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i 

ABSTRACT 

Researchers are often interested in estimating interactions in multilevel models, but many 

researchers assume that the same procedures and interpretations for interactions in single-

level models apply to multilevel models.  However, estimating interactions in multilevel 

models is much more complex than in single-level models.  Because uncentered (RAS) or 

grand mean centered (CGM) level-1 predictors in two-level models contain two sources 

of variability (i.e., within-cluster variability and between-cluster variability), interactions 

involving RAS or CGM level-1 predictors also contain more than one source of 

variability.  In this Master’s thesis, I use simulations to demonstrate that ignoring the four 

sources of variability in a total level-1 interaction effect can lead to erroneous 

conclusions.  I explain how to parse a total level-1 interaction effect into four specific 

interaction effects, derive equivalencies between CGM and centering within context 

(CWC) for this model, and describe how the interpretations of the fixed effects change 

under CGM and CWC.  Finally, I provide an empirical example using diary data 

collected from working adults with chronic pain. 
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Interaction Effects in Multilevel Models 

 Researchers frequently collect data in which observations are clustered, or 

correlated.  Children are nested within families, patients are nested within healthcare 

centers, employees are nested within work groups, students are nested within schools, 

and repeated measures are nested within participants.  Applying single-level models to 

clustered data violates the independence of observations assumption of single-level 

models and consequently inflates the Type I error rate.  Multilevel models account for 

this clustering, thus keeping the Type I error rate at the nominal significance level, and 

further allow researchers to simultaneously investigate the effects of predictors at all 

levels of the hierarchy. 

 Researchers are often interested in estimating interactions in multilevel models, 

but many researchers assume that the same procedures and interpretations for interactions 

in single-level models apply to multilevel models.  However, estimating interactions in 

multilevel models requires additional considerations not relevant to single-level models.  

Because level-1 predictors in two-level models potentially have variability at both levels 

of the hierarchy, interactions involving at least one level-1 predictor are composites of 

two or more specific interaction effects.  The purpose of this Master’s thesis is to 

investigate the causes and implications of specific interaction effects embedded in total 

cross-level and level-1 interaction effects, describe the impact of centering, and provide 

recommendations for analyzing and interpreting total level-1 interaction effects in 

multilevel models.  
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Partitioning Variance in Multilevel Models 

In two-level models, we partition the outcome variable into two orthogonal 

sources of variability: level-1 and level-2.  Level-2 variability refers to cluster mean 

differences on the outcome variable and level-1 variability refers to within-cluster 

differences on the outcome variable.  For example, consider a chronic pain study in 

which daily observations (level 1) are nested within participants (level 2).  Suppose that 

the researchers are interested in predicting participants’ daily affect ratings.  Level-2 

variability refers to participant-to-participant differences in average affect levels (i.e., 

some participants have higher average affect levels than others), and level-1 variability 

refers to day-to-day fluctuations around participants’ average affect levels (i.e., 

participants’ affect ratings may be higher or lower than their average affect levels from 

day-to-day).  The unconditional model with no predictors is 

 

 𝑌𝑖𝑗 = 𝛾00 + 𝑢0𝑗 + 𝜀𝑖𝑗 (1) 

 

where 𝛾00 is the weighted grand mean, 𝑢0𝑗 is a residual that represents cluster mean 

differences on the outcome variable, and 𝜀𝑖𝑗 is a residual that represents differences 

between scores and their cluster-specific means.  The notational system I adopt 

throughout this Master’s thesis is largely consistent with that of Raudenbush and Bryk 

(2002), though I use a combined form (with one equation) rather than a hierarchical form 
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(p. 35).
1
  In the example above, 𝛾00 is the weighted grand mean across participants, 𝑢0𝑗 

represents the difference between participant j’s average affect level and the weighted 

grand mean, and 𝜀𝑖𝑗 represents the difference between participant j’s affect rating on day i 

and his/her average affect level.  Rather than estimating the unit-specific residuals, 𝑢0𝑗 

and 𝜀𝑖𝑗, we assume they are normally distributed with mean zero and estimate their 

variances, 𝜎𝑢0𝑗

2  and 𝜎𝜀
2, respectively. 

Predictors can be measured at all levels of the hierarchy.  Level-1 predictors are 

measured at the lowest level of the hierarchy, level 1, whereas level-2 predictors are 

measured at the next highest level of the hierarchy, level 2.  Adding a level-1 predictor 

𝑋𝑖𝑗 to Equation 1 yields 

 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗 (2) 

 

where 𝛾10 is the level-1 regression coefficient, 𝑢0𝑗 is a residual that represents cluster 

mean differences on the outcome variable that remain after accounting for the level-1 

predictor 𝑋𝑖𝑗, and 𝜀𝑖𝑗 is a residual that represents differences between scores and their 

cluster-specific means that remain after accounting for the level-1 predictor 𝑋𝑖𝑗.  In two-

level models, level-1 predictors potentially have two sources of variability: level-1 and 

level-2.  In the chronic pain study, suppose that the researchers want to predict daily 

affect ratings from daily sleep ratings.  Daily sleep ratings are measured at level 1 (day 

                                                 
1
 Contrary to Raudenbush and Bryk (2002), I use 𝜀𝑖𝑗 and 𝜎𝜀

2 (rather than rij and 𝜎2) to represent the level-1 

residual and its variance and I use 𝜎𝑢0𝑗
2 , 𝜎𝑢1𝑗

2 , etc. (rather than τ00, τ11, etc.) to represent the level-2 (residual) 

variances. 
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level), so they potentially have day-level and participant-level variability.   Participant-

level variability refers to participant-to-participant differences in average sleep levels 

(i.e., some participants have higher average sleep levels than others), and day-level 

variability refers to day-to-day fluctuations around participants’ average sleep levels (i.e., 

participants’ sleep ratings may be higher or lower from day-to-day than their average 

sleep levels). 

 The sources of variability in a predictor determine which associations are 

estimable.  Because level-1 predictors potentially have level-1 and level-2 variability, 

they can have within-cluster and/or between-cluster associations with the outcome 

variable.  In the previous example, a within-cluster association between daily sleep 

ratings and daily affect ratings means that day-to-day fluctuations around a participant’s 

average sleep level predict day-to-day fluctuations around his/her average affect level.  A 

between-cluster association between daily sleep ratings and daily affect ratings means 

that a participant’s average sleep level predicts his/her average affect level.  Because we 

are representing both the within-cluster and between-cluster associations with one level-1 

regression coefficient 𝛾10 in Equation 2, we assume that the within-cluster and between-

cluster associations between the level-1 predictor and the outcome variable are equal.  If 

this assumption does not hold (i.e., there is a contextual effect), the level-1 regression 

coefficient 𝛾10 is difficult to interpret (Raudenbush, 1989a; Hofmann & Gavin, 1998; 

Raudenbush & Bryk, 2002).  The level-1 regression coefficient 𝛾10 is actually a weighted 

average of the within-cluster and between-cluster associations between the level-1 

predictor and the outcome variable.  Duncan, Cuzzort, and Duncan (1961) provided the 

following equation: 
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 𝑏𝑇 = 𝜂𝑋
2 𝑏𝐵 + (1 − 𝜂𝑋

2 )𝑏𝑊 (3) 

 

where 𝑏𝑇 is the level-1 regression coefficient (i.e., 𝛾10 in Equation 2), 𝑏𝐵 is the between-

cluster association between the level-1 predictor and the outcome variable, 𝑏𝑊 is the 

within-cluster association between the level-1 predictor and the outcome variable, and 𝜂𝑋
2  

is the ratio of the between-cluster sum of squares on the level-1 predictor to the total sum 

of squares on the level-1 predictor.  The derivations corresponding to Equation 3 are 

shown in Appendix B.  Based on Equation 3, the level-1 regression coefficient 𝛾10 in 

Equation 2 unambiguously estimates a level-specific association if (1) the within-cluster 

and between-cluster associations are equal, (2) there is no variability at level 2 (i.e., 

𝜂𝑋
2 = 0), or (3) there is no variability at level 1 (i.e., 𝜂𝑋

2 = 1). 

Because level-2 predictors have only level-2 variability, they can have between-

cluster, but not within-cluster, associations with the outcome variable.  A level-2 

regression coefficient describes the between-cluster association between the level-2 

predictor and the outcome variable; it is unambiguously interpreted as a between-cluster 

association.  For example, suppose that the researchers want to predict daily affect ratings 

from history of depression.  Participants report their history of depression once, not daily, 

so it is measured at level 2 (participant level).  A between-cluster association between 

history of depression and daily affect ratings means that a participant’s history of 

depression predicts his/her average affect level. 
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Centering in Multilevel Models 

As in single-level models, centering can be used in multilevel models to establish 

an interpretable zero point on measures that otherwise lack one (e.g., 1 to 7 Likert scale).  

In single-level models, centering does not affect the regression slopes unless higher-order 

effects (e.g., interaction effects, quadratic effects) are introduced (Aiken & West, 1991).  

By contrast, centering often affects the parameter estimates and their interpretations in 

multilevel models.  Furthermore, we can use centering to isolate the associations of 

interest discussed in the previous section. 

Similar to the centering options for predictors in single-level models, there are 

two centering options for level-2 predictors in two-level models: raw score scaling (RAS) 

and grand mean centering (CGM).  There are three centering options for level-1 

predictors in two-level models: RAS, CGM, and centering within context (CWC; also 

referred to as centering within clusters or group mean centering).  This notation comes 

from Kreft, de Leeuw, and Aiken (1995), which is the seminal work on centering in 

multilevel models.  Another centering option for level-1 or level-2 predictors is to center 

scores around a meaningful constant (e.g., centering time at the first or last time point), 

but I do not discuss this centering option because it has the same properties as RAS and 

CGM. 

RAS refers to leaving the predictor uncentered.  CGM deviates scores around the 

grand mean.  Applying CGM to a level-1 predictor results in the following equation: 

 

 𝑋CGM = 𝑋𝑖𝑗 − �̅� (4) 
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where 𝑋𝑖𝑗 is the level-1 predictor score for case i in cluster j and �̅� is the grand mean.  

Because CGM deviates scores around the same constant, it preserves level-1 and level-2 

variability in the level-1 predictor.  Thus, consistent with the discussion in the previous 

section, level-1 predictors can have within-cluster and/or between-cluster associations 

with the outcome variable after CGM.  CWC is also referred to as centering within 

clusters or group mean centering because it deviates scores around their cluster-specific 

means.  CWC results in the following equation: 

 

 𝑋CWC = 𝑋𝑖𝑗 − �̅�𝑗 (5) 

 

where �̅�𝑗 is the mean X score in cluster j.  After subtracting the cluster-specific means 

from the scores, all the clusters have a mean of zero after centering.  As such, there is no 

variability in the cluster means of the centered sores (i.e., there is no level-2 variability) 

after CWC.  Thus, unlike RAS and CGM, applying CWC yields level-1 predictors with 

only level-1 variability.  Because level-1 predictors in two-level models have only level-1 

variability after CWC, they can have within-cluster, but not between-cluster, associations 

with the outcome variable.  Again, consider the effect of daily sleep ratings on daily 

affect ratings.  CGM preserves day-level and participant-level variability in daily sleep 

ratings, so it can have within-cluster and/or between-cluster associations with daily affect 

ratings.  After CWC, daily sleep ratings has only day-level variability, so it can have 

within-cluster, but not between-cluster, associations with daily affect ratings.  Thus, a 

participant’s average sleep level can no longer predict his/her average affect level. 
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Much of the existing research on centering investigates centering in contextual 

effect models (Blalock, 1984; Raudenbush, 1989a; Raudenbush, 1989b; Kreft et al., 

1995; Hofmann & Gavin, 1998).  As noted previously, a contextual effect occurs when 

the within-cluster and between-cluster associations between the level-1 predictor and the 

outcome variable differ in magnitude and/or sign.  For example, Simons, Wills, and Neal 

(2014) collected data from 263 college students across 49 days (over a 1.3-year span) to 

investigate how affective functioning influences likelihood of drinking alcohol, quantity 

of alcohol consumed on drinking days, and dependence symptoms.  State negative affect 

(i.e., day-to-day fluctuations around participants’ average negative affect levels) 

predicted higher alcohol consumption on drinking days, but trait negative affect did not 

predict mean alcohol consumption on drinking days (i.e., there was a contextual effect).  

As another example of a contextual effect, state negative affect did not predict likelihood 

of drinking alcohol on a given day, but trait negative affect predicted a higher proportion 

of drinking days (Simons, Wills, and Neals, 2014).  Introducing the cluster means of the 

level-1 predictor as a level-2 predictor in the model allows for a contextual effect.  

Extending Equation 2 into a contextual effect model yields 

 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01�̅�𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗 (6) 

 

where �̅�𝑗 denotes the cluster means for the level-1 predictor 𝑋𝑖𝑗 and 𝛾01 is the regression 

coefficient for the cluster means. 

Kreft et al. (1995) derived equivalencies and non-equivalencies between RAS, 

CGM, and CWC for two models: (1) a random intercept model with one level-1 predictor 
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(i.e., Equation 2) and (2) a random intercept model with one level-1 predictor and the 

cluster means to account for a contextual effect (i.e., Equation 6).  Although Kreft et al. 

(1995) referred to the three random intercept models as RAS1, CGM1, and CWC1 and the 

three contextual effect models as RAS2, CGM2, and CWC2, here I generically use RAS, 

CGM, and CWC to refer to these models.  Kreft et al. (1995) defined equivalence as 

having the same expectancies and dispersions (and by extension, the same model fit).  

They concluded that RAS and CGM, but not CWC, are equivalent for the random 

intercept model with one level-1 predictor (i.e., Equation 2). 

