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ABSTRACT

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coher-

ence and method of organization poses a major question for mathematics and biology. The

Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the

emergence of collective motion. A major issue for the Vicsek Model is that its particles

are not attracted to each other, leaving the swarm with alignment in velocity but without

spatial coherence. Restricting the particles to a bounded domain generates global spatial

coherence of swarms while maintaining velocity alignment. While individual particles are

specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynam-

ical swarming solutions are found.

The Attraction-Repulsion Model set with a long-range attraction and short-range repul-

sion interaction potential typically stabilizes to a well-studied flock steady state solution.

The particles for a flock remain spatially coherent but have no spatial bound and explore

all space. A bounded domain with specularly reflecting walls traps the particles within a

specific region. A fundamental refraction law for a swarm impacting on a planar boundary

is derived. The swarm reflection varies from specular for a swarm dominated by kinetic

energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to

alignment with the wall and to damped pulsating oscillations of the swarm. The fundamen-

tal refraction law provides a one-dimensional iterative map that allows for a prediction and

analysis of the trajectory of the center of mass of a flock in a channel and a square domain.

The extension of the wall collisions to a scattering experiment is conducted by setting

two identical flocks to collide. The two particle dynamics is studied analytically and shows

a transition from scattering: diverging flocks to bound states in the form of oscillations or

parallel motions. Numerical studies of collisions of flocks show the same transition where

the bound states become either a single translating flock or a rotating (mill) solution.
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Chapter 1

INTRODUCTION

1.1 Overview

Inspired by observing collective motion among a vast spectrum of organisms, experi-

mentalists from several disciplines seek to understand the underlying properties governing

the coordinated movement and theoretically develop models capturing such motion and

aggregation.

Taking on this challenge, applied mathematicians and physicists for the past few decades

have introduced individual-based models (IBM) where particles represent organisms and

evolve according to behavioral rules. A specific class of IBM models are self-propelled par-

ticle (SPP) models where individual particles are without guidance of a central control or

any other external stimuli. Instead, individual particles perceive the behavior of neighbors

and adjust their behavior to them. Thus, without the presence of a leader, the particle sys-

tem evolves according to the position of each particle, which is a function of its neighbors’

states.

Originally proposed by Vicsek et al. (1995), the Vicsek Model introduces a simple

discrete-time model where particles interact by aligning their velocity vector with neigh-

boring particles subject to added noise. Collective behavior is, in this case, characterized

not by any direct spatial coherence but by a common direction of motion measured by an

observable called polarization. As discussed by Vicsek et al. (1995), the particles disperse

(perhaps not evenly) in space.

However, it is a common experience that most swarms moving in real space show spa-

tial coherence for security reasons as discussed by Handegard et al. (2012) and Lin and
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Abaid (2013) or directly resulting from the organisms’ kinetic motions by Katz et al. (2011)

and Herbert-Read et al. (2011). Hence, to overcome the deficiency of the Vicsek Model,

Grégoire and Chaté (2004) and Chaté et al. (2008) both introduce an attraction term, adding

complications to the model.

In the first part of this thesis, we show that swarms following the basic alignment rules

as in the Vicsek Model have spatial coherence when confined within a bounded domain.

This spatial coherence does not require additional attraction forces and keeps the Vicsek

Model simple.

Taking a cue from atomic physics and Morse potentials, the Attraction-Repulsion Model

was developed by D’Orsogna et al. (2006). It is a second order SPP model with an inter-

action pairwise potential that contains parameters that alter the strength and length of the

attraction and repulsion forces. Under the conditions concluded by Mogilner et al. (2003),

the Attraction-Repulsion Model generally converges to a common velocity and the domain

of the group is uniformly bounded with a common distance between particles. Complex

collective behavior is seen in this model: particles aggregate in a cohesive structure and

travel in a like direction (flock), particles rotate within the cohesive structure (rigid-body

rotating), or rotate about an empty core (milling and double milling).

Extending the atomic physics analogy a bit further in the second part of this thesis, we

study the scattering interaction between flocks in potentials generated by the Attraction-

Repulsion Model. Since a flock is a well-defined translational steady state and all particles

follow an interaction potential, the collision between a flock and a boundary or between

two flocks can be treated as (quasi)-particle scattering.

Such scattering results in internal excitations of the flocks in the former case and in

bound states for the latter. We extend this approach to multiple scattering by characterizing

the motion of a flock in boxes and channels for the the Attraction-Repulsion Model.
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1.2 Literature Review

1.2.1 Models

With the goal of providing a minimal mathematical model that captures complex col-

lective configurations and is amenable to mathematical analysis, the simplest mathematical

models represent particles that independently follow the so-called 3-zone model introduced

by Reynolds (1987): Individuals remain close to neighbors by moving towards the aver-

age position (attraction), individuals move in the same direction as neighbors by moving

towards the average heading (alignment), and individuals avoid collisions with neighbors

by moving to avoid crowding (Repulsion).

Exploring different variations of the 3-zone model are the papers by Aoki (1982),

Couzin et al. (2002), Hemelrijk and Kunz (2005), Huth and Wissel (1992), and Reynolds

(1987). Seeking to establish conditions under which a group reacts as a whole, Aoki (1982)

finds that while attraction and repulsion form groups of individuals, alignment is necessary

to maintain the global group cohesion.

The first to simulate swarming behavior is Reynolds (1987). The author develops and

implements a method designed initially to mimic bird flocking. The method is based on

the three interaction zones and includes a blind zone to model limited peripheral vision

(introduced initially in Aoki (1982)). Simulations include barriers where the flock uses a

banking mechanism to maneuver around these objects. Exceeding expectations, this model

has also contributed to imitating other collective animal behavior and has been used in

Disney animation movies (e.g. Lion King).

Huth and Wissel (1992) demonstrate that an ’averaging process’ where individuals av-

erage over neighbor influences, creates more realistic behavior than a ’decision making

process’ where an individual determines to interact with a single nearest neighbor. Con-
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tradicting conclusions by Aoki (1982), Huth and Wissel find that removing the alignment

zone has minor to no effect on the group.

Continuing related work, Couzin et al. (2002) study how the width of each interac-

tion zone affects the collective behavior of the system. In particular, altering the size of

the attraction and repulsion zone, the authors find sharp transitions between four collec-

tive behaviors: swarm where individuals perform attraction-repulsion behavior but have

little parallel orientation, torus where particles rotate about an empty core (milling), dy-

namic parallel group where particles travel in the same direction, and highly parallel group

where particles organize into a highly aligned arrangement. To discriminate between these

dynamical states, the authors add angular momentum to the list of observables.

With the idea of finding a minimal model mimicking collective behavior, Vicsek et al.

(1995) drop the attraction and repulsion zones and only consider the alignment zone. Par-

ticles within the Vicsek Model are scaled to move at a constant speed with their individual

headings adopting the average direction of neighboring particles within a finite distance R.

Perturbation controlled by a noise term is also added to the model since the alignment in

nature is not perfect and individuals make errors. The emergence of collective motion is

seen as particles adopt a like heading and move in the same direction. The added noise term

forces a smooth phase transition where particles no longer move in the same direction but

move in a random fashion. The paper by Czirók et al. (1999) further analyzes this model

as a one-dimensional representation.

Choosing to build on the Vicsek Model, Cucker and Smale (2007) propose the so-called

C-S model which extends the influence horizon of the particles. All particles in the C-S

Model see the entire group and the particle velocities are determined by a distance-decaying

function. No noise term is included in this model and particles move with arbitrary speed.

The C-S Model exhibits collective motion in a sense that the domain of the group is uni-

formly bounded and the particles approach the common velocity. Variations of the C-S
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model include Cucker and Mordecki (2008) and Ha et al. (2009) who study the C-S model

with an additional considered noise factor and Motsch and Tadmor (2011) who break the

permutation symmetry in the C-S model arguing that some agents are more influential than

others, thus creating models for swarms with leaders.

As an alternate route of zonal analysis, Mikhailov and Zanette (1999) drop both repul-

sion and alignment and consider a dynamic model where only a long-range attraction zone

is applied in the presence of noise. They discover that the states of the model are either co-

herently traveling or incoherently oscillating where the translational motion of the swarm

is absent. Their conclusions indicate that an increase in noise intensity leads to an abrupt

transition from the coherent to the oscillatory state.

A similar model based on an attraction only zone with a presence of noise is studied by

Strömbom (2011). Three generated phases are analyzed in this model: Swarm where par-

ticles have low and varying alignment, undirected mills and moving aligned groups where

particles move in a highly aligned manner. Each phase is characterized by measuring align-

ment and the area of the smallest square containing the group. By introducing a blindzone

to the model, the author observes a dramatic change in patterns: undirected mills become

directed and so-called rotating chains appear. For the rotating chains patterns, particles

move on an elongated closed curve with zero, one, or two proper self-intersections.

Researchers that argue for two zones as the minimal requirement for mimicking col-

lective motion include Mogilner et al. (2003) who study the conditions for a stable, well-

spaced swarm to form under the influence of attraction and repulsion forces in a first order

model. They find that the range of attraction must be larger than the range of repulsion

and the strength of repulsion must be stronger than the strength of attraction. Gazi and

Passino (2002, 2004) extend this work by studying an individual-based continuum model

with long-range attraction and short-range repulsion.
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A second order SPP model, developed in D’Orsogna et al. (2006), which we call the

Attraction-Repulsion Model, introduces inertia and uses a interaction potential parametrized

by the strength and length of the attraction and repulsion forces. We will discuss the

Attraction-Repulsion Model in detail in section 2.2. Variations of the attraction-repulsion

models were studied by Bazazi et al. (2010) and Romanczuk and Schimansky-Geier (2012).

1.2.2 Data

Most of the models discussed in the previous section produce patterns that resemble

collective motion observed in nature. However, there are few studies comparing empirical

data and models for the dynamical structure of these animal swarms. With the advancement

of technology in digital imaging, the study of collective motion in the field and in controlled

laboratory experiments can bridge the gap between numerical data and real data. Below,

we present examples where some researchers present discoveries and we further discuss

conflicting conclusions for various models. Finding observables that best define the overall

development of collective motion is still under investigation. Each paper defines its own

method and observation with no clear, universal questions or goals.

One of the best known studies has been done by a large group of scientists in Rome

(StarFlag project Cavagna et al. (2008a,b,c)). They find that interaction among starlings

is not based on Euclidean distance (as assumed in almost all models) but based on the

topological arrangement of neighboring starlings independent of the density of the flock,

i.e. each bird interacts maximally with 6 or 7 neighbors independent of their distance.

Ballerini et al. (2008) suggest that individuals interact by topological rules rather than a

metric distance. However, Bode et al. (2010) and Sumpter et al. (2012) observe that a local

model where individuals interact with neighbors proportional to the inverse of the distance

between them produces the same topological arrangement.
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Further contradicting the topological distance findings, Lukeman et al. (2010) provide

a two dimensional mathematical model matching data for the organization and movement

of surf scoters off the coast of Alaska. Lukeman et al. (2010) describe the type of inter-

action forces that provide sufficient support to verify spatial patterns. They conclude that

interacting surf scoters can be represented by metric zonal models with specific interaction

rules applied.

In addition to birds, insects also provide an aggregate motion among species. Bazazi

et al. (2010) study the motion of locusts commonly known as Mormon crickets located in

western North America. The mechanism here that introduces collective behavior is the risk

of cannibalism. To reduce the risk of being attacked, the locusts align velocities and move

in a common direction.

Along the same lines, Buhl et al. (2006, 2012) study desert locusts and find that the

marching behavior depends heavily on the density of the locusts and show that theres is a

transition between disordered to ordered states that follows similarly to Vicsek et al. (1995)

and they also identify the critical density for coordinated marching.

Midges are being studied in the both the field by Attanasi et al. (2014) and in the lab

by Kelley and Ouellette (2013). At adulthood, the midge produces a centralized, mating

swarm that shows no overall polarization but statistical evidence supports that the swarm

exhibits clusters of correlated motion Kelley and Ouellette (2013). Kelley and Ouellette

(2013) provide further details by characterizing the shape of the potential wells keeping the

individuals bounded together.

Fish are commonly studied within controlled laboratories. Focusing on local interac-

tion, Katz et al. (2011) and Herbert-Read et al. (2011) analyze correlations between rel-

ative positions and velocities of neighbors to a focal fish, in terms of changing direction

and speed. In particular, they develop effective forces that allow fish to form and main-

tain group structure. The behavioral rules for their data analysis find that the focal fish’s
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motion turns towards neighbors and avoids collisions by changing speed in the paper by

Herbert-Read et al. (2011). Katz et al. (2011) conclude that speed modulation from both

behind and in front of the focal fish acts as an ’alignment rule’ and explicitly introducing

alignment only modulates the strength of the speed regulation Vicsek and Zafeiris (2012).

Alignment will not be a force itself.

Considering fish swimming freely in a tank, Gautrais et al. (2009) provide data that

describes fish motion via a turning speed and its auto-correlation developing a persistent

turning walker model. They illustrate how interactions among fish can be added to this

model by quantifying how the turning speed changes for an isolated fish interacting with

tank walls and they reproduce characteristics of the fish trajectories. Degond and Motsch

(2008b) analytically develop this model further.

Zienkiewicz et al. (2014) and Mwaffo et al. (2015) study zebrafish in confined environ-

ments. Using the data captured from the zebrafish, the authors Zienkiewicz et al. (2014)

use a purely data-driven approach to provide a modeling framework that fits the quanti-

tative investigation of individuals. Among the investigations is an analysis of simulated

trajectories of the model that describe the salient features of the zebrafish, including the

wall-following behavior with certain set parameters. This results relates to wall-following

behavior we discuss for the Vicsek Model set in a disk and square domain (Chapter 3).

Handegard et al. (2012) and Lin and Abaid (2013) extend the analysis of swarms to

include predator-prey relationship between a schooling fish prey and their predators.

Data mining and data analysis techniques are used to reduce the dynamic dimension-

ality of the collective motion. Algorithms such as Isomap developed by Tenenbaum et al.

(2000). DeLellis et al. (2014) are able to identify and interpret different types of collective

behavior in five social animal species. As an extension to this study, Gajamannage et al.

(2015) present a comparable algorithm to Isomap that reduces the dimensionality of the

collective motion to find principal manifolds of high-dimensional datasets.
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1.2.3 Swams in Bounded Domains

Only a few references directly relate to the focus of our study: We found two papers that

study how swarms in the Vicsek Model interact with boundaries: Czirók and Vicsek (2000)

study swarming in both a circular and hexagonal domain and find that a rotation of particles

develops for high densities and low noise levels. The direction of the rotation is random and

creates a single vortex regardless of the system size. Miller and Ouellette (2014) view the

animal aggregate as a type of material and test how the three dimensional material breaks

apart upon impact with a solid surface. They find that the initial particle mass fragments

into smaller particle clusters obeying power-law distributions. In Grossman et al. (2008)

and Potiguar et al. (2014) interactions among individual particles is assumed to be inelastic

with no other interaction force. In Grossman et al. (2008) the particles move in a disk

with specularly reflecting boundaries. The model produces collective motion in the sense

of vortex formation and swarm migration. The inelastic collisions induce alignment that

results in particles adopting like headings. Potiguar et al. (2014) establish particle-obstacle

interactions with convex rigid obstacles. They find that the particles form a vortex-type

motion around the obstacles.

