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ABSTRACT 

Hydrological models in arid and semi-arid ecosystems can be subject to high 

uncertainties. Spatial variability in soil moisture and evapotranspiration, key components 

of the water cycle, can contribute to model uncertainty. In particular, an understudied 

source of spatial variation is the effect of plant-plant interactions on water fluxes. At 

patch scales (plant and associated soil), plant neighbors can either negatively or 

positively affect soil water availability via competition or hydraulic redistribution, 

respectively. The aboveground microclimate can also be altered via canopy shading 

effects by neighbors. Across longer timescales (years), plants may adjust their 

physiological (water-use) traits in response to the neighbor-altered microclimate, which 

subsequently affects transpiration rates. The influence of physiological adjustments and 

neighbor-altered microclimate on water fluxes was assessed around Larrea tridentata in 

the Sonoran Desert. Field measurements of Larrea’s stomatal behavior and vertical root 

distributions were used to examine the effects of neighbors on Larrea’s physiological 

controls on transpiration. A modeling based approach was implemented to explore the 

sensitivity of evapotranspiration and soil moisture to neighbor effects. Neighbors 

significantly altered both above- and belowground physiological controls on 

evapotranspiration. Compared to Larrea growing alone, neighbors increased Larrea’s 

annual transpiration by up to 75% and 30% at the patch and stand scales, respectively. 

Estimates of annual transpiration were highly sensitive to the presence/absence of 

competition for water, and on seasonal timescales, physiological adjustments 

significantly influenced transpiration estimates. Plant-plant interactions can be a 

significant source of spatial variation in ecohydrological models, and both physiological 
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adjustments to neighbors and neighbor effects on microclimate affect small scale (patch 

to ecosystem) water fluxes. 

 



iii 

 

ACKNOWLEDGMENTS 

I would like to acknowledge Kiona Ogle and my committee members: Kevin 

Hultine, Osvaldo Sala, Enrique Vivoni, and Martin Wojciechowski for their feedback and 

assistance in experimental design and writing this dissertation. I thank Abraham Cadmus, 

Logan Monks, Clint Clarkson, and Emily Alvarez for their assistance in the field. I thank 

Michael Fell for his assistance in R coding. I also acknowledge Michael Fell, Jessica 

Guo, Drew Peltier, and Erick Pierson for their help proofreading components of this 

dissertation. Finally, I thank the staff at McDowell Mountain County Park for making 

research at the field site possible.



iv 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES  ........................................................................................................... vii 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER  

1 INTRODUCTION ................................................................................................1 

Introduction ..................................................................................................1 

References ....................................................................................................5 

2 SEASONAL STOMATAL BEHAVIOR OF A COMMON DESERT SHRUB 

AND THE INFLUENCE OF PLANT NEIGHBORS ..........................................8 

Abstract ........................................................................................................8 

Introduction ................................................................................................10 

Methods......................................................................................................12 

Results ........................................................................................................19 

Discussion ..................................................................................................22 

References ..................................................................................................30 

Tables .........................................................................................................36 

Figures........................................................................................................37 

3 A FRAMEWORK FOR PARTITIONING PLANT ROOTING PROFILES 

FROM NEIGHBORS USING MULTIPLE DATA TYPES ..............................43 

Abstract ......................................................................................................43 

Introduction ................................................................................................45 

Methods......................................................................................................47 



v 

 

CHAPTER Page 

Results ........................................................................................................57 

Discussion ..................................................................................................59 

References ..................................................................................................64 

Tables .........................................................................................................68 

Figures........................................................................................................72 

4 THE SENSITIVITY OF EVAPOTRANSPIRATION TO PLANT NEIGHBOR 

INTERACTIONS: IMPLICATIONS FOR PATCH- and STAND- SCALE 

MODELS ............................................................................................................75 

Abstract ......................................................................................................75 

Introduction ................................................................................................77 

Methods......................................................................................................79 

Results ........................................................................................................88 

Discussion ..................................................................................................93 

References ..................................................................................................99 

Tables .......................................................................................................105 

Figures......................................................................................................108 

5 AN ECOHYDROLOGICAL PERSPECTIVE ON PLANT-PLANT 

INTERACTIONS IN ARID AND SEMI-ARID ECOSYSTEMS ...................112 

Abstract ....................................................................................................112 

Introduction ..............................................................................................113 

Direct Effects of Plant-Plant Interactions on Water Fluxes .....................116 

Indirect Effects of Plant-Plant Interactions on Water Fluxes ..................120 



vi 

 

CHAPTER Page  

Plant-Plant Interactions across Different Spatial Scales ..........................124 

Plant-Plant Interactions across Varied Temporal Scales .........................127 

Conclusions and Future studies ...............................................................128 

References ................................................................................................130 

Figures......................................................................................................136 

REFERENCES ................................................................................................................139 

APPENDIX 

A SOIL PROPERTIES AND ROOT IDENTIFICATION: ADDITIONAL 

DESCRIPTIONS OF FIELD AND LABORATORY METHODS ............... 157 

B ROOT PRESENCE AND WATER UPTAKE FIGURES ...............................166 

C DESCRIPTION OF DYNAMIC SOIL WATER MODEL 

IMPLEMENTATION AND DATA INPUTS ................................................169 

D DATA PARAMETERS, SITE MAP, AND SOIL MOISTURE VALIDATION 

DATASET RESULTS  ..................................................................................174 

E SEARCH PARAMETERS AND STUDIES INCLUDED IN META-

ANALYSES ...................................................................................................179 

 

 

 



vii 

 

LIST OF TABLES 

Table  Page 

1.1 Posterior Estimates (mean and 95% CI) of the Reference Conductance (gref, mol 

m
-2

 s
-1

) and Stomatal Sensitivity (S) ......................................................................36 

2.1 Species Information for Genetic Analysis to Identify Presence in Root Samples 

based on the Presence of Unique Fragment Base Pair (bp) Lengths .....................68 

2.2 Description of Parameters and Variables in each Sub-Model of the Combined, 

Process Model ........................................................................................................69 

2.3 Evaluation of Model Performance between the Combined, Process Model 

Approach and Simpler, Individual Analyses of Datasets ......................................71 

3.1 Description of Simulation Scenarios for Evaluating the Effect of Plant Neighbors 

on Larrea tridentata’s Evapotranspiration  .........................................................105 

3.2 The Effect of Neighbors on Annual Transpiration and Evapotranspiration of 

Larrea tridentata  .................................................................................................107 

S3.1 Parameters Describing Potential Stomatal Conductance and Canopy Leaf Area 

for Larrea tridentata and Neighboring Species ...................................................176 



viii 

 

LIST OF FIGURES 

Figure  Page 

1.1 Mean Daily Stomatal Conductance of Larrea tridentata under Four 

Neighborhood Associations ...................................................................................37 

1.2 Mean Seasonal Stomatal Conductance of Larrea tridentate under Four 

Neighborhood Associations ...................................................................................38 

1.3 Stomatal Conductance Model Fit...........................................................................39 

1.4 Posterior Estimates (mean and 95% CI) of the Daily Random Effects for 

Reference Conductance (gref, mol m
-2

 s
-1

) and Stomatal Sensitivity (S) ................40 

1.5 Posterior Estimates (mean and 95% CI) of the Daily Reference Conductance (gref, 

mol m
-2

 s
-1

) .............................................................................................................41 

1.6 Posterior Estimates (mean and 95% CI) of the Daily Stomatal Sensitivity (S) .....42 

2.1 A Directed Acyclic Graph of the Combined Dataset Model .................................72 

2.2 The Fractional Active Root Area of Larrea tridentata under Four Different 

Neighborhood Associations ...................................................................................73 

2.3 Posterior Estimates of Root Biomass of Larrea tridentata and Neighboring 

Species ...................................................................................................................74 

3.1 Simulation Data Inputs Associated with Two Precipitation Regimes for Larrea 

tridentata Patches.................................................................................................108 

3.2 Larrea tridentata’s Fractional Rooting Distribution during Different Seasonal 

Periods..................................................................................................................109 

3.3 The Effect of Plant Neighbors on Larrea tridentata Patch Daily Transpiration, 

Evaporation, and Volumetric Soil Water Content ...............................................110 



ix 

 

Figure  Page 

3.4 Larrea tridentata’s Annual and Seasonal Transpiration under Differing 

Competitive, Physiological, and Canopy Microclimate Scenarios ......................111 

4.1 A Conceptual Diagram of the Direct and Indirect Effects of Plant-Plant 

Interactions on Patch Scale Water Fluxes ............................................................136 

4.2 Percentage of Data Types Utilized in Arid and Semi-Arid Plant-Plant Interaction 

Studies ..................................................................................................................137 

4.3 The Distribution of the Spatial Scale and Parameterization Approach of 

Vegetative Characteristics in Ecohydrological Modeling Studies .......................138 

S2.1 Posterior Estimates of Larrea tridentata’s Proportional Water Uptake ............167 

S2.2 Posterior Estimates of the Probability of Larrea tridentata’s Root Presence ...168 

S3.1 Map of Study Site  .............................................................................................177 

S3.2 Model Fit for Volumetric Soil Water Content  ..................................................178 

 

 

 



1 

 

1. INTRODUCTION 

Arid and semi-arid ecosystems cover roughly 40% of Earth’s land area and are 

predicted to increase in coverage under climate change (D’Odorico and Porporato 2006, 

Seager and Vecchi 2010). Furthermore, climate change is expected to increase the aridity 

of dryland ecosystems, altering ecosystem water cycles (Ravi et al. 2010, Maestre et al. 

2012). However, predictions of future dryland water cycles can be subject to bias and a 

high degree of uncertainty (Gerten et al. 2004), and improvements in model estimates are 

necessary for better predictive capability (Weltzin et al. 2003, Trenberth 2011). One 

source of model uncertainty in dryland ecosystems is the high spatial and temporal 

variability of components of the water cycle, such as evapotranspiration and soil moisture 

(Vivoni 2012, Long 2014). Quantifying the drivers of spatial and temporal variability of 

such processes can help to reduce uncertainty in model estimates (Rastetter et al. 2003, 

Shields and Tague 2012).  

 In dryland ecosystems, spatial variation in water fluxes can arise from 

heterogeneity in abiotic drivers, vegetation cover, and vegetation interactions. Abiotic 

factors such as soil texture, terrain slope, and precipitation can vary across meter to 

kilometer scales, and this variation can affect soil moisture and water fluxes such as run-

off, infiltration, and evapotranspiration (Wainwright 2006, Vivoni et al. 2010). The 

composition of plant species in an ecosystem also influences the magnitude and temporal 

trends of transpiration depending on the vegetative life-forms and functional traits 

(Roberts 2000, Sperry and Hacke 2002). In addition to transpiration, vegetative cover 

also decreases runoff and the importance of evaporation versus transpiration (Raz-Yaseef 
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et al. 2010). The effect of vegetation on spatial variation in water fluxes depends on the 

amount of bare soil, and the abundance and aggregation of plants (Ludwig et al. 2005). 

  Plant-plant interactions are an understudied potential source of variability in water 

fluxes in dryland ecosystems with aggregated plant spatial distributions. Plant neighbors 

can alter the microclimate around a particular plant and the soil that surrounds it (patch 

scale), ultimately leading to differences in soil moisture and evapotranspiration 

(Synodinos et al. 2015). The belowground microclimate can be affected by altered soil 

water availability arising from the negative effects of competition for water between 

neighboring plants with overlapping roots or the potential positive effects of plant-

mediated hydraulic redistribution of water (Callaway and Walker 1997). The 

aboveground microclimate around a plant may also be affected by canopy shading effects 

from neighboring plants (Barbier et al. 2008). Canopy shading reduces temperature and 

evaporative demand, which can affect soil evaporation and the stomatal conductance of 

the neighboring plants (Breshears et al. 1998).  The direct alteration of the microclimate 

around plants can influence transpiration and evaporation through effects on soil 

moisture, and the evaporative demand that can be temporally variable (Breshears et al. 

1997, Zavala and Bravo De La Parra 2005).  

The impact of plant neighbor interactions on transpiration also depends on the 

physiology and functional traits that control plant water use (e.g., stomatal conductance, 

root distribution), and these water-use traits can affect the nature of the neighbor 

interaction (i.e., competitive, facilitative, or neutral) (Sperry and Hacke 2002, Aschehoug 

and Callaway 2014).  Over longer timescales (annual to multiple years), adjustments in 

plant water-use traits may occur in response to neighbor-altered environments (Brisson 
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and Reynolds 1994, Callaway et al. 2003). However, few studies have quantified 

variation in water-use traits arising from plant interactions, or have evaluated the 

implications of water-use trait adjustments for ecological or ecohydrological processes 

(Callaway et al. 2003). 

 The effects of plant-plant interactions on water fluxes through both microclimate 

alterations and adjustments in water-use traits are not well quantified in arid and semi-

arid ecosystems. Ecohydrological models can include competitive and facilitative plant-

plant interactions, but adjustments in plant water-use traits in response to neighbor 

environments have yet to be evaluated in the context of ecohydrological models and are 

often rarely measured (Breshears et al. 1998, Callaway et al. 2003, Arnold et al. 2009, 

Tietjen et al. 2010). Thus, in my dissertation research, I examined the influence plant-

plant interactions on plant water-use traits and water fluxes by addressing four main 

questions: 1.) How do plant neighbors influence the aboveground controls of 

transpiration through stomatal conductance (Chapter 1)? 2.) How do the belowground 

controls on transpiration associated with rooting profiles and water sources vary in the 

presence of neighbors (Chapter 2)? 3.) How sensitive are patch- and stand-scale 

evapotranspiration estimates to the effects of plant neighbors (Chapter 3)? 4.) What is our 

current state of knowledge about the importance of plant neighbors for predicting water 

fluxes and multiple temporal and spatial scales, and how can we improve upon this 

knowledge (Chapter 4)?  

The first three questions were addressed using data collected on a common desert 

shrub, Larrea tridentata, growing under different neighbor associations defined by the 

presence/absence of overlapping canopies: Larrea growing with Ambrosia deltoidea, 
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Olneya tesota, or Prosopis velutina, or Larrea growing alone.  A variety of measurement 

approaches were employed to quantify Larrea’s stomatal behavior (porometry and gas 

exchange analysis) and vertical root distributions (stable isotopes, molecular techniques, 

root biomass). These data were analyzed via hierarchical Bayesian statistical techniques 

and process-based models to examine the effects of neighbors on Larrea’s physiological 

controls on transpiration. A forward-modeling, simulation-based approach that was 

informed by my field data was employed to explore the sensitivity of evapotranspiration 

and soil moisture to neighbor effects, and to identify the most important mechanisms 

underlying the neighbor effects. This paired field and modeling approach incorporates 

both the indirect influence of neighbors on water-use traits and the direct effects of plant 

neighbors on microclimate to explore the understudied effects of plant-plant interactions 

on patch and ecosystem scale water fluxes. Finally, I addressed the fourth questions by 

conducting a literature review to compliment my site-based, individual-species focused 

work to explore the broader implications of neighbor effects for patch and ecosystem 

water fluxes, and to make recommendations for improving upon future empirical and 

modeling work. 
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2. SEASONAL STOMATAL BEHAVIOR OF A COMMON DESERT SHRUB AND 

THE INFLUENCE OF PLANT NEIGHBORS 

Abstract 

 Stomata simultaneously regulate plant carbon gain and water loss, and patterns of 

stomatal conductance (gs) provide insight into water use strategies. In arid systems, gs 

varies seasonally based on factors such as water availability and temperature. Moreover, 

the presence and species identity of neighboring plants likely affects gs of the focal plant 

by altering available soil water and microclimate conditions. We investigated stomatal 

behavior in Larrea tridentata, a drought tolerant, evergreen shrub occuring throughout 

the arid southwestern United States. We measured gs in Larrea over multiple seasons in 

the presence of neighbors representing different woody species. The data were analyzed 

in the context of a commonly used phenomomlogical model that relates gs to vapor 

pressure deficit (D) to understand spatial and temporal differences in stomatal behavior. 

We found that gs in Larrea was affected by neighborhood association, and these effects 

varied seasonally. The greatest effect of neighborhood association on gs occurred during 

the winter period, where Larrea growing alone (without neighbors) had higher gs 

compared to Larrea growing with neighbors. Larrea’s stomatal sensitivity to D and 

reference conductance (i.e., gs at D = 1KPa) also differed significantly among different 

neighbor associations.  Random effects indicated reference gs varied over short time 

scales (daily), while stomatal sensitivity showed little daily or seasonal variation, but was 

notably affected by neighbor associations such that neighboring species, especially trees, 

reduced Larrea’s sensivity to D. Overall, seasonal dynamics and neighborhood 
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conditions appear critical to understanding temporal and spatial variation in Larrea’s 

physiological behavior. 

 

Keywords: Bayesian modeling, deserts, Larrea tridentata, plant water use, neighborhood 

interactions, stomatal conductance 
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Introduction 

 Stomata play a key role in regulating the trade-off between photosynthesis (A) and 

transpiration (E) (Farquhar and Sharkey 1982). Plants in arid environments typically have 

low stomatal conductance (gs) compared to plants in mesic systems, and slight variations 

in gs often result in large differences in A and E (Hetherington and Woodward 2003). 

Thus, variations in gs provide insight into E dynamics and water-use strategies because gs 

both responds to and is influenced by plant photosynthetic status, plant water potential, 

and available soil water (Buckley 2005; Medlyn et al. 2011; Héroult et al. 2013). 

 In arid systems, E and gs are influenced by seasonal patterns in water availability 

and temperature (Noy-Meir 1973; Fischer and Turner 1978; Schwinning and Sala 2004). 

Studies of gs in arid systems indicate that maximum daily gs, diel trends, and stomatal 

responses to vapor pressure deficit (D) differ between wet and dry seasons (Nilsen et al. 

1983; Ogle and Reynolds 2002; Barker et al. 2006; Tinoco-Ojanguren 2008). Variation in 

gs across seasons can arise in part from plant traits such as root distributions and 

hydraulic conductance and from differences in environmental conditions (Comstock 

2000; Xu and Baldocchi 2003). The duration of dry periods can influence gs due to 

prolonged soil water stress; whereas, rainy seasons result in increased gs due to high 

water availability and less extreme D (Reynolds et al. 1999). In most deserts, extreme 

high temperatures that often occur in late spring and summer, coupled with low humidity, 

result in high D, leading to rapid water loss through stomatal opening (Noy-Meir 1973; 

Jones 1998). Studies of seasonal patterns of gs in warm deserts, however, are often 

limited in their temporal scope, focusing on a couple of seasons or a small number of 
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days within a season (Smith et al. 1995; Ogle and Reynolds 2002; Ignace and Huxman 

2009).  

 Stomatal behavior can vary among individuals of a species for a variety of 

reasons, representing the effects of, for example, climatic gradients or soil texture (Oren 

et al. 1999; Hamerlynck et al. 2000; Comstock 2000). However, the effect of neighboring 

plants on gs dynamics has not been evaluated in arid environments, but neighborhood 

associations can affect gs by altering soil water availability and microclimate conditions 

(Callaway and Walker 1997; Schwinning and Weiner 1998). For example, neighboring 

plants can potentially modify water availability through competition or facilitation 

(Casper and Jackson 1997; Chesson et al. 2004; Gebauer et al. 2010). Plants that share 

similar soil water sources likely compete for water, such that neighbors can reduce the 

amount of water available for transpiration (Fowler 1986; Briones et al. 1996; 

Novoplansky and Goldberg 2001). Facilitative interactions can increase water availability 

through mechanisms such as shading and hydraulic redistribution (Armas and Pugnaire 

2005; Prieto et al. 2012; Holmgren et al. 2013). When there is little overlap in water 

sources, then neighboring species would likely have little impact on a plant’s water use 

(Ehleringer et al. 1991; Silvertown 2004). An understanding of how plant interactions 

affect gs dynamics can help explain variation within a species and lead to improved 

estimates of E.  

 Larrea tridentata (creosotebush) provides an excellent model system to explore gs 

behavior of an arid-adpated species and to evaluate the potential effects of neighborhood 

associations on seasonal gs dynamics. Larrea is a drought tolerant, evergreen shrub found 
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throughout the arid southwestern United States (Barbour 1969; Reynolds et al. 1999). 

Larrea is capable of withstanding very low leaf water potentials and can remain 

photosynthetically active in periods of high water stress (Odening et al. 1974; Meinzer et 

al. 1986). Larrea commonly co-occurs with other desert woody species, such as species 

of Ambrosia (bursage) and Prosopis (mesquite) (Shreve 1942; Phillips and Macmahon 

1978), thus, there is the potential for neighbors to affect Larrea’s physiological behavior. 

In this regard, this study addresses the question: How does Larrea’s stomatal behavior 

vary across seasons and among shrubs characterized by different neighborhood 

associations? This study evaluates two years of field-based measurements of gs in the 

context of a phenomenological model that relates gs to D (Oren et al. 1999). In doing so, 

this study examines the understudied influence of plant neighborhood associations on 

stomatal behavior and in arid systems. Improved estimates of gs are important for better 

constraining models of E and for improving predictive models of the hydrological cycle 

under climate change (Neilson 1995; Reynolds et al. 2000). 

 

Methods 

Study Site and Focal Species 

This study was conducted in the Sonoran Desert outside of Phoenix, Arizona at 

the McDowell Mountain Regional Park (33.7261,-111.6987, 476 m asl). Mean daily 

temperature ranged from 12.2°C (December) to 33°C (July) from 1979-2013 (WRCC, 

2013), and mean annual precipitation over an 18 year period (1992-2010) was 281 mm 

(Hall et al. 2011). The soil is classified as an Aridisol and has a sandy loam texture (Hall 

et al. 2011). The perennial plant community is dominated by Larrea, Olenya tesota 
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(ironwood), Prosopis velutina (velvet mesquite), and Ambrosia deltoidea (triangle leaf 

bursage). A. deltoidea is a small, drought deciduous shrub with periods of high activity 

during the wet winter and wet summer months (McAuliffe and Hamerlynck 2010). P. 

velutina and O. tesota are N-fixing trees that can access deep soil water (Suzan et al. 

1997; Huxman et al. 2005), and P. velutina is known for hydraulically redistributing 

water from deep soil layers to shallower depths (Hultine et al. 2004).  

