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ABSTRACT

Nearly 25 years ago, parallel computing techniques were first applied to vector spatial

analysis methods. This initial research was driven by the desire to reduce computing

times in order to support scaling to larger problem sets. Since this initial work, rapid

technological advancement has driven the availability of High Performance Comput-

ing (HPC) resources, in the form of multi-core desktop computers, distributed ge-

ographic information processing systems, e.g. computational grids, and single site

HPC clusters. In step with increases in computational resources, significant advance-

ment in the capabilities to capture and store large quantities of spatially enabled

data have been realized. A key component to utilizing vast data quantities in HPC

environments, scalable algorithms, have failed to keep pace. The National Science

Foundation has identified the lack of scalable algorithms in codified frameworks as an

essential research product. Fulfillment of this goal is challenging given the lack of a

codified theoretical framework mapping atomic numeric operations from the spatial

analysis stack to parallel programming paradigms, the diversity in vernacular utilized

by research groups, the propensity for implementations to tightly couple to under-

lying hardware, and the general difficulty in realizing scalable parallel algorithms.

This dissertation develops a taxonomy of parallel vector spatial analysis algorithms

with classification being defined by root mathematical operation and communication

pattern, a computational dwarf. Six computational dwarfs are identified, three being

drawn directly from an existing parallel computing taxonomy and three being cre-

ated to capture characteristics unique to spatial analysis algorithms. The taxonomy

provides a high-level classification decoupled from low-level implementation details

such as hardware, communication protocols, implementation language, decomposi-

tion method, or file input and output. By taking a high-level approach implementa-

tion specifics are broadly proposed, breadth of coverage is achieved, and extensibility
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is ensured. The taxonomy is both informed and informed by five case studies im-

plemented across multiple, divergent hardware environments. A major contribution

of this dissertation is a theoretical framework to support the future development

of concrete parallel vector spatial analysis frameworks through the identification of

computational dwarfs and, by extension, successful implementation strategies.
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Chapter 1

INTRODUCTION

Nearly 25 years ago, Griffith (1990) illustrated the application of parallel computing

methods to vector spatial analysis tasks and called upon quantitative geographers

to leverage all available computing resources in their work. That work heralded the

beginning of broad efforts to improve the performance of spatial analysis techniques

through algorithmic advances. Thirteen years later, Clematis et al. (2003), suggested

that the promise of universally accessible parallel GISystems were not yet achieved

and cited three major roadblocks requiring reassessment: (1) accessibility to high-

performance Computing (HPC) resources, (2) a lack of parallel spatial analysis algo-

rithms, and (3) the significant learning curve for the utilization of high-performance

systems. By in large, road blocks two and three are still significant hurdles in the de-

velopment and utilization of parallel GIS. This work targets item two and sets out to

develop a taxonomic classification of methods of parallel spatial algorithm implemen-

tation within the larger framework of methods of algorithm parallelization (Asanovic

et al., 2006).

The development and application of parallel, vector, spatial analysis techniques

can be divided into three temporal clusters. These clusters can be defined topically,

beginning with dissertation research focusing on parallel computational geometry,

shifting to parallel spatial analysis methods, and presently exploring spatial analysis

methods in HPC environments. The genesis of parallel spatial analysis, in the late

1970s and early 1980s, exists at the intersection of what was HPC and computational

geometry. Initial foundational efforts focused on parallel graph operations (Arjo-

mandi, 1975; Hirschberg, 1976; Eckstein, 1977; Savage, 1978), polygon intersection,
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convex hull, line sweep, and nearest neighbor search (Chow, 1980; Aggarwal et al.,

1988; Stojmenovic and Evans, 1987; Atallah and Goodrich, 1984, 1985; Blelloch and

Little, 1988; Akman et al., 1989). These are core processing functions required by

many more complex spatial analysis operations. These early efforts provide insight

into spatial domain decomposition techniques to support concurrent processing and

the utilization of tree data structures to facilitate load balancing. Each of these im-

plementations is marked by the small data sizes at which problems were considered

intractable and the tight coupling between hardware and software.

The work of Griffith (1990) heralds the application of parallel computing methods

to the spatial analysis domain and the start of the second temporal cluster. Efforts

pioneered by earlier computational geometry works are leveraged within the spatial

analysis domain (Waugh and Hopkins, 1992; Armstrong and Densham, 1992) and the

first implementations of parallel spatial analysis algorithms developed (Armstrong

et al., 1993; Armstrong and Marciano, 1995; Clematis et al., 1996; Ding and Den-

sham, 1996). A critical mass of interest in parallel spatial algorithms continued to

grow through the 1990s as computational intensity was identified as one limiting fac-

tor to the broad application of spatial analysis to larger problem sets (Armstrong

and Densham, 1992). Presumably, a critical mass of research effort was the impe-

tus for the publication of Healey’s Parallel Processing Algorithms for GIS (Healey

et al., 1998), a collection of articles focusing on parallel spatial analysis.Armstrong

(2000) identifies a key hardware paradigm shift, the transition from shared memory

to distributed memory systems as computer hardware vendors sought to keep pace

with the requirements of Moore’s Law. This transition, he suggests, will require the

reimplementation of many algorithms dependent upon shared memory. This shift in

hardware and resultant shift in research interest was further driven by the sale of

multi-core consumer grade hardware. The end of the second temporal cluster can be
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identified with the editorial by Clematis et al. (2003) where the development and more

importantly utilization of parallel GIS is lamented as an unfulfilled opportunity; the

computational hurdle which parallelization sought to overcome is a mountain which

is still being climbed.

The so-called Atkins Report (Atkins, 2003) identified a framework within which

HPC is married to cross domain and institution cooperation in order to broadly drive

research efforts. Within the spatial domain, Geospatial CyberInfrastructure (GCI),

CyberGIS, and Spatial CyberInfrastructure (Yang et al., 2010; Wang, 2010; Wright

and Wang, 2011), respectively, identify different facets of principals articulated in

the Atkins Report principals. A key component of all three is the development and

deployment of parallel spatial analysis algorithms in HPC environments. Much of

the effort in the development and codification of spatial analysis algorithms, within

the CI domain, from 2003 onwards supports this goal with a focus on deployment

into high-performance, distributed memory systems and not consumer grade desktop

computers. Armstrong et al. (2005) provides the first look at a unified, spatial im-

plementation of CI within a computational grid. Considerable effort has also been

applied leveraging the spatial nature of data and joining that with a computational

domain representation in order to drive efficient decomposition (Wang and Arm-

strong, 2005; Wang et al., 2005, 2008). Parallel spatial algorithm implementations

have focused largely on explicitly decomposable components with limited aggregation

requirements, e.g. Inverse Distance Weighted interpolation or embarrassingly paral-

lel implementations. This focus has left a significant portion of the vector spatial

analysis algorithm library ripe for future research. It is within the context of the

so-called ‘middleware’ layer, the glue which supports collaborative decision making

using high-performance computing resources, that this work is cited.
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1.1 Research Objectives

Increasing data sizes, a general move towards collaborative multi-disciplinary re-

search teams, and complex process modeling are some of the major drivers behind

the adoption of both Cyberinfrastructure and the sub-discipline, Geospatial Cyber-

infrastructure. This work is motivated by the need for algorithmic development to

support ever increasing data sizes and complex process models. I note that increases

in data sizes are observable in both the physical and social science domains, with

the latter being enabled by the end-to-end creation of purely digital artifacts. A key

component of CI is high performance algorithms to support collaborative research

efforts and this work targets that domain. The process of algorithm optimization

and parallelizations is non-trivial (McKenney, 2013). Unfortunately, this difficulty

has resulted in many one off implementations that frequently suffer from cookbook

style implementation specifications with tight hardware coupling and divergent ver-

nacular. A core set of atomic computational operations have not been mapped to the

spatial analysis domain. I suggest that this significantly reduces the portability of the

root method to new, potentially similar implementations, or new hardware environ-

ments; a theoretical framework is lacking. Difficulties in portability and commonality

in vernacular are not constrained to the spatial analysis domain. National Science

Foundation (NSF) report 12-113 calls for ‘High-level abstractions and frameworks

that promote code reuse and sharing, model extensibility and interoperability, and

simplify domain specific programming while achieving high performance;’ (National

Science Foundation, 2012). These software frameworks are designed to significantly

reduce the burden of implementations, providing a library of proven methods.

I argue that the NSF call can be answered in two ways. First, ad-hoc implemen-

tation across disparate research groups, can continue with the goal of developing an
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integrated approach at some future point. Alternatively, this work seeks to provide a

theoretical framework, in the form of a taxonomy, that supports the identification of

core computational and communicational primitives that can be mapped across the

spatial analysis stack, inform implementation, and provide the necessary theoretical

framework to support the preceding NSF call. The development of this taxonomy

requires identification of computational similarities across the spatial analysis stack.

These efforts have been previously undertaken and realized as taxonomies. Next,

this work seeks to map these similarities to parallel programming paradigms without

high classification dimensionality, tight hardware coupling, or low-level implementa-

tion directives. That is, avoiding a devolution from a means of classification into

a one-to-one algorithm to implementation specification mapping. Finally, this work

seeks to leverage existing taxonomies, not just from the spatial analysis domain, but

also from the operations research and computer science domains.

1.2 Parallel Computing

To define parallel computing, it is essential to first understand the process by

which a single Central Processing Unit (CPU) performs some unit of computation.

Serial computation, performed by a single CPU, decomposes a set of instructions

into a streaming, sequentially processed workflow, composed of atomic compute op-

erations and data. The limit of performance is the speed with which the individual

data objects can be retrieved, ordered with the compute instructions, and processed

by the CPU. The performance of this process is partially, and indirectly, governed

by Moore’s Law, which states that the number of transistors which can be placed

on a CPU is expected to double every 18 to 24 months (Moore, 1965). By exten-

sion, the performance of a single CPU is expected to roughly double at the same

pace (Bell and Gray, 1997). Two performance gains are attainable while maintaining
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a constant CPU speed: vectorization and algorithmic optimization. Vectorization is

made possible by leveraging vector processors, now largely referred to as SIMD (Same

Instruction Multiple Data) processors, that improve sequential performance by pro-

cessing contiguous memory vectors using the same instruction. See Chapter 2 for a

full explanation of vectorized computation. While the benefits of vectorization can

be marked, serial performance is limited by the speed with which a single CPU can

access data. 1 In addition to improvements in hardware performance, algorithmic

optimization can provide significant performance improvements within a serial envi-

ronment. (Bell and Gray, 1997) suggests that algorithm performance improvements

also appear to conform to Moore’s Law, suggesting that a fixed data size problem can

anticipate exponential performance improvement every two years.

Unfortunately, performance gains from improved CPU speeds, leveraging of vec-

torized processing, and algorithmic optimization are not sufficient to support the

universal application of serial spatial analysis algorithms for three reasons. First,

data sizes continue to grow at a higher rate than performance gains due to improved

collection efforts, increases in sensor resolutions, and increases in derived analytical

products. Second, the computational complexity of spatial analysis algorithms con-

tinues to grow, offsetting benefits from improved serial implementations. Finally,

the sustainability of Moore’s Law within the manufacturing domain is questionable

with critics suggesting that the end of the law is predicted at decadal intervals; this

prediction has never come to fruition.

In order to continue providing performance improvement while mitigating energy

and cooling requirements, CPU manufacturers have largely focused on multi-core ar-

chitectures. These architectures provide the capability to perform many concurrent

1 While this holds for algorithms with sufficient computational complexity, the actual performance
of many algorithms is no longer constrained by the speed of the CPU, but by the speed at which
data can be moved to the CPU, the starving CPU problem. See Alted:2010cn.
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computations across multiple CPUs. In step with the deployment of multi-core ar-

chitectures, the rise of the Internet has driven interest in distributed systems which

require distributed, parallel code execution. Within the context of a parallel algo-

rithm, each processing core applies some atomic compute operation to some data

stream, exactly as described above. In contrast to a serial algorithm, the data and/or

operations must have been decomposed in such a way that the CPUs can concurrently

work. Significant performance improvements can be realized by leveraging concur-

rent computation. The limitation of this processing model is not then, the amount

of CPU power that can be requisitioned for an analytical task, but the ability for an

algorithm to efficiently utilize the available computational resources.

1.2.1 Amdahl’s Law, Gustafson’s Law, and Efficiency

The goal of any parallelization effort is performance improvement. This improve-

ment exists through the maximization of the quantity of concurrent processing or,

inversely, the minimization of serial processing. Two oft-cited laws model the theo-

retical performance gains through parallelization and can help drive the decision to

parallelize an algorithm. Amdahl’s law states that the total expected speedup is a

function of the ratio of serial to parallel processing time and the total number of pro-

cessing cores (Amdahl, 1967; Hill and Marty, 2008). This assumes that all processing

cores are symmetric and is presented, as formulated by Gustafson (1988) as

speedup = (s+ p)/(s+ p/N), (1.1)

where s is the amount of time required for serial processing, p is the amount of time

required for parallel processing, and N is the number of processing cores. Arbitrarily

setting s+ p = 1 or assuming that s+ p is the cumulative percentage of total compu-
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tation, one can see that the maximization of speedup requires the minimization of s.

This requires minimization of serial Input / Output (I/O) operations, synchronous

inter-core communication which requires blocking, e.g. bulk synchronization par-

allelization paradigms, and inter-core data dependencies which could require wait

periods. Gustafson (1988) shows that even a small percentage of serial computation,

on the order of one to four percent, can significantly degrade performance. Assuming

512 processing cores, Figure 1.1Comparison of Estimated Performance Using Am-

dahl’s and Gustafson’s Lawsfigure.1.1 illustrates, as a solid line, the exponential drop

in speedup with an increase in s. This initially, suggests that only those algorithms

most amenable to parallelization should be targeted.

Gustafson (1988) asserts that Amdahl’s Law fails to account for scaling of p as

a function of the total data size. In practice, N is dependent on the total problem

size, and as N increases, so does p. Serial spin-up time, s, is largely invariant to total

problem size, suggesting that algebraic manipulation of Amdahl’s Law is warranted.

This yields:

scaledSpeedup = s+ p ·N, (1.2)

Scaled speedup, shown as a dashed line in Figure 1.1Comparison of Estimated Per-

formance Using Amdahl’s and Gustafson’s Lawsfigure.1.1, provides a significantly

improved view of the performance gains attainable through parallelization. At 4%

serial processing and 512 processing cores, speedup is still over 491 times.

Whether assessing performance using Amdahl’s or Gustafson’s Law Hill and Marty

(2008) suggest that minimization of s is not always the paramount priority as multi-

core asynchronously computing processing cores can provide better global speedups

even when s is locally high, e.g. an excess computation programming model. That is,

an increase in the serial compute time locally is acceptable, and possibly desirable, if
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Figure 1.1: Comparison of Estimated Performance Using Amdahl’s and Gustafson’s
Laws.

the global result is an increase in p. This in turn suggests that a singular focus on the

decomposition of existing serial implementations, without algorithmic modification,

is ill-advised and that excess sequential processing may offer global improvements.

Finally, efficiency provides an additional view of how well utilized all processing

cores are during parallel computation. Grama et al. (2003) formulate efficiency as:

E = S/N (1.3)

where S is the speedup as computed by Amdahl’s Law and N is the number of

processing cores. In an idealized (or serial) system, E = 1. In a highly parallel

environment E trending towards 1 is highly desirable, but difficult to achieve.
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These concepts, drawn directly from the Computer Science domain, are immedi-

ately applicable to spatial analysis algorithms as one can estimate the ratio of serial

to parallel computation such that anticipated performance can be derived.

1.2.2 Parallel Programming Models

The implementation of a parallel algorithm requires identification of the process-

ing bottlenecks. These bottlenecks provide a set of constraints upon the amount of

communication required between processing cores and the methods of decomposition

appropriate for concurrent processing. The selection of implementation methods suit-

able for performant, scalable implementations are then also a function of the hardware

to be used. This section describes the interaction of these constraints upon a gener-

alized parallel algorithm. This idealized algorithm can be considered a proxy for a

spatial algorithm requiring parallelization. These concepts are more fully explored in

Chapter 2.

Communication

Inter-core communication describes data or message transfers which occur during par-

allel processing and granularity describes the frequency and size of messages commu-

nicated between processing cores. I identify three communication models which exist

along a spectrum: coarse-grained, fine-grained, and embarrassingly parallel. Coarse-

grained communication indicates that large quantities of data are being infrequently

sent and received. In general, coarse-grained granularity is more often employed due

to the cost imposed by synchronous communication (and the complexity introduced

by asynchronous communication). An implementation using fine-grained communi-

cation models communicate small quantities of data with high frequency. This style

of implementation is utilized most frequently when more complex load-balancing is
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required or highly decomposed representations are possible. Finally, embarrassingly

parallel models require no inter-core communication with a single bulk synchroniza-

tion phase occuring at the conclusion of processing.

Decomposition

Decomposition can be either data parallel, where a data set is subset using some

strategy and an identical algorithm is applied to each subset of the data, or task par-

allel, where a series of tasks can be decomposed for concurrent execution. Within the

spatial analysis domain, the vast majority of parallel implementations leverage a data

parallel model. Data parallel model decomposition can be spatial or aspatial. Spa-

tial decomposition commonly leverages regular gridded decomposition methods, more

complex tessellations, or adaptive decomposition, e.g. quad-trees (Akman et al., 1989;

Armstrong and Densham, 1992; Cramer and Armstrong, 1999; Wang and Armstrong,

2003). Both Akman et al. (1989) and Waugh (1986) highlight the potential costs as-

sociated with the application of complex decomposition methods, with the former

suggesting that an order of magnitude difference in the spatial density of data points

is required before gridded decomposition fails to provide adequate load balancing and

the latter generally suggesting that elegant quad tree decompositions should not be

universally utilized. These ideas are explored in Chapter 4. Wang and Armstrong

(2005) extend the concept of spatial decomposition to account for a computational

domain which describes the aggregated memory, I/O, and compute costs. Using this

more complex representation of the surface, more efficient decomposition, and by ex-

tension better performance, results are reported. In contrast to spatial decomposition,

aspatial decomposition methods utilize some other means of data decomposition. For

example, Monte Carlo simulation, required by many algorithms across the spatial

analysis stack, runs p simulations. Aspatial, data decomposition can take the form
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of running p
n
, where n is the number of processing cores, simulations and aggregating

the necessary results. In these instances, the spatial information intrinsic in the data

does not offer a means for decomposition. Finally, while not largely utilized for spatial

analysis algorithms, one potential task level parallelization can be identified utilizing

methods of spatial regression. Given a set of analytical techniques and some metric

to assess the suitability of a model, all models could be concurrently processed and

the ideal model selected.

1.2.3 Parallel Hardware Architectures

As eluded to above, the parallel programming model selected is not only a func-

tion of granularity and decomposition, but also of the hardware on which the model

will run. Three prominent architectures exist to support parallel computing: shared

memory, distributed memory, and hybrid compute environments. Shared memory

systems are characterized by a single, globally accessible memory space from and into

which all compute units can access data, a Symmetric Multi Processing (SMP) sys-

tem. Management of the shared memory space, through the use of locks, semaphores,

or an embarrassingly parallel decomposition, are essential to avoid concurrent write

operations and race conditions. The potential additional complexity to manage a

shared memory space can be mitigated by the performance gains achievable through

asynchronous I/O operations. This access is significantly faster than network commu-

nication. Two commonly leveraged SMP environments are the desktop computer and

Graphics Processing Units (GPUs). The former are characterized by the commonality

in development to a traditional processes, while the latter required custom libraries

designed to support general computing applications on a GPU. The OpenMP (2013)

library provides a framework for non-GPU based development in an SMP environment

and the CUDA library supports GPU development. Distributed memory systems are
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composed of two or more discrete memory blocks accessible by some subset of the

computing cores. Communication and data management is performed through mes-

sage passing, with the Message Passing Interface communications protocol being one

of the most widely used systems (Forum, 1994). The potential performance degrada-

tion introduced by higher communication overhead is potential offset by an increased

ability to scale the number of processors with the dataset. HPC clusters and cloud

computing resources are two examples of distributed memory systems. Finally, hy-

brid systems seek to leverage the benefits achievable through shared and distributed

memory systems. In general, distributed memory systems can be leveraged as a hy-

brid environment, assuming that each compute node is composed of one or more

CPUs. In this case, the developer manages the interface between shared memory and

distributed memory portions of the parallel program.

This work focuses on the development and classification of algorithms in SMP and

HPC environments, composed of many individual SMP systems, as these deployment

architectures are most often utilized for spatial analysis.

1.3 Organization

In Chapter 2 I propose a taxonomy of spatial analysis methods developed at the

intersection of the GIScience, Computer Science, and operations research domains.

That chapter introduces the idea of computational dwarfs and leverages them as the

primary classification mechanism. It is within the context of this taxonomy that

the remaining chapters are framed. Chapter 3 describes an implementation of the

Fisher-Jenks optimal choropleth map classification algorithm in a Symmetric Multi-

Processing (SMP) environment and describes implementation challenges working with

algorithms characterized by Dense Linear Algebra operations. Chapter 4 describes

Geometrically and Topologically classified problems through the implementation of
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Nearest Neighbor Search (NNS) and polygon adjacency algorithms. Chapter 5 and

Chapter 6 focus on spatial regionalization algorithms leveraging two distinct imple-

mentation methods, MapReduce and Exploratory. Finally, Chapter 7 summarizes

this dissertation and offers avenues for future research.
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Chapter 2

TAXONOMY

2.1 Introduction

Wang et al. (2013) suggest that monolithic Geographic Information Systems (GIS)

are increasingly unable to support necessary analytical, modeling, and visualization

operations. This is a product of ever increasing data size, depth, and analytical

requirements. Increases in data size are attributable to increased data capture ini-

tiatives, increases in sensor resolution (e.g. spatial, temporal, and spectral), and

increasingly complex model outputs with high granularity (Yang et al., 2008; Yang

and Raskin, 2009; Yang et al., 2010). The digital creation and capture of social

science data (e.g. individual level social media or transport data), coupled with

ever increasing temporal collection resolutions contributes directly to increased data

depth (Manovich, 2012; Sui and Goodchild, 2011; Burgess and Bruns, 2012; Good-

child, 2007). Finally, increasingly complex process models, coupled with larger data

sizes render non-distributed Spatial Analysis and Modeling (SAM) computationally

intractable. For example, Anselin and Rey (2012) identify five computationally ex-

pensive algorithmic tasks to support spatial econometrics.1 Tang et al. (2011), within

the physical sciences domain, identifies similar intractability due to serial computa-

tional methods in the context of land use change analysis. Participation in the big

data / big process domain requires an integrated, spatially enabled, system to support

large-scale data storage, analysis, and synthesis.

1 These are: the computation of a spatial weights object, computation of the log Jacobian (requiring
computation of the determinant of a potentially large matrix), large matrix inversion, constrained
numerical optimization, and Monte Carlo simulation.
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Highly scalable algorithms are a small, but essential component of an integrated

approach to tackling these big data / big process challenges. This is not unique to the

GIScience domain and I look to the seminal, cross domain, Atkins (2003) report that

describes Cyber Infrastructure (CI) as an integrated system capable of addressing

the above limitations within a broader, general scientific research context. Stewart

et al. (2010), citing the Pervasive Technology Institute (2007) provides the following

definition of Cyber Infrastructure.

Cyberinfrastructure consists of computing systems, data storage systems,

advanced instruments and data repositories, visualization environments,

and people, all linked together by software and high-performance networks

to improve research productivity and enable breakthroughs not otherwise

possible.

Wang et al. (2013) describe Cyberinfrastructure based GIS (CyberGIS) as a more

domain specific solution which is a ‘fundamentally new GIS modality comprising a

seamless integration of CI, GIS, and SAM capabilities’. Envisioned as a trinity of

components, GCI is composed of high-performance Computing (HPC) infrastructure

that provides the hardware and storage required to support a middleware layer com-

posed of component based, highly scalable algorithms. These lower, infrastructure

layers provide the functionality required to facilitate collaborative, cross-domain re-

search. The development, funding, and utilization of CI (and by extension GCI) is

in and of itself a large research project. It is within the context of CI that I seek to

motivate this work.