We have found no papers studying the Attraction-Repulsion Model in bounded domains

or the scattering of flocks.

1.3 Results

In chapter 3, we analyze how bounded domains affect the swarming behavior of the

continuous-time microscopic Vicsek Model proposed by Degond and Motsch (2008a).

As a baseline we study the time evolution of an initially dense group of particles with

random initial velocities and observe their swarming motion in R2. We show that the

distribution around the mean position of the particles converges to a Gaussian in two di-
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mensions that decays as time increases, confirming the observation that the particles in the

Vicsek Model disperse in space Vicsek et al. (1995). Altering the domain from free space

to periodic domains in R2, we present and discuss numerical observations and phenomena

previously discovered and analyzed by Laurent and Motsch in 2011 Motsch and Navoret

(2011) who numerically validated a macroscopic version of the Vicsek Model derived from

a large scale limit of the time-continuous Vicsek Model Degond and Motsch (2008a).

Extending this previous work, we consider a channel, aligned and infinitely extended

into the vertical direction with vertical walls at x = 0 and x = L and periodic boundary

conditions in the vertical direction. The walls act as specularly reflecting flat surfaces for

individual particles, i.e. the angle of incidence equals the angle of reflection. For the

standard parameters of swarming in the Vicsek Model, depending on initial conditions, the

swarm has two long-time solutions:

• A stationary flow in the direction of the channel, homogeneous in space that we

denote as the homogeneous flow solution. Since the flow is essentially parallel to the

boundary, the vertical boundaries have little effect on the swarming behavior and the

stationary velocity distribution follows the von Mises distribution derived in Motsch

and Navoret (2011) for periodic boundary conditions.

• A time dependent solution where the particle flow oscillates between a high density

flow upwards at one boundary and a high density flow downwards at the other bound-

ary that we denote as the shear flow solution. The shear flow solution is generated by

a sticky boundary layer where the particle velocity aligns with the boundary. Particles

split into the set that stays in the boundary layer and the swarm that moves between

the boundaries. As the swarm moves towards the boundary, particles align with the

boundary layer, increase the density in the boundary layer and thus slow down the

movement towards the boundary. In section 3.4 we discuss in detail how the flow
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towards the boundary reverses and leads to a periodic oscillation. We measure both

the period of the oscillation and the width of the boundary layer and show that both

increase with the increase in the influence horizon whereas only the boundary layer

width increases for increasing noise levels and the period decreases.

Studying swarms in a disk, the typical long term solution becomes a spatially localized

swarm that rotates close to the boundary of the disk. When we average the density of the

particles over a long time, we find the density profile on the disk is rotationally symmetric

and is monotonically increasing towards the boundary of the disk. The density profile is

similar to a steady state called the mill solution found as a solution to the partial differential

equations (PDE) forming the macroscopic Vicsek Model discussed in Motsch and Navoret

(2011). In fact, the mill solution is a steady state of the PDE written in polar coordinates

in all of R2 and thus has an infinite total mass. Restricting the mass to a finite value

inside the disk, the mill solution becomes indistinguishable from the averaged density of the

rotating swarm. Making this identification, we numerically confirm that the mill solution

is attracting, an issue that is theoretically proven linearly stable by Degond and Yu (2015).

In addition, we generate a conjecture about the relationship between the time averaged

dynamics of the swarm motion and the stationary solutions of the macroscopic equations.

Swarms in square domains for a wide range of swarm parameters produce an averaged

density profile similar to the circular domain. The associated path of the center of mass of

the swarm has a C4 symmetry in the same way as the swarm in the disk breaks the O(2)

symmetry of the disk to an SO(2) symmetry. The trajectory of the center of mass becomes

predictable associated with a very well defined periodic behavior of the swarm with high

polarization.

Changing swarm parameters, we see that the polarization of the swarm declines and

simultaneously the trajectory of the center of mass of the particles becomes unpredictable,

eventually leading to Brownian motion of the particles.
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In chapter 4, we study the Attraction-Repulsion Model (D’Orsogna et al. (2006)). We

perform experiments that test how collisions with boundaries alter the flock and test the

scattering effects of flocks set to collide.

To generate a fundamental understanding of the wall-flock system, we consider the

Attraction-Repulsion Model in an unbounded half space with a reflecting wall set at x = L

and allow the flock to impact the wall for various initial trajectories and various potential

strengths. Upon impact, the flock experiences a jolt of noise that increases as the poten-

tial strength increases and contributes to a loss in the kinetic energy of the system leading

to an inelastic collision. In addition, internal elastic oscillations in the swarm are gener-

ated. The dominant modes of the oscillations are determined using a Proper Orthogonal

Decomposition.

When the flock as a whole collides inelastically with the wall, the stickiness of the

wall causes the flock’s trajectory to adopt a closer alignment to the wall. We calculate the

trajectory of the reflected flock and develop a refraction law as a function of the various

initial heading and potential strengths. We find that for smaller potential strengths the flock

reflects specularly while for larger potential strength it exhibits a greater alignment to the

wall.

Understanding single wall interactions, we study multiple wall interactions within a

channel and a square domain by considering iterations of a one-dimensional map based of

the derived refraction law and by comparing the results of the iterated map to direct simu-

lations of the flock. For strongly stable equilibria of the map, the trajectories of the iterated

map and the direct simulations agree. However, the noise introduced in the flock-wall in-

teraction may change the behavior of the flock qualitatively for weakly stable equilibria.

For instance, in a channel domain the typical long-term behavior of both the iterative map

and flock converges to a vertical translationally stable motion whose rate of convergence

is a function of the potential strength. For smaller potential strengths, the map predicts a
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convergence to the vertical heading but the flock is more susceptible to noise and remains

in a drifting state for a long time. This noise contribution, however, proves beneficial at

larger potential values as the flock quickly leaves the horizontal heading and converges

much quicker than the map to the vertical heading.

Similarly, for the square geometry the iterated map predicts a degenerate bifurcation

with a continuum of neutrally stable periodic orbits. For high potential strengths (way be-

yond the bifurcation point), the flock simulation agrees with the iterated map, generating

a periodic orbit of the swarm with a C4 symmetry. Decreasing the strength, the path loses

its C4 symmetry and becomes C2 symmetric. A further decreased potential strength ap-

proaches the bifurcation point and the iterated maps shows an interval of periodic orbits

that are neutrally stable. The flock trajectories drift between among these neutrally stable

periodic orbits and, in particular, no longer has a preferential rotational direction and often

switches rotational direction.

The actual degenerate bifurcation point for the iterated map is characterized by the fact

that all points on the map become fixed points, indicating that the flock interacts with the

wall specularly and, hence, like in a billiard setting. All initial conditions within this realm

lead to a periodic orbit, which are all neutrally stable.

For even weaker potentials the refraction towards the wall is too weak to generate a

rotational trajectory. As a result, we find periodic trajectories that are parallel to the bound-

aries.

To understand the scattering of flocks we examine a pair of interacting particles that

are initially set a finite distance apart and directed towards each other. For weak potentials,

the two particles continue on their path and diverge, showing a small reduction of the

angles between the two paths. At higher strengths, we find two sets of bound states: the

two particles either converge to a common direction in a slowly damped periodic orbit or
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when considering a head on collision, they oscillate back and forth with no net translational

motion.

The N particle flocks shows qualitatively the same behavior but results in smoother

transitions as the initial angles and potential strength increases. In particular, the oscillatory

bound state, is no no longer just limited to initial conditions with no initial y velocity, but

are seen for a range of initially small angles with high enough potential strengths. The

resulting bound state is the mill solution described previously.

Using the polarization measure, we provide a bifurcation diagram depicting the three

regimes of mill, bound translational states and scattering states.

The scattering results agree with the wall-reflection results in the sense that higher

potential strength leads to alignment - with the wall or with the other flock whereas small

potential strength leads to weak interaction between the wall or the other flock.

1.4 Organization

The outline of this paper is as follows: we introduce three popular SPP Models in Chap-

ter 2. In 3.1, we discuss the simulation setup and difficulties when numerically analyzing

the Vicsek Model. In sections 3.2 - 3.5 we produce and examine the numerical results from

the Vicsek Model set in various domains. We conclude with a discussion for this chapter

in section 3.7.

In 4.1 we setup the simulations of the models and discuss our numerical method ap-

proach when numerically analyzing the Attraction-Repulsion Model. In sections 4.2.1 and

4.2.2, we produce and examine the numerical results for the scattering of a flock at walls

in various domains. In section 4.2.3, we extract relevant information from the results in

section 4.2.1 by performing a Proper Orthogonal Decomposition on the data. We perform

collisions of flocks in section 4.3 and conclude this chapter with a discussion in section 4.4.

We finalize our research with concluding remarks and future work in Chapter 5.
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Chapter 2

REVIEW OF THE SELF-PROPELLED PARTICLE MODELS

In this chapter, we provide referential review for both the discrete and continuum case of

three popular SPP Models: Vicsek, Cucker-Smale, and Attraction-Repulsion. We provide

enough detail to give the general idea but refer readers to the herein references for the

technicality of each derivation.

2.1 Vicsek Model

The time-discrete Vicsek Model proposed by Vicsek et al. (1995) is considered the sim-

plest self-propelled model exhibiting collective motion. Particles in this model are subject

to a constant speed and interact by aligning their velocity direction to a local average ve-

locity direction with an addition of noise. The position of each particle in a d-dimensional

space is updated by adding the distance traveled during the time step in the direction of its

velocity angle.

Specifically, the position of the kth particle at time t = n denoted as xnk , k ∈ {1...N},

where N is the total number of particles, is updated for each time step ∆t as

xn+1
k = xnk + wnk∆t. (2.1)

Its velocity wnk evolves according to the average velocity at each time step w̄nk of the neigh-

boring particles along with an addition of noise ηk. Precisely, the velocity update is written

as

wn+1
k = w̄nk + ηk; wn+1

k =
wn+1
k

|wn+1
k |

(2.2)

15



Figure 2.1: Velocity and Particle Distribution for the Vicsek Model Originally Produced
by Vicsek et al. (1995). (a) Initial state. (b) Small densities and noise: Small groups form
and move coherently in random directions. (c) Higher density and noise: The particles
move in random direction with some correlation. (d) Higher density and small noise: The
motion becomes ordered.

where

w̄nk =
Jnk
|Jnk |

, Jnk =
∑

j,|xnj −xnk |<R

wnj . (2.3)

Notice that the velocity average w̄k is taken over the neighboring particles to particle k

within a radius R > 0 ball centered at the position xnk . The Vicsek Model assumes a

constant speed hence the normalization in Eq.(2.2). The noise η ∈ Rd is typically assumed

to be IDD random variables with uniform distribution in [−a, a], a > 0.

Vicsek et al. (1995) consider periodic boundary conditions and provide figure 2.1 as

typical collective motion in the model. The authors measure the collective nature of the
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particles by calculating the average velocity of the system

φN =
1

N

∣∣∣∣ N∑
k=1

wk

∣∣∣∣ (2.4)

for various noise values η and several number of particles. They show that there is a smooth

transition from an ordered state φN ≈ 1 to disordered state φN << 1. The quantity φN ≈ 1

represents individuals adopting a like heading and φN << 1 represents individuals whose

headings balance out.

Degond and Motsch (2008a) derive the continuum limit of the model Eq. (2.2)

dxk
dt

=wk

dwk =(I− wk ⊗ wk)(νw̄kdt+
√

2d dBt)
(2.5)

where I is the identity matrix, ⊗ is the tensor product of vectors, dBt is Brownian motion

with intensity
√

2d and w̄k is the continuous velocity average in a ball of size R equivalent

to Eq. (2.3). The operator (I− wk ⊗ wk) is the orthogonal projector onto the plane normal

to wk, ensuring that the velocity vector is an element of the unit sphere, w ∈ Sn. The

interaction frequency ν and the diffusion coefficient d replace the time step ∆t and noise

level η. Hence ν−1 is the typical decay time for perturbations of particles velocity to align

with their neighbors. For analytical convenience a Gaussian distributed noise with intensity
√

2d is used in place of a uniformly distributed noise.

With this time-continuous model, Motsch and Navoret (2011) rescale (2.5) in both

space and time to compare numerical simulations to the macroscopic model derived in

Degond and Motsch (2008a). Taking t = εt and x = εx, system (2.5) becomes by Motsch

and Navoret (2011)

dxk
dt

=wk

dwk =1
ε
(I− wk ⊗ wk)(wkdt+

√
2d dBt)

(2.6)

where the primes are dropped for convenience and we set ν = 1. ε is the ratio between the

macroscopic Vicsek Model and the Vicsek Model Eq. (2.5).
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Figure 2.2: The von Mises Distribution Originally Produced by Wikipedia. The velocity
variable is defined on the unit circle as w = eix where x ∈ [−π, π]. The parameter κ = 1

d
controls the width of this distribution. When κ = 0, d→∞ and the distribution is uniform.
As κ increases, d decreases and we see the distribution’s width decrease while the height
increases. The direction of the Ω corresponds to the center of the peak. Here, the average
velocity is Ω = [1, 0].

When providing the macroscopic representation of the Vicsek Model, Degond and

Motsch (2008a) introduce a non-conventional concept of a collisional invariant of a col-

lision operator that operates on functions of w only. The equilibrium solutions of this

collisional operator represents the particle velocity distribution for the directions ω ∈ S1

which converges to the von Mises distribution

MΩ(ω) = Z exp

[
ω · Ω
d

]
. (2.7)

Here Ω is the direction of the mean velocity of the particles and Z is a normalizing constant.

The graphical representation of Eq. (2.7) is in figure 2.2.

After establishing an equilibrium solution to the collisional operator, the authors are free

to derive the macroscopic Vicsek Model. The evolution of the macroscopic Vicsek Model

depends on the movement of two macroscopic quantities: the density of the particles ρ and

the direction of the particle flow Ω. With these two quantities, the macroscopic Vicsek
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Model is written as:

∂tρ+ c1∇x · (ρΩ) =0

ρ(∂tΩ + c2(Ω · ∇)Ω) + λ(I− Ω⊗ Ω)∇xρ =0
(2.8)

where c1, c2 and λ are d dependent coefficients provided in Appendix A. We note that c1 6=

c2 and that the model has the geometric constraint |Ω| = 1. With the additional I− Ω⊗ Ω

term, Eq. (2.8) is a nonconservative, hyperbolic system with a geometric constraint, Motsch

and Navoret (2011).

The hydrodynamic model is further analyzed by Degond and Yang (2010) where pre-

sented are O(ε) corrections to system (2.8) by using the standard Chapman-Enskog theory.

Note that ε is the ratio between the macroscopic Vicsek Model Eq. (2.8) and the micro-

scopic Vicsek Model Eq. (2.5). Since the system does not conserve momentum and is

non-isotropy in fluids (the fluid adopts a common heading), the derivation is not standard

and involves added diffusion terms to both the mass and velocity equations.

