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ABSTRACT

Virtual machines and containers have steadily improved their performance over time

as a result of innovations in their architecture and software ecosystems. Network func-

tions and workloads are increasingly migrating to virtual environments, supported

by developments in software defined networking (SDN) and network function virtu-

alization (NFV). Previous performance analyses of virtual systems in this context

often ignore significant performance gains that can be acheived with practical modi-

fications to hypervisor and host systems. In this thesis, the network performance of

containers and virtual machines are measured with standard network performance

tools. The performance of these systems utilizing a standard 3.18.20 Linux kernel is

compared to that of a realtime-tuned variant of the same kernel. This thesis motivates

improving determinism in virtual systems with modifications to host and guest ker-

nels and thoughtful process isolation. With the system modifications described, the

median TCP bandwidth of KVM virtual machines over bridged network interfaces, is

increased by 10.8% with a corresponding reduction in standard deviation of 87.6%.

Docker containers see a 8.8% improvement in median bandwidth and 4.4% reduction

in standard deviation of TCP measurements using similar bridged networking. System

tuning also reduces the standard deviation of TCP request/response latency (TCP

RR) over bridged interfaces by 86.8% for virtual machines and 97.9% for containers.

Hardware devices assigned to virtual systems also see reductions in variance, although

not as noteworthy.
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Chapter 1

INTRODUCTION

1.1 Motivation

Containers have recently increased in popularity as a mechanism for deploying

applications and increasing hardware utilization. Virtual machines are widely used in

enterprise and their uses have grown dramatically as the cloud computing paradigm

and network function virtualization (NFV) have expanded [1], [2]. In this context, the

term “virtual system” can refer to virtualization technologies including both virtual

machines and containers. Growth has been strong in cloud services for good reason as

described by Young et al. [3]. In that work, they describe many of the benefits offered

by cloud services such as scalability, controlling quality of service (QoS), customization

of user infrastructure, cost effectiveness, and simplified access interfaces, almost all of

which are enabled by virtualization. In NFV, the functionality that is often embodied

in physical devices such as routers, firewalls, and load balancers may be accomplished

with a virtual system which increases flexibility and scalability of the network in

many cases. In anticipation of this industry transformation, trade organizations have

recently sprouted up to promote NFV adoption and accelerate its development. Both

the European Telecommunications Standards Institute (ETSI) and Open Platform for

Network Function Virtualization (OPNFV) have been formed for that purpose [1], [2].

Developments in containers have also been enabled by tools for process isolation and

application portability, inspiring system designers to reconsider how these technologies

fit into the virtualization ecosystem.
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Studies examining the suitability of virtualization for cloud, NFV, and high perfor-

mance computing (HPC) applications, often cite low input/output (I/O) performance

as a factor limiting overall performance [3]–[5]. These same I/O constraints also limit

application scalability in HPC systems due to the high latency of inter-node communi-

cation. Latency can be partially mitigated by modifying operating systems to provide

more deterministic operation. The Linux Foundation recently announced that they

are fully supporting the efforts to promote and advance the development of realtime

Linux [6]. The Linux Foundation is the body that guides and sponsors the direction of

Linux so their interest comes at an important time due to recent funding difficulties

for realtime Linux [7]. The developments and interest in realtime will help improve

one of the greatest weaknesses of virtual machines, the latency and jitter of their I/O.

The improved determinism of a system running with realtime performance enables

applications that were not previously possible in virtual systems. Innovations in re-

altime Linux and HPC should also improve NFV and cloud performance by making

these systems more responsive and predictable.

An important motivation for virtualization is to increase process density which im-

proves hardware utilization, bringing down costs. Density of processes and applications

may be increased even further by utilizing containers such as Docker [8]. Although

containers have potential to scale to hundreds or thousands of containers per host,

these special cases are often not possible without specific homogeneous workloads.

Memory contention and I/O density are often limiting factors in system performance

such that process density can not increase without addressing memory and I/O limi-

tations. Containers can very efficiently share and utilize available CPU and memory

resources, but scalability is limited for containers that need high bandwidth or low

latency network communication.
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1.2 Contributions

Many studies have analyzed virtual machines and containers to compare their

performance [3], [4], [9]–[18]. These studies have performed valuable analyses of virtual

systems and provided significant insight into their performance issues. These studies

are commonly in the context of cloud computing, NFV, or HPC. Network performance

is important in these infrastructures due to the cooperative nature of the network

in a large-scale system. These studies frequently find that I/O is an issue, yet no

modification is suggested by their authors to improve its performance. The systems

analyzed in those studies differ little from their “factory defaults”, which produces

results that ignore real-world deployments and goals such as maximizing performance.

Tuning to improve performance can be a challenging task due to poorly-defined

endpoints and deeply-connected dependencies between options which complicates

assessing the benefit of any particular choice. This is further complicated by the

nondeterministic nature of operating systems which may hide the effects of some

tuning. Many system parameters, however, have well-known benefits or penalties such

as addressing known bottlenecks in memory and I/O. Improving the performance of

I/O is, however, complicated by difficulties that arise from sharing peripherals and

scalability problems that accompany bridging and similar networking paradigms.

The results of previous comparisons are built upon here by demonstrating a

straightforward, logical tuning process that addresses CPU, memory, and I/O perfor-

mance enhancements to improve network performance. Performance improvement is

accomplished through patching the host and guest kernels with the preempt-rt patch-

set [19]. The tuning and preempt-rt patching mentioned above are applied to the

Linux 3.18.20 kernel to produce the 3.18.20-rt18 PREEMPT-RT kernel which is then

built with specific configuration choices to enhance performance. The preempt-rt
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kernel is further tuned by applying specific boot options to improve its process iso-

lation and virtual memory performance. The preempt-rt tuned kernel improves the

determinism of both virtual machines and containers. The Linux kernel is the main

focus of tuning here without modification of hardware parameters to provide benefits

that can be realized on the majority of modern hardware.

This work compares the performance of the two kernels running popular open-

source virtual systems including kernel virtual machine (KVM) and Docker [8]. No

feedback-driven optimizations are performed in favor of making informed, logical

choices to improve performance. The network performance of bridged and physical

network interfaces is measured using common open-source tools such as netperf.

Testing completed with netperf includes measurement of TCP and UDP bandwidth,

along with TCP, UDP and ICMP latency.

This thesis demonstrates that modifications to the kernel can improve network

determinism significantly. One result of note is standard deviation in TCP bandwidth

decreased as much as 97% for containers using bridged networking. In some cases,

system tuning and process isolation can increase performance as well, but the pri-

mary goal of this work is to reduce variance in bandwidth and latency. The results

presented here show that realtime tuning of the kernel may offer greater benefits to

shared networking paradigms such as virtual bridges then physical network interfaces.

This is a because the improved determinism of the realtime kernel benefits kernel-

dependent processes like bridging whereas physical interfaces often use direct memory

access (DMA) and CPU virtualization extensions which already limit operating system

involvement to improve performance.
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1.3 Organization

This thesis is divided into five chapters, the remainder of which are organized

as follows. Important related work that has enabled performant virtual systems is

described in Chapter 2 along with some discussion of the previous performance analyses

comparing virtual systems. Virtual machine and container architecture are also briefly

discussed in Chapter 2 to highlight areas for improving performance. Test platform

hardware descriptions and a discussion of the operating system modifications made are

presented in Chapter 3 with motivations for those choices and their intended effects.

The experimental procedures and protocols including the measurement process and

types of network tests performed are also discussed there. Results and discussion of the

network performance measurements described in Chapter 3 are presented in Chapter 4

along with their significance and implications. Chapter 5 discusses the implications and

conclusions from the measurements collected here. Potential directions for future work

that resulted from the investigation performed here are also presented in Chapter 5.
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Chapter 2

RELATED WORK

There have been many comparisons between virtual systems, but they often do not use

any system optimizations to improve network performance of the virtual systems under

test. It is possible to improve the network performance of virtual systems with fairly

simple configuration changes to the kernel and modification of boot parameters. This

chapter discusses some of the enabling developments in virtual system architecture as

well as some of the comparisons among them.

2.1 Virtual Machine Architecture

In this section, virtual machine architecture is discussed to demonstrate resource

needs and potential areas for improvement. Differences among hypervisors and vari-

ations of virtualization are then discussed, followed by an analysis of innovations in

CPU, memory, and I/O virtualization.

The architectures available in virtual environments are as widely varied as the

types of hardware they are capable of emulating. Many of the concepts currently in use

regarding virtual machines originated in a seminal 1974 paper by Popek and Goldberg

[21]. Although virtual machines had already been implemented on “third-generation

computer systems” such as the IBM 360/67 by then, Popek and Goldberg sought to

establish formal requirements for and prove whether other systems of that era were

capable of supporting a virtual machine monitor (VMM)[21]. At the time, their analysis

focused on the possibility of a VMM, but the term hypervisor has largely come to

replace VMM as the name of a software system that allocates, monitors, and controls

virtual machine resources as an intermediary between the hardware and the virtual
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machine’s operating system (OS). What follows in this section is an introduction to

some important concepts in hypervisor and virtual machine architecture and the work

that led to them.