In motivating this work I must address two questions. First, lacking a large body

of existing, intractable science questions leveraging spatial analysis techniques, is the

development of high-performance spatial analysis algorithms a technical exercise in
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search of a purpose? I answer this by framing the argument similarly to how invest-

ment in infrastructure is being managed. Second, assuming algorithmic development

is warranted, what theoretical scaffolding is necessary to reduce the complexity of par-

allel spatial algorithm development and support breadth of implementation coverage

across the spatial analysis stack? In answering this question I propose the develop-

ment of a taxonomy of spatial analysis algorithms. Each question is addressed in turn

below.

2.1.1 Purpose of Parallel Spatial Algorithm Development

Kelbert (2014) describes a chicken and egg style argument focused on the devel-

opment and implementation of funding models for CI projects. The crux of the issue

is that infrastructure, e.g. hardware and software, are expensive to develop. Given

a large quantity of funding to support infrastructure development, is the underlying

research agenda not unduly biased towards science which makes use of said infras-

tructure? By extension, would it not be prudent to provide a minimum of funding for

infrastructure, such that the science requiring it was supported, but not so much fund-

ing that the science research agenda became dominated by CI. Within the context of

this argument Kelbert (2014), suggests that a balance must be struck by identifying

both the problems to be solved and the underlying infrastructure required to support

these. This balance must be agile, and broad enough in scope that a generalized

set of functionality is provided to support community engagement and uptake. This

final requirement is in line with the community engagement challenges identified by

Anselin and Rey (2012) in a spatial econometrics context. The success or failure of a

broad, agile approach can be measured by the amount of buy-in from the community.

Using Kelbert’s argument as an analog, it is possible to shift from CI driven

research and CI infrastructure funding, an integrated view, to the development of
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middleware algorithms and the their application within a CI environment. Like the

investment in infrastructure, a key question to ask is whether research targeted at

the development of scalable algorithms without immediate, broad application is a

prudent course of action. Are these algorithms in search of a purpose? I argue that

targeted algorithm development with broad application to drive taxonomic classifica-

tion provides the same benefits as broadly scoped functionality within an integrated

CI.

It is essential that any effort to break this causality dilemma focus on high-level

classification of functionality usable in the iterative development, deployment, and

utilization loop that embodies CI research. Asanovic et al. (2006), in describing the

impetus behind the collaborative development of a classification scheme for highly

scalable, parallel algorithms states that, ‘[t]he hypothesis is not that traditional sci-

entific computing is the future of parallel computing; it is that the body of knowledge

created in building programs that run well on massively parallel computers may

prove useful in parallelizing future applications.’ Therefore, the individual implemen-

tations described in subsequent chapters may or may not directly address a presently

identified, computationally intractable science question. The algorithms have been

selected because they are collectively representative of broader algorithmic character-

istics which find repeated use across the spatial analytical stack.

2.1.2 Motivating a Taxonomy of Implementation Techniques

The development of a taxonomy of implementation techniques focusing on the

spatial analysis domain is essential for a number of reasons. First, the integration

of modern parallelization techniques, CI, and spatial analytical methods is emergent

(Wright and Wang, 2011) and middleware implementations are lacking fundamental

comparability. Current implementations, distributed across domains and the liter-
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ature, offer algorithm implementations with varying focus, level of description, and

vocabulary. This hinders breadth of parallel algorithm coverage across the spatial

analysis stack due to difficulty in identifying commonality between atomic algorith-

mic operations from divergent analytical methods. A taxonomy is well suited to

support standardization of vocabulary and classification criteria.

Second, McKenney (2013) suggests that parallel programming is difficult due to

the limited availability of highly scalable hardware and hard to use tools. The appli-

cation of parallel programming methods to spatial analysis algorithms is no different.

Within the context of parallel spatial analysis algorithms, works focusing on multiple

implementation methodologies, (e.g. (Rey et al., 2013)), with the goal of quantita-

tively and qualitatively comparing performance and ease of implementation are not

commonly found. While highly focused works are essential, increasing the breadth

of implementations can significantly benefit from a set of best practices or lessons

learned. A taxonomy provides a framework through which analytical tasks can be

decomposed into composite parts, as well as a set of proven implementation tech-

niques. Coupled with comparability, the taxonomy proposed below seeks to provide

the theoretical scaffolding to support improved (re)implementation efforts.

Finally, working within the GCI ecosystem Wang (2013), Anselin et al. (2014)

identify two hurdles in the deployment and utilization of a spatial analysis library, 2

interoperability and the deployment of serial analytic code to distributed systems.

Previous works within this domain have largely focused on the implementation of

single algorithms within the context of a single hardware deployment. In aggregate,

these efforts form a bottom-up approach to the definition of a corpus of implemen-

tation specifics. These efforts are, unfortunately, tightly coupled to specific hardware

and serve primarily to offer a literature from which larger meta methods can be

2 Python Spatial Analysis Library (PySAL) Rey and Anselin (2010).
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identified. In contrast to this bottom-up approach, I seek to provide a top-down clas-

sification of the broad characteristics of spatial analysis algorithms within a parallel

domain with the goal of providing guidance for the (re)development of serial analytical

code for HPC environments. It is through the top-down development of classifica-

tion criteria and the bottom-up assignment of membership within that classification

scheme, that a usable tool for robust implementation within CI environments can be

developed. Within the context of CyberGIS, the proposed taxonomy is an essential

theoretical component of the middleware framework that broadly supports algorith-

mic implementation. This in turn is a key infrastructure component, addressing the

second hurdle identified by (Anselin et al., 2014) at a scale well beyond the individual

algorithm, to support the iterative utilization and refinement of CGI.

The remainder of this chapter is organized as follows. Sections 2.2 describes the

implementation environment, the Python Spatial Analysis Library. Section 2.3 re-

views existing taxonomies from the Computer Science, GIScience, and operations

research domain. In Section 2.4 I describe those criteria included and excluded from

the taxonomy. Section 2.5 forms the bulk of this work and outlines the proposed tax-

onomy of parallel spatial algorithms. I explore the combination of taxonomic classes

to form analytical methods in Section 2.6, offer an introduction to the subsequent

chapters framed as case studies in Section 2.7, and close with concluding remarks in

Section 2.8.

2.2 Python and the Python Spatial Analysis Library

All implementations referenced through this work have been developed in the

Python programming language for a number of reasons. Langtangen and Cai (2008)

provide an excellent comparative analysis of the development of high-performance sci-

entific computing code with an eye towards the qualitative development process and
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quantitative performance considerations. To summarize, Python offers a robust in-

frastructure of numerical, graphic user interface development, and data I/O libraries.

The existence of these libraries, coupled with the higher level interface Python offers

serves to significantly reduce development time. The cost of this qualitative improve-

ment is realized at runtime. Python overcomes this shortfall by providing direct

access to C and Fortran code, which can be utilized in performance bottlenecks, e.g.

nested for loops. Using a pure Python approach, Langtangen and Cai (2008) show

that runtimes are on the order of 2 times slower than C (and Fortran) code. Using

a hybrid approach Python offers comparable speeds. In a HPC environment hybrid

C / Python code generally performs as well as pure C, with significantly less code

being developed (Langtangen and Cai, 2008). 3 The choice of Python as the pri-

mary development language was a function of the aforementioned strengths and the

existence of a robust spatial analysis library written in pure Python.

The Python Spatial Analysis Library (PySAL) is an open-source spatial analytics

library (Rey and Anselin, 2010). PySAL utilizes a modular design centered around

a core of low-level functionality, e.g. file Input/Output, geometric data structures

and operations. Additional modules provide analytical methods for spatial region-

alization, Exploratory Spatial Data Analysis (ESDA), network constrained spatial

analysis, measures of spatial dynamics, spatial weights operations and measures of

spatial inequality (Anselin et al., 2014). Code generated for this work is integrated

within the PySAL library and the associated Parallel PySAL (pPySAL) branch. 4

A key consideration in algorithm optimization is the existence of some benchmark

implementation. A key reason the PySAL library is being used is because of the

3 I note that the referenced implementation focuses on a problem domain inherently amenable to
vector representation.

4 See http://github.com/pysal/pPysal.
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breadth of existing coverage across the spatial analysis stack; PySAL provides many

serial benchmark implementations. Targeting PySAL largely removed the need to

develop both reference implementations and parallel test implementations. I note

that no library offers complete coverage across the spatial analysis stack and the

included review of existing parallel vector spatial analysis algorithms is invaluable in

supporting comprehensiveness of the proposed taxonomy.

2.3 Existing Taxonomies

This dissertations is sited at the intersection of fields: parallel computing within

the computer science domain and spatial analysis algorithms within the GIScience

domain (Goodchild, 1992, 2010). Therefore, existing taxonomies from both fields

provide a foundation from which to synthesize a new representation of the state of

parallel spatial algorithms.

From the Computer Science domain, Asanovic et al. (2006) propose a taxon-

omy of atomic computational methods and the associated communication patterns

(‘dwarfs’) which are the core algorithmic building blocks common across a range of

computational problems. These abstracted mathematical procedures are defined by

the high-level computational problem they solve and the communication pattern real-

ized in a distributed environment. The development of these dwarfs serves to answer

the question ‘What are the common kernels of the applications?’ (Asanovic et al.,

2006).

The field of GIScience also offers insight into broad methods of classification for

families of algorithmic operations. An early classification of spatial statistical meth-

ods, provided by Cressie (1990, p. 9, 10), subsets spatial statistics methods based

upon the underlying representation of the data. These classes are geostatistical, for

continuous data, lattice for areal unit data, and point pattern. Egenhofer et al. (2010)
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suggest that classic vector-based GIS operations are definable as being topological,

indicating that the underlying information is invariant to transformation, directed,

indicating that the direction described relationship between geometries is essential,

or metric, indicating that the distance between entities is of the utmost interest.

Likewise, Dowers et al. (2000) broadly classifies spatial analysis methods suitable for

parallelization in the context of supporting more robust development and roll-out via

strict adherence to principals of interoperability. A subset of these methods, which

focus on the vector analysis domain, include feature generalization, feature manipula-

tion, e.g. topology creation and feature analysis, e.g. overlay. Andrienko et al. (2011)

provides a taxonomy of movement analysis targeting spatio-temporal data represen-

tation, processing, and visualization, while Jain et al. (1999) provide a classification

of data clustering, an inherently spatial problem, which focuses on the hierarchical

structure of the analytic technique. Specifically within the context of parallel spatial

algorithms, Ding and Densham (1996) focuses on decomposability and load balancing

in order to identify problems based upon homogeneity in the attribution of the data

and regularity of the spatial distribution.

One can also look to the operations research domain for some insight into the

classification of pseudo-spatial algorithms. Both Trienekens and Bruin (1992) and

Crainic et al. (1997) provide domain specific taxonomies for the classification of

enumerated (former) and heuristic (latter) search techniques with both classifying

algorithms based on the methods of communication and synchronization as a prod-

uct of the decomposition. Trienekens and Bruin (1992) classifies algorithms based

on classic decomposition and synchronization techniques as well as the methods by

which knowledge is shared and leveraged. In the case of fully enumerated branch and

bound algorithms the process by which other works become aware of changes to the

global knowledge base is essential. Crainic et al. (1997), in classifying parallel Tabu
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Search methods, identifies control (synchronization and management), communica-

tion paradigms, and heuristic search differentiation as the three primary dimensions.

Both works present a logical partitioning of algorithm attributes existing as a hybrid

of fundamental parallel computing methods and domain specific operations. The

former seeks to identify those implementation realities which all algorithms must

conform to, while the latter provides the necessary linkages back to the domain of

interest such that the taxonomy remains relevant.

Clearly, as one moves from the Computer Science domain, to the spatial analysis

domain, the focus shifts from communication and synchronization, lower level imple-

mentation requirements, to methods, applications, and data structures. Therefore, a

synthesis of these domains must maintain some common vocabulary to be accessible

and ultimately, relevant.

This work leverages and extends the work of Asanovic et al. (2006), through

the classification of spatial algorithms into a framework of computational dwarfs

and their communication patterns. The proposed classification scheme provides a

common platform from which computer scientists can assess the placement of spa-

tial algorithms within the parallel computing domain and GIScientists can identify

computational commonalities within classes of spatial analysis algorithms. That is,

classification of methods by intrinsic commonalities in data structures and analytical

approach naturally lends itself to classification by atomic mathematical operations

and communication patterns.

2.4 Defining Dwarfs

Dwarfs are defined using two criteria, computational method and communication

pattern. The computational method is the basic mathematical operation which de-

fines some expensive process. The communication pattern is the observed frequency
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and topology of inter-node communication. Communication patterns are identified

from existing parallel implementations. In instances where two similar mathematical

operations exhibit distinct communication patterns, one can (and should) identify a

new processing dwarf. The inverse is also true, where commonality in communication,

but not computation, is indicative of a new dwarf.

2.4.1 Atomic Compute Operations

Atomic compute operations are high-level classification constructs designed to ab-

stract low-level implementation details, i.e. these are the ‘computational kernels’

which can be aggregated to create most if not all of the currently utilized mathemat-

ical, analytical methods (Colella, 2004; Asanovic et al., 2006; Kaltofen, 2014). The

concept of identifying high-level classes of low-level operations within the context of

computational simulation was first proposed by Colella (2004). He identifies the fol-

lowing seven dwarfs: (1) structured grids, (2) unstructured grids, (3) Fast Fourier

Transforms, (4) dense linear algebra, (5) sparse linear algebra, (6) particles (e.g. N-

Body problems), and (7) Monte Carlo simulation. Leveraging this initial work within

the context of a generalized taxonomy of parallel algorithm characteristics, Asanovic

et al. (2006) identify thirteen dwarfs which are distinct from underlying hardware

implementations. This latter point is essential in decoupling the classification of an

algorithm’s behavior from a low-level classification of the algorithm coupled with the

implementation hardware. The defined dwarfs are: (1) Dense Linear Algebra, (2)

Sparse Linear Algebra, (3) Spectral Methods, (4) N-body methods, (5) Structured

and (6) Unstructured Grids, (7) MapReduce (Monte Carlo), (8) Combinatorial Logic,

(9) Graph Traversal, (10) Dynamic Programming, (11) Backtrack and Branch and

Bound, (12) Graphical Models, and (13) Finite State Machines. While this listing

appears exceptionally inclusive, Asanovic et al. (2006) are proponents of the identi-
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fication, definition, and inclusion of additional computational dwarfs. To that end,

Kaltofen (2014) extend the Berkley dwarfs with seven additional dwarves focusing

on symbolic computation. While the specifics of the implementation are beyond the

scope of this work, the methodology of extension is one which I emulate.

When identifying the atomic operations which characterize some analytical task,

it is clear that the vast majority of algorithms from the spatial analysis stack can be

composed of one or more dwarfs. Therefore, the utilization of an analytical method

to highlight or explore classification within a dwarf is not an explicit assertion that

the method exists only within that dwarf. The concept of chaining dwarfs is explored

below. It is also clear that the definition of atomic compute operations, as a means of

characterization, lacks linkage defining strict implementation rules back to the lower

level implementation of a parallel algorithm. This linkage is made during the heuristic

process used to identify algorithms ripe for parallelization. That is, paramount in the

development of a successful algorithm parallelization are the identification of the

processing bottleneck(s), suitable methods of decomposition, communication, and

processes synchronization, the parallel programming model to be used.

2.4.2 Communication Patterns

Amdahl’s Law provides unlimited scalability assuming an idealized load balancing,

no serial processing component, and zero communication costs. Unfortunately, par-

allel programs only theoretically conform to this law. The key cost in the process of

parallelization is that of inter-process communication (Grama et al., 2003), or the act

of transmitting data between two or more CPUs. Due to the cost of communication,

the synthesis of computational dwarfs and communication patterns is a natural pair-
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ing; identification of the most expensive aspect of the parallelization processes has led

to the development of optimized solutions within the parallel computing literature. 5

Communication patterns are an aggregate descriptor used to describe the fre-

quency, size, and scope of interprocess communication. The two previously defined

system architectures, shared and distributed memory, give rise to two broad categories

of communication (1) message passing and (2) shared memory. The Message Passing

Interface (MPI) (Forum, 1994) is becoming the de facto message passing protocol

in scientific computing and provides a standardization of common message passing

methodologies that are largely portable across hardware environments.

Within the MPI framework, three communication strategies are defined: Collec-

tive, e.g., Scatter-Gather or Broadcast, Point-to-Point, and Remote Memory Ac-

cess (RMA). Global communication sees one or more processing cores sharing data

to all other processes. For example, Broadcast distributes data from one process

to all other processes. The Scatter-Gather paradigm roughly evenly distributes

data across some number of processes and later gathers that data back to a single

manager. Point-to-point communications are composed of messages directly passed

between processes, e.g., a word passed from a mother process to a child process.

These can be synchronous, where the sender waits for confirmation that the word

has been transmitted, or asynchronous, where the sender transmits information and

immediately continues processing. Finally, RMA is a communication model where

a remote process directly accesses, without synchronization, the memory space of a

different processing core. Each of these methods incurs communication costs during

three phases: (1) startup time which includes message package and routing, (2) trans-

mission time which is the time required to move headers between nodes, and (3) data

5 It should be noted that these method hold until peta-scale computing, after which point optimized
communication of any kind is an open problem, e.g. quadratic cost in routing algorithms alone
add significant overhead (Gropp, 2009).
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transfer time (Grama et al., 2003). Within the shared memory paradigm, a single

memory space is globally accessible, either synchronously, or asynchronously, to all

processing (OpenMP, 2013). Assuming an identical data transfer requirement, the

sequence of methods presented represents a descending cost of communication model,

Figure 2.1The Continuum of Communication Costs Incurred by Different Data Shar-

ing Modelsfigure.2.1.

Figure 2.1: The Continuum of Communication Costs Incurred by Different Data
Sharing Models.

The process of disentangling communication patterns from concepts of granularity,

decomposition methods, and load balancing is challenging due to the multi-faceted

relationship between these concepts. For this reason, algorithms are intentionally

classified at a high-level describing only the patterns by which information is trans-

ferred. At a lower, implementation level, all dwarfs benefit from ideal load balancing

via decomposition, parallelized input/output and a careful balance in communication

granularity. The following provides a brief overview of these idealized implementation

details. More specific implementation information is provided within the definition

of each dwarf.

Decomposition Methods

The decomposition of an algorithm requires the identification of those tasks which

are composed of repeated computation and the identification of data dependencies

between these tasks such that a directed task dependency graph can be generated.

The remainder of this subsection describes task and data parallelism.

28



By way of example, imagine two different analytical flows focusing on spatial

regression. In the first example, a spatial regression model is to be estimated (Task

A). This model requires some measure of spatial interaction, a W object, be computed

(Task B). Task A can not be computed without first computing Task B, yielding a

two node directed graph with no branches. It is not possible to exploit a task level

parallel approach in this example. Using an example from LeSage (2014), assume

that two methods of describing spatial interaction wish to be defined for use in an

extension to a standard spatial regression model in the form:

y = ρSWSy + ρTWTy +Xβ + ε, (2.1)

where the key variables of note are WS (spatial proximity) and WT (technological

proximity), two differently specified spatial adjacency objects. 6 Both W objects can

be computed independently without the need for inter-process data communication.

Therefore, task parallelism can be leveraged to perform two different computations

concurrently (Tasks B and C). Task A is still data dependent upon the completion of

Tasks B and C.

Figure 2.2: Two Sample Directed Dependency Graphs Illustrating (a) No Potential
Task Parallelism and (b) a Two Node Level with Potential Task Parallelism.

6 I note that LeSage (2014) specifically suggest not specifying a model in this way and use this
example only as a straightforward task parallel example.
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Using the generation of a W object as an example, it is possible to identify a

candidate for data level decomposition, and parallelism. Here the same computational

problem, the generation of an adjacency structure using a distance metric or an

adjacency matrix, must be applied to some set of data. Decomposition of that data

can take many forms, (e.g. spatial decomposition using a regular grid), but the

underlying algorithmic function is invariant to the decomposition method. Likewise,

the row standardization of said matrix, which ensures that each row sums to unity,

could be row-wise decomposed and computed exploiting data level parallelism.

Clearly, an analytical workflow will not be composed of distinctly task or data

parallel requirements, but a potentially complex dependency graph with task and

data parallel computation levels. At the proposed taxonomic level, I identify each

node as a potential dwarf and therefore, do not attempt to make the task or data

parallel distinction. This distinction is key at a higher, composite level where dis-

tinct dwarfs are chained (described below). By extension, I explicitly exclude task

scheduling or load balancing as these concerns are a function of the hardware, specific

implementations, and input data.

Synchronization

Many of the methods above make a distinction between synchronous and asyn-

chronous access. Synchronicity is an essential component of the performance of any

communication paradigm. In instances where synchronization is required, whether,

through the use of locking, semaphores, or message confirmations, one or more pro-

cessing cores are potentially idle. The aggregate of minuscule costs of process idle

time can rapidly exceed the benefits of parallelization. For this reason, asynchronous

communication methods generally provide better overall performance. The cost of

asynchronous communication in non-embarrassingly parallel implementations mani-
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fests as significantly higher complexity. From an implementation perspective, asyn-

chronous implementations can provide the most performance at the cost of testability,

reliability, and maintainability. Synchronous implementations are frequently required,

but at a tangible cost to performance. Therefore, experience has shown that perfor-

mant solutions are possible through the utilization of periodic bulk synchronization

Valiant (1990) where all processing core temporarily halt and communicate. The

benefit to this model is a more predictable pattern to core idle time, as a function of

communication requirements.

Again, synchronization is explicitly excluded as a classification criteria as individ-

ual implementations will seek to balance ease of implementation with raw performance

improvement. Including synchronization doubles the effective number of classes with-

out offering a concrete classification tool; I assert that most implementations could

leverage synchronous or asynchronous methods dependent upon algorithm structure

and underlying hardware.

Input/Output

Finally, a key cost to any implementation is data Input and Output (I/O). I use

I/O to mean not just the process of moving data from disk to memory, but also the

process of CPU access to data in some memory location (RAM or cache). This data

movement is a primary bottleneck inefficient computation (serial or parallel). As early

as 1993, the starving CPU is being identified as a primary performance bottleneck

with Alted (2013) quoting Kevin Dowd as saying

We continue to benefit from tremendous increases in the raw speed of

microprocessors without proportional increases in the speed of memory.

This means that ’good’ performance is becoming more closely tied to good

memory access patterns, and careful re-use of operands.
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Clearly, this problem extends through the I/O stack, from initial data read to

processing. The introduction of a hierarchy of caches, which provide higher speed

CPU access to progressively smaller memory areas helps to improve performance,

assuming the code has been developed and tuned for a given architecture. Herein

lies a reason why I/O can not be a high-level classification criteria; two identical

algorithm implementations with identically identified processing dwarfs can perform

divergently assuming the low-level implementation of one is tightly tuned for some

hardware environment. These low-level details can be the exploitation of cache layouts

or the exploitation of parallelized data reads and writes. The inclusion of this criteria

exponentially increases the size of the classification mechanism and effectively renders

a one-to-one implementation to class relationship.

Performance Metrics

I look to existing taxonomies within the computer science domain for guidance on

the inclusion of performance metrics as a classification criteria or as an additional in-

formational item. Stratton et al. (2012) offers a taxonomy of parallelization methods

for GPU based programs targeting Parboil benchmarks. While performance improve-

ment is the over-riding concern and performance metrics are occasionally provided

as a comparison between implementations using divergent techniques, performance is

not a universally leveraged metric. Asanovic et al. (2006) suggests performance is a

function of many concerns beyond algorithmic formation such as memory access la-

tency, memory availability, CPU size, CPU capacity, or CPU distribution, to name a

few. Clearly, a successful implementation is one which provides performance improve-

ment, but the explicit inclusion of performance adds a dimension to the classification

schema that tightly couples of hardware; I seek to avoid this coupling.
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2.5 Proposed Taxonomy of Parallel Spatial Analysis Algorithms

Leveraging the concept of computational dwarfs, I propose the following taxonomy

of spatial analysis methods. The proposed classification of methods is constrained

to vector spatial analysis algorithms. With an eye towards this boundary and the

wealth of spatial analysis occurring in the micro-scale, desktop environment, I seek

to bridge implementation hardwares and offer a classification suitable for shared and

distributed memory architectures. To that end, I utilize the communication vocabu-

lary defined within the broadly used MPI communication protocol, while suggesting

that lower level implementations realizing similar communication patterns in an SMP

environment are possible.