As an extended application to those introducing attraction-repulsion forces, Degond

et al. (2011) show that the non-local effects of the alignment and attraction-repulsion can be

kept in the hydrodynamic limit by introducing different scaling in the kinetic representation

of the continuous-time Vicsek Model with the additional attraction-repulsion interaction

potential. They prove the local-in-time existence of solutions for the viscous system in

two-dimensions and the inviscid model in three-dimensions. Numerical quantification of

this model is not presented but suggested as future work.

Restricting the macroscopic Vicsek Model to a disk domain, Degond and Yu (2015)

conduct an analysis on the linearized polar coordinate representation of Eq. (2.8). Pre-

sented by Motsch and Navoret (2011), the steady state of the polar coordinate system has

a density and velocity profile similar to the mill solution. The steady state is assumed to

satisfy all R2, implying an infinite total mass. The paper proves no analytical support for

the stability of this steady state. Degond and Yu (2015), however, show that the perfectly
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polarized steady state satisfying the linearized polar coordinate system with an imposed

a tangential flow boundary condition has only imaginary modes that form a countable set

associated to an orthonormal basis of eigenvectors. The steady state, therefore, is linearly

stable.

Performing numerical studies, Motsch and Navoret (2011) and Gamba and Kang (2015)

present numerical description for the microscopic, kinetic and macroscopic Vicsek Mod-

els. Motsch and Navoret (2011) numerically seek to validate the macroscopic to the mi-

croscopic Vicsek Model. Since Eq. (2.8) is a nonconservative, hyperbolic system with a

geometric constraint as mentioned above, there is no standard theory to study this model.

Deriving the numerical scheme splitting method, the authors reveal that the microscopic

and macroscopic models are in good agreement, confirming the relevance of the macro-

scopic Vicsek Model.

Gamba and Kang (2015) provide a different approach by presenting a numerical de-

scription for the kinetic representation of the Vicsek Model provided by Degond and Motsch

(2008a) and comparing the numerical kinetic model to solutions of the macroscopic and

microscopic Vicsek Model. The numerical scheme to represent the macroscopic Vicsek

Model is the splitting method, previously proposed by Motsch and Navoret (2011). Their

results conclude that the kinetic model captures the key aspects of both models such as

vortex formation and traveling waves.

2.2 Attraction-Repulsion Model

The Attraction-Repulsion Mode is introduced by D’Orsogna et al. (2006). It describes

particles that move according to Newton’s law in a potential that is attracting for large

distances and repelling for short distances:

dxi
dt

=vi

dvi
dt

=(α− β|vi|2)vi − λ∇xi

∑
j 6=i U(xi − xj)

(2.9)
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where α ≥ 0 is the self-propulsion force and β|vi|2 ≥ 0 is a Raleigh type friction force.

Carrillo et al. (2009) introduce λ as the potential modulator. Here, we refer to λ as the

potential pre-factor. The function U(x) is the attraction-repulsion potential given typically

as the Morse potential:

U(x) = k(|x|), k(r) = −Caexp(−r/lA) + CRexp(−r/lR) (2.10)

where CA, lA, CR and lR are the the strength of typical length of attraction and repulsion,

respectively. The potential is chosen such that U is repulsive for small distance r and

attractive for large enough r.

We can nondimensionalize Eq. (2.11) as

U(x) = k(|x|) , k(r) = Cexp(−r/l)− exp(−r) (2.11)

where C = Cr/Ca and l = lR/lA. In this paper, we use the nondimensionalized Morse

potential to investigate the model.

If we ignore the effects attributed by the Morse potential, the self-acceleration force

αvi and the self-deceleration force β|vi|2vi tend to balance out and the system sustains a

constant (nontrivial) speed |v| =
√
α/β which has no influence on the orientation of the

velocities. The orientation of the velocities depends on the relationship between C and l.

The terms ”H-Stability” and ”catastrophic” are properties directly related to the pair-

wise potential U(x) in Eq. (2.11) and help to understand what spatial structures can be

present for a given parameter choice. H-Stability is seen in typical thermodynamic systems

where increasing the number of particles only weakly affects the average interspacing dis-

tance between the particles, leading to volume growth of the system. On the other hand,

increasing the number of particles in a catastrophic system causes the spacing between

particles to reduce, keeping the volume constant.

The phase diagram of how the Morse potential relies on the parameter space C and l is

seen below in figure 2.3 with all credit given to D’Orsogna et al. (2006).
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Figure 2.3: Phase Diagram of the Morse Potential Depending on the Parameters (C, l).
Figure was originally produced by D’Orsogna et al. (2006).

Regions I, II, and III have strong pairwise attraction C < 1 and a short active range for

repulsion l < 1. The equilibrium distance between particles is zero and the particles within

this region form coherent clumps that orbit the center of the swarm in Regions I and III.

When N →∞, the clumps lose their coherence and merge in Region III. The intermediate

Region II provides patterns where the particles develop rings. As N increases, the ring

radius decreases.

Maintaining strong attraction (C < 1 ) and increasing the active range of repulsion

(l > 1), we enter region IV. Here, the system behaves similarly to Region III if particles are

within a certain distance. Those farther away will be repulsed and diverge.

No coherent state is seen when both the repulsion active range and amplitude are greater

than the attraction l > 1 and C > 1 (Region V).

Experiencing short-range repulsion and long-range attraction, Regions VI and VII hold

particular interest in our study of swarms. This type of interaction allows the particles to

settle and maintain a positive minimal distance from each other.
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For Cl2 > 1 (region VI), the Morse Potential (figure 2.4a)) is H-stable. That is, for any

arbitrarily large number of agents N , there exists a constant B ≥ 0 such that∑
i

U(xi) ≥ −NB. (2.12)

Thus, particles will not collapse onto themselves and they self-organize with a fixed relative

distance from each other. As N grows, the swarm’s radius will grow accordingly.

(a) H-Stable: C = 2, l = 3/4 (b) Catastrophic: C = 10/9, l = 3/4

Figure 2.4: Morse Potential for H-Stable and Catastrophic Regions. a) H-Stable region:
C = 2 and l = 3/4. b) Catastrophic region: C = 10/9 and l = 3/4.

Structures in Region VI depend on the values of α and β. For larger values of α/β,

particles disperse while at relatively low values of α/β, coherent structures form. Depend-

ing on initial conditions, patterns seen in this regime are the rigid-body rotation state where

the center of mass of the particles is not stationary but moves in a random path (see Figure

2.5b)) or a flock (Figure 2.5a)) where all particles travel with a unified velocity
√
α/β.

All particles within these two states maintain a minimal relative distance and both are seen

when α is small or, more technical, the confining interaction potential is stronger than

the kinetic energy of the individual particles as discussed by Chuang et al. (2007). Upon

increasing α, the particles gain enough kinetic energy to dissolve the aggregation.

With Cl2 < 1 (region VII), the Morse Potential (figure 2.4b)) is catastrophic. The

inequality (2.12) does not hold and collapse of particles will occur. Similar to region (VI),

larger values of α/β give rise to dispersion and smaller values of α/β create rigid-like
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motion. Depending on the initial conditions, flocks and a rigid-body rotation state are also

present in this regime with similar characteristics to Region VI. However, the transitional

state from the rigid-body rotation for an increasing α differs Chuang et al. (2007). When α

increases, the interaction potential is still strong enough and a core-free mill state emerges

(Figure 2.5c)). Since particles travel at a non-zero uniform speed, the interaction potential

is not strong enough to support them too close to the center and an empty core forms.

The size of the empty core depends on N . As N → ∞, the empty core core collapses

D’Orsogna et al. (2006).

Further increasing α, both single and double mills (Figure 2.5d)) are possible states

since the interaction potential is not effective enough to change the direction of motion

of particles. If a particle is traveling in the opposite direction, it maintains this direction.

When the kinetic energy greatly surpasses the strength of the interaction potential, the

swarm breaks apart and no aggregation can be found.

The flock solution has a precise analytical definition:

Definition 1. A flock solution of the particle model (2.9) is a spatial configuration x̂ with

zero net interaction force on every particle, that translates at a uniform velocity m0 ∈ R2

with |m0| =
√
α/β, hence (xi(t), vi(t)) = (x̂i + tm0,m0).

The spatial configuration x̂ is a stationary state to the first-order interacting particle system

dxi
dt

= −
∑
j 6=i

∇iU(xi − xj). (2.13)

Notice that the flock is not rotationally invariant. A small rotation about the center of

mass of the flock still satisfies Eq. (2.13) but has a different spatial representation. Carrillo

et al. (2014a) provide a stability analysis for this flock solution and show that the flock is

capable of withstanding small perturbations.
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(a) H-Stable: Flock (b) H-Stable: Rigid-Body Rotation

(c) Catastrophic: Single Mill (d) Catastrophic: Double Mill

Figure 2.5: Stationary States Seen in H-Stable and Catastrophic Regions. States a) and b)
are similarly found in catastrophic region, but states c) and d) are never found in H-Stable
region. d) Double milling state: red particles rotate clockwise while black rotate counter
clockwise.

Density profiles for single and double milling patterns have been found numerically by

Levine et al. (2000) and Carrillo et al. (2009). Levine et al. (2000) develop a continuum

version of system (2.9) via coarse grain averaging. Assuming centripetal interaction forces,

they find a vortex solution and show an excellent match between the vortex solution and the

numerical solution for the particles model. A rigorous proof for the existence centripetal

interaction forces is lacking. Carrillo et al. (2009) derive macroscopic hydrodynamics

equations from kinetic equations. They discuss the single mill density profile in relation to

Levine et al. (2000) work, but in addition, provide a density solution to the double mill as
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superimposed single mills of velocities v, −v. The total velocity is zero, however, the two

populations coexist, rotate in opposite directions and have a total density exactly equal to

the single mill’s density profile.

Here, we note that other potentials have been considered such as the quasi-morse poten-

tial by Carrillo et al. (2013, 2014b) or Log-Newtonian potential by Fetecau et al. (2011).
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Chapter 3

VICSEK MODEL IN BOUNDED DOMAINS

In this chapter, we show that the swarms generated by the Vicsek Model, if confined

within a bounded domain with spectrally reflecting boundaries, have spatial coherence

without additional attraction forces. We also find new types of collective motion in addition

to the single vortex discussed by Czirók and Vicsek (2000) and analyze their behavior as a

function of the noise level and the influence horizon.

3.1 Simulation Setup

We use Euler’s method to compute the numerical approximation to system (2.6). For

Euler’s method to remain stable, we require 1
ε
∆t < 1.

When reaching the reflecting boundary, a particle j will experience specular reflection

and its velocity is updated

Vnew = Vold − 2(Vold · ~n)~n (3.1)

where ~n is the normal vector to the boundary. After reflecting, we normalize |Vnew| = 1

for the restriction of the Vicsek Model.

A particle j interacting with the wall at time step n∆t will not update its velocity

according to Eq. (2.6) until the next time step (n + 1)∆t. That is, we have a time step

(n + ζj)∆t with 0 < ζj < 1 where the velocity wn+ζj
j is reflected by Eq. (4.1) and the

particle j continues on this new trajectory until time step n+1. At this new time step n+1,

the velocity updates according to Eq. (2.6) with the reflected velocity wn+ζj
j instead of the

original velocity wnj .
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As a result, different time steps satisfying the CFL condition create different transient

results. We keep our time step ∆t = 0.01 to avoid conflicting results that depend on the

time step.

The parameter choices for each simulation (unless stated otherwise) are: the time step

∆t = 0.01; ε = 0.1; the number of particles is N = 10, 000; and the radius of interaction

is R = 0.5. Simulations are ran for various lengths of time. Most settled to the described

behavior after an order of 100 time units. We ran most tests ten times longer to verify the

behavior.

Simulations were run using gfortran on 96gb RAM and 2 Intel(R) Xeon(R) CPU E5-

2620 0 @ 2.00GHz processors and took an average of 600 seconds to run 100 time units.

3.2 Swarms in R2

Degond and Motsch (2008a) use a kinetic representation of the Vicsek Model to derive

a macroscopic model in the form of partial differential equations. The derivation is based

on the particle velocity distribution for the directions ω ∈ S1 converging to the von Mises

distribution

MΩ(ω) = Z exp

[
ω · Ω
d

]
. (3.2)

where Ω is the direction of the mean velocity of the particles and Z is a normalizing con-

stant.

Assuming an initial swarm, localized in space and with a velocity distribution satisfying

Eq. (3.2) with Ω = [1, 0] and a large alignment horizon R � 1, the velocity in the x-

direction becomes

v̄x =

∫
cos(w) exp

[
cos(w)

d

]
dw, (3.3)

decreasing with the noise level d. Since ω ∈ S1, as the mean velocity decreases, the

width of the distribution in the y-direction increases. The swarm as a whole moves into

the x-direction and each particle in the swarm performs an unbiased random walk in the
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(a) φN = 0.97389 (b) φN = 0.13892

Figure 3.1: Particle Simulations of Coherent and Random Motion for the Vicsek Model.
a) Particles move in a like direction with little variation. b) Particles move randomly.

y-direction and a biased random walk in the x-direction with vx. Hence, while the center

of mass of the swarm moves according to x̄ = v̄x(t)t and ȳ = 0, the distribution around the

mean position as t → ∞ becomes a Gaussian that decays in time. As a result, the spatial

correlations of the particles in the swarm decay to zero, the mass diffuses in space to a low

density and the swarm eventually disintegrates.

3.3 Periodic Boundary Conditions

The paper by Motsch and Navoret (2011) numerically compares the microscopic Vicsek

Model (Eq. 2.6) and the macroscopic Vicsek Model, showing that the velocity distribution

on S1 converges to the associated von Mises Distribution Eq. (3.2). An easily calculated

observable for both models is the average velocity given by

φN =
1

N

∣∣∣∣ N∑
k=1

wnk

∣∣∣∣, φ =

∣∣∣∣∫
ω

ωMΩ(ω)dω

∣∣∣∣. (3.4)

φ ≈ 1 implies particles behave like a swarm and all move in the same direction and φ << 1

implies the particles move randomly with no ordered motion. Particle representations of

both these cases are provided in figure 3.1.
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Figure 3.2: Mean Velocities φN and φ (Eq. 3.4) for Varying Noise Levels d for Swarming
States with Periodic Boundary Conditions. Number of particlesN = 1000, box size L = 1,
and ratio ε = 1. R and ∆t are set to default. The simulations run for 10 time units with the
plotted values being averaged over 10 simulations.

Computing the two average velocities in Eq. (3.4) for varying noise levels d, we see

that the particle average velocity φN matches nicely with the theoretical mean velocity φ

in figure 3.2. At smaller d, the particles adopt the same heading (see figure 3.1a) with little

variation but experiences a smooth transition from an ordered state to a disordered state

(see figure 3.1b) as d increases. This type of transition is also seen in the discrete-time

Vicsek Model by Vicsek et al. (1995).

Note that since the domain becomes bounded (the torus T 2), the Brownian motion

generates a uniform distribution in space for both states, the collective movement and the

disordered state.