2.1.1 Hypervisors

Hypervisors are available in a few flavors, depending on the where the hypervisor

is running in relation to the hardware and the guest operating system. The term

“guest” here is used to refer to a virtual machine that is running on emulated or hosted

hardware and the term “host” is used to refer to the hardware, native operating

system, and hypervisor. In a Type 1 hypervisor, the hypervisor process is executing

directly on the CPU or “bare metal”. That is, the hypervisor code is not being hosted,

translated, or controlled by another system or piece of software, but running as a native

process on the CPU. In contrast, Type 2 hypervisors require a host operating system

to provide some system services including memory and file system management.

The difference between these two types of hypervisors is that a Type 1 hypervisor

does not require an operating system to run, whereas a Type 2 does. Although Type

1 hypervisors do not require an operating system to run, they do require an operating

system for control of the hypervisor and guests [22]. Type 1 systems appear to have

an efficiency advantage over Type 2 since they tend to use microkernels instead of

the macrokernels that are usually required to host Type 2 hypervisors. According to

Liguori [22], however, the difference between them has little to do with performance,

robustness, or other qualitative factors, but, rather, relates back to observations about

their differences made by Popek and Goldberg [21] and the analyses of these differences

by Robin and Irvine [23]. Robin and Irvine’s analysis related to the potential for

the Pentium processor to support a secure VMM [23], so it was important to draw

conclusions about the capabilities and suitability of various hypervisors. The vendors
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of hypervisor solutions also have an interest in drawing distinctions between the two

types of hypervisors, but the need to differentiate between these products has become

less important over time.

Although the distinction between Type 1 and Type 2 hypervisors has narrowed,

the market for virtualization is full of both. VMware, one of the more popular enter-

prise virtualization vendors, has products covering both architectures including ESXi,

their Type 1 enterprise hypervisor product that is responsible for running large-scale

virtualized systems all around the world [24]. They also provide Type 2 hypervisors

such as VMware Workstation Player that runs on systems from desktops to small-scale

servers that do not need the higher levels of orchestration and performance offered by

ESXi.

In addition to numerous other available hypervisors, the Kernel Virtual Machine

(KVM) is the default hypervisor in Linux that has been included as a module in the

Linux kernel since February 2007 when it was included with Linux kernel version

2.6.20 [25]. The KVM module allows the host operating system to provide the low-

level hardware access to the guest that has been enabled by hardware virtualization

extensions such as Intel’s VT-x [26]. Along with KVM in Linux, there is a user-space

component known as the Quick EMUlator or QEMU[27]. QEMU was designed to be an

architecture-agnostic emulator and virtualization helper, capable of running software

written for one architecture on other architectures. QEMU can achieve relatively

good performance using binary translation, but, when paired with KVM or the Xen

hypervisor [28], it can achieve near-native performance by executing guest instructions

directly on the host processor.

Combined, the KVM/QEMU hypervisor runs natively on Linux with kernel mod-

ules and userspace tools, but additional libraries such as libvirt [29] can be utilized

to simplify VM creation, monitoring, and orchestration.
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2.1.2 CPU Virtualization

In addition to the variations in hypervisors, the type of virtualization used to

provide devices to the guest operating system can have a significant impact on per-

formance. In the following sections, some important types of hardware emulation

are reviewed comprising binary translation, paravirtualization, and hardware assisted

virtualization.

One of the early challenges in the virtualization of the x86 architecture was handling

privileged instructions. The x86 processor was originally designed with 4 “rings”,

numbered from 0 to 3, which represent decreasing privilege levels as the rings increase.

Operating systems utilizing the x86 instruction set execute user code in ring 3 and

privileged instructions (kernel code) in ring 0. Virtual machines running on the x86

architecture execute their instructions as a user-space process in ring 3 so the host OS

can maintain control of the system. The mechanism by which the processor executes

privileged instructions on behalf of the guest has been the topic of considerable effort in

the advancement of virtualization which has spawned multiple techniques for handling

these instructions.

One of the earliest methods, known as binary translation, involved trapping priv-

ileged guest instructions in the hypervisor and translating them into “sequences of

instructions that have the intended effect on the virtual hardware” [30]. The binary

translation technique, developed by VMware, was one of the most efficient methods in

early hypervisors, but is now considered to have high overhead due to the additional

time required to perform the code translation. This same translation process, however,

allows a hypervisor using this technique to run guest operating systems for virtually

any processor on any other instruction set, provided that an efficient translation can be

achieved. This flexibility makes binary translation one of the most versatile methods
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of virtualization available and well-suited for virtualization of old instruction sets or

hardware.

Paravirtualization is another technique for handling guest privileged instructions.

It involves cooperation between the guest and host operating systems to improve

efficiency. The guest OS must be modified to replace privileged instructions “with

hypercalls that communicate directly with the virtualization layer hypervisor” [30].

VMware has incorporated this method in their vmxnet series of network drivers to

accelerate network workloads. A more widely known example of paravirtualization is

one of the first open-source hypervisors, known as the Xen hypervisor [28]. At the

risk of oversimplification, the Xen project is a modified Linux host that communicates

directly with the guest kernel. The guest kernel and modules must also be modified

in a paravirtualized system to facilitate this communication which places an addi-

tional burden on hardware vendors to provide not only open source drivers but also

paravirtualized open source drivers for their hardware. Although the Xen hypervisor

was originally developed with the intent of being hardware agnostic, the modifications

required to the guest operating system mean that only vendors wishing to participate

in the open-source community provide paravirtualized drivers. The community itself

is free to develop these drivers, but this adds a barrier to adoption for most new

hardware products. Despite the additional effort required, Xen maintained their lead

as a very popular open-source hypervisor for many years. Paravirtualization has its

fans, however, and much work has been done comparing Xen to containers and other

hypervisors such as KVM [3], [14]–[18], [31].

The third popular virtualization method is becoming the de facto standard as

virtualization matures. Hardware assisted virtualization started out as an effort to

accelerate instruction translation, but early generations of hardware had difficulty

keeping up with the binary translation method preferred by VMware [30]. The silicon
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vendors, however have been improving their virtualized performance and adding hooks

to enable virtualization of their hardware [26]. Since operating systems for x86 were al-

ready common when hardware assisted virtualization was introduced, the architecture

needed subtle modifications to help enable virtualization without breaking existing

software. This was accomplished with the introduction of yet another protection ring

that runs below the kernel’s ring 0. The hypervisor runs in ring -1, below the oper-

ating system kernel, and traps privileged instructions when they are executed by the

guest. For each virtual machine, a new structure is created and maintained in the

host kernel memory. Logically similar to a process control block, this structure, is

commonly known as a Virtual Machine Control Structure (VMCS) or, alternately as

a VM Control Block (VMCB). The VMCS maintains the state of the virtual machine

in the host kernel and is updated when the guest needs to perform a “vm-exit” to

allow the host to execute privileged instructions. This vm-exit is the process of a

virtual machine preserving its CPU context then returning control of the CPU to the

host OS and has been a significant source of latency for guest privileged instructions.

Advancements in virtualization-aware driver models such as SR-IOV, however, have

improved both latency and the frequency of these exits [32], [33].

A deep discussion of the hardware systems and mechanisms of processor and plat-

form virtualization outside the scope of this thesis. Suffice it to say, however, that

the CPU vendors have significant interest in producing higher core-count CPUs and

supporting virtualization. The discussion of these processors is limited even further

to x86 architecture, but it should be noted that ARM and other vendors are actively

working to enable virtualization with similar methods. Additionally, important com-

ponents of virtualization such as SR-IOV are managed by the Peripheral Component

Interconnect Special Interest Group (PCI-SIG) and are not the exclusive domain of
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x86 architecture [33]. To that end, both Intel and AMD have independently developed

processor extensions to enable virtualization [26].

2.1.3 Memory Virtualization

Virtualization of the CPU was the first challenge in the development of secure

virtualization, but, in Von Neumann processor architecture, the memory unit is equally

important. Memory has become an increasingly significant source of system latency

as the performance of the CPU core has improved faster than memory performance,

so improvements in this area are doubly beneficial for virtual machines. Virtualization

uses memory structures conceptually similar to those developed for virtual memory

in early computing systems. Virtual memory was created to allow multiprogramming

and process address spaces that are larger than the available physical memory. Modern

CPUs implement virtual memory with the aid of a memory management unit (MMU)

and translation lookaside buffer (TLB) to manage page tables and accelerate page

lookups. Fairly recent developments in x86 processors have allowed hypervisors to

maintain guest memory mappings with shadow page tables, known as Extended Page

Tables (EPTs) in Intel processors and Nested Page Tables (NPTs) for AMD. A

hypervisor may use TLB hardware to map guest memory pages onto the physical

memory similar to a native process, reducing the overhead of guest OS memory access.

Another significant improvement to virtual machine memory performance can be

realized by utilizing hugepage memory [34]. Hugepages, referred to as superpages by

Romer et al., can be described as a memory page that is a power-of-two multiple of

a standard 4096 byte (4 kb) memory page. Romer et al. demonstrated a significant

improvement in performance when using hugepages for memory-hungry applications.