The taxonomy is composed of six classes which describe six computational dwarfs

commonly encountered within the spatial analysis stack. Three of these dwarfs are

drawn directly from Asanovic et al. (2006) as the mathematical operations are ubiq-

uitous. These are the (1) MapReduce (Monte Carlo), (2) Sparse Linear Algebra, and

(3) Dense Linear Algebra dwarfs. In asserting that spatial is special, I identify three

additional computational dwarfs specific to the spatial analysis domain. These are

(4) Geometric, (5) Topological, and (6) Exploratory.

2.5.1 MapReduce

MapReduce, Monte Carlo, or embarrassingly parallel implementations7 are the

most basic data-parallel implementations with no inter-core communication required.

MapReduce style dwarfs find wide application across the spatial analysis stack. Com-

monly applied analytics amenable to MapReduce style parallelization include simula-

tion for local Moran and local G statistics (Wang et al., 2013). To support inference,

7 All three names describe an identical process and this work uses MapReduce in line with Asanovic
et al. (2006).
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these methods utilization simulation, for example, the random permutation of some

attribute vector across a set of spatial observations and subsequent computation of a

local statistic. Decomposition is generally trivial for MapReduce style algorithms as

tasks are identical and independent. Therefore, a simple n/p decomposition, where n

is the required number of operations and p the number of cores, is generally sufficient.

Using the above example computing a local Moran’s I statistic using 100 permuta-

tions, a four core parallel implementation could perform 25 permutations local to

each core and then aggregate the necessary scalar results back to a master process.

I identify this type of computational dwarf being widely leveraged within the

spatial analysis domain. For example, Laura et al. (2015) implement a MapReduce

based spatial regionalization algorithm in both SMP and HPC environments. Li et al.

(2014c) deploys a spatial adjacency algorithm into a distributed Hadoop environment

and shows massive performance improvements. 8 Local Moran’s I is explicitly

identified as being computable using an embarrassingly parallel implementation by

Wang et al. (2013) with conditional permutation being ideally suited to basic do-

main decomposition and concurrent processing. Finally, Liu et al. (2010) describe

a MapReduce style implementation using a distributed file system to compute the

G∗i (d) statistic.

It is with careful consideration that I maintain the term MapReduce to describe

this paradigm of programming, understanding that the reader may immediately

draw linkage between the prevalent Hadoop MapReduce framework and this class.

While Hadoop MapReduce has become one main implementation of the MapReduce

paradigm, it remains just that - an implementation. The key defining characteristics

of decomposition, mapping of some functional operand, and reduction can be traced

8 I note that this method does not appear to leverage any explicit global sorting, an essential
component of a geometric dwarf.
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to the development of functional programming languages, e.g. LISP and observed in

common data analysis workflows, e.g. the split-apply-combine paradigm employed by

the R scripting language. The common linkage for all members of this dwarf is the

ability to avoid communication during processing and remain embarrassingly parallel.

2.5.2 Dense Linear Algebra

Dense linear algebra problems are defined by the application of some mathematical

function to sub-sections (column(s), row(s), or blocks(s)) of a dense matrix. These

implementations generally leverage aspatial decomposition methods which seek to

balance a raw count of the number of computations across available compute cores.

Communication is generally fine grained and topologically close, seeking to transmit

scalars, vectors, and blocks to nearby neighbors for aggregation or population of some

composite data structure.

As a trivial example, assume the computation of a subset of the Moran’s I statistic,

namely:

n∑i=n
i=i

∑j=n
j=1 Wij

, (2.2)

where W is a spatial weights matrix, n is the number of elements in W , and i, j

are element indices. Computation of the denominator requires the summation of all

elements within the W matrix. It is possible to decompose said matrix into rows,

columns, or blocks and communicate said data to available compute resources. Once

distributed, each core can apply come operand, summation in this case, in order to

compute a local interim solution. These solutions can then be aggregated, with the

possible application of another operand, to iteratively compute the final solution.

More broadly, this process is composed of a data scatter, application of the same

operand to different data, and hierarchal aggregation of the result.
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Common applications in the spatial analysis domain include basic matrix oper-

ations on dense (continuous) W objects and some data classification algorithms,

e.g. Fisher-Jenks optimal choropleth map classifier (Rey et al., 2013; Laura and Rey,

2014). Another composite example of two dense linear algebra dwarfs, in the context

of spatial regression, is the computation of

(I − ρW )−1, (2.3)

where, I is an identity matrix, ρ is the spatial autoregressive parameter, and W is a

spatial weights object. Here both the matrix inversion and computation of ρW can

be classified as dense linear algebra operations. 9

Additional applications of the dense linear algebra dwarfs within the spatial analy-

sis stack include the decomposition and load balancing approach developed by Shook

et al. (2013). This work leverages row wise decomposition of a, potentially, dense

matrix in order to approximate the total computational cost prior to the iteration of

an agent-based model.

2.5.3 Sparse Linear Algebra

Like Dense Linear Algebra, Sparse Linear Algebra applies some mathematical

function to a row, column, or block. Implementations use metadata structures to

manage a compressed form by which most if not all of the zero entries can be re-

moved. This storage requirement alters the implementation requirements, in that an

efficient means to communicate data vectors (as is the case with Dense Linear Algebra)

plus potentially irregular metadata is required. Assuming these criteria are met, the

9 The W can initially have a sparse representation, resulting in the combination of sparse and
dense linear algebra dwarfs.
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distinction between linear algebra dwarfs is largely definable by an increase in the dis-

tribution of communication from the close topological neighbor to a slightly broader

neighborhood as a result of increased communication to query potential points of

interest in the sparse representation.

2.5.4 Geometric

Geometric algorithms compare sets of geometries, without requiring an explicit

topological structure defining the connectivity between components. This is not to

suggest that the spatial distribution of the geometries is not invaluable, but that

global distribution (broadcast) of the connectivity is not a required process. Com-

munication patterns are generally point to point, transmitting pivot information and

geometries during the process of applying global sort methods.

Two prime examples of this dwarf are single nearest neighbor computation and

the generation of a binary spatial adjacency matrix using either rook (shared edge) or

queen (shared vertex) contiguity measures. In both cases, the global distribution or

topology of the data is not required to be known by all processes. This facilitates the

use of spatial decomposition methods, without requiring the global transmission of

the entire dataset, and by extension topology, to all processors. This in stark contrast

to the topological dwarf, described below.

Using single nearest neighbor as an example, performant implementations are

characterized by distributed global sort (Atallah et al., 1989; Dehne et al., 1996)

using one or more phases of fine-grained point-to-point communications interspersed

by the application of a traditional, serial, nearest neighbor algorithm. This is a spatial

decomposition that leverages the high-performance of sorting algorithms. To briefly

describe this process, imagine a matrix, composed of two rows containing x and y

coordinates, respectively. The computation of nearest neighbor is performable by
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globally sorting on the y-axis, computing nearest neighbors from the set of locally

stored points,e.g. those sorted points local to a given processor. Sorting and nearest

neighbor search is then repeated for the x-axis. Finally, those points which are nearer

to the x and y pivot values than an already identified nearest neighbor are found and

another potential nearest neighbor computed. Given these three nearest neighbors

(x dimension, y dimension, and edge case), global sort can be used a final time to

identify the nearest neighbor. For a full formulation see Atallah et al. (1989) and

Chapter 4 for an in-depth description of this method.

I identify this computational dwarf within the computational geometry domain

and identify cases where the algorithms are used to support GISystems operations.

For example, Puri and Prasad (2014) implements an optimal, output sensitive polygon

clipping algorithm which requires a global sort to segment and initialize a line sweep

algorithm. Similarly, Hoel and Samet (2003) identifies a sort-based method to support

line segment polygonization. Dehne et al. (1996) offers a sort-based method to support

nearest neighbor search and Atallah and Goodrich (1984, 1985); Atallah et al. (1989)

describe sort based nearest neighbor search, convex hull, polygon triangulation, and

line segment intersection detection.

2.5.5 Topological

Topological dwarfs perform algorithmic operations based upon the connectivity of

bodies. This is similar to the N-body problem (Asanovic et al., 2006) in that the in-

teraction is between discrete observations and the Graph dwarf focusing on sequential

lookup of information. A distinction can be drawn because the topology is a neces-

sary additional data component, in the case of the former, and the computations can

require significantly more complex operations than simple lookup table access, in the

case of the latter. In computation, the underlying topology is leveraged to apply some
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analytical method utilizing approaches similar to those leveraged by geometric dwarfs.

A necessary pre-processing step for the application of a topologically constrained al-

gorithm, is the distribution of the topology using some global communication method,

e.g. Broadcast. Efforts to decompose topologies into component parts, perform non-

complete computations, and aggregate these partial computations back into a global

solution, in the style of a sub-optimal branch and bound style implementation, have

proved exceptionally difficult to manage.

Two examples of topological dwarfs are the computation of a network nearest

neighbor and the parallel query of a KD-Tree. In the case of the former, knowledge

of the entirety of the network allows for an efficient decomposition of the point ob-

servations and the application of logic similar to the geometric, planar case. Without

knowledge of the entire network, significant boundary information must be either du-

plicated or communicated. In practice this has been found to be prohibitive. Likewise,

a parallel tree search begins are some node and then leverages a depth or breadth first

search procedure. Management of the metadata defining sub-graph placement within

a distributed KD-Tree and the message passing required to travel between sub-graphs

has proved less efficient than a global communication and parallel search approach.

Without a doubt, it may be possible to decompose topologies and utilize a geometric

dwarf, but the cost of this will likely be a significantly less maintainable algorithm.

Communication is characterized by a single, global Broadcast where the topology

of the network is distributed across all process. Once completed, either fine gained

communication can be used in the same manner as geometric dwarfs to traverse

topologies or a MapReduce style implementation can manage non-communicating

computation. The necessity to utilize global communication suggests that only the

most efficiently communicated data representations can be leveraged. That is, a

method for parallel I/O to bulk load a pre-generated topology, a highly efficient
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structure to communicate the topology, or an efficient serial construction algorithm

that allows for an excess communication model are required to facilitate successful

parallelization of topological dwarfs.

By in large, the distinction between topological dwarfs and geometric dwarfs is

small. The distinction between the use of point-to-point global sort methods as the

predominant form of communication (geometric dwarfs) and the requirement for pre-

cursor global communication (topological dwarfs) must be made as the implications

in implementation are meaningful. While the root numerical methods both dwarfs

utilize can be defined as solving topological problems (in a GIScience sense), ge-

ometric dwarfs do not require the connectivity between entities be globally know.

The topological dwarf is therefore named not for the numerical method, but for the

communication requirement; a globally transmitted data structure describing the con-

nectivity of all entities must be populated and transmitted resulting in significantly

divergent communication requirements. This distinction is further realized at the in-

tersection of the computational geometry and GIScience domains. The vast majority

of works identified as geometric dwarfs exist within the former body of literature. In

the latter, Armstrong and Marciano (1996) utilizes the global topology of a number

of grid cells to significantly improve the performance of IDW interpolation and Wang

and Armstrong (2003) utilizes a quad tree based approach, with parallel search for

the k nearest neighbors and IDW computation. Finally, Tang (2013) identifies the

need to generate, store, and update a spatial index in the generation for circular car-

tograms. This operation requires the distribution of a topological, tree representation

of the spatial index, allowing classification as a topological problem, albeit in a shared

memory environment. While not largely leveraged outside of the database domain,

e.g. in cached driving directions, it is also possible to identify network constrained

40



spatial analysis as requiring, in most instances, the full topology prior to parallel

computation.

2.5.6 Exploratory

Asanovic et al. (2006) identify branch and bound search as an algorithm family

suitable for solving optimization problems. Assume that the optimization function

and constraints define an n-dimensional solution space which can be continuous, in

the case where integer requirements are not enforced or discrete, in the case where

integer requirements are enforced. Branch and bound style algorithms seek to solve

sub-areas within the solution domain and prune sub-optimal solutions to find one

or more optimal solutions. Many spatial optimization problems are not solvable

using this approach due to difficulty in formulating end enforcing a spatial contiguity

constraint. In fact, the computational complexity makes search of a high percentage

of the solutions domain infeasible. In those instances, heuristic solution methods

are often employed. It is these heuristic search methods that this dwarf seeks to

define. The root numerical methods seek to permute realizations of some solution with

the goal of identifying an optimal solution. This process is made significantly more

efficient through the use of knowledge sharing approaches, as evidenced in Chapter

6. That is concurrently solved solutions can share algorithm parameterization or

solution characteristics. The atomic compute component could be any heuristic search

method, e.g. GRASP, Simulated Annealing, Tabu Search, Neural Networks, Genetic

Algorithms, with the additional constraint that an inter-process, cooperative search

strategy is employed.

Communication can be characterized by iterative fine-grained, topologically close

message passing terminated by periodic bulk synchronization (Valiant, 1990) and

global, broadcast / gatherall style communication. The exploratory component of
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spatial regionalization algorithms can be decomposed as either a series of concur-

rently running searches or a single cooperative search. In the former an embarrass-

ingly parallel decomposition leverages fine grained, topologically close message passing

(or shared memory access) to share individual solution information. These searches

are interrupted by periodic global bulk synchronization, realized as coarse-grained

communication where all solutions are collected, ranked, and broadcast. Chapter 6

provides a sample implementation using this method. In contrast, the latter method

employs a spatial decomposition over a single local search. Decomposition occurs by

distributing the enumeration of all possible solution permutations across processing

cores and the sequential aggregation and ranking via fine grained topologically close

communications.

2.5.7 Extensions

Implementations will have to adjust with hardware, but general trends should

be largely constant. That is, the core mathematical operations and communication

methods used to facilitate concurrent computation will remain largely unchanged. For

this reason, I assert that the extension of the Asanovic et al. (2006) computational

dwarfs provides a robust theoretical framework into which this work can integrate.

The classifications are largely invariant to (1) improved communication, e.g. reduced

latency and (2) distributed data storage and asynchronous I/O, e.g. by leveraging a

spatial database. The identification of new dwarfs or modification of class membership

can, and should, be assessed in those cases where significant algorithm refactoring,

as is the case when a low-level parallelization yields an entirely new algorithm.
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Dwarf Description Communication
Pattern

Examples

Map Reduce† Embarrassingly parallel, repeated
trials.

None Permutation based
analytical methods,
Moran’s I, LISAs

Dense Linear
Algebra†

Data represented as dense matrices
and vectors.

Point-to-Point, Local Fisher-Jenks,
(I − ρW )−1

Sparse Linear
Algebra†

Data represented as sparse matrices,
generally yielding dense
representations and using offset
counting mechanisms.

Point-to-Point,
Neighborhood

Cholesky
Decomposition, W
Object
Manipulation(ρW or
transformation)

Geometric∗ Data represent discrete geometric
entities without the need to
represent the topology of two or
more elements.

Point-to-Point Adjacency Metrics,
Convex Hull, Line
Segment
Polygonization

Topological∗ Data represents the interaction of
N-observations by storing the
underlying topological relationship.
(Similar to N-Body problems.)

Global (Broadcast) Network Analysis,
Tree Traversal,
Nearest Neighbor
Search

Exploratory∗ The exploratory search of solution
space with data defining the space
extent and constraints on traversal.

Global,
Point-to-Point, and
RMA

Spatial
Regionalization

Table 2.1: Sample Classifications Using the Proposed Taxonomy. Dwarf † Are
Drawn Directly from Asanovic et al. (2006), While Dwarf ∗ Are Proposed to Leverage
the Assertion That Spatial Is Special.

2.6 Combinations of Dwarfs

The vast majority of analytic algorithms within the spatial analysis stack are

composed of multiple dwarfs. For example, the act of spatial regionalization, Figure

2.3Sequential Chaining of Computational Dwarfs in a Cooperative Regionalization

Algorithmfigure.2.3, requires the generation of a spatial weights, W object, to capture

the adjacency structure of the areal unit data. The generation of this data structure

is classified as a geometric problem. Next, one or more initial feasible solutions must

be generated. This processes can be parallelized using a MapReduce approach, where

each core generates some number of Initial Feasible Solutions (IFS) with no inter-

process communication. Once the generation of an IFS has been completed, the

regionalization algorithm, classified as exploratory, can be applied. All three dwarfs

are essential components of the analytical task and the combination of these has direct

implications on the global performance of the implementations.
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Two key considerations, when combining dwarfs, are the methods of intra-dwarf

decomposition, and the data structure requirements imposed through the paralleliza-

tion efforts (Asanovic et al., 2006). I assert that most, if not all multi-dwarf imple-

mentations exhibit time-sharing, rather than spatial decomposition and distribution

approaches (Asanovic et al., 2006). That is, existing spatial analysis algorithms tend

to be composed of a series of discrete steps with periodic bulk synchronization re-

quirements, i.e. strongly data dependent. Therefore, intra-dwarf decomposition can

leverage these properties and schedule sequentially occurring dwarfs on the same

compute resources. Again leveraging the spatial regionalization example, above, the

implications are that the geometric dwarf, MapReduce, and exploratory dwarves could

be scheduled to utilize the same compute resources, knowing that the former would

complete before the latter could process.

Figure 2.3: Sequential Chaining of Computational Dwarfs in a Cooperative Region-
alization Algorithm.

The next hurdle in the chaining of dwarfs is the identification of data structures

amenable to highly scalable computation across dwarfs. For example, the data struc-

ture used for rapid computation of the W object, should also be either (1) easily

convertible or (2) directly usable by the next MapReduce dwarf. Careful considera-

tion must be applied when this is not the case, as the cost of conversion to a necessary

data structure can render parallelization efforts unsuccessful.
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2.7 Case Studies

The remainder of this dissertation serves as a series of case studies focusing on the

implementation of Dense Linear Algebra, Geometric, Exploratory, and MapReduce

dwarfs. These case studies both inform and are informed by the taxonomy. In the

case of the former, implementation and simulation, as opposed to analytical exami-

nation identified the stark distinction between the Topological and Geometric dwarfs.

Analytical examination alone suggested that communication would be a function of

the underlying data and hardware, where simulation showed that efficiency in rep-

resentation is the primary determining factor. Likewise, the MapReduce and Linear

Algebra dwarfs were directly informed by the taxonomy and implementation could

mirror implementations from the Computer Science domain.

Representative algorithms were selected to explore implementation in both SMP

and distributed memory environments to illustrate low-level implementation specifics

within the context of this high-level classification. These case studies also provide

insight into the methods found to be successful in mitigating data transformation

when chaining dwarfs.

2.8 Conclusion

This work addresses the hurdle identified by Anselin et al. (2014) by providing a

high-level taxonomy of parallel computational methods, i.e. dwarfs. With a focus on

spatial analysis methods, a taxonomic classification provides an essential framework

to support the robust (re)implementation of serial spatial analysis algorithms and

reduce the implementation overhead within the context of CyberGIS.

The presented taxonomy utilizes the concept of dwarfs which are defined by their

core computational method and the dominant communication paradigm. Synchro-
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nization and decomposition are identified as being essential to a successful implemen-

tation, but the multifaceted relationship precludes the explicit inclusion of these as

means for classification; the complexity devolves the classification scheme to be im-

plementation specific. Using this classification scheme, I adopt three dwarfs, Dense

Linear Algebra, Sparse Linear Algebra, and MapReduce, directly from the work

of Asanovic et al. (2006) and then define Geometric, Topological and Exploratory

dwarfs.
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Chapter 3

DENSE LINEAR ALGEBRA

3.1 Introduction

Dense and sparse matrices play a key role in many scientific and mathematical

applications including supporting graph theoretic operations, e.g. connectivity ma-

trices, the storage of stochastic matrixes for use in probability based statistics, e.g.

Markov chains, measures of similarity, e.g. covariance matrices, and for the storage

of systems of nonlinear equations, e.g. for use in Maximum Likelihood estimation.

The wide utilization of matrices has led to the development of a number of compu-

tational libraries specifically designed to offer highly optimization matrix operations.

For example, the Linear Algebra Pack (LAPACK), leveraging low level Basic Linear

Algebra Subprograms (BLAS) algorithms offers highly optimized routines, tuned to

specific hardware environments, for the manipulation of sparse and dense matrices.

Highly optimized code can be developed with limited low-level development assuming

that a matrix (or vector) representation of the data is achievable and that inter-data

processing dependencies can be limited.

The storage and representation of sparse and dense matrices within computer

memory is largely similar in that one or more units of contiguous memory are al-

located, along with metadata describing the stride position of these data elements

within the global array. In the case of the sparse matrix, composed of some number

of zero elements, an additional metadata section describes not only the memory layout

but also the positional layout of the nonzero elements within the matrix. These repre-

sentations are highly amenable to high-performance computing because the memory
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size and representation shape are known a priori; this makes communication of these

data elements highly efficient.

The remainder of this chapter is organized as follows. First, Section 3.2 describes

the process of vectorization, a major contributing factor to the overall performance

improvements. The next Section, 3.3 describes the Fisher-Jenks algorithm, an op-

timal data classification algorithm which requires dense matrix data representation.

In Section 3.4 reports previous parallel algorithm implementations and Section 3.5

introduces the improved algorithms. In Section 3.6 I describe the experimental setup

and provide testing results. This chapter concludes with Section 3.7.

3.2 Vectorization

Implicit, hardware level parallelization, is realizable through the use of vectorized

computation. Extending the program flow description, above, one can conceptualize

a modern, serial, program as flowing through a von Neumann machine, Figure 3.1Sim-

plified Von Neumann Architecture Illustrating the Von Neumann Bottleneckfigure.3.1.

That is, information sequentially flows from memory, through a communication pipe,

e.g. the Bus, and onto the processor. Armstrong and Densham (1992) suggests that

most geospatial analysis occurs using this sequential model. Inherent in this design

is a processing bottleneck, the von Neumann bottleneck (von Neumann, 1945, p. 28)

which exists at the bus. In order to improve performance within this system caches

are used to provide small, yet increasingly large, memory spaces close to the CPU.

Assuming then that computation is memory bound, e.g. the processor waits for

data more frequently than it processes data and that compute time is limited by

the speed at which data can be accessed and moved from memory to the CPU, one

performance strategy would be to maximize utilization of the pipe. This in turn
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Figure 3.1: Simplified Von Neumann Architecture Illustrating the Von Neumann
Bottleneck.

would seek to keep the CPU local memory (caches) as full as possible at all times.

Vectorization seeks to realize this goal.

Vectorization is the process by which a Single Instruction is applied to Multiple

Data elements. That is the conversion of a scalar direction set that sequentially

applies some operations to a flow of data into a concurrent operation where the

same operand is applied to multiple subsets of the data flow. Nearly all modern

processor have Single Instruction, Multiple Data (SIMD) capabilities allowing for

vectorized computations Flynn (1972). Figure 3.2Vectorizationfigure.3.1 illustrates

the difference in computation, with the upper three lines illustrating the sequential

addition of scalar values. Realized as a loop, the process would be repeated for scalars

in element positions two through four, e.g. A1 +B1 = C1, followed by A2 +B2 = C2.

Non-trivial performance gains can be realized by concurrently computing element-

wise vector addition in a single operation, e.g. vectorA + vectorB = vectorC .

A key component of leveraging this type of computation is data representation.

When possible data is represented as a vector or matrix and a high-level processing

library, NumPy1 Oliphant (2006), is used to handle machine level vectorization. Suc-

1 Which in turn leverage low level libraries such as BLAS.
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Figure 3.2: Scalar Implementation (Top) and Vectorized Implementation (Bottom)
Leveraging Hardware Level Parallelism Within a Single Processing Core.

cessful vectorization imposed two requirements. First inter-operation dependencies

can not be present. Using the example above, the vectorization would not be possible

in use cases where the result was dependent upon a previous result, e.g. C2 is data

dependent on C1. Second, the input data must be representable as a vector, matrix,

or matrix subset, e.g. column, row, or block, as this representation matches the input

that the processor is expecting.

Buzbee (1986) suggests that meaningful performance gains are achievable assum-

ing that at least 50% of a given algorithm can be reformulated such that vectorization

can be leveraged. In conjunction with the heuristic rule to identify and target pro-

cessing bottlenecks for initial parallelization, it is possible to formulate, an a priori

assessment of the suitability of vectorization for performance improvement. This work

describes the application of vectorization to two phases of an algorithm in both serial

and SMP environments.
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3.3 Optimal Map Classification for Choropleth Mapping

Considerable research effort has been applied to the application, suitability, and

generation of choropleth maps (Burrough and McDonnell, 1998; Brewer and Pickle,

2002; Slocum et al., 2008). Choropleth maps utilize color or patterning to differen-

tiate between areal units based upon some underlying attribute. The partitioning

of attribute data for visualization is the focus of this work. Classification, or data

partitioning, can take many forms including equal interval, frequency, or standard

deviations from a mean (Brewer and Pickle, 2002). One popular method for data

segmentation employs the Fisher-Jenks optimal classification algorithm to break data

into statistically derived classes such that the variation between classes is maximized

and the variation within classes is minimized. This is a non-spatial data partitioning

algorithm applied to spatial data.