Figure 3.3 shows the mean velocity as a function of the noise levels for increasing

domains, keeping the density constant. Motsch and Navoret (2011) find that for large

noise levels d the average velocity φN no longer matches φ, the one derived from the von

Mises distribution. Conversely, keeping the box fixed and increasing the density of the
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Figure 3.3: Mean Velocities φN and φ (Eq. 3.4) as a Function of the Noise Levels d
for Swarming States With Periodic Boundary Conditions. The Average Velocity for the
Microscopic Model Depends on the Box Sizes Even Though the Density Remains the Same
for All Boxes. Number of particles N = 400, 3600, 10000, and 40000; box size L = 1, 3,
5 and 10. ε, R and ∆t are set to figure 3.2. The simulations run for 100 time units with the
plotted values being averaged over 10 simulations.

particles in the box, figure 3.4 shows that the average velocity converges to φ confirming

the equivalence of the two models as N →∞.

3.4 Channel Domain

We consider a Vicsek Swarm Model (Eq. 2.6) in a one-dimensional channel with x

as the transverse direction and y as the parallel direction, assuming specular reflection

for the individual particles at the vertical boundaries at x = 0 and x = L. We set up

the simulations for this section as a Riemann problem assuming a uniformly distributed

density ρ and initial swarm directions that differ for the right and left half of the channel.

The initial velocities for each particle wk are set according to the Von Mises distribution

Eq. (3.2) with d = 0.02 (for the initial distribution only). In the left half of the channel,

i.e for positions 0 ≤ x < L/2 the mean direction of the velocity is given by ΩL = (cos θ0,

sin θ0), in the right half of the channel, i.e. for positions L/2 < x ≤ L the mean direction

is ΩR = (cos θ0, -sin θ0). Figure 3.5 shows an example of this initial velocity distribution.
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Figure 3.4: Mean velocities φN and φ (Eq. 3.4) as a Function of the Noise Levels d for
Swarming States with Periodic Boundary Conditions. For a Fixed Box Size, the Mean Ve-
locity Approaches the Macroscopic Mean Velocity as the Density of the Swarm Increases.
Number of particles N = 500, 2500, 12500, and 40000; box size L = 10. ε, R and ∆t
are set to figure 3.2. The simulations run for 100 time units with the plotted values being
averaged over 10 simulations.

Figure 3.5: The Initial Distribution of the Velocity Directions for Two Swarms Moving
into the Direction θ0 = 1 and θ0 = −1.

We vary the initial angle θ0 and the noise level d and study the eventual long term be-

havior of the swarm. Two distinguished solutions are found. Their dependence on θ0 and d

is displayed in the bifurcation diagram in figure 3.6. For small θ0 an equilibrium solution

is found where the particles remain evenly dispersed in space and all have a common up-
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Figure 3.6: Bifurcation Diagram Displaying the Transition from Homogeneous Solution
to Shear Flow. The parameters θ0 and d for the initial velocity distributions and noise levels
are illustrated in figure 3.5. We simulate each considered point in the plot 50 times. If 45
or more simulations exhibit a shear flow solution, we mark the point red. Otherwise, the
point is marked blue. The channel width is L = 10. N, ε,R, and ∆t are set to default. The
simulations run for 100 time units.

ward or downward motion. We call this equilibrium state the homogeneous solution. The

homogeneous solution is the swarming solution discussed in Section 3.2.

As θ0 increases a time dependent solution appears, where the particle flow oscillates be-

tween a high density flow upwards at the left boundary and a high density flow downwards

at the right boundary. This time dependent state is named the shear flow solution.

To understand its dynamical origin, we write the velocity of the particle with label j as

ω̃j = [−(vx)j, (vy)j]

where (vx)j is the x-component and (vy)j is the y-component velocity of the particle mov-

ing towards the boundary at x = 0. Since the normalization velocity constraint remains

active for reflecting particles, on average vx ≈ 0 at the wall, leaving |vy| ≈ 1.
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(a) Initial State (b) t = 45.2

(c) t = 46.1 (d) t = 47.3

Figure 3.7: Time Progression of the Particle Density and Velocity Plots for the Shear Flow
Solution. The average density in each cell is represented by a color code where yellow
implies low density and black implies high density. The average velocity is represented by
an arrow in the center of the cell. a) Initial state, b) at time t = 45.2, c) at t = 46.1 and d)
at t = 47.3. The channel width is L = 10, noise level d = 0.2 and initial angle θ0 = 1. N ,
ε, R, and ∆t are set to default.

The initial state of our Riemann Problem ( figure 3.5) has a collective upward motion on

the left and the collective downward motion of on the right. If these motions are preserved,

we have a shear flow illustrated for different times in figure 3.7.

To study the dependency on parameters of the shear flow solution we compute the

period of the oscillation, i.e. the time it takes for the traveling wave to return to its starting

position.
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(a) Period (b) Thickness

Figure 3.8: Periodic Time and Boundary Layer Thickness for Various Noise Levels d.
We compute the periods a) and boundary layers b) from 400 time units to 500 time units
and from 900 time units to 1000 time units. We average these values and plot the results.
Simulation parameters are set to figure 3.7 but d varies.

Figure 3.8a shows that as d increases, the period decreases. This is somewhat counter-

intuitive since at higher noise level, the average of the von Mises distribution goes to zero

and hence one would expect the period to increase.

To understand the details of the shear flow we study the interaction of an arriving swarm

with the left boundary in several steps:

1. Assume a particle population at the left boundary that has a velocity v = (0, 1). As

a result the transverse velocity is zero and the particles are not leaving the boundary.

Consider a swarm that is approaching the left boundary, i.e. all particles have a

negative velocity in the x direction. Particles close enough to the wall will have a

positive velocity in the y-direction. Assume that particles further away from the wall

will have a negative vy and define x = M to be the position of the zero vy velocity.

Since the whole swarm is moving left, so is the front position M .

2. Given that the velocity has norm 1, it is easy to see that the velocity function vx(x) has

a local minimum at x = M and is zero at the left boundary ( in fact, depending on the

noise level, it may be slightly positive). The minimum in vx leads to a compression
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of particles in front of M and a dilution of particles behind M. Particles that moved

through M from right to left will go from a mean velocity that has vy < 0 to a mean

velocity that has vy > 0. and thus increase the mean vy and hence slow down the

movement of the swarm, including the movement of M.

3. As a result the boundary layer at the left boundary at which vx ≈ 0 grows until

vx(M) = 0. At that position and at that moment, the mean velocity at x = M is

zero and the eventual mean velocity will be determined by the noise. At that moment

a small perturbation with vx(M) > 0 will lead to an amplification and a wave that

generates a movement of a swarm to the right. In this case the x-velocity at the

front M will become a maximum, leading to a density depression trailing the wave

ensuring that eventually a significant number of particles will be stuck at the left wall

and will not participate in the swarm movement to the right.

We compute the thickness of the boundary layer based on the average velocity of parti-

cles v̄ = (v̄x, v̄y). When all particles collect at the left wall (see figure 3.7), vy approaches

a maximum since all particles within this region will have an upward motion. When the

particles begin to drift right, vy decreases and particles leave the wall. Hence the time

when the wave leaves the wall is given when vy is maximal. At that time vy has a velocity

profile in x, starting from large positive values near the wall and going to negative values

as x increases. The point where the profile goes through zero defines the thickness of the

boundary layer. At this distance from the left wall, the particles are starting to drift away

and move to the right. Figure 3.8b shows that the boundary layer thickness increases lin-

early with the noise level. Hence the wave traveling back and forth has to cover a shorter

interval for larger noise and hence the period decreases as the noise increases.

The process depends on the fact that particles close to the wall have a one-sided average,

ie. a high density at the wall in a boundary layer is balanced with a low density over a

36



much larger region in the middle of the channel. Hence, as R increases, the boundary layer

increases (figure 3.9b). However, in contrast to varying d (figure 3.8a) the period increases

with R (figure 3.9a). Essentially, as R increases the velocity average is taken over more

and more particles, generating inertia to change and thus lengthening the period of an

oscillation. Thus the scaling behavior of the period with respect to noise is anti-correlated

with the scaling behavior with respect to R: reducing R is equivalent to increasing noise

and vice versa.

(a) Period (b) Thickness

Figure 3.9: [Periodic Time and Boundary Layer Thickness for Various Vision HorizonsR.
We compute the periods a) and boundary layers b) from 400 time units to 500 time units
and from 900 time units to 1000 time units. We average these values and plot the results.
Simulation parameters are set to figure 3.7 but R varies.

This anti-correlation suggests that ifR is small enough and d large enough, the instabil-

ity will remove enough particles from the wall, such that they do not have enough influence

any more to maintain the initially prescribed flow at the boundary, leading eventually to

the homogeneous flow solution. Indeed, for R = 0.1, d > 0.5 the ratio of homogenous to

shear flow solutions for the initial direction angle θ0 = 1 increases relative to the ratio for

R = 0.5, d > 0.5 confirming the suggestion.

37



3.5 Circular Domain

We consider swarming behavior in a disk with radius RD. Initially, all particles are

uniformly distributed within the disk and the initial velocity is uniformly distributed on the

unit circle.

In the paper by Motsch and Navoret (2011) a steady states for the macroscopic Vicsek

Model in to polar coordinates of the form

ρ(r) = Arc2/d

Ω(θ) = [− sin θ, cos θ]
(3.5)

has been found and called the mill solution. Here r is the radius from the center of the

domain, A is an arbitrary constant and c2 is a constant depending on the model parameters.

The derivation of the steady state considers no boundary conditions. Solutions of this form

(3.5) rotate about the center of the domain with unit speed while the density profile grows

without bound.

As the mill solution has no flux through a concentric circle it may be adapted to a finite

circular disk with no-flux boundary conditions, i.e

n · Ω = cos θ(− sin θ) + sin θ cos θ = 0,

where n is the normal vector to the circle.

The constant A can be explicitly found in this case by noticing that the total mass of

the system remains constant. For the macroscopic model radius Rε
D = εRD of our circular

domain and for an initial density ρ0, A is found by solving the equation

2π(Rε
D)2ρ0 := 1 =

∫ 2π

0

∫ RεD

0

Arc2/drdrdθ (3.6)

giving

A =
(c2/d+ 2)

2π
(Rε

D)−c2/d−2. (3.7)
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To compare the long-term particle behavior of the microscopic model to the mill solution of

the macroscopic model (3.5) we compute the total mass fraction inside a concentric circle

with radius r̄.
M(r)=

∫ 2π

0

∫ r
0
Arc2/drdrdθ

=

(
r
RεD

)c2/d+2 (3.8)

In addition, for every noise level d we calculate the radius of the circle that contains half of

the total mass by solving M(r0.5) = 1/2 giving

r0.5 = 2
−1

c/λ+2Rε
D. (3.9)

Similarly, we calculate the density profile of the microscopic simulations and compute the

total mass of the particle system MN(r)(r) where N(r) is the total number of particles

within the radius r, r ≤ RD. Scaling the system so that the total mass is one at r = RD,

we find

MN(r)(r) =
N(r)

N
(3.10)

Comparing M(r) and MN(r)(r) for several noise values d, we see that the two curves

match nicely (see figure 3.10). As d decreases, M(r) approaches a delta function suggest-

ing that all particles are found distributed on the boundary. For larger d, M(r) scales with

r̄2 indicating that particles are uniformly distributed within the circle.

For the microscopic simulations in the disk we determine the radii where MN(r)(r) =

0.5 and compare them to the r̄0.5 in figure 3.11. The curves match well. Since at higher

noise d the particles are uniformly distributed within the circle, the two curves approach a

lower bound given by r̄ = RD√
2
≈ 3.53 for RD = 5.

Figure 3.11 indicates that the mill solution is attracting. Linear stability of the mill

is provided by Degond and Yu (2015). The close match between the macroscopic mill

solution and the microscopic particle simulation is unexpected: While the mill solution

(3.5) has a density distribution that rotationally invariant, the actual swarm moves as a
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Figure 3.10: Total Mass Profile in the Disk for Several Noise Values d. The curves from
left to right correspond to a decreasing d. We plot M(r) (Eq. 3.8) (red) and MN(r)(r)
(Eq. 3.10) (black) for each of the considered d values. Number of particles N = 10000,
circle radius RD = 5, and d = 5, 0.5, 0.25, and 0.05. ε, R and ∆t are set to default.
The simulations run for 500 time units with the plotted values being averaged over 30
simulations.

localized blob around the circle as can be seen in Fig. 3.12a). The corresponding trajectory

of its center of mass is a concentric circle, Fig. 3.12b). Averaging the motion of the blob

over time, we obtain the density profile of the mill solution, Fig. 3.12c). This equivalence

suggests that for stationary flows the time average of the particle simulation become the

equilibrium solutions in the long time scaling that is the base of the macroscopic model.

Figure 3.11: Location for Half of the Total Mass for Varying Noise Values d. We plot
equation r̄0.5 (red) and the corresponding radii for half of the total mass of the particle
simulations (black). Same simulation details as in figure 3.10.
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(a) Snapshot (b) Trajectory

(c) Density

Figure 3.12: A Rotating Swarm in a Disk. a) A snapshot, b) trajectory of the center of
mass. c) time average of the density. Circle radius RD = 5, d = 0.1, and all other
parameters set to default. The simulations run for 1000 time units. Rotation is clockwise.

3.6 Square Domain

We study the long term behavior of the Vicsek Model in a square box of size L. All

particles are initially uniformly distributed within the box with initial velocities uniformly

distributed on the unit circle. Similar to our analyses of swarms in the disk, we measure

the total mass profile as

MN(l)(l) =
N(l)

N
, (3.11)
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Figure 3.13: Total Mass Profile in the Square for Several Noise Values d. The curves from
left to right correspond to a decreasing d. We plot Eq. (3.11) for rotating swarms in a
square box. Number of particles N = 10000, box size L = 10, and d = 5, 0.5, 0.25, and
0.05. ε, R and ∆t are set to default. The simulations run for 500 time units with the plotted
values being averaged over 30 simulations.

where N(l) is the total number of particles within a square of length l, l ≤ L, centered on

the domain and N is the total number of particles.

The density profiles (figure 3.13 ) show that particles are more highly concentrated near

the boundary for smaller noise level d and become more evenly dispersed as d increases.

Following the analysis for the disk we show that the trajectory of the center of mass tra-

jectory for these selected d values (figure 3.14) is periodic with very little noise dispersion.

The corresponding particle motion is a localized swarm that rotates about the center of the

domain.

As usual, when d is large enough, the swarm loses coherence and the particles perform

a random walk in the square, leading to a uniform density distribution. However, when the

noise d is small enough but not equal to zero, the swarm also loses predictability and its

center of mass follows a seemingly chaotic trajectory (figure 3.15b).

The reason a deterministic swarm shows a irregular trajectory can best be understood

by a thought experiment: Assume a spatially extended swarm moves towards a horizontal

boundary with uniform velocity normal to the boundary. When the leading edge of the
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Figure 3.14: Limit Cycle Trajectory for the Center of Mass of a Swarm in a Square.
Parameters are set to figure 3.13 for d = 0.06. The simulations run for 1000 time unit. The
figure shows the last 50 time units. Rotation is clockwise.

swarm hits the boundary, most of the swam is still moving towards the boundary. Hence,

the average velocity of the swarm is still towards the boundary and the leading particles

get stuck at the boundary. The time when the swarm rebounds and leaves the boundary is

determined by the ratio of the number of particles that hit the boundary within one time

interval of the discrete update and the number of particles that do not hit the boundary in

that time interval. If that ratio is above 1, then the swarm leaves the boundary.

