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ABSTRACT

Factory production is stochastic in nature with time varying input and output

processes that are non-stationary stochastic processes. Hence, the principle quan-

tities of interest are random variables. Typical modeling of such behavior involves

numerical simulation and statistical analysis. A deterministic closure model leading

to a second order model for the product density and product speed has previously

been proposed. The resulting partial differential equations (PDE) are compared to

discrete event simulations (DES) that simulate factory production as a time depen-

dent M/M/1 queuing system. Three fundamental scenarios for the time dependent

influx are studied: An instant step up/down of the mean arrival rate; an exponential

step up/down of the mean arrival rate; and periodic variation of the mean arrival

rate. It is shown that the second order model, in general, yields significant improve-

ment over current first order models. Specifically, the agreement between the DES

and the PDE for the step up and for periodic forcing that is not too rapid is very

good. Adding diffusion to the PDE further improves the agreement. The analysis

also points to fundamental open issues regarding the deterministic modeling of low

signal-to-noise ratio for some stochastic processes and the possibility of resonance in

deterministic models that is not present in the original stochastic process.

i



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Linear Programming (LP) Models with Fixed Exogenous Lead Times 6

1.2 LP Models and Clearing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Goal of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 MATHEMATICAL FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Queuing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Hyperbolic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Nonlinearity and Burger’s Equation . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Riemann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Generating a Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Experimental Scenarios and χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Scenario 1: Exponential Relaxation . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Scenario 2: The Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Scenario 3: The Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 THE CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 A SECOND ORDER CONTINUUM MODEL . . . . . . . . . . . . . . . . . . . . 56

5.1 Expanding the Transport Model to Second Order . . . . . . . . . . . . . . . . . 57

ii



CHAPTER Page

5.2 Previous Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 New Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Adding Diffusion to the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Long-Term Time-Varying Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Overload Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Understanding the Diffusion Terms . . . . . . . . . . . . . . . . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iii



LIST OF TABLES

Table Page

3.1 Algorithm for Creating the Event List E for a Homogeneous Poisson

Process with Rate λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Algorithm for Creating the Event List E for a Nonhomogeneous Pois-

son Process with Rate λ(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Table of Transitions Subject to Experimentation. . . . . . . . . . . . . . . . . . . . . 69

iv



LIST OF FIGURES

Figure Page

1.1 Examples of Clearing Functions. (Karmarkar (1989)) . . . . . . . . . . . . . . . . . 12

2.1 Schematic of a General M/M/1 Queueing System. . . . . . . . . . . . . . . . . . . . 19

2.2 Shock Wave for Solution 2.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Shock Wave for Solution 2.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Example of Thinning Method for Single Run with λ(t) Given by (3.1). . 42

3.2 DES and Exact Input Patterns for Exponential Relaxation Scenario. . . . 46

3.3 DES and Exact Input Patterns for Stepwise Transition Scenario. . . . . . . 47

3.4 DES and Exact Input Patterns for Cyclic Scenario. . . . . . . . . . . . . . . . . . . . 49

4.1 Outflux Generated Via a Sinusoidal Influx for Averaging 1,000 DES of

a Model of a Semiconductor Factory (Perdaen et al. (2008)) (shaded)

and a Simulation Based on Equation (4.3) and a Clearing Function

Model (black curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Outflux Over Five Time Intervals as a Function of the Total Expected

Load for DES and for the PDE Model (5.2, 5.3) with Boundary Con-

ditions (5.6) and (5.11 - 5.13). a) Constant Influx and Initial WIP of

W (0) = 0, b) Constant Influx and Initial WIP W (0) = 3, c) Decreasing

Influx for W (0) = 1, d) Increasing Influx for W (0) = 1 . . . . . . . . . . . . . . . . 62

5.2 Initial Model DES and PDE Outflux for Stepwise Transition λ1 =

0.5→ λ2 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 DES and PDE Outflux for Exponential Transition λ1 = 0.7→ λ2 = 0.3. 64

5.4 DES and PDE Outflux for Exponential Transition λ1 = 0.3→ λ2 = 0.7. 65

5.5 DES and PDE Outflux for Stepwise Transition λ1 = 0.7→ λ2 = 0.3. . . . 66

5.6 DES and PDE Outflux for Stepwise Transition λ1 = 0.3→ λ2 = 0.7. . . . 66

5.7 1st Order PDE Solution λ1 = 0.7→ λ2 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . 67

v



Figure Page

5.8 1st Order PDE Solution for λ1 = 0.3→ λ2 = 0.7. . . . . . . . . . . . . . . . . . . . . . 68

5.9 Mean Time Delay Before PDE Moves from Initial Steady-State . . . . . . . 70

5.10 Solution for (5.15) (5.16)–Stepwise Transition λ1 = 0.7 → λ2 = 0.3

with Diffusion Coefficient 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.7→ λ2 = 0.3

with Diffusion Coefficient 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.12 Solution for (5.15) (5.16)– Stepwise Transition λ1 = 0.3 → λ2 = 0.7

with Diffusion Coefficient 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.13 Solution for (5.15) (5.16)– Exponential Transition λ1 = 0.3→ λ2 = 0.7

with Diffusion Coefficient 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.14 Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.5→ λ2 = 0.2

with Diffusion Coefficient 0.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.15 Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.2→ λ2 = 0.5

with Diffusion Coefficient 0.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.16 DES and PDE Outflux Derived from Cyclic Influx with Range [0.3,

0.7] and C = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.17 Reprint of Figure 5.16 with Phase Adjusted Solution (green). . . . . . . . . . 77

5.18 Normalized Amplitude Periodogram for Outflux Derived from Cyclic

Influx with Range [0.3, 0.7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.19 DES and PDE Outflux Derived from Cyclic Influx with Range [0.3,

0.7] and C = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.20 DES Outflux for Selected C Values for Cyclic Influx with Range [0.3,

0.7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



Figure Page

5.21 Normalized Amplitude Versus Influx Frequency for DES and PDE Out-

flux Derived from Cyclic Influx with Range [0.3, 0.7] . . . . . . . . . . . . . . . . . 80

5.22 Normalized Amplitude Versus Influx Frequency for DES and PDE Out-

flux Derived from Cyclic Influx with Range [0.3, 0.5] . . . . . . . . . . . . . . . . . 80

5.23 Normalized Amplitude Versus Influx Frequency for DES and PDE Out-

flux Derived from Cyclic Influx with Range [0.3, 0.9] . . . . . . . . . . . . . . . . . 81

6.1 DES and PDE Outflux Derived from Overloaded Cyclic Influx with

Range [0.6, 1.2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 2 × Normalized Amplitude Versus Influx Frequency for DES and PDE

Outflux Derived from Cyclic Influx with Range [0.3, 0.7] . . . . . . . . . . . . . 86

6.3 Ramp-Down Transition λ1 = 0.7→ λ2 = 0.3 with Diffusion. . . . . . . . . . . . 88

6.4 Comparison of the Density Diffusion PDE Model with (red) and with-

out (green) Velocity Diffusion for the Ramp-Down Transition λ1 =

0.7→ λ2 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Comparison of the Density Diffusion PDE Model with (red) and with-

out (green) Velocity Diffusion for the Ramp-Down Transition λ1 =

0.5→ λ2 = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



Chapter 1

INTRODUCTION

Ever since the emergence of industrial engineering and operations research as rec-

ognized disciplines the problems of planning and controlling production in the manu-

facturing industries has been a key application domain. Dating back to the beginning

of the 20th century, there is an extensive body of literature in these disciplines. In-

cluded in this body is the work of Harris (1915) and Arrow (1958) which involved

inventory models and Modigliani and Hohn (1955), and Holt (1960) that focused on

discrete-time production planning. In fact, it is the now classical formulation of pro-

duction planning due to the latter authors that is considered in this research.

In its simplest form this production planning paradigm describes a firm operat-

ing in a market where it faces external demand which it tries to meet by utilizing a

limited set of production resources that have limited ability to generate output in a

given time period. By capacity what is meant is that the limitation on the amount

of output that can be produced in a given time interval by a production resource.

However, this term is a colloquialism as the precise definition and determination of

capacity turns out to be a challenging problem, as discussed by Elmaghraby (2011).

Moreover, a complete and exhaustive definition of production planning in full gener-

ality is a complex and somewhat contentious task (Kempf et al. (2011)) and therefore,

this document will remain less rigorous in its definitions of such topics.

For the purpose of this research, it is taken as a meaningful definition of capacity

that which describes the production resource’s ability to convert a specified mix of
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inputs into a specified mix of outputs within a specified time frame. This definition

gives rise to two closely related problems: the forward problem and the backward

problem. The forward problem is to estimate within a desired level of accuracy the

output trajectory over time obtained from a production resource given a specified

input trajectory. The backward problem, on the other hand, is that of determining

the necessary input pattern required to produce a desired output pattern also within

a desired level of accuracy and over time. External demand we will assume to be a

deterministic quantity that is known a priori. This simplification is not wholly unre-

alistic as it is common practice to schedule production activities based on available

demand forecasts and this assumption corresponds to that practice. It will, though,

be assumed that the actual behavior of the production resources is stochastic in na-

ture. This stochasticity reflects various random influences such as unplanned machine

breakdown and the natural variation in task production ties and material flows within

the system. Both the forward problem and the backward problem treat the capacity

of the system as a functional in the manner suggested by Hackman (2008) with its

domain the set of all possible input trajectories and the range the set of all possible

output trajectories (both over time) that the system is capable of producing.

The forward problem has been approached in several different ways in the liter-

ature. Very simple models, such as assuming that any input will be converted into

output after a fixed time delay - widely assumed in the literature - are possible. An-

other approach is to develop a set of linear or nonlinear equations that represent the

postulated behavior of the production system and solve these for the values of the

output variables given the input quantities. However, one of the most widely used

approaches is that of discrete event simulation (DES), in which a detailed simulation

model of the production resource or facility is built and validated. This approach
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will be discussed in a later chapter. A closely related approach is the use of detailed

scheduling algorithms that develop detailed schedules for the loading of production

resources over time, and thus describe their output.

The primary difficulty with the forward approach is that of the computational

burden required to obtain a sufficiently accurate estimate of the output trajectory.

This is mainly because the two aforementioned popular techniques, simulation and

scheduling models, require increasing amounts of computational time as the number

of resources and number of different tasks to be scheduled increases. The forward

problem also suffers from the fact that it is descriptive in nature. Given a specified

input pattern, it describes a predicted output pattern from which one may calculate

desired performance measure estimates. It may also be possible to calculate other

quantities that are not dependencies of either the input or output patterns, such as

inventory levels over time if one has these two patterns in hand.

The backward problem, on the other hand, is inherently prescriptive in nature and

production planning in its classical form, as first formulated byModigliani and Hohn

(1955), addresses this problem. This approach seeks to determine an input pattern

over time to a production resource or system that meets some external demand at

a minimum cost. In this case, the formulation specifies the quantity of each type of

output demanded by the market and attempts to compute the pattern of input over

time that will meet this demand in some optimal or near optimal manner. The results

of this model prescribe the amount of each different type of input to be released over

time into the production facility along with the estimated output pattern produced

by this input pattern.
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The production planning function has as its aim the coordination over time of ac-

tivities between different parts of the organization and external partners like vendors

and customers. This coordination is generally carried out at discrete points in time

in industrial practice. It involves the consideration of available information and the

building of a plan of activities, specifically the release quantities, for a number of pe-

riods into the future, referred to as the planning horizon. This approach has been the

dominant paradigm in the literature for decades (Johnson and Montgomery (1974),

Vollmann et al. (2005)) and it renders a more aggregate approach in which one is not

trying to compute input and output trajectories in continuous time, rather the total

amounts of each associated with each of the discrete time periods in the planning

horizon. This permits the use of simplified aggregate constraints to represent the be-

havior of the production resources, which simplifies the resulting optimization models.

An immediate issue that is raised by the classical production planning formulation

described above is that of differing time scales. The discrete-time nature means that

the planning activity takes place periodically. Yet, the actual factory for which these

plans are generated operates in an essentially continuous manner. This temporal

discrepancy introduces the possibility that the aggregate solution produced by the

model for each time period (which could be days/weeks/months) may be impossible

to implement on the shop floor due to detailed resource constraints (varying on the

order of minutes/hours, etc) that have been ignored in the aggregation process. This

can be somewhat mitigated by reducing the length of the planning horizons, how-

ever, adapting a too short planning horizon can, and in practice often does, bring

about a new set of obstacles that are more severe than missing a demand target or

beyond the scope of the model’s influence. Thus, for a planning model to be able to

produce even moderately accurate estimates of the input pattern required to produce
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a desired output pattern and still maintain computational tractability requires that

it incorporate some model of how decisions that are made at the planning level will

affect the performance at the factory floor level during the planning horizon. Such a

model is called an anticipation function (Schneeweiss (2003)).