In systems with relatively small memory sizes, virtual memory and swapping smaller

pages was more efficient than larger pages. As memory sizes have grown to hundreds of
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gigabytes per server and applications can consume multiple gigabytes each, however, 4k

memory pages no longer seem an obvious fit. Hugepages seek to reduce the frequency

of TLB lookups and page table walks by using larger pages of memory. With respect

to performance, they showed that TLB overhead could be reduced by as much as 99%

using superpage promotion which is a system of aggregating smaller pages together

as they are used by a process. In contrast, current implementations of hugepages in

Linux offer a set of large memory pages available to the kernel for memory allocation.

Unlike superpages, hugepages must be allocated at boot, rather than being coalesced

dynamically, but Linux hugepage performance is similar aside from increased memory

consumption due to unused portions of hugepages. For virtual machines that are

potentially using multiple levels of memory page walk, any reduction in the frequency

of lookups is beneficial. Hugepages are included here as an important mechanism for

improving host and guest memory performance.

2.1.4 I/O Virtualization

A recent development in full system virtualization is the virtualization of peripheral

devices and I/O (IOV). Along with compute and storage, processing of I/O is one of

the most critical components of a server’s workload since I/O can be a large source

of latency for remote transactions. Efficiently utilizing I/O allows virtual machines to

perform tasks that were previously possible only in native systems, particularly the

processing of network packets and workloads. Similar to the “virtualization penalty”

that occurs with nested page table lookups and binary translation, latency inherent in

the processing of network packets with multiple levels of handoffs should be avoided

when possible. Virtualization is essentially software emulation of hardware devices so

the natural first attempt at device virtualization is to emulate a device in the kernel,

providing a software device to the guest OS that is based on a common physical device.
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This method is common in some workstation virtualization products such as VMware

workstation [35].

Instead of emulating a software device in the kernel, it is also possible to emulate

the device in user-space. This is the method used by QEMU which provides both

device emulation and a platform-agnostic hypervisor. In Linux operating systems,

QEMU is often combined with the KVM modules to enable full system virtualization.

In this configuration, QEMU provides user-space device emulation for simple devices

such as mouse and keyboard, while KVM provides virtualization of the physical

hardware. Userspace emulation has the advantage of removing the responsibility

from the kernel, thereby minimizing the potential attack surface of the kernel. As

mentioned earlier, paravirtualized devices are another variation on this theme of

emulation where the paravirtualized guest drivers communicate with the host. In

addition to Xen’s paravirtualized driver model, the KVM virtio library is the basis

for paravirtualized devices in Linux [36]. The virtio library uses QEMU to implement

the device emulation in userspace so host-side drivers are not necessary.

While device emulation can provide important flexibility and hardware indepen-

dence, it brings up the recurring theme of software managing hardware functions

which is often less efficient than utilizing dedicated, specialized hardware to perform

the function. The alternative is to avoid any device emulation and allow the guest OS

to access hardware directly as if it belonged to the guest rather than the host system.

Since it is conceptually similar to virtualization of the MMU for memory, virtualizing

the direct memory access (DMA) transactions of modern I/O devices requires an I/O

MMU (IOMMU) to allow communication between the guest OS and I/O devices. In

the x86 architecture, this feature is known as AMD-Vi or Intel VT-d, but both utilize

the same concept of an IOMMU to avoid vm-exits when processing I/O. This allows

the hypervisor to unbind a hardware device from its kernel and “pass through” or
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“direct assign” the device to the guest OS [35]. Direct assignment of hardware to guests

also comes with the cost of dedicating network interfaces or other important devices

to a guest, but these devices provide considerable performance improvements over

paravirtualized or emulated guest devices, thereby enabling applications that could

not previously be virtualized due to low-latency constraints.

If a host system has a large number of virtual machines that need high-performing

I/O, it can be difficult to fit enough peripheral cards into the host chassis to serve as

passthrough devices to the guest VMs. A potential solution to this resource conflict

can be found in PCI-SIG Single Root I/O Virtualization (SR-IOV) [33], [37]. SR-IOV

is a general method by which the host system can configure a single hardware device

to create and control multiple additional virtual functions of the device. These virtual

functions can be directly assigned to and accessed by the guest, similar to passthrough,

without removing the main physical function from the host. The host’s physical

function represents the original hardware and is responsible for the management

functions of the peripheral. An illustrative example is the Intel 82599 10 Gigabit

network card, used later in this study. Each physical network interface (physical

function or pf) in these network cards has 64 Rx/Tx queue pairs that are normally used

as send and receive buffers to maintain multiple simultaneous flows. The individual

queue pairs may be “broken out” of the main pool to create a virtual function that is,

essentially, a new network device sharing the same physical interface as the physical

function. These new devices are assigned unique MAC addresses and IP addresses to

differentiate them on the network so that an outside observer cannot tell them apart

from a physical device. The advantage with SR-IOV is that one physical interface can

be multiplexed into independent interfaces that are each able to reach near-native

performance levels [32].
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2.2 Containers

At a high level, containers can be viewed as another level of access control beyond

the traditional user and group permission systems. While those systems provide

resource access control, containers can allocate these resources with finer granularity,

thus exposing only those resources and privileges that are required by the process

[14]. Containers are capable of applying controls to program execution that should be

included in process management at a fundamental level.

2.2.1 Container Architecture

Also known as operating system virtualization, containers are a construct of the

operating system that serves to provide limited context and resources to a process

executing on the host system. One of the most important duties of the kernel is

to control access to the system’s resources including CPU, memory, and I/O. All

processes under OS control should have a view of the system that is limited in context

and scope – they should only have access to the resources that they require with some

margin for error. The Linux subsystems that enable a containerized process, including

chroot, cgroups, and namespaces, have been gradually added to the Linux kernel

over time.

2.2.2 Resource Scope and Control

An early implementation of process isolation that led to containers was the re-

striction of its file system view, embodied in the chroot system call and program.

Introduced in Version 7 Unix in 1979, the chroot system call was later expanded

into BSD Jails and Solaris Zones [38]. This tool allows a user to change the root

directory of a process and its children to a specified directory such that the process
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subsequently views that directory as its root directory, /. This mechanism is useful

for providing partial file system isolation to a process, thus controlling libraries and

binaries that are available to that process. Although this works well for a normal

process, it does not prevent a malicious process from accessing arbitrary files, so it

can be easily circumvented. It makes this process more difficult, thereby “hardening”

the target, but was not intended to fully sandbox a process or restrict its file system

system calls.

The next process isolation tool to become available in Linux was control groups

(cgroups). Cgroups are organized into hierarchies with the root being the default

cgroup for all processes. Contributed by Google [39], cgroups serve to limit the

resources available to a process in a hierarchy, enabling child processes to inherit

their parent’s cgroup assignment [40]. Each process must belong to one and only one

cgroup. Child processes can be organized into sub-trees that subdivide the resources

of its parent process. In addition to isolation, cgroups are also capable of partitioning

resources so that a process may be allocated a proportion of a CPU’s resources and

share the remainder with other processes or not. The set of cgroups available includes

devices, hugetlb, and systemd, among others; the tuning performed here only utilizes

the cpuset and memory hierarchies for process isolation.

Namespaces, also a recent addition to the kernel, are the mechanism by which the

scope or resource view of the process may be limited and controlled. The namespaces

currently available in the Linux kernel are pid, mnt, net, user, ipc, and uts. In

this work, the only namespace that was explicitly invoked by the user was the net

namespace. Docker’s typical configuration places the container processes inside a

namespace that is specific to the container. Importantly, this sets the scope of various

container subsystems including: processes running on the system (pid), the file system

mounts (mnt), network interfaces (net), users (user), inter-process communication
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(ipc), and hostname (uts). Although Docker does not currently support assigning

physical devices to containers, this study accomplished this task with the iproute2

library and its ip user space tool.

Linux “capabilities” are the mechanism by which the monolithic permissions

granted to the root user for full system administration are broken down into more

granular permissions. Rather than assigning full system permissions to each container,

the Docker daemon uses capabilities to deliver a more finely grained set of permissions.

Any capability may be assigned or removed individually at run time, depending on the

needs of the container process. An important example is the capability required for

chroot calls, logically called cap sys chroot, which is seldom assigned to containers

unless they are intended to have deep system access.

2.2.3 Docker Networking

Docker networking can be fairly complex with multiple options available to both the

daemon and the run tools [41]. There are a few standard varieties of network interfaces

that are commonly used in containers. Most common among software options, virtual

bridges are operated by the host kernel with a non-trivial CPU involvement. Software

bridges are also commonly used by virtual machines where they are combined with the

virtio library to provide a paravirtualized interface to guest VMs [36]. Bridges are

the default layer 2 networking used by Docker which enables the daemon to quickly

configure simple network topologies for container cooperation [41]. The Docker daemon

also uses the common Linux firewall iptables for layer 3 connectivity, routing, and

network address translation (NAT) to allow containers to communicate with the

outside world. Another reason to study the bridged networking paradigm is that

bridges are generally important in networking and useful in interesting new system

topologies where containers may be linked together or their functions pipelined.
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2.2.4 Container Systems

While Docker has recently popularized process containers, related concepts have

been used in earlier operating systems. FreeBSD introduced the Jails concept in

1999 as a process isolation technique [38]. The Solaris version of the Unix operating

system added the concept of Zones (Solaris Containers) in 2004, as an upgrade of

the BSD Jails concept. Other container systems have been developed since including

the popular Linux VServer and OpenVZ, but these systems are not native Linux

containers, the focus of this thesis [5], [15], [16]. LXC is the current default Linux

container standard, added to Linux as an attempt to bring containers into the mainline

kernel [42]. The Linux container infrastructure has evolved some as have the many

other container systems to the point that there was need to unify the standards on a

single container format, libcontainer, which has recently been adopted by the Open

Container Initiative under the Linux Foundation [43].