 We focused on quantifying the stomatal behavior of Larrea across different 

seasons and neighborhood associations. An association with another species was 

considered to occur when an individual of that species was growing in close proximity to 

the target Larrea shrub (i.e., when the two plant canopies overlapped). We also included 

“lone” Larrea shrubs (shrub canopy >1.5m away from plant canopies of other species).  

We focused on four different neighborhood associations (i.e., lone Larrea shrubs, and 

Larrea shrubs growing in close proximity to O. testota, P. velutina, or A. deltoidea 

plants); a total of 24 study shrubs were selected with six replicates per neighborhood 

type. However, most sampling occasions focused on a subset of 12 “intensively studied” 

shrubs, with a minimum of three replicates per neighborhood type due to the time 

intensive nature of sample collection. Seasons were classified based on monthly 

temperature and precipitation averages (WRCC 2013) and included winter (cool and 

rainy; December-March), spring (dry and warm; April-May), summer (hot with episodic 

rain; June-September), and fall (cool and dry; October-November).  
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Stomatal Conductance Measurements 

 Stomatal conductance (gs) was measured with a portable photosynthesis system 

(Li-Cor 6400XT, Lincoln NE) on 30 days from December 2011 to November 2013. The 

Li-Cor chamber conditions were set to external ambient conditions. Measurements 

typically began around 08:00h and ended around 15:00-16:00h in the winter and began 

around 06:00h and ended around 13:00h in the summer, when gs was very low; gs was 

measured approximately every two hours for each study shrub. During each measurement 

period, a cluster of leaves (e.g., 8-30 leaves) were placed in the Li-Cor chamber, and once 

the gs values stabilized and the total coefficient of variation was <0.03, then five values 

of gs were logged during a ~1 min period. Due to the high frequency of measurements, 

non-destructive methods were used to estimate leaf area in the cuvette chamber. The 

average leaf area per leaf was determined for each study shrub based on at least 30 leaves 

collected throughout the canopy of the shrub. Following each Li-Cor measurement, the 

number of leaves in the cuvette were counted and the data was corrected based on the 

estimated total leaf area in the chamber (i.e., shrub-specific estimate of leaf area per leaf 

 number of leaves in chamber). Photosynthesis (A), atmospheric [CO2] (Ca), and leaf-to-

air D were simultaneously recorded with each gs measurement. 

 

Stomatal Conductance Model 

 Although several gs models have been described (e.g., Leuning 1995; Buckley et 

al. 2003; Tuzet et al. 2003; Damour et al. 2010), we focus on a model that relates gs to D 

(Oren et al. 1999), which we refer to as the “Oren model.” According to Oren et al. 
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(1999), this phenomenological model of gs agrees very well with a theoretical analyses of 

stomatal regulation of transpiration E in response to E and leaf water potential. Moreover, 

the Oren model has been successfully applied to understand variation in gs across and 

within species in multiple biomes, including multiple desert species (Ogle et al. 2012), 

and, in particular, Larrea (see also, Ogle and Reynolds 2002; Oren et al. 1999 ). 

 The Oren model linearly relates gs to (natural) log-scale D (Oren et al. 1999; Ogle 

et al. 2012):  

   s ref

0

ln
D

g g m
D

 
    

 
   (1) 

D0 is a reference D, which we set to 1 kPa; gref is the reference gs when D = 1 kPa, and m 

represents the responsiveness of gs to changes in D. A unitless index of stomatal 

sensitivity to D is given by (Ogle et al. 2012): 

 
ref

m
S

g
   (2) 

where S < 0.6 or S > 0.6 indicate the potential for anisohydric or isohydric behavior (Ogle 

et al. 2012, Oren et al. 1999), respectively, where isohydric plants regulate gs to maintain 

contant leaf water potential, whereas anisohydric plants exhibit greater diurnal variation 

in leaf water potentials. Importantly, S is devoid of the scale dependence issues 

associated with m. For example, plants with higher gref are also expected to be more 

sensitive to changes in D (higher m) (Kaufmann 1982). Thus, we reparameterized Eqn (1) 

in terms of gref and S, which we use in subsequent analyses: 
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Statistical Model  

 For each individually logged observation i (i = 1,2,..,6879), the vector of observed 

gs and D were assumed to follow a multivariate normal distribution with a (vector) such 

that:  

 
ss

~ ,
ni

i n

gg
Normal

D D

   
      

    

  (4) 

The means ( sg  and D ) correspond to the latent (unobserved) average gs and D values 

associated with each unique measurement period, n (n = 1,2,…,1371), representing a 

particular cluster of leaves on an individual shrub at a given time point (recall, there were 

~5 replicate logged observations per measurement period). Σ is a 2×2 covariance matrix 

that quantifies potentially correlated measurement errors resulting from the simultaneous 

measurement of gs and D. Common analysis approaches ignore replicate-level 

measurement uncertainty and potentially correlated gs and D measurement errors. Here, 

however, Eqn (4) can be interpreted as a measurement error model such that we explicitly 

account for replicate-level measurement uncertainty. 

The latent measurement period gs value ( sg ), the response of interest, was also 

assumed to follow a normal distribution, with a variance component that was estimated 

separately for each sampling day j (j = 1, 2, …, 30):  
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s s~ ( , )

n n jg Normal g    (5) 

The mean or predicted value ( sg ) is modeled according to the Oren model via Eqn (3), 

but D in Eqn (3) is replaced with the corresponding latent measurement period value, 
nD  

(Eqn (4)). 

 We implemented the above model in a Bayesian framework (Ogle and Barber 

2008; Ogle et al. 2012; Gelman et al. 2013), which facilitated simultaneous 

implementation of the bivariate measurement error model in Eqn (4), the univariate latent 

gs model in Eqn (5), and the non-linear mean model defined by Eqn (3). Within the 

Bayesian model, we specified hierarchical parameter models for gref and S that are 

motivated by the sampling design. That is, gref and S in the model for sg were allowed to 

vary at the level of sampling day j and shrub k (k = 1, 2, …, 24 for j = 1, 2, …, 9, and k = 

1, 2, …, 12 [subset of shrubs] for j = 10, 11, …, 30) associated with each measurement 

period. The hierarchical models for each shrub- by day-level parameter treated shrubs as 

being nested in neighborhood type p (p = 1, 2, 3, 4):  

 
,,ref ref ref~ ( , )

p jk j
g Normal g    (6) 

  , , S~ ,k j p jS Normal S    (7) 

That is, note that the means ( refg and S ) vary by p and j, and the standard deviations (

ref and S ) describe the variability in these parameters among shrubs within each 

neighborhood type and day combination. The mean terms were decomposed into a base-

line value for each neighborhood type (gbase and Sbase)  plus a day random effect (εref and 

εS):  
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,ref base refp j p j

g g     (8) 

 , base Sp jp jS S     (9) 

To complete the Bayesian model, we assigned relatively non-informative priors to 

all remaining parameters. The priors for gbase and Sbase were given vague normally 

distributed priors; εref and εS were each assigned normal distributions with means of zero 

and their own associated standard deviations. The measurement period specific standard 

deviations (σn, Eqn 5) were modeled hierarchically such that each is treated as coming 

from an overall, population-level distribution described by a folded Cauchy distribution, 

centered at zero with a scaling parameter (e.g., p,s) for each neighborhood type (p = 1, 2, 

3, 4) and season s (s = 1, 2, …, 4) (Gelman et al, 2004). Each p,s and all other standard 

deviation terms were assigned relatively non-informative uniform priors, and the 

covariance matrix (Σ, Eqn 4) was assigned a relatively non-informative inverse-Wishart 

prior (Gelman et al. 2013). 

The statistical model described above (Eqns 1-9) represents the final model 

structure that we arrived at after having explored several other model variants; this model 

generally fit the data the best while minimizing model complexity. 

 

Model Implementation and Evaluation 

 The above model was implemented in OpenBugs (Spiegelhalter et al., 2003; Lunn 

et al., 2009) to obtain posterior distributions of the model parameters using Markov chain 

Monte Carlo (MCMC). Three parallel MCMC chains were run for a total of 472,006 
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iterations. The built-in BGR tool was used to evaluate convergence of the MCMC chains, 

and a burn-in of 140,000 samples was discarded (prior to convergence). The chains were 

thinned by every 200 samples to reduce autocorrelation and reduce storage requirements. 

Thus, a final posterior sample size of 5,034 was obtained. Parameter estimates are 

reported as posterior means and 95% credible intervals (CIs), which are defined by the 

2.5
th

 and 97.5
th

 percentiles.  

 

Results 

Seasonal Patterns of Stomatal Conductance and the Influence of Neighbors   

 Mean observed daily gs in Larrea exhibited distinct seasonal patterns, with the 

highest values occurring in winter for all neighborhood associations (Fig. 1.1 . Larrea 

growing alone generally had the highest gs (Fig. 1.2; mean = 0.089 mol m
-2

s
-1

) on most 

winter days compared to all other neighborhood associations (means ranged from 0.061 

to 0.069 mol m
-2

s
-1

 for Larrea growing next to A. deltoidea and P. velutina, respectively). 

The winter to spring transition was characterized by an increase in D (Fig. 1.1), which 

was paralleled by a sharp decline in gs and a shift to similar mean gs among the 

neighborhood types. Larrea growing next to O. tesota had the lowest gs (mean = 0.019 

mol m
-2

s
-1

), and Larrea next to P. velutina had the highest gs (mean= 0.024 mol m
-2

s
-1

).  

Larrea growing next to P. velutina also had slightly higher gs during the summer (mean=  

0.03 mol m
-2

s
-1

) compared to other neighborhood associations (mean ranged from 0.021 

to 0.026 mol m
-2

s
-1

 for Larrea growing next to A. deltoidea and alone, respectively). For 

all neighborhood associations, a slight increase in gs occurred in the late summer and 
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early fall, following the monsoon rainy season, but gs subsequently declined by late fall. 

Larrea growing alone had the highest gs (mean = 0.044 mol m
-2

s
-1

) relative to all other 

neighbor associations, which had very similar gs (means varied from 0.035 to 0.036 mol 

m
-2

s
-1

). 

 

Model Fit and Comparison  

 The model (Eqns 1-9) fit the data reasonably well (R
2 

= 0.62 for observed vs 

predicted gs). The model had the highest fit during the spring (Fig. 1.3B, R
2
 = 0.71), the 

lowest during the winter (Fig. 1.3A, R
2
 = 0.45) and summer (Fig. 1.3D, R

2
 = 0.46), and 

an intermediate fit in the fall (Fig. 1.3D, R
2 

= 0.53). In general, the model often 

underpredicted high values of gs (Fig. 1.3), which often occurred at low D. The results 

from the multivariate measurement model (e.g., Eqn 5) indicate the within measurement 

period measurement errors in gs and D were not significantly correlated (r = -0.01 [-0.04, 

0.01], posterior mean and 95% CI).  

 

Components Underlying Variation in Stomatal Conductance   

 The Bayesian application of the Oren model provides insight into gs components 

that underlay the variation in Larrea’s stomatal behavior. The baseline reference gs (gbase, 

Eqn 8) indicates the effects of neighbors; gbase was significantly lower for Larrea growing 

next to O. tesota or P. velutina compared to Larrea growing alone or next to A. deltoidea 

(Table 1.1). The day random effects (εref) capture the temporal variability in gref, and the 

daily εref’s were generally significantly greater than zero (i.e., higher than expected gref 

given the predicted gbase) in the winter and negative (i.e., lower than expected gref) in the 
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spring, summer, and fall (Fig. 1.4). Moreover, notable daily variation in gref occurred 

within each season (Figs. 1.4 and 1.5); for example, gref was often significantly lower in 

early winter compared to late winter. An increase in gref corresponded with the summer 

monsoon season, and gref was typically lower during the dry, hot late spring and early 

summer. Moreover, gref generally declined from late summer to early winter, 

corresponding to increasing dryness during the fall after monsoon rains and before the 

onset of the winter rainy season. These temporal trends are reflected in the season-level 

average gref. For example, posterior results indicate that gref was lowest in the spring and 

highest in the winter (Table 1.1) . Overall, season effects accounted for the majority of 

the variation on gref relative to neighborhood effects (Table 1.1). 

All daily and seasonal stomatal sensitivity to D (S) estimates were consistently 

less than 0.6 (i.e., both 95% CI limits ≤ 0.6, Fig. 1.6, Table 1.1), but S differed 

significantly between neighborhood associations (Table 1.1). Baseline S (Sbase) was 

significantly higher for Larrea growing alone or next to A. deltoidea compared to Larrea 

growing next to O. testota or P. velutina (Table 1.1).  For example, gs is expected to be 

significantly more sensitive to changes in D when Larrea is growing alone or in 

association with A. deltoidea (posterior means for season-level S range from 0.27 to 0.33, 

Table 1.1). Conversely, when Larrea is growing in association with the trees (P. velutina 

and O. tesota), gs is predicted to be insensitive (95% CIs for overall and season-level 

neighbord-specific S values contain zero) to changes in D (P. velutina, all seasons except 

spring; O. tesota, summer and fall) or only weakly sensivite to D (posterior mean for S < 

0.18) (Table 1.1). Based on the daily random effects (εS, Eqn 9), S showed little temporal 

variability, and 40% of the daily level S estimates were indistinguishable from zero (i.e., 
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their 95% CIs contained zero), with the exception of a few days, mostly in the spring 

(Fig. 1.6). When averaged across days within each season, S showed little seasonal 

variation; in contrast to gref, most of the variation in S can be attributed to neighbhorhood 

effects (Table 1.1).  

 

Discussion 

Seasonal Patterns of Stomatal Conductance and the Influence of Neighbors 

 As expected in a water-limited system (Rodriguez-Iturbe et al. 2001), this study 

shows that stomatal conductance (gs) in a common desert shrub (Larrea tridentata) varies 

seasonally in accordance with precipitation patterns. For example, the gs patterns are 

consistent with previous studies of Larrea’s water relations that observed decreased 

water stress and peaks in gs during wet seasons (Monson and Smith 1982; Meinzer et al. 

1988; Hamerlynck et al. 2000). The highest gs values occur during the winter in 

association with a period of low D and increased soil water from winter rains (Fig. 1.1) 

(Reynolds et al. 2004). A slight increase in gs was observed at the height of the monsoon 

season (August and early September), and gs declined again in the late fall to early 

winter, coinciding with a dry period before the onset of the winter rains (Fig. 1.1). 

 Seasonal variation in gs, however, was also related to neighborhood 

characteristics. Past studies demonstrate the importance of plant neighbor interactions for 

Larrea’s rooting distribution, phenology, and biomass (Fowler 1986; Brisson and 

Reynolds 1994; Briones et al. 1996), but offer little insight into the effects of plant 

neighbors on Larrea’s physiological responses. This study indicates the importance of 

plant neighbors on Larrea’s stomatal behavior, whereby the greatest differences in gs 
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between neighborhood associations occurred during the winter, summer, and fall (Fig. 

1.2). Differences between the neighborhood associations were greatest in the winter, an 

important period of productivity in the Sonoran Desert that is associated with the highest 

level of plant greenness and low water stress for Larrea (Monson and Smith 1982; 

Notaro et al. 2010). Larrea and the neighbor species considered here exhibit high growth 

and physiological activity in the winter, resulting in a period of high water use (Nilsen et 

al. 1983; Tewksbury and Lloyd 2001; Reynolds et al. 2004; McAuliffe and Hamerlynck 

2010). In the winter, Larrea growing alone has the highest gs, indicating that growing in 

isolation may be beneficial during periods of potential heightened competition. Overall, 

the effect of neighbors on Larrea’s gs dynamics likely results from altered water 

availability due to competition or facilitation  (Novoplansky and Goldberg 2001) and/or 

the alteration of the microclimate by the canopies of neighboring plants (Montana et al. 

1995; Callaway and Walker 1997). 

 Larrea neighboring the shallow rooted A. deltoidea has the lowest gs in the 

winter, which may be a result of intense competition for soil water since these two 

species are likely to have overlapping root distributions (Brisson and Reynolds 1994). 

The similar gs for Larrea growing alone or in association with A. deltoidea was expected 

during the spring and early summer since A. deltoidea is dormant during these periods 

(Szarek 1977). During the summer, Larrea growing next to A. deltoidea has the lowest 

average gs, suggesting that competition for soil water may also be important during A. 

deltoidea’s monsoon period of physiological activity (Szarek 1977). Despite the end of A. 

deltoidea’s activity in September, the gs of Larrea growing next to A. deltoidea remains 

siginificantly lower than gs of Larrea growing alone, indicating that the effects of  
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competition for water or heightened soil water depletion persist as the dry period 

continues. 

 The relatively high mean summertime gs of Larrea growing near P. velutina 

suggests that facilitation may influence gs periodically throughout the year. For example, 

Larrea growing next to P. velutina has higher gs during summer, which may be a result 

of improved water relations since P. velutina is expected to enhance soil moisture (via 

hydraulic redistribution) and nitrogen (via N-fixation) under its canopy compared to bare 

ground (Schade et al. 2003). Despite O. tesota’s reported facilitative benefits via shading 

(Suzan et al. 1996; Tewksbury and Lloyd 2001), little effect of O. tesota neighbors on 

Larrea’s gs was observed during the dry spring and hot summer periods. However, 

Larrea growing next to O. tesota had higher mean gs than Larrea growing near A. 

deltoidea during the winter and summer, suggesting that interactions between O. tesota 

may offer a degree of improved water relations. Differences between P. velutina and O. 

tesota may be partly explained by its canopy architecture, as O. tesota’s canopy likely 

provides less shading compared to P. velutina. For example, qualitative differences 

between O. tesota and P. velutina canopies are obvious at our site, with P. velutina 

having a lower, more banched canopy compared to O. tesota, which agrees with a study 

comparing canopies of O. tesota and Prosopis glandulosa (closely related species to P. 

velutina in the arid southwestern U.S.) (Suzán-Azpiri and Sosa 2006).  

 

Components Underlying Variation in Stomatal Conductance 

Daily and/or seasonal controls had the greatest influence on reference gs (gref, i.e., 

gs at D = 1 kPa), suggesting that short-term (i.e., over days to a weeks) stomatal 
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acclimatization ( e.g., Smith and Dukes 2013) to prevailing environmental conditions is 

important for gs. For example, Ogle et al (2002) found that growth temperature (i.e., 

average temperature over the past week) regulated Larrea’s maximum gs and associated 

gref. In our study, lower gref occurred during the early winter, late spring, and beginning of 

summer, which may be associated with changing temperature and/or moisture regimes 

that are characteristic of these periods. Declines in gref throughout the late spring, early 

summer, and fall may also be associated with decreases in soil moisture. Drying soils 

lower plant hydraulic conductivity, which is known to be correlated with gs and gref 

(Meinzer et al. 1988; Ward et al. 2008; Domec et al. 2009). Soil drying can also lead to 

increases in abscic acid (ABA), ultimately decreasing maximum gs (Thomas and Eamus 

1999).  

While the effect of plant neighbors was not as pronounced as seasonal variation, 

gref was significantly lower for Larrea growing next to the tree species compared to 

growing next to A. deltoidea or alone (Fig. 1.5, Table 1.1). Differences in Larrea’s gref 

based on plant neighbor associations likely reflect long-term adjustments to the altered 

microclimate or water availability created by neighbors. Prolonged exposure to more 

xeric conditions—likely analogous to Larrea growing alone or near A. deltoidea—can 

result in changes in hydraulic architecture, such as tree height and sapwood area to leaf 

area, and these changes can lead to increases in gref (Addington et al. 2006). 

Alternatively, Larrea’s biomass is known to decrease with proximity to plant neighbors, 

and differences in gref may partly be a result of shrub size  (Fowler 1986; Briones et al. 

1996). Franco et al. (1994) found that large Larrea had greater gref when xylem water 

potential is low compared to small Larrea, and thus the higher gref of Larrea growing 
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alone could also reflect differences in Larrea size among the different neighborhood 

association, although, we do not have direct estimates of plant size to evaluate this 

hypothesis. 

In contrast to gref, variation in Larrea’s stomatal sensitivtivity to D (i.e., S) was 

predominately driven by neighbor effects (Fig. 1.6, Table 1.1). The effect of neighbors 

indicates that Larrea’s S may be controlled by long-term acclimitaztion or microclimate 

effects.  Studies indicate that higher soil moisture occurs below O. tesota and P. velutina 

canopy as a result of shading and/or hydraulic redistribution (Suzan et al. 1996; Schade et 

al. 2003; Hultine et al. 2004). A study of an anisohydric vine, Vitis vinifera, found 

stomatal sensitivity to D was only increased under drought conditions and it was 

essentially insensitive to D in moist to moderately dry soils (Rogiers et al. 2012). Larrea 

growing alone or next to A. deltoidea may experience increased exposure to drought 

conditions with greater, more frequent soil drying, resulting in increased sensitivity to D 

compared to Larrea growing under trees. The influence of neighbors on Larrea’s root 

distributions could affect access to soil water, which in-turn is expecred to gs. Spatial 

variation in Larrea’s rooting depth and root area could allow Larrea growing near trees 

greater access more stable, deeper soil water; whereas, Larrea growing alone or next to 

A. deltoidea may rely on more unstable, shallower soil water or experience longer 

durations of low soil water availability (Fowler 1986; Montana et al. 1995; Briones et al. 

1998; Schade et al. 2003; Reynolds et al. 2004; Armas and Pugnaire 2005). As for gref, 

altered hydraulic architecture resulting from higher exposure to soil drying could also 

influence the magnitude of S (Addington et al. 2004). Lastly, lower S in Larrea growing 

next to tree species could be explained lower boundary layer conductance (gc) resulting 
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from protection by the tree canopies. An increased boundary layer (lower gc) would 

weaken the coupling of Larrea’s leaves to the atmospheric conditions, thus making gs 

less responsive to changes in D (lowr S) compared to more exposed Larrea growing 

alone or next to A. deltoidea (Monteith 1995; Damour et al. 2010). 