From a cartographic perspective, a strong case can be made against developing

a highly scalable choropleth mapping algorithm as the ability for one to visualize a

high number of individual observations is questionable. I suggest that this critique is

potentially shortsighted for two reasons. First, with increased utilization of interac-

tive, multi-scalar visualizations a clear need exists to support classification of a large

number of observations to visualize large scale, local distributions within the context

of small scale regional patterns. For example, optimal data classification allows visu-

alization of the spatial distribution of some attribute, using US Census Tracts as the

unit of observation, at both the city and national levels without the need to arbitrarily

reclassify data based on sound bounding area. Second, data clustering algorithms find

applications beyond map visualization, for example for the identification of optimal

bins prior to the application of a machine learning algorithm. In these contexts, the

ability to rapidly and optimally classify a dataset is essential.
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3.3.1 Fisher-Jenks Algorithm

The Fisher-Jenks algorithm optimally classifies n observations into k classes such

that all observations are members of a single class. Structured as an optimization

problem, the algorithm is constrained to minimize some measure of variance within

each class and maximize variance between classes. This can be the absolute sum of

squares deviation from the class median or the sum of the squared deviations around

the class mean (Rey et al., 2013). The algorithm consists of three steps: (1) the

computation of a diameter matrix which stores the sum of squares variance from

the mean for all clusters, (2) the computation of an error matrix which stores the

minimum variance of a set of n observations for k classes, and (3) the query of the

error matrix to find those pivots which fulfill the optimization constraints (Hartigan,

1975).

1. Compute the diameter Di,j for all pairs of n such that 1 ≤ i ≤ j ≤ n. Diameter

in this work is defined as the sum of squared deviations about the mean.

2. Populate each element, L, of the error matrix for rows [2, k] by E[Pi,L] =

min(D1,j−1 + E[Pj−1,L−1])]. This is dynamically generated as the error of the

optimal partition for the current row index, 2 ≤ j ≤ k, is derived from the

preceding row index, j − 1.

3. Locate the optimal partition from the error matrix as E[Pn,k] = E[Pj−1,k−1] +

Dj,n

It is possible to reduce the total number of steps to three by populating the first

row of the error matrix from the first row of the diameter matrix. This is in contrast

to the original publication by Hartigan (1975) and subsequent work by Rey et al.

(2013) which describe a fourth step, occurring between steps one and two to populate
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the first row of the error matrix. Additionally, previous works implemented this

algorithm either in serial, or through the parallelization of step one. For this chapter,

both steps one and two are parallelized.

This algorithm is constrained not only by runtime, but also by memory require-

ments. The creation of a dense diameter matrix, step 1, requires either n2, if storing

a symmetric matrix, or n2

2
, if only storing the upper triangle, units of memory. The

diameter matrix becomes a lookup table during step 2, and the algorithms requires

an additional k∗n units of memory for error matrix storage. Therefore, total memory

used is (k ∗ n) + n2

2
.

3.4 Previous Work

Rey et al. (2013) implemented a parallel Fisher-Jenks algorithm using three freely

available parallel Python libraries: the built-in Python module multiprocessing, Par-

allel Python, and PyOpenCL. Language syntax requirements differ between each

library and therefore require divergent implementations. The built-in multiprocess-

ing module ships with Python versions greater than 2.6, offers shorter development

times due to more straightforward implementation requirements, and reported the

best results. Parallel Python, an external library, requires an additional user instal-

lation and reported the worst parallel performance. Finally, PyOpenCL, a library

designed to leverage either the Central Processing Unit (CPU) or Graphics Process-

ing Unit (GPU), requires an additional installation step, complex implementation

requirements, and returned repeated memory allocation errors (Rey et al., 2013). In

light of these results, this implementation utilizes multiprocessing.

In addition to implementing and testing three libraries Rey et al. (2013) offer

multiple insights into the parallelization and implementation of the Fisher-Jenks al-

gorithm. These insights have been utilized to drive this research to further improve
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algorithm portability and performance. First, in-memory duplication limited total

sample size to half of the available RAM space. Second, the parallel computation of

the diameter matrix improved total compute time sufficiently that the computation

of the error matrix is revealed as a new bottleneck. Third, parallelization is only ben-

eficial with medium to large sample sizes as costs associated with parallel overhead

must be accounted for.

The Fisher-Jenks algorithm has an O(nk) runtime for unordered data and an

O(kn) runtime for ordered data sets (Hartigan, 1975; Rey et al., 2013). Additionally,

the Fisher-Jenks algorithm requires either a full, nxn distance matrix or an upper tri-

angle ((nxn)/2) to be stored in memory. Given the runtime, computation of medium

to large dataset is infeasible in a serial ESDA environment and given the memory

requirements, scalability is questionable as available RAM is a major limitation.

3.5 Implementation

The improved SMP implementation focuses on three extensions of the work by

Rey et al. (2013). First, this work explores the ability to avoid in-memory data

duplication through the use of shared memory space. Second, the computation of

the diameter matrix is refactored to leverage vectorized computation. Finally, both

parallelization and vectorization are applied to the computation of the error matrix.

After implementing these changes a range of sample sizes (n) and classes (k) are tested

and the performance results compared to both the serial Fisher-Jenks implementation

and the initial parallel implementation.

CTypes Shared Memory Prior to initiating the three algorithm phases, de-

scribed above, all necessary data structures are initialized. This alleviates the need

for in memory data duplication (Rey et al., 2013). Accomplishing this requires that

54



two contiguous memory blocks be pre-allocated using the built-in ctypes library (van

Rossum and Drake, 2013). This library provides a Pythonic interface to non-local

functions and, in this usage, facilitates the access of a single globally available memory

space by all child processes. In this context, in RAM storage must either be allocated

at the largest possible data type, 64-bit floating point, or the input data must be

sampled and the data type intelligently determined. This work utilizes the former

approach. Finally, inter-dwarf data dependencies are not identified. Therefore, the

ctypes allocated memory does not have accompanying locking mechanisms (locks or

semaphores).

Two constraints and two benefits are introduced through the use of shared mem-

ory. First, access to shared memory using Python requires the use of pointers to a

memory address; this is not direct in-language access to the stored elements. It is

therefore necessary to read directly from the memory buffer. This is accomplished

through the use of the frombuffer() function within NumPy (Oliphant, 2006). The

second constraint requires that the buffer is stored as a flat array, (i.e. one dimen-

sional). The Fisher-Jenks algorithm requires that the diameter matrix be nxn and

the error matrix be nxk. Therefore, it is necessary to reshape the buffer view before

in-language processing. While it is not possible to make a Pythonic view of the shared

memory space globally available to all children on a non-POSIX system, it is possible

to pass the pointer to a shared memory space and then recapture a Pythonic view

without issue. In this manner, the use of ctypes facilitate OS portability in a manner

that the use of global shared memory, internal to Python, would not.

The pre-allocation phase concludes with packing each row of the diameter matrix

with the sorted input values. This is to facilitate the vectorization of the computation

in the next phase.
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Diameter Matrix Computation Generation of the diameter matrix is the

most computationally expensive portion of the Fisher-Jenks algorithm and Rey et al.

(2013) show that the parallelization of this phase provides non-trivial speed increases

for medium and large problem sets. This implementation follows theirs, but differs in

two ways. First, memory duplication is avoided by passing a pointer and row indices

from the mother to the child process. Second, all for loops are removed from the

code to leverage vectorization in the computation of the diameter matrix. These two

general improvements provide substantial speed improvements over the initial parallel

implementation and are more explicitly described below.

Diameter matrix computation is initiated with the mother process computing the

load for each core using the equation

interval =
n

c
, (3.1)

where n is the total number of values and therefore rows, and c is the number of cores.

Data decomposition using this method often leaves excess rows that are processed

by the first core to complete its initial load. Once the segmentation of the load is

computed a memory pointer and the indices of the rows to be processed are passed

to each child process. Once distributed, each core is assigned n
numbercores

rows.

Each child process then iterates over its assigned rows and computes each row

using vectorized computation that fully leverages the SIMD capabilities of the pro-

cessor. Due to the fact that the lower triangle of the matrix is zero, before processing

a row the first i elements are replaced with zeros where i is the row number. Once

preprocessing of the row is completed, computation the entire diameter matrix row

proceeds with a single operation, i.e. Same Instruction Multiple Data, using the scalar
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equation

DI,J =
J∑
i=I

(yi − ȳI,J)2 (3.2)

where DI,J is the diameter of the cluster consisting of values I through J , ȳI,J =

1
J−I+1

∑J
i=I yi, and yi is the attribute value for observation i. Each row of the matrix

D is obtained through vectorization.

Once each child has completed the assigned load the jobs synchronize and the

mother process initiates computation of the error matrix. In all phases the mother

process manages synchronization, but also acts as a child process, performing a seg-

ment of the total load. This functionality exists within the Python language without

programmer implementation.

Error Matrix Computation Unlike Rey et al. (2013) I also parallelize the

computation of the error matrix. This is a direct extension to earlier work as com-

putation that was sufficiently fast previously now becomes the primary processing

bottleneck. The first step of this phase is to copy the top row of the diameter matrix

to the top row of the error matrix. This reduces the total number of computations

from kn to (k − 1)n + 1.

The computation of the error matrix is decomposed differently than the diameter

matrix. Instead of sending complete rows to each child process, the decomposition

technique used for the diameter matrix, it is necessary to send segments of a single

row to each process. This is because each row of the error matrix depends upon

values from both the diameter matrix and the preceding row of the error matrix.

Therefore,computation of each row is distributed over each available core using the

process summarized in: in Table 3.1Segmentation of the Error Matrix over Available
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Table 3.1: Segmentation of the Error Matrix over Available Cores

Core Number Error Row Segment (Vector)

c1 ei,1 ei,2 ei,3 ei,4 · · · ei,n
c

c2 ei,n
c

+1 ei,n
c

+2 ei,n
c

+3 ei,n
c

+4 · · · ei,2∗(n
c

)

... · · · · · · · · · · · · · · · · · ·
cm ei,m∗(n

c
+1) ei,m∗(n

c
+2) ei,m∗(n

c
+3) ei,m∗(n

c
+4) · · · ei,n

Corestable.3.1. Here e is an element in the error row, c is a child process (core), n is

the total number of values, and m is a total count of the available cores. As the row

index increases the total computational load increases, but the computational load

required to intelligently distribute the load exceeds the total computational cost of

this phase.

Once row segmentation is computed, the mother process distributes memory

pointers and row indices to each child process, as above. Next, each error element is

computed as the minimum of the sum of elements from the preceding error matrix row

and elements from a column of the diameter matrix. Both sequences can be repre-

sented as vectors and therefore provide a means to performed vectorized computation

using the following equation

Ei,j = [ei−1,j−1, ei−1,j−2, ei−1,j−3, · · · ei−1,(j−n)+2, ei−1,(j−n)+1]

Di,j = [di,j, di+1,j, di+2,j, · · · , d(i+k)−1,j, di+k,j]

ei,j = min(Ei,j +Di,j) , (3.3)

where Ei,j is a vector extracted from the previous row of the error matrix, Di,j is a

vector extracted from the diameter matrix, and ei,j is the minimum scalar element

of Ei,j + Di,j. While iteration over each index in the error matrix is still required, it

is possible to leverage the SIMD capabilities of the processor to populate each error

index.
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Pivot Matrix Computation Finally, pivot indices or values are identified in

the error matrix such that the variance is maximized between classes and minimized

within classes. This is an extremely fast lookup that is performed in serial. The

implementation is identical to that of Rey et al. (2013), except that the underlying

data structure is an array instead of a list. This incurs a negligible performance hit

to this implementation less than 0.5% of total compute time.

3.6 Experiment, Hardware, & Results

Below I report the results of testing the improved parallel implementation against

both the implementation created by Rey et al. (2013) and the original serial im-

plementation in PySAL, which mirrors Hartigan (1975). To control for hardware

variation comparative results from a single machine are reported after performing a

clean reboot. To test the impact of parallelization of both the diameter matrix and

error matrix computation the parameters k = 5,7,9, which are reported to be the

most commonly selected numbers of classes Rey et al. (2013) and a range of sample

sizes in the set from n = {1000, 2000, 4000, 6000, 8000, 12000}. For tests including

the original serial implementation the maximum value tested is n = 8, 000 due to

excessive runtimes. The test data is randomly generated floating point numbers with

a range of (0, 1]. Finally, experiments are performed where n = {1000, 2000, 4000,

8000, 16000, 24000, 32000, 40000, 48000, 56000, 64000, 72000, 80000} on a server

level machine to extend the performance curve and explore the current upper bounds

of this implementation.

Hardware The SMP test hardware consisted of an Intel 3.1GHz i3-2100 Sandy

Bridge dual core processor, that reports as 4 cores due to hyper-threading Intel (2003),

with 4GB of RAM, running KUbuntu linux. This is a pseudo POSIX compliant
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system that offers processor level process forking and mirrors a low end machine

users are likely to find readily accessible. For n > 12, 000 experiments utilize a 12-

core 2.26GHz Mac Pro with 64GB of RAM.

Results A single-core, serial Fisher-Jenks implementation provides a benchmark

against which it is possible to compute the total speedup attained through paral-

lelization. Figure 3.3Piecewise Linear Speed Curve Showing Total Compute Time of

the Serial Fisher-jenks Algorithmfigure.3.3 shows the piece-wise linear compute time

curves generated by the serial algorithm which clearly grow with the sample size.

Additionally, the number of classes increases total compute time, but this impact is

small when compared to the correlation between n and t, the total compute time.

To compare the results speedup results the standard speedup curve, defined in

Chapter 1, is utilized.

Figure 3.4Speedup Curve Benchmarking the Serial Implementation to This Paral-

lel Implementationfigure.3.4 illustrates the speedup attained compared to the original

serial implementation. I find that for n > 1, 000 the overhead associated with par-

allelization is significantly less than the total speedup attained. This is in-line with

Figure 3.3: Piecewise Linear Speed Curve Showing Total Compute Time of the
Serial Fisher-jenks Algorithm.
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previous results (Rey et al., 2013). The speedup curves are largely linear and clearly

vary with k. This is expected as increases in k introduce both an additional kn com-

putations and the associated parallelization overhead. Unlike, Rey et al. (2013) a

plateau is not identified at n = 2, 000. Finally, total speedups ranging from 50 times

faster to nearly 1,000 times faster are reported.

Moving to a comparison of this implementation to the previous parallel imple-

mentation (Rey et al., 2013), Figure 3.5Speedup Curve Comparing the Original and

Improved Parallel Implementationsfigure.3.5 shows, a general speed increase between

25 times and 200 times faster. This is largely attributable to the reduction in in-

memory duplication, the use of vectorization, and the parallelization of computation

for the error matrix. Interestingly, a plateau exists and overall decrease in speedup

from n = 8, 000 to n = 12, 000. This is potentially a product of naive data decom-

position for error matrix computation and additional tests comparing larger numbers

of samples are required. Finally, I identify a marked improvement comparing the

single core, vectorized, algorithm to the previously published multi-core algorithm

(Rey et al., 2013). Vectorization alone provides speedups of between twenty-five and

fifty over non-vectorized multi-core implementations.

Figure 3.4: Speedup Curve Benchmarking the Serial Implementation to This Par-
allel Implementation.
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Figure 3.6Speedup Curve Benchmarking Comparing Both Vectorized and Parallel

Implementations to the Serial Implementationfigure.3.6 compares the speed gains at-

tained by a solely vectorized implementation and the final implementation leveraging

both vectorization and parallelization. Clearly the later provides greater speed in-

creases, but the total difference between implementations is negligible until n > 1, 000.

Given the hardware specific requirements inherent to leveraging all available process-

ing cores, and the human time required to implement a parallel implementation, I

suggest that single core vectorization may provide implementations which are suf-

ficiently fast. This must be assessed on a problem specific basis. For n < 1, 250

vectorization out performs parallelization; this is due to the overhead associated with

spawning child processes.

Figure 3.7Total Computation of the Vectorized and Parallel Implementationsfigure.3.7

depicts benchmarking performed on the server level machine to compare total compu-

tational time for the parallel and vectorized implementations. Tests were performed

from n = 1, 000 to n = 42, 000 and show total compute time leveraging both paral-

lelization and vectorization for large problem sets remains well under two minutes.

Performance is describable using a piece-wise linear function for solely vectorized

Figure 3.5: Speedup Curve Comparing the Original and Improved Parallel Imple-
mentations.
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computation. Additional testing with larger values of n is required to classify the

expected behavior of the parallel implementation speed curve.

Implementation Challenges

The development of an improved parallel Fisher-Jenks algorithm was an iterative

process encountering multiple implementation challenges and identifying opportuni-

ties for future work. First, refactoring the original Fisher-Jenks algorithm to allow

for vector representation in the computation of the diameter and error matrices was

human time intensive. This required that the problem be recast and represented

in a completely different structure. Second, porting this code from a POSIX to a

non-POSIX system required an additional refactoring of the shared memory space

and exploration of efficient means to pass access to shared memory between processes

which do not exist in the same variable space (namespace).

3.7 Extensions and Future Work

This extension to Rey et al. (2013) highlights future research objectives and pro-

vides additional insight into deploying parallel algorithms throughout the spatial anal-

Figure 3.6: Speedup Curve Benchmarking Comparing Both Vectorized and Parallel
Implementations to the Serial Implementation.
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ysis stack. First, using open source, built-in libraries, it is possible to develop and

deploy system agnostic, parallel, code. This requires that code be developed un-

derstanding the limitations placed by each of the three modern desktop operating

systems. Second, I concur with Rey et al. (2013) in that speed improvements at-

tained through parallelization are valid only for medium to large values of n. This

is in-line with expectations as processing forking and inter-core communication incur

an overhead that is non-trivial above a threshold. Vectorization provides a method

by which increased performance can be attained for small values of n.

This work highlights the following three insights into the parallelization of this

algorithm. First, the representation of data as regular arrays, when possible, is es-

sential to providing the means by which vectorization can occur. Major performance

gains are attainable using CPU level parallelization, i.e. vectorization. Second, when

refactoring for a high-level parallel implementation, it is necessary to iteratively de-

ploy code and highlight processing bottlenecks at each iteration. This is evidenced

by the performance gains attained by leveraging and improving computation of the

distance matrix Rey et al. (2013) as well as parallelizing the computation of the error

matrix. Parallelization of the former led to a shit in processing bottleneck to the

Figure 3.7: Total Computation of the Vectorized and Parallel Implementations.
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latter. Third, this algorithm is still memory constrained in the SMP environment

and the parallelization of spatial algorithms to improve performance must focus on

both overall computational speed and efficient data representation. Additional work

is forthcoming focusing on the ability to apply this algorithm to a sampled subset

of the data and the impacts on accuracy. Finally, work is underway to deploy this

algorithm into an HPC environment using a distributed array paradigm.
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Chapter 4

GEOMETRIC AND TOPOLOGICAL SPATIAL ANALYSIS PROBLEMS

4.1 Introduction

A key research theme in the computational geometry domain is the theoretical

discovery and implementation of optimal or near optimal algorithms which lever-

age the geometric properties of some input data (Nagy and Wagle, 1980; McAllister,

1999). Interest in parallel computational geometry has a long history with Arjomandi

(1975); Hirschberg (1976); Savage (1978) and Eckstein (1977) all describing opportu-

nities for parallelism in graph-based representations, an intrinsically geometric prob-

lem. Later, Chow (1980), in a Ph.D. thesis articulates parallel methods for rectangle

intersection, planar nearest neighbor search, two-dimensional convex hull, and pla-

nar Voronoi diagram generation. Here the first obvious linkages between GIScience

and computational geometry can be made. Coupled with earlier successes, increased

availability of hardware capable of parallelism heralded a flurry of additional work

with Aggarwal et al. (1988); Stojmenovic and Evans (1987); Atallah and Goodrich

(1984, 1985); Blelloch and Little (1988); Akman et al. (1989)describing parallel ge-

ometric and topological operations across a range of theoretical parallel computing

models and implementing said operations in parallel computing environments. With

the growth of GISystems and identification of computational geometry problems with

high compute costs, cross domain interest naturally increased.

Within the context of vector spatial analysis I identify wide utilization of neigh-

borhood search methods such as the G or G variant statistics (Armstrong et al.,

1993; Armstrong and Marciano, 1995; Wang et al., 2008), Inverse Distance Weighted
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(IDW) interpolation (Armstrong and Marciano, 1996), Kriging (Hawick et al., 2003)

and nearest neighbor analysis (Barbini et al., 1996). These implementations lever-

age both geometric processing dwarfs, with the utilization of global sort methods as

a key processing component (Armstrong and Marciano, 1996), or topological dwarfs

with the generation and utilization of a topological tree data structure, e.g. (Wang

et al., 2008). Overlay and intersection analysis are also widely utilized within GISys-

tems and I identify both geometrically and topologically classifiable implementations

within both the GIScience and parallel computation geometry domains (Atallah and

Goodrich, 1985; Akman et al., 1989; Harding et al., 1998; Hoel and Samet, 2003; Puri

and Prasad, 2014).

In Chapter 2 I asserted that the key distinction between geometric and topological

processing dwarfs is that of the quantity and complexity of information which must

be communicated between processing cores with geometric dwarfs leveraging global

sorting methods and topological dwarfs requiring the transmission of a potentially

complex topological data structure, e.g. a tree, graph, or network. Previous works

illustrate the application of both approaches in answering similar questions through

the alteration of data structures, i.e. representations of the observed spatial objects.

Two key components in the selection of the implementation methods (the dwarf)

are the efficiency of the decomposition such that data dependency is limited and the

efficiency with which that data structure can be communicated.

The remainder of this chapter is organized as follows. In Section 4.2 I describe

the processes of domain decomposition. Section 4.3 introduces the targeted problem

domains, nearest neighbor search and polygon adjacency. In Section 4.4 I describe a

number of different decomposition algorithms. Section 4.5 describes the experiments

performed and Section 4.6 reports these results. In Sections 4.7 and 4.8 I offer a
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discussion comparing the geometric and topological implementations and summarize

this work, respectively.

4.2 Domain Decomposition

Domain decomposition is the act of identifying boundaries at which logical parti-

tioning can be used to allow for more efficient processing. By way of example, imagine

a randomly distributed point pattern, P in a planar space with the analytical goal of

identifying all nearest neighbors (formulated below). In the naive case, the distance

between pi and all other points pj ∈ P∀j 6= i is computed for each i. Asymptotically,

this algorithm scales quadratically (O(n2)). Some decomposition method can be ap-

plied such that a subset of the points can be compared and logic applied to handle

potential decomposition boundary conditions. Assuming an optimal computational

handling of boundary conditions, the constant time cost, n can be significantly re-

duced, resulting in a faster, but potentially non-optimal algorithm. 1 In a parallel

environment, significant performance improvements can be achieved by leveraging the

realization that non-data dependent decomposition can yield performance on the or-

der of O(n
p
) plus some communication constant (e.g. O(n log n

p
)) in the case of global

sort (Dehne et al., 1996).

The act of domain decomposition then becomes a preprocessing step, during which

the data is converted from its storage form into a form amenable to more robust com-

putation (Nagy and Wagle, 1980). The method of decomposition is invariant to the

type of processing (e.g. serial or parallel). That is the approaches described below can,

in some form, be applied in both the serial and parallel cases. What is of consequence

is the cost of decomposition, whether added to the total algorithm computation time

1 I intentionally consider this case due to the simplicity of description and to illustrate the perfor-
mance improvement attained through the reduction in n. Asymptotically, these implementations
perform identically.
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as in the case of a one-off processing effort or amortized over many applications of

analytics as is generally realized in spatial databases using indexing structures (Nagy

and Wagle, 1980). Waugh (1986) vigorously questions the application of a more

complex decomposition method, the quad-tree, within GISystems. He suggests that

the advice of Nagy and Wagle (1980) must be heeded and that the wholesale use of

an elegant decomposition method without a careful assessment of the computational

cost is foolhardy. Akman et al. (1989) address this issue, within the computational

geometry domain, and asserts that a regular, gridded decomposition, as describes in

the above example, significantly outperforms the single use of a quad-tree decompo-

sition as long as the spatial density of the geometries in question are within an order

of magnitude of each other. Later, Armstrong and Densham (1992) identifies the

minimization of overhead as a second criteria in parallel decomposition, 2 suggesting

that methods have been tested and discarded with high decomposition costs.