Both theory and industrial practice suggest that the development of effective an-

ticipation functions is a complex task for even simple production systems. A critical

quantity for this purpose is the cycle time τ , the time elapsing between the work

being released into the production system and its emergence as finished products

that can be used to fulfill demand. Under steady-state conditions the cycle time is

a nonlinear function of the resource utilization, which, in turn, is determined by the

input trajectory determined by the planning models. When we take into account that

production planning rarely treats systems that can be assumed to be in steady-state,

and consider the number of resources and tasks involved in planning an even mod-

erately sized production system, the fundamental nature of the challenges becomes

apparent. The cycle time of any item moving through the production system is nec-

essarily a random variable subject to some probability distribution that is a function

of the resource utilization, the release trajectory up to that point in time, and the

resources available to perform the necessary production tasks, among other factors.

Here, the term lead time shall be used to denote the estimate of cycle time - which is

usually the first moment - used in planning models.

This research will focus on the use of a continuous-time simulation model as an

effective anticipation function. This model uses systems of coupled partial differen-

tial equations (PDEs) derived from transport equation models to estimate the output

pattern of a production system from a given input pattern in continuous time. It
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should be noted, however, that this approach is neither the definitive nor the most

ubiquitous strategy employed in the field. This research will discuss, some more ex-

tensively than others, other prominent approaches to creating anticipation functions,

highlighting their strengths and weaknesses, and illustrate how the transport equation

models, specifically second-order hyperbolic models, are more effective in developing

these functions.

Aside from the aforementioned transport equation models there are three signifi-

cant models that are used as anticipation functions: Linear programming models with

fixed lead times, DES and scheduling models, and the relatively recent clearing func-

tion models. It will discuss here in the introduction fixed lead time models as they

are the simplest to understand and an exposition on them will serve to demonstrate

the difficulties involved in developing anticipation functions as well as to introduce

notation and concepts that will proliferate this document. The introduction will also

introduce clearing functions since these models are an active area of research and run

parallel to this research in many ways. Discussion of discrete event simulation (DES)

and scheduling models will be more limited. A more extensive discussion of DES

models is in a later chapter but only those aspects that pertain to model validation.

Scheduling models will not be expounded upon since they contribute little, if any-

thing, to this research approach–even though they are a very popular and effective

stratagem in production planning.

1.1 Linear Programming (LP) Models with Fixed Exogenous Lead Times

For simplicity, production planning models for a single resource producing a single

product is the starting point. Time will be divided into discrete periods t = 1, . . . , T
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that may not be of equal length. The goal is to determine the amount of material Rt

that must be released to the resource during period t in order to meet a deterministic,

known demand Dt in that period.

If a very short cycle time of the production resources being planned relative to

the length of the planning periods is maintained one can achieve the simplest type of

anticipation function. In this case, any material released for processing in period t is

assumed to become available for use by the end of this period. Denoting the amount

of finished goods available in inventory at the end of period t by It, the material

balance equation describing the flows of material into and out of the inventory is

given by

It = It−1 +Rt −Dt. (1.1)

Observe that one can dispense with the usual Xt variable denoting the amount of

production in period t, because Xt = Rt by assumption. Also, considerations of the

work in progress (WIP) can be ignored since the material remains in the system for

a very short duration due to the very short production resource cycle time. It is pos-

sible that the cycle time of the production resource may extend over more than one

planning period. In the event, a common assumption is that the lead time is fixed

and independent of the resource utilization, i.e. of the release quantities Rt. One

encounters this approach commonly in both inventory theory ( Zipkin (2000)) and

mathematical programming approaches to production planning (Johnson and Mont-

gomery (1974), Missbauer and Uzsoy (2011)), as well as the material requirements

planning (MRP) approaches used widely in industry (Vollmann et al. (2005)). The

stochastic equivalent of this model is a random lead time L with a time-stationary

probability distribution that is independent of the order quantities such as the case

7



treated by Eppen and Martin (1988). In this case, the amount Rt released into the

system during period t becomes available for use in period t+L. Denoting the output

of the production system in period t by Xt, then the relationship Xt = Rt+L and the

system dynamics are now described by the relationship

It = It−1 +Xt −Dt = It−1 +Rt−L −Dt. (1.2)

It is common in both the literature and in practice to assume that the fixed

lead time L corresponds to an integer number of planning periods. As it stands,

this model assumes that there is no limit on the amount of output the system can

produce in the given lead time. Most optimization models of capacitated production

systems will limit the total output of the system in a given period by imposing an

aggregate capacity constraint of the form Xt ≤ Ct, where Ct denotes the maximum

possible output of the production resource in a given period. Consider now, for the

purposes of exposition, that each unit produced requires exactly one time unit of the

resource, and that the resource capacity is expressed in terms of time units available

per planning period. Then, under this representation, the production resource can

produce any amount of output up to Ct units in any period, and no material remains

in the system for more than L time periods, regardless of the WIP level. Thus at the

end of period t, the production system in this model will have a WIP level of

Wt =
t∑

n=t−L+1

Rn −
t+L∑
n=t+1

Xn (1.3)

units of product. Note that only Rt−L units of WIP are actually available for the

resource to convert into output in period t.
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The issue of multiple time scales raises it head again when examining the aggregate

capacity constraint described above, even though the production resource cycle times

are short relative to the planning periods. This is due to the timing of event on the

shop floor that are lost in the aggregation. As an example, suppose that the planning

model recommends that Rt = 200 units be released into the system during period t,

where the length of the time period is one week. If the capacity of the resource is

Ct = 200 units per week, this will appear to be a feasible solution. However, if events

conspire to have all 250 units arrive in the middle of the week, it very well may not

be possible for the production resource to service all this material within the allotted

period t. Subject to these limitations, one can therefore, describe the behavior of the

production resource in a given period t with the set of constraints

Xt = Rt−L, (1.4)

It = It−L +Xt −Dt, (1.5)

Xt ≤ Ct. (1.6)

With these constraints in mind the conventional view of production capacity used

in MRP and most mathematical programming models results in a linear program of

the following form

min
T∑
t=1

(htIt + ctRt) (1.7)

where ht and ct are the per unit inventory cost and the per unit production cost,

respectively. This objective is subject to

It = It−L +Xt −Dt, (1.8)

Xt−τ ≤ Ct, (1.9)

Rt, It ≥ 0 (1.10)

for t = 1, . . . , T.
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The deficiency of this model is that it assumes that WIP will not accumulate in the

system over time; the releases in the period t−L constitute the entire WIP available

to the resource for service in period t. these releases are implicitly constrained not

to exceed the capacity, so the system is always able to process the entirety of its

available WIP in a single period. The remainder of the WIP, given by

t∑
n=t−τ+2

Rn, (1.11)

has no effect on the cycle time of the resource, which is always equal to the pre spec-

ified parameter τ . As far as this model of production capacity goes, it is completely

unrelated to the capacity Ct of the resource in a given period. All the lead time L

serves to do is delay the arrival of work at the resource after its release into the sys-

tem. It does not describe the behavior of the resource itself, which is assumed in the

capacity constraint to be able to service any amount of product up to the capacity

limit Ct in a given period.

Now what has been chosen is a simple objective function, that of minimizing the

sum of production and inventory holding costs over the planning horizon, and it must

be pointed out that most LP models encountered in practice will involve additional

constraints specific to the application domain under study as discussed by Hackman

and Leachman (1989). Yet absent these constraints, the above model does represent

the essentials of inventory balance between periods and aggregate capacity within

periods. Moreover, if it can be assured that there are nonnegative inventory levels

at the boundaries between periods then it is guaranteed that there will be nonneg-

ative inventory throughout the period. This is because all the rates are uniformly

distributed over a planning period. Of course, more elaborate objective functions are
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possible, but the above objective is sufficient to represent the production capacity

and system dynamics of this fixed lead time approach.

1.2 LP Models and Clearing Functions

The ability of LP models to capture the nonlinear relationships between workload

and cycle time for production systems that are governed by queueing is questionable.

This is especially true in the event that resources are heavily utilized of when the

utilization can vary significantly over time. The use of nonlinear clearing functions

representing the expected output of a production resource as a function of some mea-

sure of the workload, usually the amount of WIP awaiting service, have been proposed

in recent years and shows considerable promise. Only a brief overview of this topic

will be given here. For a more complete review, the interested reader is referred to

Missbauer and Uzsoy (2011).

In their most general form, clearing functions represent the relationship between

the expected output of a production resource in a given planning period and some

measure of the expected workload in that period. Several examples of clearing func-

tions in the literature are illustrated in Fig 1.1. The constant level function represents

the maximum allowable level of production. It does not have any lead time constraint

and assumes instantaneous production independent of the WIP level Wt. Graves

(1986) proposed a clearing function in the form of Xt = αWt, where the output Xt at

time t is considered a linear function of the WIP. This constant proportion function

assumes that a fixed lead time of 1/α can be maintained at all utilization levels. In

this model, it is assumed that the production facility will be operated in the range

that this fixed lead time assumption will hold. At high WIP levels, though, this func-

11



Figure 1.1: Examples of Clearing Functions. (Karmarkar (1989))

!
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tion may yield infeasible output values. To rectify this, it needs to be bounded by a

fixed output capacity less than or equal to the maximum production capacity. This

is shown in the figure as the combined clearing function. Both Karmarkar (1989) and

Srinivasan et al. (1988) have proposed concave, nondecreasing functions of the Wt as

nonlinear clearing functions.

To motivate the use of nonlinear clearing functions instead of linear or combined

clearing functions, consider a production resource that can be modeled on a G/G/1

queueing system in steady-state. The average number in the system, i.e., the expected

WIP W , is given by Medhi (2002) as

W =
c2a + c2s

2

ρ2

1− ρ
+ ρ, (1.12)

where ca and cs denote the coefficients of variation of the interarrival and service

times, respectively, and ρ is the utilization of the server. Setting c = (c2a + c2s)/2 and

rearranging Equation (1.12), one obtains a quadratic in W whose positive root yields

the desired ρ value. solving for ρ with c > 1 provides

ρ =

√
(W + 1)2 + 4W (c2 − 1)− (W + 1)

2(c2 − 1)
, (1.13)

which has the desired concave form. When 0 ≤ c < 1, the other root of the quadratic

will always give positive values for ρ. When c = 1 (as in an M/M/1 queue), Equa-

tion (1.12) reduces to ρ = W/(1 + W ), which is again of the desired concave form.

Then, for a fixed value of c the utilization, and therefore the throughput, increases

with increasing WIP, but at a decreasing rate due to the variability in the service and

arrival rates.

The use of clearing functions is not without its limitations, however. Output is

limited by a function of the expected total load in these models. Additionally, they
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do not consider the distribution of the arrival period of the work that is expected to

contribute to the load in period t. In his paper, Missbauer (2002) addresses these

issues and proposed an aggregate order release planning model that both determines

the amount of work released in each planning period and can manage different load

patterns without the need to include additional load balancing parameters.

In deriving clearing functions, one can use both analytical and empirical tech-

niques. Analytical techniques involve the use of steady-state or transient queuing

models whereas empirical techniques estimates from empirical data. Different au-

thors have implemented somewhat different approaches. Agnew (1976) proposed a

throughput function where the service rate is a function of the number in the queue

and suggested using it in an optimal control policy context. Spearman (1991) derived

a clearing function using closed queuing networks, conjecturing a relationship between

mean cycle time and WIP, and taking one observation from simulation to specify con-

gestion in the system. Asmundsson et al. (2006) formulated the clearing function as

a relationship between the expected throughput of a resource in a planning period

and the time-average WIP level at the resource during the period from empirical data.

Other authors (Karmarkar (1989), Missbauer (2002)) assumed that the clearing

function depends on the expected workload, which they define as the sum of the

work in progress available at the start of the period and the material released during

the period. Zäpfel and Missbauer (1993) used a simulation model to estimate clear-

ing functions based on the expected workload and observed discrepancies between

planned and actual WIP in simulation. Missbauer (2009) showed that the clearing

function depends on the work in progress at the beginning of each period due to the

transient behavior of the system and suggested a transient clearing function. Selcuk
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et al. (2008) derived transient clearing functions analytically using the Pollaczek-

Khinchine mean value formula and Little’s law.

The dearth of empirical data from industry–usually due to the inability to main-

tain controlled steady-state production for even one production level, let alone the

multiple levels required to obtain a comprehensive depiction of the resource–has lead

researchers to use DES models of production systems to obtain data on the workload

and output in each planning period. A notable exception to this is Haeussler and

Missbauer (2014), who fit clearing functions to data obtained from a manufacturer

of digital storage media. They highlighted considerable differences between the sim-

ulated and empirical data, most notably in that the empirical data show significantly

higher variability. This variability may be due to a variety of factors such as different

labor allocation policies, failures, etc. that are not included in the simulation model.