The Open Container Initiative (OCI) was formed as a collaborative project under

the Linux Foundation [43]. Members of this organization span the industry from major

cloud players such as Microsoft and Amazon to virtualization vendors such as VMware

and CoreOS. The goal of this new organization is to promote an open, standardized

format for containers and the engine runtime libraries. They have a head start on the

standardization process with Docker donating its container format, libcontainer, and

runtime, runC, to the organization as a starting point. The development of a common

container and runtime for Linux under the OCI should accelerate the standardization

and adoption of containers under Linux. As a consequence of the OCI, Linux containers

should eventually converge onto a single format, which has evolved from the Docker

container specification.
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The Linux subsystems supporting containers have become sophisticated enough

that Docker or LXC are no longer strictly necessary to create containers, because

administrators can create their containers with native Linux tools such as systemd or

scripts that stitch together the correct cgroups, chroot, and namespace allocations.

Based on the amount of media coverage and hype surrounding the young startup,

Docker has become the de facto standard for containers in Linux. Docker is popular

for good reason: in addition to providing a robust tool set for isolating processes

and container orchestration, the Docker team has been extremely open about their

development and responsive to issues submitted by users on their github account [44].

It is for the reasons of its ubiquity and ease of use that Docker is the container format

selected for comparison in this thesis.

2.2.5 Docker Ecosystem

Docker is based on the underlying Linux process isolation systems combined with

user space tools such as docker daemon, docker build, and docker run written in

Google’s Go language [45]. Docker aims to enable process isolation in containers with

simple, effective tools, but the ecosystem of Docker is what makes it so useful. In

Figure 2.1, the overall flow of a container image is shown as it moves from registry

to daemon and is then deployed as a live container, all controlled through the client

system. In this figure, the “DOCKER HOST” and “Client” systems are shown as

separate entities, but they are all run on the same host system. A registry in this

context is a repository of container images that are posted and curated by their authors.

This system allows a Docker client to query the daemon for the presence of a particular

image, organized by hashes, similar to other version control systems. If the daemon

does not have the requested image in its stores, it can query official registries for the

image and download a copy if available. Once the image is present in the storage pool,
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Figure 2.1: Docker Ecosystem Architecture [45]

the daemon can then launch the image as a container or build new images based on

it. Additional development or enhancement to that container may then be committed

on top of the image and shared with others through the registry or just exporting

the image as a compressed tarball of its filesystem. This version-controlled sharing

of official images enables rapid development and deployment of containers and has

contributed greatly to the popularity of Docker as an application deployment tool.

2.3 Comparisons and Performance Analysis

Some of the important architectural details of virtual machines and containers are

described in Sections 2.1 and 2.2. An interesting quote on the differences between

virtual machines and containers comes from [13]: “Hypervisors abstract hardware,

containers abstract the operating system”. This concisely summarizes one of the im-

portant differences between these two types of virtualization in that virtual machines

must emulate hardware devices with software which often has some performance im-

pact. Virtualization of the operating system, however, only creates minimal additional
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Figure 2.2: Architecture Overview of Virtual Machines and Containers [46]

overhead with containers, most of which are felt during setup rather than runtime.

Figure 2.2 provides a simplified comparison of their architecture. In this traditional

virtualization schematic, the hypervisor sits on top of the server operating system

and hardware. It is responsible for mediating access to the host hardware as well as

emulating devices for the guest. This additional hardware emulation comes with some

performance cost as does the hosting of a complete operating system for each guest.

Although the Docker system in Figure 2.2 shows the guest OS running on top of the

server OS, containers are not emulating another OS, but utilizing the host’s OS with

limits imposed by the host and container orchestration system.

2.3.1 Performance Analysis

Many studies to date have compared the performance of virtual machines and

containers. Virtual machines have multiple additional libraries and operating system

instances, which increases the latency of protected operations.
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Felter et al. made an extensive evaluation of containers and virtual machines

including memory, compute, and I/O, but they did not attempt to tune the systems

[14]. They also used the advanced multi layered unification filesystem (aufs) as the

Docker storage driver, which is deprecated in upstream kernels.

In an excellent comparison between containers and virtual machines, Scheepers

analyzes Xen and LXC with macro benchmarks [16]. He showed that public clouds

need virtual machines for their isolation potential, but containers can be used to

maximize the utilization of the hardware.

Wang et al. studied the performance overhead of dynamic resource allocation and

found that static allocation performed better in most cases [17]. The performance

degradation of Xen virtual machines was attributed to intensive network I/O. This

degradation could be addressed in part with static allocation of network interfaces and

physical device assignment. They concluded that decreasing the switching magnitude

and frequency of their allocation schedule led to performance improvements. At the

lower limit of switching frequency is static allocation of resources, with processes

pinned to CPUs and dedicated physical resources.

Sherry et al. examined middleboxes which are the heart of NFV [47]. They show

that, as demand for streaming data increases, the need for additional middleboxes to

process and handle the traffic is also increasing. These network functions are often

allocated to virtual machines due to the flexibility and scaling that can be achieved

with increased density.

Middleboxes are also examined in a paper by Sekar et al., where they make the

case that middlebox innovation, i.e. in the context of NFV, is at least as important

as for switches and routers [48]. They propose that the role of middleboxes in the

network includes the critical usability and security considerations of network design.

One idea presented in their article that has significant potential with containers is the
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chaining of middlebox functions and its analogy to processing operations on a packet.

This is one of the core ideas of NFV in that the entirety of the network functions need

not be accomplished in one system or even one physical box, but can be distributed

around the network as processing nodes. By their estimates, there also appears to be

a significant amount of common traffic overlap ranging from 64 to 99% in middlebox

processing. While this seems high, it also presents an interesting alternative use case

for containers and virtual machines which may be pipelined and even potentially share

resources to decrease the redundancy present in current schemes.

Xavier et al. examine the suitability of Linux vServer, OpenVZ, and LXC for

high performance computing environments [4]. While the high compute-density of

containers is an advantage in HPC, it is often the network that has the greatest

impact on system performance. Containers lack the necessary isolation for co-located

workloads, but, since HPC workloads and cluster topologies are often controllable and

predictable, the lack of isolation in containers should not pose a significant impact

to performance. One of the shortcomings of their study, however, was not using high-

throughput network interfaces that are so critical in HPC, which makes it difficult to

properly draw distinctions among the systems. That comparison, specifically since it

was targeted at HPC, would have benefited from more CPU isolation and tuning.

The work of Wang and Ng analyzed the impact of virtualization on network

performance in the Amazon public cloud [31]. Although that work found that Amazon

does not have the same emphasis on performance as an HPC cluster, there are instances

available in the Amazon cloud that completely isolate their CPUs for guaranteed

performance. Although Wang and Ng did not have access into Amazon’s orchestration

or control systems, it is improbable that the high-performing virtual machines were

oversubscribed with other systems sharing their CPUs. These high-performing virtual
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systems are the subject of this thesis and it is the goal of the performance tuned kernel

described in Section 3.1.3.

There is a significant interest in utilizing virtual systems for HPC. Another study

that investigated this paradigm was performed by Younge et al., where they performed

an in-depth analysis of current virtualization technologies in HPC [3]. They investi-

gated a set of current hypervisors for performance which helps to guide the choice of

hypervisors in this thesis. In their article, they examine VMware, KVM, Xen, and Vir-

tualBox hypervisors. VMware has previously required permission prior to publishing

which complicates using their software in academic research. The proprietary nature

of their software also limits its utility in work that seeks to better understand their

operating system. The popular Xen hypervisor, while open source, requires paravirtu-

alization which creates additional burden. VirtualBox, while widely available, is also

not open source and has little available performance data. KVM is selected due to its

ubiquity and deep library of literature supporting it. This choice is also supported by

[3] who also proclaim it the best performer in internode bandwidth.

Rathore et al. compared KVM and LXC performance and isolation in hardware-

assisted virtual routers, but used dynamic allocation which normally has a negative

impact on latency [15]. Their isolation could have improved with realtime tuning and

CPU isolation. Containers alone cannot provide real isolation of processes without

explicit CPU control with cgroups, but the organization of processes and CPU as-

signment can be tricky. Orchestration of containers and virtual machines needs to

consider process isolation and CPU over-subscription for maximal I/O performance.

One of the considerations when designing the performance analysis of network

systems is the composition of the traffic that they handle. Virtual systems often reside

in data centers where it has been reported that TCP traffic represents a share of about

25



90% if the overall traffic [49]. This observation highlights the need for performant

network interfaces due to the high overhead required in maintaining TCP flows.