For the random intercept model with one level-1 predictor and the cluster means 

(i.e., Equation 6), RAS, CGM, and CWC are equivalent.  Kreft et al. (1995) provided the 

following equivalencies between CGM and CWC: 

 

 

𝛾00
CWC = 𝛾00

CGM − 𝛾10
CGM�̅� 

𝛾10
CWC = 𝛾10

CGM 

𝛾01
CWC − 𝛾10

CWC = 𝛾01
CGM 

(7) 

(8) 

(9) 

 

where the superscripts denote whether the parameters are CGM or CWC.  Furthermore, 

the residuals from Equation 6 have equivalent variances with CGM and CWC.  Kreft et 

al. (1995) assumed that the cluster means in Equation 6 are RAS.  When the cluster 

means are centered at the grand mean (as I assume here), 𝛾00
CWC = 𝛾00

CGM. 

However, centering changes the interpretation of the regression coefficients in 

Equation 6 (Raudenbush, 1989a; Kreft et al., 1995).  With RAS and CGM, the level-1 

predictor 𝑋𝑖𝑗 and the cluster means �̅�𝑗 are correlated.  Applying this to Equation 6, 𝛾10 is 
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a partial regression coefficient that quantifies the within-cluster association and 𝛾01 is a 

partial regression coefficient that quantifies the differential influence of the cluster means 

(i.e., the contextual effect).  The sum of 𝛾10 and 𝛾01 equals the between-cluster 

association.  With CWC, the level-1 predictor 𝑋𝑖𝑗 and the cluster means �̅�𝑗 are 

uncorrelated.  Applying this to Equation 6, 𝛾10 quantifies the within-cluster association 

and 𝛾01 quantifies the between-cluster association.  The difference between 𝛾01 and 𝛾10 

equals the contextual effect. 

Extending Equation 6 into a random slope model yields 

 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01�̅�𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗 (10) 

 

where 𝑢1𝑗 is a residual that allows the effect of the level-1 predictor 𝑋𝑖𝑗 to differ across 

clusters.  Again, rather than estimating the unit-specific residuals, 𝑢1𝑗, we assume they 

are normally distributed with mean zero and estimate their variance, 𝜎𝑢1𝑗

2 . 

Substantive Considerations 

Kreft et al. (1995) advised researchers to choose a centering method based on 

theory.  Although they did not explicitly address centering, Klein, Dansereau, and Hall 

(1994) agreed, saying “Too often, levels issues are considered the domain of statisticians.  

We have tried to show that they are not; first and foremost, levels issues are the domain 

of theorists” (p. 224).  In two-level models, Klein et al. (1994) defined predictors as 

either cluster-independent or cluster-dependent constructs.  For cluster-independent 

constructs, the interpretation of scores does not depend on other cases within the same 
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cluster.  Two cases with the same raw score on the level-1 predictor would have the same 

expected score on the outcome variable, regardless of cluster membership.  Only a case’s 

absolute standing matters.  CGM is appropriate for cluster-independent constructs 

because it preserves absolute score differences across clusters.  For cluster-dependent 

constructs, the interpretation of scores depends on other cases within the same cluster.  

Two cases from different clusters could share the same raw score on the level-1 predictor 

but have different expected scores on the outcome variable.  A case’s standing relative to 

other cases within the same cluster matters, which is commonly referred to as a frog pond 

effect (Davis, 1966; Marsh & Parker, 1984).  CWC is appropriate for cluster-dependent 

constructs because deviations from the cluster-specific means reflect within-cluster 

standing on the level-1 predictor. 

For example, consider the effect of daily sleep ratings on daily affect ratings.  A 

cluster-independent construct definition of sleep posits that a participant’s absolute sleep 

rating matters.  Two participants who slept for seven hours would have the same 

expected daily affect rating, regardless of how much they usually sleep.  A cluster-

dependent construct definition of sleep posits that whether a participant sleeps more or 

less than he/she usually does matters.  Sleeping for seven hours may have a different 

effect on daily affect ratings for a participant who usually sleeps for six hours than for a 

participant who usually sleeps for nine hours.  As another example, consider the effect of 

workload on psychological well-being in a sample of employees nested within 

workgroups.  A cluster-independent construct definition of workload posits that an 

employee’s absolute workload matters.  Two employees with the same workload would 

have the same expected psychological well-being, regardless of the average workload in 
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their workgroup.  A cluster-dependent construct definition of workload posits that 

whether an employee works more or less than the rest of his/her workgroup matters.  

Working 45 hours per week may have a different effect on psychological well-being for 

an employee whose workgroup works an average of 40 hours per week than for an 

employee whose workgroup works an average of 50 hours per week.  Thus, researchers 

must decide which is more important: a case’s absolute score or score relative to its 

cluster mean.  Based on this decision, they should use CGM or CWC, respectively. 

Interaction Effects 

Psychological researchers are often interested in estimating interaction effects in 

multilevel models.  An informal search of American Psychological Association (APA) 

journals revealed applications appearing in Health Psychology (Parsons, Rosof, & 

Mustanski, 2008; Gubbels et al., 2011), Psychology of Addictive Behaviors (Patrick & 

Maggs, 2009), Journal of Abnormal Psychology (Wichers et al., 2008), Journal of 

Consulting and Clinical Psychology (Bryan et al., 2012; Olthuis, Watt, Mackinnon, & 

Stewart, 2014; Eddington, Silvia, Foxworth, Hoet, & Kwapil, 2015), Journal of Family 

Psychology (Jenkins, Dunn, O’Connor, Rasbash, & Behnke, 2005), Emotion (O’Hara, 

Armeli, Boynton, & Tennen, 2014), Journal of Personality and Social Psychology 

(Gleason, Iida, Shrout, & Bolger, 2008), Journal of Applied Psychology (Zohar & Luria, 

2005; Bledow, Schmitt, Frese, & Kühnel, 2011), Journal of Educational Psychology (de 

Boer, Bosker, & van der Werf, 2010), and Psychology and Aging (Savla et al., 2013), to 

name a few.  There are three types of interactions in two-level models: level-1 

interactions, cross-level interactions, and level-2 interactions.  A level-1 interaction is an 

interaction between two level-1 predictors.  For example, de Boer et al. (2010) found that 
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achievement in primary school, IQ, socioeconomic status, parents’ aspirations, and grade 

repetition in primary school (level 1) moderated the effect of teacher expectation bias 

(level 1) on student achievement in secondary school (level 1).  A cross-level interaction 

is an interaction between a level-1 predictor and a level-2 predictor.  For example, 

Parsons et al. (2008) found that beliefs about the importance of medication adherence 

(level 2) moderated the effect of alcohol consumption (level 1) on medication adherence 

(level 1) in a sample of HIV-positive men and women.  Alcohol use and alcohol-related 

problems (level 2) also moderated the effect of alcohol consumption (level 1) on 

medication adherence (level 1).  Finally, a level-2 interaction is an interaction between 

two level-2 predictors.  In this Master’s thesis, I focus on interactions involving level-1 

predictors because analyzing level-2 interactions requires the same procedures as in 

ordinary least squares (OLS) regression analysis (Aiken & West, 1991). 

A cross-level interaction between a level-1 predictor 𝑋𝑖𝑗 and a level-2 predictor 

𝑊𝑗 yields 

 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝛾11𝑋𝑖𝑗𝑊𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗 (11) 

 

where 𝛾10 is the conditional effect of the level-1 predictor 𝑋𝑖𝑗, 𝛾01 is the conditional 

effect of the level-2 predictor 𝑊𝑗, 𝑋𝑖𝑗𝑊𝑗 is the product term, 𝛾11 is the regression 

coefficient for the cross-level interaction, and 𝑢1𝑗 is a residual that allows the effect of 

the level-1 predictor 𝑋𝑖𝑗 to differ across clusters.  With RAS or CGM, a cross-level 

interaction potentially yields a composite product term 𝑋𝑖𝑗𝑊𝑗 with two sources of 
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variability (Hofmann & Gavin, 1998; Enders & Tofighi, 2007; Enders, 2013).  To see 

these sources of variability, consider the following expansion of the cross-level 

interaction in Equation 11 using CGM: 

 

 (𝑋𝑖𝑗 − �̅�)𝑊𝑗 = [(𝑋𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�)]𝑊𝑗 = (𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 + (�̅�𝑗 − �̅�)𝑊𝑗 (12) 

 

where (𝑋𝑖𝑗 − �̅�𝑗) is within-cluster variability in the level-1 predictor 𝑋𝑖𝑗 and (�̅�𝑗 − �̅�) is 

between-cluster variability in the level-1 predictor 𝑋𝑖𝑗.  As shown in Equation 12, the 

product term in Equation 11 is a composite of the specific cross-level interaction 

(𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗  and the specific between-cluster interaction (�̅�𝑗 − �̅�)𝑊𝑗.  Here I refer to 

(𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 and (�̅�𝑗 − �̅�)𝑊𝑗 as specific interaction effects to convey that they are 

embedded within (𝑋𝑖𝑗 − �̅�)𝑊𝑗 , which could be viewed as the total cross-level interaction 

effect.  This terminology corresponds to terminology used in the mediation and structural 

equation modeling literature to discuss specific indirect effects, which comprise the total 

indirect effect.  In Equation 12, the specific cross-level interaction (𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 refers to 

the moderating influence of W on the within-cluster association between X and Y, and the 

specific between-cluster interaction (�̅�𝑗 − �̅�)𝑊𝑗 refers to the moderating influence of W 

on the between-cluster association between X and Y.  Recall that a similar issue arose in 

Equation 2 where the level-1 regression coefficient 𝛾10 was a weighted average of the 

within-cluster and between-cluster associations between the level-1 predictor and the 

outcome variable.  Likewise, the regression coefficient for the total cross-level interaction 

effect 𝛾11 in Equation 11 is a composite of two specific interaction effects (Hofmann & 
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Gavin, 1998).  As such, Hofmann and Gavin (1998) demonstrated that a nonzero specific 

between-cluster interaction can result in a significant total cross-level interaction effect, 

even when no specific cross-level interaction effect exists. 

The potential for specific interaction effects is even more evident with level-1 

interactions.  A level-1 interaction between two level-1 predictors 𝑋𝑖𝑗 and 𝑍𝑖𝑗 yields 

 

 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾20𝑍𝑖𝑗 + 𝛾30𝑋𝑖𝑗𝑍𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝑢2𝑗𝑍𝑖𝑗 + 𝑢3𝑗𝑋𝑖𝑗𝑍𝑖𝑗

+ 𝜀𝑖𝑗 

(13) 

 

where 𝑋𝑖𝑗𝑍𝑖𝑗 is the product term, 𝛾30 is the regression coefficient for the level-1 

interaction, 𝑢1𝑗 is a residual that allows the effect of the level-1 predictor 𝑋𝑖𝑗 to differ 

across clusters, 𝑢2𝑗 is a residual that allows the effect of the level-1 predictor 𝑍𝑖𝑗 to differ 

across clusters, and 𝑢3𝑗 is a residual that allows the effect of the level-1 interaction 𝑋𝑖𝑗𝑍𝑖𝑗 

to differ across clusters.  As before, rather than estimating the unit-specific residuals 𝑢1𝑗, 

𝑢2𝑗, and 𝑢3𝑗, we assume they are normally distributed with mean zero and estimate their 

variances and covariances. 

Extending the logic of Equation 12, with RAS or CGM, a level-1 interaction 

potentially yields a composite product term 𝑋𝑖𝑗𝑍𝑖𝑗 with four sources of variability 

(Enders & Tofighi, 2007; Enders, 2013).  To see the potential for specific interaction 

effects, consider the following expansion of the level-1 interaction in Equation 13 using 

CGM: 
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(𝑋𝑖𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�) = [(𝑋𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�)][(𝑍𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�)]

= (𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗) + (𝑋𝑖𝑗 − �̅�𝑗)(�̅�𝑗 − �̅�)

+ (�̅�𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�)(�̅�𝑗 − �̅�) 

(14) 

 

where (𝑍𝑖𝑗 − �̅�𝑗) is within-cluster variability in the level-1 predictor 𝑍𝑖𝑗 and (�̅�𝑗 − �̅�) is 

between-cluster variability in the level-1 predictor 𝑍𝑖𝑗.  As shown in Equation 14, the 

product term in Equation 13 is a composite of the specific within-cluster interaction 

(𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗), the specific cross-level interaction (𝑋𝑖𝑗 − �̅�𝑗)(�̅�𝑗 − �̅�), the specific 

cross-level interaction (�̅�𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�𝑗), and the specific between-cluster interaction 

(�̅�𝑗 − �̅�)(�̅�𝑗 − �̅�).  The specific within-cluster interaction (𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗) refers to 

the moderating influence of the within-cluster portion of Z on the within-cluster 

association between X and Y.
2
  The specific cross-level interaction (𝑋𝑖𝑗 − �̅�𝑗)(�̅�𝑗 − �̅�) 

refers to the moderating influence of the between-cluster portion of Z on the within-

cluster association between X and Y.  The specific cross-level interaction (�̅�𝑗 − �̅�)(𝑍𝑖𝑗 −

�̅�𝑗) refers to the moderating influence of the within-cluster portion of Z on the between-

cluster association between X and Y.  Finally, the specific between-cluster interaction 

(�̅�𝑗 − �̅�)(�̅�𝑗 − �̅�) refers to the moderating influence of the between-cluster portion of Z 

on the between-cluster association between X and Y.  Thus, 𝛾30 in Equation 13 is 

                                                 
2
 I use the term “total level-1 interaction effect” to refer to the product of two level-1 predictors and the 

term “specific within-cluster interaction effect” to refer to the first component of the total level-1 

interaction effect.  Similar to how a level-1 variable may contain within-cluster and/or between-cluster 

variability, a total level-1 interaction effect may contain within-cluster and/or between cluster variability.  

By contrast, the specific within-cluster interaction effect contains within-cluster variability but no between-

cluster variability. 



 

17 

potentially a composite of four specific interaction effects.  I demonstrate this potential 

for specific interaction effects later in this Master’s thesis. 