Given Larrea exhibits anisohydric behavior, the weak coupling of gs to D, 

especially when growing next to trees, agrees with prior studes of anisohydric plants 

(Tardieu and Simonneau 1998; Oren et al. 1999; Ogle et al. 2012). In anisohydric plants, 

Tardieu and Simonneau (1998) found little stomatal sensitivity to changes in D or leaf 

water potential, and stomatal aperature was primarily governed by xylem ABA. Our 

results support this finding such that S exhibited little daily/seasonal variation in S, 

whereas gref varied notability across seasons. Variables such as leaf and tree hydraulic 

conductance, ABA, and plant water potential—which have been shown to be important in 

mesic and/or isohydric trees—may also be important for the overall magnitdude of 

Larrea’s gref, but appear have little influence on S (Tardieu and Davies 1983; Thomas and 

Eamus 1999; Addington et al. 2004; Domec et al. 2009; Ocheltree et al. 2014). In 

general, our evaluation of Larrea’s stomatal response components demonstrates the 

importance of understanding the influence of drivers of over varying time scales, such as 

intra-annual or seasonal responses that may reflect short-term acclimatization or inter-

annual or decadal adjustments that may be partly governed by plant neighbor 

interactions.  
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Conclusions and Implications for Modeling Stomatal Conductance  

 Identifying the specific drivers and mechanisms underlying the short- and long-

term gs responses presents a fruitful avenue for future research. While our model explains 

61% of the variation in Larrea’s gs, higher gs values are often under-predicted, especially 

at low D. The daily random effects indicate that reference gs (gref) is governed by 

unexplained temporal variation, and such variation could arise from environmental 

effects (i.e., temperature, soil moisture, plant water status), physiological factors (whole-

plant hydraulic resistance, photosynthetic feedbacks), or interactions among these (e.g., 

short-term acclimatization) (Domec et al. 2009; Damour et al. 2010) that were not 

explicitly included in our model. For example, plant water status (e.g., water potentials or 

plant hydraulic resistance) is known to feed back to affect gs (Meinzer et al. 1988; Jones 

1998; Ogle and Reynolds 2002), but the data necessary (e.g., frequent plant water 

potentials) for such modifications would require destructive sampling that can be 

prohibitive when studying the same shrubs frequently over multiple years. Additionally, 

finer resolution and more frequent observations of gs, soil water, microclimate, and plant 

water status would allow for improved estimates of how seasonality and neighborhood 

interactions influence gs, especially during transitions between seasons. Such data would 

also allow for further exploration of the influence of environmental covariates on 

different components of the gs response, such as gref and S (Ogle and Reynolds 2002; 

Tuzet et al. 2003). 

 This study indicates the importance of accounting for spatial variability that can 

arise from plant neighborhood interactions. Studies of plant water use often do not 

explicitly consider the neighborhood surrounding study shrubs or may select more 
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isolated plants for study (Pataki et al. 2000; Ogle and Reynolds 2002; Ogle et al. 2012). 

The assumption that plants will exhibit similar stomatal behavior, and thus water use and 

loss dynamics, across space may not be appropriate, and estimates of  plant water fluxes 

should explicitly include temporal (e.g., season) and spatial (e.g., neighborhood 

characteristics) effects. Moreover, current semi-mechanistic approaches to modeling gs, 

and hence plant water loss, require improvements if such temporal and spatial effects are 

to be accurately represented in plants from desert systems. 
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Tables 

Table 1.1 Posterior estimates (mean and 95% credible interval) of the reference 

conductance (gref, mol m
-2

 s
-1

) at D = 1 kPa and stomatal sensitivity (S)*. 

   

gref 

  

S 

 Season Neighbor Mean 2.5
th

   97.5
th

  Mean 2.5
th

   97.5
th

  

Winter O. tesota 0.072 0.066 0.079 0.132 0.003 0.254 

 

A. deltoidea 0.081 0.073 0.091 0.298 0.198 0.391 

 

P. velutina 0.072 0.065 0.079 0.145 -0.012 0.275 

 

Lone 0.082 0.073 0.092 0.294 0.190 0.386 

Spring O. tesota 0.035 0.028 0.042 0.166 0.035 0.270 

 

A. deltoidea 0.044 0.034 0.055 0.333 0.247 0.398 

 

P. velutina 0.034 0.027 0.042 0.179 0.030 0.290 

 

Lone 0.045 0.035 0.055 0.329 0.244 0.395 

Summer O. tesota 0.032 0.025 0.040 0.111 -0.027 0.220 

 

A. deltoidea 0.041 0.032 0.052 0.277 0.187 0.347 

 

P. velutina 0.032 0.024 0.040 0.124 -0.033 0.241 

 

Lone 0.042 0.033 0.052 0.273 0.182 0.341 

Fall O. tesota 0.037 0.033 0.042 0.141 -0.012 0.272 

 

A. deltoidea 0.047 0.040 0.054 0.307 0.173 0.420 

 

P. velutina 0.037 0.033 0.042 0.154 -0.010 0.293 

 

Lone 0.048 0.041 0.055 0.303 0.164 0.416 

Base O. tesota 0.048 0.043 0.053 0.136 0.011 0.243 

 A. deltoidea 0.058 0.050 0.067 0.303 0.215 0.375 

 P. velutina 0.048 0.042 0.053 0.149 0.001 0.263 

 
Lone 0.058 0.050 0.067 0.299 0.210 0.371 

* The season  neighbor estimates are obtained by averaging across all days within each 

season  neighborhood type. The overall season estimates are obtained by averaging 

across all neighbor types within each season.   
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Figures 

 

Figure 1.1. Mean ( 1 s.e.) daily stomatal conductance (gs) of Larrea tridentata under 

four different neighborhood associations (i.e., growing in close proximity to Olenya 

tesota, Prosopis velutina, or Ambrosia deltoidea, or growing alone). Vertical bars 

associated with each measurement day indicate the total daily amount of precipation 

(cm). Daily mean vapor pressure deficit (D, kPa) is indicated by the gray line. Dashed 

vertical lines indicate the end of winter and summer seasons.  
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Figure 1.2. Mean ( 1 s.e.) seasonal stomatal conductance (gs) for Larrea tridentata 

under four different neighborhood associations (see Fig. 1 for description). 
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Figure 1.3. The model fits of predicted versus observed stomatal conductance for each 

season: A) winter (R
2
 = 0.45), B) spring (R

2
 = 0.73), C) summer (R

2
 =0.46), and D) fall 

(R
2
 = 0.53). The solid black line is a 1:1 line, and the dashed line indicates the best fit 

regression line. Four points are not shown because they exceeded the axis limits, and 

their inclusuion renders the plot more difficult to visualize. 
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Figure 1.4.  Posterior estimates (mean and 95% credible interval) for the daily random 

effects associated with: A) stomatal sensitivity (S) to vapor pressure deficit (D) and B) 

the reference stomatal conductance (gref). The gray regions indicate winter periods. 
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Figure 1.5.  Posterior estimates (mean and 95% credible interval) from for the reference 

stomatal conductance (gref) for each day for Larrea growing A) next to O. tesota, B) next 

to A.deltoidea, C) next to P. velutina, and D) alone. Dashed lines indicate the baseline 

(gbase) posterior means for each neighborhood association. The gray regions indicate 

winter periods. 
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Figure 1.6.  Posterior estimates (mean and 95% credible interval) for stomatal sensitivity 

(S) to vapor pressure deficit (D) for each day for Larrea growing A) next to O. tesota, B) 

next to A.  deltoidea, C) next to P. velutina, and D) alone. Dashed lines indicate the 

baseline (Sbase) posterior means for each neighborhood association. The gray regions 

indicate winter periods. 
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3. A FRAMEWORK FOR PARTITIONING PLANT ROOTING PROFILES FROM 

NEIGHBORS USING MULTIPLE DATA TYPES 

Abstract 

1. Vertical root distributions (“profiles”) influence plant water use and productivity, and 

the differentiation of root profiles between neighboring species can indicate the degree of 

plant interactions and niche partitioning. However, quantifying multiple species’ root 

distributions in the field can be labor intensive and highly destructive to the soil and 

plants. We describe a method for partitioning multiple species roots using minimally 

destructive methods to determine if neighbor interactions alter the root profile of a 

common desert shrub, Larrea tridentata (creosote bush). 

2. We obtained root and soil samples from soil cores collected around Larrea growing 

alone and next to three different neighboring species. Bulk root mass was measured for 

each soil sample, and Larrea and neighboring species root presence was determined with 

molecular identification methods. Water extracted from the soil and paired stem samples 

was analyzed for its stable isotope composition (D and 
18

O). Species-specific (i.e., Larrea 

and neighboring species) root biomass and fractional active root area were estimated 

through a hierarchical statistical modeling approach that combined all three datasets and 

accounted for detection errors. 

3. The combined data-model successfully partitioned Larrea’s root biomass from 

neighboring plants and provided biologically relevant estimates of rooting profiles with 

greater certainty than individual analyses of each data source. The data-model results 

indicate that plant neighbors alter Larrea’s root profile; Larrea growing under tree 
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species had significantly higher root biomass in shallow soil layers than Larrea growing 

alone.  

4. We provide a framework for estimating a target species root profile in the presence of 

multiple species. A major advantage of our framework is that it requires minimally 

destructive sampling methods, and it accounts for sampling errors associated with 

different methods. We demonstrate the utility of our approach with a common desert 

shrub species, which illustrated that our approach is useful in problematic study systems 

fraught with sample collection issues or supporting species with inhibitory compounds 

that prohibit the use of more sophisticated molecular methods to identify the presence of 

other species’ roots. 
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Introduction 

 Vertical root distributions (“profiles”) play an integral role in plant survival and 

productivity, influencing the ability of plants to acquire water and nutrients from the soil 

(Schwinning & Ehleringer 2001; Ogle & Reynolds 2004). The degree of overlap of roots 

between neighboring plants can be an important factor determining competition for 

belowground resources (Casper & Jackson 1997; Schenk 2006). Studies of species’ 

coexistence and competition in plant communities are often interested in the influence of 

vertical differentiation of root distributions on competition for soil water or nutrient pools 

(Ogle & Reynolds 2004; Mommer et al. 2008). However, studies of vertical root 

differentiation require the quantification of root profiles for multiple species, an often 

difficult undertaking (Jackson et al. 1996; Mommer et al. 2011). 

 Root distribution studies are typically limited in scope as a result of 

methodological challenges that involve trade-offs between the spatial extent of the root 

system studied, time investment, and level of destruction to the plant and soil. Excavation 

techniques are commonly used (Bohm 1979; Brisson & Reynolds 1994; Jackson et al. 

1996) because they offer a detailed assessment of vertical and horizontal rooting patterns. 

However, excavations are time consuming, highly destructive, and prohibit simultaneous 

aboveground studies on the plants (Polomski & Kuhn 2002; Danjon & Reubens 2007).  

Molecular genetic techniques (e.g., polymerase chain reaction [PCR]) offer an 

alternative approach to identify species in mixtures of root samples collected from 

minimally destructive soil cores (Mommer et al. 2011), and have been applied in diverse 

ecosystems, from temperate to alpine systems (Bobowski et al. 1999; Mommer et al. 

2010; Brunner et al. 2001). However, high concentrations of PCR inhibitors in roots 
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(Mommer et al. 2011) combined with the small cross-sectional area of a typical soil core 

may under-estimate root presence, and previous studies have not addressed these sources 

of uncertainty in subsequent data analysis (Bobowski et al. 1999; Brunner et al. 2001; 

Mommer et al. 2008).  

Another minimally destructive technique for quantifying root profiles involves the 

evaluation of stable isotopes in plant and soil water samples, which offer insight into the 

depths that roots actively acquire water (Ehleringer & Dawson 1992; Dawson et al. 

2002). Stable isotope data are typically analyzed with simple linear mixing (SLM) 

models (Phillips & Gregg 2003) that do not provide direct estimates of rooting profiles. 

However, linking SLM models with a model of root water uptake can provide estimates 

of the root area profile (Ogle et al. 2004, 2013). 

This study applies a novel modeling approach that partitions root biomass 

between neighboring species through the combination of three distinct 

datasetsmolecular identification of roots, bulk root biomass, and stable isotopes 

while accounting for method-based detection and measurement errors in a hierarchical 

Bayesian framework.  Individual datasets are limited in scope, offering incomplete 

information on the root profile of a species. For example, molecular identification 

indicates species’ presence throughout the soil profile, but does not provide information 

on the overall magnitude of root biomass.  Likewise, stable isotope data indicate the 

relative distribution of a species’ active roots, but is not a direct measure of biomass. 

Finally, bulk root biomass data consists of a mixture of multiple species’ roots that must 

be partitioned to examine the root biomass of singular species. However, the combined 

datasets offer information on the root profiles of a target species and its surrounding 
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neighbors, allowing for the quantification of a species’ fractional distribution of active 

roots and root biomass throughout the soil profile. 

We describe and illustrate our framework by applying it to data collected for a 

common desert shrub (Barbour 1969), Larrea tridentata (Sessé & Moc. ex DC.) Coville 

(creosote bush). Larrea’s root distribution can be impacted by competition with 

neighboring shrubs (Brisson & Reynolds 1994). We quantified Larrea’s vertical root 

distribution under different neighborhood associations that could represent different 

competition environments (Yeaton et al. 1977): Ambrosia deltoidea (Torr.) W.W. Payne 

(triangle-leaf bursage), Olneya tesota A. Gray (desert ironwood), and Prosopis velutina 

Wooton (velvet mesquite). Ambrosia is a drought deciduous small shrub (Szarek 1977), 

and Olneya and Prosopis are deeply rooted tree species (Suzan et al. 1996; Schade et al. 

2003). We apply our analysis framework to quantify Larrea’s root profile to address two 

questions: 1) Does Larrea’s root profile vary depending on plant neighbor identity? 2) To 

what degree do Larrea’s roots overlap (vertically) with roots of neighboring species? We 

assess rooting profiles through indices of both root biomass and active root area for water 

uptake. 

 

Methods 

Site Description and Root Collection 

 Root samples were collected in the Sonoran Desert near Phoenix, Arizona, at the 

McDowell Mountain Regional Park (33.7261N, -111.6987W, 476 m asl). The site is 

dominated by Larrea tridentata, Ambrosia deltoidea, Prosopis velutina, and Olneya 
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tesota, with many shrubs growing in close proximity with overlapping canopies. Mean 

annual precipitation (1981-2010) was 29.6 cm and mean daily temperature ranged from 

11.5°C (December) to 33°C (July) (WRCC, 2013).  

Plants with overlapping canopies were considered to be neighbors, and Larrea 

growing with a canopy separated by at least 1 m from another plant’s canopy was 

considered to be growing alone. Four neighborhood associations were studied: Larrea 

growing near Ambrosia, Olneya, or Prosopis, and Larrea growing alone. Soil cores for 

both root identification and stable isotope analysis were collected on August 20 and 21, 

2012 in five soil layers (0-10, 10-20, 20-30, 30-40, and 40-60 cm), and a full description 

of the field sample collection is included in Appendix A.  

 

Molecular Identification 

Genomic DNA was extracted using a method developed for roots with high 

concentrations of PCR inhibitors, such as polysaccharides and polyphenolics (Brunner et 

al. 2001). We highlight the methods here and provide a full description in Appendix A. 

Despite the targeted DNA extraction protocol to remove inhibitors, viscous brown 

materials sometimes persisted in samples after extraction, indicating the presence of 

potential PCR inhibitors (Lodhi et al. 1994; Paterson et al. 1993). High concentrations of 

phenolics and tannins, known PCR inhibitors, have been observed in Larrea roots (Hyder 

et al. 2002). Thus, additional purification steps were adapted from Paterson et al. (1993). 

The nuclear rDNA Internal Transcribed Spacer region (ITS1-5.8S gene-ITS2; Baldwin et 

al. 1995) was amplified with primers ITS4 and ITS5 (White et al. 1990), and PCR was 

initially conducted on DNA extracts that were diluted with deionized water at ratios of 
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1:10 and 1:20. However, if PCR did not result in the amplification of fragments of the 

expected sizes (Table 2.1), additional dilutions (1:30 and 1:40) were attempted to reduce 

interference with PCR inhibitors (Picard et al. 1992). All PCR products were digested 

with restriction endonuclease RsaI and samples from the Prosopis pair were also digested 

with BssHII; the distinct fragment lengths from digestions with RsaI and BssHII (Thermo 

Scientific) are shown in Table 2.1 for each species. Extensive testing of the methods 

(described in Appendix A) was conducted since the PCR methods described above have 

not previously been applied to roots of the desert species in this study. 

Stable Isotope Analysis 

Water from the stem and soil samples (Appendix A) was extracted using 

cryogenic distillation (West et al. 2006) at the University of Wyoming Stable Isotope 

Facility. Soil water extracts were analyzed for natural abundance of D and 
18

O using a 

Liquid Water Isotope Analyzer (Los Gatos, Mountain View California) at Arizona State 

University. Stem water extracts were analyzed at the Cornell University Stable Isotope 

Laboratory for natural abundance of D and 
18

O using an Thermo Delta V Isotope Ratio 

Mass Spectrometer interfaced to a Temperature Conversion Elemental Analyzer (Thermo 

Scientific, Waltham, Massachusetts) to avoid possible issues with organic contaminants 

that may arise with the Liquid Water Isotope Analyzer (Schultz et al. 2011).  

 

Overview of Modeling Approach 

 Root profiles were quantified with a latent variable, the fraction of active root area 

(f), a relative measure of the vertical distribution of functional roots. We estimated f 
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based on three linked sub-models: (1) a biophysical model of root water uptake informed 

by stable isotope data, (2) root presence informed by molecular identification, and (3) an 

empirical root biomass model that pairs bulk biomass data with presence data (Fig. 2.1a-

c). Ogle et al (2004, 2013) consider f to be a mixture of normalized gamma distributions 

(eqn 1) that allows for a continuous, flexible root profile that can be either unimodal or 

bimodal. Relevant to all three datasets, for neighbor association j (j = 1, 2, 3, 4) and soil 

depth z (z = 1, 2, …, 60 cm), Larrea’s active root profile is modeled as:  

 , 1 1 2 2( | , ) (1 ) ( | , )
j jj z j jf w Gamma z a m w Gamma z a m     (eqn 1) 

The mixture weight, w, represents the relative importance of roots in the shallow layers, 

and the mean depths of the shallow and deep roots (m1 and m2, respectively; i.e., means 

of the associated gamma distributions) vary among neighbor associations. Conversely, 

for simplicity, a1 and a2, which influence the shape of the gamma distributions, are 

assumed to be the same across neighbor associations. 

 

Water Uptake Model and Stable Isotopes 

 Following Ogle et al. (2004), a biophysical model of root water uptake 

(Schwinning & Ehleringer 2001; Ogle et al. 2013) was paired with stable isotope data 

using a process-based isotope mixing model that informs f. The predicted stem isotope 

values (
, ,

pred

stem m j ) for each neighbor association j (j=1,…4), for both deuterium (D, m=1) 

and 
18

O (m=2) were considered to be a mixture of the observed soil water isotope values 
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(
, , ,

obs

soil m j i ) based on the proportion of water (p) obtained from each soil layer i (i = 1 [0-10 

cm], 2 [10-20 cm], …, 5 [40-60 cm]): 

 
5

, , , , , ,

1

pred obs

stem m j j i soil m j i

i

p 


   (eqn 2) 

The observed soil isotope values were averaged across soil cores within each depth 

increment and neighbor association, and the observed stem isotope values were assumed 

to be normally distributed around the predicted value in eqn 2. 

We model the layer-specific p for each neighborhood association as Larrea’s 

predicted water uptake from each layer (q), normalized by the total water uptake from all 

layers such that:  

 
,

, 5

,

1

j i

j i

j i

i

q
p

q





  (eqn 3) 

The predicted water uptake is based on a biophysical model of root water uptake: 

 
, , ,

, , , ,

, , ,

( )
soil j i root j

j i j i soil j i tloss

soil j i root j

K K
q f

K K
  


  (eqn 4) 

With the exception of the latent quantity f, quantities in eqn 4 were obtained from field 

data where Ψsoil is the soil water potential, Ψtloss is the root water potential at the turgor 

loss point, and Ksoil and Kroot are the hydraulic conductance of the soil and roots, 

respectively. A full description of how the soil and root hydraulic properties were 

determined is provided in Appendix A. Note that fj,i above is the fraction of roots in layer 

i, which is obtained by summing fj,z (eqn 1) over all z within layer i, for each neighbor 

association j. 
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Root Presence Model 

 A model of Larrea’s root presence from molecular identification was motivated 

by occupancy models that explicitly incorporate detection probabilities associated with 

imperfect sampling (Mackenzie et al. 2002).  False negatives could be generated by two 

different processes, and the first source was associated with soil core sampling. Roots in 

desert systems tend to be sparsely distributed across space (Wilcox et al. 2004), and thus 

the soil auger may under-sample roots within its small cross-sectional area. The second 

source of false negatives results from the imperfect nature of PCR as a result of high 

concentrations of inhibitors and/or low concentrations of DNA. Problems with inhibitors 

often required multiple PCR attempts with higher dilutions on a single sample, and 

inhibitors potentially contributed to false negatives. 

 The likelihood of observing a species’ roots (r = 1, root is present; r = 0, root is 

not present) in each soil core sample is assumed to depend on the probability that a 

species’ has roots in a given layer in the soil, , and the probability of detecting the 

presence of roots, pd, given the soil sampling and PCR methods. Thus, the likelihood of 

observed r = 1 or r = 0 in each soil sample n (n = 1, 2, …, 95) is: 

 
( 1| , )

( 0 | , ) (1 ) (1 )

d d

d d

P r p p

P r p p

 

  

 

    
    (eqn 5) 

pd can be defined as the product of two probability terms: β, the probability of collecting 

roots in a sample, and γ, the probability of PCR successfully detecting the presence of a 

species’ roots given the sample contains roots: 

 dp    (eqn 6) 
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Since multiple PCR attempts were conducted at various dilutions until PCR successfully 

detected root presence, the probability that PCR successfully amplifies genetic material, 

γ, is informed by the number of observed failures (f) prior to a successful result. 

Assuming the number of failure (F) until a success follows a geometric distribution, then:  

 f( f ) (1 )P F       (eqn 7) 

Detection issues associated with soil auger sampling were accounted for by considering 

the successful collection of roots in a soil sample (S) to be a Bernoulli random variable 

where the presence of roots occurs with probability P(S = 1) = β. Soil core samples that 

do not contain roots are assumed to be the result of the soil auger missing roots, which 

occurs with probability P(S = 0) = 1- β. We assumed that pd was the same for each 

species (eqns 6-7), with the exception of Prosopis. Prosopis roots could only be detected 

under Prosopis-Larrea neighbors, where roots were analyzed individually (see Appendix 

A for details), and thus the detection probability was set to zero for Prosopis for all other 

neighbor types. 