While many of the performance analyses described here are focused on high I/O

performance for virtual systems, they all neglected to investigate the impact of kernel

configuration or static resource allocation to improve the network performance of those

systems. In Chapter 3 to follow, the impact of kernel performance tuning and different

types of network interfaces are analyzed. The analyses performed show significant

improvement to TCP latency in most cases and bandwidth in some.

The next chapter describes the experiments performed and some of the motivations

for design decisions. The platform used for the experimentation is described along

with the procedures used to collect measurements of system performance.
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Chapter 3

EXPERIMENTAL DESIGN

As described in Section 2.3.1, the performance comparisons that have been made

between containers and virtual machines have, for the most part, not tuned their

systems for the comparison. Tuning can present a significant challenge due to the

numerous parameters and the resulting exponential number of configurations possible.

To avoid this potential explosion in the scope of the comparison, performance analyses

are restricted to two system configurations and two network types for each type

of virtual environment. The two configurations include the standard Linux kernel,

version 3.18.20, and the same kernel with preempt-rt patches applied [19] and some

important tuning parameters for the kernel and environment. Network interfaces

compared include the standard bridged networking for each virtual system and a

physical interface in passthrough to a VM or assigned to the namespace of a container.

3.1 Experimental Setup

In this section, the experimental environment constructed for this study is described

comprising system hardware, operating system versions, kernel versions, kernel param-

eters, kernel configurations, Docker parameters, and QEMU parameters.

3.1.1 Hardware

The motherboard used for the test system is a SuperMicro X10DRH-C/i server

board with dual CPU sockets. Both CPU sockets on the motherboard are populated

with an Intel Xeon E5-2608L v3, having 6-cores running at 2.00 GHz. Hyperthreading,

CPU Turbo, P-states, and C-states are all disabled in the BIOS as a performance
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optimization [19]. The platform is populated with two 16 GB memory sticks per socket

for a total of 64 GB of DDR4 memory running at 1866 MHz in dual-channel mode. The

network card used is an Intel 82599ES 10-Gigabit PCIe card with two optical interfaces,

each directly connected to the client system. The 10 Gigabit network interfaces are

used in order to stress the performance of the virtual systems. The computation

involved in processing a 1 Gbps flow is not significant enough to stress a virtual

machine, whereas a 10 Gbps stream provides a significant enough workload to observe

significant differences between the systems.

3.1.2 Networking and Topology

As discussed in Section 2.2.3, the default networking paradigm of Docker is to

create a bridge and pair of virtual Ethernet interfaces [41]. Both interfaces are bound

to the bridge; one remains in the host’s namespace and the other is assigned to the

container namespace as its primary network interface. Figure 3.1 shows the topology

of the network connections to virtual systems as configured for this study. Each

virtual system has three network interfaces including localhost (127.0.0.1, not shown),

a physical interface, and a bridged interface. Shown in green in the figure, the physical

interfaces to virtual machines utilize VT-d extensions and the CPU’s IOMMU to

provide direct access to the hardware, but containers only need the physical interfaces

placed in their namespaces. Represented by red in the figure, the bridged interface

used for both virtual systems traverses a standard Linux bridge provided by the

bridge-utils package in Ubuntu and Debian. The virtual machine bridge differs

slightly from the container in that the guest OS uses the virtio paravirtualized

interface provided by QEMU. Each network test performed in this study has the

server inside the virtual environment and the client running natively on an adjacent,

similar test system.
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Figure 3.1: Topology of Experimental Network

Linux iptables is also used for Docker networking on the host since it represents

the default networking configuration of Docker. No effort is made to optimize the

performance of the bridge or iptables because the focus of this work is not on tuning

the network interfaces themselves, but investigates how a latency-sensitive system can

be configured to improve performance.

In order to improve performance for both virtual machines and containers, a phys-

ical interface may be passed from the host into the domain of the virtual machine or

into the namespace of the container. As described in Section 2.1.4, this is known as

passthrough for virtual machines and is supported by CPU virtualization extensions

[26]. In the version of Docker used, 1.8.1, direct physical assignment is not enabled by

default. Instead, a script is constructed to assign a physical interface to the container

namespace, with inspiration borrowed from Petazzoni’s pipework [55], Anderson’s

direct-phys fork of pipework [56], and a serverfault.com post [57].
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3.1.3 Software Environment

The operating system used in this study needed to have a balance of stability,

advanced features, and performance, so a Long Term Support (LTS) version of Ubuntu,

14.04.3 is chosen. The Linux 3.18.20 kernel is selected for both the host and guest

OS due to a set of factors affecting usability and performance. Choosing which Linux

kernel version to use for this study is complicated by factors that are not known until

system configuration. It was already understood prior to configuration that Docker is

not supported in kernel versions prior to 3.10 which aided in limiting potential kernels.

One of the secondary goals of this study is to use as much standard and open software

as possible so that the kernel and system configurations could be easily reproduced by

other investigators. This goal influenced the choice of kernel due to the performance

impact of the Docker’s storage driver.

By default, Docker currently uses the aufs file system for its back-end storage

driver. This module allows the union file system approach of masking important host

files and providing private copies of system files to each container. Other options for

this driver include devicemapper, zfs, btrfs, and overlayfs. The aufs driver has

been deprecated in the Linux kernel so it is not available upstream which disqualifies

it from any forward-looking uses. The devicemapper driver, while ubiquitous, shows

significant performance degradation and usability issues disqualifying it as well. Both

zfs and btrfs have stability issues and are not yet standard file system drivers so

they are also disqualified. The remaining choice is overlayfs which has been recently

upstreamed into the 3.18 kernel and is the choice for Docker storage driver going

forward until zfs and btrfs become standard [58], [59]. Further limitations, while not

as important as the choice of the 3.18 kernel include the availability of preempt-rt

patches for the kernel.
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3.1.3.1 Kernel Configuration

One of the steps involved in tuning the realtime version of the kernel is to apply

a specific set of kernel configuration choices during the kernel build process. The

kernel shipped with Ubuntu 14.04.3 is version 3.19.0-25-generic. That kernel’s default

configuration (.config file) is used as the basis for the configuration and building of

the test kernel version 3.18.20. This default kernel configuration omits even simple

optimizations such as disabling CPU frequency scaling, and enabling a preemptable

kernel, but the default kernel configuration is likely the most common on servers that

have not done significant performance tuning and optimizations. The “performance”

kernel used is the 3.18.20-rt18 kernel which is the 3.18.20 kernel with the 3.18.20-rt18

patches, posted 2015-08-11, from [60] applied. The initial kernel configuration used is

that of the 3.18.20 kernel. Only a few important parameters of the kernel are modified

to tune the systems for performance with the preempt-rt patch. Kernel CONFIG

modifications are listed in Table 3.1.

3.1.3.2 Kernel Boot Parameters

Another important mechanism for tuning a kernel is to modify the parameters

passed to the kernel at boot time [61]. Standard kernels usually boot with only a few

parameters passed to the kernel such as “ro quiet” which makes the kernel read-only

and suppress most kernel boot messages. The preempt-rt kernel used, Linux 3.18.20-

rt18, is booted with a specific set of additional parameters to improve its performance

and determinism for guest virtual machines and containers. The set of parameters

passed to the performance kernel are summarized in Table 3.2.

One of the most important tuning parameters in a virtual machine host relates

to the level of over-subscription for each physical CPU (pCPU). Systems with low
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Table 3.1: Kernel Configuration Parameters and Their Descriptions

Parameter Setting Description

IKCONFIG y Enable config stored in kernel

IKCONFIG PROC y Mount .config as /proc/config.gz

NO HZ y Old idle dynticks config

NO HZ FULL y Full dynticks system

HIGH RES TIMERS y Enable high resolution timers

MCORE2 y Intel Core2 and newer Xeon CPUs features

PREEMPT y Fully preemptible kernel

PREEMPT RT FULL y preempt-rt patch, fully preemptible kernel

HZ 100 y 100HZ kernel clock

HZ 250 n 250 HZ clock turned off

ACPI DOCK n Disable ACPI dock management

ACPI PROCESSOR n Disable CPU power management

CPU FREQ n Disable CPU frequency scaling

CPU IDLE n Prevent linux from controlling CPU idling

BRIDGE y Enable Linux Ethernet bridging

INTEL IOMMU y Enable Intel IOMMU

IOMMU DEFAULT ON y Enable DMA device at boot time

IRQ REMAP y Support interrupt remapping

KVM y Supports hosting full virtualization guests

KVM INTEL y Support for KVM on Intel processors with

VT extensions

RCU NOCB CPU y Offload RCU callback processing from boot-

selected CPUs
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Table 3.2: Kernel Boot Parameters and Their Descriptions

Parameter Description

isolcpus=1-4 Isolate CPUs 1-4, removing them from the scheduler pool

of available CPUs.

hugepagesz=2M Set hugepage size to 2 MB (from default 4 KB).

hugepages=4096 Allocate 4096 hugepages for a total of 8192 MB.

nohz full=1-4 Set scheduler timer interrupt interval to 1 Hz instead of

the 250 Hz default.

rcu nocbs=1-4 Set the specified list of CPUs to be no-callback CPUs.