The level of complexity, in generating and representing different domain decom-

positions maps well to geometric and topological dwarfs. For example, more complex

decompositions are naturally representable using a graph structure. The generation,

communication, and query of that structure maps well the topological dwarf. In

contrast, regular decomposition methods do not require a globally accessible data

structure and map well to the geometric dwarf. This chapter explores planar near-

est neighbor search and planar polygon adjacency as two common use cases where

classification as either topological or geometric is possible. This work explores the to-

tal, aggregate compute cost of each algorithm using different domain decomposition

methods in parallel environments.

2 Load balancing is the primary criteria.
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4.3 Problem Domains

4.3.1 Planar Nearest Neighbor Search

Given a set of P points embedded in a plane, <2, the all-nearest neighbor prob-

lem or all Nearest Neighbor Search (NNS) is to identify, ∀pi ∈ P the pj with the

minimum distances. The closets pairwise points are defined as those points where

Distance(pi, pj) ≤ Distance(pi, pk)∀pk ∈ P\i (Dehne et al., 1996). In the case of

this work Euclidean distance is used though another distance metric could be substi-

tuted. 3

Within the spatial analysis stack, all nearest neighbor computations find wide

utilization in point pattern analysis. For example, Clark and Evans (1954), introduce

a mean nearest neighbor distance metric in the form:

Γ̄N =

∑n
i=1 Γi
N

, (4.1)

where, N is a set of all point observations and Γ is the minimum distance between Ni

and Nj. Extending this approach, the F and G functions attempt to provide a more

descriptive metric than a single scalar value (O’Sullivan and Unwin, 2010a, pg. 132).

These statistics utilize some measure of nearest neighbor distance. For example, G(d)

can be formulated as:

G(d) =
Count(Distance(Ni < d)

N
, (4.2)

where Count(Distance(Ni,j)) is the scalar count of all observations with nearest

neighbor distances less than some distance threshold, d. By selecting a range of d it is

3 The utilization of network constrained distance shifts this dwarf from being geometric to being
topological. I focus on the former case.
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possible to compute a function describing the ever increasing number of observations

less than the current threshold. Likewise, F (d) can be formulated as

F (d) =
Count(Distance(Pi, N) < d

m
, (4.3)

where P is a set of a m randomly selected points within the study area, N is the

set of observations, d is a distance threshold, and Count(Distance(Pi, S) is a scalar

count of all points fulfilling the distance threshold condition (O’Sullivan and Unwin,

2010a).

While the general shape of G(d) and F (d) are of interest (O’Sullivan and Unwin,

2010a), tests of significance are essential in identifying patterns which deviate from

the null hypothesis, Complete Spatial Randomness (CSR). 4 In this case, Monte Carlo

simulation can be utilized to generate a high number of point patterns and compute

significance envelopes. Within the context of this work, this simulation is important

for two reasons. First, Monte Carlo simulation highlights a point of MapReduce

style parallelization where n simulations can be distributed over p processing cores.

Secondly, the computation of Min(Di,j) must be as inexpensive as possible due to

the potential number of repeated applications.

4.3.2 Polygon Adjacency

Given a set of potentially conterminous geometries, G, embedded in a plane <2,

the polygon adjacency problem seeks to identify ∀gi,j ∈ G, i 6= j those gi,j with a

shared vertex or a shared edge.

4 I note that for the mean nearest neighbor metric, the R test Clark and Evans (1954) can be
utilized without Monte Carlo simulation.
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Within the context of spatial analysis and spatial econometrics the topology of

irregularly shaped and distributed observational units plays an essential role in mod-

eling underlying processes (Anselin, 1988). The concept of first and higher order

spatial adjacency finds application in tests for global spatial autocorrelation, e.g.,

Moran’s I (Anselin and Smirnov, 1996), spatial regression models (Anselin, 1988;

Ward and Gleditsch, 2007) and spatially constrained regionalization models (Duque

et al., 2012). The execution of these aforementioned spatial analytical techniques

requires the generation of some representation of the underlying connectivity of the

observational (polygon) units.

A spatial weights object or weights matrix, W , is an adjacency matrix5 that

represents potential interaction between each i, j within a given study area of n spatial

units. Within the context of spatial analysis, the interaction between observational

units is generally defined as either binary, wi,j = 0, 1, depending on whether or not i

and j are considered neighbors, or a continuous value reflecting some general distance

relationship, e.g. inverse distance weighted, between observations i and j.

This work focuses on binary, and not distance or kernel, weights where the adja-

cency criteria requires either a shared vertex (Queen case) or a shared edge (Rook

case). Using regular lattice data, Figure 4.1Rook and Queen Contiguity Criteria,

Where the Light Gray Geometry Is the Current ith Element and the Dark Gray

Geometries Are All j Considered Neighborsfigure.4.1 illustrates these two adjacency

criteria. In the Queen case implementation is in line with expectations, i.e. a single

shared vertex is sufficient to assign adjacency. The Rook case, adjacency is more

complex and two shared vertices are a necessary, but not sufficient threshold to assert

adjacency, i.e. a queen case implementation with a counter for the number of shared

vertices. Full geometry edges must be compared as it is feasible that two shared

5 or list of lists or adjacency hash table.
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vertices do not indicate a shared edge. For example, a crescent geometry can share

two vertices with another geometry but fail to share an edge as another, interceding

geometry is present.

Figure 4.1: Rook and Queen Contiguity Criteria, Where the Light Gray Geometry
Is the Current ith Element and the Dark Gray Geometries Are All j Considered
Neighbors.

The population of an adjacency list, A, or adjacency matrix must identify all poly-

gon geometries which are conterminous. The definition of adjacent is dependent upon

the type of adjacency matrix to be generated. Each adjacency algorithm requires a

list of polygon geometries, L, composed of sublists of vertices, L = [p1, p2, . . . , pn].

Traditionally, the vertices composing each polygon, pi, are stored in a fixed winding

order (clockwise or counter-clockwise) and share a common origin-termination ver-

tex, pi = [v1, v2, v3, . . . , v1]. This latter constrain facilitates differentiation between a

polygon and polyline.

The computation of a spatial adjacency structure is most frequently a precursor

to more complex process models, i.e. a pre-processing step. This processing step

occurs dynamically, i.e. the data is not loaded into a spatial database where efficient

indexing structures can be pre-generated. Therefore, the computational cost of gener-
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ating these data structures is often overlooked in the assessment of global algorithmic

performance.

Spatial adjacency is one example of an algorithm that does not scale to large

observation counts due to the complexity of the underlying algorithm. For example,

a key requirement of Exploratory Spatial Data Analysis (ESDA) (Anselin, 1996) is the

rapid computation and visualization of some spatially defined measures, e.g. Local

Moran’s I. Within the Python Spatial Analysis Library (PySAL), the computation

of a local indicator of spatial autocorrelation utilizes binary adjacency in computing

Local Moran’s I as a means to identify the cardinality of each observation. In a small

data environment (n < 3000) a naive implementation is sufficiently performant, but as

the resolution of the observational unit increases (a move from U.S. counties or county

equivalents to census tracts) compute time increases non-linearly. When combined

with the compute cost to perform the primary analytical technique, and potential

network transmission costs in a Web based environment, ESDA at medium to large

data sizes is infeasible.

Scaling to even larger observation counts where longer runtimes are expected,

heursitically solved regionalization models, e.g., Max-P-Regions (Duque et al., 2012),

require that a spatial contiguity constraint be enforced. In large data setting, where

a high number of concurrent heuristic searches are to be performed, the computation

of adjacency can be a serial processing bottleneck. Improved adjacency metrics are

required within this domain for two reasons. First, in a distributed environment with

shared resources, reduction of pre-processing directly correlates with time available for

analysis. Using heuristic search methods this translates to additional time available to

search a solution space and potential identify a maxima. Second, the scale at which

regionalization is initiated is an essential decision in research design as underlying

attribute data or processes may only manifest at some limited scale range. Therefore,
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a significant bottleneck in adjacency computation can render the primary analytical

task infeasible.

The previous discussion is important in highlighting the composite nature of com-

putational dwarfs, where a geometric or topological dwarf can be leveraged as a com-

ponent of a larger workflow composed of multiple difference computational dwarfs. It

is through this aggregate approach that workflows will achieve higher scalability.

4.4 Decomposition Algorithms

Both all nearest neighbor distances and polygon adjacency algorithms can leverage

a set of common decomposition algorithms. Assume a naive linear implementation,

described below, requiring O(n2) computations, the goal of decomposition is to per-

form some number of local O(n2) computations such that a significant reduction in

n, the number of geometric comparisons required, is achieved. That is nlocal seeks

to be a small subset of Nglobal. The scaling is still quadratic, but the significant

reduction in the scalar number of computations, n, results in a more performant

algorithm. This decomposition can be realized through space partitioning, location

aware hashing for bin assignment (Leskovec et al., 2014), and graph based repre-

sentations (Malkov et al., 2014). I focus on exact solutions to NNS6 and therefore

constrain the exploration of decomposition methods to those which leverage a space

partitioning approach. Below four decomposition methods are described: (1) a naive

linear implementation, (2) serial and parallel grid based spatial binning approaches,

(3) tree based approaches and (4) sort based methods using column and row major

decompositions.

6 I note that approximate solutions, e.g. approximate KDTree decompositions and search, offer
high solution quality at low compute costs and in those instances where a non-exact solution is
viable, can significantly outperform the methods described here.
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4.4.1 Naive Approach

A naive linear approach requires the comparison of each vertex to each other

vertex, in the case of NNS and polygon adjacency using queen contiguity, or the com-

parison of each edge, defined by a pair of vertices, in the case of polygon adjacency

using the rook contiguity criteria. The requisite comparison is accomplished by iter-

ating over a data structure of input geometries, removing the first geometry from the

data structure, and then applying some distance operand or likeness comparator to

all remaining geometries. Conceptually, this is the population of a symmetric matrix,

where the entries could be distance or a boolean adjacency indicator. This algorithm

is O(n2) as each input vertex or edge is compared against each remaining, unchecked

vertex or edge. As described above, in instances where n is sufficiently small, this

approach can sufficiently performant.

4.4.2 Spatial Binning

Binning seeks to leverage the spatial distribution of either a point pattern or

lattice data structure to reduce the total number of pairwise geometric comparisons.

I identify two broad classes of spatial binning approaches: (1) static and (2) adaptive.

This section focuses on the former.

Static binning defines both the size and shape of each bin without assessment of the

underlying data distribution and seeks to assign membership of a given observation

to one or more grid cells(bins). Geometric decomposition using row major, column

major or grid overlay geometries, Figure 4.2Column Major, Row Major, and Gridded

Decompositions of a Point Pattern. These All Employ a Simple Spatial Binning

Approachfigure.4.2 is applied to a given point, line, or lattice data set and membership

within each grid cell assigned. This is a single layer approach as a scale relationship
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between grid cells does not exist and each grid cell partitions the space exclusively.

Once decomposed both the operand to be applied within the bin, e.g. the geometric

comparison and the operand used to catch edge cases must be applied. Imagine a

binned NNS problem. It is essential that not only a local NNS within a grid cell be

performed, but also a sub-global7 NNS which includes candidate points external to

the current grid cell. This latter case requires an additional layer of metadata.

Figure 4.2: Column Major, Row Major, and Gridded Decompositions of a Point
Pattern. These All Employ a Simple Spatial Binning Approach.

The primary advantage of spatial binning over the naive linear approach is the

reduction in the total number of geometric checks to be performed. Full enumera-

tion of the local NNS occurs only within a grid cell and some logic controlling the

management of boundary crossers can be applied to perform a minimal number of

intra-cell comparisons.

Parallel Spatial Binning

The primary computational cost to both the NNS and polygon adjacency algorithms

is that of independent pairwise comparisons. Therefore, one would anticipate that a

MapReduce style implementation, with sufficient logic to handle edge cases, should be

7 I use sub-global to indicate a search with larger extent than a single grid cell which has not
degenerated to full enumeration, a naive linear search.
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both efficient to develop and afford robust performance. In practice, the complexity of

the geometric representation and simplicity of the comparator yields implementations

with worse performance than an efficient serial implementation. Significant disparity

exists between the costs of communication, both in the distribution of the geome-

tries and aggregation of suboptimal solutions, and the costs of pairwise geometric

comparison.

Trees

In contrast to static binning, adaptive binning is a hierarchal approach that utilizes

recursive space decomposition (Samet, 1984) to create a traversable, tree based rep-

resentation. The rules governing balancing and decomposition criteria vary with the

input data representation, but the overall logic remains consistent.

Using a classic example, illustrated in Figure 4.3Spatial Decomposition and Resul-

tant Topological Data Structure Using a Quad-tree Decompositionfigure.4.3, assume

a point data set containing some marked point data set, i.e. North American cities.

Given the goal of performing a fast NNS, it is possible to recursively decompose cities

based on their 2d distribution. First, select a city as the root node. The 2d point

coordinates are used to bisect the space into four quadrants, e.g. NE, NW, SE, SW.

For each newly defined quadrant one of three potential scenarios are present: (1) if

no points are present, the preceding node is a leaf node and no further decomposition

is applied, (2) a single point if found within the quadrant, that point is identified as

a final leaf node, and the preceding point is classified as an intermediary node, or (3)

multiple points are present in the quadrant and the process of decomposition is re-

cursively continued. Once generated fast graph traversal can be applied to query the

tree. This approach suffers from the curse of dimensionality (Marimont and Shapiro,

1979) and therefore methods such as the KD-Tree, which partitions space using a k-1
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dimension axis orthogonal hyperplane can be applied (Maneewongvatana and Mount,

1999).

Figure 4.3: Spatial Decomposition and Resultant Topological Data Structure Using
a Quad-tree Decomposition.

For the polygon case, a similar decomposition method, the R-Tree can be utilized

(Gutman, 1984). An R-Tree stores aggregated groups of Minimum Bounding Rect-

angles (MBRs) at sequentially finer spatial resolutions. At the root node, a single

MBR encompasses the MBRs of all geometries. As the tree is traversed depth-wise

the global space is decomposed and each node represents a progressively smaller num-

ber subset of geometries. When generating an R-Tree two key considerations are the

maximum size of each node and the method used to split a node into sub-nodes.

An R-Tree query uses a depth-first search to traverse the tree and identify those

MBRs which intersect the provided MBR. For example, assume that geometry A has

an MBR of AMBR. An R-Tree query begins at level 0 and steps down only those

branches which could contain or intersect AMBR.

I identify two potential disadvantages to tree based representations in a parallel

environment: (1) the cost of generation for one time use and (2) the cost of commu-

nication of the data structure in a distributed memory environment. For example,

79



in the case of the R-Tree the computation of MBRs for each geometry, the recursive

space decomposition with the potential addition of a balanced tree criteria, and the

distribution of said topological tree structure to all nodes can incur high computa-

tional costs.

4.4.3 Hybrid Approaches

Each of the preceding algorithms, save the naive approach, leverages a decompo-

sition strategy to improve performance. Even with decomposition, the inter-cell or

inter-MBR computation is still O(n2). Combined with the cost to generate interme-

diary data structures required to capture the decomposition, it is possible to leverage

a higher number of lower cost operations and robust error checking to significantly

improve performance. This section describes three different hybrid approaches: (1)

a serial implementation using high performance containers and set operations, (2) a

scalable NNS search for cluster architectures that utilizes parallel sorting and piece-

wise spatial decomposition, and (3) a hybrid method to support scalable, parallel

spatial adjacency using queen contiguity.

High-Performance Containers and Set Operations

High-performance containers can be defined as those data structures which have been

highly optimized to perform a single or small set of operations with the highest

possible efficiency. Generally, utilization of the data structure for other operations

is possible, but the major performance improvements, implemented at a lower level,

are not realized. The following describes the use of high-performance containers

in the context of Queen case polygon adjacency though the underlying logic also
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holds for Rook case contiguity. This approach is not suitable for NNS without some

modification, which is not discussed here. 8

At the heart of the serial polygon adjacency approach is the hash table (dictio-

nary). A dictionary is composed of key, value pair entries, where the key is accessible

via an average O(1) lookup cost. The value can take a myriad of forms, for example

a tuple of vertex coordinates, or a list of adjacent polygons. Additionally, the imple-

mentation utilizes sets, a data structure and set of accompanying methods that mirror

what one would anticipate when requiring standard mathematical set operations, e.g.

union or difference. The implementation leverages O(length(seta) + length(setb)) set

unions.

In implementation, the algorithm utilizes a hashtable where the key is the vertex

coordinate and the value is a set of those polygon identifiers which contain that vertex

(Queen case). Stepping over an input data source, this data structure is iteratively

populated. he implementation assumes serial I/O, whether from a binary shapefile

or a streaming data source. For each polygon geometry, the vertex list is truncated

such that the final vertex is ignored, knowing that standard polygon encoding is a

counter clockwise wind order with duplicate first and final vertices. In the case of

multi-polygons, each component part is treated independently, but tagged with the

same polygon identifier. This method does not currently support holes, though a

wind order check could be employed. For each geometry, the algorithm steps over

each vertex and populates said hashtable with the key being the vertex, if not already

present, and the value being the set addition of the current polygon identifier and

any existing polygon identifiers. Once this data structure is generated, the algorithm

creates another dictionary of sets where the key is a polygon identifier and the value is

8 The utilization of hash based approaches whereby the coordinates are hashed and stored in
high-performance containers are one possible realization of this approach using high-performance
containers.
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a set of those polygons which are adjacent. Stepping over the previous dictionary, the

algorithm iterates over the value, a set of neighbors, and populates a new dictionary

of sets which are keyed to the polygon identifiers. This yields a dictionary with keys

that are polygon ids and values which are sets of neighbors. I define this as a two

step algorithm due to the two outer for loops. This algorithm requires two steps:

1. While looping over the input stream off geometries, loop over each vertex defin-

ing a given geometry and pack a hash table with the key being the vertex

coordinates and the value being an identifier of the parent geometry. A set

union is performed such that duplicate entries are not found within the value

of the hash table.

2. While looping over the values in the previously computed hash table, loop over

each set of neighbors and pack a W Object where the key is the current polygon

ID and the value is the set union of all other members of the neighbor set.

The Rook case is largely identical with the initial vertex dictionary being keyed

by shared edges (pairs of vertices) instead of single vertices.

Parallel Global Sort

The preceding approach depends upon the streaming ingestion of input geometries

to support polygon adjacency. This method does not support NNS as no guarantee

that the read order correlates to a given neighborhood exists, i.e. the order in which

points are stored and read from the dataset do not also contain implicit information

about other near points, i.e. topology. Dehne et al. (1996) introduce a parallel NNS

designed to use high-performance containers in conjunction with global sorting with

an O(n log n) runtime. I first describe the logic behind a parallel global sort and
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then, using parallel global sort describe both the Dehne et al. (1996) implementation

and the modification to support polygon adjacency.

A parallel quicksort implementation is used for all sorting. Quicksort is a recur-

sive divide and conquer style algorithm with average time O(n log n) performance

(Cormen et al., 2001, pg. 170). This performance is inline with other efficient sorting

algorithms such as mergesort or heapsort. Quicksort sorts in-place, requiring just

O(n) memory. The quicksort algorithm works by partitioning the input data array

into two subarrays at a given pivot point. That is, each entry in the input array is

classified as being larger than, or smaller than the given pivot point and the position

of the data within the array is updated to be contiguous with other similarly classi-

fied values. Once all values are partitioned, the process is recursively applied to the

two partitioned arrays. This process continues until the entirety of the data is sorted

(Cormen et al., 2001)

The algorithm for parallel distributed memory quicksort can be expressed via

pseudo code as:

1. Perform either a serial read to a root node or a distributed read to all nodes

such that the entirety of the unsorted data is stored in memory.

2. Apply a local quicksort to the data local to the node (in the distributed case)

or scatter the data and then perform a local quicksort.

3. Stochastically sample or regularly select a sample of pivot values. These are the

boundary values used to break the data into p distinct groups, where p is the

number of processing cores. Regular sampling affords better load balancing.

4. Gather all p− 1 pivot values to a managing process yielding p ∗ (p− 1) pivots

values. Sort said pivots and select a regular or random sampling of pivot values

with a total size of p− 1.
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5. Broadcast the pivots to all p and partition the local data into k classes, where

k = p

6. Using point to point communication gather all data elements in ki to process

pi.

7. Apply quicksort to the local data, yielding k sorted data vectors distributed

over p processes.

The selection of pivot values is an essential component in the performance of the

algorithm. Ideally, pivot values are distributed across the data vector such that an

idealized decomposition is realized, i.e. n
p
, where n is the number of observations. To

achieve this decomposition the pivots can be statically or adaptively selected, much

like spatial decomposition methods. In the static case, the data can be classified, for

example into quantiles, and the identified break points set as pivots. In the latter

case, the data can be regularly sampled and from this subset pivots can be drawn.

Endogenous, adaptive selection of pivot values is advantageous for two reasons. First,

unlike adaptive spatial decomposition, regular sampling from a sorted vector requires

constant runtime. Second, adaptive pivot select renders this method invariant to data

density issues, with the caveat that data sets with a significant number of coincident

entries can cause balancing issues.

Utilizing parallel quicksort, it is possible to perform a parallel NNS as outlined by

Dehne et al. (1996):

1. Globally sort the point coordinates by the y-axis value, yielding a sorted subset

Hi bounded by two horizontal split lines. Perform a standard NNS ∀v ∈ Hi

and cache the results.

2. Globally broadcast all horizontal split lines to all p processors.
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3. Globally sort the point coordinates by the x-axis, yielding a sorted subset Vj

bounded by two vertical split lines. Perform a standard NNS ∀v ∈ Vj and cache

the results.

4. Using the horizontal split lines broadcast in step 2 and the vertical split lines

defined in step 3, compute all horizontal and vertical intersection points, Iij.

5. Using Iij and the locally stored Vi points, compute Cij as all points in Vj, not in

Hi which are closer to a member of the set Iij. This check identifies those points

which are closer to a member of Iij than to any nearest neighbor in the vertical

direction. These are the potential edge case points which are not checked in

either the horizontal or vertical decomposition directions.

6. Using point-to-point communication, collect and union all Cij, where j = pi,

yielding Ci, to the appropriate processing core and apply the standard NNS to

all points within the set Hi ∪ Ci. Cache the results.

7. Each process now stores three potential nearest neighbors for each point in

the initial distribution: (1) nearest neighbor in the horizontal decomposition,

(2) nearest neighbors in the vertical decomposition, and (3) edge case nearest

neighbor not defined in the previous two decomposition. A linear search for the

minimum distance value for each point can be performed to identify the nearest

neighbor.

First, the algorithm first identifies candidate nearest neighbors in the horizon-

tal direction. Next candidate nearest neighbor points are identified in the vertical

direction. The computation of the intersection coordinates, Iij, and subsequent enu-

meration of those observation points nearer to a member of Iij than another neighbors
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ensures that edge cases, where a nearest neighbor is neither a member of the vertical

nor a member of the horizontal decomposition, are found.

Dehne et al. (1996) first introduced the above algorithm and within the context of

this work, the algorithm has been ported from the original hardware to a MPI based

environment. The algorithm has been implemented and tested in the original form

and the contribution of this work is an update for deployment on modern hardware

and testing of the algorithm within the context of the proposed taxonomy. I note

that the NNS algorithm inspired development of the polygon adjacency algorithm.

Using the NNS implementation as a springboard, I develop a polygon adjacency

algorithm using similar decomposition and sort based logic. This approach leverages

high-performance data structures, initially developed for the serial case, in conjunc-

tion with the global sorting method utilized by Dehne et al. (1996).

1. Load the polygon geometries into a nx3 matrix where the first element is a

vertex x-coordinate, the second element is a vertex y-coordinate and the final

element is an identifier matching the coordinates to a given geometry. This can

happen on a single processing core or over a distributed memory space.

2. Perform a local lexicographic sort using the x and y dimension.

3. Identify all coincident points within the locally sorted data and populate a local

adjacency object.