 Finally, the probability that Larrea has roots in a given layer i, , describes the 

presence of roots within the soil profile, with values near one indicating a high likelihood 

of Larrea root presence. Thus, we expect  to be directly related to the fraction of 

Larrea’s active roots, f, such that:  

  ,*

, 1 j ia f

j i e 


    (eqn 8) 

Here, *
 is the probability that would occur as f goes to infinity, but since 0  fj,i

  
 1, the 

maximum probability that Larrea has roots in any layer i is *
(1-e

–a
).  



54 

 

 We used a simpler model with coarser, soil layer resolution for the probability of 

non-Larrea species (v = 1 [Prosopis], 2 [Olneya], 3 [Ambrosia], or 4 [other unidentified 

species]) rooting in a soil layer, , since there was no additional data help inform their 

root distributions (i.e., no stable isotopes). We assumed that  declines with distance (d) 

to the closest shrub of that species (d is relative to the target Larrea shrub, l) for shallow 

soil layers (g = 1, 0-20 cm) and deep layers (g = 2, 20-60 cm): 

  , , ,logit v g l v v g lb d      (eqn 9) 

The parameters, b and α, varied with each species v since vertical and lateral root 

distributions are expected to vary by species (Schenk & Jackson 2002; Ogle & Reynolds 

2004). Additionally, the lateral extent of shallow versus deep roots is expected to differ 

(Jackson et al 1996), and thus α varied by g. 

 

Bulk Root Biomass Model 

 The observed bulk root biomass (R) collected from each soil sample n (n = 1, 2, 

…, 95) was assumed to be normally distributed: 

 
,

~ ( , )
i ln R RR Normal     (eqn 10) 

Where the mean root biomass (R) varies by soil layer i and Larrea shrub l (l = 1…13) 

associated with each sample; R was modeled as a mixture of roots from Larrea and its 

neighbors: 

   
, , 1

i l l l i lR larrea j i larrea o totp f p f R      (eqn 11) 
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Again, f (eqn 1) is the fractional active root profile of Larrea, and fo is the root profile of 

“other” neighboring species, which is based on summing the fo’s in eqn 13 over depths z 

corresponding to each layer i. Rtot is the observed total root biomass in the soil profile 

below each Larrea shrub, and plarrea is the relative proportion of Larrea roots compared 

to all other species. Soil samples without roots or at depths that could not be sampled 

were treated as missing data and are estimated from eqn 10, and these estimates were 

subsequently used to compute Rtot.  

The proportion of Larrea’s roots under each shrub is based on the probability of 

Larrea and the neighboring species having roots in a soil layer, , for each neighbor 

association j associated with shrub l: 

 
,

,
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  (eqn 12) 

Since soil samples were collected around Larrea canopies, the contribution of root 

biomass from neighboring plants is expected to consist mainly of lateral roots that occur 

more frequently in surface layers (Schenk & Jackson 2002), and thus the fractional 

rooting area of neighboring plants (fo) was expected to decline exponentially with depth z 

(z = 1, 2, …, 60 cm) with rate parameter (ρ) that varies by neighbor association j. 

 , ,
j z

o j z jf e





    (eqn 13) 

Data-Model Performance 

 We compared the degree of uncertainty and model fit in the analysis of each 

individual dataset (e.g., stable isotope, molecular identification, and bulk root biomass) to 
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the combined model to evaluate the improvement in estimates and inference with the 

multiple datasets approach.  

 The process-based isotope mixing model was compared to a simpler mixing 

model that did not include a biophysical water uptake model. We avoided over-

parameterization by grouping the soil into three layers and the proportion, p, of water 

acquired from each layer was assumed to be proportional to soil water content, swc, times 

an index of the proportion of water taken-up from each layer, u. Thus, for neighborhood 

association j, isotope type m, and layer i (i = 1 [0-10 cm], 2 [10-40 cm], 3 [40-60 cm]): 
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  (eqn 15) 

Similar to a Bayesian implementation of a simple linear mixing (SLM), the vector uj 

(length 3) was given a non-informative dirchlet prior (Moore & Semmens 2008). Model 

fit was evaluated by computing the coefficient of determination (R
2
) from a regression of 

the observed versus predicted stem isotope data, for both the simple model (isotope only 

data) and the combined, process-based model (all three datasets). 

  The simplified analysis of the molecular data was conducted using an occupancy 

model applied only to the molecular data, with a uniform, U(0,1), prior for  (see eqn 8). 

For both the simple and combined model, model fit was assessed by computing the 

prediction accuracy (percent of the model predicted samples with Larrea roots present 

compared to the observed samples with Larrea roots present).  
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 The simplified analysis of root biomass data involved comparing the bulk root 

biomass estimates to a more traditional model of root mass profiles where the bulk 

fractional root biomass declines non-linearly with depth (Gale & Grigal 1987; Jackson et 

al. 1996). The mean model of bulk root biomass (eqn 10) was modified such that Rtot was 

only scaled by f in eqn 16, where f was defined as: 

 
, 1 z

j z jf      (eqn 16) 

and is summed over all z within layer i for application to eqn 11.  describes the decline 

of bulk root biomass with depth. For both the simple (biomass data only) and combined 

models, model fit was assessed by calculating the R
2
 from a regression of the observed 

and predicted root biomass. 

 

Implementation 

The above models were implemented in OpenBUGS (Spiegelhalter et al. 2003), 

and posterior estimates are presented as posterior means with 95% credible intervals 

(2.5th and 97.5th percentiles). A full description of the prior distributions, model 

implementation, and model code is included in the Appendix A. 

 

Results 

Model Evaluation 

 The model that analyzed all datasets simultaneously was able to partition root 

biomass between Larrea and neighboring plants, and generally yielded more precise 
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estimates of parameters associated with Larrea’s root profile in comparison to analyses 

of individual datasets (Table 2.3). Moreover, the predicted 
18

O composition of stem water 

obtained from the combined model had a slightly higher R
2
 (Table 2.3) than the isotopes-

only data model. However, the isotopes-only data model predictions of the D 

composition of stem water had a higher R
2
 than the combined data model, but the former 

produced unrealistic estimates of water uptake, allowing water to be taken up from layers 

in the soil that had water potentials below Larrea’s estimated turgor loss point (Fig S2.1, 

Appendix B).  

Importantly, the full model that combined all three datasets provided estimates 

with narrower credible intervals for the probability of Larrea root presence ( ) compared 

to analyzing each data set independently with relatively non-informative priors (Fig S2.2, 

Appendix B). On average, the combined data model predicted the presence of Larrea in 

79% of the observed samples containing Larrea. The analysis using only the occupancy 

model with the molecular data with relatively non-informative priors predicted Larrea’s 

presence in 67% of the actual observed samples containing Larrea (Table 2.3). The root 

biomass model of the combined dataset explained more variation compared to the 

traditional, nonlinear model (eqn 16), which had a lower fit compared to the gamma 

mixture model (eqn 1) (Table 2.3).  

 

Model Application: Effect of Neighbors on Larrea’s Root Profile 

 Larrea’s active root area (f, Fig. 2.2) and root biomass (R, Fig. 2.3) profiles 

varied based on neighborhood association. Larrea growing next to the tree species 
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(Prosopis and Olneya) had higher f and root biomass in shallower depths (Fig. 2.2a, c) 

compared to Larrea growing alone (Fig. 2.2d) or next to Ambrosia (Fig. 2.2b). Moreover, 

f of Larrea growing next to Prosopis peaked between 30-40 cm depths (Fig. 2.2c), and 

Larrea’s predicted root biomass was significantly higher when growing near Prosopis 

(Fig. 2.3a) compared to Larrea in other neighborhood associations (Fig. 2.3b-d). Larrea’s 

root biomass growing alone and next to Ambrosia (Figs. 2.3a and 2.3c, respectively) was 

generally low between 0-40 cm, with comparatively high biomass between 40-60 cm. 

Summing over depths, Larrea’s total root biomass was significantly greater when 

growing next to Olneya or Prosopis than when growing next to Ambrosia or alone. 

Larrea’s root biomass when growing alone or next to Ambrosia was minimal at 0-10 cm 

(Fig. 2.3b and 2.3d), and the root biomass of neighboring species’ was greatest in the 

upper 10 cm of the soil (Fig 2.3f and 2.3h), indicating minimal overlap between Larrea 

roots and neighboring species. However, Larrea growing next to tree species had vertical 

root distributions that had greater overlap with neighboring species root biomass 

compared to Larrea growing next to Ambrosia (Fig. 2.3a, 2.3c, 2.3e, and 2.3g).  

 

Discussion 

Model Performance and Applications 

Plant root distributions are difficult to quantify directly, and methods involving 

direct observation are subject to limitations (Lynch 1995; Jackson et al. 1996). Soil core 

sampling is minimally destructive, but can under-sample roots or provide limited 

information on bulk root biomass (Danjon & Reubens 2007; Polomski & Kuhn 2002). 
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However, we demonstrate that the combination of multiple data types can offer a more 

detailed quantification of root systems. Stable isotopes are commonly used to estimate 

depths of active water uptake, and the prevalence of stable isotope laboratories and 

technologies allows for straightforward sample preparation and analysis (Dawson et al. 

2002; Ogle et al. 2004; West et al. 2006). Our multi-dataset approach that linked 

Larrea’s active rooting area to stable isotope data produced biologically realistic and 

more precise estimates of proportional soil water uptake with finer depth resolution (Fig 

S2.1) compared to a simpler mixing model approach that was only informed by isotope 

data and soil water content. While the simpler mixing model had a higher R
2
 (Table 2.2) 

for predicted stem D, the smaller R
2
 for predicted stem 

18
O and the biologically 

unrealistic estimates of proportional water uptake from dry soil layers suggest the 

simpler, isotope-only approach does not adequately capture root water uptake dynamics, 

and it does not provide direct estimates of rooting distributions. 

The combined model approach allowed for the partitioning of Larrea’s root 

biomass from other species and improved estimates of the presence of species’ roots 

relative to the molecular-only data analysis. (Table 2.3, Fig. S2.2). Mommer et al (2008) 

presented a method to partition the proportion of biomass belonging to each species using 

real time PCR (qPCR). However, in systems such as our study system, where plant roots 

contain high amounts of inhibitory compounds, method development for qPCR requires 

additional costs and time commitment, and samples may be subject to higher failure rates 

(Mommer et al. 2011). Our approach of pairing simpler PCR methods with a stable 

isotope analysis for studying belowground rooting distributions provides an alternative to 

more labor intensive approaches such as qPCR. We also demonstrate the importance of 
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accounting for detection issues associated with PCR, and our PCR success rate of 0.54 

[0.48, 0.60] indicates that false negatives are common and must be explicitly considered. 

We present a detection modeling framework that can be adapted to other systems with 

modifications to the model structure. Previous studies have not specified a statistical 

framework for accounting for false negatives, and our occupancy-inspired model 

framework may be useful in other PCR-based studies (Bobowski et al. 1999; Brunner et 

al. 2001).  

We also demonstrate the usefulness of incorporating uncertainty and process 

information in estimating latent (unobservable) species-specific active root area or root 

biomass (see also, Cressie et al. 2009). Our model predicts species-specific root biomass 

in each soil layer, and accounts for limitations in sampling and the contributions of 

neighboring species’ root biomass. The inclusion of multiple datasets combined with the 

fractional root area model predicted bulk root biomass better than a more classical, 

simple model fit to bulk root biomass (Table 2.3). Models of root biomass typically 

assume an exponential or nonlinear decline with depth, but woody plant roots may not 

necessarily be concentrated at the surface (Gale & Grigal 1987; Lynch 1995; Ogle et al. 

2004). In arid or semi-arid systems, deep roots may be more important for physiological 

activity during dry periods than shallow roots (Schwinning et al. 2002; Ogle & Reynolds 

2004). 

 

Ecological application: Larrea tridentata’s root profile 

Our statistical framework for partitioning the root profiles of Larrea tridentata 

and select neighboring species demonstrates that plant neighbors alter Larrea’s vertical 
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root distribution (Fig. 2.2 and Fig. 2.3). Larrea had greater root biomass and more active 

roots at shallow depths (<40 cm) when growing next to tree species neighbors. Olneya 

and Prosopis are known to have facilitative effects on understory shrubs via canopy 

shading, and Larrea’s roots may be more active in shallow layers as a result of increased 

water availability (Suzan et al. 1996; Schade et al. 2003).  

Under stressful drought conditions, arid shrubs can shift water uptake and root 

activity to deeper soil layers (Schwinning et al. 2002; Ogle & Reynolds 2004). Larrea 

growing alone or next to Ambrosia had very little biomass or root area in shallow soil 

layers, and these neighbor associations may experience greater limitations in surface soil 

water as a result of increased evaporation due to decreased canopy shading (Suzan et al. 

1996). Larrea and Ambrosia roots have been shown to avoid overlap (Yeaton et al. 1977; 

Brisson & Reynolds 1994), and little vertical overlap in root biomass was also observed 

in this study (Fig 2.3). The variation in Larrea’s root profile arising from plant neighbor 

associations highlights a source of variation in Larrea root profiles, in addition to 

previously reported variation across deserts (Ogle & Reynolds 2004). 

 

Conclusions 

Ecological data are complex, often affected by multiple sources of uncertainty and 

methodological limitations, and models that combine diverse datasets and mechanistic 

constraints can help to evaluate such data, lending insight into latent quantities or 

processes of interest (Cressie et al. 2009). Previous studies demonstrate the merits of 

combining diverse datasets, and a similar multi-data modeling approach has been applied 

to ecosystem processes that are difficult to measure, such as belowground autotrophic 
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respiration or the effect of permafrost thaw on plant transpiration (Cable et al. 2014; 

Tucker et al. 2014). Our approach to partition root biomass between Larrea and other 

species provided additional information on Larrea’s rooting patterns and improved model 

fits compared to more simplistic, independent analyses of each dataset. Our combined 

multi-model, multi-data approach provides a framework for analyzing root distributions 

using minimally destructive sampling and is particularly useful in ecological systems 

suffering from methodological difficulties, such as arid regions (Jackson et al. 1996; 

Mommer et al. 2011). 
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Tables 

Table 2.1. Species information for genetic analysis to identify presence in root samples 

based on the presence of unique fragment base pair (bp) lengths. 

Species 
Accession 

Number 

Length of 

Amplified 

Fragment (bp) 

Identifying 

Fragment length 

RsaI (bp)
 

Identifying 

Fragment length 

BssHII (bp) 

Larrea tridentata JF267309.1
* 

660 600
†
 660 

Olneya tesota KR020829 730 325, 170
†
 730 

Prosopis velutina 
AY145703.1

*
  

AY145702.1 
* 

750 750 100, 250, 350 

Ambrosia deltoidea KR020830 800 470, 250
†
 800 

*
Fragment patterns that were verified against pre-existing sequence data in Genbank. 

†
Fragments below 100 bp are expected to be present. However, fragment lengths below 

100 bp were not readily detected in our gel electrophoresis approach, and thus we do not 

include fragments below 100 bp as unique, identifying fragments for a given species.  
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Table 2.2. Description of parameters and variables in each sub-model of the 

combined, process model. 

Symbol Description Source/type 

Fractional rooting area 

f fractional area of active roots eqn 1 

w proportion of surface roots parameter 

a1,a2 describes shape of vertical root distributions parameter 

m1,m2 average rooting depths for deep and shallow roots parameter 

Water uptake   

p proportional water uptake eqn 3 
obs

soil  soil water isotope abundance data 

pred

stem  stem water isotope abundance parameter 

Ks soil hydraulic conductance computed from data* 

Kr root hydraulic conductance computed from data* 

Ψtloss turgor loss water potential computed from data* 

Ψs soil water potential computed from data* 

Root presence  

β probability of sampling roots in the soil core parameter 

γ probability of PCR success parameter 

 probability of root presence parameter 

* maximum probability of root presence parameter 

a 
slope of probability of root presence as fractional 

active root area increases 

parameter 

r presence of root in sample data 

d distance of closest shrub data 

b intercept for logit  (non-Larrea species) parameter 

α slope for logit  (non-Larrea species) parameter 

Root biomass  

µR mean root biomass in each soil layer  eqn 11 

Rtot total root biomass under each shrub data 

plarrea proportion of Larrea roots in root mixtures eqn 12 

fo fractional root of non-Larrea species eqn 13 

ρ 
decay of root area with depth of non-Larrea 

species 

parameter 

Simple linear mixing model  

pslm fractional water uptake from each layer eqn 15 

s soil water scaled proportional water uptake  parameter 

Simple root biomass model  

κ 
shape parameter describing root decline with 

depth 

parameter 
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* Additional information about data collection and parameterization is included in the 

Appendix A. 
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Table 2.3. Evaluation of model performance between the combined, process model 

approach and simpler, individual analyses of datasets. 

Dataset Model Model Fit Measure of Fit 

Stable isotope (stem 
18

O) Isotopes-only 0.18 R
2
 

 
Combined datasets 0.21 R

2
 

Stable isotope (stem D) Isotopes-only 0.49 R
2
 

 
Combined datasets 0.15 R

2
 

Molecular Molecular-only 67% Prediction accuracy 

 
Combined datasets 79% Prediction accuracy 

Root biomass Biomass-only 0.06 R
2
 

 
Combined datasets 0.26 R

2
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Figures. 

 

 

Figure 2.1. A directed acyclic graph (DAG) that represents the combined dataset model, 

with sub-models (panels a-c) in relation to Larrea tridentata’s fraction of active root area 

(f). Each sub-model depicts the analysis of a dataset in relation to f, such as in a 

biophysical model of active root water uptake (panel a, eqns 2-4) using stable isotope 

data (δstem and δsoil). A sub model (panel b) of the presence of Larrea and non-Larrea 

species roots in the soil profile accounts for detection issues (eqn 5-9) and uses molecular 

identification data (r). The third sub-model (panel c) accounts for the contribution of both 

Larrea and neighboring species roots (eqn 10-12) to the bulk root biomass (R) non-

Larrea species (fo, eqn 13) as well as Larrea’s root profile (f, eqn 1). Arrows indicate 

conditional dependency; circles indicate stochastic nodes, with shaded circles 

representing stochastic data nodes and open circles representing unknown quantities; 

squares indicate deterministic data nodes.   
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Figure 2.2. The fractional active root area (f) of Larrea tridentata under four different 

neighborhood associations, with Larrea growing next to: (a) Olneya tesota, (b) Ambrosia 

deltoidea, or (c) Prosopis velutina, or (d) growing alone. The solid black line indicates 

the posterior mean and shaded grey regions show the 95% credible regions. 
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Figure 2.3. Posterior estimates (mean and 95% credible interval) of root biomass (R) 

partitioned into each soil layer, for Larrea tridentata (a-d) and all other neighboring 

species combined (e-h), for four neighborhood associations, with Larrea growing next to 

Olneya tesota (a, e), Ambrosia deltoidea (b, f), or Prosopis velutina (c, g), and growing 

alone (d, h). 
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4. THE SENSITIVITY OF EVAPOTRANSPIRATION TO PLANT NEIGHBOR 

INTERACTIONS: IMPLICATIONS FOR PATCH- and STAND- SCALE MODELS 

Abstract 

 Evapotranspiration is a key water loss in ecosystem water cycles, and quantifying 

the spatial and temporal variation of evapotranspiration is key for improving hydrological 

models in arid ecosystems. Plant neighbor interactions may be a source of spatial and 

temporal variation in evapotranspiration due to their effect on the above- and 

belowground microclimate around a plant. Over longer timescales (year to multiple 

years), adjustments in plant physiological traits may occur in response to neighbor 

environments, potentially affecting transpiration dynamics. The sensitivity of 

evapotranspiration and soil moisture to plant neighbors around Larrea tridentata was 

assessed using field measurements paired with a dynamic soil water model. We assessed 

the sensitivity of model estimates to neighbor effects on soil moisture via competition for 

water, aboveground microclimate effects via canopy shading, and physiological 

adjustments of Larrea to neighbor environments under two different precipitation years. 

Neighbors impacted transpiration of Larrea by as much as 75% at the patch scale (plant 

and surrounding soil) and 30% at the stand scale. Patch and stand scale evaporation 

estimates were also affected by neighbors, and evaporation was reduced by roughly 50% 

at the patch-scale and 25% at the stand-scale. Annual transpiration model estimates were 

highly sensitive to the impact of neighbors on soil moisture via competition for water, 

and the inclusion of physiological adjustments to neighbor environments significantly 

impacted seasonal transpiration. Neighbors also impacted the seasonal dynamics of the 

transpiration of Larrea under the two different precipitation years. Plant neighbor 

interactions can be a significant influence on evapotranspiration and soil moisture and 
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can help explain spatial and temporal variation in models of water fluxes in arid 

ecosystems. Furthermore, physiological adjustments to neighbor environments may be an 

important source of variation in ecohydrological models over seasonal timescales or in 

studies focused on plant responses to precipitation under climate change. 
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Introduction  

 Evapotranspiration (ET) is a key component of ecosystem water cycling and is 

linked to plant productivity and net ecosystem carbon exchange (Fischer and Turner 

1978, Reynolds et al. 2004). Altered temperature and precipitation patterns associated 

with global climate change are expected to shift seasonal trends in ET and affect annual 

ET across a diversity of ecosystems through impacts on atmospheric demand and changes 

in plant physiology (Reynolds et al. 2000, Wetherald 2002, Huntington 2006).  Models 

seeking to predict the impacts of climate change on ET require a mechanistic 

understanding of water movement across the soil-plant-atmosphere continuum 

(Asbjornsen et al. 2011, Wang et al. 2012, Hawkins et al. 2015). Terrestrial plants are an 

important determinant of ET, controlling transpiration (T) rates and altering evaporation 

(E) through canopy shading effects on soil temperature, canopy interception and 

throughfall (Rodriguez-Iturbe et al. 2001). However, plant controls of ecosystem- level 

ET vary spatially and temporally (Vivoni 2012), and an understanding of the mechanisms 

that drive variation in ET can improve models  and predictions under future climate 

change scenarios (Asbjornsen et al. 2011, Jenerette et al. 2012, Hawkins et al. 2015).  