Asmundsson et al. (2006) used a visual technique for fitting piecewise linear seg-

ments approximating a concave clearing function and reported favorable results. In

a subsequent paper (Asmundsson et al. (2009)) they used linear regression to fit a

concave clearing function that was then piecewise linearized by solving a nonlinear

program. They found that the clearing functions thus obtained consistently overesti-

mate the capacity of resource and suggested an empirical technique to correct this by

ensuring that a specified percentage of the data points lies above the fitted function.

Kacar and Uzsoy (2010) used different multiple regression models and found that the

variable selection procedures do not seem to have significant effects on the quality of

the production plans obtained by using LP models based on different fitted clearing

functions. Albey et al. (2011) used nonlinear regression to fit their disaggregated

clearing functions, obtaining locally optimal solutions using a standard convex non-
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linear solver. The majority of this work has assessed the quality of the fits obtained

from the empirical data based on conventional statistical measures such as correlation

coefficients. Results indicate that this area requires further research; different clearing

function forms yielding very high correlation coefficients can result in quite different

performance when the production plans obtained by using them in an optimization

model are implemented.

Finally, in recent work, Kacar (2012) took a different approach to the fitting

of clearing functions where the parameters of the clearing functions are optimized

to yield the best production plans. They assessed the quality of the clearing func-

tion fits by solving an optimization model using the clearing function estimated with

that parameter set and then simulating the execution of the production plans in

the system under study. Their approach was to start from the clearing function fit

obtained from the linear regression and attempt to improve this through a simulation-

optimization approach, specifically the simultaneous perturbation stochastic approxi-

mation (SPSA) algorithm (Spall (1998)), as well as several heuristics that attempt to

reduce the required computational time. They found that significant improvements

were possible over the clearing functions obtained by regression; in other words, when

the clearing functions obtained by the SPSA approach are used to develop input tra-

jectories that are then disaggregated and simulated, the clearing functions obtained

by the SPSA approach have statistically better performance. In extensive computa-

tional experiments on a scaled-down semiconductor wafer fabrication process, Kacar

(2012) showed that the production plans using clearing functions fit by regression yield

statistically better production plans than the iterative approaches of Kim and Kim

(2001) and Hung and Leachman (1996). However, the use of the simulation optimiza-

tion to refine the parameter estimates used in the clearing functions yield substantial

16



improvements in realized performance over the clearing functions obtained from re-

gression alone. The additional advantage of the clearing function approach is that

the actual planning does not require any simulation, although extensive simulation

runs are necessary to obtain the data needed to fit the clearing functions.

1.3 Goal of the Research

The aim of this research is to study a second order continuum model and show

that it improves upon solving the forward production planning problem. Derived from

kinetic theory, a system of hyperbolic partial differential equations (PDE) has been

introduced that describe the evolution of conserved quantities (i.e. mass density and

velocity) over time and then constructs an outflux profile for specific input patterns.

In subsequent chapters, the theoretical and numerical groundwork that is used to

develop the model is discussed and a simulation methodology will be developed. Fol-

lowing this, in chapter 4, comes the introduction of the first continuum based models.

These include the original ordinary differential equation (ODE) fluid models as well

as the first order transportation models based on the concept of clearing functions.

The advantages of these models are demonstrable, but they also suffer from certain

incapabilities and inaccuracies.

The capstone of the work is found in chapter 5. After presenting the second order

model developed by Armbruster et al. (2006a) its ability to represent the average be-

havior for timed dependent stochastic inputs is studied and compared with the DES

and the first order model. The average over several thousand runs for a given scenario

of the discrete event simulations is used as the baseline for comparison. It will be
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shown that the second order model, in general, outperforms the first order models in

three fundamental scenarios for the time dependent influx: An instant step up/step

down of the arrival rate, an exponential step up/step down and periodic variation

of the average arrival rate. Specifically when the overall utilization of the system is

low or where the utilization is increasing, the second order model matches the DES

nicely since the model allows for the formation of rarefaction waves. For high and

decreasing utilization, the PDE performs less impressively due to the shock waves in-

herent in this model. The incorporation of a small diffusion source term can partially

mitigate the effects of these waves, yet they cannot be eliminated completely as the

dominant flow for the PDE must stay hyperbolic and a diffusion term with a mag-

nitude great enough to eliminate the shocks would violate this condition on the model.

Additionally, the long term stationary output for periodic input patterns matches

extremely well for periods on the order of two or more times the average cycle time.

Since changes in the influx for many real world factories (e.g. semiconductor facto-

ries) have timescales similar to this, these results are less removed from reality than

one might believe given the simplicity of the underlying assumptions.

Lastly, the comparative analysis of the DES and the PDEs points to fundamental

challenges for a kinetic theory based PDE model: The scenario involving cyclic input

patterns shows that i) hyperbolic PDEs are susceptible to resonances that are not

shared by their DES counterparts; and ii) fast time varying influx rates will result in

a low signal-to-noise ratio for the averages DES that cannot be resolved with a second

order deterministic model such as a PDE. We end the document with a summary of

the work as well as a brief discussion of future avenues of research and observations

made during initial forays.
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Chapter 2

MATHEMATICAL FUNDAMENTALS

2.1 Queuing Systems 1

A queuing system can be described as customers arriving for service, waiting in a

queue for service if it is not immediate, and upon entering service, leaving the system

after service has been rendered. For the majority of queuing systems there are six

basic characteristics of queuing processes that provide an adequate description of the

system utilized: (1) arrival pattern of customers, (2) service pattern of servers, (3)

number of service channels, (4) system capacity, (5) queue discipline, and (6) number

of service stages. Figure 2.1 illustrates a schematic for a general M/M/1 queueing

system.

Usually, the arrival and service processes are stochastic and so it is necessary to

know the probability distribution of the interarrival times (the reciprocal being the

arrival rate), that is, the times between successive arrivals and the service times which

is the length of time that the customer is in service (the reciprocal of this being the

service rate). One note must be made concerning the arrival and service patterns of

1Reference material for this section is drawn from Gross et al. (2008)

Figure 2.1: Schematic of a General M/M/1 Queueing System.
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the customers: How does the pattern change with time? A stationary arrival pattern

is one that does not change in time. This means that the probability distribution

describing the input process is time-independent. Conversely, a time-dependent dis-

tribution is called non-stationary.

Even in the event of a high service rate (relative to the arrival rate) there is a

non zero probability that customers will be waiting in the queue. Arrivals and de-

partures from the queue happen at irregular intervals; consequently, the pattern for

the length of the queue cannot be assumed without both the arrival and service pro-

cesses being deterministic. It follows that the probability distribution for the queue

length depends on both processes which are frequently, but not always, assumed to

be independent.

Generally there are three system responses of interest for a given queuing system:

(1) some measure of the waiting times for a customer; (2) a description of the manner

in which customers may accumulate in the system; (3) a measure of the downtime

(idle time) of the servers. Because stochastic elements comprise the majority of queu-

ing systems, these measures are random and hence their probability distributions are

highly desirable. However, it is quite difficult to determine the precise distributions

for these measures for many systems even in steady-state. Luckily, the expected val-

ues often provide sufficient understanding of the system responses and can sometimes

be more easily obtained.

The waiting times for customers come in two types, the time that a customer

spends in the queue waiting until service and the total time that a customer is in the

system (queue plus service). Correspondingly, there are two types of accumulation

20



measures also. Those are the number of customers in the queue at any given time and

the total number of customers in the system at any given time. Finally, measuring

the idle time of the servers can include either the time that any particular server is

down (idle) or the time that the entire system is devoid of customers.

Let λ denote the mean arrival (influx) rate of the customers entering the system

and µ as the mean service rate. Given that the average influx of customers is λ and

that each one requires 1/µ time units to be serviced (again, on average) a fundamen-

tal measure of effectiveness the system is the utilization ρ ≡ λ/µ which is the average

number of customers in service in steady-state. Note that this measure is only defined

for ρ < 1. Obviously when ρ > 1 the average influx rate exceeds the average service

rate and the queue becomes unstable as time → ∞. Less obvious is that the same

occurs when ρ = 1. 2

The probability distribution for the total number of customers in the system

at time t, N(t), is the sum of the number of customers in the queue, Nq(t), and

the number of customers currently in service, Ns(t). Let pn ≡ Pr{N = n} in be

the respective non-steady-state and steady-state probabilities for the number in the

system. Two useful measures (expected-value) for a single server queuing system are

the mean number in the system

W ≡ E{N} =
∞∑
n=0

npn, (2.1)

and the mean number in the queue,

Wq ≡ E{Nq} =
∞∑
n=2

(n− 1)pn. (2.2)

2Unless both the arrival and service rates are deterministic and perfectly scheduled.
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In the early 1960s, John Little [Little 1961] discovered a powerful relationship

between the steady-state mean system sizes and the steady-state customer waiting

times as follows. Let Tq be the time that a customer spends waiting in the queue

prior to service and Ts the length of time that a customer spends in service. Then the

total time, T , spent in the system for a customer is T = Tq+Ts. Since the arrival and

service rates are stochastic, T , Tq, and Ts are all random variables with first moments

τ , τq, and τs, respectively. Then Little’s formulae are

W = λτ (2.3)

and

Wq = λτq. (2.4)

These results along with the fact that E{T} = E{Tq}+E{Ts} ⇔ τ = τq + 1/µ show

that it is only necessary to find one of the four expected-value measures above for a

queue in steady-state.

A simple yet relevant type of queue for which one can determine the steady-state

probabilities is the M/M/1 queue as illustrated in Figure 2.1. The M/M/1 queue as-

sumes exponential inter arrival times, a single server with exponential process times,

no buffer cap, and a first-come first-served queue protocol. Because it deals with an

exponential distribution, knowledge of the mean arrival and service rates is sufficient

to completely describe these distributions. Furthermore, the memoryless property

of the exponential distribution allows one to express the state of the system via one

number, N , representing the number of customers in the system. The associated

probability distribution for the number of customers in an M/M/1 system in steady-

state is pn = (1− ρ)ρn.
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Now that the steady-state probability distribution has been established, the mea-

sures of effectiveness for theM/M/1 queuing system may be calculated. The expected

value of the number of customers in the system in steady-state, W , is

W ≡ E{N} =
λ

µ− λ
(2.5)

The expected value of the number of customers in the queue in steady-state, Lq, is

Wq ≡ E{Nq} =
λ2

µ(µ− λ)
. (2.6)

Finally, the expected steady-state wait time for a customer in the system, W , and

the expected steady-state wait time for a customer in the queue, Wq can be found

using the Little formulae. Respectively, they are:

τ =
L

λ
=

1

µ− λ
(2.7)

and

τq =
Lq
λ

=
λ

µ(µ− λ)
(2.8)

2.2 Hyperbolic PDEs 3

The use of hyperbolic partial differential equations to model wave motion or advec-

tive transport of substances is so effective that this class of PDEs is often attributed

the moniker of ”wave” equation or ”transport equation. Although, the phenomena

of waves and advection arise from different physical principles, mathematically ad-

vection and wave motion (unidirectional, that is) are identical. This section presents

3Reference material for this section is drawn from LeVeque (1992).
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some basic results from the theory of systems of hyperbolic PDEs that form the cor-

nerstone of the forthcoming titular model.

2.2.1 General

The simplest form of a hyperbolic system of PDEs in one spatial dimension with

explicit dependence on time is linear, first-order homogeneous with constant coeffi-

cients:

ut(x, t) + Aux(x, t) = 0 (2.9)

Here u : R×R→ Rm is an m dimensional vector representing the unknown functions

that one wishs to determine and A is an m × m matrix of constants. The matrix

A must have a non-degenerate eigensystem with real eigenvalues in order for this

equation to be hyperbolic.

The properties of the matrix A allow us to decompose it as A = RΛR−1 where

R is the matrix of right eigenvectors and Λ the corresponding vector of eigenvalues.

This equation (2.9) can be solved by solving the fully decoupled system

wt + Λwx = 0 (2.10)

where w = R−1u. The pth equation of (2.10) is the scalar advection equation

wpt + λpwpx = 04 (2.11)

which has solutions of the form

wp(x, t) = w̄p(x− λpt) (2.12)

4Here p is not a power but an index denoting a single equation from the system.
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which are the pth components of w̄(x) ≡ R−1ū(x) for some given initial data u(x, 0) =

ū(x).

The solution

u(x, t) =
m∑
p=1

wp(x, t)rp (2.13)

illustrates why (2.9) is called the transport equation. Hyperbolicity guarantees that

the form of u(x, t) at the point x at time t can be seen as a linear combination of

right eigenvectors r1, . . . , rp and thus is the superposition of waves propagating with

velocities λp. The strength of each wave is given by the coefficients wp(x, t) and

these functions are called the characteristic variables. As time evolves, the eigen-

coefficient w̄p(x) ≡ wp(x, 0) is advected with constant velocity λp along the curve

X(t) = x0 + λpt. The curves X are called the characteristics of the pth family and in

the case of constant A are straight lines.