Centering Interaction Effects 

 Recall that when we represent the association between an RAS or CGM level-1 

predictor and the outcome variable with one level-1 regression coefficient (i.e., 𝛾10 in 

Equation 2), we assume that the within-cluster and between-cluster associations between 

the level-1 predictor and the outcome variable are equal (i.e., there is no contextual 

effect).  When this assumption does not hold, we can allow for a contextual effect by 

introducing the cluster means of the level-1 predictor as a level-2 predictor to the model 

(see Equation 6).  A cross-level or level-1 interaction with unequal specific interaction 

effects is analogous to a contextual effect.  When we represent a cross-level interaction 

with one regression coefficient (i.e., 𝛾11 in Equation 11), we assume that the specific 

cross-level interaction (𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 and the specific between-cluster interaction (�̅�𝑗 −

�̅�)𝑊𝑗 are equal.  Similarly, when we represent a level-1 interaction with one regression 

coefficient (i.e., 𝛾30 in Equation 13), we assume that the specific within-cluster 

interaction (𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗), the specific cross-level interaction (𝑋𝑖𝑗 − �̅�𝑗)(�̅�𝑗 − �̅�), 

the specific cross-level interaction (�̅�𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�𝑗), and the specific between-cluster 

interaction (�̅�𝑗 − �̅�)(�̅�𝑗 − �̅�) are equal.  As with contextual effects, we can address 

specific interaction effects by centering and/or including additional product terms in the 

model. 

Raudenbush (1989a, 1989b) and Hofmann and Gavin (1998) recommended 

applying CWC to the level-1 predictor when estimating a cross-level interaction to 
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remove the specific between-cluster interaction.  Recall that level-1 predictors do not 

have level-2 variability after CWC, so (�̅�𝑗 − �̅�) = 0 in Equations 12 and 14 and (�̅�𝑗 −

�̅�) = 0 in Equation 14.  As such, Equation 12 reduces to (𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 and Equation 14 

reduces to (𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗) when the level-1 predictors are centered at the cluster 

means.  Thus, 𝛾11 in Equation 11 only reflects the specific cross-level interaction 

(𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 and 𝛾30 in Equation 13 only reflects the specific within-cluster interaction 

(𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗).  This strategy presumes that the research question requires a frog 

pond effect and that the other specific interaction effects are not of interest.  When the 

latter presumption does not hold, Raudenbush (1989a, 1989b) and Hofmann and Gavin 

(1998) recommended using the following equation to allow for a contextual effect and a 

between-cluster interaction: 

 

 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10(𝑋𝑖𝑗 − �̅�𝑗) + 𝛾01�̅�𝑗 + 𝛾02𝑊𝑗 + 𝛾03�̅�𝑗𝑊𝑗 + 𝛾11(𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗

+ 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗 

(15) 

 

where 𝛾03 is the regression coefficient for the specific between-cluster interaction effect 

and 𝛾11 is the regression coefficient for the specific cross-level interaction effect.  

Estimating the specific interaction effects with Equation 15 is analogous to addressing a 

contextual effect with Equation 6.  Including the second product term in Equation 15 

allows the specific cross-level interaction effect (𝑋𝑖𝑗 − �̅�𝑗)𝑊𝑗 and the specific between-

cluster interaction effect (�̅�𝑗 − �̅�)𝑊𝑗 to differ. 
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Recall that we could use either CGM or CWC for the contextual effect model in 

Equation 6 because they are equivalent.  Similarly, Enders and Tofighi (2007) 

generalized Equation 15 so that we can apply CGM or CWC to the level-1 predictor 𝑋𝑖𝑗: 

 

 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01�̅�𝑗 + 𝛾02𝑊𝑗 + 𝛾03�̅�𝑗𝑊𝑗 + 𝛾11𝑋𝑖𝑗𝑊𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗

+ 𝜀𝑖𝑗 . 
(16) 

 

Enders and Tofighi (2007) demonstrated that CGM and CWC provide equivalent fixed 

effects as follows: 

 

 

 

 

 

 

 

𝛾00
CWC = 𝛾00

CGM − 𝛾10
CGM�̅� 

𝛾01
CWC − 𝛾10

CWC = 𝛾01
CGM 

𝛾02
CWC = 𝛾02

CGM − 𝛾11
CGM�̅� 

𝛾03
CWC − 𝛾11

CWC = 𝛾03
CGM 

𝛾10
CWC = 𝛾10

CGM 

𝛾11
CWC = 𝛾11

CGM. 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

 

As with the contextual effect model in Equation 6, centering changes the interpretation of 

the regression coefficients in Equation 16 (Enders & Tofighi, 2007).  Because 𝑋𝑖𝑗 and �̅�𝑗 

are correlated when we apply CGM, 𝛾11 quantifies the specific cross-level interaction 

effect and  𝛾03 quantifies the differential influence of the specific between-cluster 

interaction effect (i.e., the additional moderating effect of the level-2 variable on the 



 

20 

level-1 variable’s cluster means).  Because 𝑋𝑖𝑗 and �̅�𝑗 are uncorrelated when we apply 

CWC, 𝛾11 quantifies the specific cross-level interaction effect and  𝛾03 quantifies the 

specific between-cluster interaction effect.  These types of equivalencies between CGM 

and CWC have not been examined for level-1 interactions.  Deriving these equivalencies 

is one of the goals of this Master’s thesis. 

Purpose 

As noted previously, researchers across many fields of psychology have examined 

interaction effects in multilevel models (e.g., Parsons et al., 2008; Gubbels et al., 2011; 

Patrick & Maggs, 2009; Wichers et al., 2008; Bryan et al., 2012; Olthuis et al., 2014; 

Eddington et al., 2015; Jenkins et al., 2005; O’Hara et al., 2014; Gleason et al., 2008; 

Zohar & Luria, 2005; Bledow et al., 2011; de Boer et al., 2010; Savla et al., 2013).  Such 

widespread interest warrants further research on estimating and interpreting moderation 

effects in multilevel models.  Cronbach and Webb first raised the impact of centering on 

cross-level interactions in 1975, and since then, methodologists have provided further 

recommendations for estimating and interpreting cross-level interactions while applying 

either CWC or CGM to the level-1 predictor (Hofmann & Gavin, 1998; Enders & 

Tofighi, 2007).  Although Raudenbush (1989b), Hofmann and Gavin (1998), and Enders 

and Tofighi (2007) described how to use two product terms to investigate the specific 

cross-level interaction effect and the specific between-cluster interaction effect, my 

informal review of APA journals suggests that using one product term to represent a 

cross-level interaction is the norm.  Some researchers applied RAS or CGM to the level-1 

predictor (e.g., Parsons et al., 2008), but I predominantly found examples of researchers 

applying CWC (e.g., Bledow et al., 2011; O’Hara et al., 2014; Patrick & Maggs, 2009).  



 

21 

Although group mean centering the level-1 predictor may be justifiable based on theory, 

researchers should be aware that doing so is not necessary.
3
 

Similarly, when providing recommendations for probing cross-level interactions, 

methodologists used a model consistent with Equation 11, which contains one product 

term (Tate, 2004; Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006; Preacher, 

Curran, & Bauer, 2006).  If the level-1 predictor involved in the cross-level interaction is 

uncentered or grand mean centered (e.g., empirical example starting on page 81 of Tate, 

2004; cross-level interaction between student-level aptitude and school-level consistency 

with statewide recommended curriculum objectives, which are both grand mean 

centered), using one product term assumes that the specific cross-level interaction effect 

and specific between-cluster interaction effect are equal in magnitude and sign and can 

thus be adequately represented by one regression coefficient (𝛾11 in Equation 11).  If the 

level-1 predictor involved in the cross-level interaction is group mean centered (e.g., 

empirical example starting on page 392 of Bauer & Curran, 2005; cross-level interaction 

between student-level socioeconomic status, which was group mean centered, and school 

sector), using one product term assumes that the research question requires a frog pond 

effect and that the specific between-cluster interaction effect is not of interest.  In this 

Master’s thesis, I urge researchers to be more cognizant of the sources of variability 

present in cross-level and level-1 interactions.  Readers should refer to Enders and 

                                                 
3
 For example, Aguinis et al. (2013) stated that “Enders and Tofighi (2007) argued that if a researcher uses 

[CGM] for the [level-1] predictor, it is not possible to make an accurate, or even meaningful, interpretation 

of the cross-level interaction” (p. 1512).  Enders and Tofighi (2007) argued the opposite; they stated that 

both CWC and CGM can be used to appropriately distinguish between the specific interaction effects 

embedded in a total cross-level or level-1 interaction effect. 



 

22 

Tofighi (2007) for recommendations on estimating cross-level interactions while 

applying either CGM or CWC to the level-1 predictor. 

For this Master’s thesis, I focus on level-1 interactions.  In his multilevel 

modeling chapter in the APA Handbook of Research Methods in Psychology, Nezlek 

(2012) noted that level-1 interactions have received very little attention in the 

methodological literature.  As such, the goals of this Master’s thesis are to use 

simulations to demonstrate why researchers should be aware of the four sources of 

variability present in a level-1 interaction, investigate equivalencies across CGM and 

CWC, explain how centering affects the fixed effect interpretations, and provide 

recommendations to researchers interested in estimating level-1 interactions in two-level 

models. 

The organization of this Master’s thesis is as follows.  First I use simulations to 

demonstrate that ignoring the four sources of variability in a level-1 interaction can lead 

to erroneous conclusions.  Next I derive equivalencies between CGM and CWC for a 

model that uses four product terms to represent the specific interaction effects.  I then 

describe how the interpretations of the fixed effects change under these two centering 

methods.  Finally, I provide an empirical example using diary data collected from 

working adults with chronic pain. 

Simulation Method 

Hofmann and Gavin (1998) used simulations to demonstrate that a nonzero 

specific between-cluster interaction effect can result in a significant total cross-level 

interaction effect, even when no specific cross-level interaction effect exists.  To extend 

this work, I performed simulations to demonstrate that a nonzero specific between-cluster 
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interaction effect or nonzero specific cross-level interaction effect(s) can result in a 

significant total level-1 interaction effect, even when no specific within-cluster 

interaction effect exists.  These simulations, while demonstrating a predictable 

phenomenon, emphasize the importance of considering and testing for specific 

interaction effects, particularly when substantive theory is vague with regard to level 

issues.  Although it is unclear how often these configurations of specific interaction 

effects might occur in practice, the simulation results indicate that researchers may be 

misinterpreting total level-1 interaction effects. 

Population Model and Manipulated Factor 

The population model used to generate the data for the simulations is an extension 

of Equation 13 that includes three additional product terms for the specific between-

cluster interaction and two specific cross-level interactions.  This yields the following 

equation: 

 

 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾20𝑍𝑖𝑗 + 𝛾30𝑋𝑖𝑗𝑍𝑖𝑗 + 𝛾11𝑋𝑖𝑗�̅�𝑗 + 𝛾21�̅�𝑗𝑍𝑖𝑗 + 𝛾01�̅�𝑗�̅�𝑗

+ 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝑢2𝑗𝑍𝑖𝑗 + 𝜀𝑖𝑗 

(23) 

 

where 𝛾30 is the regression coefficient for the specific within-cluster interaction, 𝛾11 and 

𝛾21 are the regression coefficients for the specific cross-level interactions 𝑋𝑖𝑗�̅�𝑗 and 

�̅�𝑗𝑍𝑖𝑗, respectively, and 𝛾01 is the regression coefficient for the specific between-cluster 

interaction. 

Equation 13, which uses one product term, not four, to represent the level-1 

interaction, was used to analyze the data.  Using one product term to represent the level-1 
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interaction is consistent with what researchers apply in practice; through my informal 

review of APA journals, I found no examples that used more than one product term to 

represent a level-1 interaction.  Recall that this product term is a composite of four 

sources of variability; further recall that the sign and magnitude of these specific 

interaction effects need not be the same (see Equation 14).  To demonstrate that 𝛾30 in 

Equation 13 could be significant due to a nonzero specific within-cluster interaction 

effect, nonzero specific cross-level interaction effect(s), and/or nonzero specific between-

cluster interaction effect, I set these four specific interactions to be nonzero one at a time 

and looked at the proportion of replications where 𝛾30 was significant.  Thus, there were 

five conditions: (1) the specific within-cluster interaction effect was nonzero but the other 

specific interaction effects equaled zero, (2) the specific cross-level interaction effect 

𝑋𝑖𝑗�̅�𝑗 was nonzero but the other specific interaction effects equaled zero, (3) the specific 

cross-level interaction effect �̅�𝑗𝑍𝑖𝑗 was nonzero but the other specific interaction effects 

equaled zero, (4) the specific between-cluster interaction effect was nonzero but the other 

specific interaction effects equaled zero, and (5) all of the specific interaction effects 

equaled zero.  Condition (5) was included to test the Type I error rate, which was set to 

α = .05.  The specific within-cluster interaction in condition (1) explained 16% of the 

level-1 variance 𝜎𝜀
2, the specific cross-level interaction 𝑋𝑖𝑗�̅�𝑗 in condition (2) explained 

16% of the level-1 predictor 𝑋𝑖𝑗’s slope variance 𝜎𝑢1𝑗

2 , the specific cross-level interaction 

�̅�𝑗𝑍𝑖𝑗 in condition (3) explained 16% of the level-1 predictor 𝑍𝑖𝑗’s slope variance 𝜎𝑢2𝑗

2 , 

and the specific between-cluster interaction in condition (4) explained 16% of the 

variance in the level-2 intercept variance 𝜎𝑢0𝑗

2 .  The equations used to derive the 
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population parameters that corresponded to 16% of the variance explained in each 

condition are in Appendix C.  The population parameters for each condition are 

summarized in Table 1. 