 In arid and semi-arid ecosystems, ET is typically tightly coupled to soil water 

availability, and slight variations in climate, vegetation, and plant-soil moisture feedbacks 

can significantly impact soil water content (SWC) and ET (Rodriguez-Iturbe et al. 2001, 

Hultine and Bush 2011). In ecosystems with aggregated plant spatial distributions, 

variation in ET and SWC at the patch scale (plant and surrounding soil) may arise as a 

result of the effect of neighboring plants on the patch environment (Mahall and Callaway 

1996, Callaway and Walker 1997, Schade et al. 2003). For example, plants growing 
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under a tree canopy may experience reduced rainfall infiltration due to the effects of 

interception by the tree canopy (Mcnaughton and Jarvis 1983). Moreover, overlapping 

root systems can impact the soil water available for transpiration through competition 

(Callaway and Walker 1997, Schenk 2006). Facilitative interactions also affect ET via 

canopy shading effects that decrease temperature or through the hydraulic redistribution 

of deep soil water by neighboring roots (Suzan et al. 1996, Caldwell et al. 1998).  

Such facilitative and competitive interactions are not necessarily static over time, 

and interactions can vary seasonally, in response to precipitation and soil water dynamics 

(Briones et al. 1996, Zou et al. 2005). For example, the degree that plants compete for 

similar water sources can depend on precipitation frequency and magnitude, leaf area, 

and root distributions (Manning and Barbour 1988, Chesson et al. 2004). The prolonged 

modification of the patch microclimate by neighbors can eventually result in plant 

physiological adjustments to the altered environment, such as changes in root 

distribution, stomatal behavior, and canopy leaf area (Briones et al. 1996, Albert et al. 

2011, Kropp and Ogle 2015). However, the relative impact of the neighbor-adjusted 

physiology on annual and seasonal ET and SWC at the patch scale is not well understood, 

and studies typically assume that species physiology and functional morphology are 

similar across all plant neighbor associations (Callaway and Walker 1997, Schwinning et 

al. 2003).  

 We evaluate the sensitivity of ET to plant neighbors and the mechanisms that 

underlie the neighbor effects at the patch and stand scales using a simulation analysis 

paired with data collected in the field. We focus on a drought-tolerant, evergreen shrub, 

Larrea tridentata (Sesse & Moc. ex DC.; creosotebush), that is dominant throughout the 
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hot deserts of the southwestern United States and northwestern Mexico (Barbour 1969, 

Meinzer et al. 1986). The effect of neighbors on  the ET and SWC associated with Larrea 

patches was assessed for neighboring plants of differing functional types including a 

small sub-shrub Ambrosia deltoidea (Torr; W.W. Paynel; triangle leaf bursage), and two 

tree species Olneya tesota (A. Gray; desert ironwood) and Prosopis velutina (Wooten; 

velvet mesquite). Ambrosia is a shallow rooted, drought deciduous shrub known to have 

belowground competitive interactions with Larrea (Brisson and Reynolds 1994). 

Prosopis and Olneya are deeply rooted trees, with large canopies that can have 

facilitative effects on understory plants as a result of canopy shading and hydraulic 

redistribution (Suzan et al. 1996, Tewksbury and Lloyd 2001). We address three 

questions: (1.) Do plant neighbors of different functional types differentially affect 

seasonal and annual estimates of ET in Larrea patches? (2.) How sensitive are 

transpiration estimates for Larrea to the different mechanisms underlying the plant 

neighbor effects? (3.) What are the implications of plant neighbor interactions for 

predicting ET around Larrea at the stand scale? We evaluate these questions using a 

simulation analysis that utilizes a coupled soil moisture and transpiration model that is 

calibrated with data collected from Larrea patches associated with the aforementioned 

neighbor associations.  

 

Methods 

Simulation Experiments 

 We implemented an incomplete factorial approach to assess the relative impact of 

plant interactions on evapotranspiration (ET) and soil water content (SWC) in Larrea 
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patches via three underlying mechanisms: (1) direct competition for soil water, (2) 

neighboring tree canopy effects on the patch microclimate, and (3) adjustments of  

physiological behavior to neighbor environments (see Table 3.1 for a summary of the 

simulation scenarios and the notation used for each). The overall effect of plant neighbors 

was assessed by comparing ET and SWC for Larrea growing alone (L) versus growing 

next to each neighboring species (N) under the assumption that all three aforementioned 

neighbor effects occur. We refer to this as the base-line scenario that reflects real, 

observed interactions. The effect of competition for soil water on the T of Larrea was 

evaluated through two scenarios that assumed: (1)  complete root overlap (RO) with no 

vertical root differentiation between species, and (2) neighbor root profiles do not overlap 

with the Larrea  rooting zone such that Larrea does not compete (NC) with its neighbors 

for soil water. A comparison between RO and N scenarios provides insight into the 

degree that Larrea and neighboring species compete for similar soil water sources, and 

the T of Larrea is expected to be lower in the RO scenarios compared to the N scenarios 

if vertical root differentiation occurs between Larrea and the neighboring species in N 

scenarios. The overall effect of competition for water on Larrea T was assessed by 

comparing the N and NC scenarios, and Larrea T is expected to be higher if competition 

limits water availability for Larrea in the N scenarios.  

 Tree canopies alter the microclimate around Larrea via shading impacts on air 

temperature and vapor pressure deficit (D), altering both stomatal conductance and the 

evaporative demand for ET. Tree (Olneya and Prosopis) canopies also intercept 

precipitation, thus decreasing precipitation inputs into the soil in Larrea-tree patches 

(Suzan et al. 1996, Tewksbury and Lloyd 2001). The sensitivity of T estimates of Larrea 
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to tree canopy effects on patch microclimate was evaluated by removing the microclimate 

(NM) effects such that neighboring tree canopies do not intercept precipitation, and do 

not alter temperature and D (no shading) in Larrea-tree neighbor associations. If Olneya 

or Prosopis are facilitative through canopy shading, Larrea’s T is expected to be higher 

under the NM scenarios compared to N scenarios. 

 Larrea’s physiological adjustments to neighbor-altered environments were 

incorporated through shifts in the root distributions, stomatal behavior, and leaf area 

index (LAI) specific to each neighbor association. We examined how Larrea’s neighbor 

adjusted physiology impacts T estimates for Larrea and ET by assuming Larrea’s 

physiology was the same in the presence of neighbors as Larrea growing alone (LN). 

Decreases in T under the LN scenarios (compared to N) indicates that Larrea’s 

physiological adjustments are important for understanding the impacts of neighbor 

altered environments.  Higher T under the LN compared to the N scenarios would 

indicate that prolonged exposure to neighbor environments negatively impacts Larrea’s 

physiological controls on T. We also assessed the impact of Larrea’s neighbor-adjusted 

physiology in the absence of neighbors (NN) in comparison to Larrea growing alone (L) 

to examine how neighbor adjusted physiology affects T without the direct effects of 

neighbors on SWC or patch microclimate.  

Each scenario was evaluated across two years with similar annual precipitation 

(27.15 cm in 2014 and 27.52 cm in 2004), that was approximately 2 cm less than the 

thirty year average (29.6 cm) near the study site. The precipitation periods differed with 

respect to the seasonality and the frequency of precipitation events (Fig. 1a and b). For 

example, 2014 was characterized by high summer precipitation (68% of annual) and low 
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winter precipitation (28%), whereas 2004 had low summer (12%) and high winter 

precipitation (59%). The two years were compared to examine how sensitive neighbor 

effects are to differing seasonality in precipitation under years with similar annual 

precipitation. 

 

Dynamic Soil Water Model 

All simulation experiments were implemented using a dynamic soil water model, 

HYDRUS1D V4.16.0090  (Šimůnek et al. 2008, 2013) which provides numerical 

solutions to the Richards equations (Richards 1931) to simulate soil water flow and root 

water uptake in a one dimensional soil profile. Soil water content (SWC) and root water 

uptake were simulated in layers of 1cm increments down to a depth of 60 cm, based on 

available root profile data (described below). Studies of Larrea indicate that 70-80% of 

root water uptake occurs in the upper 40 cm of the soil, and thus 60 cm likely captures 

the majority of water uptake by Larrea (Reynolds et al. 2000, Ogle et al. 2004). The 

lower boundary condition of the soil profile was set to free drainage since the vadose 

zone extends beyond our focal 60 cm (Seyfried et al. 2005). The van Genutchen model 

(1980) was used to describe soil hydraulic properties, and the model parameters were 

estimated from soil moisture retention and texture data (described in full in Appendix C). 

Root stress limitations on potential transpiration were included using the S-shaped root 

stress function, α (van Genuchten 1987): 
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where h represents the hydraulic head of a given soil layer, h50, the 50% reduction in 

water uptake, which has a hydraulic head of -25,000 cm and, p, is a dimensionless 

exponent that affects the sensitivity of water stress to hydraulic head, and was set to 3 

based empirical studies (Pockman and Sperry 2000, Gutierrez-Jurado et al. 2006, 

Šimůnek et al. 2013).  

The HYDRUS1D model simulated water fluxes at the soil surface through the 

input of daily precipitation, potential evaporation (PE), and potential transpiration (PT) in 

each scenario (Table 3.1). We considered PT to be primarily dependent on the 

atmospheric evaporative gradient (vapor pressure deficit, D, and the daily atmospheric 

pressure, P) and plant related controls including stomatal conductance (gs) and leaf area 

index (LAI):   

s

D
PT g LAI

P
      (19) 

Daily precipitation data were averaged from nearby precipitation gauges 

(Hesperus Dam, Hesperus Wash, and Asher Hills) for both 2004 and 2014 (FCDMC, 

2015).  PE was estimated using the Hargreave’s equation (Hargreaves et al. 2003), which 

is based on daily minimum and maximum temperature.  

Initial values of SWC in all soil layers were set to field capacity and a 31 day 

period was used before the start of each year to allow for model spin up in all 

simulations. The simulations were divided into seasons to account for seasonal variation 

in root distributions. Winter and summer season definitions were based on 30 year 

records (WRCC), with a colder, rainy winter period (December-March; 11.5-16.4C) and 

a hot summer characterized by an early-summer drought followed by monsoonal storms 
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(June-September; 29.5-32.7C). A full description of the seasonal implementation of 

HYDRUS1D is included in Appendix C.   

The daily actual T, actual E, and SWC were obtained from the model output. 

When Larrea was paired with a neighboring species, the PT in the scenario accounted for 

both Larrea and the neighboring species, and thus the modeled T (Tall) was the actual T 

for both Larrea and the neighboring species. T was partitioned between Larrea and 

neighboring species based on the  proportional contribution of Larrea (plt) to the PT of 

both neighboring species and the root stress (α) and fractional rooting distribution (fr) of 

Larrea: 

 
60

1

( ) ( )lt all rT p T z f z dz    (20) 

The integral was estimated using a trapezoidal numerical integration (Šimůnek et al. 

2013). The parameterization of the PT function and root distributions are described below 

(see Data Inputs). 

Stand scale T was calculated from patch level T using a weighted average from 

the proportion of each neighbor association occurring in the study site. Neighbor 

associations were determined using a map of the shrubs at the study site (see Figure S3.1, 

Appendix D). Each Larrea patch was classified into the four, aforementioned neighbor 

associations dependent on the distance to neighbors. Larrea was considered to be 

associated with Olneya or Prosopis if it was within 3.5 m of the tree, otherwise Larrea 

was considered to be associated with Ambrosia within 1 m of Ambrosia, and Larrea was 

considered to grow alone if it did not fall into the above associations. We recognize that 

this represents an over-simplification of the ecosystem since it ignores other types of 
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neighboring species and intra-specific interactions, but our stand level predictions are 

meant to explore the sensitivity of stand scale T predictions to the inclusion of neighbor 

effects rather than provide an exact estimate of stand level T at the site. 

 

Data Inputs 

Simulations were parameterized from data collected on Larrea tridentata in the 

Sonoran Desert near Phoenix, Arizona, at the McDowell Mountain Regional Park 

(33.7261,-111.6987, 476 m asl). The site is dominated by Larrea, Ambrosia deltoidea, 

Prosopis velutina, and Olneya tesota with many shrubs growing in close proximity, with 

overlapping canopies. Plants with overlapping canopies were considered to be neighbors, 

and Larrea growing with a canopy separated by at least 1 m from a small shrub canopy 

and 3.5 m from a tree canopy was considered to be growing alone. Average daily 

temperature ranged from 12.2°C (December) to 33°C (July) over the period 1981-2010 

(WRCC, 2013). The soil is predominately sandy loam consisting of 82% (standard error 

[se], .06%) sand, 13% (se .06%) loam, and 5% (se .03%) clay and is classified as an 

Aridisol (Hall et al. 2011).  Simulations used micrometeorological data to parameterize 

PT calculations, and a full description of micrometeorological data sources (Temperature, 

D, SWC) are provided in Appendix C.    

PT was treated as a maximal transpiration rate when soil water is not limiting, and 

thus we consider gs in Eqn. 2 to be the maximum stomatal conductance (gs) under the 

given meteorological conditions. We parameterized a potential gs model using stomatal 

conductance measurements made under “low moisture stress” by only using data 

collected within one week of ≥0.5 cm rain event, the minimum size considered to be 
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biologically relevant (Reynolds et al. 2004, Ogle and Reynolds 2004). The gs and leaf-to-

air D data for Larrea were collected with a portable photosynthesis system (Li-Cor 

6400XT; Li-Cor, Lincoln, NE) on 10 days during the winter and summer periods from 

December 2011 to September 2014. Additional details on data collection are given in 

Kropp and Ogle (2015).  

For potential gs, of Larrea, we adapted a model from Ogle and Reynolds (2002) 

that successfully described stomatal behavior of Larrea in the Chihuahuan Desert in 

response to D and growth temperature (Tgro, average 24-hour air temperature over the 

previous week):  
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Where Do is a reference D of 1kPa, gref is the reference gs at D=1 kPa, and m describes 

stomatal sensitivity to D. The first term on the left-hand side of Eqn 

Error! Reference source not found. quantifies gs under optimal Tgro, and the second 

term accounts for the effect of variation in Tgro, such that gs decreases under sub-optimal 

temperatures and gs = 0 if Tgro < Tmin (minimum Tgro) or Tgro > Tmax (maximum Tgro). The 

values for Tmax and Tmin were obtained from Ogle and Reynolds (2002) where Tmax=37°C 

and Tmin=5°C. Eqn Error! Reference source not found. was fit to the gs data in a 

Bayesian framework following the approach described by Kropp and Ogle (2015). 

The potential gs of neighboring species (Prosopis, Olneya, and Ambrosia) was 

estimated with a simpler model based purely on the gs response to D (Oren et al. 1999), 

which has successfully described the stomatal behavior of a wide range of species in arid 

ecosystems (Oren et al. 1999). The model is essentially the same as Eqn 
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Error! Reference source not found., but the term on the right-hand side describing the 

effects of Tgro was not included given lack of data on the effect of Tgro. This simplified 

model was fit to gs measurements made during periods of low water stress in the winter. 

Given the limited observations and simplicity of the neighboring species’ potential gs 

model, neighbor stomatal conductance parameters were estimated via a least squares 

regression.  

Potential gs in PT (Eqn 2) was subsequently calculated for Larrea (Fig. 1D) and 

its neighboring species by evaluating Eqn 4 (Larrea) and the simplified version 

(neighbor) at the observed temperatures and D values for each study period, using the 

point estimates that were obtained for the parameters (gref, m) for each season and 

parameter values are provided in the Appendix C (Table S3.1). 

 The LAI of Larrea was measured using a PAR ceptometer (Accu-PAR LP-80, 

Decagon, Pullman, WA) in August of 2014 and February 2015 for Larrea shrubs in each 

neighbor association for (n=6 per neighbor, Table S3.1). LAI was measured on 

neighboring species (n=6 per species) in April 2015, and the LAI of Olneya and Prosopis 

was assumed to be constant across all seasons. Ambrosia typically undergoes a period of 

senescence in May through the beginning of the monsoon season in July, and thus its LAI 

was set to zero during that period (Szarek 1977). 

 

Vertical Root Distributions 

 The vertical root distributions of Larrea were parameterized as fractional root 

distributions (fr), representing the relative amount of roots in each 1 cm layer over the 0-

60 cm profile. The fr values are based on chapter 2, and were determined from an 
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combined analysis of stable isotope data in soil and plant water (collected in the 

summer), molecular identification of roots, and root biomass data to separate the root 

distributions of Larrea from its neighbors (Fig. 3.2A-D).  Neighboring species’ fractional 

root distributions were estimated from molecular presence and root biomass data in the 

same analysis (chapter 2). We assumed that neighboring root distributions declined 

exponentially with depth (Fig. 3.2E) because the contribution of neighboring root 

biomass below Larrea canopies was expected to consist of lateral roots, which tend to be 

more shallowly distributed (Schenk and Jackson 2002). Molecular identification and 

isotope data were not collected in the winter, but a similar model was fit to the winter 

root biomass data, and a description of the model is included in Appendix C.  

 

Results 

Effect of Neighbors on Patch and Stand Scale Evapotranspiration 

 For a majority of the year, the daily transpiration (T) of Larrea was lower when 

growing next to plant neighbors of all functional types compared to Larrea growing 

alone (Fig. 3.3A and B). Larrea growing alone had the highest annual T (Table 3.2) and 

Larrea growing next to Prosopis and Ambrosia had the lowest annual T, with annual T 

being 71% and 54% lower than Larrea growing alone, respectively. Annual evaporation 

(E) was also the greatest in patches defined by Larrea growing alone, and annual E 

generally did not differ among the different Larrea-neighbor patches (Table 3.1, Fig. 

3.3C and B). The T/ET ratio around Larrea was the lowest in patches where Larrea was 

growing with Ambrosia and Prosopis, due to Larrea’s low T in these patches. A 

description of our simulation validation is provided in the Appendix D. 
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Sensitivity of Patch-level Transpiration to Mechanisms Underlying Plant Interactions 

 Competition for soil water had the greatest effect on Larrea’s transpiration rates, 

and the scenario that assumed neighbors root water uptake did not overlap with Larrea’s 

root profile (NC) led to the largest increases in both seasonal and annual T for Larrea 

compared to the base-line N scenarios, for all neighbor associations (Fig. 3.4). Larrea 

growing next to Prosopis had the lowest annual T compared to all other Larrea patches 

(Table 3.2 and Fig. 3.4D and H) and had the largest increase in annual T (256% in 2014) 

in the absence of competition for water with Prosopis (NC-P) compared to the base-line 

scenario that included competition (N-P). The scenarios that assumed complete overlap 

of Larrea and its neighbor’s root distributions (RO) did not significantly decrease  T 

estimates for Larrea compared to the base-line (N) scenarios (Fig. 3.4), with the 

exception of a 25% decline in annual T for Larrea growing next to Ambrosia (RO-A) 

compared to the N-A scenario. Larrea growing next to neighbors (N) had lower soil 

moisture that coincided with markedly faster soil drying following precipitation events 

compared to Larrea growing alone (L, Fig. 3.3E and F), confirming that competition for 

soil water likely results in decreased water availability for Larrea in Larrea-neighbor 

patches (i.e. Larrea growing next to Olneya, Ambrosia, or Prosopis).  

Despite the reduction of temperature and D (Fig 3.1A and B), tree canopies 

(Prosopis and Olneya) had little impact on estimates of T for Larrea, and scenarios that 

assumed that microclimate around Larrea was not affected by neighboring canopies 

(NM) had similar or higher seasonal and annual T in comparison to the base-line N 
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scenario (Fig. 3.4). For the base-line scenarios, with included neighbor effects on 

microclimate, D was lower beneath tree canopies during the summer months (Fig. 3.1C) 

and Larrea had higher potential gs when growing next to tree neighbors (N-P and N-O) 

compared to the scenarios without tree canopy microclimate effects (NM, Fig. 3.1D). 

However, the increased potential gs did not result in greater T, and summer T did not 

differ between NM-O and N-O (Fig. 3.4B and F). The scenario that assumed that 

Prosopis did not alter the microclimate (NM-P) resulted in mixed effects, and in the 

summer when the effects of shading are the greatest, Larrea had 22% higher T in 2014 

and 30% lower T in 2004 compared to the base-line scenario (N-P, Fig. 3.4D and H). 

Estimates of annual T for Larrea were moderately affected by variation in 

Larrea’s physiology. The assumption that Larrea’s physiology in the presence of 

neighbors was the same as Larrea growing alone (LN) tended to affect estimates of 

annual T for Larrea on the order of 10-20% compared to the base-line N scenarios with 

neighbor-specific physiological adjustments (Fig. 3.4). In the absence of neighbor 

competition and canopy microclimate effects (NN-O, NN-P, NC-A), variation in 

Larrea’s physiology also resulted in differences in the annual T for Larrea between 10-

20% compared to Larrea growing alone (L, Fig 3.4). For example, Larrea’s 

physiological behavior when growing with Olneya (NN-O) resulted in higher annual T 

(20% higher in 2014) compared to Larrea growing alone (L) (Fig. 3.4A and B). When 

Larrea’s physiology in Larrea-Olneya patches was assumed to be the same as Larrea 

growing alone (LN-O), annual T of Larrea decreased by 15% in 2014 compared to the 

base-line scenario (N-O). The effect of physiological adjustment on annual T for Larrea 

in Larrea-Prosopis patches tended to minor both with neighbors (LN-P vs. N-P) and 
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without neighbors (NN-P vs. L). The effect of an Ambrosia neighbor on Larrea’s 

physiology (NC-A) resulted in 12% (2014) and 17% (2004) lower annual T compared to 

Larrea growing alone (L). When Larrea’s physiology in Larrea-Ambrosia patches was 

assumed to be the same as Larrea growing alone (LN-A), annual T of Larrea decreased 

by 14% in 2014 and increased by 12% in 2004 compared to the base-line scenario (N-A) 

(Fig. 3.4C and G). 

Estimates of seasonal T for Larrea were sensitive to physiological adjustments, 

and the replacement of Larrea’s neighbor-adjusted physiology with lone Larrea’s 

physiology (LN) resulted in different seasonal T (Fig 3.4) compared to the base-line 

scenario with neighbor adjusted physiology (N). For instance, if Larrea’s physiology was 

set equal to a lone Larrea when growing next to Ambrosia (LN-A) or Prosopis (LN-P), 

winter T increased by 59% in 2014 and 93% in 2004 for LN-A (Fig. 3.4c and 3.4g) and 

by 20% in 2004 compared to the base-line scenarios (N-A and N-P, respectively). 