This reduces OS jitter on the offloaded CPUs, which can

be useful for HPC and realtime workloads. It can also im-

prove energy efficiency for asymmetric multiprocessors.

rcu nocb poll=1 Rather than requiring that offloaded CPUs (specified

by rcu nocbs= above) explicitly awaken the correspond-

ing rcuoN kthreads, make these kernel threads poll for

callbacks. This improves the realtime response for the

offloaded CPUs by relieving them of the need to wake up

the corresponding kernel thread, but degrades energy ef-

ficiency by requiring that the kernel threads periodically

wake up to do the polling.
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performance requirements may stack multiple guest virtual CPUs (vCPUs) on each

pCPU. This stacking can lead to multiple vCPUs from unrelated virtual machines

sharing the pCPU or host processes running on the pCPU assigned to the guest. Either

of these scenarios can have a large impact on guest latency. These resource conflicts

can be all but eliminated by “unplugging” pCPUs assigned to a guest from the host

scheduler with the isolcpus kernel boot parameter. Assigning a pCPU to the isolcpus

list, such as isolcpus=2, removes that pCPU from that kernel scheduler’s CPU pool,

preventing the kernel scheduler from running any processes there. The isolated CPUs

can still be used to run user processes with Linux utilities such as taskset or numactl,

but remain quiescent until that happens. Scalability of a system with isolated CPUs

is reduced, but in an era of server processors with more and more cores, the impact

of dedicating individual pCPUs to latency-sensitive processes is also reduced.

Access to memory can be one of the greatest sources of latency in computationally

intensive processes. Virtual machines have a similar sensitivity to latency in that

memory accesses can require both guest and host-level page walks. In order to minimize

the frequency of the multi-level memory lookups, hugepage memory is used as the

basis for the realtime guest’s memory. As discussed in Section 2.1.3, hugepages can

greatly reduce the cost of memory lookups and significantly impact the performance

of virtual machines. The host system enabled hugepages in the kernel with the kernel

arguments hugepagesz=2M hugepages=4096, which allocated 4096 hugepages of 2

MB each.

3.1.3.3 Building a Virtual Machine

The image used for virtual machine testing is based on a raw 16 GB disk image

created with the command line tool qemu-img. Ubuntu server 14.04.3 is then installed

to the image from the ISO file and only the OpenSSH package is selected during the in-
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Table 3.3: QEMU Virtual Machine Launch Arguments

Parameter Description

-realtime mlock=on Lock guest memory pages to prevent them from swapping

out.

-mem-path /mnt/huge Use the specified path for guest memory. Allows utilizing

hugepages for guest.

-mem-prealloc Preallocates guest memory, decreasing latency for most

memory accesses.

CPU pinning Not a QEMU parameter, but use taskset to assign the

smp affinity of each vCPU thread to one of the pCPUs

assigned to it.

stallation. After Ubuntu is installed, the packages for vim, ethtool, screen, qemu-kvm,

exuberant-ctags, apparmor, bridge-utils, and libpcap-dev are installed in the

VM to keep it consistent with the host installation.

3.1.3.4 QEMU and Hypervisor Parameters

QEMU is responsible for device emulation so selection of its arguments can have a

significant impact on VM performance. QEMU is used to launch the guest virtual ma-

chine with some additional command-line arguments to improve guest and hypervisor

performance. The complete set of additional QEMU parameters is shown in Table 3.3.

In this work, higher-level libraries such as libvirt or VMware orchestration are not

used in favor of running as efficiently as possibly without additional software layers of

abstraction impacting performance. The hope is for maximal performance so minimal

abstraction layers are utilized in the system configuration.
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3.1.3.5 Docker Parameters

The Docker environment is logically separated into building with docker build,

back-end management performed by the docker daemon, and the docker run com-

mand that actually instantiates containers from images and assigns the appropriate

cgroups and namespaces to the containers. The docker daemon sets up the software

environment for the containers, specifically their file systems, libraries, and available

binaries. Along with the files available to the container, the daemon also manages

cgroups and namespaces to properly control the container’s resources and limit its

scope. The docker run command is responsible for requesting resources and privileges

for the container as it is instantiated.

The image building process of Docker is controlled by the docker build command

line tool. This tool takes recipe files known as Dockerfiles [62] and constructs the image

based on instructions therein. It is useful to think of the relationship between an image

and a container similarly to the program/process dichotomy. The image is simply a

container’s data and the container is a running image. A Dockerfile specifies the base

image that is used for the build along with setting environment variables and installing

necessary packages and binaries to the container’s file system. It is read by the docker

build tool and the image is constructed as the composite overlay of each step in the

build process [63]. All of the containers used are based on the official Ubuntu 14.04

LTS image. The container base image is chosen in order to maintain a consistent

environment with the host and virtual machines. The image created for benchmarking

pulled the Ubuntu base image, applied labels and environment variables, then installed

netperf.

The daemon has a number of settings that may be modified to tune parameters

such as available cgroup CPU sets, bridged networking, and the storage driver used
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for container file systems. In this study, the docker daemon is launched with stan-

dard parameters but for the following exceptions. As discussed in Section 3.1.3, the

overlayfs storage driver is chosen, requiring the docker daemon to be launched with

--storage-driver=overlay. Additionally, Docker’s default bridge, docker0, is con-

figured to draw on a pool of IP addresses from the subnet 192.168.42.240/28 for its

bridged virtual Ethernet interfaces. The additional arguments used with docker run

are only used to assign the cgroup cpusets and corresponding memory node for the

realtime kernel. These arguments comprised --cpuset-cpus=1-4 which tells Docker

to create a cgroup containing those CPUs and assign the container to that cgroup

and --cpuset-mems=0 which tells Docker to assign socket 0 (the local socket) as the

only available memory node.

All containers are run with non-persistent file systems by using the --rm option

in the docker run line. This had the effect of removing the container’s file system

overlay after it exits, preventing any file system modifications between runs. This

is one of the advantages of containers in obtaining consistent performance since the

container file system is reloaded from the base image at every launch. Containers

are also run with the flags -i -t or -it, which requests that an interactive tty be

allocated to the container while it is running. This incurs a small additional overhead

for the terminal process, but this is consistent with the default operation of Docker.

Containers are all launched with a specified MAC address for their bridge interface

to remove the need to refresh address resolution protocol (ARP) tables with new,

randomized MAC addresses.

3.2 Experimental Procedure

This study compares the performance of two types of virtual systems with tuning

to those without and compares the performance of two different network interfaces.
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The primary experimental variable is the selection of kernel with or without tuning,

represented by the 3.18.20 and 3.18.20-rt18 kernels, respectively. The second important

option in the experiment is the choice of network interface comprising bridged or

physical and their effect on performance. KVM virtual machines and Docker containers

represent the options for choice of virtual system type studied. The set of 3 variables

with 2 parameters each produced 8 system configurations to test.

The performance of latency-sensitive network workloads are often not bound by

memory or CPU, but by their ability to process I/O traffic. Testing herein concentrated

on network-related benchmarks to evaluate bandwidth and latency of the various

operating system and network configurations. The network paths that are tested

comprised both TCP and UDP flows in addition to ICMP latency.

Network performance is measured with netperf [64] and ping. Using netperf

version 2.7.0 [65], [66], network bandwidth and latency are measured with tests in-

cluding TCP STREAM, TCP RR, UDP STREAM, and UDP RR. For each of the

netperf tests, 20 replicate samples of ten seconds each are collected in series. For the

ping test, 100 samples are collected with a one second interval.

In most cases, the STREAM bandwidth tests of netperf rely on the kernel for

ARP and routing. When attempting to measure UDP streaming performance over

bridged interfaces to the container with default settings, the client system was not

able to establish a connection, displaying an error that indicated a routing problem.

The cause of this error is a setting in the netperf UDP STREAM test that disables

IP routing for that test by default [66], [67]. On inspection of the netperf source

code, it was found that this setting was “grudgingly added” to prevent accidentally

flooding default routes and corporate networks with UDP STREAM packets [66]. The

consequences of this choice are only apparent when routing to a different subnet is

required, and the client process is unable to route its packets to the server. For each
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of the network tests performed, both bridged and physical interfaces are assigned to

different subnets in each virtual system to expedite testing. Therefore, in order to

maintain consistency between interfaces, all UDP STREAM tests enable routing with

the netperf flag -R 1.

Additionally, the UDP STREAM tests show unexpected behavior when the message

size used in the test is left at its default size. The default message size of 64 kb is

fragmented into smaller data packets to fit within the default Ethernet frame size of

1500 bytes. If one of the fragmented UDP packets is lost in transit, re-assembling the

message fails and that message is counted as lost in bandwidth calculations. Although

the network connections between the test systems did not carry any additional traffic,

this type of packet loss under the tested conditions has been difficult to predict. To

avoid the issue of unpredictable packet losses having a significant impact on bandwidth

calculations, the UDP STREAM tests are all run with a non-standard message size

of 1472 bytes, using the flag -m 1472.