Data Generation 

I used the IML procedure in SAS 9.4 to generate 2000 data sets within each of the 

five conditions.  I generated data for a balanced design with 50 clusters and 20 level-1 

units per cluster.  Such a design could arise from diary data with 50 participants and 

intensive measurements (i.e., 20 observations per participant).  I set the number of 

clusters to 50 because Kreft and de Leeuw (1998) suggested that multilevel modeling 

requires 30 clusters at minimum, and Maas and Hox (2005) stated that collecting data 

from 50 clusters is typical in educational and organizational research.  Maas and Hox 

(2005) also stated that a cluster size of 30 is typical in educational research, but smaller 

cluster sizes are typical in other fields of research.  Thus, I set the cluster size to 20, 

which is consistent with the empirical example described later in this Master’s thesis in 

which participants provided diary data across 21 days.  Based on an unconditional model 

with no predictors, the level-1 variance 𝜎𝜀
2 and the level-2 intercept variance 𝜎𝑢0𝑗

2  were 

each set to 1.  Thus, I assumed that 50% of the variability in the outcome variable was at 

level 2, which corresponds to an intraclass correlation (ICC) of .5.  This ICC is about 

what we would expect when repeated measures are nested within participants (Spybrook, 

Bloom, Congdon, Hill, Martinez, & Raudenbush, 2011).  As shown in Table 1, the grand 

means of the level-1 predictors 𝑋𝑖𝑗 and 𝑍𝑖𝑗 were set to zero and the covariance was set to 

zero.  Generating uncorrelated level-1 predictors minimized the correlations among the 

four product terms, which aided in isolating the impact of each specific interaction effect.  
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However, readers should note that the simulation conditions represent a special case, 

limiting the generalizability of the results.  Because the level-1 predictors were generated 

to be normally distributed, the mean of the product term for the level-1 interaction 

equaled zero and the variance equaled 1. 

To generate data for 𝑋𝑖𝑗 within each cluster, I randomly drew 20 values from a 

standard normal distribution and then subtracted the mean of these 20 values.  Only 

within-cluster variability remained after deviating scores around their cluster-specific 

means (i.e., applying CWC).  Next I randomly drew 50 values from a standard normal 

distribution to represent the 50 cluster means.  I used the same procedure to generate data 

for 𝑍𝑖𝑗.  I formed the specific within-cluster interaction by multiplying the within-cluster 

portions of X and Z, the specific cross-level interaction 𝑋𝑖𝑗�̅�𝑗 by multiplying the within-

cluster portion of X and the between-cluster portion of Z, the specific within-cluster 

interaction �̅�𝑗𝑍𝑖𝑗 by multiplying the between-cluster portion of X and the within-cluster 

portion of Z, and the specific between-cluster interaction by multiplying the between-

cluster portions of X and Z.  Data for 𝑌𝑖𝑗 were generated according to Equation 23 by 

substituting the aforementioned scores and the regression coefficients from Table 1.  The 

level-2 residuals 𝑢0𝑗, 𝑢1𝑗, and 𝑢2𝑗 in Equation 23 were generated by creating a 50-by-3 

matrix whose elements were randomly drawn from a standard normal distribution and 

then multiplying it by the level-2 residual covariance matrix; for each condition, the 

level-2 residual covariance matrix was specified according to the values reported in Table 

1.  The level-1 residual 𝜀𝑖𝑗 in Equation 23 was randomly drawn from a standard normal 

distribution.  The simulation script is available upon request. 
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Analysis and Outcomes 

All analyses were performed using the MIXED procedure in SAS 9.4.  The data 

from each condition and replication were analyzed according to Equation 13 using 

restricted maximum likelihood estimation.  The covariance matrix for the random effects 

was specified as unstructured.  Recall that the analysis model (Equation 13) only included 

one product term, 𝑋𝑖𝑗𝑍𝑖𝑗.  The regression coefficient attached to this product term—

𝛾30—was of primary interest.  Within each design cell, I examined the number of 

converged solutions, mean estimate of 𝛾30 across the 2000 replications, and percentage of 

replications that 𝛾30 was significantly different from zero.  𝛾30 was deemed significant if 

the p-value for a two-tailed t-test using Satterthwaite degrees of freedom was less than or 

equal to the nominal significance level of α = .05. 

For these simulations (and for the empirical example described later in this 

Master’s thesis), I used what Lüdtke, Marsh, Robitzsch, and Trautwein (2011) referred to 

as a doubly manifest approach, which assumes no sampling or measurement error.  

Lüdtke et al. (2008) and Lüdtke et al. (2011) showed that the doubly manifest approach 

(referred to as the multilevel manifest covariate approach in Lüdtke et al., 2008) can 

provide biased contextual effect estimates and standard errors.  For contextual effect 

models, Lüdtke et al. (2008) and Lüdtke et al. (2011) proposed latent covariate 

approaches that correct for sampling and/or measurement error.  However, generalizing 

these latent covariate approaches to other models and testing their performance is beyond 

the scope of this Master’s thesis.
4
  These simulations serve to demonstrate that any one 

                                                 
4
 Using the observed cluster means may not lead to substantial bias in the demonstrative simulations due to 

the very high ICC and relatively large cluster size.  If we view the cluster means as reflective aggregations 

of level-1 constructs (i.e., members of a cluster rate a level-2 construct and, ideally, each member would 



 

28 

nonzero specific interaction can result in a significant total level-1 interaction effect—a 

property that would hold regardless of whether we correct for sampling and/or 

measurement error. 

Simulation Results 

The number of converged solutions, mean estimate of 𝛾30, and percentage of 

significant 𝛾30 by condition are reported in Table 2.  When all of the specific interaction 

effects equaled zero, the mean estimate of 𝛾30 was -0.002.  𝛾30 was significant in 5.76% 

of the data sets, which is close to the nominal significance level of α = .05. 

When the specific within-cluster interaction effect was nonzero but the other 

specific interactions equaled zero, the mean estimate of 𝛾30 was 0.268.  However, the 

population parameter for the specific within-cluster interaction effect was 0.400.  As 

discussed earlier, the total level-1 interaction effect is a composite of a specific within-

cluster interaction effect, two specific cross-level interaction effects, and a specific 

between-cluster interaction effect.  Because the two specific cross-level interaction 

effects and the specific between-cluster interaction effect equaled zero in this condition, 

𝛾30 is a weighted average of 0.400, 0, 0, and 0.  As such, the level-1 interaction may not 

be significant, even when a specific within-cluster interaction effect exists.  Despite this 

attenuation, when the specific within-cluster interaction effect was nonzero but the other 

interactions equaled zero, 𝛾30 was significant in 99.95% of the data sets. 

                                                                                                                                                 
assign the same rating; Lüdtke et al., 2008), we can estimate the reliability of the cluster means using the 

following formula from Snijders and Bosker (2012): 

 

 L2 Reliability(�̅�𝑗) =
𝑛𝑗 ∙ ICC

1 + (𝑛𝑗 − 1) ∙ ICC
  

 

where nj denotes the cluster size and ICC represents the reliability of a single member’s rating.  Notice that 

the formula above is the Spearman-Brown formula.  Substituting the ICC (.5) and cluster size (20) from the 

simulated data yields a reliability of .9524. 
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When the specific cross-level interaction effect 𝑋𝑖𝑗�̅�𝑗 was nonzero but the other 

specific interactions equaled zero, the mean estimate of 𝛾30 was 0.048.  However, the 

population parameter for the specific cross-level interaction effect 𝑋𝑖𝑗�̅�𝑗 was 0.219.  

Because the specific within-cluster interaction effect, the specific cross-level interaction 

effect �̅�𝑗𝑍𝑖𝑗, and the specific between-cluster interaction effect equaled zero in this 

condition, 𝛾30 is a weighted average of 0, 0.400, 0, and 0.  When the specific cross-level 

interaction effect 𝑋𝑖𝑗�̅�𝑗 was nonzero but the other specific interactions equaled zero, 𝛾30 

was significant in 19.42% of the data sets.  Similarly, when the specific cross-level 

interaction effect �̅�𝑗𝑍𝑖𝑗 was nonzero but the other specific interactions equaled zero, the 

mean estimate of 𝛾30 was 0.049 and 𝛾30 was significant in 19.97% of the data sets. 

When the specific between-cluster interaction effect was nonzero but the other 

specific interactions equaled zero, the mean estimate of 𝛾30 was -0.029.  However, the 

population parameter for the specific between-cluster interaction effect was 0.400.  

Because the specific within-cluster interaction effect and the two specific cross-level 

interaction effects equaled zero in this condition, 𝛾30 is a weighted average of 0, 0, 0, and 

0.400.  When the specific between-cluster interaction effect was nonzero but the other 

specific interactions equaled zero, 𝛾30 was significant in 10.47% of the data sets.  The 

results of this simulation study demonstrate that 𝛾30 in Equation 13 could be significant 

due to a nonzero specific within-cluster interaction effect, nonzero specific cross-level 

interaction effect(s), and/or nonzero specific between-cluster interaction effect.  Again, 

although it is unclear how often these configurations of specific interaction effects might 

occur in practice, the simulation results demonstrate that failing to test for specific 
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interaction effects can lead to erroneous conclusions about a total level-1 interaction 

effect. 

Analytic Work 

Although Enders and Tofighi (2007) established the equivalence of CGM and 

CWC in models that address the two sources of variability in a total cross-level 

interaction effect, this work has not been extended to total level-1 interaction effects 

because currently no models exist for addressing the four sources of variability.  I 

propose estimating a model that includes the cluster means for the level-1 predictors and 

three additional product terms for the specific between-cluster interaction effect and two 

specific cross-level interaction effects.  This yields the following equation, which is an 

extension of Equation 23 that includes the cluster means for the level-1 predictors: 

 

 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾20𝑍𝑖𝑗 + 𝛾01�̅�𝑗 + 𝛾02�̅�𝑗 + 𝛾30𝑋𝑖𝑗𝑍𝑖𝑗 + 𝛾11𝑋𝑖𝑗�̅�𝑗 +

𝛾21�̅�𝑗𝑍𝑖𝑗 + 𝛾03�̅�𝑗�̅�𝑗 + [random effects]. 
(24) 

 

In Equation 24, 𝑋𝑖𝑗𝑍𝑖𝑗 represents the specific within-cluster interaction, 𝑋𝑖𝑗�̅�𝑗 and �̅�𝑗𝑍𝑖𝑗 

represent the specific cross-level interactions, and �̅�𝑗�̅�𝑗 represents the specific between-

cluster interaction.  Using four product terms allows us to parse the total level-1 

interaction effect into its four specific interaction effects.  Either CGM or CWC may be 

applied to the two level-1 predictors, 𝑋𝑖𝑗 and 𝑍𝑖𝑗, in Equation 24.  As such, the purpose of 

this section is to explore equivalencies across the two centering methods and ultimately 

understand how to interpret the fixed effects under CGM and CWC. 
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I investigated whether the fixed effects in Equation 24 are equivalent under CGM 

and CWC by following the procedure used in Kreft et al. (1995) and in Enders and 

Tofighi (2007).  The CGM and CWC fixed effects are equivalent if the following 

equation is true: 

 

 

𝛾00
CGM + 𝛾10

CGM(𝑋𝑖𝑗 − �̅�) + 𝛾20
CGM(𝑍𝑖𝑗 − �̅�) + 𝛾01

CGM�̅�𝑗 + 𝛾02
CGM�̅�𝑗

+ 𝛾30
CGM(𝑋𝑖𝑗 − �̅�)(𝑍𝑖𝑗 − �̅�) + 𝛾11

CGM(𝑋𝑖𝑗 − �̅�)�̅�𝑗

+ 𝛾21
CGM�̅�𝑗(𝑍𝑖𝑗 − �̅�) + 𝛾03

CGM�̅�𝑗�̅�𝑗 

= 𝛾00
CWC + 𝛾10

CWC(𝑋𝑖𝑗 − �̅�𝑗) + 𝛾20
CWC(𝑍𝑖𝑗 − �̅�𝑗) + 𝛾01

CWC�̅�𝑗 + 𝛾02
CWC�̅�𝑗 +

𝛾30
CWC(𝑋𝑖𝑗 − �̅�𝑗)(𝑍𝑖𝑗 − �̅�𝑗) + 𝛾11

CWC(𝑋𝑖𝑗 − �̅�𝑗)�̅�𝑗 + 𝛾21
CWC�̅�𝑗(𝑍𝑖𝑗 − �̅�𝑗) +

𝛾03
CWC�̅�𝑗�̅�𝑗. 