Conversely, when Larrea was assigned the lone physiology when growing next to 

Olneya (LN-O), Summer T for Larrea decreased by 61% in 2014 and 42% in 2004 

compared to the base-line scenario (N-O, Fig 3.4b). Likewise, when Larrea growing next 

to Prosopis was considered to have the same physiology as Larrea growing alone (LN-

P), summer T of Larrea decreased by as much as 42% in 2014 compared to the base-line 

scenario (N-P). The scenario that assumed Larrea growing next to Ambrosia had the 

same physiology as Larrea growing alone, summer T of Larrea decreased by 51% (2014) 

and 56% (2004) compared to the N-A scenario. 

 

Implications for Predictions of Evapotranspiration  
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Accounting for plant neighbors (N scenarios) impacted annual ET estimates for 

Larrea at the stand-level and reduced stand estimates of annual T by as much as 3 cm 

(30%) in a year (Table 3.2) compared to estimates based on the lack of neighbor effects 

(Larrea-lone conditions). The inclusion of neighbor influences on the T and ET dynamics 

in Larrea patches also resulted in decreased stand scale E by ~2 cm (25%). The ratio 

T/ET was slightly reduced in the presence of neighbors compared to the assumption of no 

neighbor effects, which likely resulted from decreases in T of Larrea in Larrea-neighbor 

patches (Table 3.2). Stand scale predictions of the T/ET that included neighbor effects 

decreased by 13% under the 2004 (Table 3.2). 

Annual evaporation (E) and transpiration (T) for Larrea patches were slightly 

different between the two years (Table 3.2 and Fig. 3.4), and estimates of annual T for 

Larrea in 2004 was generally 10-12% lower than in 2014, with the exception of a 

decrease by 28% in Larrea-Ambrosia patches. The seasonal T of Larrea had the greatest 

variation between years and varied by neighboring species identity (Fig. 3.1 and Fig. 3.4). 

For instance, precipitation events in the late winter and early spring in 2004 (Fig. 3.1B) 

resulted in higher spring T for all Larrea-neighbor associations (N) compared to 2014. 

Larrea growing next to Prosopis and Ambrosia had the greatest differences in T by 355% 

and 209%, respectively for 2004 as compared to 2014. Larrea growing alone (L) had 

spring T in 2004 that was 173% greater than in 2014 (Fig. 3.4B, F, D, and H). Summer T 

in 2004 was lower than 2014 for all neighbor associations. For example, Larrea growing 

next to Prosopis had 85% less T in the summer of 2004 compared to 2014 (Fig. 3.4D and 

H), and supported the lowest summer T of all Larrea-neighbor patches, with 75% lower 

T than Larrea growing alone. Larrea growing next to Ambrosia had the smallest 
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difference in summer T, with 55% lower T in 2004 than 2014 (Fig 3.4C and G). Larrea 

growing next to Ambrosia also had the highest summer T in 2004 of all Larrea neighbor 

associations, and was 33% greater than Larrea growing alone.  

 

Discussion 

Effects of Neighbors on Evapotranspiration in Larrea Patches 

The simulation results indicate that plant neighbors influence transpiration (T) of 

Larrea, soil water content (SWC), and evaporation (E) in Larrea patches (Fig 3.3). 

Estimates of annual T for Larrea were lower in all Larrea-neighbor patches (i.e. growing 

next to Olneya, Ambrosia, or Prosopis) compared to Larrea growing alone (Table 3.2). T 

of Larrea was largely affected by competition for water from neighbors compared to the 

other mechanisms of neighbor interactions for all Larrea-neighbor patches (Fig. 3.4). On 

seasonal timescales, neighbor-associated adjustments in Larrea’s physiology 

significantly influenced T, even mitigating the effects of competition between Larrea and 

Ambrosia during periods in the summer with a higher T than Larrea growing alone (Fig. 

3.3A and B and Fig. 3.4C and G).  

The reduction in E was similar across all Larrea-neighbor patches compared to 

Larrea growing alone (Table 3.2). Although E is tightly coupled to SWC, vapor pressure 

gradients (D), and radiation (Breshears et al. 1997, Raz-Yaseef et al. 2010a), little 

difference was observed between Larrea patches affected by tree canopy microclimate 

alterations of D (N-P, N-O) and without microclimate effects (NM-P, NM-O), indicating 

that SWC limitations and competition may be more important than changes in D. The 

reduction of E in Larrea-neighbor patches is likely driven by limitations in available soil 
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water that arise from higher overall T due to soil water uptake from both Larrea and the 

neighboring species compared to Larrea growing alone (Reynolds et al. 2004, Raz-

Yaseef et al. 2010a).  

 

Sensitivity to Mechanisms Underlying Neighbor Effects on Transpiration 

 The removal of neighboring plant water uptake from Larrea’s root profile (NC) 

resulted in the greatest increases in annual T for Larrea growing next to neighbors (WN, 

Fig. 3.4). A variety of studies also demonstrate that Larrea competes for water with a 

number of species of varying functional types such as grasses, succulents, and shrubs 

(Phillips and Macmahon 1981, Briones et al. 1996, Schenk et al. 2003).  With the 

exception of Larrea-Ambrosia patches,  T estimates for Larrea marginally decreased 

under the assumption of complete root overlap (RO) compared to scenarios with 

neighboring species intrinsic profiles (N, Fig 3.4), suggesting that little vertical 

partitioning of water occurs between Larrea and the tree species. Larrea and neighboring 

grasses and shrubs were previously found to take up water from similar depths, likely 

because water rarely infiltrated deep soil layers (>40 cm) due to high E and T (Kemp and 

Reynolds 1997, Reynolds et al. 2000). Some degree of root water partitioning likely 

occurs between Larrea and Ambrosia, as indicated by a 25% reduction of T estimates for 

Larrea under the assumption of complete root overlap (RO-A) compared to different root 

distributions (N-A). Ambrosia’s shallow root distribution may allow Larrea and 

Ambrosia to utilize soil water in different depths since a majority of Ambrosia’s roots 

occur in in the upper 5 cm (Fig. 2E). Larrea and Ambrosia roots have been shown to 

avoid overlap when growing in close proximity (Brisson and Reynolds 1994, Mahall and 
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Callaway 1996), which may explain the lack of deeper Ambrosia roots under Larrea 

canopies. Our study only considers vertical root distributions, and lateral partitioning of 

roots may also contribute to reduced competitive interactions (Brisson and Reynolds 

1994, Yoder and Nowak 1999). 

Olneya and Prosopis are often considered to have facilitative effects on 

neighboring plants due to the more favorable microclimate created by their canopy 

shading that reduces understory temperature and D (Suzan et al. 1996, Tewksbury and 

Lloyd 2001).  However, T of Larrea was not greatly impacted by canopy microclimate. T 

of Larrea increased in Prosopis neighbor patches under the removal of canopy 

microclimate effects, likely a result of increased water inputs to the soil due to the 

removal of canopy interception of rainfall (Mcnaughton and Jarvis 1983). A similar arid 

tree species, Prosopis glandulosa, was previously found to provide little facilitative effect 

on understory vegetation’s water use, and competition for water outweighed the benefits 

of canopy shading (Barnes and Archer 1996, 1999). However, our study does not 

consider increases in soil water from hydraulic redistribution that may be performed by 

Olenya and Prosopis during dry periods (Hultine et al. 2004, Prieto et al. 2012); however, 

the facilitative effects of this process may be negligible since P. glandulosa’s hydraulic 

redistribution was found to have limited impacts on understory T (Zou et al. 2005). 

Over long timescales, annual T estimates for Larrea were less sensitive to 

assumptions about Larrea’s physiology compared to competition for water with 

neighbors. One hypothesis for Larrea’s physiological adjustments to neighbor 

environments is that its physiology adjusts to optimize water use by varying water 

sources and root overlap to reduce competition (Chesson et al. 2004, Ogle and Reynolds 



96 

 

2004). However, the presence of neighbors did not greatly affect the difference in  annual 

T estimates for Larrea between Larrea’s neighbor-adjusted physiology and the 

physiology of Larrea growing alone (Fig 3.4). Larrea’s root distribution and leaf area is 

known to rapidly adjust to changes in seasonal precipitation and soil moisture dynamics 

(Reynolds et al. 1999), and physiological adjustments may result from the varied patterns 

of SWC in neighbor patches. However, the extent that physiological adjustment can 

ameliorate competitive effects may be limited, and the evaluation of coexistence through 

physiological differences is often under-evaluated in studies (Chesson et al. 2004).  

Conversely, over short time scales, seasonal patterns in the T of Larrea were 

highly sensitive to physiological adjustment (Fig 3.4). When the physiology of Larrea 

growing alone was applied to Larrea growing next to neighbors (LN), Larrea in Larrea-

neighbor patches tended to have greater winter T and decreased summer T compared to 

scenarios accounting for Larrea’s neighbor-adjusted physiology (N). Larrea’s 

physiology (e.g., root growth, gas exchange) can quickly shift in response to water 

availability (Reynolds et al. 1999), and thus variation observed in Larrea’s physiology 

(Fig 3.1D and Fig 3.2) is likely a response to prolonged differences in above- and below-

ground microclimate created by neighbor environments. In summary, the variation in 

Larrea’s physiology arising from plant neighbors was important for T on short time 

scales (daily to seasonal), particularly around summer precipitation pulses (Fig 3.3). 

 

Implications for Predictions of Evapotranspiration  

Plant neighbors significantly reduced ET of Larrea patches, and we demonstrate 

that accounting for neighbors at the patch scale affects predictions of Larrea’s stand-level 
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estimates of ET by as much as 28% (Table 3.2). As expected in an arid ecosystem, E was 

a considerable portion of ET (Reynolds et al. 2000, Lauenroth and Bradford 2006), and 

neighbors further decreased the T/ET ratio in Larrea patches, especially under the 2004 

precipitation regime (Table 3.2). The ratio of T/ET can vary based on aridity, site 

location, and plant species (Kemp and Reynolds 1997, Huxman et al. 2005), and plant 

neighbors further contribute to variation in the ratio of T/ET at the patch and stand scale, 

altering the water balance around Larrea (Table 3.2).  

Climate change is predicted to alter precipitation regimes, affecting both the 

seasonality of rainfall and the magnitude and frequency of rain pulses (Easterling 2000), 

and studies focused on ET under altered precipitation regimes typically do not consider 

the influence of plant neighbor interactions (Gao and Reynolds 2003, Knapp et al. 2008, 

Raz-Yaseef et al. 2010b). The degree that neighbors compete for soil water may 

influence the degree that seasonal T is affected by different precipitation regimes. For 

example, Larrea growing next to Prosopis and Ambrosia experienced the greatest 

competition for water from neighbors, and increased late winter/spring rainfall resulted in 

the largest increases in spring T across the neighbor associations. Predicted decreases in 

late winter rainfall under climate change (Seager and Vecchi 2010) may heighten water 

limitations in competitive environments in the Sonoran Desert. Neighbor-adjusted 

physiology can also be an important aspect of estimates of seasonal T for Larrea under 

different precipitation regimes. The effects of competition between Larrea-Ambrosia in 

the stressful, low rainfall summer of 2004 may have been ameliorated as a result of 

Larrea’s slightly greater fractional root area at shallow soil layers. In comparison, Larrea 

growing next Prosopis was the most affected by differences in summer precipitation and 
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had the lowest T of all Larrea patches, which may be a result of higher root area at 

deeper depths that had decreased access to smaller rainfall events. Variation in 

physiology arising from plant neighbors may be important to capturing the influences of 

plant neighbors on ET under altered precipitation regimes, but it remains largely 

understudied due to simplifying assumptions about plant physiology (Reynolds et al. 

2004a, Schwinning and Kelly 2013). 

The influence of plant neighbors on estimates of ET was dependent on the 

temporal scale. Studies focusing on annual or longer time scales may adequately 

incorporate plant interactions solely through the inclusion of competition; whereas, 

studies focused on daily or seasonal timescales need to incorporate both competition and 

adjustments in physiology to neighbor environments to accurately reflect variation in ET. 

Regardless of the temporal scale, the impacts of competition and neighbor-adjusted 

physiology on patch scale SWC and ET provides a mechanistic understanding of the 

drivers behind plant community composition (Callaway and Walker 1997, Chesson et al. 

2004). Further study is needed to understand how both competition and neighbor-induced 

physiological variation interact to affect water fluxes under future climate conditions, 

particularly in regards to a finer temporal resolution of root distributions and stomatal 

behavior of both neighboring plants (Chesson et al. 2004, Albert et al. 2011). Scaling ET 

from the patch to stand or ecosystem scales is sensitive to the scaling assumptions, and 

subject to bias in estimates or over-simplification of spatial heterogeneity (Roberts 2000, 

Rastetter et al. 2003), and we demonstrate that plant neighbors represent an important 

source of spatial variation that can result in the biased estimates of ET at the patch and 

stand scales. 
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Tables 

Table 3.1. Description of simulation scenarios for evaluating the effect of plant 

neighbors on Larrea tridentata's evapotranspiration. The presence of neighbor 

influences are indicated by X and absence is indicated by dashes (-). 

 

Compe-

tition 

for 

water 

Canopy 

micro-

climate 

effects 

Adjust-

ments in 

Larrea’s 

physiol-

ogy 

 

Main 

scen-

ario 

 

Specific 

scenario

** 

 

 

Brief description 

- - - L L Lone Larrea, no neighbor 

effects. 

 

X 

 

X 

 

X 

 

N 

N-A 

N-P 

N-O 

Neighbor affects Larrea’s 

microclimate, physiology, 

and competes for water. 

 

X* 

 

X 

 

X 

 

RO 

RO-A 

RO-P 

RO-O 

Neighbor roots completely 

overlap with Larrea roots, 

and neighbor affects Larrea’s 

microclimate and physiology. 

 

- 

 

X 

 

X 

 

NC 

NC-A 

NC-P 

NC-O 

No competition for water, but 

neighbor affects Larrea’s 

microclimate and physiology. 

X - X NM NM-P 

NM-O 

Neighbor does not affect 

microclimate, but neighbor 

affects Larrea’s physiology 

and competes for water. 

 

X 

 

X 

 

X
†
 

 

LN 

LN-A 

LN-P 

LN-0 

Neighbor competes for water 

and effects microclimate, but 

neighbor does not affect 

Larrea’s physiology. 

 

- 

 

- 

 

X 

 

NN 

NN-A 

NN-P 

NN-0 

No competition for water, 

and neighbor does not affect 

microclimate, but neighbor 

affects Larrea’s physiology. 
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*Neighbor vertical root distributions are altered to completely overlap with Larrea’s root 

distribution (i.e., the root distributions of the neighboring plants are the same as Larrea’s 

root distribution). 
†
Lone Larrea’s stomatal conductance and root distributions are used to represent 

Larrea’s behavior in the presence of neighbors. 

**Scenarios followed by -A, -P, and -O indicate the species identity of the neighbor 

(Ambrosia, Prosopis, and Olneya, respectively). 
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Table 3.2. The effect of neighbors on annual transpiration (T), soil 

evaporation (E) and evapotranspiration (ET) for Larrea tridentata patches 

across two years (2004 and 2014) with differing precipitation years. 

Scale 

Neighbor 

association T (cm/year) E (cm/year) T/ET  

Patch 2014 2004 2014 2004 2014 2004 

 

Lone 10.42 9.39 10.12 10.43 0.51 0.47 

 

Olneya 

tesota 7.10 6.26 5.82 7.09 0.55 0.47 

 

Ambrosia 

deltoidea 4.82 3.47 5.61 6.62 0.46 0.34 

 

Prosopis 

velutina 3.06 2.69 5.34 6.5 0.36 0.29 

Stand 

      

 

Lone 

assumption 10.42 9.39 10.12 10.43 0.51 0.47 

 

Neighbor 

weighted 7.24 6.25 7.62 8.36 0.49 0.43 
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Figures 

 

Figure 3.1. The simulation inputs for two precipitation periods for Larrea tridentata patches 

including: daily precipitation and average air temperature data for 2014 (a) and 2004 (b), (c) 

average daily vapor pressure deficit and (d) Larrea’s daily potential stomatal conductance (gs) 

for each neighbor association scenario for 2014 for Larrea growing next to Ambrosia deltoidea 

(AMDE), Olneya testota (OLTE), and Prosopis velutina (PRVE). The labels “+ canopy” and “- 

canopy” indicate inclusion or exclusion of canopy microclimate effect.
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Figure 3.2. Larrea tridentata’s fractional rooting distribution (fr) during different 

seasonal periods, under four neighbor associations including Larrea growing a) alone or 

next to b) Olneya tesota, c) Ambrosia deltoidea, or d) Prosopis velutina. Neighboring 

species’ fractional rooting distribution: e) below Larrea’s canopy in Larrea-neighbor 

patches. 
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Figure 3.3. The effect of plant neighbor association on Larrea tridentata’s daily 

transpiration (T) (panels a and b), soil evaporation (E) (c and d), and volumetric soil 

water content (SWC) (e and f) across two differing precipitation regimes occurring 

during 2014 (a, c, and e) and 2004 (b, d, and f).  
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Figure 3.4. Larrea tridentata’s annual and seasonal transpiration (T) under differing 

competitive, physiological, and canopy microclimate scenarios for the 2014 (a-d) and 

2004 (e-h) precipitation years. Scenarios were run under Larrea’s four neighbor 

associations: Larrea growing alone (a, e) and next to Olneya tesota (b, f), Ambrosia 

deltoidea (c, g), and Prosopis velutina (d, h). The simulation scenarios are described in 

Table 1. 
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5. AN ECOHYDROLOGICAL PERSPECTIVE ON PLANT-PLANT INTERACTIONS 

IN ARID AND SEMI-ARID ECOSYSTEMS 

Abstract 

 Model estimates of evapotranspiration and soil moisture can be subject to high 

uncertainty in arid ecosystems. Model uncertainty may in part arise from the 

heterogeneous nature of abiotic and biotic drivers of evapotranspiration across space and 

time. Plant-plant interactions (PPI) may be a potential source of spatial variation for patch 

scale (plant and surrounding soil) water fluxes, which is largely under-evaluated in 

ecohydrological models. The alteration of plant environments arising from neighbor 

effects on microclimate can directly affect patch scale water fluxes, and across longer 

timescales can indirectly affect water fluxes by resulting in physiological adjustments in 

plant water-use traits (e.g., stomatal conductance, root distribution) . We assessed the 

current state of the literature relating to the direct and indirect effects of plant neighbors 

and evaluate the implications of the effects of PPI on water flux components across 

different spatial and temporal scales. Our literature survey found a lack of plant 

physiological and water-use data related to the direct and indirect effects of PPI. A 

literature survey of ecohydrological models found that only 26% of models explicitly 

included PPI, and both small (patch) and large (landscape) spatial scales were highly 

under-represented in models that include PPI. We recommend additional studies that 

include both empirical data and ecohydrological models to directly address the variation 

in water fluxes that arises from PPI across varied temporal and spatial scales.  
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Introduction  

 Arid and semi-arid ecosystems cover roughly 40% of the Earth’s land area and 

are a common focus in many ecohydrological studies (D’Odorico and Porporato 2006, 

Newman et al. 2006). For example, approximately 26% of original research articles in the 

journal Ecohydrology (n=337, 2011- Sept 2015) included research in arid or semi-arid 

ecosystems. Evapotranspiration is a primary water loss flux in ecosystem water cycles 

and a key component in ecohydrological models (Guswa et al. 2002, Scanlon et al. 2005). 

However, evapotranspiration model estimates in dryland ecosystems can be associated 

with high uncertainty (Shields and Tague 2012, Long 2014). Model uncertainty may in 

part arise from the degree of spatial variability in abiotic and biotic drivers of 

hydrological fluxes across a range of scales from the plant to landscape level (Newman et 

al. 2006, Vivoni 2012).  

Spatial variability in evapotranspiration fluxes in dryland ecosystems can be 

driven by heterogeneity in precipitation and abiotic factors such as terrain aspect and soil 

texture that affect runoff and soil moisture (Vivoni 2012, Chen et al. 2014). Water fluxes 

and soil moisture also vary among areas covered by plant canopies versus open, bare soil 

(Ludwig et al. 2005, Turnbull et al. 2012). Plants can influence the amount of water that 

infiltrates into the soil through canopy interception of precipitation and areas below plant 

canopies can act as sinks for runoff (Mcnaughton and Jarvis 1983, Ludwig et al. 2005). 

Soil moisture around plant canopies is affected by losses due to water uptake for 

transpiration and by modulation of such losses via canopy shading effects on temperature 

and evaporative demand (Breshears et al. 1998, Raz-Yaseef et al. 2010). The degree of 

spatial variation in water fluxes arising from vegetation depends on the amount of bare 
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soil, and the abundance and aggregation of plants at different spatial scales (Ludwig et al. 

2005).  

In ecosystems with aggregated plant spatial distributions, neighboring plant-plant 

interactions (PPI) contribute additional variability in water fluxes resulting from the 

effect of neighbors on the plant microclimate. PPI can directly affect patch scale (plant 

and surrounding soil) water fluxes by altering the soil microclimate through decreases in 

soil water availability arising from competition for water between overlapping roots 

(Fowler 1986, Casper and Jackson 1997). However, these negative effects can potentially 

be counteracted by facilitative effects. The direct effects of facilitative interactions can 

arise from plant canopy shading effects on the aboveground microclimate, especially 

during hot, dry seasons (Callaway 1995). Facilitative effects may also occur belowground 

through the hydraulic redistribution of water from neighboring roots, which can result in 

increased water availability to more shallowly rooted plants (Dawson 1993). The direct 

effects of PPI on water fluxes can vary over short timescales (daily-seasonal) depending 

on neighbor influences on microclimate and soil moisture (Zou et al. 2005).  

Across longer timescales (annual to multiple years), the prolonged exposure to an 

altered microclimate arising from the direct effects of PPI can lead to indirect effects on 

water fluxes through physiological adjustments of functional traits affecting water use 

strategies in response to neighbor environments (Fig. 4.1). Adjustments in functional 

traits related to plant water use such as root distribution, maximal stomatal opening, and 

leaf area (henceforth referred to as water-use traits) can alter transpiration dynamics. 

Many species in arid ecosystems show variation in above- and belowground water-use 

traits in response to different soil moisture regimes that can arise under variable 
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precipitation regimes, soil texture, or aspect (Nobel and Linton 1997, Hamerlynck et al. 