4. Gather all local W objects to a single processing core and concatenate into a

global adjacency object.

Figure 4.4Three Phases of a Geometric, Parallel NNSfigure.4.4 illustrates the hor-

izontal decomposition prior to sorting, Phase I, the vertical decomposition prior to

sorting, Phase II, and the identification of both Iij, cyan triangles, and one member of
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Cij, red circle. Three NNS are performed using information from all three processing

phases.

Figure 4.4: Three Phases of a Geometric, Parallel NNS.

4.5 Experiments

I perform classic scaling experiments using synthetic data sets and a range of

processing core / node combinations. NNS experiments utilize 1, 8, 16, 32, and 64

processing cores in an HPC environment. The single core tests utilize the naive linear

approach and I assert that the 8 core, single node tests approximate the performance

of the algorithm in an SMP environment assuming that a single shared memory shape

is not used. Both a parallel list based approach and a parallel KD-Tree approach are

tested. The parallel KD-Tree approach computes the tree data structure in serial

and communicates said data structure for distributed local query. For both cases,

the nearest neighbor data to a single process is not reaggregated; the data remains

distributed across all processing cores. For polygon adjacency in an SMP environ-

ment I compare a serial R-Tree decomposition, a regular gridded decomposition, and

a hybrid list based approach. In the HPC environment, a parallel list based algo-

rithm is compared to a parallel R-Tree algorithm. As with the above KD-Tree, the

tree structure is generated in serial, distributed to all processing cores, and concur-
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rently queried. In contrast to the tree based NNS, the distributed local solutions are

aggregated to generate a single adjacency object.

These experiments are designed to compare implementation of these processing

workflows as a geometric dwarf, e.g. for sort and hybrid list based methods, and

topological dwarfs, e.g. tree based approaches where the entirety of the tree is com-

municated.

All SMP tests were performed on a 3.1 Ghz, dual core Intel i3-2100 machine with

4GB of RAM. The HPC environment is composed of up to 8 homogeneous nodes

with dual quad core Intel Xeon processors with 16GB of RAM, and communication

via high speed infiniband network.

All data used is synthetically generated to control for clustering as well as vertex

count, edge count, and average neighbor cardinality, in the case of polygon adjacency.

Randomly distributed and clustered datasets are used for all tests ranging in the size

from 640 points to 1,146,880 points. 9 For polygon adjacency tests, regularly

tessellating, randomly distributed, and clustered synthetic data ranging in size from

1024 geometries to 262,144 geometries10 are used. In the SMP testing, the 4096

hexagon lattice is densified to test the impact of increased vertex count as the number

of edges remains static.

4.6 Results

4.6.1 All Nearest Neighbors

NNS is tested in an HPC environment, using a single core implementation as a

baseline. Figure 4.5Total Compute times Using Parallel Sort Based Methods Show-

9 640,1280, 2560, 5120, 10240, 20480, 81920, 163840, 327680, 491520, 655360, 819200, 983040,
1146880 points.

10 32, 64, 128, 160, 192, 256, 288, 320, 384, 448, 512 geometries squared.
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ing Quadratic Time Growthfigure.4.5 illustrates significant reduction in total compute

time as additional processing cores are utilized. As anticipated, the algorithm still

performs quadratically due to the local O(n2) geometric comparisons. Varying line

lengths are a function of the five hour limit placed on all processing. Serial computa-

tion completes for up to 10,240 point observations (blue), while the 64 core, parallel

implementation completes for the total range of test data, up to 1,146,880 points in

approximately 2.5 hours.

Figure 4.5: Total Compute times Using Parallel Sort Based Methods Showing
Quadratic Time Growth.

The previous figure fails to describe where the algorithm spends the bulk of

the computation time. Figure 4.6Aggregate Compute Time for NNS Using Parallel

Sortingfigure.4.6 illustrates the decomposed compute times including, the time cost

for data generation, global scatter and sorting, identification and communication of Iij

and Cij, aggregation of Ci for edge case computation, and final reduction. The figure

is composed of a left and right component, with the former showing geometry count
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up to 40,960 and the latter, with a rescaled y-axis two orders of magnitude larger,

showing geometry counts up to 1,146,880. The bulk of computation is performed

during the x-decomposed and y-decomposed NNS phases. This is as anticipated as

the local compute time for the decomposed subset is O(n2) using a naive linear imple-

mentation. The compute times for Iij and Cij are non-trivial. Data communication

and global sort phases are extremely efficient, suggesting that improvement to the

local NNS using an optimal algorithm, e.g. an O(n log n) implementation would

yield significantly improved aggregate performance.

Figure 4.6: Aggregate Compute Time for NNS Using Parallel Sorting.
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Figure 4.7Aggregate Compute Time for NNS Using a Tree Based Approachfigure.4.7

shows the total compute time and aggregate costs for a tree based (KD-Tree) ap-

proach. I originally hypothesized that the serial computation and communication

of a complex topological data structure would be extremely inefficient. In the case

of NNS, this is hypothesis is false. While serial KD-Tree generation compute costs

account between a third and a half of total compute times across all core counts, local

query, e.g. walking the topological structure and performing a lookup, is extremely

efficient. Figure 4.5Total Compute times Using Parallel Sort Based Methods Showing

Quadratic Time Growthfigure.4.5 illustrated runtimes between over 180 seconds for

an 8 core, 40,960 points NNS search and 90 seconds for a 64 core, 1.14 million points

NNS search. In contrast, the more complex domain decomposition KD-Tree approach

required just 2.8 seconds in the former and 50.7 seconds in the latter case. The cost

of communication is non-trivial, but the efficiency in query offsets this cost.

4.6.2 Polygon Adjacency

In the SMP environment, across all synthetic data tests the R-Tree implementation

was 7 to 84 times slower than the binning implementation and 22 to 1400 times slower

than the list based contiguity measure. Additionally, the R-Tree implementation

required significant quantities of RAM to store the tree structure. 11 Due to these

factors, only the binning and list based approaches appear in subsequent figures.

Figure 4.8The Continuum of Communication Costs Incurred by Different Data

Sharing Modelsfigure.4.8(a - d) illustrate the results of four experiments designed to

compare the performance of the list based and binning approaches as a function of

total geometry count, total vertex count (and by extension edge count), average neigh-

bor cardinality, and data distribution. Figure 4.8The Continuum of Communication

11 In fact, some of the performance degradation may be a function of memory swapping.
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Figure 4.7: Aggregate Compute Time for NNS Using a Tree Based Approach.

Costs Incurred by Different Data Sharing Modelsfigure.4.8(a) illustrates the scaling

performance of the list and binning algorithms. The former scales linearly as the total

number of polygons is increased and the latter scales quadratically. As anticipated,

the Rook contiguity measures require slightly more processing time than the asso-

ciated Queen contiguity measures. In Figure 4.8The Continuum of Communication

Costs Incurred by Different Data Sharing Modelsfigure.4.8(b), the algorithm exhibits

increased computational cost as a function of geometric complexity, e.g. the num-

ber of vertices, number of edges, and mean number of neighbors. This is illustrated

by the general trend of compute times with the triangular tessellation requiring the
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least time and the hexagon tessellation requiring the most. Densification of the 4096

hexagon polygon with between 6 and 300 additional vertices per edge highlights an

inversion point, where binning regains dominance over the list based approach, Fig-

ure 4.8The Continuum of Communication Costs Incurred by Different Data Sharing

Modelsfigure.4.8(c). Finally, in Figure 4.8The Continuum of Communication Costs

Incurred by Different Data Sharing Modelsfigure.4.8(d)the total compute time using

randomly distributed polygon datasets are shown. Again, this figure demonstrates

quadratic scaling for the existing binning approach and linear scaling for the list based

approach.

Figure 4.8: The Continuum of Communication Costs Incurred by Different Data
Sharing Models.

In the HPC environment, I focus on parallel list based and parallel R-Tree im-

plementations. In Figure 4.9Speedup Using Parallel Sorting for Polygon Adjacency.

Note That the 64 Core Tests Omit the 1024 Polygon Tests in Most Casesfigure.4.9

I report significant speedup as computed by Amdahl’s Law across almost all tested
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geometries and core counts. Varying line lengths are a product of the 5 hour limit

placed on serial processing. Globally, I report increased speedup as a function of total

geometry count. Across all core counts randomly distributed polygon data displays

the best performance with over a 20 time speedup for 200,704 randomly distributed

polygons. At geometry counts less than 65,536 , I report low speedup, with 32 and 64

cores; parallel computations of the 1024 geometry problem sets perform worse than

the serial implementation. As with the SMP tests, I see performance of this method

being tied to the geometric complexity of the underlying geometry with square and

hexagon lattices consistently performing worse than triangle lattices. Additionally,

for randomly distirbuted data, I see better load balancing, a function of better pivot

selection in the global sort phase.

As above, the speedup curves fail to report either total runtime or the decom-

position of compute time such that a new processing bottleneck could be identified.

In Figure 4.10Aggregate Compute Costs for Polygon Adjacency over All Tested Ge-

ometries Using a Sort Based Methodfigure.4.10 shows aggregate compute times for

all tested geometries at all tested core counts. Globally, maximum compute times

for the highest geometry counts remain under 40 seconds, irrespective of core count.

The vast majority of compute time is spent in serial File I/O (dark brown) with the

parallel ‘Scatter and Sort’ and ‘Local Coincident’ point computations requiring signif-

icantly less total compute time. Data aggregation is also non-trivial and this can be

identify as another serial processing bottleneck. ‘Scatter and Sort’ operations require

the bulk of compute time for 1024 and 2096 triangle lattice cases when using 32 or

64 cores. This is attributable to poor pivot selection such that the load balancing

results in one or more idle processing cores.

Finally, Figure 4.11Aggregate Compute Costs for Polygon Adjacency over All

Tested Geometries Using a R-tree Based Methodfigure.4.11 shows aggregate compute
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Figure 4.9: Speedup Using Parallel Sorting for Polygon Adjacency. Note That the
64 Core Tests Omit the 1024 Polygon Tests in Most Cases.

times for an identical set of tests using a parallel R-Tree implementation. Compute

times are under 600 seconds for irregular lattice datasets and under 7200 seconds

for regular triangle, square, and hexagon lattices. Collectively comparing the regular

lattice data results to the irregular lattice data results, the former spent the vast

majority of compute time aggregating the distributed W objects to the managing

process. The latter spent significantly more time performing the distributed R-Tree

query. Having controlled for geometry count, this can be attributed to the higher ag-

gregation costs due to high quantities of duplicate information. That is, the regular
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Figure 4.10: Aggregate Compute Costs for Polygon Adjacency over All Tested
Geometries Using a Sort Based Method.
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lattice data decomposition into a balanced R-Tree causes efficient yet redundant com-

putations to be performed. Conversely, irregular lattice data is better decomposed

to avoid duplicative computation at the cost of increased query complexity. Irreg-

ular lattice data computations incur non-trivial communication costs as the R-Tree

becomes increasingly more complex. The cost to communicate the more complex

R-Tree data structure is on the order of the total compute times required for the list

based approach.

4.7 Discussion

The above results highlight the dual nature of topological data representations.

In the case of NNS, significant performance improvement is realized utilizing a KD-

Tree over a more simplistic decomposition. The best case O(logn) insert and query12

performance of the KD-Tree offsets the potential higher costs of decomposition, tree

generation, and communication. Even if an optimal O(n log n) local NNS algorithm

is utilized, the more complex decomposition will remain more efficient. Therefore, I

suggest that topological data structures with good creation performance and small

data footprints can be communicated over high-speed networks to drive efficient,

parallel, topological algorithm implementations.

Moving to the polygon adjacency algorithms, both the SMP and HPC environ-

ments suffer from significant performance degradation when using the more complex

tree based representation. These can be attributed to inefficiencies in the generation

of the tree data structure when more complex geometries, e.g. not regular tessella-

tions, are used and attribute this to the decomposition process which requires the

computation of the Minimum Bounding Rectangle, the addition of the MBR to the

tree, and potential rebalancing of leaf nodes. Additional inefficiencies are also seen

12 Worst case O(n).
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Figure 4.11: Aggregate Compute Costs for Polygon Adjacency over All Tested
Geometries Using a R-tree Based Method.
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in the communication of the more complex topological data structure. By comparing

the low R-Tree query costs, seen in the irregular lattice data, with the high query costs

seen in the regular lattice data, I suggest this is a function of the artificial ordering

of the data. Therefore, the efficiency of simple spatial binning and geometric imple-

mentations are globally more efficient. This statement is not without the caveat that,

should a more memory efficient and creation performant R-Tree algorithm be lever-

aged this relationship could invert and a significant number of geospatial algorithms

operating on geometric entities could be classified as topological dwarfs.

The two major serial processing costs within the polygon adjacency algorithms

are file I/O and data aggregation. These costs are invariant to the methods tested

and account for a significant quantity of the total processing time. A shift, away

from the ubiquitous shapefile, to data formats that support parallel I/O such as the

Hadoop HDFS filesystem or parallel HDF5 would allow for significant reduction in

total compute times. Likewise, analytical software expects a single memory address

containing a single spatial adjacency object. This requires that the distributed W

objects be aggregated once computation is completed. Clearly, this does not scale

well as the total number of observations is increased. Additional work is required to

explore the potential for distributed adjacency objects and associated metadata to

remove the aggregation phase.

4.8 Conclusion

In this chapter I explore the implementation of NNS and polygon adjacency as

two representative algorithms requiring geometric comparisons. The algorithms were

implemented as both topological and geometric dwarfs to assess the costs of decom-

position, communication, local computation, and potential data aggregation. Clear

linkage exists between the type of decomposition utilized and the classification of the

99



implementation. Therefore, I describe naive algorithm implementations as well as reg-

ular and adaptive spatial binning approaches. This work offers a regular, parallel sort

based method to perform polygon adjacency in the HPC environment and a hybrid

high performance container approach in the SMP environment. To my knowledge,

parallel sorting methods have not been applied to the polygon adjacency method

previously in an HPC environment.

More complex decomposition strategies are efficient assuming that the resultant

data structures are memory efficient and rapidly queryable; this is the case of NNS.

Increases in the geometric complexity of the input data, along with additional de-

composition, communication, and query costs are shown to make topological imple-

mentations of polygon adjacency significantly more expense than a geometric imple-

mentation.

Future work will focus on five major areas. First, the implementation of an asymp-

totically optimal local NNS algorithm will be deployed to test whether significant local

search improvement alters the current assertions regarding the classification of NNS

as a topological dwarf. Next, more efficient tree creation algorithms and storage

structures will be explored in an effort to test whether casting polygon adjacency as a

topological problem is feasible. Third, the potential to realize a distributed W object

in an HPC environment will be tested with the goal of abstracting the representa-

tion such that seamless integration with existing functionality is possible. Fourth,

the implemented algorithms provide high-speed algorithms to support research into

the impact of approximate nearest neighbor estimators at large data sizes with low

dimensionality, and the addition of a ’fuzzy’ operator to account for spatial error in

the case of polygon adjacency. Finally, parallel I/O technologies will be explored

in an effort to significantly reduce total polygon adjacency compute times using the

proposed algorithms.
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Chapter 5

SPATIAL REGIONALIZATION AS A MAPREDUCE CLASS OF PARALLEL

ALGORITHM

5.1 Introduction

Regionalization, a fundamental GIScience research area, is an NP-Hard, complex

combinatorial problem that seeks to aggregate n polygon spatial units into p regions

or zones (p ≤ n). Due to the computational complexity, commercial solvers, such as

C-PLEX (ILOG 2013), formulations the model using a Mixed Integer Programming

(MIP) model are constrained to optimally solving small to medium problem sets.

For example, Duque et al. (2011) propose the p-regions problem, which aims to

generate p contiguous regions from n polygonal units with the objective of minimizing

the intra-zonal heterogeneity of some attribute. Duque reports that a problem set

where n = 50 required up to three hours1 before a best known optimal solution was

computed. Therefore, researchers have developed heuristic regionalization algorithms

to solve medium to large problems in a reasonable amount of time.

A regionalization heuristic often includes two phases. The first phase, region

growth, seeks to generate an Initial Feasible Solution (IFS), and the second phase,

local search aims to permute a given IFS toward better solutions. Although a well-

developed and parameterized heuristic algorithm is capable of locating a good solution

quickly, it is still possible to become trapped in a local optima. 2 Therefore, a key

1 Utilizing Dell Precision T3400 running 64-bit Windows XP operating system with a 2.99 GHz
Intel Core 2 Extreme processor and 8 GB of RAM.

2 A minima or maxima within a local neighborhood from which the algorithm may or may not be
able to escape, that is, a sub-optimal solution that is erroneously computed to be optimal.
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design principle is to allow the algorithm to search as much of the solution space as

possible without becoming trapped in a local optimum. Finding an optimal solution

remains a compute intensive task even when applying heuristic algorithms. This is a

huge challenge for the pervasive, serial processing environment.

Applications of regionalization in spatial analysis include the aggregation of spa-

tial units to analytical zones such as Traffic Analysis Zones (TAZ) for transportation

research (Miller and Shaw 2001), congressional districting for political science research

(Gonzlez-Ramrez et al. 2011), Primary Care Service Area (PCSA) identification for

public health research (Pathman et al. 2006) and census data for demography studies

(Openshaw 1977). Additionally, a substantial portion of GIScience research involves

the analysis of geographic phenomena and patterns at different scales, such as com-

prehensive modeling of urban economic, land use and transportation (Li et al. 2014a),

hydrological cycle simulation and prediction at a wide range of spatiotemporal scales

(Gupta and Waymire 1998), electoral district partitioning to facilitate governmental

administration (Duque et al. 2007), and the generation of optimal coverage regions for

public/commercial service delivery (Armstrong et al. 1991). Advancement in zona-

tion research is largely attributable to the development of methods and techniques to

solve regionalization problems, which allow the dynamic generation of aggregated spa-

tial data that achieves some predefined objective and often also satisfies constraints

for different applications (Li et al. 2014).

This chapter reports efforts in exploiting shared memory processing (SMP) and

High Performance Computing (HPC) platform to improve the effectiveness (solution

quality) of a heuristic-based regionalization problem without significant increases in

compute time. A non-linear set of the regionalization problem – the p-Compact

Regions problem (Li et al. 2014), which aims at generating p compact and contiguous

regions, is used as the case study in implementing a low overhead parallelization
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strategy. The SMP platform was chosen to implement the parallelization strategy

because: (1) multi-core SMP desktops are readily available to all researchers in recent

years, and most spatial analysis tasks are conducted in this environment, as evidenced

by the over 300,000 ESRI ArcGIS desktop users (Howell 2009); (2) development of an

SMP implementation requires algorithm decomposition for multiple processing cores

(workers) communicating using message passing, a paradigm portable to the HPC

deployments.

The remainder of this chapter is organized as follows: Section 2 describes the

maximum theoretical speed improvement attained through parallelization, strategies

of parallelization, and the platforms parallel code can be deployed to. Section 3

describes and formulate the p-Compact Regions optimization problem. Section 4

describes the developed parallel implementation in detail, Section 5 describes the

experiments performed and Section 6 reports results. Finally, Section 7 concludes

with a discussion of this work and avenues for future research.

5.2 p-Compact Regions Problem

PCR enforces a contiguity constraint, a hallmark of a spatial regionalization prob-

lem. In contrast, PCR requires that p be defined a priori, does not define a floor

constraint to maintain a minimum unit size, and does not account for a similarity or

dissimilarity metric. Regions are formed and permuted with the goal of maximizing

the likeness of a region to a circle as measured by the normalized moment of inertia

(Li et al., 2014b; Laura et al., 2015). The objective function formulation, as presented

by Li et al. (2014b); Laura et al. (2015) of PCR is:
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Maximize: (5.1)

p∑
k=1

C(Zk) (5.2)

Subject to: (5.3)

n∑
i=1

xk0
i = 1∀k = 1, . . . , P (5.4)

p∑
k=1

q∑
c=0

xk,ci = 1∀i = 1, . . . , n (5.5)

xkoi ≤
∑
j∈Ni

x
k(o−1)
j (5.6)

tij ≥
q∑
o

xkoi +

q∑
o

xkoj − 1 (5.7)

where k is a region index, C(Zk) is the compactness index for region k measured

by Equation 5.8p-Compact Regions Problemequation.5.2.8, and p is the number of

regions. C(Kz) is the compactness index as measured by the normalized moment of

inertia, which can be represented as the ratio between the second moment of inertia

I0 of a circle, with area Zk, and the second moment of inertia of Zk around an axis

perpendicular to it and passing through the centroid G. Li et al. (2014b); Laura et al.

(2015) formulate this as:

C(Zk) = NMI(Zk) =
I0

IGZk

=
A2
Zk

2πIGZk

(5.8)

where A2
Zk

is the area of region Zk.

The contiguity constraint is enforced by Equations 5.4p-Compact Regions Problemequation.5.2.4

through 5.7p-Compact Regions Problemequation.5.2.7 where xk,ci is a binary indica-

tor of whether atomic unit i is assigned to region k in order c. ‘Order’ here refers to
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the closeness to the seed of a region, which has an order 0. xkoi is a binary indicator of

whether unit i is assigned to region k in order o. Ni is the set of atomic units that are

adjacent to atomic unit i, c is an index of contiguity order with q = (n−p), and tij is a

binary indicator of whether unit i and unit j are members of the same region k. Equa-

tion 5.4p-Compact Regions Problemequation.5.2.4 requires that each region contains

a single root or seed unit. Equation 5.5p-Compact Regions Problemequation.5.2.5

constraints unit assignment to one region and one contiguity order. Equation 5.6p-

Compact Regions Problemequation.5.2.6 requires that a unit be assigned to a region

only if at least one of its adjacent units had been assigned to the region at a lower

order. Equation 5.7p-Compact Regions Problemequation.5.2.7 prevents cycling by

ensuring that each unit can occur only once in a given order.

The NMI value has range of (0, 1], in which 1 refers to the most compact shape,

a circle, and when a shape is the least compact, it will have a value close to 0. The

contiguity constraint can be defined using ORDER model proposed by Cova and

Church (2000) and described by Duque et al. (2011); Li et al. (2014b). In a heuristic

algorithm, the contiguity is preserved by an identifiable path from any unit in a region

to any other unit in the same region.

Broadly, the PCR algorithm follows the same multistep process as MPR, utilizing

a MERGE heuristic to search the solution space and return a solution. MERGE is

a two-phase algorithm consisting of (1) the generation of an initial feasible solution

(IFS) and (2) a local search phase where atomic units are swapped in an attempt to

improve the solution. Throughout this section I define each polygon unit within the

dataset as an atomic unit, a group of conterminous atomic units as a region, and the

atomic unit initially selected to start a region as the seed unit.
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5.2.1 Phase I: Generation of an Initial Feasible Solution

1. PCR requires that the number of regions to be generated, p, be known a priori

and that a seed unit be selected for each region. Seed units, selected from the

global set of all atomic units, n, can be defined in three ways: (1) manually

identify p atomic units to be classified as seed units, (2) randomly select p

atomic units to be defined as seed units, or (3) systematically, i.e., at regular

spacing or in the atomic units with greatest area, select p atomic units to be

defined as seeds.

2. The study area now consists of p seed units assigned to p regions and n − p

unassigned atomic units. Starting from a randomly select region and using a

round-robin (dealing) approach, each region is grown by l atomic units. This

process is performed by first selecting all unassigned atomic units that are neigh-

bors to a region. Neighborhood is determined by shared borders in the rook

contiguity model. Next, the candidate atomic unit that provides the maximum

improvement to the objective function value is selected and assigned to the re-

gion. This process is also named region growth process and at each step, only

one region grows by adding one atomic unit to it. Once one region finishes

growing, the process iterates to the next region. Then this process continues

until l ∗ p atomic units have been assigned to p root regions.

