝑗). (C-6)

Next, we derive 𝑔(𝐯\𝑖𝑗). Define 𝐰 = [𝑣, 𝑢]𝑇. Then,

𝑔(𝐯\𝑖𝑗) =

∫ {∫
1

2𝜋
𝑒𝑥𝑝 (−

1

2
(𝐱𝑖𝑗 +𝐰𝜎𝛿)

𝑇
(𝜎𝛿

2)
−1
(𝐱𝑖𝑗 +𝐰𝜎𝛿))𝑑𝐰

0

−∞
} × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)𝑑𝐱𝑖𝑗

= 𝜎𝛿
2 ∫ ∫ {

1

2𝜋𝜎𝛿
2 𝑒𝑥𝑝 (−

1

2
(𝐱𝑖𝑗 +𝐰𝜎𝛿)

𝑇
(𝜎𝛿

2)
−1
(𝐱𝑖𝑗 +𝐰𝜎𝛿)) × 𝑁(𝐱𝑖𝑗|𝟎, 𝐯

\𝑖𝑗)} 𝑑𝐱𝑖𝑗𝑑𝐰
0

−∞

98

=

𝜎𝛿
2 ∫ ∫𝑁(𝐱𝑖𝑗|− (

1

𝜎𝛿
2 𝐈 + (𝐯

\𝑖𝑗)
−1
)
−1

(𝜎𝛿
2)
−1
𝐰𝜎𝛿 , (

1

𝜎𝛿
2 𝐈 +

0

−∞

(𝐯\𝑖𝑗)
−1
)
−1

)𝑁(−𝐰𝜎𝛿|0, 𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗) 𝑑𝐱𝑖𝑗𝑑𝐰

= 𝜎𝛿
2 ∫ 𝑁(−𝐰𝜎𝛿|0, 𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)𝑑𝐰
0

−∞
. (C-7)

Inserting (C-7) into (C-6), we further derive ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗:

∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 =
1

𝑍𝑖𝑗
(2∇𝐯\𝑖𝑗𝑔(𝐯

\𝑖𝑗))

= 𝜎𝛿
2 ∫

1

2𝜋|𝜎𝛿
2𝐈+𝐯\𝑖𝑗|

1/2 𝑒𝑥𝑝 (−
1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
0

−∞
(−

𝜎𝛿
2

2
) (−(𝜎𝛿

2𝐈 +

𝐯\𝑖𝑗)−1𝐰𝐰𝑇(𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗)−1) + 𝑒𝑥𝑝 (−

1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
1

2𝜋
(−

1

2
|𝜎𝛿
2𝐈 +

𝐯\𝑖𝑗|
−3/2

|𝜎𝛿
2𝐈 + 𝐯\𝑖𝑗|(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1)𝑑𝐰

=

𝜎𝛿
2

2
𝜎𝛿
2(𝜎𝛿

2𝐈 +

𝐯\𝑖𝑗)−1 ∫
1

2𝜋|𝜎𝛿
2𝐈+𝐯\𝑖𝑗|

1/2 𝑒𝑥𝑝 (−
1

2
𝐰𝑇𝜎𝛿(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝜎𝛿𝐰)
0

−∞
(𝑣

2 𝑢𝑣
𝑢𝑣 𝑢2

) 𝑑𝐰(𝜎𝛿
2𝐈 +

𝐯\𝑖𝑗)−1 −
1

2
(𝜎𝛿

2𝐈 + 𝐯\𝑖𝑗)−1𝑔(𝐯\𝑖𝑗) (C-8)

Using (C-8), ∇𝐯\𝑖𝑗𝑙𝑜𝑔𝑍𝑖𝑗 can be obtained numerically. ∆

IV. Proof of Lemma 1

We first derive the prediction distribution 𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗):

𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) = ∫𝑃(𝐱𝑡|𝐱𝑡−1, 𝐀

∗, 𝐐∗)𝑃(𝐱𝑡−1|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗)𝑑𝐱𝑡−1

= ∫𝑁(𝐱𝑡|𝐀
∗𝐱𝑡−1, 𝐐

∗)𝑁(𝐱𝑡−1|𝟎, 𝐏𝑡−1)𝑑𝐱𝑡−1

99

= ∫𝑁(((𝐱𝑡−1
𝑇 , 𝐱𝑡

𝑇)𝑇|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗)|𝟎, (

𝐏𝑡−1 𝐏𝑡−1𝐀
∗𝑇

𝐀∗𝐏𝑡−1 𝐀∗𝐏𝑡−1𝐀
∗𝑇 + 𝐐∗

))𝑑𝐱𝑡−1

= 𝑁(𝐱𝑡|𝟎, 𝐀
∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗ (C-9)

Let 𝐏𝑡
− = 𝐀∗𝐏𝑡−1𝐀

∗𝑇 + 𝐐∗ . Next, we derive the distribution

𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗):

𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) = 𝑃(𝐲𝑡|𝐱𝑡)𝑃(𝐱𝑡|𝐲1:𝑡−1, 𝐀

∗, 𝐐∗). (C-10)

Inserting (C-9) into the right hand side of (C-10), we get:

 𝑃(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀
∗, 𝐐∗) ≈ 𝐶𝑡𝑒𝑥𝑝 (−

1

2
𝐱𝑡
𝑇𝚷𝑡𝐱𝑡) × 𝑆𝑡𝑒𝑥𝑝 (−

1

2
𝐱𝑡
𝑇(𝐏𝑡

−)−1𝐱𝑡)

 = 𝐶𝑡𝑆𝑡 𝑒𝑥𝑝 (−
1

2
𝐱𝑡
𝑇(𝚷𝑡 + (𝐏𝑡

−)−1)𝐱𝑡).

Furthermore, because 𝑝(𝐱𝑡|𝐲1:𝑡, 𝐀
∗, 𝐐∗) ∝ 𝑝(𝐱𝑡, 𝐲𝑡|𝐲1:𝑡−1, 𝐀

∗, 𝐐∗) , we get 𝐏𝑡 =

(𝚷𝑡 + (𝐏𝑡
−)−1)−1. ∆

V. Proof of Theorem 2

According to the third equation in (C-8), we can get the joint posterior distribution

of the states at time 𝑡 and 𝑡 + 1 as

𝑝((𝐱𝑡
𝑇 , 𝐱𝑡+1

𝑇)𝑇|𝐲1:𝑡, 𝐀
∗, 𝐐∗) = 𝑁((𝐱𝑡

𝑇 , 𝐱𝑡+1
𝑇)𝑇|𝟎, �̇�1), where

�̇�1 = (
𝐏𝑡 𝐏𝑡𝐀

∗𝑇

𝐀∗𝐏𝑡 𝐀∗𝐏𝑡𝐀
∗𝑇 + 𝐐∗

). Then, the conditional posterior distribution of 𝐱𝑡|𝐱𝑡+1 can

be found to be:

𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲1:𝑡, 𝐀
∗, 𝐐∗) = 𝑁(𝐱𝑡|𝟎, �̇�2),

where �̇�2 = 𝐏𝑡 − 𝐇𝑡(𝐀
∗𝐏𝑡𝐀

∗𝑇 + 𝐐∗)𝐇𝑡
𝑇 and 𝐇𝑡 = 𝐏𝑡𝐀

∗𝑇(𝐀∗𝐏𝑡𝐀
∗𝑇 + 𝐐∗)−1.

Furthermore, due to the Markovian property of the SSM, we can get:

𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲, 𝐀
∗, 𝐐∗) = 𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲1:𝑡, 𝐀

∗, 𝐐∗) = 𝑁(𝐱𝑡|𝟎, �̇�2). (C-11)

100

Using (C-11), we can further derive:

𝑝((𝐱𝑡
𝑇 , 𝐱𝑡+1

𝑇)𝑇|𝐲, 𝐀∗, 𝐐∗) = 𝑝(𝐱𝑡|𝐱𝑡+1, 𝐲, 𝐀
∗, 𝐐∗)𝑝(𝐱𝑡+1|𝐲, 𝐀

∗, 𝐐∗) =

 𝑁(𝐱𝑡|𝟎, �̇�2)𝑁(𝐱𝑡+1|𝟎, 𝐏𝑡+1
𝑠) = 𝑁(𝟎, �̇�3),

where �̇�3 = (
�̇�2 + 𝐇𝑡𝐏𝑡+1

𝑠 𝐇𝑡
𝑇 𝐏𝑡+1

𝑠 𝐇𝑡
𝑇

𝐇𝑡𝐏𝑡+1
𝑠 𝐏𝑡+1

𝑠). In �̇�3 , �̇�2 + 𝐇𝑡𝐏𝑡+1
𝑠 𝐇𝑡

𝑇 is Var̂𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) and

𝐏𝑡+1
𝑠 𝐇𝑡

𝑇 is Cov̂𝐱𝑡,𝐱𝑡+1|𝐲,𝐀∗,𝐐∗(𝐱𝑡, 𝐱𝑡+1) . That is, 𝐏𝑡
𝑠 ≜ Var̂𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡) = �̇�2 +

𝐇𝑡𝐏𝑡+1
𝑠 𝐇𝑡

𝑇 = 𝐏𝑡 + 𝐇𝑡(𝐏𝑡+1
𝑠 − 𝐀∗𝐏𝑡𝐀

∗𝑇 − 𝐐∗)𝐇𝑡
𝑇 and

𝐏𝑡−1,𝑡
𝑠 ≜ Cov̂𝐱𝑡−1,𝐱𝑡|𝐲,𝐀∗,𝐐∗(𝐱𝑡−1, 𝐱𝑡) = 𝐏𝑡

𝑠𝐇𝑡−1
𝑇 . ∆