More generally, consider the system

ut + A(x)ux = 0 (2.14)

where the matrix A(x) now depends explicitly on the position x. If A(x) is diag-

onalizable with real eigenvalues for each x in a domain, then the system (2.14) is

hyperbolic in that domain. The solution to this system in the hyperbolic domain

can again be written as a linear combination of right eigenvectors, but in this case

the characteristics are not straight lines and rather they are solutions to a system of

ordinary differential equations (ODEs) derived from the decoupled system for w(x, t).
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2.2.2 Conservation Laws

An important subclass of hyperbolic PDEs are those called hyperbolic conserva-

tion laws. These are homogenous hyperbolic PDEs that model that conservation of

one, or many, quantities of interest.

One important quantity that is conserved in many physical problems- and in this

research also- is that of mass. Suppose there is a distribution of mass in one spatial

dimension x that is subject to an advection motion traveling in the positive x direction

which has a velocity profile ν(x, t) at the point x at time t. Define a density ρ(x, t)

at point x and time t in a given interval [x1, x2] in the following manner

mass in [x1, x2] at time t =

∫ x2

x1

ρ(x, t)dx (2.15)

Then, assuming that there are no mass sources or sinks, the mass in this interval may

only change via flow through the endpoints x1 or x2. The flux, F (x, t), is the rate

of flow of mass at the point x at time t. That is

F (x, t) = ρ(x, t)ν(x, t) (2.16)

Therefore, over the interval [x1, x2], the rate of change of mass is given by

d

dt

∫ x2

x1

ρ(x, t)dx = F (x1, t)− F (x2, t) = ρ(x1, t)ν(x1, t)− ρ(x2, t)ν(x2, t) (2.17)

Equation (2.17) is known as the integral form of the mass conservation law.

Assuming that both ρ and ν are differentiable functions of x and t, one can derive

the differential form by observing that for arbitrary x1, x2, t1, and t2 the equation∫ t2

t1

∫ x2

x1

{
∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)ν(x, t))

}
dxdt = 0 (2.18)
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must hold true. Hence,

ρt + (ρν)x = 0 (2.19)

as the resulting differential form of the conservation law for mass.

More generally, in one spatial dimension, x, and time dimension, t, the simplest

hyperbolic system of conservation laws takes the form

ut(x, t) + F (u(x, t))x = 0. (2.20)

Again u : R × R → Rm is an m dimensional vector representing the unknown

functions of conserved quantities that one wishes to determine and the vector-valued

function F : Rm → Rm is the flux of these quantities. Rewriting equation (2.20) in

quasilinear form gives

ut + F ′(u)ux = 0. (2.21)

Equation (2.21) will be hyperbolic if the Jacobian F ′(u) has real eigenvalues corre-

sponding to a linearly independent set of eigenvectors. This is not unlike the constant

or variable coefficient case.

2.2.3 Nonlinearity and Burger’s Equation

While the differentiability of u(x, t) was assumed in the derivation of the differen-

tial form of hyperbolic conservation laws, it turns out that spatial smoothness is not

a necessary requirement to construct a ”solution” to the PDE. As illustrated, the so-

lution u(x, t) along a characteristic depends on one value ū(x). For linear hyperbolic

equations, singularities in ū(x) are maintained with the same order by (u(x, t) and

propagate along the characteristics. Nondifferentiability in ū at some point x preludes

u(x, t) from being a classical solution the the differential equation everywhere. Yet,
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u(x, t) does still solve the integral form of the conservation law. Functions u(x, t) that

satisfy the integral form, but not necessarily the differential form of the conservation

law are know as weak solutions 5 .

The integral form of the conservation law (2.17) has a more fundamental physical

basis than the differential form (which is derived from it) and nonsmoothness of initial

data does not invalidate the efficacy of the model. Yet, solving the integral form is

more difficult than solving its corresponding differential form. One way in which

the generalized solution can be constructed for nonsmooth initial data ū(x) is by

approximating such data with a sequence of smooth functions ūε(x) where

‖ū− ūε‖1 < ε (2.22)

as ε→ 0. Here ‖ · ‖1 is the L1 norm.

The linear PDE along with smooth initial data ūε will have a smooth classical

solution uε(x, t) for all t ≥ 0. One can then take as the generalized solution the limit

u(x, t) = limε→0ū
ε(x, t) (2.23)

This procedure for smoothing works well for linear hyperbolic PDEs, but smoothing

the initial data will not work for nonlinear problems. One can, though, modify (2.9)

by adding a small diffusive term and observe that the original conservation law can

be regarded as an approximation to the advection-diffusion equation

ut + Aux = εuxx (2.24)

for ε very small. The solution to (2.24), uε(x, t), with initial data ū(x) is the an ele-

ment of C∞((−∞,∞)× (0,∞)) regardless of the smoothness of ū(x) since the PDE

5In some literature these are also known as generalized solutions
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is parabolic. The generalized solution is then obtained by taking the limit of uε(x, t)

as ε→ 0 as before. This type of approach can work for nonlinear problems.

Consider the nonlinear scalar equation

ut + F (u)x = 0 (2.25)

where the flux function is given by

F (u) =
1

2
u2 (2.26)

This equation is known as inviscid Burger’s equation. It is about the simplest model

including the nonlinear, viscous effects of fluid dynamics. It also illustrates an issue

that is not found in linear equations: Nonlinear equations can generate discontinuous

solutions even with smooth initial data.

2.2.4 Riemann Problem

The Riemann problem is a conservation law combined with piecewise constant

initial data having a single discontinuity. Taking Burger’s equation, for example,

ut + uux = 0 (2.27)

together with initial data

u(x, 0) = ū(x) =


ul if x < 0,

ur if x > 0

(2.28)

the general solution has a form that depends on the relationship between ul and ur.
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Case I. ul < ur

In this case there is a weak solution called a shock wave which has the form

u(x, t) =


ul if x < st,

ur if x > st

(2.29)

where

s =
ul + ur

2
(2.30)

is the shock speed. The shock speed is the speed at which the discontinuity travels

and the characteristics in each region where u is constant propagate into the shock.

Figure 2.2 is an example of such a shock solution.

Case II. ul > ur

There are infinitely many weak solutions to (2.27) in this case and one of them

happens to be (2.29), (2.30). However, this solution is not stable to perturbation in

this case; any added viscosity or slight smearing of the initial data will completely

change the solution. A stable weak solution to (2.27) is the rarefaction wave

u(x, t) =


ul if x < ult

x/t if ult < x < urt

ur if x > urt

(2.31)

This solution also happens to be the vanishing viscosity generalized solution. Fig-

ure 2.3 illustrates an example rarefaction wave solution.
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More generally, for arbitrary flux function F (u) the relationship between the two

constant states ul and ur and the shock speed s is encapsulated by the Rankine-

Hugoniot (R-H) jump condition:

F (ul)− F (ur) = s(ul − ur) (2.32)

For scalar equations, solving for s is quite easy, yet for systems of equations, F (ul)−

F (ur) and ul − ur are vectors with scalar s. It is not always possible to retrieve s

from the R-H condition (2.32) unless we restrict the types of jumps allowed at the

discontinuity, namely to those for which the above vectors are linearly independent.

The validity of the R-H conditions (2.32) is not restricted to piecewise constant

initial data. These results hold when considering a propagating shock with initial

data the is smooth in the regions to the left and right of the discontinuity. In this

case, the immediate values to the left and right of the discontinuity are denoted as ul

and ur, respectively.
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Chapter 3

SIMULATION

Effective simulation is an immediate issue when investigating stochastic phenom-

ena. In order to be effective, the simulation must both accurately recreate the proba-

bilistic mechanisms of the model and generate the record of the quantities of interest

as they evolve over time. However, even a relatively simple probabilistic model can

suffer from a complex logical structure of its elements that precludes an obvious strat-

egy for tracking the model’s evolution and, consequently, the values of the quantities

desired. An approach that has become increasingly popular is built around the idea of

”discrete events”. This type of approach is called a discrete event simulation (DES)

approach. This chapter discusses the basics of a specific DES program utilized in this

research known as χ and how the research incorporates this approach as the baseline

for testing the efficacy of the second order transport model. For a more comprehen-

sive discussion of discrete event simulation the interested reader is referred to Ross

(2013) or Kelton and Law (2000).

In Chapter 2 the M/M/1 queueing system was introduced. For constant arrival

and service (machine) rates, this system is completely understood and one can deter-

mine many of its salient features, especially in the steady-state. Yet, constant rate

behavior is neither of much interest from modeling perspective nor is it very useful

in a large variety of real-world situations. What is more pertinent is the behavior of

such a queueing system as the arrival and/or service rate vary in time. Since this

behavior is less well understood reliance on simulation as a representation of the true

behavior of the system is taken.
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This research focuses on a selection of three distinct, non-constant arrival (influx)

patterns: (1) Exponential Relaxation; (2) Finite jump (the Step); (3) Periodic (the

Cycle). In this chapter, the real-world motivation for these influx patterns will be

discussed and the important features of the resulting departure (outflux) patterns

investigated. Additionally, an overview of the techniques employed to construct the

simulations and generate the data will be provided.

3.1 Discrete Event Simulation

The M/M/1 queueing system is an example of a birth-death process. The defining

characteristic of such a process is that the state of the system changes only through

a birth (arrival) or a death (departure). Consequently, one can obtain a complete

picture of the system as it evolves over continuous time by only tracking those dis-

tinct state changing events and the times at which these events occur. These discrete

events are recorded in an event list and one can simulate an M/M/1 queueing system

by generating such a list. Naturally, this type of simulation is called a discrete event

simulation (DES) and it is the type of simulation technique employed in this research.

The DES approach has at it’s core two key elements: (1) variables; (2) events.

As to the variables, there are three that are generally encountered, namely, a time

variable, a counter variable and a system state variable. The time variable is used to

track the amount of time (simulated) that has elapsed since the start of the simula-

tion. The counter variable is used to label the number of times that a certain event

has occurred or as an index in a sequence of successive events.. The system state

variable records the state of the system at specified times.
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For most DES the events are changes in the state and counter variables. When

an event occurs, the current time is recorded and the variables updated. One also

may record at this time additional data such as output, input, etc. Since these events

occur at punctuated times, rather than over intervals they are discrete hence the

simulation’s moniker. Moreover, since the systems do not change until an event,

record keeping costs can be minimized without a loss of information. Virtually any

birth-death process is amenable to accurate simulation via discrete events and as a

birth-death process, the M/M/1 is no exception.

While there are some significant differences among the various software programs

used in DES, at their core, they are functionally equivalent. Recall Figure 2.1. Events

are generated by two processes separated by a queue (buffer) thats stores the arriving

lots until they can enter the machine:

A: arrival process: Let ta be the time of the current arrival. Then at t = ta two

things happen: 1) a lot is sent to the queue; 2) a new lot is created and a new inter

arrival time τA is pulled out of the exponential distribution with parameter 1/λ. The

next arrival event is then calculated as ta = ta + τA and put into the event list.

M: service (machine) process: Let te be the time that the current lot in service ex-

its the server. Then at time t = te the following things happen: 1) The part currently

in the machine exits the machine (either to the exit process or to another machine

or queue); 2) The machine becomes available again; 3a) If the queue is empty, the

machine idles until the queue is non-empty again. Then continue with 3b); 3b) If the

queue is non-empty, the machine pulls the next part from the queue as determined

by the queue priority (if the queue priority is FIFO, then this would be the oldest

part); 4) The machine pulls a service time τM out of the exponential distribution with
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parameter 1/µ. The next exit event is then calculated as te = te + τB and is put into

the event list.

Now at the end of every arrival or machine process an event occurs and the event

list is updated and reordered chronologically starting with the time of the most re-

cent event. The process that generated the event is then restarted. Both the arrival

process and machine process are run simultaneously if they are able. The arrival and

machine processes are easily the most important aspects of any DES as the buffer -

in it’s simplest form - is nothing more than a storage array.

3.1.1 Generating a Poisson Process

Because of their paramount importance in the dynamics of the M/M/1 queueing

system we must take care to simulate the arrival and machine processes in a manner

that is consistent with the influx and service profiles that we wish to represent. Our

approach to the simulation will be very dependent on the time varying nature of these

rate profiles with the arrival rate λ generally varying in time and the service rate µ

always constant.

Consider the arrival process with parameter λ > 0. For constant λ this process is

said to be a homogeneous or stationary Poisson process. Formally, let N(t) (t ≥ 0)

be a stochastic process that tracks the number of events that have occurred up to

time t. Such a process is called a counting process. Then the homogeneous Poisson

process is defined as:

Definition 3.1 A homogeneous Poisson process N(t) is a counting process with the

following additional properties:
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Step Subroutine

1 t = 0, i = 0.

2 Generate random number ta ∼ Exp(1/λ).

3 t = t+ ta. If t > T , break.

4 i = i+ 1, E(i) = t.