(25) 

 

Equation 25 can be further expanded as follows: 

 

 

𝛾00
CGM + 𝛾10

CGM𝑋𝑖𝑗 − 𝛾10
CGM�̅� + 𝛾20

CGM𝑍𝑖𝑗 − 𝛾20
CGM�̅� + 𝛾01

CGM�̅�𝑗 + 𝛾02
CGM�̅�𝑗

+ 𝛾30
CGM𝑋𝑖𝑗𝑍𝑖𝑗 − 𝛾30

CGM𝑋𝑖𝑗�̅� − 𝛾30
CGM�̅�𝑍𝑖𝑗 + 𝛾30

CGM�̅��̅�

+ 𝛾11
CGM𝑋𝑖𝑗�̅�𝑗 − 𝛾11

CGM�̅��̅�𝑗 + 𝛾21
CGM�̅�𝑗𝑍𝑖𝑗 − 𝛾21

CGM�̅�𝑗�̅� + 𝛾03
CGM�̅�𝑗�̅�𝑗 

= 𝛾00
CWC + 𝛾10

CWC𝑋𝑖𝑗 − 𝛾10
CWC�̅�𝑗 + 𝛾20

CWC𝑍𝑖𝑗 − 𝛾20
CWC�̅�𝑗 + 𝛾01

CWC�̅�𝑗 + 𝛾02
CWC�̅�𝑗

+ 𝛾30
CWC𝑋𝑖𝑗𝑍𝑖𝑗 − 𝛾30

CWC𝑋𝑖𝑗�̅�𝑗 − 𝛾30
CWC�̅�𝑗𝑍𝑖𝑗 + 𝛾30

CWC�̅�𝑗�̅�𝑗

+ 𝛾11
CWC𝑋𝑖𝑗�̅�𝑗 − 𝛾11

CWC�̅�𝑗�̅�𝑗 + 𝛾21
CWC�̅�𝑗𝑍𝑖𝑗 − 𝛾21

CWC�̅�𝑗�̅�𝑗

+ 𝛾03
CWC�̅�𝑗�̅�𝑗 

(26) 
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Next I collected like terms from both sides of Equation 26.  Like terms refers to terms 

that contain the same variable raised to the same power.  Equation 26 has nine sets of like 

terms: constants (including �̅� and �̅�), terms containing 𝑋𝑖𝑗 (only, e.g., not 𝑋𝑖𝑗�̅�𝑗), terms 

containing 𝑍𝑖𝑗, terms containing �̅�𝑗, terms containing �̅�𝑗, terms containing 𝑋𝑖𝑗𝑍𝑖𝑗, terms 

containing 𝑋𝑖𝑗�̅�𝑗, terms containing �̅�𝑗𝑍𝑖𝑗, and terms containing �̅�𝑗�̅�𝑗 .  Collecting like 

terms from both sides of Equation 26 yields the following solution: 

 

𝛾00
CGM − 𝛾10

CGM�̅� − 𝛾20
CGM�̅� + 𝛾30

CGM�̅��̅� = 𝛾00
CWC 

𝛾10
CGM − 𝛾30

CGM�̅� = 𝛾10
CWC 

𝛾20
CGM − 𝛾30

CGM�̅� = 𝛾20
CWC 

𝛾01
CGM − 𝛾21

CGM�̅� = 𝛾01
CWC − 𝛾10

CWC or (𝛾10
CGM − 𝛾30

CGM�̅�) + (𝛾01
CGM − 𝛾21

CGM�̅�) = 𝛾01
CWC 

𝛾02
CGM − 𝛾11

CGM�̅� = 𝛾02
CWC − 𝛾20

CWC or (𝛾20
CGM − 𝛾30

CGM�̅�) + (𝛾02
CGM − 𝛾11

CGM�̅�) = 𝛾02
CWC 

𝛾30
CGM = 𝛾30

CWC 

𝛾11
CGM = 𝛾11

CWC − 𝛾30
CWC or 𝛾11

CGM + 𝛾30
CGM = 𝛾11

CWC 

𝛾21
CGM = 𝛾21

CWC − 𝛾30
CWC or 𝛾21

CGM + 𝛾30
CGM = 𝛾21

CWC 

𝛾03
CGM = 𝛾03

CWC + 𝛾30
CWC − 𝛾11

CWC − 𝛾21
CWC or 𝛾03

CGM + 𝛾11
CGM +  𝛾21

CGM + 𝛾30
CGM = 𝛾03

CWC. 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

 

Thus, the fixed effects in Equation 24 are equivalent under CGM and CWC.  When 𝑋𝑖𝑗 

and 𝑍𝑖𝑗 are either CWC or CGM and the cluster means are centered at the grand mean, 

Equations 27 to 31 simplify as follows: 

 

 𝛾00
CGM = 𝛾00

CWC (36) 
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𝛾10
CGM = 𝛾10

CWC 

𝛾20
CGM = 𝛾20

CWC 

𝛾01
CGM = 𝛾01

CWC − 𝛾10
CWC or 𝛾10

CGM + 𝛾01
CGM = 𝛾01

CWC 

𝛾02
CGM = 𝛾02

CWC − 𝛾20
CWC or 𝛾20

CGM + 𝛾02
CGM = 𝛾02

CWC. 

(37) 

(38) 

(39) 

(40) 

 

Centering the cluster means does not affect Equations 32 to 35. 

Fixed Effect Interpretations 

The simulation results demonstrate that any one nonzero specific interaction 

effect can result in a significant total level-1 interaction effect.  As such, I show how to 

parse a total level-1 interaction effect into its four components using Equation 24.  The 

analytic work in the previous section shows that Equation 24 provides equivalent fixed 

effects under CWC and CGM.  In this section, I provide interpretations for the fixed 

effects in Equation 24 when CWC is applied to the level-1 predictors and when CGM is 

applied to the level-1 predictors; in both cases I assume that the cluster means are grand 

mean centered.  As noted previously, the specific interaction effects are analogous to 

contextual effects.  Kreft et al. (1995) explained that the fixed effect interpretations for a 

contextual effect model differ under CWC and CGM.  Similarly, the fixed effect 

interpretations for Equation 24 differ under these two centering methods, as I discuss 

below. 

CWC Interpretations 

Interpreting the fixed effects in Equation 24 is easier with CWC than with CGM 

because CWC partitions each level-1 predictor into two orthogonal sources of variability: 

within-cluster variability and between-cluster variability.  Table 3 summarizes the 
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sources of variability present in each term of Equation 24 under CWC and CGM.  Recall 

that CWC removes between-cluster variability from a level-1 predictor because all the 

clusters have a mean of zero after centering.  As such, Table 3 shows that fewer terms in 

Equation 24 contain between-cluster variability with CWC than with CGM.  Returning to 

Equation 24, 𝛾00
CWC is the expected value of 𝑌𝑖𝑗 for a case that is average relative to the 

other cases in its cluster and from a cluster that is average relative to the other clusters on 

both level-1 predictors.  𝛾10
CWC is the conditional within-cluster effect of 𝑋𝑖𝑗 for a case that 

is average relative to the other cases in its cluster and from a cluster that is average 

relative to the other clusters on Z (𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0).  Similarly, 𝛾20
CWC is the 

conditional within-cluster effect of 𝑍𝑖𝑗 for a case that is average relative to the other cases 

in its cluster and from a cluster that is average relative to the other clusters on X (𝑋𝑖𝑗 = 0 

and �̅�𝑗 = 0).  𝛾01
CWC is the conditional between-cluster effect of �̅�𝑗 for a cluster that is 

average relative to the other clusters on Z (�̅�𝑗 = 0).  Similarly, 𝛾02
CWC is the conditional 

between-cluster effect of �̅�𝑗 for a cluster that is average relative to the other clusters on X 

(�̅�𝑗 = 0). 

Turning to the product terms in Equation 24, 𝛾30
CWC is the specific within-cluster 

interaction effect; the specific within-cluster interaction effect refers to the moderating 

influence of the within-cluster portion of Z on the within-cluster association between X 

and Y.  𝛾11
CWC is the specific cross-level interaction effect 𝑋𝑖𝑗�̅�𝑗; the specific cross-level 

interaction effect 𝑋𝑖𝑗�̅�𝑗 refers to the moderating influence of the between-cluster portion 

of Z on the within-cluster association between X and Y.  That is, 𝛾11
CWC quantifies the 

degree to which the within-cluster association between X and Y varies across mean levels 
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of Z.  Similarly, 𝛾21
CWC is the specific cross-level interaction effect �̅�𝑗𝑍𝑖𝑗; the specific 

cross-level interaction effect �̅�𝑗𝑍𝑖𝑗 refers to the moderating influence of the between-

cluster portion of X on the within-cluster association between Z and Y.  That is, 𝛾21
CWC 

quantifies the degree to which the within-cluster association between Z and Y varies 

across mean levels of X.  Finally, 𝛾03
CWC is the specific between-level interaction effect; 

the specific between-level interaction effect refers to the moderating influence of the 

between-cluster portion of Z on the between-cluster association between X and Y.  That 

is, 𝛾03
CWC quantifies the degree to which the between-cluster association between X and Y 

varies across mean levels of Z. 

When the cluster means are uncentered rather than grand mean centered, the 

estimates and interpretations for 𝛾30
CWC, 𝛾11

CWC, 𝛾21
CWC, and 𝛾03

CWC remain the same.  

However, the estimates for 𝛾00
CWC, 𝛾10

CWC, 𝛾20
CWC, 𝛾01

CWC, and 𝛾02
CWC change because the 

meaning of the zero points change.  When the cluster means are grand mean centered, 

𝑋𝑖𝑗 = 0 and �̅�𝑗 = 0 (or 𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0) correspond to a case that is average relative 

to the other cases in its cluster and from a cluster that is average relative to the other 

clusters.  By contrast, when the cluster means are uncentered, 𝑋𝑖𝑗 = 0 and �̅�𝑗 = 0 (or 

𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0) correspond to a case that is average relative to the other cases in its 

cluster but from a cluster with a mean of zero (which may or may not be interpretable on 

the raw score metric). 

CGM Interpretations 

Now consider Equation 24 when CGM is applied to the level-1 predictors.  𝛾00
CGM 

is the expected value of 𝑌𝑖𝑗 for a case at the grand mean of the sample from a cluster that 
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is average relative to the other clusters on both level-1 predictors.  𝛾10
CGM is the 

conditional within-cluster effect of 𝑋𝑖𝑗 for a case at the grand mean of the sample from a 

cluster that is average relative to the other clusters on Z (𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0).  𝛾20
CGM is 

the conditional within-cluster effect of 𝑍𝑖𝑗 for a case at the grand mean of the sample 

from a cluster that is average relative to the other clusters on X (𝑋𝑖𝑗 = 0 and �̅�𝑗 = 0).  

𝛾01
CGM is the contextual effect for 𝑋𝑖𝑗 (i.e., the difference between X’s influence at level 1 

and level 2) for a cluster that is average relative to the other clusters on Z (�̅�𝑗 = 0).  𝛾02
CGM 

is the contextual effect for 𝑍𝑖𝑗 (i.e., the difference between Z’s influence at level 1 and 

level 2) for a cluster that is average relative to the other clusters on X (�̅�𝑗 = 0). 

Recall that when applying CGM to a contextual effect model, the regression 

coefficient for the cluster means 𝛾01 equals the difference between the within-cluster and 

between-cluster associations between the level-1 predictor and the outcome variable (see 

Equation 9).  Returning to Equation 6, 𝛾10 represents the within-cluster association and 

(𝛾10 + 𝛾01) represents the between-cluster association at the grand mean of 𝑋𝑖𝑗.  An 

analogous situation occurs when applying CGM to the model in Equation 24, such that 

the CGM regression coefficients capture differences in the specific interaction effects.  

Before proceeding, readers should note that the regression coefficients for three of the 

four product terms (𝛾11
CGM, 𝛾21

CGM, and 𝛾03
CGM) are difficult to interpret in isolation.  

However, I also describe how to compute estimates for the four specific interaction 

effects, which researchers may consider to be of greater interest.  Turning to the product 

terms in Equation 24, 𝛾30
CGM is the specific within-cluster interaction effect; the specific 

within-cluster interaction effect refers to the moderating influence of the within-cluster 
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portion of Z on the within-cluster association between X and Y.  𝛾11
CGM is the difference 

between the specific cross-level interaction effect 𝑋𝑖𝑗�̅�𝑗 and the specific within-cluster 

interaction effect; it is the difference between the moderating influence of the between-

cluster portion of Z versus the moderating influence of the within-cluster portion of Z on 

the within-cluster association between X and Y.  Based on Equation 33, 𝛾11
CGM + 𝛾30

CGM is 

the estimate for the specific cross-level interaction effect 𝑋𝑖𝑗�̅�𝑗.  Similarly, 𝛾21
CGM is the 

difference between the specific cross-level interaction effect �̅�𝑗𝑍𝑖𝑗 and the specific 

within-cluster interaction effect; it is the difference between the moderating influence of 

the within-cluster portion of Z on the between-cluster association between X and Y versus 

on the within-cluster association between X and Y.  Based on Equation 34, 𝛾21
CGM + 𝛾30

CGM 

is the estimate for the specific cross-level interaction effect �̅�𝑗𝑍𝑖𝑗.  𝛾03
CGM is the difference 

between the specific between-cluster interaction effect and the specific within-cluster 

interaction effect, subtracting out differences between the two specific cross-level 

interaction effects and the specific within-cluster interaction effect.  This interpretation 

becomes more evident if we consider the following expansion of Equation 35: 

 

 𝛾03
CGM = 𝛾03

CWC − (𝛾11
CWC − 𝛾30

CWC) − (𝛾21
CWC − 𝛾30

CWC) − 𝛾30
CWC. (41) 

 

Based on Equation 35, 𝛾03
CGM + 𝛾11

CGM +  𝛾21
CGM + 𝛾30

CGM is the estimate for the specific 

between-cluster interaction effect. 

When the cluster means are uncentered rather than grand mean centered, the 

estimates and interpretations for 𝛾30
CGM, 𝛾11

CGM, 𝛾21
CGM, and 𝛾03

CGM remain the same.  
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However, the estimates for 𝛾00
CGM, 𝛾10

CGM, 𝛾20
CGM, 𝛾01

CGM, and 𝛾02
CGM change because the 

meaning of the zero points change.  When the cluster means are grand mean centered, 

𝑋𝑖𝑗 = 0 and �̅�𝑗 = 0 (or 𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0) correspond to a case at the grand mean of the 

sample from a cluster that is average relative to the other clusters.  By contrast, when the 

cluster means are uncentered, 𝑋𝑖𝑗 = 0 and �̅�𝑗 = 0 (or 𝑍𝑖𝑗 = 0 and �̅�𝑗 = 0) correspond to 

a case at the grand mean of the sample from a cluster with a mean of zero (which may or 

may not be interpretable on the raw score metric). 

Empirical Example 

To demonstrate the potential for specific interaction effects, I tested the affective 

shift model of work engagement using diary data collected across 21 days from 131 

working adults with chronic pain (Karoly, Okun, Enders, & Tennen, 2014).  The affective 

shift model of work engagement posits that negative affect is positively related to work 

engagement if negative affect is followed by positive affect (Bledow et al., 2011).  

Although I would not recommend excluding cases with missing scores in practice, I used 

a subset of complete data with 125 participants and 1115 days (average cluster size = 

8.92) to simplify the empirical example.  Each day, participants reported their positive 

affect and negative affect in the morning, afternoon, and evening.  Participants also 

reported their pursuit of work goals on a 0 to 9 Likert scale in the afternoon and evening.  

Thus, observations are nested within days, which are nested within participants.  