2000, Ogle and Reynolds 2004). However, variation in water-use traits arising from 

neighbor influences is less commonly studied (Callaway et al. 2003). Root distributions 

can vary based on neighboring plants, and many plants adjust their rooting distributions 

to reduce overlap with neighbors (Mahall and Callaway 1996, Callaway et al. 2003). 

Adjustments in aboveground water-use traits in response to neighbors can occur in plants 

in mesic ecosystems through changes in canopy morphology and photosynthetic 

physiology (Callaway et al. 2003), but the impact of neighbors on aboveground controls 

on transpiration are not well studied, particularly in arid plants. Variation in both above- 

and belowground water-use traits may be key to understanding PPI effects on water 

fluxes, but few studies have addressed this source of variation in arid plants and 

associated implications for ecohydrological models. 

Through both direct and indirect effects, the contribution of PPI to temporal and 

spatial variation in water cycles is largely under-evaluated, despite indications that PPI 

can affect soil moisture and water fluxes (Asbjornsen et al. 2011, Tietjen 2015). Many 

ecohydrological models do not account for PPI, and data associated with PPI impacts on 

water fluxes and the physiological controls over transpiration are under-represented.  

Instead, a majority of PPI studies focus on the implications for plant community 

demographics and infer the effects of neighbors on water availability from spatial 

distributions or plant size without directly measuring the impacts on plant-scale water 

fluxes (Fig. 4.2). Pattern based approaches provide insight into the longer term 

implications of PPI on plant community composition, but do not offer a mechanistic 

explanation of plant neighbor impacts on plant or ecosystem water fluxes (Callaway and 
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Walker 1997). The objective of this review is to explore the effects of PPI on water 

fluxes and their implications for ecohydrological models across a range of spatial and 

temporal scales. We highlight two understudied aspects of PPI and their implications for 

ecohydrological models: 1.) the role of direct and indirect effects of PPI for 

understanding ecohydrological processes, and 2.) the influence of plant neighbor 

interactions on transpiration and water cycling across varied temporal and spatial scales. 

We examine the current state of understanding by conducting a literature review. By 

doing so, we identify gaps in our understanding, and we make suggestions for 

improvement in methodological approaches that could advance the understanding of PPI 

for both ecohydrologists and ecologists. 

 

Direct Effects of Plant-Plant Interactions on Water Fluxes 

Belowground Direct Effects 

The direct effects of plant-plant interactions (PPI) on evapotranspiration are the 

effects that a neighbor has on soil moisture, and these effects can vary over short 

timescales from days to seasons (Holmgren et al. 1997). The degree that neighboring 

species’ roots overlap (Fowler 1986, Brisson and Reynolds 1994) and the magnitude of 

each species’ root water uptake both influence the soil moisture limitations on 

transpiration (Fig. 4.1). Soil water availability throughout the rooting profiles is also key 

to understanding the degree to which overlapping root distributions compete for water. 

For example, three warm desert species with overlapping roots experienced heightened 

competition for water around precipitation events but experienced little competition for 

water sources under dry conditions (Briones et al. 1998).  
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Facilitative interactions can also arise between neighboring plants depending on 

the canopy cover and rooting depth of neighbors (Fig. 4.1).  Hydraulic redistribution 

occurs in plants with roots in both deep and shallow soil layers, and neighboring plants 

with shallow root distributions may experience increased water availability if soil water is 

redistributed by the deeply root neighbor to shallow soil layers (Dawson 1993). 

Understory species growing under Prosopis glandulosa (honey mesquite), a deeply 

rooted semi-arid tree, experienced increased soil water availability from hydraulic 

distribution during periods of the year that were characterized by a dry upper soil layer 

(Zou et al. 2005). However, the effects of hydraulic redistribution of soil water can also 

be outweighed by competition for soil water between neighboring plants, ultimately 

resulting in decreased water availability (Ludwig et al. 2004). 

Neighboring canopy cover can also impact soil moisture through shading effects 

on soil temperature and evaporative demand (Fig. 4.1), which can lead to decreased soil 

water evaporation and higher soil water availability in shallow layers (Breshears et al. 

1998, Raz-Yaseef et al. 2010). The belowground effects of PPI on soil moisture can be 

highly variable, and can also depend on aboveground drivers such as air temperature, 

precipitation, and canopy controls of transpiration. 

 

Aboveground Direct Effects and Controls 

The direct effects of PPI on the aboveground microclimate depend largely on the 

neighbor canopy size (Fig. 4.1). Canopies of neighboring plants intercept precipitation 

and ultimately decrease soil water inputs below neighboring plants (Mcnaughton and 

Jarvis 1983). Canopy shading can also impact the transpiration rates through effects on 



119 

 

the evaporative demand (i.e., vapor pressure deficit, VPD), resulting in a decreased VPD 

and potentially higher stomatal conductance (i.e., reduced stomatal closure) (Kropp and 

Ogle 2015).  

Aboveground controls on transpiration are also important for understanding the 

direct effects of PPI on transpiration since they influence the degree to which roots 

acquire water, affecting the degree of competition for water. Stomatal behavior and 

hydraulic conductance control transpiration losses from leaves and regulate the 

magnitude of transpiration losses in response to soil water availability and climatic 

conditions (Ogle and Reynolds 2004). Leaf area and phenology also affect competition 

for water, and some plants may lose leaves during drought periods, reducing 

belowground competition during stressful periods, but potentially heightening 

competition during wet seasons (Smith et al. 1995). Plants with greater leaf area may also 

benefit by using more water following precipitation events, but they may be more 

susceptible to drought conditions (Angert et al. 2009). Aboveground plant water-use 

traits and belowground (e.g., root distributions) traits are a key aspect in accurately 

describing transpiration, and accounting for physiological controls over transpiration that 

are a necessary in quantifying the direct effects of neighbors on patch scale water fluxes. 

 

Understanding Direct Effects 

Despite the role of plant water-use traits in understanding the direct effects of PPI, 

plant water-use traits remain a largely understudied component in competition and 

facilitation studies. In 104 studies that we found that focused on competition, facilitation, 

and water use in arid systems, the majority of studies did not directly include data on 
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plant water-use traits (Fig. 4.2). The majority of data types used to assess PPI were 

related to patterns in plant communities (Fig. 4.2). Data related to community 

demographics (e.g., abundance, survival, fecundity) were utilized in 58% of studies, 44% 

used measures of plant size or biomass, and 28% included spatial data to infer the nature 

of the PPI (Fig. 4.2). Studies that rely on spatial patterns and demographics provide 

insight into the potential influences of competition and facilitation on plant communities, 

but offer little mechanistic explanation and may not accurately reflect the effects on water 

fluxes. For example, the arid shrubs, Ericameria cooperi (goldenbush) and 

Chrysothamnus teretifolius (rabbitbrush), have overlapping root distributions and 

experience decreased water availability from competition, but spatial patterns associated 

with these shrubs did not reflect the degree of competition observed from physiological 

data (Manning and Barbour 1988).   

In the PPI studies that we surveyed, measurements of water-use traits were far 

less common than pattern based data (Fig. 4.2). Root biomass or length was measured in 

14% of studies (Fig. 4.2). Aboveground controls such as stomatal behavior and/or 

transpiration were included in 6% of studies, and leaf area indices only in 4% (Fig. 4.2). 

Direct measures of the overlap of soil water sources between neighbors were the rarest 

data type, found in only 4% of studies. Plant water potential, a measure of plant water 

status, had the highest representation and was included in 19% of the studies (Fig. 4.2). 

However, plant water potential is an integrated measure of plant water status, and alone 

provides limited mechanistic insight into the source of variation in plant water status or 

water fluxes (Sperry et al. 2002).  Our analysis suggests that there is a limited 

mechanistic understanding of the direct effects of PPI on water fluxes, and future studies 
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would benefit from measuring direct effects on water fluxes and the physiological 

controls that influence the degree that PPI directly affect transpiration and evaporation.  

 

Indirect Effects of Plant-Plant Interactions on Water Fluxes 

Adjustments in water-use traits in response to neighbor altered environments are a 

potential indirect effect of PPI. However, many studies of arid plant water-use traits do 

not report proximity to the nearest neighbor, the distribution of study shrubs, or address 

the intra-specific variation that can arise from PPI (Violle et al. 2009). Variation in water-

use traits arising from neighbor associations can ameliorate the effects of competition 

(Novoplansky 2009), potentially altering the effects of competition on soil moisture and 

transpiration. In dryland ecosystems, implications for the adjustment of plant water-use 

traits and their impact on water fluxes remains largely unevaluated.  

 

Belowground Indirect Effects 

A number of studies in arid ecosystems have demonstrated that root distributions 

can be affected by neighboring roots (Mahall and Callaway 1996, Kroon et al. 2003). For 

example the lateral distribution of roots of a drought tolerant, warm desert shrub, Larrea 

tridentata (creosotebush), changed in the presence of a small, drought deciduous shrub, 

Ambrosia dumosa (white bursage), such that its rooting distribution adjusted to avoid 

neighboring roots (Brisson and Reynolds 1994). Differences in root distributions can alter 

the magnitude of belowground interactions by differentiating the depths that neighbors 

acquire soil water. For example, deeply rooted phenotypes of a semi-arid tree, Quercus 

douglasii, were facilitative to neighboring grasses; however, shallowly rooted phenotypes 
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of Quercus competed with grasses for water (Aschehoug and Callaway 2014). Changes 

in root distributions in response to neighbors can also change access to different soil 

water sources. Neighbors reduced root growth in a semi-arid perennial grass, Nassella 

pulchra (purple needlegrass), resulting in an inability to access deep soil water sources 

(Dyer and Rice 1999).  PPI may be an important source of variation in root distributions, 

and a better understanding of the degree that variation in root distributions affects PPI 

and the direct effects of PPI on transpiration is necessary.  

 

Aboveground Indirect Effects 

Aboveground water-use traits can be indirectly affected by a neighbor via its 

effects soil water availability and, if the neighbor has a large canopy via its canopy 

shading effects on air temperature and evaporative gradients (i.e., VPD). Adjustments in 

aboveground water-use traits can change the rate of transpiration under different soil 

moisture and climatic regimes. For example, an arid grass, Hilaria rigida (big galleta), 

was affected by intraspecific competition with other Hilaria neighbors. Neighbors 

reduced stomatal conductance and increased rolling of leaf blades (Robberecht et al. 

1983), which can result in decreased transpiration. The stomatal behavior of a warm 

desert shrub, Larrea tridentata, was also affected by neighbors, such that facilitative tree 

neighbors significantly decreased stomatal sensitivity to vapor pressure gradients 

compared to Larrea growing alone or with a competitive shrub, Ambrosia deltoidea 

(triangleleaf bursage) (Kropp and Ogle 2015). These changes in stomatal behavior 

resulted in significantly higher summer stomatal conductance in Larrea growing under a 

tree species (Olneya tesota and Prosopis velutina [ironwood and velvet mesquite, 
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respectively]) compared to Larrea growing alone, and such changes can lead to seasonal 

differences in transpiration rates among Larrea growing under different PPI conditions. 

However the degree to which adjustments in aboveground water-use traits occur in 

response to PPI, and their subsequent impacts on water fluxes are not well quantified 

within and across dryland ecosystems.  

Furthermore, PPI can also indirectly affect ET by influencing allometric traits 

(Bell and Galloway 2007). Allometric relationships are integral to scaling plant and leaf 

water fluxes to broader spatial scales, and changes in leaf area relative to root area or 

sapwood area can affect estimates of whole plant transpiration rates (West et al. 1999). 

Altered root distributions or leaf area can also lead to a difference in the ratio of 

aboveground to belowground biomass, and  competition between semi-arid grasses was 

found to alter aboveground to belowground biomass ratios depending on the identity of 

the neighboring grass (Novoplansky and Goldberg 2001). Additionally, variation in water 

availability arising from the effects of PPI could result in adjustments in leaf area to 

sapwood area, which would alter transpiration rates and affect plant stress under different 

soil moisture dynamics. Although studies have not evaluated the effect of neighbors on 

the ratio of leaf area to sapwood area, this ratio is known to vary in response to 

differences in water availability (Hultine et al. 2005). In summary, changes in plant 

allometries as a result of PPI could largely affect the scaling of leaf- and plant- level 

transpiration, and not accounting for such variation may be a potential source of scaling 

error or model bias.  
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Implications of Indirect Effects for Model Estimates  

The inclusion of physiological adjustments in models may be necessary for 

accurately accounting for the impacts of plant neighbors and estimating transpiration. 

Patch scale transpiration predictions for a warm desert shrub, Larrea tridentata, were 

sensitive to the adjustments in stomatal behavior and root distributions arising from 

neighboring species (Kropp and Ogle 2015; chapter 2).For example, differences in 

physiology among different neighbor associations resulted in different seasonal 

transpiration estimates depending on physiological assumptions, and for example, not 

including the neighbor-specific physiological adjustments would have resulted in an 

under-prediction of summer transpiration by as much as 56% (chapter 3). However, our 

survey did not find any other ecohydrological modeling studies that accounted for 

physiological adjustments due to neighbor effects in vegetative parameters. The 

empirical, ecological studies that describe physiological adjustments of water-use traits 

do not address the timescales over which these adjustments occur and their impact on 

water fluxes or ecosystem processes (Brisson and Reynolds 1994, Callaway et al. 2003). 

To incorporate the indirect effects of neighbors on water fluxes, more data is needed 

about the temporal scales of the adjustments and the degree to which various species lead 

to adjustments of water-use traits. Such data should be paired with ecohydrological 

models to better understand and account for the importance of indirect effects on 

transpiration and soil moisture across a range of temporal and spatial scales.  
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Plant-Plant Interactions across Different Spatial Scales 

Plant-plant interactions (PPI) are a largely understudied component in 

ecohydrological studies, and the impact of plant interactions on ecosystem water fluxes is 

not well quantified, particularly in regards to the significance of neighbor interactions 

across spatial scales. We evaluated 50 ecohydrological studies that included a model of 

transpiration and soil moisture, and we assessed the approach to parameterizing 

vegetative controls on transpiration (e.g. root distributions, leaf area, stomatal 

conductance). Only 10% of studies parameterized PPI to include both competition for 

water and facilitative effects or allowed the PPI effects to vary temporally (“detailed 

interaction”, Fig 4.3). A simpler parameterization for PPI that included interactions only 

through competition for water between plant roots was found in 18% of studies 

(“competition only”, Fig 4.3), but 72% of the studies did not explicitly consider any 

interactions between plant neighbors (Fig. 4.3). The most common parameterization used 

traits of a species or functional type that was dominant to patches within the study spatial 

scale, but did not explicitly allow interactions between patches (“species/functional type”, 

Fig. 4.3).  Many studies (33%) treated vegetation as homogenous and considered all 

vegetative parameters to be the same across all patches within the study spatial scale 

(“single parameter”, Fig. 4.3). To approach PPI from a water cycle oriented perspective, 

the direct and indirect effects of PPI should be studied across multiple scales (Bielenberg 

2011). 
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PPI Effects at Small Spatial Scales: from Patches to Ecosystems 

 The effect of plant neighbors on water fluxes is likely the greatest at the patch 

scale (plant and surrounding soil), since the direct effects of plant neighbors on the soil 

and above-ground microclimate predominately act at the patch scale. Transpiration at the 

patch scale has been found to be reduced by as much as 75% as a result of plant neighbor 

interactions (chapter 3). However, few of the ecohydrological studies we surveyed 

focused on patch-scale water fluxes, and no patch scale studies in our survey included 

detailed plant interactions (Fig. 4.3). A number of patch-scale models involving PPI 

include transpiration, competition, and facilitation, but focus on tracing plant mortality 

and carbon dynamics rather than quantifying the effects of PPI on transpiration or soil 

moisture (van Wijk and Rodriguez-Iturbe 2002, Synodinos et al. 2015). Accurately 

describing patch-scale water fluxes can be an important aspect in scaling plant-level 

transpiration to larger scales. 

 The effect of PPI on community or ecosystem scale water fluxes is largely driven 

by the abundance and spatial distribution of plant neighbors, and the magnitude of the 

direct effects of PPI (Ludwig et al. 2005). For example, a model of soil moisture in a 

savannah ecosystem found variation in soil moisture was dependent on the percent cover 

of woody and herbaceous plants within the community (Breshears and Barnes 1999). 

Accounting for the effect of different neighbor associations on transpiration across a 

stand of an arid shrub, Larrea tridentata, affected stand level predictions at the ecosystem 

scale by 30% (chapter 3). However, less than 10% of the community and ecosystem scale 

studies we surveyed to into account PPI (competition only or detailed, Fig. 4.3). Further 

study is needed to assess the contribution of PPI to variation in water fluxes across the 
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ecosystem level. For example, PPI may have variable importance in different ecosystems 

depending on both abiotic drivers and the spatial distribution of plants in the ecosystem. 

However, few studies have explored the importance of PPI for spatial variation at 

ecosystem scales and the relative importance of PPI compared to other sources of spatial 

variability.  

 

PPI Effects at Large Spatial Scales: from Catchments to Landscapes 

At larger spatial scales such as a catchment or landscape, the contribution of 

variability attributed to PPI versus spatial heterogeneity in other biotic and abiotic drivers 

remains unclear. Several catchment scale models indicate that model estimates can be 

improved by including vegetative parameters that account for competition or allow for 

temporal variation in vegetative parameters (Sivandran and Bras 2013). Franz et al 

(2002) applied a model focused on variation in seasonal plant water use found that the 

transpiration can vary between landscapes characterized by highly aggregated plants 

versus more dispersed plant distributions depending on the gradient of hillslope of a 

watershed (Franz et al. 2012). However, across larger scales, other studies have suggested 

that variation in vegetation may not be as important for water fluxes compared to other 

abiotic factors such as soil depth and anthropogenic influences such as grazing or 

urbanization (Popp et al. 2009, Shields and Tague 2012). We suggest that more large 

scale studies are needed that specifically focus on the spatial variation that arises from 

PPI and its relative importance for water fluxes compared to other drivers of spatial 

variation. 
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Implications for Scaling 

Further study is needed to specifically understand how PPI affect estimates of 

water fluxes across different spatial scales, and the sensitivity of scaling models to PPI 

(Rastetter et al. 2003, Asbjornsen et al. 2011). Furthermore, neighbor influences are often 

considered as two neighbors whose canopies clearly overlap, but neighbor configurations 

can vary in the number of neighbors, distance between plants, and neighbor size. Future 

studies should address the implications of PPI using more complex, realistic measures of 

interactions that treat plant neighbor associations as continuous measures and account for 

temporal variation in water availability and plant characteristics.  

 

 

Plant-Plant Interactions across Varied Temporal Scales 

Plants occurring with a neighbor may experience a mixture of competition, 

facilitation, or neutral effects across time as a result of differential soil water availability, 

for example, from precipitation and temperature (Holmgren et al. 1997, Tielbörger and 

Kadmon 2000). Plant water use traits can also vary seasonally, impacting the degree that 

neighbor effects influence transpiration (Holmgren et al. 1997). Incorporating temporal 

variation in vegetative parameters that may vary between wet and dry seasons is 

important for capturing the effects of PPI across seasonal and annual timescales 

(Manning and Barbour 1988, Briones et al. 1998). However, the impact of temporal 

variation in PPI effects and the impact of temporally variable water-use traits on PPI for 

predictions of transpiration across long timescales (decadal-century) is not well 

understood since many modeling studies that focus on century timescales treat vegetative 
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parameters as temporally fixed (Reynolds et al. 2000, van Wijk and Rodriguez-Iturbe 

2002). Temporal variability from PPI can help explain transpiration and soil moisture 

dynamics, and seasonal variability arising from PPI is rarely evaluated across longer 

timescales. 

 

Conclusions and Future Studies 

 Models of water fluxes are commonly used in ecohydrological studies and can 

improve our fundamental understanding of ecohydrological processes (King and Caylor 

2011, Vivoni 2012). Plant-plant interactions (PPI) are largely under incorporated in 

ecohydrological models, and the spatial nature of PPI requires integrative methodological 

approaches that pair multiple data types with process-based models to understand the 

effects of PPI on water fluxes (Newman et al. 2006, Vivoni 2012). However, the paucity 

of data related to the direct and indirect effects of PPI on water fluxes requires additional 

data collection on plant water-use traits (across space and time) coupled with 

observations of evapotranspiration and soil moisture. The lack of PPI data related to 

water fluxes may stem from a general lack of empirical data, and a meta-analysis of 267 

ecohydrological studies found only 31% of ecohydrological models used empirical data 

to parameterize models (King and Caylor 2011). Additionally, the meta-analysis found 

that modeling studies under-utilized experimental approaches of more traditional 

disciplines and only 3% of the modeling studies included data from experimental 

manipulations. Traditional ecological experimental approaches (i.e. plant neighbor 

manipulation experiments) used to study PPI can be paired with hydrological data to 

inform underlying mechanisms of PPI on water fluxes (Aarssen and Epp 1990, King and 
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Caylor 2011). An improved understanding of PPI influences on water fluxes is necessary 

for developing mechanistic models that include spatial variation in evapotranspiration 

that arises from biotic drivers. 

Climate change is expected to affect plant community dynamics and hydrological 

fluxes on both global and smaller scales (Scanlon et al. 2005, Huntington 2006, Grant et 

al. 2014), and well informed, mechanistic models are necessary for realistic predictions 

of future water fluxes and vegetation dynamics (Rastetter et al. 2003). Arid ecosystems 

tend be associated with high uncertainty in evapotranspiration estimates (Long 2014), and 

accounting for biotic processes such as PPI is likely to reduce such uncertainty 

(Asbjornsen et al. 2011, Shields and Tague 2012). However, the importance of PPI across 

different spatial and temporal scales, and identifying the underlying mechanisms, requires 

further research and data to help inform mechanistic models that can be linked to other 

hydrological models or paired with models of plant carbon dynamics. Furthermore, PPI 

can also affect water fluxes in more mesic ecosystems (Breda et al. 1995, Loranty et al. 