3. At the conclusion of step 2, p regions have been defined, each of size l+1 atomic

units. Figure 5.1Phase I, Step 3, Assignment of All Atomic Unitsfigure.5.1 illus-

trates three regions at the start of this step. Therefore, n−p(l+1) atomic units

remain unassigned. To assign the remaining atomic units a randomized greedy

algorithm is utilized. First, for each region, all possible atomic units to region

assignments are enumerated, atomic elements 1, 2, and 3 are identified adjacent

106



to region A, 5.1Phase I, Step 3, Assignment of All Atomic Unitsfigure.5.1. This

yields, j potential region growth plans for each region, where j is a function

of the number of unassigned atomic units adjacent to a given region. Next, all

region growth plans are aggregated and sorted in descending order, i.e., those

atomic unit assignments that improve the objective function (Eq. 2) are ranked

highest. Finally, a randomized greedy algorithm selects an atomic unit assign-

ment from the first x, sorted, potential assignments. This results in a single

atomic unit assignment to a single region. This process, exploration of all po-

tential assignments, ranking as a function of the objective value obtained by

potential assignment, and random assignment selection is then repeated for all

remaining, unassigned, atomic units. Assuming atomic units selected as seed

units remained constant, i.e., the spatial location of the seed unit is unchanged,

this step ensures that sequentially generated IFS can have divergent solutions.

In pseudo-code, this process can be realized as:
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Figure 5.1: Phase I, Step 3, Assignment of All Atomic Units

Data: Spatial Weights Object, MI, n, p , dealSize, Optionally: Seeds

Result: Vector of length n + 1

regionmembership = dictionary

regionproperties = list

ndealt = 0

r = 0

for s in Seeds do

regionmembership[r] = s

r += 1

end

while ndealt ≤ dealSize ∗ p do

for Each region in regionmembership do

for Each neighbor, unassigned areal unit adjacent to region do

Compute the objective function for each possible assignment

Make the best assignment

end

end

end

while length(ndealt ¡ n do

for Each region in regionmembership do

Compute the objective function for each possible assignment of an

unassigned areal unit

end

Sort all possible region growth plans by improvement to the objective function

Using a Greedy algorithm, randomly select one of the i best growth plans and

make the assignment

end

Algorithm 1: Initial Feasible Solution Generation
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where, MI is a list containing the precomputed Moment of Inertia (MI) for each

input areal unit, n is the number of areal units, p is the number of regions to be

formed, dealSize is the total number of areal units to be dealt to each region in a

round robin manner, and Seeds is an optional list of the seed or root areal units from

which regions are grown.

5.2.2 Phase II: Local Search

Local search is controlled by SA and seeks to alter atomic unit membership within

adjacent regions such that the global objective function value increases. The process

of reassigning atomic units is completed using an edge reassignment technique, which

selects a single atomic unit bordering an adjacent region and reassigns the atomic unit

to the neighboring region towards finding better solutions. For example, if atomic unit

A is a member of region 1 and adjacent atomic unit B is a member of region 2, an edge

reassignment by moving A from region 1 to 2 will be allowed if this move increases

the overall objective function value. This process will continue until no improvement

can be found by moving any of the units on the edge of any given region.

I note two important considerations. First, the contiguity needs to be preserved

at all phases of the regionalization process, e.g., an edge reassignment that breaks

regional contiguity is prohibited. Second, the compactness of regions needs to be

computed at both the region growth and local search phases. The additive nature of

this measure ensures that re-computation of all regions is not required with each per-

mutation of the local search, e.g., an edge reassignment alters compactness for two re-

gions, whose region compactness is subtracted from the global compactness measure,

recomputed, and then added back to the global compactness measure. Therefore,

this measure is efficient to compute during local changes in region membership.

One possible realization of a serial implementation is as follows:

109



Data: Spatial Weights Object, regionmembership, regionproperties, initialtemperature,
coolingrate, finaltemperature

Result: region-membership, final-ojective-value
while currenttemperature > finaltemperature do

Randomly select an areal unit
for each adjacent areal unit, i do

Get region membership for areal unit i
end
unique regions = list of all unique adjacent regions to the randomly selected
areal unit
for each region in unique regions do

Check contiguity constraint
Compute the objective function assuming reassignment of the selected areal
unit into the region

end
if Objective improves then

Make the areal unit reassignment
end
Cool the currenttemperature by the coolingrate

end
Algorithm 2: Local Search

where, the spatial weights object describes the adjacency structure of all areal

units, regionmembership is a dictionary containing assignment information for all areal

units, regionproperties are descriptors of each region, e.g. NMI, and initialtemperature,

coolingrate, and finaltemperature are parameters of the SA process.

5.3 Parallel p-Compact Regions

Like the MPR implementation, a parallel PCR implementation focuses on max-

imizing the probability of finding a high quality solution by maximizing the global

compactness of all regions. Given the difficulty in creating a cooperative paralleliza-

tion of the local search phase and the desire to highlight differences between im-

plementation requirements in a parallel environment, overall performance speed is of

concern for this PCR implementation. The goal of this implementation is to minimize

the overhead introduced by parallelization.
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This parallel PCR implementation utilizes a low level (Trienekens and Bruin,

1992), bulk synchronization strategy in both SMP and cluster environments. The

former utilizes a shared memory space, while the latter embodies distributed memory

systems and uses a shared nothing, message passing approach. For both architec-

tures, this implementations consists to two parallel processing phases that align with

the original serial implementation. As described below, this implementation style

has been selected to support load balancing across all available nodes. That is, the

discrete computation of IFS, followed by bulk synchronization, and then local search,

is a function of the need to load balance this algorithm as a single phase parallel

implementation yields the potential of a higher number of idle cores.

First, file I/O occurs and a spatial weights object, used to describe contiguity,

as well as all necessary attribute vectors are generated. Next, i IFS are generated

using an embarrassingly parallel implementation. Finally, local search is applied using

Simulated Annealing. Unlike MPR, the majority of the compute cost is spent in the

generation of IFS. Specifically, the assignment of unassigned areal units, requires the

enumeration of all possible growth plans, and then a Greedy based assignment. The

cost of this process is nontrivial. The cost of the two preceding steps is quite small, and

an excess computation paradigm is leveraged. While one core could compute steps

one and two of the IFS generation process, described above, and communicate the

results of this process to all cores such for subsequent Greedy assignment it is equally

efficient to perform steps one and two local to all cores, having non-idle processes

perform excess computation.

5.3.1 Initial Feasible Solution Generation

The generation of high numbers of IFSs helps to improve the likelihood that a

heuristic algorithm attains optimality as the better the IFS, the more likely that the
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final solution will be a high-quality global optima (Ram et al., 1996). Therefore, this

implementation seeks to generate a suitably higher number of IFSs distributed over

all available compute cores (processors). This is a two-phase process, as illustrated

in Figures 5.2Parallel MERGE Implementationfigure.5.2 and 5.3Parallel Local Search

Implementation. Mother Process Tasks Shown with Dashed Border and Child Process

Tasks Shown with Solid Border. Note That the Mother Process Becomes a Child

When Finished with Initializationfigure.5.3.

Figure 5.2: Parallel MERGE Implementation

First, the total computation time to generate a single IFS is known, given the

same set of parameters, requires roughly the same compute time. Therefore, the

distribution of load to each processor is simply a function of the number of IFS that

each processor must generate. In the SMP environment, the near optimal distribution

of jobs to each core can be computed as:

Cl =
s

c
(5.9)

112



where Cl is the total load for each core, s is the number of solutions to be generated

to populate the global solution space, and c is the total number of available cores.

This split does not account for the likely remainder, and therefore, any remained is

assigned to a single core.

Once load distribution is computed, c child processes are launched and the gen-

eration of multiple IFS initiated. This application is asynchronous and as a core

completes the assigned load a callback function is called to merge the individual IFS

in a single memory space via a pipe. The generation of IFS by each child process is

identical to the description by Li et al. (2014b). It is within the initialization phase

that the algorithm deals x atomic units to each seed unit to set the initial region

membership for atomic units.

In the HPC environment, a single shared memory space is not available. There-

fore, a processing queue of IFS to be generated is used, with each available core

drawing from the queue when processing is completed. As a single core completes

the generation of an IFS, a message, containing the IFS solution, is passed to the

managing process which either (1) assigns the worker to generate another IFS or (2)

signals that IFS generation is completed.

These implementations were selected for two reasons. First, the derivation of a

single IFS is not dependent upon the derivation of other IFSs. It is not necessary

to manage the quality of an IFS, seek to maintain individuality among a pool of

IFSs, or attempt to synchronize the generation of IFS over all cores. Second, in cases

where an intensification strategy will be used prior to local search, it is essential to

gather and rank all solutions based on some criteria. Therefore, in generating a low

communication cost benchmark, I seek to mimic this processing requirement.

The initialization phase ends once all child processes have merged their IFSs in to

a single IFS space. Each IFS includes the current global objective function value, the
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membership of all atomic units in regions, the local compactness of each region, and

the requisite unit attribution data, for example contiguity and moment of inertia.

5.3.2 Local Search

In Figure 5.3Parallel Local Search Implementation. Mother Process Tasks Shown

with Dashed Border and Child Process Tasks Shown with Solid Border. Note That the

Mother Process Becomes a Child When Finished with Initializationfigure.5.3, illus-

trates the implement of a p-control, Multi-Point Same Strategies Simulated Annealing

(SA) driven local search with a single bulk synchronization phase to terminate pro-

cessing. Given the potential for each SA driven search to require a different amount

of processing time, all IFS are loaded into a single processing queue from which jobs

are drawn. This is the primary justification for splitting IFS generation and local

search. The latter does not load balance well and combination with the former yields

worse global performance.

Local search proceeds as per Li et al. (2014) using SA. Reassignment of an atomic

unit is performed local to the worker and it is possible that one or more workers could

perform identical computations that is the parameters that govern SA (e.g., cooling

rate) could consistently find local optima from which the algorithm cannot escape.

For this reason, both the size of the IFS pool and the SA parameter selection are

paramount.

In the SMP environment, once local search has completed, the child process opens

a pipe and a callback function communicates the local search results to a joinable

processing queue. In the HPC environment, a completed worker sends a message

containing the final solution back to the managing process. Once the global IFS

queue has been processed, each child exits and the mother process regains control. In

the SMP implementation, the mother process has been waiting,that is, not using any
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computational resources, and has acted as a child process. In the HPC deployment,

the managing process acts only as the manager and does not process local solutions.

Once all child processes have completed computation, the mother process queries the

global solution space for the indices of all current best solutions. One or more global

best solutions can exist, and each is checked for uniqueness. In the case where all

solutions are identical, the global best is written. In instances where one or more

solutions are unique, all global best solutions are reported.

Figure 5.3: Parallel Local Search Implementation. Mother Process Tasks Shown
with Dashed Border and Child Process Tasks Shown with Solid Border. Note That
the Mother Process Becomes a Child When Finished with Initialization.
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5.4 Experiments

Three experiments are performed in an SMP environment and one experiment is

performed in a HPC environment in order to explore the speedup attained through

parallelization and the impact of parallelization on solution quality utilizing synthetic

data in the form of Voronoi diagrams. Data for test architectures was pregener-

ated with 2,500, 10,000, 22,500, 40,000, and 62,500 atomic units. Figure 5.4Sample

Test Data with 10,000 Atomic Units Generated from Randomly Distributed Point

Datafigure.5.4, below, depicts the 10,000 unit sample data. Each dataset was cre-

ated by first generating the required number of units as randomly distributed points.

Then Thiessen polygons were created from the random point dataset. Therefore, the

density and number of neighbors per atomic unit varies with each dataset. Adjacency

and moment of inertia attributes were computed a priori. Finally, seeds were auto-

matically selected by first creating a regular, equidistant grid of points over the test

data and then spatially intersecting each point with a a single atomic unit. These

units were used as seeds for phase I of PCR.

Figure 5.4: Sample Test Data with 10,000 Atomic Units Generated from Randomly
Distributed Point Data.
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To standardize the testing environment, all SMP tests were run on a Mac Pro with

dual six-core 2.93 GHz CPUs, 64 GB of RAM and the 64-bit Python by Enthought

(version 7.0-2). The dual six core processors report as 24 cores due to hyper threading.

Only mandatory OS controlled system processes and a single Secure Shell (SSH)

process were running. This resulted in an average pre-test load of under 1% of total

compute power. All distributed memory tests were run on a homogeneous compute

cluster with each node consisting of two quad core 2.93GHz Intel Xeon processors

with 16 gigabytes of shared memory.

5.5 Results

Experimental results are reported to: (1) quantify the speedup attained through

parallelization, (2) explore the potential solution quality improvements afforded by

increasing the area of the solution space explored, (i.e., the size of the solution set)

without increasing the wall time, a.k.a, human waiting time, and (3) test the perfor-

mance of the parallel algorithm for large (n ≥ 10, 000) PCR problems.

5.5.1 Speedup

To quantify the speedup parallelization affords in an SMP environment, IFS solu-

tion spaces containing 12, 24, 48, and 96 solutions using serial, six-core, and twelve-

core implementations are generated. All speedup tests utilized the same 10,000 atomic

unit polygon data, generated as described above. The total size of the solution set

dictates the number of iterations required for the serial implementation. For example,

the 48 element solution set required 48 sequential runs of the serial code. For parallel

execution, IFS solution spaces of the total required size (e.g., 12, 24, 48 or 96) are

generated. Synchronization occurs twice, once when all required IFS are generated

and once at the conclusion of local search. Therefore, timings are computed as the
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sum of all required serial runs, in the serial case, and total execution time, in the par-

allel case. This chapter shows that parallelization improves overall solution quality

while reducing runtime to explore a larger area of the solution space than is possible

in serial. Figure 5.5Total Processing Time for a Varied Number of Solutions Using

Serial and Parallel Implementationsfigure.5.5, below shows total computation time,

using the 10,000 atomic unit test data, for serial, 6 core, and 12 core implementations.

All variations in number of processing cores show a linear increase in total processing

time. At the smallest solution set, serial processing of 12 realizations required over 55

minutes of wall time, while the six-core implementation required slightly more than

9 minutes and the twelve-core implementation required slightly less than 5 minutes.

To generate a 96-element solution set, serial processing required more than 7 hours,

parallel processing using six cores required slightly over one hour, and the twelve-core

implementation required just over 38 minutes. Finally, average speedups of 11.5 times

using twelve processing cores and 6 times using six processing cores are reported. The

actual speedup in both cases almost equal to the theoretical speedups: 12 for 12-core

processing and 6 for 6-core processing. This is inline with expectations using a low

communication overhead model.

In the distributed memory environment same 10,000 atomic units polygon data

is utilized, generating IFS solution spaces containing 128, 256, 512, 1024, and 2048

solutions using 13, 17, 25, and 49 processing cores. One core acted as a manager,

resulting in 12, 16, 24, and 48 worker processes. Utilizing the 12 core implementation

as a baseline, Figure 5.6Distributed Memory Implementation Speedup Using a 12-

core Implementation as a Baselinefigure.5.6 illustrates the scaling performance of this

implementation. Moving from 12 to 24 cores a roughly two time speedup for the 256,

512, and 1024 solution space tests is seen. Moving to the 2048 solutions space size,

speedup decreases to one and a half times. Finally, using 48 workers, speedup is near
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Figure 5.5: Total Processing Time for a Varied Number of Solutions Using Serial
and Parallel Implementations.

the theoretical maximum, four times, only for the 256 and 512 solutions space tests.

For 128, 1024, and 2048 solutions tests, speedups are between two and a half and

three and a half times.

Figures 5.7Regionalization Results after Phase I, Merge with an Initial Compact-

ness of 0.87figure.5.7 and 5.8Final Result after Local Search Using 12 Cores and Gen-

erating 12 Solutions. Final Global Compactness, i.e., The Object Function Value as

Defined by Equation 2, is 0.934figure.5.8 show the results of the PCR, using a 10,000

atomic unit, randomly distributed polygon test data set. p is set to be 152, which

means initially 152 seeds were randomly selected to grow the regions. The seed selec-

tion follows a dispersion strategy. In Figure 5.7Regionalization Results after Phase

I, Merge with an Initial Compactness of 0.87figure.5.7, results of MERGE algorithm,

generated from a serial program are shown. Figure 5.8Final Result after Local Search
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Figure 5.6: Distributed Memory Implementation Speedup Using a 12-core Imple-
mentation as a Baseline.

Using 12 Cores and Generating 12 Solutions. Final Global Compactness, i.e., The

Object Function Value as Defined by Equation 2, is 0.934figure.5.8 depicts the best

solution from a parallel with a solution set of 12. Visually, many regions become

rounder in Figure 5.8Final Result after Local Search Using 12 Cores and Generating

12 Solutions. Final Global Compactness, i.e., The Object Function Value as Defined

by Equation 2, is 0.934figure.5.8 than Figure 5.7Regionalization Results after Phase I,

Merge with an Initial Compactness of 0.87figure.5.7 after a larger area of the solution

space has been explored. Quantitatively, the averaged compactness (NMI) increased

to 0.934 (1 is the upper bound) from 0.87 for region plan in Figure 5.7Regionalization

Results after Phase I, Merge with an Initial Compactness of 0.87figure.5.7.

Additionally, a synthetically generated, spatially clustered data set was generated

to test the performance of the distributed algorithm. Results are inline with previous

tests in terms of overall performance with a slight degradation of approximately 7.5%
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Figure 5.7: Regionalization Results after Phase I, Merge with an Initial Compact-
ness of 0.87.

Figure 5.8: Final Result after Local Search Using 12 Cores and Generating 12
Solutions. Final Global Compactness, i.e., The Object Function Value as Defined by
Equation 2, is 0.934.

in total speedup. Given that serial runtimes for clustered data are slightly less than

those for randomly distributed data and constant communication costs, the slight

reduction in parallel performance is due to communication costs requiring a slightly

higher percentage of total runtime.This experiment validates the portability of the

low communication parallelization strategy to a diverse array of spatial distribution

patterns.
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In summary, the results in this experiment verify that the proposed parallelization

strategy is capable of achieving high speedup due to the minimization of inter-core

communication and minimal intervention of the mother process during child process-

ing. An increase in the solution quality is also attributable to the parallelization

strategy. The next section analyzes the improvement of solution quality in detail.

5.5.2 Solution Quality

To test the impact of parallelization on solution quality in the SMP environment,

the total runtime is fixed to 10 hours per iteration and varied the number of processing

cores, starting in serial and then testing 2, 4, 8 and 12 cores. For example, the 8-core

iteration was allowed to generate and solve for as many potential solutions as possible

within a 10-hour time limit.

Figure 5.9The Distribution of Objective Function Values for 10 Hour Processing

over a Range of Coresfigure.5.9 shows the range of solutions computed for a varied

number of processing cores during 10-hour tests. All tests utilize a 2500 atomic unit

Voronoi diagram. Table 1, below, describes the results of these tests. There is a

general increase in the overall maximum objective function value as the number of

processing cores increases. Additionally, it can be observed that the average objective

function value stabilizes as the number of solutions increases. This is consistent with

expectations as the total sample increases as a function of the number of processing

cores. Finally, the range of solutions found also increases as the total number of

solutions explored increases.

Interestingly, Figure 5.9The Distribution of Objective Function Values for 10 Hour

Processing over a Range of Coresfigure.5.9, shows that a single-core processing gener-

ates high mean solution quality. This is not surprising, because (1) as a randomized

greedy heuristic is used in the MERGE algorithm, it is possible to identify a good

122



Figure 5.9: The Distribution of Objective Function Values for 10 Hour Processing
over a Range of Cores.

solution by a single run; (2) when a larger solution set is searched by utilizing the

power of multiple processing cores, the likelihood of finding outlier solutions, both

good and bad, also increases. Therefore, an increase in the number of processing

cores, and by extension an increase in area of the solution space explored, serves to

generate a sufficiently large sample such that the impact of outliers is minimized.

Another interesting finding in Table 1 is the decrease in objective function value

moving from two to four processing cores. Although the parallelization strategy gen-

erally realizes an improved objective function value without increased wall time, the

heuristic search process itself does not guarantee that a best known solution will be

found just because the number of solutions is large. Therefore, the reduction in max-

imum objective function between the two and four core tests as an example of the

pseudo random traversal of the search space across independent process runs and sug-
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gest that parallelization offers one means by which a higher number of permutations

can be explored in a reasonable amount of time.

5.5.3 Performance improvement in a SMP environment solving large PCR

problems

Specific to large PCR problems, this experiment seeks to test improvement in

computation time and solution quality attained through parallelization. Polygonal

datasets with basic units of 10,000, 22,500, 40,000, 62,500 were used in this test.

These tests aim to maintain approximately the same number (≈ 65) of basic units

in each region for datasets with different sizes. This region size is chosen because

earlier experiments with a real world dataset has shown that dealing 10-15 units to

each region before moving to randomized greedy phase will help generate the best

solutions (Li et al. 2014b). Therefore p increases proportionally to increase in number

of polygonal units in a dataset: p = 152 for 10,000 datasets, p = 364 for 22,500

dataset, p = 592 for 40,000 dataset, p = 922 for 62,500 dataset. The exact value of

p is a function of the seed selection process as the equidistant placement constraint

requires seeds to be placed in a regular n by m grid without omitting points. This

test was run in serial and using 12 processing cores. Total runtime and objective

function value were retained for each iteration.

Figure 5.10Best Solution Quality for Large Problem Sets Using Serial and Parallel

PCR Implementationsfigure.5.10 compares best solution qualities using serial and 12-

core parallel PCR implementations. It can be observed that for large PCR problems,

parallelization provides a means to explore a larger portion of the solution space and

improve the likelihood of finding a high quality objective function value. This result is

consistent with that found in Figure 5.7Regionalization Results after Phase I, Merge

with an Initial Compactness of 0.87figure.5.7. On average the parallel implementation
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computed an objective function that was 0.005 better than the serial solution. This

value is expected to continue increasing when a much larger space is explored by

increasing the total number of iterations.

From Figure 5.10Best Solution Quality for Large Problem Sets Using Serial and

Parallel PCR Implementationsfigure.5.10, it is clear that the overall objective function

value is higher, for both parallel and serial implementations, when the problem size

is smaller. This is primarily due to the same stopping condition for SA used at

local search phase used for all datasets. That means, when the same, or very close,

number of local tuning steps can be utilized, the edge units receive more chances to

be reassigned for smaller dataset (the number of regions is less). Therefore, a better

regionalization plan can be generated. This result suggests that better algorithm

performance does not rely solely on the parallelization strategy but also the proper

customization of the algorithm according to its characteristics in a regionalization

heuristic context.

Figure 5.10: Best Solution Quality for Large Problem Sets Using Serial and Parallel
PCR Implementations.
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5.6 Discussion

This chapter reports efforts in designing a parallelized strategy for the MERGE

heuristic to solve, to near optimality, a popular spatial analysis problem, a compactness-

driven regionalization problem. This chapter explored implementations in SMP

and HPC environments in order to generate minimal overhead benchmarks against

which more complex, communication intensive parallelization efforts can be com-

pared. Benchmarking must account for both solution quality and total compute

time. In the SMP environment, the parallelization strategy succeeds in limiting par-

allel overhead with a consistently high speedup. Additionally, this chapter reports a

linear improvement in solution quality as the total size of the solution space is in-

creased. This is as anticipated, though it must be noted that the random nature of

the heuristic could still generate outlier solutions at even the smallest solution space

sizes. In the future, the distribution of the SMP solution quality can be compared

with the distribution of more communication intensive implementations in order to

assess the compute time and solution quality relationship.

In the HPC environment, the algorithm and parallelization strategy behave less

consistently with total speedup decreasing as the total number of solutions to be

computed increases. At the lowest solution space size, 128, underperformance is at-

tributed to the overhead associated with initializing jobs, i.e. the overhead associated

with initiating processing is a large component of the overall runtime. While, the

decrease in speedup at larger global solution space sizes may probably due to addi-

tional communication overhead that is associated with receiving an IFS during the

initialization, sending an IFS for local search, and finally receiving a final solution.

The cost of these blocking communications is potentially causing idle processes and

reducing the total anticipated speedup.
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Computational efficiency within initialization and local search phases during the

parallelization process is supported by the use of an efficient data structure to store

a, potentially, high number of region growth and region change plans. As described

in section 3, this data structure has a fixed length, growing linearly as a function of

the total number of regions, for any given PCR problem. This data structure effec-

tively controls the memory consumption of candidate region growth plans, making

the algorithm memory efficient at large problem sizes.

This work will to contribute significantly to the CyberGIS high performance

computing community. This chapter illustrates the successful deployment of a low-

overhead parallel computation model to solve a regionalization problem in a SMP

environment, which remains the most popular compute architecture for the majority

of GIS researchers. The SMP algorithm was also ported into a HPC environment

to demonstrate the cross-platform transplantability of the proposed parallelization

methods. This new parallel implementation will also contribute to the spatial analy-

sis and regional science communities by providing implementations which fully utilize

all available compute resource.