For each of the request-response (RR) tests performed, the size of the messages

exchanged may be set at runtime with the test-specific command line parameter -r

1,1, which sets the payload size as one byte for each direction. A small 1-byte payload

was used in all of the RR tests to minimize the potential for additional variance due

to handling larger packets.
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Chapter 4

RESULTS

Network performance of Docker containers and KVM/QEMU virtual machines is

analyzed using standard benchmarking tools including netperf and ping. The results

of the tests are presented as box plots with the median in the center, 25th and 75th

percentiles at the bottom and top bounds of the box and minimum and maximum at

the ends of the error bars. This plot helps to illustrate the one-sided distribution that

may often be observed in network performance analysis where measurements often

approach the theoretical maxima for each test, but may have long tails in the other

direction.

4.1 Network Bandwidth

Network bandwidth is measured for all test configurations with both TCP and

UDP streaming flows. It should be noted, however, that the maximum theoretical

speed for Ethernet connections, both optical and copper, is just below 95% of the

physical data rate. This is due to the overhead of default maximum transmission unit

(MTU) Ethernet frames (1518 bytes + 8 byte preamble and 12 byte (96 ns) interframe

gap (IFG)), Ethernet header (14 bytes), 4 byte Frame Check Sequence (FCS), 20 byte

IP header, 20 byte TCP header, and 1460 MSS for TCP. Overall, this amounts to

78 bytes of overhead at various layers to transmit 1460 bytes of data representing

94.9% efficiency in the best case. Thus, any performance above 9.4 Gbps (9400 Mbps)

is considered line rate. The overhead fraction can be reduced with jumbo Ethernet

frames, but that level of network tuning is outside the scope of this study.
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Figure 4.1: TCP Streaming Bandwidth: Bridged Network

4.1.1 TCP Bandwidth

Bandwidth of the various network interfaces and kernels was measured using the

TCP STREAM bandwidth test in netperf. The results of the bridged measurements

are shown in Figure 4.1. It is evident in this figure that the streaming TCP bandwidth

of both environments improves with tuning as well as decreases in variance. It is

impressive that the realtime container reached line rate with only a few points below the

median. The performance of both the container and virtual machine are consistent with

a realtime kernel in that the performance is essentially deterministic with low variance.

The standard deviation, while not the best statistic for displaying the distribution of

these data, is the typical measurement of variation. Standard deviation of the virtual

machine in this case decreased by 87% and decreased by 4.4% for the container. This

is the result that is desired when tuning a system for deterministic performance.
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Figure 4.2: TCP Streaming Bandwidth: Physical Network

The results of the TCP STREAM test on the physical connection are shown in

Figure 4.2. This figure shows high throughput from the virtual environments with

all of the variants reaching line rate. While line rate performance was somewhat

expected in the physical interfaces, even the standard kernel variants show exceptional

performance. The realtime tuned kernel decreases variance in this case, but, since the

baseline performance is so high already, little to no gain is observed in the median

performance, with all configurations less than 0.01% separated from each other. The

differences between the bridged and physical network performance seen in Figures 4.1

and 4.2, respectively, partly illustrate the risks of using host bridging for networking

due to the additional latency contributed by a higher density of guest systems on that

host.
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4.1.2 UDP Bandwidth

Although a large fraction of data center traffic has been shown to use TCP [49],

one of the greatest sources of traffic in the Internet is streaming video and audio

which are typically UDP flows. UDP uses less computation per byte of goodput since

flow control and loss correction are not part of the protocol. This seems to indicate

that UDP performance should be equivalent to or higher than TCP performance. The

UDP bandwidth results observed, however, are contrary to that expectation, due in

part to the protocols used in the UDP STREAM tests.

Figure 4.3 shows the results of UDP bandwidth measurements over bridged net-

work connections. As described in Section 3.2, however, the UDP STREAM test has

some important details that should be understood before interpreting its performance.

Unexpectedly, one important caveat is that netperf disables IP routing for the UDP

STREAM tests by default. IP routing is enabled in all UDP STREAM tests to facil-

itate routing across separate subnets for each interface. Another consideration with

the netperf UDP STREAM tests is the selection of the message size transmitted at

each iteration. The default message size for this test is 64 KB, but a message of this

size is fragmented as it traverses an Ethernet segment with a 1500 byte MTU. The

netperf UDP bandwidth test counts the entire message as lost if a single fragment is

dropped in the network. Peak bandwidth on this test is observed to be higher with a

larger message size, but the results of that test configuration are difficult to reproduce.

To prevent this error condition and ensure consistent measurements, the message size

is limited to 1472 bytes for all UDP STREAM tests.

Low UDP bandwidth is a direct result of limiting the message size as described

above. Containers showed minimal variance in this test for both kernels, but improved

throughput for the realtime kernel. This indicates that the computational cost of
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Figure 4.3: UDP Streaming Bandwidth: Bridged Network

determining bridge actions in the kernel is not a significant source of latency at this

message size and resulting data rate. Although the VM showed an increased bandwidth

in the realtime kernel, the standard deviation of observed measurements also increases

from 722 to 964 Mbps, which is contrary to the goals of system tuning.

This first set of UDP test results is indicative of the complications encountered in

this thesis during UDP testing with netperf. It is known that UDP is an unreliable

message delivery protocol so it seems incongruous to send large messages that are not

counted when fragmented over UDP. Without the large messages, however, netperf

UDP STREAM has limited performance. This presents an interesting contradiction

in the UDP operation of netperf and the use of UDP in the network.

UDP bandwidth is also measured over a physical network interface and its results

are shown in Figure 4.4 . These results again show how significantly bandwidth is

limited by the restriction of the UDP message size. Although slightly higher performing
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Figure 4.4: UDP Streaming Bandwidth: Physical Network

than the bridged interfaces, the maximum bandwidth observed, 4.43 Gbps in the

realtime Docker test, is only 1.5% higher than the maximum bandwidth observed

in the bridged interface, 4.37 Gbps for the realtime virtual machine. None of the

UDP bandwidth results approach the theoretical limit of 9.5 Gbps nor do they vary

significantly between test conditions. Since all four systems show similar maxima

and variation, it appears that the system load created by this test is insufficient to

challenge system performance. Given the lack of variation among any of the test

systems observed, it is difficult to draw any conclusions other than that the workload

did not provide a significant challenge to the systems. The potential for improving

these conditions is discussed further in Section 5.1.1.
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4.2 Network Latency

Bandwidth measurements get a lot of attention due to the desire to push more

packets through the high-bandwidth connections of data centers and network back-

bones. Latency and jitter however, are often the critical metrics when evaluating a

network workload because low bandwidth does not prevent streaming services from

running effectively whereas high latency can cause dropped calls or prevent connec-

tivity entirely. In this section, the results of netperf and ping latency measurements

are discussed.

Variation in the measured latency is partly due to non-determinism normally

present in operating systems, but a small component of the total latency is due only

to the network delays. The 10 Gbps optical cables connecting the two systems are

approximately 2 meters long so the propagation delay along these connections should

be about 6.7 ns. In-network queuing delay can be ignored since the systems are directly

connected and queuing is only occurring at their network interfaces. The packetization

delay for transmitting or receiving a maximum-size Ethernet frame of 1500 bytes is

1.214 µs. This represents as much as 3% of the total latency observed, but this offset

should be constant across all tests and have little effect on the observed variance.

The netperf TCP Request/Response (RR) subtest and UDP RR subtest both

measure the number pf transactions that can be completed for a given request and

response size during a specified time period [69]. Each transaction comprises the

exchange of a single request and a single response so the average round trip latency

can be determined from the transaction rate. The time required to initiate and then

tear down a network connection is not included with this test. Only a few packets

are sent with this test so congestion is not a concern in this environment, but CPU

involvement in the packet processing may comprise a significant portion of the latency.
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Figure 4.5: TCP Request/Response Latency: Bridged Network

To minimize bias and variance added to measured latencies, the request-response test

variants are all performed with 1-byte payloads for request and response packets.

4.2.1 TCP Latency

Figure 4.5 shows the TCP RR latency of the bridged interfaces. This figure illus-

trates the intended result for tuning a system toward realtime performance. Both the

virtual machine and container show a significant reduction in variance when using a

realtime kernel instead of a standard kernel. The realtime Docker result does not show

much decrease in its median latency, but variance decreases dramatically as expected.

The virtual machine, however, showed reductions in latency as well as its variance.

Measurements of TCP RR latency over a physical interface are shown in Figure 4.6.

Similar to the bridged TCP STREAM bandwidth, the physical interface shows little

improvement moving from the standard to a realtime kernel, but all four modes seem
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Figure 4.6: TCP Request/Response Latency: Physical Network

to perform similarly. This trend represents one of the intended benefits of physical

interfaces where performance is expected to be more consistent across interfaces and

virtual systems due to reduced kernel involvement. Variance within each environment is

not especially low, but the physical interface is much more consistent between systems

than the bridged interface, due to fewer abstraction layers involved in processing

packets on this interface. What is surprising, however, is that the median latency

of the virtual machine shows an increase for the realtime kernel, but a decrease in

its variance. This may be normal with a realtime kernel, however, where improved

determinism may come at the cost of maximum performance. It also seems unusual

that the Docker measurements do not seem to vary. On closer inspection, they are

close, differing by less than 5% at their minima and less than 1% at their maxima.