2010), and incorporating PPI into dryland models can provide a reference point for the 

influence of PPI on water fluxes under extreme water limitations in other ecosystems. A 

better understanding of the effects of PPI on water fluxes is important for accurately 

estimating water fluxes and providing a mechanistic understanding of PPI as a source of 

spatial variability in ecohydrological models.  
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Figures 

Figure 4.1. A conceptual diagram of the direct and indirect effects of plant-plant 

interactions (PPI) on patch scale water fluxes. We illustrate the potential effects in 

scenarios where only competition, facilitation, or complete isolation (lone) occur, and 

these scenarios represent extreme ends of a spectrum of neighbor interactions. The effects 

of PPI likely lie within this spectrum, experiencing mixed effects of positive, negative, or 

neutral interactions with neighbors. Direct effects on water fluxes are indicated with 

straight arrows: a decrease in the water flux (negative effect) is indicated in red, and an 

increase in a water flux is indicated in dark blue (positive effect). Indirect effects arising 

from adjustments of water-use traits in response to altered environments created by 

neighbors are indicated with light blue arrows. The drivers of water fluxes that are altered 

by neighbor environments are indicated with black wedges between the three scenarios 

where the thickness of the bar indicates the magnitude of the driver.   
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Figure 4.2. Percentage of data types utilized in 104 arid or semi-arid plant-plant 

interaction (PPI) studies to draw inferences about competition and facilitation. Bar colors 

indicate the general categories of data types including 1) observations of patterns in plant 

communities (pattern based), 2) measures of plant size, 3) data related to physiological 

traits and behavior. A full citation list of studies and search parameters is included in 

Appendix E. 
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Figure 4.3. The distribution of the spatial scale and parameterization approach of 

vegetative characteristics (e.g. root distribution, stomatal conductance, leaf area) in 50 

ecohydrological modeling studies that include models of transpiration and soil moisture. 

The parameterization of vegetation in models was categorized based on whether or not 

the study included parameters that: 1.) had a single parameter that assumed all vegetation 

is homogeneous throughout the study spatial scale and all vegetative parameters are given 

a single value that does not account for PPI, 2.) reflect the dominant species or functional 

type within the study scale and do not explicitly account for the neighbor interactions 

between patches, 3.) parameters represent competition for water between overlapping 

roots for soil water, 4.) parameters account for  detailed plant interactions that include 

both competition, facilitation and/or temporal variation in vegetative parameters. Spatial 

scales range from patch (m
2
) to landscape (>100 km

2
). A full list of studies and search 

criteria is included in Appendix E. 
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APPENDIX A 

SOIL PROPERTIES AND ROOT IDENTIFICATION: ADDITIONAL 

DESCRIPTIONS OF FIELD AND LABORATORY METHODS 
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Soil Core and Field Sample Collection 

For the Larrea shrubs with a neighbor, one soil core was taken beneath the 

overlapping canopies and a second core was taken beneath Larrea’s canopy opposite 

from the neighbor. One core was collected below the canopy for Larrea growing alone. 

Cores were taken as deep as possible, and rocks prevented cores from going deeper than 

60 cm. A total of 13 Larrea shrubs were sampled; three Larrea shrubs in each 

neighborhood association were sampled, and an additional fourth shrub was sampled for 

Larrea growing next to Ambrosia since rocky soils prevented deep coring below one of 

the initial three shrubs.  

Soil samples were kept on ice in the field, and after sampling, roots were 

immediately sorted, rinsed in deionized water, dried, and stored at -80°C. A subset of the 

soil samples and two stem samples were collected in the early morning from each shrub, 

and were also kept on ice in the field and stored at -20°C in the lab for stable isotope 

analysis. Pre-dawn twig water potential was measured on study shrubs using a 1505D 

pressure chamber instrument (PMS Instrument Company, Albany OR), which was 

assumed to be equal to the root water potential. 

Soil and Root Hydraulic Properties for the Biophysical Model of Water Uptake 

 The soil and root hydraulic properties (Table 2) were obtained from data and 

largely reliant on the relationship between soil water content and soil water potential (Ψ). 

Soil moisture holding curves were conducted by sequentially measuring Ψ and 

gravimetric soil water content on drying soils using a WP4 potentiometer (Decagon, 

Pullman, WA). The gravimetric soil water content was converted to volumetric water 
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content (θ) via soil bulk density, which was calculated from soil texture under each shrub 

l (l=1, 2, …, 13) and of each depth layer i (i= 1 [0-10 cm], 2 [10-20 cm]…5 [40-60 cm]) 

using the soil water characteristics program (v6.02.74, Saxton & Rawls 1986, 2006). 

Then, the Campbell & Norman (1998) model was used to establish a relationship 

between θ and Ψ from the WP4 measurements such that for soil sample n (n = 1, 2, …, 

531) the predicted Ψ is give by: 
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n e
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 (eqn S1) 

The air entry water potential (Ψe), saturated water content (θsat), and the dimensionless 

exponent (b) were allowed to vary by shrub l and soil layer i associated with sample n. 

θsat was calculated based on a relationship established by Saxton et al (1986) using the 

percent sand and clay associated with each sample. Soil texture and particle size 

distribution (% sand, silt, clay) were determined via the hydrometer method (Gee & 

Bauder, 1986).   

The model (eqn S1) was fit in a Bayesian framework in OpenBUGS (v3.2.1, 

Spiegelhalter et al 2003; Lunn et al 2009) by assuming that the log-scale observed Ψ, 

log(-Ψ), was normally distributed around the log-scale predicted value, log(-Ψ
pred

), in eqn 

S1. Semi-informative priors were assigned to Ψe and b by assuming uniform distributions 

based on the  range of “nominal” values for all soil types (Campbell & Norman 1998), 

resulting in priors of log(Ψe) ~ U(-6, 2) and b ~ U(1.5, 7.8). OpenBUGS uses Markov 

chain Monte Carlo (MCMC) methods to sample from the posterior distribution of the 

parameters; three MCMC chains were run, and a burn-in of 3,000 samples was discarded. 
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The MCMC chains were run for an additional 2,000 samples each after burn in, resulting 

in a final posterior sample size of 6,000. 

The posterior means for parameters Ψe and b were used for additional data 

calculations. For example, soil water potential (soil) associated with each shrub at the 

time of sample collection was calculated using eqn S1, given the field observation of  

for each soil sample and the posterior means for Ψe and b. The soil was averaged across 

each neighbor association, j, in eqn 4. Soil hydraulic conductance (Ksoil) was calculated 

using the following relationship from Campbell & Norman (1998): 
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 (eqn S2) 

Saturated hydraulic conductivity (Ksat) was obtained from Campbell & Norman (1998) 

based on observed values for the soil texture associated with each sample. The Ksoil was 

averaged across each neighbor association for eqn 4. 

The root water potential (Ψr) was assumed to be equal to the pre-dawn stem water 

potential measured on each shrub. The hydraulic conductance between the root and the 

soil (Kroot) for each shrub l and soil layer i was calculated using the Campbell & Norman 

(1998) equation: 
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  (eqn S3) 

 The turgor loss water potential (Ψtloss) was determined using leaf pressure volume 

curves conducted with a WP4 potentiometer (Decagon, Pullman, WA). Measurements of 

relative water content (RWC) and leaf water potential (Ψleaf) were taken simultaneously 
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on leaves from five shrubs. In the lab, measurements were taken 5-8 times as leaves 

dried, and a total of 40 measurements (s= 1…40) were obtained across all shrubs. A least 

squares linear regression was fit to 1/ Ψleaf,s  versus RWC in R v 3.1.2 (R core team, 

2014), for observations associated with data that had RWCs < 0.95 (i.e., the linear portion 

of the 1/Ψleaf,s versus RWCs curve). The RWC at turgor loss (RWCtloss) was estimated 

from the predicted regression at 1/ Ψleaf=0.  

  The linear relationship between 1/Ψleaf,s and RWCs described above is used to 

define RWCtloss, but a non-linear model that describes the relationship between RWCs 

and Ψleaf,s is necessary to predict the Ψleaf that is associated with RWCtloss. A nonlinear 

regression was established between RWCs and Ψleaf,s across the entire range of RWCs 

values (0.1-1.0): 

 
, max

sRWC

leaf s e


     (eqn S4) 

The parameters Ψmax and ω were fit via a non-linear least squares regression in R (R core 

team, 2014), and the predicted Ψleaf at the turgor loss RWCtloss was used in eqn S4 to 

obtain Ψtloss.  

 

Genomic DNA Extraction 

Frozen root samples were ground with a mortar and pestle in the presence of 

liquid nitrogen. Approximately 30 mg of root powder was added to a buffer containing 

100 mM Tris-HCl (pH 8.0), 25 mM Ethylenediaminetetraacetic acid (EDTA, pH 8.0), 2 

M NaCl, 2% (w/v) hexadecyltrimethylammonium bromide (CTAB), 500 mg/L 
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Spermidine, 2% (w/v) Polyvinylpyrrolidone K30, 5% (w/v) Polyvinylpolypyrrolidone, 

and 2% (v/v) β-mercaptoethanol. The mixture was incubated at 65°C for 30 min and 

periodically mixed. An equal volume of a chloroform/isoamyl alcohol (24:1) was added 

to the aqueous layer, samples were mixed for two min, and centrifuged at 10,000 xg for 

10 min, and repeated a second time. DNA was precipitated out of the aqueous solution by 

adding 1.5 volume of isopropanol and stored overnight in a -20°C freezer. DNA was 

recovered by centrifugation for 30 min at 20,000 xg. The DNA pellet was washed twice 

with 70% ethanol, dried, and dissolved in 150 µL of 10 mM Tris-HCl (pH 8.4) and 1 mM 

EDTA. If brown, viscous mixtures were produced from the dissolution of the DNA 

pellet, additional purification steps were taken based on methods outlined by Paterson et 

al (1993). An additional 100 µL of 10 mM Tris-HCl (pH 8.4) and 1 mM EDTA was 

added, and the DNA was heated in a 65°C water bath for 20 min.  The impurities were 

pelleted out by centrifuging the sample at 10,000 xg for 5 min. The supernatant was 

removed, and DNA was precipitated with cold 100% ethanol at -20°C overnight. 

Washing procedures were conducted again and the pellet was dissolved in 150 L of 10 

mM Tris-HCl (pH 8.4) and 1 mM EDTA. 

 

PCR and Restriction Digests 

PCR was conducted using Phire Hot Start II DNA Polymerase (Thermo 

Scientific) on reactions (20 L total volume) included 1X Phire reaction buffer, 200 M 

dNTPs, and 1 L of each primer, 7 L of DNA, and 0.4 L of polymerase. Amplification 

was done on a Bio-Rad DNA Engine thermocycler with an initial denaturation of 98°C 
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for 30s, followed by 35 cycles of denaturation at 98C for 5s, an annealing step at 52°C 

for 5s, and an extension of 72°C for 15s and a final extension of 1min at 72°C. Digestions 

were conducted with 10 L of PCR product, 1 l of enzyme, 2 L of buffer Tango, and 

18 l of water for a minimum of 2 hours at 37°C. Digestion mixtures were analyzed 

using gel electrophoresis on a 2% agarose gel in Tris-borate-EDTA buffer at 40V. 

 

Methodological Testing 

Leaf DNA from each plant was used to establish positive controls, and roots were 

excavated around the base of the stem from each species to verify that the methods 

matched the leaf DNA results and are not prone to contamination. Additionally, PCR was 

conducted on known root extracts created from equal ratios of all four species and in 

pairwise combinations (e.g., Larrea and Ambrosia) to test for any limitations in 

visualizing root fragment patterns in mixtures. Prosopis was not detected in the presence 

of other species, and thus all large roots (≥ 2 mm) collected below Prosopis neighbor 

associations were analyzed individually to detect the presence of Prosopis (individual 

analysis of fine roots was logistically impossible). Detection issues associated with 

Prosopis were accounted for in the model formulation, and no other species exhibited 

issues with false negatives (inability to detect species despite presence). The sequences of 

surrounding non-focal species (Cylindropuntia acanthocarpa, Encelia farinosa, Lycium 

fremontii, Celtis pallida) were obtained from GenBank, and determined not to have any 

expected cleavage sites for the restriction endonucleases RsaI and BssHII, and thus the 

presence of a non-cleaved fragment was scored as the presence of “other” species. 
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Priors and Model Implementation 

 The parameters in the gamma mixture model (eqn 1) for the fraction of active 

roots (f) were assigned semi-informative based on Ogle et al. (2004). Priors were 

assigned on the log or logit scale such log(m1), log(m2), and logit(w) were assumed to 

follow a multivariate normal distribution with a semi-informative covariance matrix as 

given in Ogle et al. (2004). The priors for log(a1) and log(a2) were slightly altered from 

Ogle et al. (2004), and assigned univariate normal distributions with semi-informative 

variances. Uniform, U(0,1), priors were assigned to probability parameters β, γ, and φ
*
 

(eqn 6-8). Priors for b, α, ρ, and κ (eqn 13 and 17) were constrained to be positive by 

assigning diffuse normal distributions truncated at zero such that only positive values 

were allowed. The proportion of water uptake in the simple, isotope-only mixing model 

(u; eqn 16) was given a non-informative Dirichlet distribution following Moore & 

Semmens (2008). 

The posterior distributions of the model parameters associated with the combined 

data model described in the main text were obtained in OpenBUGS (Spiegelhalter et al. 

2003; Lunn et al. 2009) by running three parallel MCMC chains. The first 182,500 

samples were discarded as burn in, and the model was run for 180,000 after burn in. 

Chains were thinned every 30 iterations to minimize autocorrelation and reduce storage 

requirements, and a final posterior sample size of 6,000 was obtained.  
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APPENDIX B 

ROOT PRESENCE AND WATER UPTAKE FIGURES 
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Figures 

 

Figure S2.1. Posterior estimates (mean and 95% credible interval) of Larrea tridentata’s 

proportional water uptake (p, eqn 3 in main text) based on stable isotope data coupled 

with a biophysical model of water uptake (dark grey shading; a,c,e,g) or with a simpler, 

isotope-only mixing model that assumed water uptake was proportional to soil water 

content (light grey shading; b,d,f,h). Four neighborhood associations are represented: 

Larrea growing next to Olneya tesota (a, b), Ambrosia deltoidea (c, d), or Prosopis 

velutina (e, f), and growing alone (g, h). 
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Figure S2.2. Posterior estimates (mean and 95% credible interval) of the probability of 

root presence for Larrea tridentata under four different neighborhood associations, for 

Larrea growing next to: (a) Olneya tesota, (b) Ambrosia deltoidea, or (c) Prosopis 

velutina, or (d) growing alone. Dark grey bars represent results from the occupancy 

model that uses combined datasets and light grey bars show the estimates using only 

molecular identification data and non-informative priors. 
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APPENDIX C 

DESCRIPTION OF DYNAMIC SOIL WATER MODEL IMPLEMENTATION AND 

DATA INPUTS 
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HYDRUS Seasonal Implementation 

 Data associated with Larrea’s root distribution and above-ground controls on 

transpiration were primarily collected in winter and summer periods; therefore, spring 

and fall parameters were linearly interpolated between winter and summer. Linear 

interpolations prevented abrupt transitions in parameters between seasons that do not 

realistically reflect the timeframe for seasonal adjustments in plant physiology. 

Simulations were implemented in seven periods (winter 1= Jan-Mar; spring month 1= 

April; spring month 2= May; summer= June-Sept; fall month 1= Oct; fall month 2= Nov; 

winter= Dec). The seasonal simulations were run sequentially, and SWC from the last 

day of a season for each profile node was used for the initial SWC values for the start of 

the next season’s simulation. The sequential Hydrus runs were conducted using an 

automated script (Python v2.7, CITE) (github repository link). 

 

Meteorological Data Sources 

 Simulations used D (Fig 1c) calculated from hourly relative humidity and air 

temperature data (Fig 1A and B; CS215, Campbell Scientific, Logan, UT) collected at the 

site in 2014 using a CR1000 and CR10X dataloggers (Campbell Scientific, Logan, UT). 

Missing data was gap-filled based on a linear relationship established between 

observations at the site and a nearby weather station (Fountain Hills; FCDMC, 2015). 

Atmospheric pressure (P) was also obtained from the FCDMC weather station. Since the 

field site was established in 2011, all measurements of temperature and relative humidity 

for the 2004 climate year were taken from the FCDMC weather station and corrected 
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based on the linear relationship established for 2014. A linear relationship between 

temperature data reported in literature outside and beneath Olneya and Prosopis canopies 

(Tewksbury et al. 1999, Suzán-Azpiri and Sosa 2006, Suzán et al. 2014).was used to 

account for the effect of tree canopies on air temperature and subsequently, D (Fig. 1A, 

B, and C).Volumetric SWC (CS615, Campbell Scientific) was collected simultaneously 

in the late summer and in December of 2014 to validate the Hydrus model output. 

 

Winter Vertical Root Distributions 

Winter soil cores (December, 2011 and March, 2012) did not have detailed 

molecular identification and isotope data to partition Larrea and neighbor root profiles. 

However, neighbor fractional root distributions were assumed to stay the same,  Larrea’s 

fractional root distribution was considered to be the remainder of the fractional bulk root 

biomass (fr,b) after neighbor root profiles were accounted for: 

  , , , ,(1 )r l r b r b larrea o mf f f p f       (26) 

 where fr is Larrea’s fractional root profile, plarrea is the proportion of Larrea roots in the 

bulk mixture (cite chapter 2), and fo is the fractional root profile of neighboring species. 

The fractional bulk root distributions were fit in a Bayesian framework, using the mixture 

of gamma distributions  to describing the shape of the root distribution across depth (Ogle 

et al. 2004, 2013). The model was implemented in OpenBugs (Spiegelhalter et al. 2003) 

for three chains for a burn in of 50,000 and run for 70,000, thinned by 100 iterations for 

autocorrelation, and a total sample size of 6,000 was obtained. Priors for root distribution 

were based on Ogle et al 2004 and 2013. 
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Soil texture model 

Soil water curves were fit for soil samples from 17 shrubs for each soil depth 

layer (n=6, total measurements n=65. Soil hydraulic parameters were determined using 

water holding curves constructed by sequentially measuring the water potential( ψ) and 

gravimetric water content for drying soils using a WP4 potentiometer (Decagon, 

Pullman, WA).  
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 (27)  

The saturated soil water content (θs) was determined graphically, with data at low water 

potentials close to zero at a soil water content of 0.40. The residual soil water content θr, 

air entry potential, α, and n, an unitless parameter related to texture were fit in a Bayesian 

framework in Openbugs (Spiegelhalter et al. 2003, Lunn et al. 2009). Soil hydraulic 

parameters were did not significantly vary for each shrub and shrub x soil layer, so 

posterior mean across all shrubs and soil layers. Soil texture data (n=158) supports our 

assumptions of similar soil hydraulic properties,  with the soils predominately consisting 

of 82% (standard error [se], .06%) sand, 13% (se .06%) loam, and 5% (se .03%) clay. 

The saturated hydraulic conductivity was parameterized based on predictions from soil 

texture data in Hydrus’ neural network prediction application, Rosetta (Šimůnek et al. 

2008). 
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APPENDIX D 

DATA PARAMETERS, SITE MAP, AND SOIL MOISTURE VALIDATION 

DATASET RESULTS 
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Results 

Simulation Validation 

The model slightly under-predicted the average observed volumetric SWC for L and N 

scenarios from 0-30 cm (Fig. S2, ESI) across each neighbor association, and goodness of 

fit R
2
 ranged from 0.71 (for N-A) to 0.81 (for N-O). 
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Tables 

†
indicates units of m

2
 leaf m

-2
 ground 

*indicates units of mol m
-2

 s
-1

 

  

Table S3.1. Parameters describing potential stomatal conductance (gs) and leaf 

area index (LAI) for Larrea tridentata and neighboring species. 

Parameter Equation Season Species parameter value 

   

Larrea tridentata 

   

Lone 

Olneya-

association  

Ambrosia-

association 

Prosopis-

association 

gref* Eqn 4 winter 0.098 0.078 0.077 0.084 

  

spring 

1/fall 2 0.117 0.094 0.086 0.1 

  

spring 

2/ fall 1 0.137 0.11 0.095 0.117 

  

summer 0.156 0.127 0.104 0.134 

m* Eqn 4 winter -0.055 -0.042 -0.045 -0.051 

  

spring 

1/fall 2 -0.049 -0.038 -0.037 -0.042 

  

spring 

2/ fall 1 -0.044 -0.033 -0.029 -0.033 

  

summer -0.038 -0.029 -0.021 -0.024 

LAI
†

 Eqn 2 summer 0.148 0.115 0.106 0.149 

  

winter 1 1.17 0.9 0.97 

  

spring 

1/fall 2 0.88 0.99 0.82 0.83 

  

spring 

2/ fall 1 0.76 0.82 0.74 0.7 

  

summer 0.64 0.64 0.66 0.56 

   

Neighboring Species 
  

   

Olneya 

tesota 

Ambrosia 

deltoidea 

Prosopis 

velutina 

 gref* Eqn 6 annual 0.04 0.145 0.088 

 m* Eqn 6 annual -0.003 -0.075 -0.018  

LAI
†
 Eqn 2 annual 0.88 1.2 1.58 
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Figures 

 

 

Figure S3.1. Map of study site used to classify Larrea-neighbor patches for stand level 

calculations. Non-focal species (n=9, e.g. Cylindropuntia acanthocarpa, Lycium 

fremontii, Carnegiea gigantean) are designated as other.  
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Figure S3.2. Volumetric soil water content model goodness of fit for the Hydrus 

simulations of Larrea tridentata growing next to: a) Olneya tesota, b) Ambrosia 

deltoidea, c) Prosopis velutina, d) alone. The solid black line indicates the 1:1 line and 

the dashed line indicates the best fit regression line. 
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APPENDIX E 

SEARCH PARAMETERS AND STUDIES INCLUDED IN META-ANALYSES 
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Meta-analysis of Plant-Plant Interaction Data Types 

 A search for plant-plant interaction studies was conducted on August, 4
th

 and 5
th

 

2015. The following terms were searched in Web of Science: arid, desert, plant 

interaction, competition, facilitation, plant competition, water, plant facilitation. Search 

terms in Google Scholar included: arid, plant facilitation, water, arid plant-plant 

interaction. All studies focused on plant-plant interactions with empirical data from semi-

arid and arid ecosystems were included. 

 

Meta-analysis of Ecohydrological Model Parametrization 

 A search for ecohydrological models was conducted on August, 5
th

 and 6
th

, 2015. 

Web of Science search terms included: transpiration, soil moisture, model, arid. An 

additional search was conducted in Google Scholar using the terms: Ecohydrology, 

model, arid, transpiration. Evapotranspiration and soil moisture in arid and semi-arid 

ecosystems had to be explicitly modeled, and models that included only empirical data 

without a model for evapotranspiration were excluded. 
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