When the ratio is approximately one, the average velocity that determines the next di-

rection of movement is almost zero and very susceptible to slight perturbations. Any small

perturbations will be greatly amplified since the velocity is normalized and the small ve-

locity vector is divided by a normalization constant that is almost zero. As a consequence,

the motion of the swarm after its collision is hard to predict.

In figure 3.15a), we include the average velocity of the particles φN as a function of

time. When the average velocity is small φN < 0.35, we see the chaotic situation where
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(a) Average Velocity φN

(b) Chaotic Center Of Mass: t = 900 to 1050 (c) Limit Cycle Center Of Mass: t = 500 to 650

Figure 3.15: Chaotic Trajectory for the Center of Mass Trajectory of a Swarm in a Square.
a) Average velocity. b) Average velocity φN < 0.35. c) Average velocity φN > 0.45. We
initialize with the rotational state seen in figure 3.14 with the same parameters and decrease
the noise level d = 0.035. The simulation runs for 5000 time units.
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the particle Center of Mass follows no clear path (b). However, when φN > 0.5 in (c), we

see a rotational path that is not as clearly defined as 3.14.

When the particle mass approaches the boundary, the particle velocities average out to

zero, giving the gaussian noise the ability to overpower the contribution from the average

velocity. When the velocity is normalized, the swarm has a random direction and fails to

align with the boundary.

3.7 Discussion

We numerically analyzed the Vicsek Model in bounded domains and showed that the

major effect of the boundaries was their stickiness which led to spatial coherence of swarms.

The lack of spatial coherence in the Vicsek Model was previously considered a major flaw

of the model and additional attractive forces had been postulated to remedy this flaw. Our

simulations suggest, that at least in finite domains of reasonable size, the boundaries might

act as the attractors and hence no further forces were needed.

Specifically, we studied three domains, 1-d channels, squares and disks. We assumed

specular reflection for the individual particle and showed that the swarm as a whole inter-

acts in-elastically with the boundaries.

• In the channel with periodic boundary conditions along the channel direction, we

found the swarming solution previously described for periodic domains by Motsch

and Navoret (2011) and matched their velocity to the theoretically derived von Mises

distribution, Degond and Motsch (2008a). In addition, we found a new type of solu-

tion for the Vicsek Model corresponding to a periodic solution similar to a shear flow.

The particles moved in opposite directions along the channel walls and the majority

of the particles traveled from one boundary to the other and back, changing their flow

direction parallel to the wall.
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• A swarm progressing in a disk had spatial coherence and slipped along the boundary

of the disk. The coherence increased as the noise level decreased, asymptotically

leading to a δ-density distribution. The most notable feature of this periodic solution

was that its time averaged density was numerically identical to the density of a mill

solution of the macroscopic Vicsek Model, restricted to the disk. This suggested the

open problem to prove under what conditions the time average of a particle model

simulation became the equilibrium solution of a macroscopic model that was derived

for large time and spatial scales.

• Simulations in square domains led to solutions that were structurally similar to those

occurring in the disk: Coherent swarms broke the D4 symmetry of the square and

started to rotate. The center of mass described a closed trajectory that was rotation-

ally symmetric but not reflection symmetric (C4-symmetry). When the noise was too

large, the rotational pattern was lost and particles were seen evenly dispersed in the

domain. The time averaged density profile showed the particles more concentrated at

the boundary for small noise. When noise was extremely small, swarms were polar-

ized when they moved between boundaries but lost this polarization when the swarm

hit a boundary. As a result, the trajectory of the center of mass appeared chaotic.
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Chapter 4

ELASTIC AND INELASTIC COLLISIONS OF THE ATTRACTION-REPULSION

MODEL

In this chapter, we show that the flocks satisfying Definition 1 confined within a bounded

domain with spectrally reflecting boundaries collide inelastically with a slight alignment to

the wall. We analyze how a flock evolves within these domains by varying the interaction

potential strength λ and varying the initial heading θ0.

We extend these observations to scattering experiments where to flocks are set to col-

lide.

4.1 Simulation Setup

We use a 4th order Runge-Kutta method to compute the numerical approximation to

system (2.9). For all potential pre-factor λ values, the eigenvalues of the system lie within

the stability region for a time step of ∆t = 0.1. We note that very long simulation runs

produce reproducible results, indicating that even with the addition of reflecting walls, the

algorithm is still stable.

When reaching the reflecting boundary, a single particle will experience specular re-

flection and its velocity is updated

vnew = vold − 2(vold · ~n)~n (4.1)

where ~n is the normal vector to the boundary. A particle j interacting with the wall at

time step n∆t will not update its velocity according to Eq. (2.9) until the next time step

(n+ 1)∆t. That is, we have a time step (n+ ζ)∆t with 0 < ζ < 1 that is between n∆t and

(n+ 1)∆t where the velocity vn+ζj
j is updated according to Eq. (4.1) and continues on this
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reflected path until (n + 1)∆t. At the time step (n + 1)∆t the velocity updates according

to Eq. (2.9). When set in a reflecting domain, the Attraction-Repulsion Model experiences

the same discontinuity as explained in the Vicsek Model in Chapter 3. We keep ∆t = 0.1

to avoid conflicting results that depend on the time step choice.

Other choices for the exact numerical reflection algorithm are possible. For instance,

the authors in D’Orsogna et al. (2006) implement a multistep method Adams-Bashforth-

Moulton. We discuss our choice for numerical method in Appendix B.

For all simulations, we initialize the system with a flock satisfying Definition 1 where

m0 is dependent on the initial heading θ0 ∈ [0, 2π) and the angle θ0 is calculated from the

positive x-axis

m0(θ0) =
√
α/β[cos(θ0), sin(θ0)] (4.2)

The parameter choices for each simulation (unless stated otherwise) are: ratio between

strength of repulsion and attraction C = 10/9, ratio between the length of repulsion and

attraction l = 3/4, number of particles N = 100, friction force β = 5, acceleration force

α = 1, potential pre-factor λ = 25, initial heading θ0 = 0, and ∆t = 0.1. We average

all findings over 10 spatial rotations and run most simulations for 500 time units to 10000

time units. We run the same experiments with N = 200 and find similar results.

Simulations were run using MATLAB on 96gb RAM and 2 Intel(R) Xeon(R) CPU E5-

2620 0 @ 2.00GHz processors and the average time for 5000 time units took 1200 seconds.

4.2 Scattering a Single Swarm at Boundaries

We will try to understand multiple swarm collisions within a bounded domain as a

sequence of single wall collisions.
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4.2.1 Single Wall Collision

Individual Particle Motion

We consider the Attraction-Repulsion Model (2.9) in an unbounded half-space in R2 with

a specularly reflecting wall at x = L. We initialize a flock to collide with the wall with

initial headings θ0 ∈ [0, π/2). When θ0 = π/2, the flock translates upward, i.e. is parallel

to the wall and hence never interacts with the wall. We note that in free space, a flock will

remain intact and continue on its set trajectory for all time.

There are two limiting cases for the interaction of the swarm with the wall: For small

λ all particles directly hit the wall and bounce back specularly. This is illustrated in figure

4.1a) and c). For large λ only about the leading 2/3 of the particles physically hit the wall

and bounce back. The other particles experience a changed interaction potential due to the

change in velocity and position of the leading particles. The changed potential creates a

differential slowing down within the swarm, leading the trailing particles to turn around

before they hit the wall. This is illustrated in figure 4.1b) : the maroon colored left part

of the swarm will not hit the wall but turn around earlier. The resulting reflected swarm

experiences strong internal mixing. Figure 4.1d) shows that the initially leading particles

and the initially trailing particles mix homogeneously.

Figure 4.2 shows the numbers ratio of those particles that hit the wall, to all particles

within the flock as a function of starting angles θ0 and potential pre-factors λ. We see

that the ratio decreases with increasing λ and increasing initial angle. To characterize the

internal remixing of the swarm after it hits the wall for an incoming direction θ0 = 0,

we determine the initial position in the swarm along the x-axis that separates particles

that directly hit the wall and those that do not (see Fig. 4.1b). Figure 4.3 shows a sharp

bifurcation: for λ < 13 the position that separates the two behaviors is at the trailing edge

49



(a) Initial State: λ = 1 (b) Initial State: λ = 25

(c) End State: λ = 1 (d) End State: λ = 25

Figure 4.1: A Swarm Impacting a Vertical Wall with Initial Heading θ0 = 0: Initial and
End State of the Swarm. Particles that directly interact with the wall are colored black and
particles that do not interact with the wall are colored maroon. a) All particles hit the wall
for λ = 1, b) the trailing particles turn around before they hit the wall for λ = 25. c) and
d) Depicts the end state of the flock; the location and of particles after the swarm reflect.

of the swarm, i.e. all particles hit the wall, whereas for λ > 13 that point moves linearly

forward.

It is instructive to determine the time it takes the flock to switch directions in this ex-

periment. We consider the time when the last particle of the swarm turns around (i.e. vx

changes direction) as the swarm turning time and call it tturn. It is represented by the black

in figure 4.4a) as a function of λ. We compare swarm turning time to the time to turn

around for the most distant particle from the wall (shown in red). Both values coincide and
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Figure 4.2: Ratio of Directly Interacting Particles to All Particles as a Function of λ and
the Initial Heading θ0.

Figure 4.3: Position of the First Particle in the Direction of Motion of the Flock That Turns
Around Without Hitting the Wall for θ0 = 0.

increase with λ until λ = 12. Past λ ≥ 14, the swarm turning time shows a slight linear

decrease while the turn times of the most distant particle show a sharp drop and then a

linear decrease.

Comparing figure 4.3 and figure 4.4b) confirms that the last particle to turn is the most

distant particle from the wall that actually hits the wall. Hence as λ increases past 14, the

last particle to turn around moves into the interior of the swarm.
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(a) Turn Time (b) x Postion

Figure 4.4: Turning Times and Turning Position for a Various λ. a) Turning time for the
most distant particles (red) and for the ones that turn last (black). b) The initial position of
the particle in the flock that switches direction last (black) and the position of the closest
particle to the wall that does not hit the wall (blue).

Studying the kinetic energies in the x and y direction (Figure 4.5) clarifies the swarm-

wall interaction: For λ ≈ 1, the swarm reflection is totally specular, all the kinetic energy

is in the x direction and it stays constant throughout the wall interaction.

As λ increases, the swarm slows down (decreasing total kinetic energy) and is com-

pressed, i.e. kinetic energy is converted into potential elastic energy. As the potential

energy is released, the swarm undergoes internal damped oscillations which involve the

kinetic energies in the x and y direction.

As a result, the flock experiences a breathing or pulsing motion. We further examine

this motion in section 4.2.3 where we perform a Proper Orthogonal Decomposition of the

simulation data.

Refraction Law

We have seen that, even though individual particles follow specular reflection laws (4.1),

the flock as a whole does not collide elastically but rather inelastically (see also section

4.2.3). To determine the influence of the individual paths on the reflection laws for a flock,

we track the center of mass of the flock and measure the outgoing angle of its trajectory as a

function of the θ0. Figure 4.6a) illustrates the definition of the measurement of the outgoing
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(a) Kinetic Energy: 1
2

∑
v2x (b) Kinetic Energy: 1

2

∑
v2y

(c) Total Kinetic Energy

Figure 4.5: Kinetic Energy Transfer from the x-Direction to the y-Direction for Several λ
Values.

angle. If the trajectory of the center of mass is exactly specularly reflected, by definition,

θ0 and the outgoing angle are equal. Notice that if the outgoing angle is different than the

incoming, the wall interaction does not follow the reflection law but rather a refraction law.

Figure 4.6b) shows the outgoing angles as a function of the incoming angle and λ 1 We

see that for increasing λ the outgoing angle aligns more to the wall than would be expected

from specular reflection of the swarm as a whole. Figure 4.6c) emphasizes this result by

plotting the difference between the outgoing angle and the initial angle θ0. For small λ the

flock reflects almost specularly. As λ increases, the difference the difference becomes more

pronounced. In particular, when only a fraction of the particles hit the wall (λ > 13, see
1Note: For θ0 = 0, the flock has equal chance of reflecting upward or downward. When averaging over

the spatial rotations, we take the absolute value of the outgoing angle for each rotation. Whether the flock
aligns upward or downward is irrelevant at θ0 = 0.
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(a) Calculating Outgoing Angles

(b) Refraction Laws (c) Difference Between Outgoing Angles and θ0
Figure 4.6: Refraction Law for a Flock Interacting with a Wall. a) Schematic definition
of the outgoing angle. b) Outgoing angle as a function of incoming angle and λ. c) The
outgoing angle minus the initial angle θ0.

section 4.2.1), the outgoing angle differs greatly from θ0. The flock collides inelastically

leading to an alignment with the wall. Summarizing, we find two types of reflection at the

wall:

1. The swarm as a whole interacts elastically with the wall, characterized by specular

reflection of all particles leading to a specular reflection of the swarm.

2. The swarm as a whole interacts inelastically with the wall, caused by the fact that

some particles do not hit the wall when they turn around. As a result, the swarm

tends to align with the wall.

The behavior of the swarm bifurcates from type 1 to type 2 at about λ = 13.
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4.2.2 Multiple Reflections

We can study the influence of multiple wall interactions in various geometries by con-

sidering the refraction law at a wall as a one-dimensional map, relating the incoming angle

to an outgoing angle.

Hence, we can consider multiple reflections as iterated maps and study limiting behav-

ior as the number of wall interactions goes to infinity. Convergence of the iterated map

to a fixed point or to a periodic orbit corresponds to a stable periodic or period-doubled

trajectory of the swarm in the geometrical domain. An unstable fixed point corresponds to

an unstable periodic orbit of the swarm.

The concept of an iterated map for the swarm-wall interaction depends on the fact that

the flock has fully stabilized to the free equilibrium solution before it hits the wall again.

Channel

Using Figure 4.6(b) we can construct 1-d maps of the outgoing angle as a function of the

incoming angle. Figure 4.7 shows two representative maps for λ = 5 and λ = 25. In both

cases, there are two equilibria: θ = 0 and θ = π
2
, the former being unstable and the latter

being stable.

(a) λ = 5 (b) λ = 25

Figure 4.7: One-Dimensional Maps and the Staircase Diagrams for the Outgoing Angles
as a Function of the Incoming Angles. a) λ = 5 and b) λ = 25.
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Figure 4.8 plots the number of iterations necessary for a starting incoming angle 0 to

reach an outgoing angle that is greater than 1.4.

This is a measure of the instability of the vertical reflection (θe1) and the stability of the

alignment with the wall (θe2).

Figure 4.8: Number of Interactions with the Channel Walls Before the Flock Converges to
π/2 Heading in an Open, Infinite Width Channel. The width of the channel is infinite; the
flock completely stabilizes before interacting with the next wall.

To see the impact of incomplete relaxation of the swarm we reduce the channel width.

For really small width the perturbations generated by the wall interactions are additive and

eventually causes the flock to either break apart when the milling steady state is not stable

i.e. for small λ values Chuang et al. (2007), or relax into the milling steady state solution

for larger λ.