However, because the outcome variable used below is specific to the evening (i.e., was 

only measured once per day), I analyzed the data using a two-level model in which 

observations are nested within participants. 
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I investigated how positive affect in the evening moderates the effect of negative 

affect in the afternoon on pursuit of work goals in the evening.  The ICC for work goals 

in the evening equaled .476, which is similar to the ICC used for the simulation study 

above.  I applied CGM to the level-1 predictors (i.e., negative affect in the afternoon and 

positive affect in the evening) and cluster means and used the following analysis model 

with one product term: 

 

 

𝑤𝑜𝑟𝑘𝑖𝑗 = 𝛾00 + 𝛾10𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗 + 𝛾20𝑝𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗 + 𝛾01𝑛𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗

+ 𝛾02𝑝𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 + 𝛾30𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗𝑝𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗 

(42) 

 

where “work” denotes pursuit of work goals in the evening, “naffect” denotes negative 

affect in the afternoon, and “paffect” denotes positive affect in the evening.  I previously 

tested for random slope variability, which was nonsignificant for both level-1 predictors 

and the level-1 interaction.  Using one product term to represent the total level-1 

interaction effect is consistent with what researchers have done in practice (e.g., Bledow 

et al., 2011).  I estimated Equation 42 via full information maximum likelihood 

estimation in Mplus 7.3 and found that the regression coefficient for the product term was 

significant, γ30 = -0.045, p = .022. 

As shown in the simulations described above, this product term could be 

significant due to any one of the specific interaction effects being nonzero.  Another 

possibility is that the sign and magnitude of all four specific interaction effects are equal 

and can thus be adequately represented by one product term.  To investigate these two 

possibilities, I recommend parsing the total level-1 interaction effect into its four specific 
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interaction effects.  The remainder of this section is organized as follows.  First I parse 

the total level-1 interaction effect into its four specific interaction effects while applying 

CWC to the level-1 predictors and CGM to the cluster means and while applying CGM to 

the level-1 predictors and cluster means.  Next I show that these two centering methods 

provide equivalent fixed effect estimates.  Finally, under each centering method, I 

demonstrate how to (1) perform an omnibus test investigating whether the four specific 

interaction effects significantly differ, (2) test whether each specific interaction effect 

significantly differs from zero, and (3) compare pairs of specific interaction effects.  To 

clarify, researchers should decide how to center each level-1 predictor based on theory, 

but I applied both centering methods throughout this example to explain how the 

procedures differ. 

To parse the total level-1 interaction effect into its four specific interaction 

effects, I used the following analysis model with four product terms: 

 

 

𝑤𝑜𝑟𝑘𝑖𝑗 = 𝛾00 + 𝛾10𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗 + 𝛾20𝑝𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗 + 𝛾01𝑛𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗

+ 𝛾02𝑝𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 + 𝛾30𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗𝑝𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗

+ 𝛾11𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗𝑝𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 + 𝛾21𝑛𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗𝑝𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑗

+ 𝛾03𝑛𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗𝑝𝑎𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗 + 𝑢0𝑗 + 𝜀𝑖𝑗. 

(43) 

 

First I applied CWC to the level-1 predictors and CGM to the cluster means and 

estimated Equation 43 in Mplus.  The Mplus input file for this analysis is provided in 

Appendix D, and the fixed effect estimates are reported in Table 4.  To demonstrate the 

equivalence of the fixed effect estimates under CWC and CGM, I applied CGM to the 
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level-1 predictors and cluster means and again used Equation 43 as the analysis model 

(see Appendix D for the Mplus input file).  The fixed effect estimates with CWC and 

with CGM are reported in Table 5.  Based on the equivalencies in Equations 32 to 35, we 

can compute the estimates for the specific within-cluster interaction effect, two specific 

cross-level interaction effects, and specific between-cluster interaction effect as follows: 

 

𝛾30
CWC = 𝛾30

CGM = −0.0144 

𝛾11
CWC = 𝛾11

CGM + 𝛾30
CGM = −0.0203 + (−0.0144) = −0.0347 

𝛾21
CWC = 𝛾21

CGM + 𝛾30
CGM = −0.0540 + (−0.0144) = −0.0684 

𝛾03
CWC = 𝛾03

CGM + 𝛾11
CGM +  𝛾21

CGM + 𝛾30
CGM 

= −0.0321 + (−0.0203) + (−0.0540) + (−0.0144) = −0.1208. 

 

Referring back to Table 4, note that these estimates are equivalent (actually, within 

0.0002 due to rounding error) to the estimates when I applied CWC to the level-1 

predictors.  The Mplus input file in Appendix D demonstrates how to compute these four 

specific interaction effects using the MODEL CONSTRAINT command. 

Next I used the MODEL TEST command to perform a Wald test investigating 

whether the four specific interaction effects are equal.  To perform this omnibus test 

when the level-1 predictors are CWC, I set 𝛾30
CWC = 𝛾11

CWC = 𝛾21
CWC = 𝛾03

CWC.  The 

omnibus test indicated that the four specific interaction effects do not significantly differ, 

χ
2
(3) = 2.933, p = .402.  To perform this omnibus test when the level-1 predictors are 

CGM, I set 𝛾11
CGM = 0, 𝛾21

CGM = 0, and 𝛾03
CGM = 0 because these three regression 

coefficients capture differences between the specific within-cluster interaction effect and 
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the remaining three specific interaction effects.  Alternatively, we can set the four terms 

created using the MODEL CONSTRAINT command to be equal, which is the same as 

specifying 𝛾30
CGM = 𝛾11

CGM + 𝛾30
CGM = 𝛾21

CGM + 𝛾30
CGM = 𝛾03

CGM + 𝛾11
CGM + 𝛾21

CGM + 𝛾30
CGM 

where 𝛾30
CGM represents the specific within-cluster interaction effect, 𝛾11

CGM + 𝛾30
CGM and 

𝛾21
CGM + 𝛾30

CGM represent the two specific cross-level interaction effects, and 𝛾03
CGM +

𝛾11
CGM + 𝛾21

CGM + 𝛾30
CGM represents the specific between-cluster interaction effect.  As 

before, the omnibus test indicated that the four specific interaction effects do not 

significantly differ, χ
2
(3) = 2.941, p = .401. 

Although the omnibus test was nonsignificant, I will interpret the results from the 

analysis model with four product terms.  Doing so would be appropriate if the omnibus 

test were significant or if a researcher made hypotheses involving specific interaction 

effects such that the omnibus test does not address the research questions.  Based on z-

tests for 𝛾30
CWC, 𝛾11

CWC, 𝛾21
CWC, and 𝛾03

CWC, one of the specific cross-level interaction effects 

and the specific between-cluster interaction effect significantly differed from zero; the 

other two specific interaction effects did not significantly differ from zero.  These results 

may seem counterintuitive given that the omnibus test indicated that the four specific 

interaction effects do not significantly differ.  As such, we may expect either all of the 

specific interaction effects to significantly differ from zero or none of the specific 

interaction effects to significantly differ from zero.  However, power differences may 

explain why the four z-tests are not all significant or all nonsignificant.  When the level-1 

predictors are CGM and we use the MODEL CONSTRAINT command to compute the 

four specific interaction effects, the z-tests appear under the “New/Additional 

Parameters” section of the Mplus output.  Participants with higher average negative affect 
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in the afternoon had less positive relationships between positive affect in the evening and 

pursuit of work goals in the evening, 𝛾21
CWC = -0.068 (or 𝛾21

CGM + 𝛾30
CGM = -0.068), 

p = .036.  Participants with higher average negative affect in the afternoon also had less 

positive relationships between average positive affect in the evening and average pursuit 

of work goals in the evening, 𝛾03
CWC = -0.121 (or 𝛾03

CGM + 𝛾11
CGM +  𝛾21

CGM + 𝛾30
CGM = -

0.121), p = .023. 

Finally, we can compare pairs of specific interaction effects based on a priori 

hypotheses or as post hoc data exploration.  Table 6 describes how to perform all possible 

pairwise comparisons under each centering method.  The procedures differ because 

𝛾30
CWC, 𝛾11

CWC, 𝛾21
CWC, and 𝛾03

CWC each represent one of the four specific interaction effects 

whereas 𝛾11
CGM, 𝛾21

CGM, and 𝛾03
CGM capture differences between the specific within-cluster 

interaction effect and the remaining three specific interaction effects.  To illustrate, 

suppose that I wanted to test whether the two specific interaction effects that significantly 

differed from zero also significantly differed from one another.  Referring to Table 6, 

when the level-1 predictors are CWC, I set 𝛾21
CWC = 𝛾03

CWC and performed a Wald test (see 

the Mplus input file in Appendix D), which was nonsignificant, χ
2
(1) = 0.752, p = .386.  

When the level-1 predictors are CGM, I set 𝛾21
CGM + 𝛾30

CGM = 𝛾03
CGM + 𝛾11

CGM +  𝛾21
CGM +

𝛾30
CGM, which simplifies to 𝛾03

CGM + 𝛾11
CGM = 0.  Again, the Wald test indicated that these 

two specific interaction effects do not significantly differ, χ
2
(1) = 0.747, p = .388. 

Discussion 

Researchers are often interested in estimating interactions in multilevel models, 

but many researchers assume that the same procedures and interpretations for interactions 

in single-level models apply to multilevel models.  However, because level-1 predictors 
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in two-level models potentially have variability at both levels of the hierarchy, 

interactions involving at least one level-1 predictor also have more than one source of 

variability.  A total cross-level interaction effect is a composite of a specific cross-level 

interaction effect and a specific between-cluster interaction effect, and a total level-1 

interaction effect is a composite of a specific within-cluster interaction effect, two 

specific cross-level interaction effects, and a specific between-cluster interaction effect.  

Other methodologists have raised this issue for total cross-level interaction effects 

(Cronbach & Webb, 1975; Hofmann & Gavin, 1998) and have described how to use two 

product terms to parse a total cross-level interaction effect into its two components 

(Raudenbush, 1989b; Hofmann & Gavin, 1998; Enders & Tofighi, 2007).  In this 

Master’s thesis, I extended this work to total level-1 interaction effects, which have 

previously received very little attention in the methodological literature (Nezlek, 2012).  

The goals of this Master’s thesis were to perform simulations to demonstrate that using 

one product term to represent a total level-1 interaction effect can lead to erroneous 

conclusions, derive equivalencies between CGM and CWC for a random intercept model 

that uses four product terms to represent the specific interaction effects, and describe how 

the interpretations of the fixed effects change under these two centering methods. 

Consistent with Hofmann and Gavin’s (1998) simulations for total cross-level 

interaction effects, my simulations demonstrated that any one nonzero specific interaction 

effect can lead to significance when using one product term to represent the total level-1 

interaction effect.  Nevertheless, my informal review of APA journals suggested that 

using one product term is the norm.  Similarly, methodologists adopted a model with one 

product term when providing recommendations for probing total cross-level interaction 
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effects (Tate, 2004; Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006; 

Preacher, Curran, & Bauer, 2006).  As such, I showed how to use four product terms to 

parse a total level-1 interaction effect into its four components.  This recommendation is 

consistent with that made by other methodologists for total cross-level interaction effects 

(Raudenbush, 1989b; Hofmann & Gavin, 1998; Enders & Tofighi, 2007).  Throughout 

this Master’s thesis, I urged researchers to be more cognizant of the sources of variability 

present in total cross-level and level-1 interaction effects and to recognize the potential 

utility of including additional product terms to test for specific interaction effects. 

Next I showed that a random intercept model with four product terms provides 

equivalent fixed effects when applying either CWC or CGM to the level-1 predictors.  

These equivalencies are analogous to the equivalencies found by Kreft et al. (1995) for 

contextual effect models (denoted CWC2 and CGM2) and by Enders and Tofighi (2007) 

when using two product terms to parse a total cross-level interaction effect into its two 

components.  For a contextual effect model, recall that the regression coefficient for the 

cluster means equals the between-cluster effect when the level-1 predictor is group mean 

centered (CWC2) but equals the difference between the within-cluster and between-

cluster effects when the level-1 predictor is grand mean centered (CGM2).  An analogous 

situation occurs when using four product terms to parse a total level-1 interaction effect 

into its four components.  Because CWC partitions each level-1 predictor into two 

orthogonal sources of variability, the regression coefficients for the four product terms 

represent the four specific interaction effects.  By contrast, CGM yields one regression 

coefficient for the specific within-cluster interaction effect and three regression 

coefficients that capture differences between the specific within-cluster interaction effect 
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and the remaining three specific interaction effects.  Thus, although the fixed effects can 

be equated algebraically, their interpretations differ under the two centering methods. 

Generally, methodologists recommend that centering decisions should align with 

the researcher’s conceptualization of the level-1 construct (e.g., Kreft et al., 1995; Enders 

& Tofighi, 2007; Enders, 2013).  In two-level models, Klein et al. (1994) distinguished 

between cluster-independent constructs and cluster-dependent constructs.  For cluster-

independent constructs, two cases with the same raw score on the level-1 predictor would 

have the same expected score on the outcome variable, regardless of cluster membership.  

Only a case’s absolute standing matters.  CGM is appropriate for cluster-independent 

constructs because it preserves absolute score differences across clusters.  For cluster-

dependent constructs, two cases from different clusters could share the same raw score on 

the level-1 predictor but have different expected scores on the outcome variable.  A 

case’s standing relative to other cases within the same cluster matters, which is 

commonly referred to as a frog pond effect (Davis, 1966; Marsh & Parker, 1984).  CWC 

is appropriate for cluster-dependent constructs because deviations from the cluster-

specific means reflect within-cluster standing on the level-1 predictor.  For example, 

consider the effect of daily sleep ratings on daily affect ratings.  A cluster-independent 

construct definition of sleep posits that a participant’s absolute sleep rating matters.  Two 

participants who slept for seven hours would have the same expected daily affect rating, 

regardless of how much they usually sleep.  A cluster-dependent construct definition of 

sleep posits that whether a participant sleeps more or less than he/she usually does 

matters.  Sleeping for seven hours may have a different effect on daily affect ratings for a 
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participant who usually sleeps for six hours than for a participant who usually sleeps for 

nine hours. 