48



4.2.2 UDP Latency

Although the TCP measurements presented so far are consistent with expectations,

the UDP workloads have not been as straightforward. The latency of both of the UDP

Request-Response tests are an example of the unexpected behavior observed. When

measuring network latency, it is expected that the majority of the delay comes from

transit across the network and queuing delays at intermediate nodes along the way. The

UDP latency shown in Figure 4.7, however, shows that the network effects discussed

previously can be small in comparison to other effects in the system. These UDP

RR latency measurements are generally higher than the bridged TCP measurements,

but the latency measured with the standard virtual machine configuration is actually

lower than the TCP case. These measurements were repeated multiple times with

similar results each time, indicating that there is a common configuration limiting the

rate at which the UDP test can run.

Results of the UDP Request-Response measurements over a physical interface are

shown in Figure 4.8. This figure shows the same relatively high latency as observed

over the bridged connection with unexpectedly low variation. The Docker results are

also surprising due to the increase in variance observed in the realtime tuned system

over the standard Docker system. The virtual machine results are suspect because

both measurements are very precise at 125 ± 0.006 µs. The combination of higher

latency in the physical measurements and the very high precision observed in the

virtual machine support the idea that the rate of UDP packet transmission is being

kept artificially low in this case. No settings in the Linux network stack could be found

to modify this transmission rate. Investigation into the source code of netperf did

not uncover any special treatment of the UDP RR tests leading to their unexpected
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Figure 4.7: UDP Request/Response Latency: Bridged Network

behavior, but the unusual treatment of UDP traffic in the STREAM test does not

add confidence to netperf handling of UDP latency measurements.

4.2.3 ICMP Latency

In order to get an idea of how the whole system responds to a realtime kernel,

ICMP latency was also measured with the standard network tool ping. The ping tool

presents a slightly different case than netperf due to the location of the responding

agent. Since netperf is a userspace process, its CPU affinity may be set to any CPU in

the system, specifically those that have been isolated from the kernel. ICMP responses,

however, originate from the kernel’s network stack so cannot be easily assigned to a

CPU. This limits how isolated its performance can be from the rest of the system.

The results of the ping testing of the bridged connections are shown in Figure 4.9. It
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Figure 4.8: UDP Request/Response Latency: Physical Network

is interesting that the container performance improved only slightly with the realtime

kernel, whereas the virtual machine variance improved significantly at the cost of

higher median latency. When using the standard kernel, the virtual machine sees very

high peak latency due to the additional abstraction layers that must be traversed for

each packet and the nondeterministic floating CPU cores that might respond. The

difference between the systems can be explained with an understanding of the CPU

affinity of the virtual machine. When the VM is pinned to specific, isolated CPU cores

as in the realtime example, the host kernel is not involved in the ICMP response so it

does not contribute to the variance. The containers, however, do not have this same

benefit. Although processes running inside a container are pinned to the container’s

cgroup cpuset, the host kernel is responsible for responding to ICMP requests. Since
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Figure 4.9: ICMP Latency: Bridged Network

the responding agent in the host kernel removes much of the benefit of isolating cores,

both kernels should behave similarly in this test.

Aside from the expected decrease in latency from the bridged interfaces to the

physical, the results of the physical interface ping testing are very similar to those of

the bridged interfaces, Figure 4.10. This is a result of the constraints mentioned in

the discussion of the bridged ICMP results. The host kernel latency is only slightly

affected by kernel tuning, but the guest kernel gets private cores to run its processes,

allowing a modest decrease in both variance and magnitude. Both of these ICMP

latency tests serve to illustrate that ping is only marginally helpful at assessing the

effect of kernel tuning on guest system performance.

In the preceding sections, the variance of TCP connections is shown to improve

with a realtime kernel and tuning to enable process isolation. Additionally, physical

interfaces are shown to outperform bridged interfaces in almost all cases, demonstrat-
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Figure 4.10: ICMP Latency: Physical Network

ing that bridged interfaces can create significant bottlenecks to performance. UDP

measurements shown are not as illuminating, however. In each UDP test performed,

there exists some system configuration or program setting that complicates interpre-

tation of the results. Modification of the message size for the UDP STREAM tests

was required in order to obtain consistent results for that test. That had the unin-

tended effect of diminishing the value of those results in understanding the effects

of system tuning. Finally, the results of the ICMP testing serve to demonstrate that

tuned kernels and system configurations can improve performance in most cases, but

the environment and context where a process is running are equally important to

performance as system configuration.
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Chapter 5

CONCLUSIONS & FUTURE WORK

Uses of virtualization have consistently grown as new technologies have improved

performance and the overhead of virtualization has decreased. Containers are a recent

innovation in virtualization that has been a catalyst for change in the industry as NFV

and new computing paradigms are developed. The open-source operating system Linux

has seen significant improvement in both traditional virtualization and the creation

of new mechanisms for process isolation. This innovation has led to new use cases and

orchestration mechanisms to manage and control virtual systems.

As expected, the Docker containers studied generally had higher bandwidth and

lower latency than virtual machines. In almost all of the streaming TCP tests both

systems realized a reduction to variance in their bandwidth and latency. Virtual

machines and containers tended to perform similarly, however, when the physical

network interfaces were dedicated to the virtual system. The reduction in variance

often comes at the cost of a small decrease in performance, but, as in the case of

the TCP STREAM test over a bridged interface, throughput may improve in some

cases. Measurements of UDP streams showed unusual behavior, caused by unexpected

handling of UDP fragmentation and potential limitations to the flow rate of UDP

packets.

Although bridged interfaces saw a greater improvement in most cases than the

physical interfaces, it was also shown to have more variability and lower throughput

than the physical network connections. This paradigm is a concern for large numbers of

guests because any networking topology that requires host kernel involvement cannot

scale to a large number of guests without a performance impact. This is because the
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work required by the host to monitor and handle bridge traffic and layer 3 decisions

for multiple guests can be significant and induces additional latency for each guest

added to the bridge. Bridged interfaces are extremely flexible and versatile, but the

computation required by the host kernel indicates that a large number of client systems

would see significant contention for the bridge, limiting its potential for scale out.

Specific innovations such as the preempt-rt patches for Linux have enabled levels of

determinism that were previously only available in embedded systems with dedicated

hardware. Application of the preempt-rt patches and targeted tuning of the host

and guest systems was shown to enable some increases in TCP bandwidth as well as

reduction of variance in TCP request/response latency, especially in network interfaces

such as bridges which require host kernel involvement. While no work was performed to

quantify their contributions, isolating processes from the OS general scheduler seems

to yield a significant improvement to their performance. This trend of dedicating

hardware to individual processes should only increase as the core counts of server

systems increase. A system running a processor with many CPU cores, such as the

60-core Xeon Phi, could be the server core of the future in this context.

5.1 Future Work

5.1.1 UDP Flows

Chapters 3 and 4 described unexpected UDP performance and required workarounds

when UDP flows were measured with netperf. It seemed that netperf was configured

with settings that prevented the UDP flows from transmitting at the expected rate,

but the root cause of this behavior is still unknown. Since netperf is one of the most

common network performance tools, the solution to the unexpected behavior could

provide valuable insight into network performance analysis. Benchmarking utilities
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such as iperf3 [68] have been addressed as alternatives to netperf and are perhaps

better suited to UDP measurement.

5.1.2 Traffic Analysis

Transport protocols such as TCP and UDP comprise a large fraction of the traffic

in datacenters and the Internet. Although this study examined network performance of

TCP and UDP flows in particular, there exist complex relationships between the real-

world workflows and the resulting subsystems that are stressed in their hosts. Further

investigation should be made into the impact of simultaneous network flows that

represent a more realistic balance of traffic through network backbones. These studies

could help to illuminate weaknesses in the network stack and related subsystems and

upstream those findings into the preempt-rt patch set and network drivers.

5.1.3 Virtual Functions

Virtual functions enabled by SR-IOV are a mechanism by which physical devices

may be multiplexed and share their resources among many virtual devices. While

virtual functions may subdivide the resources of the physical device, a virtual function

belonging to a peripheral such as a network interface card operates at line rate and

should attain latency similar to the physical function. Although scaling to tens of

containers may not be possible with physical device assignment, a small set of physical

devices may be subdivided into virtual functions, enabling near-line-rate performance

for all of the containers. The performance of virtual functions should be investigated

in the context of process isolation and system tuning to verify that containers can

scale out to the levels advertised in the press.
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5.1.4 DPDK

The isolation of processes from the rest of the system has been shown to improve

performance. User space libraries such as DPDK can allow systems to minimize

interference from the kernel by removing the interfaces from the kernel domain and

using poll mode user space drivers to minimize response latency [50]. This paradigm

represents the limit of process and hardware isolation because applications written with

the DPDK library monopolize the network interfaces and CPU cores, consuming extra

hardware resources to maximize performance. Optimizing parameters of the network

stack in Linux or implementing benchmarks in DPDK are additional optimizations

for improving network performance and should be considered in future work.
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