A representation of the transition between a narrow channel and an infinitely wide chan-

nel is achieved for a channel width of 14 units. Here, the flock has adequate time to settle

but the internal oscillations have not decayed yet. We find that at most 10% of the parti-

cles break off and the remaining particle have a common heading. The milling steady state

solution is never seen.

Determining a refraction law by relating the incoming and outgoing angles of the center

of mass of the swarm we find the iterated maps in figure 4.9 which are qualitatively similar
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to the maps in figure 4.7. The influence of the noise, generated by fast repetition of the wall

interaction is seen when λ is small. For a starting angle close to zero the alignment with the

wall is very weak and hence susceptible to noise. The inset in figure 4.9a) shows a case,

were the swarm bounces back and forth with movements up and down before eventually

settling to an alignment with the channel in the upwards direction. Noise may even trap the

swarm in a horizontal back and forth motion that does not align with the channel for a long

simulation time (figure 4.10).

(a) λ = 5 (b) λ = 25

Figure 4.9: Swarm Trajectory for an Open Channel with Finite Width 14 Units. a) λ = 5:
inset- the flock starts to drift downward but switches direction and drifts upward. b) λ = 25:
the flock drifts monotonically up.

Figure 4.10: Sample Trajectory of a Swarm That is Stuck in a Horizontal Periodic Orbit
for 5000 Time Units. λ = 5 with a different initial condition than in figure 4.9a).
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Figure 4.11: Number of Interactions with the Wall Before the Flock Aligns with the Chan-
nel for a Channel Width of 14 Units (Red) and an Infinitely Wide Channel (Black) as a
Function of λ.

For λ > 6 the main effect of the wall interaction noise is to destabilize the horizontal

equilibrium θe1, aligning the swarm faster with the channel direction (see figure 4.11).

Square

We characterize the trajectory of a swarm in a square by the outgoing angle η ∈ [−π/2, π/2]

calculated from the boundary in the direction that the swarm is moving. For clockwise

rotation, η < 0 while for counterclockwise rotation η > 0. Notice that by simple geom-

etry, the outgoing angle ηn leads to an incoming angle at the next boundary of the form

π/2 − ηn. Thus, for specular reflection in a square the sequence of outgoing angles is

η0 → π
2
− η0 → η0 for any starting angle η0, filling the square densely with periodic orbits.

Assuming a square that is big enough and a swarm that hits a boundary far enough away

from the lateral boundaries, we assume that the refraction law discussed in section 4.2.1

holds and is the same at every bounday. Hence we iterate the refraction map twice and

study its fixed points and their stability to predict the swarm behavior in a square box. We

then simulate actual swarms in such a box and compare the prediction with the simulation

results.
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Figure 4.12 shows the map, generated by two reflections, i.e. ηn → ηn+2 for different

values of λ. A fixed point of this map is a periodic trajectory of the swarm in the square

domain. Figure 4.12a) shows that for small λ there are three fixed points: ηe1 = 0, corre-

sponding to a motion parallel to a boundary, ηe2 = π
4

corresponding to a symmetric orbit

connecting the midpoints of the sides of the square, and ηe3 = π
2

corresponding to a mo-

tion parallel to a boundary and orthogonal to the one associated with ηe1. Inspection of the

staircase diagrams shows that the motions parallel to the boundary are attracting while the

symmetric trajectory is unstable.

Near λ = 6 (figure 4.12b)) the reflection law becomes specular, i.e. every angle results

in a periodic orbit. In terms of a bifurcation we have degenerate bifurcation leading from

an unstable fixed point in the interior of the interval [0, π/2] to a stable fixed point shown

Figure 4.12c) and d) via a completely linear map. As a result of the bifurcation, the motions

parallel to the boundaries become unstable. The bifurcation leading to the instability of the

orbits parallel to the boundaries and the stability of a rotating orbit is not instantaneous in

the parameter λ. In fact there is an interval of angles containing π/4 for which the map

ηn → ηn+2 is completely linear, leading to a continuum of periodic orbits. Figure 4.13

shows the linear intervals as a function of λ. Figure 4.14 shows periodic orbits associated

with the interval of angles, for which the square reflection map is linear for certain values

of λ. The transition between the orbits parallel to the boundary and the rotating orbits can

easily be understood in term of the refraction laws discussed in section 4.2.1. For large

enough λ a swarm will reflect with the tendency to align with the wall. As a result, the

orbits parallel to the wall become unstable and lead to a rotation.

Notice that, even though we analytically study an iterated map system, the actual map

was generated by a simulation study of a swarm hitting a wall. Hence, the continuum of

solutions indicated in figures 4.13 and 4.14 may not be all neutrally stable analytically.

However, the interaction with the wall is a noisy process, depending on small variations in
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(a) λ = 3 (b) λ = 6

(c) λ = 10 (d) λ = 25

Figure 4.12: Mapping of the Reflection Angles Using the Refraction Law for Swarms in a
Square Domain. We map ηn to ηn+2 for various λ values. a) λ = 3: unstable fixed point at
η = π/4 , stable fixed points at η = 0 and π/2. b) Linear map indicates specular reflection.
c) and d) λ ≥ 10: the fixed points at η = 0, π/2 become unstable and a fixed point at
η < π/4 becomes stable.

Figure 4.13: Fixed Points for the Iteration Map of the Square as a Function of λ.For
4 ≤ λ ≤ 10, the fixed points form a continuum.
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(a) λ = 7 and 8. (b) λ = 9 and 10.

(c) λ ≥ 11

Figure 4.14: Trajectory for the Minimal (Black) and Maximal (Red) Fixed Angles Seen in
Figure 4.13. The grey trajectories indicate some of the trajectories in between the black and
the red orbits. The bottom panel shows the one stable periodic orbit occurring for λ = 11.

the initial conditions of the swarm particles and that noise level is overwhelming any small

attraction or repulsion that may be present analytically close to the bifurcation point. The

situation is similar to the weakly stable transversal flow in the channel (figure 4.14).

We now numerically test our predictions based on the iterated refraction law by sim-

ulating a flock set inside a 10 × 10 units square. We perform two fundamental sets of

experiments for different values of λ: i) we prepare an initial condition representing a flock

solution of the Attraction-Repulsion Model aligned with the walls of the square and ii) we

prepare an initial condition representing a rotating flock solution.
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We find that the iterated map system is valid locally when the attraction or repulsion

to a fixed point is strong: For λ < 4 the rotating solution is unstable while the solution

parallel to the wall is stable. For λ = 25 the rotating solution is stable and looks like figure

4.14c) while the flock moving parallel to a wall is unstable. However, the attraction to

these fixed points is typically not global: For small λ, If we prepare the flock in the rotating

setup, it will disintegrate when it hits the corners of the square and will not reform as a

swarm parallel to the walls. In the case of weakly stable fixed points for the iterated maps,

4 ≤ λ < 7, flocks mostly disintegrate.

Increasing λ ≥ 7, we find a superposition of the neutrally stable solutions found via

the iterative map. Figure 4.15a) shows the trajectory of the center of mass of a flock. It is

strikingly similar to the set of neutrally stable cycles found via the iterated map analysis

(figure 4.14a). Notice also that there is a frequent change in the rotation direction with

on average no preference for clockwise or counterclockwise motion. As λ increases, the

set of neutrally stable periodic orbits shrinks. Comparing the center of mass trajectory in

figure 4.14b) with figure 4.15b) again shows good agreement between the actual trajectory

and the neutrally stable set of periodic orbits. Notice though that the two figures do not

correspond to exactly the same values of λ. The parameter has to be increased for the

actual simulations to match the iterated map figure.

Increasing λ beyond 14, solutions cease to switch their rotation direction and move

continuously from symmetry type C2 corresponding to a trajectory that is symmetric under

a rotation by π (figure 4.15c)) to a symmetry type C4 corresponding to a rotation by π/2

(figure 4.15d)).

4.2.3 Internal Swarm Dynamics

We analyze this pulsing behavior seen in the kinetic energy that was computed in sec-

tion 4.2.1. Using the Proper Orthogonal Decomposition POD, we extract a compact, rele-
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(a) λ = 7 (b) λ = 15

(c) λ = 18 (d) λ = 25

Figure 4.15: [Center of Mass Trajectory for Flocks Set in a 10 × 10 Box: Typical Tra-
jectories as λ Increases. a) Trajectories rotate in both a clockwise and counterclockwise
direction. b), c), and d) Trajectories only rotate in a clockwise direction.

vant representation of the numerical data. The POD, see Kirby (2000), seeks to obtain an

applicable depiction of a series of snapshots x(k) of the numerical data where x(k) is a 4N

column vector containing the position and velocity of each particle at time tk:

x =


x

(1)
1 . . . x

(k)
1 . . . x

(M)
1

. . . . . .

x
(1)
4N . . . x

(k)
4N . . . x

(M)
4N

 .
We subtract the center of mass from the position components and mean velocity from

the velocity components so that the ensemble is centered at 0.
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We seek an orthonormal basis Φ that maximizes the mean squared projection of the

data onto itself. That is, we solve for the best first eigenvector φ(1) as the best rank one

approximation that solves the following optimization problem

Maximize: 〈(φ(1), x)2〉 subject to: (φ(1), φ(1)) = 1 (4.3)

where 〈·〉 is the average and (·) is the euclidean inner product. Notice that the optimization

function computes the average energy for x along φ(1) and equation (4.3) implies that this

computed energy is greater than any other projection. The constraint ensures that you

cannot scale φ(x) by a coefficient and increase the projection.

The optimization problem reduces to solving by Kirby (2000)

Cφ(1) = γ1φ
(1) (4.4)

where

C = 〈xxT 〉 =
1

M
xxT

averages the space and velocity over time and λ1 is the Lagrange multiplier. Continuing

iteratively with the requirement that (φ(i), φ(j)) = 0 where j 6= i, the optimal basis vectors

come from the eigenvector solutions of

Cφ(i) = γiφ
(i) (4.5)

The Lagrange multipliers are ordered such that γ1 ≥ γ2 ≥ · · · ≥ γ4N ≥ 0, implying that

φ(1) gives the optimal projection.

Since φ forms a basis for the field x(k), we can write

x(k) =
M∑
j=1

a
(k)
j φ(j) (4.6)

where the expansion coefficients aj are uncorrelated. Equation (4.6) written in matrix form

x = ΦA or A = ΦTx (4.7)
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Figure 4.16: The Particle Positions and Their Velocities Corresponding to the First POD
Eigenmode for λ = 5.

The percent of energy that each mode i contributes to the total energy of the system is

σi∑
i σi

where σi =
√
M
√
γi

with mode one supplying the most and mode 4N the least.

We initialize a flock with a horizontal heading and collect the spatial and velocity data

from the moment the center of mass changes horizontal direction to time 100 seconds.

We perform the POD analysis described above and for each potential strength λ, at least

67% of the energy is described by mode one shown in figure 4.16. Note that the velocity

components of Φ1 are very small and all the energy of the motion is in the positional pattern

of the particles.

We plot the time evolution of the coefficient A1 given by equation (4.7) in figure 4.17.

We find an exponentially damped oscillation, with stronger damping for larger λ. Since the

velocity components of Φ1 are almost zero, the oscillation of the amplitude A1 corresponds

to a periodic scaling of the corresponding particle pattern creating a pulsating swarm.

65



(a) λ = 5 (b) λ = 25

Figure 4.17: Time Evolution of the Projection of the Data onto the First POD Eigenmode.
a) Small λ and b) larger λ.

4.3 Swarm Scattering

We conclude our analysis of swarm scattering by looking at the interaction between

two flocks that collide with each other. We prepare two initial flocks satisfying Definition

1 as equilibrium solutions of the particle system (2.9) with initial velocity directions θ0 ∈

[0, π/2) positioned far enough apart that they do not interact with each other. We arrange

the positions in such a way that the two flocks moving with the velocities

mL =
√
α/β[cos(θ0), sin(θ0)] and mR =

√
α/β[− cos(θ0), sin(θ0)], (4.8)

will hit each other at x = 0.

The parameters in this section remain the same (unless written otherwise): ratio be-

tween strength of repulsion and attraction C = 10/9, ratio between the length of repulsion

and attraction l = 3/4, number of particles N = 100, friction force β = 5, acceleration

force α = 1, potential pre-factor λ = 25, initial heading θ0 = 0, and ∆t = 0.1.

4.3.1 Two Particles

To understand the basic interaction in the Attraction-Repulsion Model we begin our

analysis by a scattering of just two particles, i.e. we N = 1 for each flock. In this case, Eq.
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(2.9) simplifies to the following eight equations:

ẋ1 = vx1 ẏ1 = vy1

ẋ2 = vx2 ẏ2 = vy2

v̇x1= (α− β(v2
x1

+ v2
y1

))vx1 − x1−x2
r

λU ′(r)

v̇y1= (α− β(v2
x1

+ v2
y1

))vy1 − y1−y2
r
λU ′(r)

v̇x2= (α− β(v2
x2

+ v2
y2

))vx2 + x1−x2
r

λU ′(r)

v̇y2= (α− β(v2
x2

+ v2
y2

))vy2 + y1−y2
r
λU ′(r)

(4.9)

where

r =
√

(x1 − x2)2 + (y1 − y2)2 and U ′(r) = (−C/l exp[−r/l] + exp[−r]).

Defining the relative distance X = x1 − x2, Y = y1 − y2, the relative velocity Vx =

vx1−vx2 , Vy = vy1−vy2 , and the average velocity v̄x = 1/2(vx1 +vx2), v̄y = 1/2(vy1 +vy2),

System (4.9) reduces to six equations

Ẋ =Vx

Ẏ =Vy

V̇x =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄x + Vx/2)

−(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄x − Vx/2)− 2X
R
λU ′(R)

V̇y =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄y + Vy/2)

−(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄y − Vy/2)− 2Y
R
λU ′(R)

˙̄vx =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄x + Vx/2)

+(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄x − Vx/2)

˙̄vy =(α− β((v̄x + Vx/2)2)) + (v̄y + Vy/2)2)(v̄y + Vy/2)

+(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄y − Vy/2))

(4.10)

where

R =
√
X2 + Y 2 and U ′(R) = (−C/l exp[−R/l] + exp[−R]).
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One-Dimensional Case

Restricting our collision to a head on collision, we start the two particles a distance µ apart

on the x-axis with initial velocities vx1 =
√
α/β, vx2 = −vx1 . Thus the average velocity

remain at zero for all time and System (4.10) reduces to a system of two equations where

we assume without loss of generality X > 0

Ẋ =Vx

V̇x =(α− β(V 2
x /4))Vx − 2λU ′(X)

(4.11)

Linearizing equation (4.11) at the steady state (x̂, 0) where x̂ solves Eqn. (2.13) leads

to the eigenvalues

γ1,2(α) = 1/2(α±
√
α2 − 8λU ′′(x̂)). (4.12)

Since α = 1 is set constant, our steady state is either an unstable oscillation for λ >

α2

8U ′′(x̂)
, or a saddle point. In either case, it is locally unstable.