5 Return to Step 2.

Table 3.1: Algorithm for Creating the Event List E for a Homogeneous Poisson
Process with Rate λ.

• N(0) = 0

• Stationary increments - the number of events in a given interval depends only

on the length of the interval

• Independent increments - the number of events in disjoint intervals is indepen-

dent

• N(t) ∼ Poisson(λt)

Simulating such a process is quite easy and Table 3.1 provides a general algorithm

for an event list E using DES for the first T time units. In the algorithm, i is the

counter variable denoting the number of events occurring by time t and E(i) is the

ith event time.

Relaxing the Poisson process assumption of stationary increments by letting the

arrival rate vary with time yields a nonhomogeneous Poisson process:

Definition 3.2 A nonhomogeneous Poisson process N(t) is a counting process with

the following additional properties:

• N(0) = 0

38



• Independent increments - the number of events in disjoint intervals is indepen-

dent

• N(t) ∼ Poisson(
∫ t
0
λ(s)ds)

In simulating a time varying influx λ(t), 0 ≤ t ≤ T , it might seem intuitive to

replace λ with the desired function λ(t) in the above algorithm Table 3.1. That is,

given an arrival at time ti generate the next arrival by sampling from the distribution

Exp(λ(ti)) instead of Exp(λ) like in the constant case. However, this is not a valid

approach. 1 A standard approach is that given by Lewis and Shedler (1978) called

the thinning or random sampling method. An important property of Poisson queues

should be remarked on first, though.

Poisson-expoenential arrival processes are often referred to as completely random

arrivals in queueing literature. This colloquialism suggests that a uniform distribution

is somehow involved which appears to be inconsistent with the Poisson-arrival-rate-

expoenetial-interarrival-time pattern. Yet it is true; a uniform distribution is involved

in this stochastic process. It is the times at which the arrivals occur that is uniformly

distributed, not the interarrival times. Proof of this can be seen by examining the

conditional probability density’s differential element and applying the definition of

conditional probability.

Recall that the order statistics of k uniform random variables on [0, T ] has a joint

density of k!/T k. Let τ1 < τ2 < · · · < τk be the corresponding times of k arrivals that

have occurred in an interval [0, T ]. Then

1This will be illustrated in the comparison of the exponential and step scenarios to come.
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fτ (t|k)dt ≡ f(t1, t2, . . . , tk|k arrivals in [0, T ])dt1dt2 · · · dtk

≈ Pr{t1 ≤ τ1 ≤ t1 + dt1, . . . , tk ≤ τk ≤ tk + dtk|k arrivals in [0, T ]}

=
λe−λdt1dt1λe

−λdt2dt2 . . . λe
−λdtkdtke

−λT−dt1−dt1−···−dtk

(λT )ke−λT/k!

=
k!

T k
dt1dt2 · · · dtk

Hence,

fτ (t1, t2, . . . , tk|k arrivals in [0, T ]) =
k!

T k
.

The above uniform property of the Poisson process is an important and well

known one in queueing theory as it gives rise to the heavily utilized PASTA (”Pois-

son arrivals see time averages”) property for queues. If a stochastic process X(t) is a

queueing system then the expected value of any parameter of the system 2 as seen

by a Poisson arrival will be equivalent to the long run average value of that parameter.

The thinning method takes advantage of the fact that arrivals governed by a ho-

mogeneous poisson process have arrival times that are uniformly distributed. This is

done by randomly selecting the arrival event times of a homogeneous Poisson process

having rate λ∗ with probability λ(t)/λ∗. In other words, an arrival at time t is se-

lected with probability λ(t)/λ∗ and unselected arrivals are discarded. The choice for

λ∗ depends on the simulation of interest, but since this research restricts λ(t) to be

bounded, a simple and efficient choice is to let λ∗ = max(λ(t)), 0 ≤ t ≤ T .

2Recall that these are often the measures of effectiveness of the queues as discussed in Chapter
2.
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Step Subroutine

1 t = 0, i = 0.

2 Generate random number ta ∼ Exp(1/λ).

3 t = t+ ta. If t > T , break.

4 Generate random number x ∼ Uniform(0,1)

5 If x ≤ λ(t)/λ, set i = i+ 1, E(i) = t.

6 Return to Step 2.

Table 3.2: Algorithm for Creating the Event List E for a Nonhomogeneous Poisson
Process with Rate λ(t).

In implementation, a stationary Poisson process is generated with constant rate

λ = λ∗ = max{λ(t)} and arrival times E(i) = ti, then ”thin out” the ti’s by only

accepting into the final event list ti with probability λ(ti)/λ. The result is that ti’s

have a higher likelihood of being accepted as an arrival event if λ(ti) is high and are

rejected with a higher probability if λ(ti) is low. This reflects the desired property

that arrivals will occur with greater frequency in intervals for which λ(t) is high as

opposed to when it is low. A simple and convenient recursive algorithm is provided

in Table 3.2(we retain the same notation as is Table 3.1). 3

As mentioned, the thinning method is quite simple and very efficient for the arrival

rates used in this research. Figure 3.1 shows a sample run using this method for the

piecewise constant λ(t) (green) given by

3For brevity, we assume the the arrival ti−1 has been validly generated and focus just on the
generation of the next arrival ti.
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Figure 3.1: Example of Thinning Method for Single Run with λ(t) Given by (3.1).

λ(t) =


2 0 ≤ t < 15,

0.5 15 ≤ t < 35,

1.2 35 ≤ t

(3.1)

The blue stars represent arrivals corresponding to the homogeneous Poisson process

with rate parameter λ∗ = 2. Those stars that are encircled (red) are the arrivals

that have been accepted. As can seen from this diagram all arrivals occurring before

t = 15 are accepted with probability 1. For t ∈ [15, 35) the acceptance probability

drops to 0.25 (λ(t)/λ∗) and the number of acceptances is greatly reduced. Finally,

for t ≥ 35 the acceptance probability increases to 0.6 and more arrivals are accepted

then in the previous regime, albeit not as much as in the first interval, as desired.

3.2 Experimental Scenarios and χ

This chapter closes out with a description of the three experimental scenarios

against which the second order model was tested. The DES coding program will
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be discussed in brief detail along with how it was used to generate the production

flows of the M/M/1 queue. Finally, the notable features of the simulations for these

scenarios will be illustrated and will be revisited in later chapters.

Each of these scenarios has a foundation in real world factory dynamics. Ob-

viously, the M/M/1 queue is a highly simplified stand-in for a factory dynamic,

however many behaviors and processes of factories when examined in aggregate have

prominent features in common with queueing systems. Arrival rates and internal ser-

vice rates of the factory are stochastic. Machine failures, labor issues and production

resource disruptions etc. are common examples of random influences affecting the

flow of production through a factory. No specificity to any particular influences of

interest will be made, however. Rather, these influences and others are incorporated

in the stochastic processes used for arrival rates and service rates. Additionally, pro-

duction resources often are not immediately passed into service upon their arrival.

Rather, they are taken up only when service is available. Local inventory systems are

implemented in most factories to manage the practical logistics due to the time dif-

ference between the arrival events and their ability to enter service. Naturally, these

inventory systems are the factory queues and this is what queueing system models

built to represent.

The choice for Poisson as the arrival and service process is not entirely for math-

ematical ease, although it is surely an attractive feature given the breadth of theory

pertaining to the M/M/1 queue and Poisson processes in general. It is a reasonable

assumption that for generalized factories of sufficient size, the stochastic influences

are not only independent of each other, but that they are also memoryless. A machine

going down does not, in general, affect the rate of another machine performing the
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same task on a different production line. Neither does a production resource shortage

become more or less probable as the time since that last shortage occurred increases.

Of course, this assumption is not always the case, but it is ubiquitous enough that

using Poisson processes as an aggregate approximation of factory arrival and service

rates is not wholly academic.

In this paper, the simulated M/M/1 queuing system generated by the computer

program χ (Chi) is considered as the baseline against which the hyperbolic continuum

model is compared. The creation of one event list is called a run and the total number

of runs for a given input pattern is called a simulation. In order to derive useable

statistics, a histogram is built with the runs in the simulation. The simulated-time

interval [0, T ] for the DES is partitioned into equispaced intervals of width ∆t = 0.1.

Over each interval [ti, ti+1) the number of specific events that occurred in this interval

is counted. 4 This is then divided by the total run count of that particular simu-

lation. This histogram is then used as the representative profile for the flow though

the queueing system. In each of the following scenarios, the statistics are gathered

over a sample size of 40,000 runs per simulation.

3.2.1 Scenario 1: Exponential Relaxation

The first scenario considered is the exponential relaxation input pattern. Suppose

that the initial lot arrival rate of λ1 constant. At a prescribed time T0 the lot arrival

rate is changed to a new constant rate λ2 but this rate only affects those lots subse-

quent to the first arrival post T0. In other words, if ti is the last arrival event before

4By specific, we mean that if we are generating the outflux pattern, for example, we count only
the corresponding exit events of the simulation.
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time T0 then arrival ti+1 occurs after T0 with an interarrival time corresponding to

rate λ1 but all arrival events after ti+1 have an interarrival time depending on λ2.

This setup gives an arrival pattern of the following form:

λ(t) =


λ1 if t ≤ T0

(λ1 − λ2)e−λ1(t−T0) + λ2 if T0 < t

(3.2)

since it is necessary that limt→∞ λ(t) = λ2 and λ(T0) = λ1. Figure 3.2 provides an

illustration of λ(t) for a typical increasing and decreasing transition alongside the

relevant DES output data.

As an aside, it should be noted that one is not required to use a nonhomogeneous

Poisson process simulation approach in this case even though λ(t) is non constant.

This is because λ(t) has been constructed to be piecewise constant with a single jump

discontinuity. One could, therefore, simulate the arrival process by first simulating

a homogenous Poisson process with rate λ1 for arrivals up to and including arrival

ti+1, simulating arrivals after ti+1 with rate λ2, and then creating the arrival event

list from a concatenation of these individual lists.

For a factory the exponential relaxation input pattern could represent a decision

by management to reduce the influx to the new level λ2 at time T0 but is restricted in

practice from doing so immediately. This delay could be due to supply contracts that

must be fulfilled at the original level or that arrivals are the output of other production

facilities which are, for some reason, unable to alter their production schedule until

their current WIP is completed. This manifests itself in a slow decay/growth to the

new rate level λ2 as individual production resource streams switch over to this new

level in time.
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Figure 3.2: DES and Exact Input Patterns for Exponential Relaxation Scenario.

3.2.2 Scenario 2: The Step

The step scenario is virtually identical in setup to the exponential relaxation case

with a significant exception: At T0 the rate λ(t) changes from λ1 to λ2 without de-

laying until arrival ti+1. This yields a true step-like behavior in λ(t) as seen in Figure

3.3 for representative increasing/decreasing transitions.

Unlike in the exponential case, in order to produce a valid DES for this scenario

one is required to use a simulation approach such as thinning that is tailored to non-
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Figure 3.3: DES and Exact Input Patterns for Stepwise Transition Scenario.
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homogenous Poisson processes even though these scenarios are very similar. Point in

fact, if an attempt to simulate this type of nonhomogeneous Poisson arrival process

was made in the naive manner mentioned earlier in the chapter by simply replacing

λ with λ(t) the result would be the previous exponential pattern. This is because

the arrival ti+1 would have an arrival rate dependent on λ(ti) = λ1 while subsequent

arrivals are dependent on the rate λ(ti+1) = λ(ti+2) = · · · = λ2.

In a factory, an example of how a step type input pattern could result would be

in the case of a partial cutoff of the production resource. This should be considered

separate from the supply disruptions that give rise to the stochasticity of the arrival

process and are aggregated into the arrival flow.

3.2.3 Scenario 3: The Cycle

The final scenario that is considered is also one with a nonhomogeneous arrival

rate. It is the cyclic input pattern. Starting from an initial constant rate λ1 at some

prescribed time T0 the input pattern λ(t) steadily oscillates with a given amplitude

between the initial rate λ1 and a minimum rate λ2 . Precisely, the arrival rate is given

by

λ(t) =


λ1 if t ≤ T0

λ1−λ2
2

cos(2πt
Cτ

) + λ2+λ1
2

if T0 < t

(3.3)

where τ = 1/(µ − λ1) is the steady-state lot cycletime corresponding to the initial

arrival rate λ1 and service rate µ. The additional parameter C is used to generate

DES inputs for various periods yet with the same amplitude.

Cyclic behavior is widespread in industry. In many industries, the supply of pro-
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Figure 3.4: DES and Exact Input Patterns for Cyclic Scenario.

duction resources varies periodically over time. For simplicity, elementary cosine and

sine functions were chosen for the cyclic behavior. In addition, from a mathemati-

cal perspective, more complicated input patterns may be approximated with linear

combinations of these functions and an analysis of this hyperbolic model with these

input patterns is a necessary first step. Figure 3.4 shows a few of the experimental

input patterns.
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Chapter 4

THE CONTINUUM MODEL

There has long been a tradition of aggregating the stochastic flow of products

through a factory in two ways:

• averaging over time or over ensembles to convert the stochastic process into a

deterministic production process and

• converting work in progress (WIP) from integer variables, labeling individual

parts, into a real variable describing a product continuum like a fluid.