Despite these recommendations for selecting a centering method based on 

substantive theory, I recommend applying CWC when parsing a total level-1 interaction 

effect into its four components.  Under CWC, the regression coefficients for the four 

product terms each represented one of the four specific interaction effects.  By contrast, 

under CGM, the regression coefficients for three of the four product terms were difficult 

to interpret in isolation.  Although I demonstrated how to algebraically compute the four 

specific interaction effects under CGM, adopting CWC may be preferred given that this 

centering method provided more interpretable regression coefficients.  Additionally, 

deciding whether a level-1 predictor represents a cluster-independent or cluster-

dependent construct may be difficult in practice.  Referring to the previous example, 

absolute sleep (a cluster-independent construct definition) and sleeping more or less than 

usual (a cluster-dependent construct definition) may influence daily affect ratings.  

Cluster-independent constructs and cluster-dependent constructs conceivably represent 

endpoints on a continuum, with many constructs of interest in psychological research 

falling somewhere in between.  In the absence of strong substantive theory, I recommend 

adopting CWC to understand the components of a total level-1 interaction effect, 

especially given that the random intercept model with four product terms provides 

equivalent fixed effects.  However, aligning centering decisions with the researcher’s 

conceptualization of the level-1 construct is arguably more important for models that are 

not equivalent under the two centering methods. 
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As with all research, this Master’s thesis has a number of limitations worth 

considering.  First, although the simulations were intended to be demonstrative rather 

than exhaustive, the generalizability of the results is limited given that I only manipulated 

one factor.  Other factors that I would expect to influence the results such as the ICC, 

number of clusters and cluster size, and covariance structure were not manipulated.  

Second, I did not investigate power differences between the model that uses four product 

terms to represent the specific interaction effects and the model that uses one product 

term.  Although the simulations showed that the latter model can lead to erroneous 

conclusions, certain effects in the model with four product terms may be underpowered.  

Third, I focused on random intercept models, but this work should be extended to random 

slope models.  Given Kreft et al.’s (2005) findings for contextual effect models, we 

would not expect equivalencies across the two centering methods for a random slope 

model with four product terms.  Power differences also exist between random intercept 

and random slope models (see Hoffman & Templin, 2011 for cross-level interactions) 

and should be further investigated.  Fourth, the product of two normally distributed 

variables is often not normally distributed (Aroian, 1944/1947), yet significance tests 

used in this Master’s thesis assume a symmetric or normal distribution (e.g., the t-tests in 

the demonstrative simulations).  However, this issue is not specific to the work in this 

Master’s thesis and has been discussed elsewhere for interaction effects in single-level 

models and indirect effects in single-level and multilevel models (e.g., MacKinnon, 

Lockwood, & Williams, 2004; Preacher, Zyphur, & Zhang, 2010).  Fifth, I did not 

discuss how to probe specific interaction effects, for example by computing simple 

effects via the pick-a-point approach.  Although other methodologists have described 
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how to probe cross-level interactions via simple effects or the Johnson-Neyman 

technique (Tate, 2004; Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006; 

Preacher, Curran, & Bauer, 2006), they used a model consistent with Equation 11, which 

contains one product term.  These limitations suggest potential directions for future 

research. 

As noted previously, I used a doubly manifest approach, which assumes no 

sampling or measurement error (Lüdtke et al., 2011).  Currently, the doubly manifest 

approach is used almost exclusively in applied practice (Lüdtke et al., 2008).  However, 

because it relies on observed rather than latent cluster means, the doubly manifest 

approach can provide biased contextual effect estimates and standard errors (Lüdtke et 

al., 2008; Lüdtke et al., 2011).  Lüdtke et al. (2008), Marsh et al. (2009), and Lüdtke et al. 

(2011) proposed a doubly latent approach that corrects for sampling and measurement 

error and two partial correction approaches that correct for either sampling error 

(manifest-measurement, latent-aggregation) or measurement error (latent-measurement, 

manifest-aggregation) but not both.  Recently, Preacher, Zhang, and Zyphur (in press) 

described how to parse interactions between two level-1 predictors or between a level-1 

predictor and a level-2 predictor into their respective components while using latent 

rather than observed cluster means.  However, the appropriateness of the doubly latent, 

partial correction, and doubly manifest approaches depends on several factors, including 

the ICC, number of clusters and level-1 units per cluster, and nature of the level-2 

constructs under investigation.  The doubly latent approach yields higher sampling 

variability relative to the partial correction approaches and doubly manifest approach, 

which may result in unstable parameter estimates and wide confidence intervals (Marsh 
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et al., 2009).  Higher sampling variability is particularly problematic when a small ICC is 

combined with a modest number of clusters and level-1 units per cluster (Lüdtke et al., 

2008).  Furthermore, latent-aggregation approaches assume reflective aggregations of 

level-1 constructs (i.e., within-cluster variation only reflects sampling error).  For 

formative aggregations of level-1 constructs, members of the same cluster likely have 

different true standings on the level-1 construct, so assuming that within-cluster variation 

represents sampling error is inappropriate as the sampling ratio (i.e., the percentage of 

level-1 units sampled from each cluster) approaches 100% (Lüdtke et al., 2008; Marsh et 

al., 2009).  However, latent-aggregation approaches may be appropriate for formative 

aggregations of level-1 constructs when the sampling ratio is low (Lüdtke et al., 2008).  

Finally, convergence issues may lead researchers to use a doubly manifest approach 

rather than the more complex doubly latent or partial correction approaches (Lüdtke et 

al., 2011).  In sum, latent-measurement and latent-aggregation approaches are appropriate 

under many, but not all, conditions.  Thus, my work should be considered along with that 

of Preacher et al. (in press) to provide a more comprehensive set of recommendations for 

investigating moderated effects using clustered data. 

This Master’s thesis emphasized the importance of considering and testing for 

specific interaction effects.  Using one product term to represent a total cross-level or 

level-1 interaction effect, which is the norm, leads to a potentially ambiguous result.  

Although group mean centering the level-1 predictor(s) comprising this product term 

disambiguates the result, doing so only yields an estimate for one specific interaction 

effect.  As such, I showed how to include additional product terms to parse a total cross-

level or level-1 interaction effect into its components.  Estimating specific interaction 
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effects provides further information about how a moderator operates and allows 

researchers to formulate and test more targeted research questions. 
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Table 1 

Population Parameters by Condition 

 Condition 

 1 2 3 4 5 

Specific Within-Cluster 

Interaction 𝑋𝑖𝑗𝑍𝑖𝑗 
0.400 0 0 0 0 

Specific Cross-Level 

Interaction 𝑋𝑖𝑗�̅�𝑗 
0 0.219 0 0 0 

Specific Cross-Level 

Interaction �̅�𝑗𝑍𝑖𝑗 
0 0 0.219 0 0 

Specific Between-Cluster 

Interaction �̅�𝑗�̅�𝑗 
0 0 0 0.400 0 

Level-1 (Residual) Variance 

𝜎𝜀
2 

0.84
a
 1 1 1 1 

Slope Variance 𝜎𝑢1𝑗

2  of  𝑋𝑖𝑗 0.30 0.252
a
 0.30 0.30 0.30 

Slope Variance 𝜎𝑢2𝑗

2  of 𝑍𝑖𝑗 0.30 0.30 0.252
a
 0.30 0.30 

Level-2 (Residual) Variance 

𝜎𝑢0𝑗

2  
1 1 1 0.84

a
 1 

Mean of 𝑋𝑖𝑗 0 0 0 0 0 

Mean of 𝑍𝑖𝑗 0 0 0 0 0 

Total Variance of 𝑋𝑖𝑗 

          Level-1 Variance 

          Level-2 Variance 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

Total Variance of 𝑍𝑖𝑗 

          Level-1 Variance 

          Level-2 Variance 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

Covariance of 𝑋𝑖𝑗 and 𝑍𝑖𝑗 0 0 0 0 0 

Mean of Level-1 Interaction 0 0 0 0 0 

Variance of Level-1 

Interaction 
1 1 1 1 1 

a
These values correspond to 16% of the variance explained. 
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Table 2 

Simulation Results by Condition 

  Condition 

  1 2 3 4 5 

Population 

Parameter 

Specific Within-

Cluster Interaction 

𝑋𝑖𝑗𝑍𝑖𝑗 
0.400 0 0 0 0 

Specific Cross-

Level Interaction 

𝑋𝑖𝑗�̅�𝑗 
0 0.219 0 0 0 

Specific Cross-

Level Interaction 

�̅�𝑗𝑍𝑖𝑗 
0 0 0.219 0 0 

Specific Between-

Cluster Interaction 

�̅�𝑗�̅�𝑗 
0 0 0 0.400 0 

Outcome 

Number of 

Converged 

Solutions (%) 

1978 

(98.90%) 

1946 

(97.30%) 

1923 

(96.15%) 

1949 

(97.45%) 

1943 

(97.15%) 

Mean Estimate of 

𝛾30 
0.268 0.048 0.049 -0.029 0.002 

Percentage of 

Significant 𝛾30 
99.95% 19.42% 19.97% 10.47% 5.76% 

Note. The number of converged solutions is out of 2000 replications. 
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Table 3 

Sources of Variability Present in Each Term of Equation 24 with CWC or CGM Level-1 

Predictors 

Centering 

Method 
Term 

Source of Variability 

Within-

Cluster 

Variability in 

𝑋𝑖𝑗 

Within-

Cluster 

Variability in 

𝑍𝑖𝑗 

Between-

Cluster 

Variability in 

𝑋𝑖𝑗 

Between-

Cluster 

Variability in 

𝑍𝑖𝑗 

CWC 

𝛾10𝑋𝑖𝑗     

𝛾20𝑍𝑖𝑗     

𝛾01�̅�𝑗     

𝛾02�̅�𝑗     

𝛾30𝑋𝑖𝑗𝑍𝑖𝑗     

𝛾11𝑋𝑖𝑗�̅�𝑗     

𝛾21�̅�𝑗𝑍𝑖𝑗     

𝛾03�̅�𝑗�̅�𝑗     

CGM 

𝛾10𝑋𝑖𝑗     

𝛾20𝑍𝑖𝑗     

𝛾01�̅�𝑗     

𝛾02�̅�𝑗     

𝛾30𝑋𝑖𝑗𝑍𝑖𝑗     

𝛾11𝑋𝑖𝑗�̅�𝑗     

𝛾21�̅�𝑗𝑍𝑖𝑗     

𝛾03�̅�𝑗�̅�𝑗     

Note. CWC denotes that both level-1 predictors are group mean centered and CGM 

denotes that both level-1 predictors are grand mean centered. 
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Table 4 

Empirical Example, Fixed Effect Estimates with CWC Level-1 Predictors 

 Estimate S.E. p-Value 

Average Intercept 5.905 0.141 < .001 

Negative Affect (Level 1) -0.042 0.041 .310 

Positive Affect (Level 1) 0.181 0.045 < .001 

Average Negative Affect (Level 2) 0.189 0.128 .139 

Average Positive Affect (Level 2) 0.696 0.094 < .001 

Specific Within-Cluster Interaction Effect 𝛾30 -0.015 0.039 .711 

Specific Cross-Level Interaction Effect 𝛾11 -0.035 0.039 .374 

Specific Cross-Level Interaction Effect 𝛾21 -0.068 0.033 .036 

Specific Between-Cluster Interaction Effect 𝛾03 -0.121 0.053 .023 
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Table 5 

Empirical Example, Fixed Effect Estimates with CWC or CGM Level-1 Predictors 

Regression Coefficient CWC Estimate CGM Estimate 

𝛾00 5.905 5.906 

𝛾10 -0.042 -0.042 

𝛾20 0.181 0.181 

𝛾01 0.189 0.231 

𝛾02 0.696 0.515 

𝛾30 -0.015 -0.014 

𝛾11 -0.035 -0.020 

𝛾21 -0.068 -0.054 

𝛾03 -0.121 -0.032 

Note. CWC denotes that both level-1 predictors are group mean centered and 

CGM denotes that both level-1 predictors are grand mean centered. 
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Table 6 

Pairwise Comparisons with CWC or CGM Level-1 Predictors 

Pairwise 

Comparison 
CWC CGM 

1 vs. 2 Set 𝛾30
CWC = 𝛾11

CWC. Refer to the significance test for 𝛾11
CGM. 

   

1 vs. 3 Set 𝛾30
CWC = 𝛾21

CWC. Refer to the significance test for 𝛾21
CGM. 

   

1 vs. 4 Set 𝛾30
CWC = 𝛾03

CWC. 
Set 𝛾30

CGM = 𝛾03
CGM + 𝛾11

CGM +  𝛾21
CGM + 𝛾30

CGM, which 

simplifies to 𝛾03
CGM + 𝛾11

CGM +  𝛾21
CGM = 0. 

   

2 vs. 3 Set 𝛾11
CWC = 𝛾21

CWC. 
Set 𝛾11

CGM + 𝛾30
CGM = 𝛾21

CGM + 𝛾30
CGM, which simplifies 

to 𝛾11
CGM = 𝛾21

CGM. 

   

2 vs. 4 Set 𝛾11
CWC = 𝛾03

CWC. 
Set 𝛾11

CGM + 𝛾30
CGM = 𝛾03

CGM + 𝛾11
CGM +  𝛾21

CGM + 𝛾30
CGM, 

which simplifies to 𝛾03
CGM + 𝛾21

CGM = 0. 

   

3 vs. 4 Set 𝛾21
CWC = 𝛾03

CWC. 
Set 𝛾21

CGM + 𝛾30
CGM = 𝛾03

CGM + 𝛾11
CGM +  𝛾21

CGM + 𝛾30
CGM, 

which simplifies to 𝛾03
CGM + 𝛾11

CGM = 0. 