To determine the global dynamics of the system, we analyze the nullclines of (4.11):

The nullcline Ẋ = 0, is given by Vx = 0 and

V̇x > 0 if X < x̂

V̇x < 0 if X > x̂.

The nullcline where V̇x = 0 is given by

−β/4V 3
x + αVx − 2λU ′(X) = 0, (4.13)

We compute the discriminant of (4.13) in terms of the cubic Vx

∆V = βα3 − 27/4β2λ2(U ′(X))2.

From the discriminant, we deduce that Equation (4.13) has three roots when ∆V > 0,

one root when ∆V < 0, and a double root when ∆V = 0.
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Lemma 1. The steady state (x̂, 0) is unstable, if λ is chosen such that ∆V ≥ 0 for all

X ≥ x̂.

Proof. For X > x̂, the system (4.13) has two positive roots and one negative. When X

passes through x̂, one root switches from positive to negative and we see two negative roots

with one positive in the interval x̂ − ε < X < x̂. That is, all trajectories near x̂ on the left

side of the steady state have Ẋ < 0 while those near x̂ on the right have Ẋ > 0. Thus the

trajectories diverge from the steady state (x̂, 0) (see figure 4.18).

Figure 4.18: Phase Diagram for the One-Dimensional Two Particle Model Corresponding
to Lemma 1: λ = 5. The steady state under question is at Vx = 0 and X = x̂. We notice
that no initial condition will converge to this steady state; all trajectories diverge.

Consider the case where ∆V is not greater than zero for all X ≥ x̂. Then,

∆V < 0⇒ λ >

√
4α3

27β(U ′(X))2
>

√
4α3

27β(maxX≥x̂ U ′(X))2
(4.14)
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and since U ′(X) ≈ 0 when X ≈ x̂ and X is large, ∆V must have three double roots: S1,

S2 and S3 where S1 < x̂ < S2 < S3 and ∆V has

one positive root for 0 ≤ X < S1

one positive, two negative roots for S1 < X < x̂

two positive, one negative roots for x̂ < X < S2

one negatie root for S2 < X < S3

two positive, one negative roots for S3 < X

Lemma 2. The steady state (x̂, 0) is unstable, if λ satisfies Eq. (4.14) and the roots S2 ≈

S3.

Proof. The proof follows similarly to Lemma 1.

Figure 4.19: Phase Diagram for the One-Dimensional Two Particle Model Corresponding
to Lemma 2: λ = 5.3568. The steady state under question is at Vx = 0 and X = x̂. We
notice that no initial condition will converge to this steady state; all trajectories diverge.

The following provides requirements for the stability of the steady state (x̂, 0) based on

a large enough λ. The criteria is not optimal but provides results that there exists a λ such

the trajectories of the locally unstable steady state can be trapped within a region, proving

a limit cycle must exist by the Poincaré-Bendixson theorem. Our preliminary results for

building the trapping region require the following Lemma:

70



Lemma 3. There exists λ that satisfies Eq. (4.14) and is chosen such that

V̇x ≤ −2
√
α/β

For

x̂ ≤ X ≤ x̂+ 1 + 2
√
α/β and Vx = −(X − (x̂+ 1 + 2

√
α/β)).

Proof. From Eq. (4.11)

V̇x = (α− β(V 2
x /4))Vx − 2λU ′(X).

In the interval Vx ∈ [0, 2
√
α/β] ⇒ X ≥ x̂ + 1, the first term (α − β(V 2

x /4))Vx is

always positive and its maximal value is given at

Vmax :=
2√
3

√
α/β.

The second term −2λU ′(X) is always negative. For V̇x to be negative for all X and Vx in

the considered intervals, we counteract term one with

−2λmin
X

(U ′(X))

where

Umin := min
X

(U ′(X)) = U ′(x̂+ 1 + 2
√
α/β).

Solving for λ

(α− β(V 2
max/4))Vmax − 2λ(Umin) ≤ −2

√
α/β

(α− β(V 2
max/4))Vmax + 2

√
α/β

2Umin

≤ λ

In the interval where
√
α/β ≤ Vx ≤ (1 + 2

√
α/β) and x̂ ≤ X < x̂ + 1, term one

(α − β(V 2
x /4))Vx and two −2λU ′(X) are both negative. We will show that the same λ

works for this case.
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Let

λ =
(α− β(V 2

max/4))Vmax + 2
√
α/β

2Umin

Since Vx ≥ 2
√
α/β, we have

(α− β(V 2
x /4))Vx − 2λU ′(X) + Vx

= (α− β(V 2
x /4))Vx − λU ′

(
Vx − 2

√
α/β(x̂+ 1 + 2

√
α/β)

2
√
α/β

)
+Vx

≤ max
Vx

[
(α− β(V 2

x /4))Vx − λU ′
(
Vx − 2

√
α/β(x̂+ 1 + 2

√
α/β)

2
√
α/β

)
+Vx

]
≤ 0

Indeed, the last inequality gives us an even more helpful bound.

V̇x ≤ −Vx (4.15)

which holds for
√
α/β ≤ Vx ≤ (1+2

√
α/β) on the line Vx = −(X− (x̂+1+2

√
α/β)).

Using Lemma 3, we can prove that there exists a limit cycle for a large enough λ.

Proposition 1. The steady state (x̂, 0) is stable, if λ is chosen such that

V̇x ≤ −2
√
α/β

For

x̂ ≤ X ≤ x̂+ 1 + 2
√
α/β and Vx = −(X − (x̂+ 1 + 2

√
α/β)).

Proof. Likewise to Lemma 1 and 2, trajectories diverge from the steady state (x̂, 0).

By Lemma 3, all trajectories for x̂ ≤ X ≤ x̂ + 1 + 2
√
α/β remain within the region

under the line Vx = −(X − (x̂+ 1 + 2
√
α/β)).

All initial values with Vx < 0, Ẋ < 0. We connect the line Vx = −(X − (x̂ + 1 +

2
√
α/β)) at Vx = 0 with a vertical line extending until we pass the single negative nullcline
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vicinity. We connect this point with a horizontal line until we reach X = 0 where we again

extend vertically until we pass the single positive nullcline in this vicinity.

At the wall X = 0 and Vx > 0, Ẋ > 0 and V̇ < 0 since we are above the nullcline.

The nullcline has a steady declining slope. We calculate the minimal slope of this nullcline

using Eq. (4.13) with X < x̂ and construct a linear line connecting a point above the

nullcline to Vx = −(X − (x̂ + 1 + 2
√
α/β)) at X = x̂ and the linear line has a slope

equal to the minimal slope of the nullcline. Since all trajectories approach the slope of the

nullcline and we consider a line slightly above the nullcline, all trajectories remain below

our constructed line.

The existence of a limit cycle directly results from applying Poincaré-Bendixson theo-

rem.

We provide a phase diagram for Proposition 1 in figure 4.20a). Between root S2 and

S3, there is a separatrix where all initial conditions to the left of the separatrix approach the

nullcline between S2 and S3 and converge to the limit cycle and those to the left diverge. We

numerically compute the relative distance where trajectories start to diverge by solving the

system for an initial relative velocity of 2
√
α/β. These values are numerically computed

in figure 4.20b) where we show the separation between relative distances that converge and

diverge. All trajectories are divergent for λ < 9. We see that the relative distance between

converging and diverging solutions increases as λ increases, showing that the steady state

(x̂, 0) is stable for larger λ as discussed in our analysis.

We will like to note that as seen in figure 4.20b), Lemma 3 does not find the minimal

λ value. Finding this optimal λ is not trivial as seen in figure 4.21 since the limit cycle at

the optimal λ will be infinitely long in the X direction. Finding a trapping region will not

work. We leave this to future endeavors.
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(a) Phase Diagram: λ = 21.4495

(b) Converging and Diverging Initial Conditions

Figure 4.20: Phase Diagram for the One-Dimensional Two Particle Model Corresponding
to Stability Lemma 1: λ = 21.4495. a) Converging (green) and diverging (cyan) trajec-
tories: All trajectories within the trapping region (blue) remain and converge to the limit
cycle. Between the converging and diverging trajectories is a separatrix that we numeri-
cally compute in b). b) We initialize the system with an increasing relative distance and a
set relative velocity 2

√
α/β. Running model (4.11) numerically, we find the relative dis-

tance where the trajectories start to diverge and plot the value. Any distance less than this
critical relative distance will converge.
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Figure 4.21: Phase Diagram for the One-Dimensional Two Particle Model with Limit
Cycle Approaching the Nullcline. We set λ = 8.6 and initial relative distance µ = 1.4791

Two Particles (Two-Dimensional)

We consider two particles starting a distance of µ on the x-axis with initial velocities

vx1 = −vx2 and vy1 = vy2 .

Notice that the relative distance and the relative velocity in the y direction are both zero,

giving Vy = 0 and Y = 0 for all time. The average velocity in the x-direction v̄x is also

zero for all time since vx1 = −vx2 and both particles undergo the same dynamics.

System (4.10) then reduces to three differential equations

Ẋ =Vx

V̇x =(α− β(V 2
x /4 + v̄2

y))(Vx/2) + (α− β(V 2
x /4 + v̄2

y))(Vx/2)− 2 X1

|X1|λU
′(|X1|)

˙̄vy =1/2[(α− β(V 2
x /4 + v̄2

y))v̄y + (α− β(V 2
x /4 + v̄2

y))v̄y].

(4.16)

Setting V = 2Vx and dropping the tilde for convenience, we rephrase system (4.16) in polar

terms where r2 = V 2 + v̄2
y and ζ = tan(v̄y/V ):

Ẋ =2r cos(ζ)

ṙ =r(α− βr2)− λU ′(X) cos(ζ)

ζ̇ =1/rλU ′(X) sin(ζ)

(4.17)
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Linearizing around the steady state (X1, r, ζ) = (x̂,
√
α/β, π/2), we find that it has one

negative real eigenvalue associated to r and two purely imaginary eigenvalues associated

to X and ζ . Performing a center manifold reduction we find that r is of at least order two,

leaving

Ẋ =0

ζ̇ =λ
2

√
β/αU ′′′(x̂)X2

(4.18)

as the leading order terms on the CM. We see that the origin (the fixed point) is attracting.

However, the attraction is quadratic and hence very weak and the system will take very

long to settle.

The determine the scattering for arbitrary initial conditions we study system (4.16)

numerically for α = 1, β = 5 and various initial angles θ0 > 0 and for different λ. We set

the initial relative distance X0 = 2 units apart and we initially set

Vx0 = vx10 − vx20 = cos(π − θ0)− cos(θ0) = −2 cos θ0

v̄y0 =
1

2
(vx10 + vx20 ) = sin(θ0).

We run the simulation for 500 time units using ode45 and compute the average velocity in

the y-direction v̄y after the collision (figure 4.22).

(a) Average Velocity v̄y (b) Change in Average Velocity: v̄y − v̄y0

Figure 4.22: Average Velocity v̄y After the Collision of Two Interacting Particles with
Various Initial Headings θ0 and Potential Pre-Factors λ. a) Average velocity v̄y. b) Change
in average velocity: final average velocity v̄y minus initial average velocity v̄y0 .
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Our results match nicely to those analyzed in section 4.2.1. For small λ, the two parti-

cles do not have enough influence on each other to change the trajectory of both particles.

As a result, they just pass each other and continue on their track. As λ increases, the po-

tential gains enough strength to capture the two particles which then oscillate around a

common heading. For almost head on collisions θ0 small, the velocity in the x-direction

is transferred to a velocity in the y-direction. As discussed, that oscillation decays alge-

braically until both particles move in parallel straight lines.

4.3.2 Interacting Flocks

Extending the observations made in the two particle system, we consider the full N

particle system Eq. (2.9). We initially set the center of mass of the left flock at the origin

and the center of mass of the right flock at position (5, 0). The velocities are given by Eq.

4.8 with θ0 ∈ [0, π/2).

As in the previous sections, we analyze the behavior of the system after the collision

as a function of the potential pre-factor λ and the collision angles θ0. Three observables

are used to characterize the collective behavior over time t: Polarization P (t), Angular

Momentum M(t), and Absolute Angular Momentum Mabs(t) defined as:

P (t) =

∣∣∣∣ ∑i vi(t)∑
i |vi(t)|

∣∣∣∣ (4.19)

M(t) =

∣∣∣∣∑i ri(t)× vi(t)∑
i |ri||vi|

∣∣∣∣ (4.20)

Mabs(t) =

∣∣∣∣∑i |ri(t)× vi(t)|∑
i |ri||vi|

∣∣∣∣ (4.21)

where ri(t) = xi(t) − xcm(t) with xcm(t) the position of the center of mass at time t. We

will not distinguish between double mills and mills so our analysis does not include angular

momentum M(t).
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(a) Poloarization (b) Change in Polarization: Final - Initial

Figure 4.23: Polarization After the Collision of Two Interacting Flocks. a) Polarization. b)
Change in polarization: final polarization minus initial polarization. We run the simulation
for 500 time units and average over the last 50 time units of the simulation.

For both mills and double mills, Polarization P ≈ 0 while Absolute Angular Momen-

tum Mabs ≈ 1. Systems that settle into a flocking state will have high Polarization P ≈ 1

and Mabs ≈ 0. Similarly seen in the two particle system, some flocks will fail to merge

but the interaction makes them alter their initial heading. P > 0 and Mabs is small.

For various initial angles θ0 and potential pre-factors, we provide P of the flocks in

figure 4.23. We do not provide Absolute Angular Momentum Mabs since we can deduce

where Mabs ≈ 1 from the Polarization plot.

The results are very similar to the scattering of two particles: For weak potential (i.e.

small λ), the two flocks just pass each other and diverge. The interaction results in a small

change of the departing angles towards each other but the change is not big enough to

merge the two flocks. As λ increases we find convergence of the two flocks: For large

λ and glancing collisions θ0 large, the two flocks merge and move as a single flock with

uniform velocity. For large λ and head-on collisions, the two flocks merge and generate a

bound state in the form of a milling solution. The transition region between the two states

show unpredictable and complicated behavior - in addition to the milling solution, double

mills and disintegrating flocks can be found.
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4.4 Discussion

We studied the Attraction-Repulsion Model by numerically simulating the how the

flock impacts a flat, reflecting surface. In addition, we analyzed the equations of mo-

tion for two particles colliding under the influence of the attraction-repulsion potential and

extended our observations to the corresponding scattering for two colliding flocks. In both

cases we found that the strength of the potential determined the degree of inelastic scatter-

ing displayed by the flock.

In wall scattering, the inelastic behavior manifested itself by an excitation of internal

swarm oscillations when the flock left the boundary. We used a Proper Orthogonal Decom-

position analysis to determine the dominant mode of the oscillation that led to an oscillatory

scaling of the swarm structure akin to a breathing motion. In addition, inelastic scattering

prompted a stickiness to the wall, producing a refraction law that tilted towards a motion of

the flock aligning to the wall. As a result, we derived a refraction map that related incoming

and outgoing angles of the swarm and showed that the behavior of a swarm in a channel

and in a square could be understood as the stable and unstable fixed points of the iterated

refraction map. In a channel, the attractor was a motion parallel to the channel.