Together these two aggregation steps convert queuing network models into ordi-

nary differential equation (ODE) models known as fluid models. Queuing networks

are analyzed using network equations linking the random variables describing the

state of the network. Fluid equation models are the deterministic equations replacing

the random variables with their means. Fluid models conceptually arise from treating

the jobs in a queuing network as a continuous fluid that flows, via inflow and outflow

rates, through a finite number of reservoirs (the queues),

dqi
dt

=


µi−1 − µi if qi 6= 0,

0 if qi = 0

(4.1)

for i = 1, . . . , N and µ0 = λ, where qi is the WIP waiting for step i, µi is the pro-

cessing rate of step i, and λ is the start or arrival rate into the production process.
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The resulting models are hybrid dynamical systems: sets of ODEs for the time evo-

lution of the queue lengths as a function of time. The appeal of fluid models is that

they are deterministic dynamical systems that are well understood even though some

important issues related to the stability of queuing networks and the stability of the

associated fluid models remain unresolved for multi class queuing systems (Bramson

(2008), Dai (1995), Dai et al. (2004)).

Fluid models do not really behave like a fluid, because they still treat every pro-

duction process separately and hence model the production flow through discrete

steps. For long production lines with many steps, it makes sense to treat the produc-

tion steps as a continuum variable and in that way obtain a genuine fluid dynamical

description that treats the factory as a pipe and the parts flowing through the factory

as a fluid. In contrast to a real fluid, the spatial variable does not describe physical

space, rather it denotes the degree of completion of the part, that is, how far along

the part is in the system. Calling x ∈ [0, 1] the degree of completion (where x = 0

and x = 1 denote recent arrivals and departures, respectively), ρ(x, t) ≥ 0 describes

the density of parts at stage x at time t, and W (t) =
∫ 1

0
ρ(x, t)dx is the total WIP

in the factory. If the fluid moves with a velocity ν(x, t), then the flux is described

as F (x, t) = ρ(x, t)ν(x, t). Assuming that the defective products are sorted out after

the factory production process, there are no sources or sinks in a factory, the WIP

satisfies the mass conservation law:

dW

dt
= λ− µ, (4.2)

where µ is the overall mean production rate of the factory. By a standard argument

of transport equations LeVeque (1992) this integral conservation law is equivalent to
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a differential conservation law of the form

∂ρ

∂t
+
∂F

∂x
= 0. (4.3)

Because ν(x, t) ≥ 0, the fluid moves from left to right. Hence, the boundary condition

is set as the influx F (0, t) = λ(t); i.e. the local flux at stage zero is the arrival rate of

the parts into the factory. Together with an initial WIP profile ρ(x, 0) = ρ0(x) and,

this sets up a well-defined transport equation (hyperbolic) problem.

Using transport equations is an immediate improvement over the use of a clearing

function. A delay between the influx and the outflux in the factory is automati-

cally built into the model. The crucial modeling part affecting the lead time is the

associated flux model:

• A constant velocity like in the previous example corresponds to a constant delay

between the start and finish of an time, i.e. a constant lead time.

• A local flux at position x and time t depends only on the density around that

position x.

This is typically used in traffic flows and in its simplest form look like

F (x, t) = ν(ρ)ρ = ν0(1−
ρ

R
)ρ (4.4)

Equation (4.4) is known as the Lighthill-Whitham model and reflects the fact

that drivers slow down as the density of cars around them increases. That pro-

cess continues until the density becomes critical, ρc = R, and the velocity goes

to zero, indicating a traffic jam.
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• A global flux is used for a model that treats the whole factory as a single queue.

As a result, the velocity at position x at time t depends on the global quantity

of total WIP, i.e.
∫ 1

0
ρ(x, t)dx. For instance, an M/M/1 queue with arrival rate

λ and service rate µ can be analyzed completely in steady-state. The resulting

characteristics for the relationships between cycle time τ , queue length W , and

influx are

F (ρ(x, t)) =
µρ(x, t)

1 +
∫ 1

0
ρ(x, t)dx

=
µρ(x, t)

1 +W (t)
, (4.5)

which in steady-state reduces to a clearing function of the type

F (W ) =
µW

1 +W
. (4.6)

Hence a PDE model combining a transport equation with an M/M/1 flux model

makes the following assumptions about the production process:

• The velocity of transport, i.e. the speed at which a part moves through the

production line, depends on the amount of WIP in the factory.

• The velocity at a given time is the inverse of the cycle time for an M/M/1

queuing system with the steady-state WIP equal to the current total load in

the factory.

• The velocity is the same at every production stage, depending on the total WIP

in the factory.

A slight generalization of this approach leads to a very usable model: By deter-

mining the state equation for the velocity ν = V (W ), either through more elaborate

queuing theory models, through measurements in the factory, or through detailed
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Figure 4.1: Outflux Generated Via a Sinusoidal Influx for Averaging 1,000 DES of a
Model of a Semiconductor Factory (Perdaen et al. (2008)) (shaded) and a Simulation
Based on Equation (4.3) and a Clearing Function Model (black curve).

DES, one arrives at a general flux model F (x, t) = ρ(x, t)V (W (t)) for the transport

equation (4.3). Figure (4.1) (Lefeber and Armbruster (2011)) compares the outflux

of a DES with the influx of a PDE simulation. The noisy (shaded) lies comes from

averaging 1,000 DES of a model of a semiconductor factory (Perdaen et al. (2008)).

The thin curve is generated by solving equation (4.3) with a steady-state velocity

model based on relating the steady-state outflux with the corresponding steady-state

WIP in the factory model.

These assumptions generate a dramatically improved model for a production pro-

cess: The model captures the nonlinear dependence of the cycle times on WIP, and

it correctly relates the steady-state WIP, cycle time, and out flux. In addition, it
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improves the outflow predictions for non-steady-state (i.e. transient) situations com-

pared to static clearing function strategies: Variations in the outflow will be correctly

resolved if they result from variations in the local product density that have little

effect on the total WIP and hence on the transport velocity. Figure (4.1) shows that,

in general, the outflux calculated by the PDE model stays close to the mean outflux

provided by the DES.

Observe that the PDE model also allows one to follow the transport of any local

WIP portion given by ρ(x, t)dx over time through the factory. Hence, if the observa-

tion time interval ∆t and the cycle time τ satisfy τ � ∆t, a PDE model enables one to

follow the flow of parts through the production unit in contrast to clearing functions

or ODE-based models. On the other hand, for short cycle times, say, on the the order

of the observation times, the clearing functions based in the total WIP are appropri-

ate. This observation is independent of the velocity model that is used to describe the

flow through the factory, i.e. independent of the type of clearing function that is used.

The most problematic feature of the transport model involves the third bullet

point above. When the density upstream changes, the velocity on the factory changes

nonlocally. This feature makes for a good model for highly reentrant flows with

FIFO queue discipline. In this case, a new product entering the factory competes

for production capacity with all the products already in the factory, and hence will

slow the rate of service of all products, even those nearing completion. For flows that

are not reentrant, however, there is little practical justification for why a product

that has just arrived to a production system should affect the rate of completion of

products much further down the line. This issue on nonlocal velocities is resolved by

incorporating a second PDE for the velocity of the products.
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Chapter 5

A SECOND ORDER CONTINUUM MODEL

The production planning problem is to determine the production rate of a re-

source (factory) in the future. This requires an aggregate model for the production

flow through the resource. The canonical model for this aggregation is the clearing

function model which is based off of the assumption that the local production rate

instantaneously adjusts to the one given by the equilibrium relationship between the

production rate (flux) and the work in progress (WIP), for example, characterized by

queuing theory. This research extends the current theory and modeling for transient

clearing functions by introducing our continuum description of the flow of product

through the factory based on a second order transport PDE model for the time evo-

lution of the WIP density and the production velocity.

Fundamentally, the production planning problem revolves around identifying the

correct influx pattern to a production resource such that the output of said resource

over the planning horizon meets some proscribed external demand–or if not met ex-

actly it is within some acceptable tolerance. This problem is complicated by two

different major issues: stochasticity and nonlinearity. Stochasticity manifests itself

through the uncertainty of the demand and the variation of any demand realization.

In addition, variations in the production speed and quality introduce other funda-

mental stochastic processes. Of course, a production resource can be buffered against

many of the more deleterious effects of demand fluctuations though inventory main-

tenance, yet stochasticity in the production process still requires variable lead time

to fill these inventories.
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It should be noted that stochasticity is a more fundamental issue than nonlinear-

ity, since the latter is generated by the former via queuing: Nonlinearity is generated

by the fact that the variable lead times do not only depend on the stochastic pro-

cesses that impact production. In fact, the largest contributor to the nonlinearity in

a production system is generated by the waiting in queues. Such waiting depends

crucially on the amount of material produced concurrently, i.e. the WIP. Specifically,

the lead times increase dramatically together with increasing queue length if the flux

through the factory closes in on the capacity limit of the production resource. A typ-

ical scenario is this: Demand is projected to increase at some time within the current

planning horizon. Meeting this demand requires increasing the influx rate into the

factory by a lead time earlier than the requested delivery time. However, increasing

the start rate will increase the WIP in the factory and, consequently, increase the

cycle time. The resulting nonlinear optimization is at the core of the production

planning problem.

5.1 Expanding the Transport Model to Second Order

As seen in the previous chapter and will again be seen later in this chapter, the use

of a single PDE conservation law, i.e. mass conservation, is insufficient to effectively

solve the forward problem. However, mass conservation is a property that is exhibited

by queueing systems as the only manner in which the production resource can change

its WIP is via the new arrivals or departures from the system. An effective PDE

model, therefore should retain this equation. In light of this, an additional PDE is

included in the model.
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In a series of papers, Armbruster and Ringhofer (2005) and Armbruster et al.

(2006a,b, 2003, 2006c) developed a kinetic theory of the stochastic transport processes

in a factory model. The approach follows turbulence or gas-dynamical modeling of

transport processes (Cercignani (1988)). Fundamentally, such an approach is based

on a probability density distribution f(x, ν, t), where

f(x, ν, t) = Pr{ξ ∈ [x, x+ dx], η ∈ [v, v + dv], τ ∈ [t, t+ dt]} (5.1)

describes the probability to find a particle in an x-interval with a speed in a particular

ν-interval in a certain time interval. A typical approach to determining the time

evolution of such a probability density is to derive equations for the time evolution

of its moments relative to the velocity and then to make some closure assumptions

to reduce the infinite set of moment equations down to a finite set (Armbruster et al.

(2003)). The equations for the first two moments are given by

∂ρ(x, t)

∂t
+
∂[ν(x, t)ρ(x, t)]

∂x
= 0, (5.2)

∂ν(x, t)

∂t
+ ν(x, t)

∂ν(x, t)

∂x
= 0. (5.3)

Together with the steady-state initial values for ρ(x, 0) and ν(x, 0)

ρ(x, 0) =
λ1

µ− λ1
(5.4)

ν(x, 0) =
λ1

ρ(x, 0)
(5.5)

and boundary conditions below imposed on the left boundary, x = 0, equations (5.2),

and (5.3) are a set of well-posed hyperbolic partial differential equations commonly

referred to as the pressureless gas dynamics equations.

Recall that (5.3) is inviscid Burgers’ equation. It models the advection of the

variable ν(x, t) that is transported along the characteristics. As a result, once the
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initial material has left the domain, the solution is completely determined by the

values taken on at the left boundary. This turns out to resolve the issue of nonlocal

velocities associated with the one-dimensional model: The time it takes a part ρdx

to move through the factory is determined at the time that the part joins the end of

the queue. If there is a lot of WIP in front of the new arrival, it will take longer to

clear the factory.

The boundary condition for the flux at x = 0 is given by the influx, or start, rate

λ(t),

ρ(0, t)ν(0, t) = λ(t) (5.6)

The choice of the other boundary condition depends on the stochastic experiment

that is described: The expected cycle time, conditioned on the length of the queue

needs to be determined. For an M/M/1 queue in steady-state, the PASTA (Poisson

Arrivals See Time Averages) property suggests that an arriving part will find an

average queue length W given by (2.5). Solving (2.5) for λ and substituting this

result into (2.7) yields

νss(t) ≡
1

τ
=

µ

1 +W (t)
(5.7)

is the velocity related to the well-known M/M/1 clearing function (4.6).