Note. Equation 24 serves as the analysis model.  In the “Pairwise Comparison” column, 1 

denotes the specific within-cluster interaction effect, 2 denotes the specific cross-level 

interaction effect 𝑋𝑖𝑗�̅�𝑗, 3 denotes the specific cross-level interaction effect �̅�𝑗𝑍𝑖𝑗, and 4 

denotes the specific between-cluster interaction effect.  CWC denotes that both level-1 

predictors are group mean centered and CGM denotes that both level-1 predictors are 

grand mean centered. 
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APPENDIX B 

DERIVATIONS FROM DUNCAN, CUZZORT, AND DUNCAN (1961) 
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The equation of interest is Equation 3 from Duncan et al. (1961): 

 

 𝑏𝑇 = 𝜂𝑋
2 𝑏𝐵 + (1 − 𝜂𝑋

2 )𝑏𝑊 (A1) 

 

that describes how the level-1 regression coefficient 𝛾10 from Equation 2 (i.e., 𝑏𝑇) is a 

weighted average of the within-cluster and between-cluster associations between the 

level-1 predictor 𝑋𝑖𝑗 and the outcome variable.  Although Duncan et al. (1961) do not 

provide the following derivations for Equation A1, they provided the basis for these 

derivations. 

First I explain the notation used here, which deviates from the notation used in 

Duncan et al. (1961).  Let 𝑆𝑆𝑋𝑇 = ∑ ∑ (𝑋𝑖𝑗 − �̅�)2
𝑖𝑗  denote the total sum of squares of 𝑋𝑖𝑗.  

The total sum of squares of 𝑋𝑖𝑗 can be expressed as the sum of the within-cluster sum of 

squares of 𝑋𝑖𝑗, 𝑆𝑆𝑋𝑊 = ∑ ∑ (𝑋𝑖𝑗 − �̅�𝑗)2
𝑖𝑗 , and the between-cluster sum of squares of 𝑋𝑖𝑗, 

𝑆𝑆𝑋𝐵 = ∑ ∑ (�̅�𝑗 − �̅�)2
𝑖𝑗 , meaning 

 

 𝑆𝑆𝑋𝑇 = 𝑆𝑆𝑋𝑊 + 𝑆𝑆𝑋𝐵. (A2) 

 

Let 𝑆𝑆𝑋𝑌𝑇 = ∑ ∑ (𝑋𝑖𝑗 − �̅�)(𝑌𝑖𝑗 − �̅�)𝑖𝑗  denote the total sum of products.  The total sum of 

products can be expressed as the sum of the within-cluster sum of products, 𝑆𝑆𝑋𝑌𝑊 =

∑ ∑ (𝑋𝑖𝑗 − �̅�𝑗)(𝑌𝑖𝑗 − �̅�𝑗)𝑖𝑗 , and the between-cluster sum of products, 𝑆𝑆𝑋𝑌𝐵 =

∑ 𝑛𝑗(�̅�𝑗 − �̅�)(�̅�𝑗 − �̅�)𝑗 , meaning 
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 𝑆𝑆𝑋𝑌𝑇 = 𝑆𝑆𝑋𝑌𝑊 + 𝑆𝑆𝑋𝑌𝐵. (A3) 

 

Let 𝜂𝑋
2  denote the correlation ratio for 𝑋𝑖𝑗 (i.e., the ratio of the between-cluster sum of 

squares on 𝑋𝑖𝑗 to the total sum of squares on 𝑋𝑖𝑗) such that 

 

 𝜂𝑋
2 =

𝑆𝑆𝑋𝐵

𝑆𝑆𝑋𝑇
 (A4a) 

 𝜂𝑋
2 = 1 −

𝑆𝑆𝑋𝑊

𝑆𝑆𝑋𝑇
. (A4b) 

 

Finally, let 𝑏𝑇 denote the total regression coefficient, 𝑏𝑊 denote the average within-

cluster regression coefficient, and 𝑏𝐵 denote the between-cluster regression coefficient as 

follows: 

 

 𝑏𝑇 =
𝑆𝑆𝑋𝑌𝑇

𝑆𝑆𝑋𝑇
 (A5) 

 𝑏𝑊 =
𝑆𝑆𝑋𝑌𝑊

𝑆𝑆𝑋𝑊
 (A6) 

 𝑏𝐵 =
𝑆𝑆𝑋𝑌𝐵

𝑆𝑆𝑋𝐵
. (A7) 

 

To start, we know from Equation A5 that 𝑏𝑇 =
𝑆𝑆𝑋𝑌𝑇

𝑆𝑆𝑋𝑇
.  Substituting in Equation 

A3 yields 𝑏𝑇 =
𝑆𝑆𝑋𝑌𝑊+𝑆𝑆𝑋𝑌𝐵

𝑆𝑆𝑋𝑇
, which can be rewritten as 𝑏𝑇 =

𝑆𝑆𝑋𝑌𝑊

𝑆𝑆𝑋𝑇
+

𝑆𝑆𝑋𝑌𝐵

𝑆𝑆𝑋𝑇
.  From 

Equation A6, we know that 𝑆𝑆𝑋𝑌𝑊 = 𝑏𝑊𝑆𝑆𝑋𝑊.  Similarly, from Equation A7, we know 
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that 𝑆𝑆𝑋𝑌𝐵 = 𝑏𝐵𝑆𝑆𝑋𝐵.  Substituting 𝑆𝑆𝑋𝑌𝑊 = 𝑏𝑊𝑆𝑆𝑋𝑊 and 𝑆𝑆𝑋𝑌𝐵 = 𝑏𝐵𝑆𝑆𝑋𝐵 into 

𝑏𝑇 =
𝑆𝑆𝑋𝑌𝑊

𝑆𝑆𝑋𝑇
+

𝑆𝑆𝑋𝑌𝐵

𝑆𝑆𝑋𝑇
 yields 𝑏𝑇 =

𝑏𝑊𝑆𝑆𝑋𝑊

𝑆𝑆𝑋𝑇
+

𝑏𝐵𝑆𝑆𝑋𝐵

𝑆𝑆𝑋𝑇
.  We know from Equation A4a that 

𝑆𝑆𝑋𝐵

𝑆𝑆𝑋𝑇
= 𝜂𝑋

2 .  Similarly, from Equation A4b, we know 
𝑆𝑆𝑋𝑊

𝑆𝑆𝑋𝑇
= 1 − 𝜂𝑋

2 .  Substituting 

𝑆𝑆𝑋𝐵

𝑆𝑆𝑋𝑇
= 𝜂𝑋

2  and 
𝑆𝑆𝑋𝑊

𝑆𝑆𝑋𝑇
= 1 − 𝜂𝑋

2  into 𝑏𝑇 =
𝑏𝑊𝑆𝑆𝑋𝑊

𝑆𝑆𝑋𝑇
+

𝑏𝐵𝑆𝑆𝑋𝐵

𝑆𝑆𝑋𝑇
 yields 𝑏𝑇 = 𝑏𝑊(1 − 𝜂𝑋

2 ) +

𝑏𝐵𝜂𝑋
2 , which is the equation of interest.  This equation can be rewritten as 

 

 𝑏𝑇 = 𝑏𝑊 + 𝜂𝑋
2 (𝑏𝐵 − 𝑏𝑊), (A8) 

 

which is how Equation A1 is expressed in Duncan et al. (1961).  
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APPENDIX C 

DERIVATIONS FOR DEMONSTRATIVE SIMULATIONS 
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Based on the following equation: 

 

 

𝜎𝜀
2 = 𝛽𝑋𝑖𝑗𝑍𝑖𝑗

2 𝜎𝑋𝑖𝑗𝑍𝑖𝑗

2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2  

1 = 𝛽𝑋𝑖𝑗𝑍𝑖𝑗

2 (1) + (1 − 0.16) 

𝛽𝑋𝑖𝑗𝑍𝑖𝑗
= 0.400 

(C1) 

 

 

 

I set the population parameter for the specific within-cluster interaction to 0.400 in the 

first condition so that it explained 16% of the level-1 variance 𝜎𝜀
2.  Based on the 

following equation: 

 

 

𝜎𝑢1𝑗

2 = 𝛽𝑋𝑖𝑗𝑍𝑗

2 𝜎𝑋𝑖𝑗𝑍𝑗

2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2  

0.30 = 𝛽𝑋𝑖𝑗𝑍𝑗

2 (1) + (1 − 0.16)(0.30) 

𝛽𝑋𝑖𝑗𝑍𝑗
= 0.219 

(C2) 

 

 

 

I set the population parameter for the specific cross-level interaction 𝑋𝑖𝑗�̅�𝑗 in the second 

condition to 0.219 so that it explained 16% of the level-1 predictor 𝑋𝑖𝑗’s slope variance 

𝜎𝑢1𝑗

2 .  Based on the following equation: 

 

 

𝜎𝑢2𝑗

2 = 𝛽�̅�𝑗𝑍𝑖𝑗

2 𝜎�̅�𝑗𝑍𝑖𝑗

2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2  

0.30 = 𝛽�̅�𝑗𝑍𝑖𝑗

2 (1) + (1 − 0.16)(0.30) 

𝛽�̅�𝑗𝑍𝑖𝑗
= 0.219 

(C3) 
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I set the population parameter for the specific cross-level interaction �̅�𝑗𝑍𝑖𝑗 in the third 

condition to 0.219 so that it explained 16% of the level-1 predictor 𝑍𝑖𝑗’s slope variance 

𝜎𝑢2𝑗

2 .  Based on the following equation: 

 

 

𝜎𝑢0𝑗

2 = 𝛽�̅�𝑗𝑍𝑗

2 𝜎�̅�𝑗𝑍𝑗

2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2  

1 = 𝛽�̅�𝑗𝑍𝑗

2 (1) + (1 − 0.16) 

𝛽�̅�𝑗𝑍𝑗
= 0.400 

(C4) 

 

 

 

I set the population parameter for the specific between-cluster interaction in the fourth 

condition to 0.400 so that it explained 16% of the variance in the level-2 intercept 

variance 𝜎𝑢0𝑗

2 . 
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APPENDIX D 

MPLUS 7.3 INPUT FILES FOR EMPIRICAL EXAMPLE 
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DATA: 

! I applied CWC to the level-1 predictors and CGM to their cluster means in this data set. 

file = CWC.dat; 

 

VARIABLE: 

! 1 indicates morning, 2 indicates afternoon, and 3 indicates evening. 

names = paffm3 naffm2 work3 paffect3 naffect2 subject; 

usevariables = paffm3 naffm2 work3 paffect3 naffect2 

intwthn cross1 cross2 intbtwn; 

cluster = subject; 

within = naffect2 paffect3 intwthn cross1 cross2; 

between = naffm2 paffm3 intbtwn; 

missing = *; 

 

DEFINE: 

! Specific Within-Cluster Interaction Effect 

intwthn = naffect2*paffect3; 

! Specific Cross-Level Interaction Effects 

cross1 = naffect2*paffm3; 

cross2 = naffm2*paffect3; 

! Specific Between-Cluster Interaction Effect 

intbtwn = naffm2*paffm3; 

 

ANALYSIS: 

estimator = mlr; 

type = twolevel random; 

 

MODEL: 

%within% 

work3 on naffect2 paffect3 intwthn cross1 cross2; 

work3; 

%between% 

work3 on naffm2 paffm3 intbtwn; 

[work3]; 

work3; 

 

MODEL TEST: 

! Perform a Wald test to investigate whether the specific interaction effects are equal. 

g30 = g11; 

g30 = g21; 

g30 = g03; 

 

The MODEL TEST command below can be substituted into the Mplus input file above to 

perform a pairwise comparison rather than an omnibus test. 
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MODEL TEST: 

! Perform a Wald test to investigate whether the specific cross-level interaction effect 

! and the specific between-cluster interaction are equal. 

g21 = g03; 
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DATA: 

! I applied CGM to the level-1 predictors and CGM to their cluster means in this data set. 

file = CGM.dat; 

 

VARIABLE: 

names = paffm3 naffm2 paffect3 naffect2 work3 subject; 

usevariables = work3 naffm2 paffm3 naffect2 paffect3 

    gamma30 gamma11 gamma21 gamma03; 

cluster = subject; 

within = naffect2 paffect3 gamma30 gamma11 gamma21; 

between = naffm2 paffm3 gamma03; 

missing = *; 

 

DEFINE: 

gamma30 = naffect2*paffect3; 

gamma11 = naffect2*paffm3; 

gamma21 = naffm2*paffect3; 

gamma03 = naffm2*paffm3; 

 

ANALYSIS: 

estimator = mlr; 

type = twolevel random; 

 

MODEL: 

%within% 

work3 on naffect2 paffect3 

    gamma30 (g30) 

    gamma11 (g11) 

    gamma21 (g21); 

work3; 

 

%between% 

work3 on naffm2 paffm3 

    gamma03 (g03); 

[work3]; 

work3; 

 

MODEL CONSTRAINT: 

new (intwthn cross1 cross2 intbtwn); 

! Specific Within-Cluster Interaction Effect 

intwthn = g30; 

! Specific Cross-Level Interaction Effects 

cross1 = g11 + g30; 

cross2 = g21 + g30; 

! Specific Between-Cluster Interaction Effect 
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intbtwn = g03 + g11 + g21 + g30; 

 

MODEL TEST: 

! Perform a Wald test to investigate whether the specific interaction effects are equal. 

g11 = 0; 

g21 = 0; 

g03 = 0; 

←Alternative 

Specifications→ 

intwthn = cross1; 

intwthn = cross2; 

intwthn = 

intbtwn; 

 

The MODEL TEST command below can be substituted into the Mplus input file above to 

perform a pairwise comparison rather than an omnibus test. 

 

MODEL TEST: 

! Perform a Wald test to investigate whether the specific cross-level interaction effect 

! and the specific between-cluster interaction are equal. 

0 = g03 + 

g11; 

←Alternative 

Specifications→ 
cross2 = intbtwn; 

 

 