In a square, there was a bifurcation from motion parallel to the boundary that tran-

sitioned to a rotating motion. The bifurcation was degenerate in the sense that near the

critical potential strength, there existed continua of periodic orbits (i.e. fixed points of the

refraction map) that were neutrally stable. Comparing the iterated maps with actual flock

simulations, we found perfect agreement. For both weak and strong potentials, the swarms

aligned with the wall directions and rotated on a periodic trajectory, respectively. However,

for potential strength close to the degenerate bifurcation of the map, the dynamics became

more complicated. Since the interaction with the wall introduced noise, individual particles

might split off from the flock which might eventually lead to a complete disintegration of
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the flock that never reformed. Alternatively, the noise allowed the trajectories of the center

of mass of the swarm to explore the neutrally stable periodic orbits randomly, including

switching rotational direction. The latter phenomenon also occurred in the channel, where

for weaker potentials the flock moved transversally to the channel, drifting randomly along

the channel axis but never converging to a motion parallel to the channel.

The scattering of two colliding particles became a four-dimensional dynamical sys-

tem that could be understood analytically. The solutions either scattered away from each

other or converged to periodically damped orbits where the particles converged and par-

ticles eventually adapted a like heading. When performing numerical simulations of the

collisional dynamics, two colliding flocks showed the same type of behavior. If the ratio

of kinetic energy to potential energy was large, the paths of the two flocks crossed, the

angle between the two velocity vectors decreased, but the two flocks still diverged. As the

potential energy increased, the two flocks converged to a common direction until, for large

enough potential energy, a bounded state appeared in the form of a milling solution.
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Chapter 5

CONCLUSIONS

We study self-propelled particle mathematical models where agents interact and evolve

according to behavioral rules that lead to swarming behavior. Starting from the canonical

model of Reynolds (1987) who define three interaction zones by attraction, repulsion, and

alignment, two simplified models have received a lot of attention: An attraction-repulsion

model, eliminating alignment, is proposed by D’Orsogna et al. (2006) while Vicsek et al.

(1995) show that the minimal requirement for collective motion is alignment and consider

a model with only alignment.

Most theoretical work on these models has been concerned with swarm solutions in in-

finite domains and focus on the bifurcations from disorganized to organized motion. This

thesis provides numerical simulations and develops understandings of swarms in finite do-

mains.

By restricting the Vicsek Model to finite domains, we overcome one of its shortcom-

ings: Aggregating organisms generally possess spatial coherence along with a common

directional movement. The members in the Vicsek Model disperse in space Vicsek et al.

(1995). While this can be remedied with an attraction force, (Grégoire and Chaté (2004)

and Chaté et al. (2008)), the additional attraction term is cumbersome and takes away from

the simplistic nature of the model. We show, however, that in bounded domains the Vicsek

Model generates swarms that have spatial coherence without the aid of attraction forces. In

doing so, the boundaries possess a type of stickiness that leads to new types of collective

motion in addition to the single vortex discovered by Czirók and Vicsek (2000).

Specifically, in a channel domain we find periodic wavelike motions with oscillatory

behavior between boundary layers where particles are densely aggregated near the channel
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walls. We show how the period of the wave depends on the noise level and the influence

horizon. In a disk and a square domain, we find single rotating swarms. The trajectories

of the center of mass break the O(2) symmetry of the disk to an SO(2) symmetry, and

similarly, the D4 symmetry of the square is broken to a C4 symmetry. We find that the

averaged flow is stationary in the form of a single vortex (mill solution) independent of

the initial transient behavior of the swarm. When the average velocity is small, the single

vortex disappears and the center of mass of the swarm begins to behave chaotically for

systems with small noise.

The Attraction-Repulsion Model by D’Orsogna et al. (2006) also has spatial limitations.

The translationally invariant flock steady state is defined with particles within a finite dis-

tance of each other, but the flock is not centrally localized and explores all space. Because

most animals remain near a preferred location that provides food, shelter, etc., Carrillo et al.

(2010) introduce a roosting force to the model, limiting its translational region. The roost-

ing force allows for new behavior like milling flocks and double milling flocks. Again,

a bounded domain with specularly reflecting walls leads to spatially localized behavior

without the need of additional forces.

To understand the swarm-wall interaction for the Attraction-Repulsion Model, we study

a single wall impact of the flock when the flock’s members are specularly reflected at the

wall. We find that the collision is inelastic and derive the refraction law for the outgoing

angle of a flock as a function of the incoming angle and the strength of the potential force.

For flocks that are dominated by kinetic energy, the flock as a whole reflects specularly. As

the potential energy increases, the interaction becomes inelastic and internal pulsations of

the swarm are generated that decay exponentially.

Using the refraction law as a one-dimensional map, we can iterate the map and predict

the dynamics of a flock subject to multiple wall interactions. In a channel the iterated map

shows an attracting fixed point corresponding to a motion aligned with the channel sides.
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This is confirmed for large potential forces in the actual agent simulations. For weak noise

and small potential forces, however, the flock bounces between the channel walls drifting

randomly along the channel but never converging to a motion aligned with the channel.

For a square domain, the refraction law map predicts a degenerate bifurcation at a crit-

ical potential strength. At higher potential strengths, the trajectory of the iterated map

follows a C4 symmetric path where a single attracting fixed point of the map is seen. This

path breaks to a C2 symmetry with a band of neutrally stable fixed points when the strength

decreases. The symmetry breaks altogether at lower strengths and the rotation frequently

changes direction with no directional preference. The degenerate bifurcation corresponds

to specular reflection of the swarm where every incoming angle of the flock results in a

periodic orbit. Any strengths below this transition produce unstable rotational fixed points

and the trajectory approaches and remains near a path parallel to the boundary. The flock

set in a square domain behaves similarly with the single attracting fixed point occurring for

larger potential strengths and near the bifurcation point, the flock breaks apart due to the

continual noise contribution.

An extension to the wall scattering experiments is the collision of two identical flocks.

Beginning with the collision of two particles, we show that at lower potential strengths,

the two particles weakly interact and continue on their initial path with a slight reduction

in the difference between the outgoing angles. Increasing the potential strength leads to

bound states: Particles are caught in a damped period orbit that merges very slowly to two

particles moving parallel in the same direction. For head on collisions, the two particles

will have no net movement and produce an oscillating behavior.

Scaling up to full flocks colliding, we find qualitatively the same transition between

scattered and bound states. However, the head on oscillation acquires a larger basin of

attraction and leads to bounded states of mill type flows.

83



5.1 Future Work

Our current work provides insight to how reflecting boundaries alter the dynamical

nature of two well-studied SPP Models. As illustrated in chapter 3, boundaries become

sticky but, nevertheless, particles slip by the boundary.

To motivate more realistic boundary conditions for hydrodynamic macroscopic models,

we refer to the sticky boundary layer in channel flow and to observations in fluid dynam-

ics. Perfect, frictionless fluids follow differential equations of motion proposed by Euler.

D’Alembert, however, uses the Euler equations to prove that inviscid and irrotational flow

slips along the contour of the boundary with no drag force or lift from the boundary, con-

tradicting experimental results and leading to the famous D’Alembert Paradox. Fluid flows

experience some, if not, a substantial drag or lift from the boundary.

In 1904, Prandtl hypothesizes that fluids close to the wall surface interact with wall

atoms and, in consequence, slow down dramatically to an average of zero. A chain reac-

tion occurs where these hardly moving particles influence neighboring particles and this

interaction reduces the average speed; the velocity profiles monotonically increases away

from the boundary. Prandtl points out that fluid flows with small viscosity can be divided

into a boundary layer near the wall where the effects of viscosity are significant and a nearly

inviscid outer layer that connects smoothly the the boundary layer and satisfies the Euler

equations. Boundary-layer theory has proven to be useful and has given fluid flow a boost

in theoretical analysis instead of relying solely on experiments.

We argue that a similar reduction in average velocity is present for collectively moving

organisms. Examples include a flock of birds that avoids buildings when flying near the

ground or a cattle drive moving against a fence where the uneven friction and the cows

constant pushing causes the herd to slow near the fence.
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Figure 5.1: Poiseuille’s Flow in a Channel: Parabolic Velocity Profile.

Developing a comparison to the already theorized boundary-layer theory applied to

fluid dynamics, we will consider the continuous-time Vicsek Model near a boundary at

x = 0 and x = L where L is the width of the channel and x the coordinate normal to the

boundary. Explicitly, the model is the same as in Eq. (2.6) with a Brownian motion term

of the form
√

2d̂ dBt.

The parameter d̂ ≥ d is a function of the noise level d and position x. In free space,

d̂ = d while d̂ monotonically increases as x approaches the boundary. The particles clos-

est to the boundary are dominated by the noise term and do not move on average while

those further from the wall follow the velocity distribution determined by the von Mises

Distribution Eq. (3.2).

Introducing a boundary roughness in the particle models, we plan to compare the mi-

croscopic Vicsek Model and the hydrodynamic macroscopic Vicsek Model with no-slip

boundary conditions. The goal is to develop a boundary layer theory similar to the one in

Schlichting et al. (2000) for Poiseuille’s flow in a channel (figure 5.1.)

Another idea is borrowed from the concept of Brownian motors. Brownian motors gen-

erate directed motion from interaction with noise by exploiting coherence properties of the

noise. They are considered the drivers of bacteria and nanoparticles in noisy environments.
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A typical experiment involves a set of particles subject to Brownian motion in a asymmet-

ric channel as seen in figure 5.2. Assuming an external field dragging particles down a

potential slope, Astumian and Hänggi (2002) and Reimann and Hänggi (2002) show that

with strong enough Brownian motion, the net motion of the particles is moving against the

potential slope.

To illustrate a typical argument supporting the previous claim, Astumian and Hänggi

(2002) concentrate all particles at the bottom of a potential well at x0 (see figure 5.3 (top)).

As the sawtooth potential strength periodically oscillates, the potential weakens and the

probability distribution diffuses as a Gaussian as seen in figure 5.3 (middle) where it ex-

tends over the well positions x0, x0 + L1 and x0 − L2. When the sawtooth potential is ap-

plied again, the probability distribution that particles are caught in one of the three basins

is shown in figure 5.3 (bottom). Since L1 > L2, the probability of finding a particle in

x0 − L2 is higher than in x0 + L1 and thus the particles gain a net transport against the

potential gradient.

Nobody, thus far, has studied self-propelled particles in this context. Assuming Vicsek

particles in their diffusive state, they are really governed by Brownian motion and hence

should show the same effects as a Brownian motor, Hänggi et al. (2005). Once a swarm

forms, the system is no longer a Brownian motor but the interaction with a boundary will

still lead to spatial coherence near the boundary with random diffusion in space and a von

Mises distribution on the velocity in the middle of the channel. It will be interesting to see

whether such ideas can be used to steer and control the motion of Vicsek swarms.
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Figure 5.2: Channel with Sawtooth Edges: the x Direction Remains Periodic and the
Sawtooth Edges Reflect Specularly.

Figure 5.3: Particle Probability Distribution in a Sawtooth Channel. (top) All particles
initially concentrated at the position x0. (middle) Sawtooth potential is turned off and the
particles move left due to the force, but also diffuse evenly left and right. A Gaussian
probability is seen. (bottom) Sawtooth potential is turned on and the particle is trapped at
the bottom of a well. From the Gaussian distribution (middle), the particle is more likely
in the left well than the right.
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APPENDIX A

COEFFICIENTS C1, C2 AND λ
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Analytically derived in Degond and Motsch (2008a), the coefficients c1 and c2 all rely
on the Von Mises Distribution MΩ(ω) (3.2) and c2 also relies on the generalized collisional
invariant ψ(θ) derived in Degond and Motsch (2008a). As mentioned in Motsch and Na-
voret (2011), the ψ(θ) is periodic in 2D and satisfies the eliptic equation:

∂θ

(
e

cos θ
d ∂θψ

)
= sin θe

cos θ
d (A.1)

which gives us the following solution

ψ(θ) = −dθ + dπ

∫ θ
0
e

cos θ
d∫ π

0
e

cos θ
d

(A.2)

The coefficients c1, c2 and λ are given as where M(θ) = e
cos θ
d , we have

c1 =

∫ π

−π
cos θM(cos θ)dθ

c2 =

∫ π
−π cos θ sin θψ(θ)M(θ)dθ∫ π
−π sin θψ(θ)M(θ)dθ

λ = d

where d is the noise parameter. Since there is no explicit expression for ψ(θ) or for the
integral of M(θ), we use numerical integration to estimate c1 and c2 and plot c2/c1 and
λ/c1 in figure A.1 for different values of d.

(a) c = c2/c1 (b) λ̂ = λ/c1

Figure A.1: Parameters c = c2/c1 and λ̂ = λ/c1 for varying noise d.
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APPENDIX B

NUMERICAL DIFFICULTIES
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Here, we describe the numerical difficulties that arise when numerically evaluating the
attraction/repulsion model (2.9) in bounded domains.

D’Orsogna et al. (2006) implement the multistep, implicit Adams-Bashforth-Moulton
4th order method, written explicitly:

The predictor: p(n+1)
j = y

(n)
j + h

24
(−9f (n−3) + 37f (n−2) − 59f (n−1) + 55f

(n)
j )

The corrector: z(n+1)
j = z

(n)
j + h

24
(f (n−2) − 5f (n−1) + 19f (n) + 9f(pn+1

j ))

(B.1)

where a single particle with position zj = (xj, yj) and velocity v = (vxj , vyj) in the
Attraction-Repulsion Model evolves according to

ż = f(v) = v and v̇ = 0

since the potential has no influence (only one particle is considered) and we assume the
particle has converged to the desired speed. Let the x-direction velocity v(0)

xj reflect at time
step (n) for n > 0. That is, v(n)

xj = −v(0)
xj . At time step (n + 4), all velocities used for the

update are equal to −v(0)
xj .

To determine the path of the reflected particle, we calculate the update for x(n+4)
j and

y
(n+4)
j starting at position x(n)

j and writing the update in terms of −v(0)
xj and (x

(n)
j , x(n)

j ).

x
(n+4)
j = (1+3/8h)4

4096
x(n) − h(1161h4+8964h3+30528h2+58880h+45056)

16384
v

(0)
xj

y
(n+4)
j = (1+3/8h)4

4096
y(n) + h(81h4+999h3+4896h2+11904h+10240)

4096
v

(0)
yj

(B.2)

For the particle to reflect specularly, the coefficients of v(0)
xj and v(0)

yj must equal or the
particle travels further in one direction along the velocity than in the other. With differing
coefficients, the resulting trajectory does not to follow a specularly reflected path as the
method continues with the velocity [−v(0)

xj , v
(0)
yj ].

We choose to implement the Runge-Kutta 4th order method Eq. (B.3) instead. Since it
is a one-step method that only uses one time step to update to the new time step, the particle
j reflects specularly.

k1 = f(x(n), v(n))
k2 = f(x(n), v(n))
k3 = f(x(n), v(n))
k4 = f(x(n), v(n))

z
(n+1)
j = z

(n)
j +h

6
(k1 + 2k2 + 2k3 + k4)

(B.3)

Without this discontinuity, the Adams-Bashforth-Moulton 4th order method is the more
desired method to employ since you only evaluate the function once per time step evalua-
tion instead of four times with the Runge-Kutta. It is a much faster method.

96