In the general transient case, time averages make no sense any more. Instead,

what is of interest is finding the expected time evolution for the movement of parts

through the factory given a particular initial state of the system–i.e., the ensemble

average, conditioned on the initial WIP.
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5.2 Previous Work

Recently, Armbruster et al. (2013) discussed a specific discrete-event simulation

experiment and showed that we can fit heuristic boundary conditions that allow us

to reproduce the ensemble averages of the experiments. The experiment in question

is that suggested by Missbauer (2011) in his work on transient clearing functions:

Consider an M/M/1 queue with a production rate of µ = 1/day, and determine the

ensemble average of the total number of parts in the production unit over this five day

period. Calling the initial queue W (0), the ensemble average for the total number of

parts becomes the sum of the initial queue and the cumulative influx λ(t):

L = W (0) +

∫ 5

0

λ(t)dt. (5.8)

Our heuristic is based on two regimes:

(1) If λ(t) < µ, then we expect that any initial WIP distribution decay exponentially

fast to the WIP distribution associated with the stead-state related to the arrival rate.

This is know for Markov processes as the mixing time (Levin et al. (2009)). Hence, the

boundary condition is determined by the solution to an ordinary differential equation,

dν(0, t)

dt
= −σ(ν(0, t)− νss(t)) = −σ

(
ν(0, t)− µ

1 +W (t)

)
, (5.9)

where the decay constant σ will be determined experimentally. (2) If λ(t) > µ,

the queue length will become unbounded. Assuming that over the course of the

observation interval of five cycles the queue never becomes empty, and therefore the

machine is never starved, the cycle time at arrival of a part at a queue length of

W (t) will become just τ = W (t)/µ. For arrival rates only slightly larger than the
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production rate and for small W (0), this is not always the true. We found that with

a velocity of

ν(t) =
µ

0.5 +W (t)
(5.10)

we obtain good agreement between PDE simulations and ensemble averaged DES.

Hence the full boundary condition for (5.3) becomes

ν(0, t) =
µ

0.5 +W (t)
for λ ≥ µ, (5.11)

dν(0, t)

dt
= −σ

(
ν(0, t)− µ

1 +W (t)

)
for λ < µ, (5.12)

ν(0, 0) =
µ

0.5 +W (0)
. (5.13)

The last equation (5.13) describes the initial condition for the ordinary differential

equation. It is based on the assumption of a deterministic initial condition, i.e., the

initial WIP is exactly known, and hence the ensemble average will be mostly affected

by the stochasticity of the machine process and little affected by the stochasticity of

the arrival process. Figure 5.1 shows comparisons of DES and PDE simulations of

Missbauer’s experiments for different influxes and initial WIP.

While the model given above shows that the PDE aggregates the flow through

the production resource with reasonable accuracy, when we view the outflux profile

for this model we can see that this model falls short. Figure (5.2) shows a ramp-

down transition of λ1 = 0.5→ 0.2 = λ2 that is representative of the outflux patterns

observed when running our initial model above. We obtained similar results for the

ramp-up transition λ1 = 0.2 → 0.5 = λ2. Clearly this model does not describe the
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Figure 5.1: Outflux Over Five Time Intervals as a Function of the Total Expected
Load for DES and for the PDE Model (5.2, 5.3) with Boundary Conditions (5.6) and
(5.11 - 5.13). a) Constant Influx and Initial WIP of W (0) = 0, b) Constant Influx
and Initial WIP W (0) = 3, c) Decreasing Influx for W (0) = 1, d) Increasing Influx
for W (0) = 1
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Figure 5.2: Initial Model DES and PDE Outflux for Stepwise Transition λ1 = 0.5→
λ2 = 0.3.

evolution of the flow accurately.

5.3 New Model

With these results from our initial attempt, a simpler model was examined in that

the the steady-state boundary condition (5.7)–extended to include the point ν(0, 0)–

rather than the ODE boundary condition (5.9) was used. In addition, the exponential

scenario will be looked at first to get an idea of how well the new model performs as

the plateaux which are due to the propagating discontinuity of a stepwise influx can

be avoided.

Examining the transition from λ1 = 0.7 to λ2 = 0.3, Figure 5.3 shows that the

new continuum model performs moderately well. In the long term, the PDE con-

verges to the correct steady-state, which is desirable. However, the transition time is

significantly faster than what is observed in the DES. This is compounded by the fact

that the DES shows an immediate movement towards the new steady-state whereas

the PDE maintains a level output at the original steady-state level of λ1 = 0.7. This
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Figure 5.3: DES and PDE Outflux for Exponential Transition λ1 = 0.7→ λ2 = 0.3.

constant initial outflux in the PDE is a byproduct of the hyperbolicity of the contin-

uum model.

Looking at the transition in the opposite direction, that is, from λ1 = 0.3 →

λ2 = 0.7, the accuracy of this PDE model is far better. As Figure 5.4 illustrates, the

convergence to the steady-state at λ2 = 0.7 in the PDE solution is very close to that

of the DES. Again, though, one can see the characteristic constant outflux for the

first few time cycles that is due to the initial WIP travelling with the steady-state

velocity for λ1 = 0.3.

Clearly the lack of symmetry between increasing transitions and decreasing tran-

sitions must be due to the dynamics of the initial WIP in the system. In the upwards

transition the total WIP is increasing, so that the the only influence of the initial

WIP is the delay. In the decreasing transition, though, there is excess WIP that must

be drained in the transient phase. This means that the dynamics of the initial WIP

has greater impact on the output for decreasing transitions than for increasing ones.
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Figure 5.4: DES and PDE Outflux for Exponential Transition λ1 = 0.3→ λ2 = 0.7.

Returning to the stepwise input pattern and analyzing its solution yields a better

understanding of the dynamics of the WIP. Using the same transition values as in the

exponential case, Figure 5.5 and Figure 5.6 show the results of the experiment with

a stepwise input pattern. Again, one can see the convergence to steady-state for the

PDE is faster than the DES. Also, the constant outflux for the first few time steps is

present as in the exponential case. Unfortunately, for the stepwise scenario there are

the plateaux due to the discontinuity. Since these plateaux are not represented in the

DES, this suggests that this completely hyperbolic model is insufficient to incorporate

the dynamics of the WIP.

Before moving on, it is beneficial to compare the above results with those obtained

from the first order model provided in chapter 4. Figures 5.7 and 5.8 illustrate the

results of the experiments for stepwise and exponential transitions for the same λ

values as above. The most glaring feature of the this PDE solution is that it gener-

ates large outflux spikes in the opposite direction of the transition over the same time

period where the second order model has constant outflux. Also, in most cases, there

are corners (but no plateaux) found in place of the plateaux seen in the second order
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Figure 5.6: DES and PDE Outflux for Stepwise Transition λ1 = 0.3→ λ2 = 0.7.

model. Both of these aspects are due to the nonlocalized velocity condition. As mass

enters/leaves the system the velocity changes as it does in the second order model,

but it does so at every point x identically and instantaneously. Therefore, the outflux

being the product of the density ρ and the velocity ν will see an increase/decrease

based on the increase/decrease of ν since the ρ advects with finite speed.

While the specific transitions λ1 = 0.7→ λ2 = 0.3 and λ1 = 0.3→ λ2 = 0.7 were

the focus here, the other experimantal transitions had similar results. The complete

list of experimental exponential/step-wise transitions is contained in Table 5.1.
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Figure 5.7: 1st Order PDE Solution λ1 = 0.7→ λ2 = 0.3.
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Figure 5.8: 1st Order PDE Solution for λ1 = 0.3→ λ2 = 0.7.
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5-Series Transitions

λ1 λ2

2 5

3 5

4 5

5 2

5 4

7-Series Transitions

λ1 λ2

3 7

5 7

6 7

7 3

7 5

7 6

9-Series Transitions

λ1 λ2

1 9

3 9

5 9

7 9

9 1

9 3

9 5

9 7

Table 5.1: Table of Transitions Subject to Experimentation.

5.4 Adding Diffusion to the Model

In both the ramp-up and ramp-down examples discussed above the PDE outflux

spends more time at the initial steady-state levels then the DES suggests that it

should. In the ramp-down scenario, the delay in the movement of the outflux implies

that there is too much material moving through the resource at too high a velocity.

The ramp-up case is the reverse, where not enough of the material is flowing through

the resource fast enough. To rectify this, a diffusion term is added to the mass conser-

vation PDE that will speed up or slow down the flow through the resource depending

on the situation–ramp-up or ramp-down. This feature of the PDE model is not re-

stricted to the specific transitions presented in the last section. Figure 5.9 shows that

this delay is present to varying degrees for all the transitions given in Table 5.1.

Diffusion is incoporated into the model by adding a second order term of the
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Figure 5.9: Mean Time Delay Before PDE Moves from Initial Steady-State
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density in the mass conservation PDE (5.2). This term has the general form

Dρxx(x, t) (5.14)

with diffusivity constant D > 0. Hence, the new PDE pair becomes

ρt(x, t) + [ν(x, t)ρ(x, t)]x = Dρxx(x, t), (5.15)

νt(x, t) + ν(x, t)νx(x, t) = 0. (5.16)

The IC and BC remain (5.4), (5.5) and (5.6), (5.7), respectively, and the addition of

the following one provides a well-posed problem.

ρx(0, t) = 0 (5.17)

In flux conservative form, the new mass conservation PDE is

ρt(x, t) + [ν(x, t)ρ(x, t)−Dρx(x, t)]x = 0 (5.18)

The diffusive flux term −Dρx moves mass along the negative gradient of the con-

centration of the material at a point x at time t > 0. In the ramp-down case the

influx on the left boundary and this diffusion serves to move material to the left since

a decreasing influx will predominantly affect the density level by reducing it given

that the velocity is defined as a function of the total WIP and, therefore, lags behind

changes in the density. Similarly, in the ramp-up case, diffusion advances material to

the right, thus causing more material to exit the system sooner.

However, when attempting to implement this advection-diffusion model to the

above transitions the results are mixed. For the stepwise transition λ1 = 0.7→ λ2 =

0.3 the addition of diffusion eliminates the plateaux as desired. It also reduces the

length of time that the outflux remains at the initial steady-state. The downside is
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with Diffusion Coefficient 0.10
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Figure 5.11: Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.7→ λ2 = 0.3
with Diffusion Coefficient 0.10

clear in Fig 5.10 that the addition of diffusion creates a delayed wave-like behavior.

Similar results are obtained for the exponential transition with the same λ values as

seen in Fig 5.11 although the severity of the this behavior is lessened.

The increasing transitions are generally much better because of the lesser impact

of the initial WIP. For the stepwise transition with a diffusion coefficient of 0.10, the

solution in Figure 5.12 does not produce as nice a result as the exponential in Figure
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Figure 5.12: Solution for (5.15) (5.16)– Stepwise Transition λ1 = 0.3 → λ2 = 0.7
with Diffusion Coefficient 0.10
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Figure 5.13: Solution for (5.15) (5.16)– Exponential Transition λ1 = 0.3→ λ2 = 0.7
with Diffusion Coefficient 0.10

5.13 due to the abrupt change in the outflux for the stepwise transition around t = 2.

This wave-like behavior due to the diffusion is not shared by all transitions. Fig-

ures (5.14) and (5.15) show the outflux of the PDE for the increasing and decreasing

exponential transitions of λ1 = 0.2 → λ2 = 0.5 and λ1 = 0.5 → λ2 = 0.2, respec-

tively. From the plots, one can see that the diffusion term influences the outflux in

the expected manner. The delay in moving off of the initial steady-state outflux has

73



0 5 10 15 20
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Ramp−Down Transition λ
0
 = 0.50 → λ

1
 = 0.20: Diffusion = 0.10

 

 

DES

PDE

Figure 5.14: Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.5→ λ2 = 0.2
with Diffusion Coefficient 0.10.

been reduced.

5.5 Long-Term Time-Varying Behavior

The PDE and the DES for the exponential and stepwise input pattern dealt en-

tirely with the transient behavior of the queueing system. In the long term as the

previous scenarios illustrate, the PDE converges to the same steady-state as the DES.

This is surely a desirable feature in the model. However, consistency with long term

DES steady-states is not the sole interest. Also of interest is how well the PDE model

represents long term queueing behavior that is not steady-state. By experimenting

with cyclic input patterns, the efficacy of the second order model can be evaluated

for time varying influxes over time frames for which the transient behavior has passed.

In Figure 5.16 one can see the general characteristics in the resulting outflux due

to cyclic input. For this example, the input pattern has the formulation in Eq(3.3)
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Figure 5.15: Solution for (5.15) (5.16)–Exponential Transition λ1 = 0.2→ λ2 = 0.5
with Diffusion Coefficient 0.10.

with λ1 = 0.7, λ2 = 0.3, and C = 5. The second order continuum model produces

a behavior that is quite similar to that given by the DES in both the short term,

transient phase as well as the long term steady phase. Both plots appear to have

the same transient relaxation as they settle into a stable oscillatory motion about the

mean of 0.5. Additionally, the amplitudes are approximately the same with, perhaps,

the PDE being slightly larger. Lastly, the period of the DES and the PDE are the

same and correspond to the period of the input function. Thus, there appears to be

no frequency modulation on the part of the system.

Issues still remain, however. Again it can be seen that the initial outflux of the

PDE is constant for the first few time steps just as in the previous scenarios - al-

though, one should not have expected anything different regarding this input type.

One also can observe a phase shift in the PDE relative to the DES. Finally, there

is a clear narrowing of the amplitude as the input pattern is processed through the

system. Both of these features are examined in turn.
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Figure 5.16: DES and PDE Outflux Derived from Cyclic Influx with Range [0.3,
0.7] and C = 5.

The phase shift is the lion’s share of the discrepancy between the DES and the

PDE with the PDE lagging behind the DES in time. This is due to the initial con-

stant outflux that has presented itself in all the PDE results so far. As Figure 5.17

illustrates, when this constant outflux is accounted for, the PDE and DES are a good

match. In practice, the phase shift does not pose any particular threat to the efficacy

of the PDE model to solve the forward problem for this type of influx function. This

is because one need only wait for a few cycles to determine the correct phase and

then adjust the production flow for the discrepancy.

As mentioned earlier, the attenuation of the amplitude is shared by the DES and

the PDE. When the influx and the outflux for the DES are directly compared using

the same λ parameters above-as in Figure 5.18-one can see the scale of the narrowing

is not insignificant. Moreover, this reduced outflux amplitude is evident in all the

other experiments that were run. Performing the Fourier analysis for the cycle with

λ1 = 0.7 and λ2 = 0.3 across the eight different periods C = 10, 7, 5, 3, 2, 1.8, 1, 0.5
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Figure 5.17: Reprint of Figure 5.16 with Phase Adjusted Solution (green).
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Figure 5.18: Normalized Amplitude Periodogram for Outflux Derived from Cyclic
Influx with Range [0.3, 0.7]

reveals a pattern of amplitude narrowing of varying degree dependent on the period

of the influx function. The normalized amplitude periodogram in Figure 5.18 illus-

trates this fact. As the period shortens, the magnitude of the attenuation increases.

The periodogram also confirms that there is only one mode for each value of C thus

eliminating the possibility of frequency splitting.

For high frequency forcing (C < 2), the results are interesting and problematic.
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Figure 5.19: DES and PDE Outflux Derived from Cyclic Influx with Range [0.3,
0.7] and C = 0.5.

Examination of the outflux in Figure 5.19 shows the expected narrowing of the am-

plitude. However, the corresponding PDE does not have a matching amplitude. The

figure also shows that the oscillations of the DES are becoming less well defined.

Further inspection of the DES for C = 0.5 given in Figure 5.20(b) seems to suggest

a breaking down of the wave pattern by the system. Contrasted with Figure 5.20(a),

this phenomenon is quite severe. The issue here is the low signal-to-noise ratio re-

sulting from high frequency input patterns, but because it is stochastic in nature, it

cannot be accounted for using PDEs. 1

The DES and PDE have a matching attenuation of the amplitude as illustrated in

Figure 5.16, but this is not characteristic across all the frequencies in the experiments

as Figure 5.19 has shown. For the frequencies corresponding to C values of {2, 3, 5,

7, 10} there is an excellent matchup with the amplitude for the DES and the PDE

Figure 5.21. Around values of C = 0.8, 1, 1, 8 a distinct divergence between the two

1It should be pointed out that the decreasing signal-to-noise ratio is not the result of the simu-
lation techniques used as the DES input patterns do not exhibit any change in the signal-to-noise
ratio regardless of the value of C.
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Figure 5.20: DES Outflux for Selected C Values for Cyclic Influx with Range [0.3,
0.7]
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Figure 5.22: Normalized Amplitude Versus Influx Frequency for DES and PDE
Outflux Derived from Cyclic Influx with Range [0.3, 0.5]

arises. The cause for this separation is because the PDE has a resonance frequency

at 0.5. As well, this behavior is found in the other cyclic input pattern experiments

as depicted in Figures 5.22 and 5.21). Unfortunately, this cannot be resolved at this

time and is where the continuum model fails to solve the forward problem.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Chapter 1 began this research with a description of the two fundamental produc-

tion planning problems, namely, the forward problem and the backward problem. In

the forward problem one is given a known set of inputs or input (influx) pattern and

the solution to said problem is the determination of the corresponding set of output

or the output (outflux) pattern. Some of the more popular approaches in the litera-

ture, specifically, linear programming with exogeneous fixed lead times and clearing

function models, were introduced and discussed. The advantages and limitations that

these models have in solving the forward problem were highlighted as well. This work

seeks to overcome the limitations of these models by approaching the forward problem

with a continuum model.

In chapter 4, the basics of the continuum models were introduced with a specific

focus on the ODE fluid models and first-order transport PDE models. The prior

established shortcomings of the LP and clearing function models, that being the in-

ability of the former model to capture the nonlinear relationships between workload

and cycle time and the latter’s complicated approaches to incorporating the the delay

between influx and outflux and input pattern distribution, are largely overcome by

the aggregating of the stochastic flow through the factory. This is accomplished in

two ways: 1) averaging over time (or ensemble) the desired measures of effectiveness

of the system, thus converting the stochastic process into a deterministic one; 2) con-

verting the WIP into a real-valued quantity from the integer value held by the other

models.
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The second order continuum model introduced in this research expands on the

success of its PDE predecessors by incorporating an equation for the velocity of the

material flow. In chapter 5, it was shown that the first order PDE model does not

reflect accurately the transient behavior of the M/M/1 system with its large outflow

spikes and precipitous drops. The use of non-local velocity constraints is the root

cause of this behavior and the second equation for velocity takes care of this. Both

increasing and decreasing transitions show improved accuracy in modeling the queue-

ing system at hand with the improvements in scenarios involving low utilization levels

(e.g. λ/µ ≤ 0.5) and increasing transitions being the most noteworthy.

The downside to the second order model is that both shock and rarefaction waves

may be present in the solution. Rarefaction waves appear in the increasing tran-

sitions and generally help in the performance of the model. Shock waves, on the

other hand, are not desirable and result from decreasing transitions. The addition

of a diffusion term improved the performance of the PDE model by eliminating the

plateaux caused by propagating discontinuities as in the stepwise experiments and

reducing the duration of the initial constant outflux profile. The cost for this ad-

dition is that the remaining strong gradients generate a buildup of material on the

interior of the domain manifesting in a single, wave-like pattern passing through the

system. Unfortunately, while increasing the diffusion strength would likely remove

this new behavior it would also weaken the hyperbolicity of the model. Substantial

loss of hyperbolicity is a far greater concern than that of the merged shock.

The second order model performs quite well for more complicated input patterns,

as well. In the cyclic scenario, it was shown that the model is very accurate for
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longer period oscillations - those on the order of twice the average cycle time or

greater. When one accounts for the initial constant outflux duration, the DES and

PDE model are very much in tune. Both exhibit an attenuation of their output pat-

tern amplitudes relative to the input patterns’ amplitudes with the magnitude of this

narrowing being a function of the driving frequency.

The cyclic experiments showcased two new issues unique to this input pattern

type. First, as the frequency of the influx increases the signal-to-noise ratio falls.

While this most likely contributes in part to the overall attenuation of the amplitude,

it is in the high frequency regimes (C < 2) that problems with the DES start to arise.

At these frequencies, the signal-to-noise ratio is so low that the oscillatory pattern

begins to break down. This is a problem involving the stochasticity of the M/M/1

system and cannot be accommodated using PDEs. Second, the PDE exhibits reso-

nances at the higher frequencies which serve to create much larger outflux amplitudes

relative to their corresponding DES outflux amplitudes. This is endemic of the hy-

perbolicity of the PDE model and as such is not apparent in the DES.

Overall, this second order model derived from kinetic theory performs remarkably

well in solving the forward problem set up in this paper. There is surely room for

improvement, yet, the results of the core model suggest that the potential of this

model is significant.

6.1 Future Work

The promising results for this second order, hyperbolic continuum model suggest

further avenues of research that may prove fruitful.
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Figure 6.1: DES and PDE Outflux Derived from Overloaded Cyclic Influx with
Range [0.6, 1.2]

6.1.1 Overload Experiments

Of the three scenarios, exponential, stepwise, and cyclic, the cyclic scenario af-

fords one a special experiment. Recall from chapter 2, that for an arrival rate λ the

queueing system will not attain a steady state if λ ≥ µ, rather the queue will continue

to grow without bound. However, this was based on λ remaining constant as t→∞.

If λ is a function of t, then it is possible to have a stable queueing system even if

λ(t) ≥ µ as long as the mean value of λ(t) < µ.

In Figure 6.1 one can see the results of the only experiment that was run inves-

tigating the overload scenario. Starting from a steady-state λ1 = 0.9, λ(t) oscillates

about this value between a maximum of λmax = 1.2 and minimum of λmin = 0.6.

The transient seems to match reasonably well, however in the long term there is the

unusual situation where the PDE amplitude attenuates to a greater degree than the

DES. It remains unclear as to the reason for this. This issue is compounded by the

fact that the PDE and DES do not appear to match in their amplitudes for any
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Figure 6.2: 2 × Normalized Amplitude Versus Influx Frequency for DES and PDE
Outflux Derived from Cyclic Influx with Range [0.3, 0.7]

of the subject experimental frequencies as shown in Fig 6.2 even in the high C/low

frequency regime.

6.1.2 Understanding the Diffusion Terms

In the latter part of Chapter 5, a diffusion term was introduced to this continuum

model which gave the system (5.15), (5.16) with initial conditions and boundary con-

dition (5.4), (5.5) and (5.6), (5.7).

The original impetus for this was the delay encountered in the PDE model when

moving off the original steady-state level λ1. Adding a diffusion term of the form

Dρxx for constant D > 0 enabled the adjustment of the outflux profile for the PDE

model so that it fell more in line with the DES data. However, this addition while

working well for the transitions λ1 = 0.5 → λ2 = 0.2 and λ1 = 0.2 → λ2 = 0.5

performs poorly for transitions from higher steady-state levels of λ1. For example,

the transition λ1 = 0.7→ λ2 = 0.3, illustrated in Figure 6.3, displays an unexpected

crest during the transition time frame that was not identified in the previous, smaller
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transitions. The height of the crest is dependent on the magnitude of the diffusion

coefficient and is believed to be the consequence of the shock smoothing. As discussed

earlier, increasing the diffusion constant would smooth the shock further, but at the

expense of losing hyperbolicity. In the increasing transitions, this is not an issue,

since the diffusion acts in a favorable manner for the rarefaction wave that is present.

Of course, this effect can be mitigated by implementing smaller diffusion coefficients,

yet this course then reduces the effect of the correction for which the diffusion term

was introduced.

Adding a diffusion term of the form Cνxx, C ∈ R+, into Equation (5.16) opposes

the backward flow by increasing the velocity of mass that has diffused backwards.

Since the velocity defined on the left boundary is inversely proportional to the WIP,

this results in a progressively larger gradient in the positive x direction as time goes

on and more mass leaves the system. This also means that, so long as C is not

too large, this velocity compensation will not significantly affect the corrections that

the incorporation of diffusion in (5.15) has made. Rather, the primary effect will be

felt as a sizable portion of the initial mass has exited the system and the corrected

velocities have finally caught up to the diffused mass. Figure (6.4) suggests that this

approach has some merit. Figure (6.4) compares the outflux in time for the original

main model (green) and this new model (5.15) with the new velocity equation (red)

νt(x, t) + ν(x, t)νx(x, t) = Cνxx(x, t). (6.1)

and boundary condition

νx(0, t) = 0. (6.2)

The previous model only included diffusion in (5.15). With D = 0.14 and C = 0.05,

the backwards flow has been eliminated. In addition, returning to Figure (5.14), one
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Figure 6.3: Ramp-Down Transition λ1 = 0.7→ λ2 = 0.3 with Diffusion.
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Figure 6.4: Comparison of the Density Diffusion PDE Model with (red) and without
(green) Velocity Diffusion for the Ramp-Down Transition λ1 = 0.7→ λ2 = 0.3.

can see what appears to be nascent backwards flow for the transition λ1 = 0.5→ λ2 =

0.2. Figure (6.5) compares the outflux in time for the two models (5.15) and (6.1).

As one can see from the figures, the introduction of a diffusion term to the velocity

PDE counters the undesirable effects of the density diffusion without changing the

effects of the density diffusion on the initial outflux delay in a significant manner.

While the addition of a diffusion term was due to its mechanism of action on

the PDE, its inclusion can be justified heuristically. In the model, the left boundary

condition is (5.7). This expression is the mean steady-state velocity for the M/M/1

queueing system. For a transient M/M/1 queue, this definition of the boundary con-

dition for (5.16) is likely not accurate. This means that when the system evolves there

will be additional error incurred that is due solely to the inaccuracy of the model and

it is reasonable to assume that this error will grow in time. Adding diffusion is a way

of compensating for this modeling error.
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