In the future, I will work on the implementation of diversification and intensifi-

cation strategies. These require inter-core communication and this implementation

serves as a benchmark by which the solution quality versus processing time trade-

off can be explored. Additionally, I seek explore a hybrid SMP / HPC deployment

that leverages an OpenMP style shared memory space and a higher level MPI syn-

chronization layer. Finally, I plan to improve the p-Compact Regions algorithm by

integrating a new measure of mass compactness (Li et al. 2014c) and to exploit the

applicability of the proposed model to solve other regionalization problems, such as

the max-p-regions (Duque et al. 2012) and p-regions problem (Duque et al. 2011)

optimally and efficiently.

127



Chapter 6

SPATIAL REGIONALIZATION AS AN EXPLORATORY CLASS OF PARALLEL

ALGORITHM

Duque et al. (2012), citing Fischer (1980), defines a region as a ’set of spatially

contiguous areas which show a high degree of similarity regarding a set of attributes’.

Likewise, Shirabe (2009) suggests that districting is the process of ’aggregating pre-

defined discrete geographic units into larger clusters’. Li et al. (2014b), in defining

the p-Compact regions problem, set the attribute to be regional compactness, i.e.,

the likeness of a region to a circle. Within this work, regionalization is defined as the

process by which atomic areal units are combined, under some set of constraints (com-

mon constraints include contiguity, compactness, or the application of some objective

function), such that larger regions are generated (Duque et al., 2007). Broadly, spa-

tial regionalization algorithms, which enforce a contiguity constraint, can be divided

into two classes: (1) flow based aggregation, and (2) attribute based aggregation.

The former, p-Functional regions problems seek to define regions by interdependence

using flows as a key means of aggregation (Duque et al., 2012; Kim et al., 2015). The

latter, p-Regions problems, seek to define regions based on the degree of similarly (or

dissimilarity), but not inter-dependence, of atomic units (Duque et al., 2012) This

work focuses on the p-Regions class of problem which seeks to aggregate n atomic

units into p regions with n ≤ p (Duque et al., 2011). For the remainder of this work,

references to the p-Regions problem focus on attribute (in the case of the Max-P re-

gions problem) or compactness (in the case of the p-Compact regions problem) based

aggregation.
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The process of spatial regionalization finds wide application in a number of do-

mains. Wise et al. (1997) utilize spatial regionalization within a healthcare context in

order to ensure confidentiality and Pathman et al. (2006) aggregates survey data from

the zip code level to generate Primary Care Service Areas for analysis. Wise et al.

(2001) suggests that regionalization is an essential exploratory spatial data analysis

tool to allow users to experiment with the Modifiable Areal Unit Problem (MAUP)

(Gehlke and Biehl, 1934; O’Sullivan and Unwin, 2010b), and identify outliers. Shirabe

(2005) illustrate the selection of contiguous parcels in a land use planning case and

Shirabe (2009) provides a generalized districting model designed for political, social,

or economic regionalization. Openshaw (1977); Morril (1976); Pang et al. (2010) ex-

plicitly apply regionalization to the political redistricting problem. Miller and Shaw

(2001) aggregate areal units to identify Transportation Analysis Zones (TAZ) and

both Gonzalez-Ramirez et al. (2011), and Li et al. (2014a) utilize a compactness

constrained regionalization approach to identify optimal delivery zones and TAZs,

respectively. With vast increases in total spatial data sizes (Yang et al., 2010) I an-

ticipate additional application of regionalization as a means to reduce total problem

size through aggregation, assuming that robust, computationally viable regionaliza-

tion methods can be implemented.

Described from a computational standpoint, p-Regions algorithms seek to solve

complex combinatorial problems and are known to be NP-Hard (Duque et al., 2011).

Mixed integer programming (MIP) formulation, used to compute exact solutions, is

difficult due to the spatial contiguity constraint. Duque et al. (2011) describes three

MIP techniques, using global and connected component sub-graph representations

of a study area. Preventing cycling within a sub-graph while ensuring contiguity is

maintained adds significant cost to the regionalization process. Duque et al. (2011)

describes MIP experiments with runtimes which were capped at three hours, total
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problem sizes constrained to 49 atomic units (n = 49) and optimality achieved only

with the smallest number of regions (p ≤ 6 being the upper limit). Likewise, Kim

et al. (2015) utilizes MIP to solve p-Functional regions problems with n = 25 and

reports runtimes exceeding 17 hours for the computation of an exact solution, in

some instances. Clearly, the addition of the contiguity constraint and the need to

process larger, non-trivial datasets in a reasonable amount of time precludes the use of

exact, MIP solution methods. Therefore, heuristic solution methods are employed for

medium to large datasets where computational complexity is traded for, potentially,

solution quality(Duque et al., 2012; Li et al., 2014a). In instances where the problem

set is sufficiently large, exact solutions may not even be feasible.

p-Regions problems are ideally suited for distributed, parallel, implementation.

Interest in parallel spatial analysis has recently increased as significant increases in

data size, research in highly distributed parallel computing models, and the necessary

hardware has become more widely available. It is within the context of the emer-

gent Geospatial Cyberinfrastructure (Yang et al., 2010; Wang, 2010, 2013; Wright

and Wang, 2011) that I cite this work. In contrast to previous works, which have

largely focused on decompose-conquer-merge strategies (Wang and Armstrong, 2005;

Yang et al., 2008; Padmanabhan et al., 2011; Tang et al., 2011; Rey et al., 2013) for

parallel spatial implementations, spatial regionalization is amenable to cooperative

exploration of a solution space. Works focusing specifically on p-Regions problems in

parallel domains are limited with Laura et al. (2015) providing a low communication

implementation of the p-Compact-Regions problem. Widener et al. (2012) provides

an implementation which focuses on the identification of spatial clusters, a loose

analog to the p-Regions problem. Outside of the spatial analysis domain, parallel im-

plementations have been designed to solve the quadratic assignment problem (QAP)

(Gabrielsson, 2007; James et al., 2009a,b), the generalized assignment problem (GAP)

130



(Liu and Wang, 2015) using genetic algorithms, and the multi-commodity capacitated

network design problem (Crainic, 2002) using a parallel Tabu Search. Likewise, Ram

et al. (1996) and Onbasoglu and Ozdamar (2001) provide parallel heuristic imple-

mentations to solve traveling salesman and generalized mathematical optimization

problems, respectively.

This work focuses on the implementation of the Max-p regions (MPR) algorithm

in a HPC environment using a cooperative heuristic implementation. I classify this

implementation as exploratory using the taxonomy present in Chapter 2.

The remained of this work is organized as follows: In Section I 6.1 formulate the

MPR problem and provide both a serial and parallel implementation. In Section 6.2

I describe a series of experiments in an HPC environment and Section 6.3 reports the

results. Section 64. includes a discussion of the results and this chapter concludes

with Section 6.5.

6.1 Max-p Regions Problem

In addition to the contiguity and minimization of inter-regional heterogeneity, con-

straints described above, MPR seeks to endogenously identify the maximum possible

number of regions a given a study area can contain, i.e., p is not know apriori. This

requires an additional minimum region size constraint, the floor constraint, to ensure

that n 6= p for all realizations.

The objective formulation, as presented by Duque et al. (2012) of the Max-P

Regions problem statement is:
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Minimize: (6.1)

Z = (−
n∑
k=1

n∑
i=1

ik0) ∗ 10h +
∑
i

∑
j|j>i

dijtij (6.2)

Subject to: (6.3)

n∑
i=1

xk0
i ≤ 1∀k = 1, . . . , n (6.4)

n∑
k=1

q∑
c=0

xkci = 1∀i = 1, . . . , n (6.5)

xkci ≤
∑
j∈Ni

x
k(c−1)
j ∀i = 1, . . . , n;∀k1 =, . . . , n; ∀c = 1, . . . , q (6.6)

n∑
i=1

q∑
c=0

xkci li ≥ threshold ∗
n∑
i=1

xk0
i ∀1, . . . , n (6.7)

tij ≥
q∑
c=0

xkci +

q∑
c=0

xkcj − 1∀i, j = 1, . . . , n|i < j;∀k = 1, . . . , n (6.8)

xkci ∈ 0, 1∀i = 1, . . . , n;∀k = 1, . . . , n;∀c = 0, . . . , q; (6.9)

tij ∈ 0, 1∀i, j = 1, . . . , n|i < j (6.10)

where, k is a vector of potential regions, i is an area within the region, h is a scaling

factor,dij is an element of a dissimilarity matrix, tij is a binary membership matrix,

c is an index into a contiguity order used for maintaining the contiguity constraint, q

is the maximum index in a given contiguity order, wij is a binary adjacency element,

and l is a vector of attribute values for each i.

The first half of the objective function formulation (−
∑n

k=1

∑n
i=1 i

k0)∗10h seeks to

assign all atomic units to a region, maximize the total number of regions, and ensure

that solutions with the maximum number of regions are guaranteed to provide a more

optimal solution using a scaling factor (h), while the second half
∑

i

∑
j|j>i dijtij sums
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global variance. This implies that solutions with more regions supersede solutions

with fewer regions and that solutions with the same number of regions are rank-able

by inter-regional heterogeneity, e.g. similarity. The objective function is subject to

a number of constraints designed to enforce a lower threshold on region size and a

contiguity constraint.

Citing Duque et al. (2012) constraint 6.4Max-p Regions Problemequation.6.1.4

ensures that each region contains one, and only one seed, i.e. c = 0 in the contiguity

order. Constraint 6.5Max-p Regions Problemequation.6.1.5 ensures that each i is as-

signed to a single region, and a single contiguity order. In order for an atomic unit, i,

to be assigned to a region, it must be spatially contiguous to some other atomic

unit already in the region. Constraint 6.6Max-p Regions Problemequation.6.1.6

enforces this requirement. The minimum size threshold constraint is enforced by

constraint 6.7Max-p Regions Problemequation.6.1.7. Constraint 6.8Max-p Regions

Problemequation.6.1.8 ensures that pairwise dissimilarity is utilized as the metric for

computing global heterogeneity and constraints 6.9Max-p Regions Problemequation.6.1.9

and 6.10Max-p Regions Problemequation.6.1.10 enforce a MIP problem.

A serial implementation of MPR consists of three distinction phases. First, pre-

processing must occur in order to read a dataset into memory (incurring some In-

put/Output cost) and a data structure to store spatial contiguity, e.g., an adjacency

matrix, must be created. Next, one or more initial feasible solutions (IFS) must be

realized. Finally, a local search phase is entered which permutes the IFS, under all con-

straints, and seeks to improve the objective function value. Given these three distinct

phases, it is possible to split the MPR objective function into two parts and assign

each part to a given phase. IFS generation seeks to minimize (−
∑n

k=1

∑n
i=1 i

k0)∗10h,

which, as described above, ensure that solutions with a higher number of regions are

always favored. Contiguity constraints and permutation through edge reassignment
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ensures that p cannot vary during the local search phase. Therefore, only the mini-

mization of
∑

i

∑
j|j>i dijtij must be considered with each permutation.

One possible realization of a serial implementation is as follows:
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Data: Spatial Weights Object, Attribute Vector, Floor Variable, Floor Threshold,

Maximum Iterations, Optionally: Seeds

Result: Vector of length n + 1

regions = list

enclaves = list

candidates = sequentially increasing list of size n, e.g. [0,1,2,3,...,n]

current best p = 0

best solution = None

while maxiterations > 0 do

while candidates do

Randomly select a seed unit or select the first seed from user supplied seeds

Remove the seed from the candidates list

while Region size ¡ floor threshold do

additions = neighbors to the current region if additions then

randomly select a region from additions to add to the current region;

else

enclaves.append(seed);

break;

end

end

end

if p in computed solution ¿ current best p then

best solution = current solution current best p = p in current solution

end

maxiterations -= 1;

end

for All unassigned enclaves in best solution do

Assign enclaves

end

Algorithm 3: Initial Feasible Solution Generation
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Once the best IFS has been selected a local search phase, governed by Tabu Search,

described below, is initiated. One possible implementation of this algorithm is:

Data: Spatial Weights Object, Attribute Vector, Current Solution, Max Failures,

Optionally: Tabu List Length, Aspiration Criteria

Result: Vector of length n + 1

while maxfailure > 0 do

valid = data structure of valid swaps Enumerate all potential edge reassignments

for each edge reassignment do

Check the floor constraint and add to valid if passed;

Check the contiguity constrain and add to valid if passed;

end

Sort all edge reassignment for each valid reassignment do

Check the objective function value eIfin tabu list check aspiration function;

if aspiration true then

make the move;

else

continue, do not accept move;

end

not in tabu list;

make the move;

reset the failure counter;

end

if no move made then

maxfailures -= 1

end

end

Algorithm 4: Local Search
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Tabu Search

Tabu Search (TS) is a heuristic solution method developed to solve complex combi-

natorial optimization problems where some optimally definable solution exists within

a finite set of potential solutions (Pham and Karaboga, 2000; Glover, 1989b,a). The

application of TS suggests that fully enumerated solutions are not feasible in a given

amount of time. Therefore, TS utilizes a two phase approach: (1) the generation of

some initial feasible solution(s)1 (IFS), and (2) local search. I focus on cooperative

parallelization of the second phase and note only that IFS generation can have a

significant impact on the final solution based on the initial selection of seed regions.

Local search leverages iterative permutation of a solution space to explore all pos-

sible neighbors to the current solution, i.e., the existing solution is slightly permuted.

Within the context of MPR, this takes the form of edge reassignment, where a sin-

gle atomic unit is reassigned to an adjacent region. With each iteration of the local

search phase, all possible swaps are enumerated. The process of edge reassignment

can become trapped in a local optima, that is a single solution within the solution

space which is not the global best, but which is locally inescapable. In order to facil-

itate escape from local optima, TS uses an aspiration function which accepts either,

the realization which most improves the global solution quality (objective function

value) or accepts the solution which degenerates the global solution least Pham and

Karaboga (2000). This process can introduce cycling, and a tabu list of prohibited

moves is maintained. In pseudo code the local search phase of the algorithm is:

1 See James et al. (2009a) for a multi-start tabu search that reseeds the IFS.
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Data: Neighborhood

Result: Improved optima or total iterations counter incremented

best = CurrentOptima;

MaxFailures = User defined number of failures;

while CurrentFailures <= MaxFailures do

EvaluateSwaps for the current solution;

if swap in EvaluateSwaps > best then

Check the TabuList;

if not tabu then

MakeSwap & Update CurrentOptima;

end

CheckAspiration Function;

if CheckAspiration Function is True then

MakeSwap & Update CurrentOptima;

end

if swap in EvaluateSwaps < best then

CurrentFailures += 1

end

end

end

Algorithm 5: TS Local Search Phase
Local search continues until the maximum number of failures is attained. As moves

are accepted they are added to the tabu list, forcing previous moves to increment out

of scope. In this way a previously tabu move will become available again. In terms of

this usage case, local search swaps all members of a region adjacent to another regions,

checks that the swap does not violate the contiguity constraint or floor constraint,

and accepts the swap which improves the objective function most.
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6.1.1 Parallel Max-p Regions

Interest in parallel implementations of TS began almost immediately after initial

serial publication of the heuristic (Taillard, 1991) following the initial articulation

by Glover (1989b) and Glover (1989a). Crainic et al. (1997) developed a taxonomy

of parallel implementation techniques in order to begin classifying the diverse set of

implementations developed. This taxonomy provides the means to classify implemen-

tations not only by solution quality and speed, but also by specific implementation

details. This taxonomy also allows new implementations to focus on those techniques

which have proven most successful in providing high quality answers with fast con-

vergence.

Crainic et al. (1997) classifies parallel TS implementations based on three crite-

ria: search control, control and communication, and search differentiation. Search

control indicates whether the local swap TS phase is controlled by a single processor,

called 1-control, or distributed over multiple cores, p-control. A TS utilizing 1-control

operates from a single solution and distributes swap computation at each iteration

over available cores. In contrast, a p-control TS runs n concurrent TS, where n is

the number of cores. This classification identifies the point of parallelization and the

number the independent, concurrent searches which are occurring.

Control and communication describes the type of control (synchronous or asyn-

chronous) and quantity of information passed between cores. A distinction is drawn

between control and communication within the 1-control and p-control classifications.

Control and communication within the 1-control category can be rigid, indicating that

a single core controls communication between children and waits to synchronize pro-

cessing until all cores have completed their task, e.g., bulk synchronization to a single

master controller. Alternatively, a knowledge synchronized approach extends the rigid
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control technique by distributing information between cores at synchronization. Like

the rigid control scheme bulk synchronization occurs, but the information is synchro-

nized to both the master and all workers. Within the p-control category, collegial

communication shares an improved solution asynchronously with other processes. A

knowledge collegial communication method extends collegial communication by shar-

ing not only a solution, but also solution characteristics, e.g., frequency of successful

swaps, search parameters, swap history. These characteristics are then analyzed by a

core and used to improve search trajectory.

Finally, search differentiation indicates how the TS local search phase is initiated.

Crainic et al. (1997) identifies four different differentiation classes: Single Point Single

Strategy (SPSS), Single Point Different Strategies (SPDS), Multiple Points Single

Strategy (MPSS), and Multiple Points Different Strategies (MPDS). Single point

strategies begin the local search phase with the same starting solution, while multi-

points strategies begin the local search phase with a different starting solution. Single

strategy and different strategy dictate whether the local TS phase utilizes the same

parameters (TS list length, differentiation and aspiration criteria, total local failures,

etc.) or divergent parameters. Given this taxonomy, it is possible to locate TS

implementations within each of the three broad categories, search control, control

and communication, and search differentiation.

Citing their work within Crainic’s taxonomy, James et al. (2009a,b) explore vari-

able tabu list length, diversification, intensification, and memory management issues

found in parallel TS implementations. Taillard (1991) first introduced variable tabu

list length and James et al. (2009a) find that variable TS list length diversifies so-

lution trajectory. This can be implemented as a function of n, the total number of
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atomic geometries in the input data set, where total TS list length is described by:

smin = n · 0.9

smax = n · 1.1

∆ = {x| ∈ N, 0 ≤ x ≤ (smax − smin)}

TSlistlength = n±∆

(6.11)

Diversification indicates the perturbation method employed to escape a potential

local optima. This processes is initiated when a core has been unable to make an

improvement to the solution in a given number of failures. Intensification is the pro-

cess by which the current optimal solution is propagated through the search space

and explored by multiple cores. James et al. (2009a) implements intensification by

asynchronously testing a single core solution against a shared memory solution space.

If the current solution is a new global optima, it is propagated to 50% of the search

space, thereby intensifying TS search in that neighborhood. A ’kick’ algorithm, which

performs a small number of random assignment swaps, is also used to slightly perturb

the high quality solution (James et al., 2009a). The addition of intensification helps

reduce total parallel processing time as globally, TS does not need to run as long before

the algorithm converges. Finally, memory management in SPDS and MPDS imple-

mentations is essential to avoid concurrent overwrites and provide a means of master-

less communication (p-control). James et al. (2009a) provides strategies to facilitate

complex inter-core communication using a series of locks and semaphores. These

implementations provide higher quality results than more simplistic single strategy

implementations.

In creating a parallel Max-p regions implementation I focus on maximizing the

probability of finding a high-quality solution (minimizing the objective function) at
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some cost to overall performance. Tom y knowledge, quantification of this relationship

has not been performed; a single method with exceptional speed and an assurance of

(near) optimality has not been developed. Therefore, I have designed this implemen-

tation with the goal of maximizing solution quality. I hypothesize that is possible to

increase inter-core communication during the local search phase and leverage intensi-

fication and diversification strategies to force the algorithm to converge more quickly.

That is, rapid failure to make a successful solution permutation, local to a single core,

and subsequent iteration to the next feasible solution within the global solution space

reduces global processing time while still locating high-quality solutions.

As with the serial implementation, the parallel MPR consists of three discrete

phases. First, file I/O occurs, a spatial contiguity object is generated, and the neces-

sary attribute vectors are generated. This process is identical to the serial approach.

Next, i initial feasible solutions (IFS) are generated using an embarrassingly parallel

implementation. Finally, local search is performed using a cooperative tabu search

(TS). The following describes phases two and three of the implementation.

Within the following section, I refer to the local solution space as the shared

memory, local to each compute node, within which c solutions are stored, where c is

the number of cores per node. The global solution space is the aggregate of all local

solution spaces, e.g., the global solution space in an eight node, eight core per node

environment would consist of 8 local storage spaces and 8 ∗ j solutions in the global

solution space, where j is the size of each local solution space.

I implement a hybrid distributed and shared memory implementation in order

to leverage the efficiency of a low communication cost shared memory space and

the scalability of message passing approaches as the total number of available nodes

increases. The shared memory code utilizes Python multiprocessing and CTypes.
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MPI is used to manage all message passing. Throughout, bulk synchronization is used

as asynchronous MPI based synchronization proved extremely difficult to manage.

Initial Feasible Solution Generation

Each compute node generates a user defined number of IFS within some number of

iterations. A shared memory space and associated lock are created local to each node

with a total size equal to jxn + 1, where j is the number of IFS to be generated

and n is the total number of atomic units. In Equation 6.12Initial Feasible Solution

Generationequation.6.1.12, a sample IFS with j = 2 is provided. All references by

position are zero offset. At positional index zero, each row holds the current number of

regions, 7 and 4 in this example. The remainder of each row contains a representation

of the current solution with the value representing membership within a region and

the positional index representing the atomic unit ID. For example, in row one region

1 is composed of units 2 and 5. Region 2 is composed of units 1, 3, and 4.

7 2 1 2 2 1

4 1 2 2 1 2
(6.12)

This representation provides three key benefits. First, a regular, matrix repre-

sentation of the global solution space facilitates the user of shared memory spaces.

Second, representation of each solution, within the local solution space, as a vector

provides an efficient representation for communication between nodes. Finally, by en-

coding the objective function value into the solution, synchronization of two separate

data structures is not required.

Once the shared solution space is initialized, each available core begins the gen-

eration of an IFS. Recall that the MPR objective function biases solutions with a

larger number of regions. Therefore, the parallel generation of IFS must ensure that
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the local solution space contains the current best known p. Secondary to that goal,

diversity should be ensured to leverage the benefits of beginning local search with a

diverse set of solutions.

Algorithm 6Initial Feasible Solution Generationalgocf.6 provides a pseudocode

implementation of this process. This is a two step process which iterates until a max-

imum number of iterations have been performed. First, each core generates an IFS

as per the serial implementation without assigning enclaves. Next, the local solution

space is queried for the current maximum and those indices which contain a poorer

p count. These queries can be processed in one of three ways: (1) if the current

solution is poorer than current maximum, the iteration counter is deincremented, (2)

if the current solution bests a currently saved solution at some positional index, the

solution space is locked and the current solution added to that index, or (3) if the

solution is worse than the current best and poorer than all currently stored solutions

the iteration counter is zeroed. Manipulation of the iteration counter local to each

core, facilitates node-local load balancing. This process allows a solution space to be

iteratively populated, and if a new global best is identified, iteratively repopulated,

until all rows contain a solution with an equal number of regions.
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Data: Spatial Weights Object, Attribute Vector, Floor Variable, Floor Threshold,

Maximum Iterations, Optionally: Seeds

Result: Vector of length n + 1

generateIFS (As Above)

currentregions = number regions in IFS

poorerindices = where(local solution space p ¡ current p)

currentmax = max(local solution space)

if currentregions < currentmax then

Deincrement iteration counter by 1

else if length(poorerindices) > 0 then

Add the solution to the solution space

else

Deincrement iteration counter to zero

end

Algorithm 6: Initial Feasible Solution Generation
Once all node-local iterations are completed, a bulk synchronization phase is used

to standardize p across the global solution space, where p is the number of regions in

a solution. First, p is broadcast to all nodes. This ensures that all nodes know the p

value of all other nodes. Local to each node, plocal is compared to all other p, pglobal.

If plocal < max(pglobal), a node with the maximum pglobal is randomly selected and

an asynchronous, MPI managed, Get request is made to copy and replace the local

solution with the selected node’s solution. Once all solutions within the global solution

space have standardized p, enclave assignment is completed in an embarrassingly

parallel manner. Within the enclave assignment phase, index zero of each solution is

updated to include the current objective function value.
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Cooperative Tabu Search

The implemented algorithm is defined as a p-control, Multi-Point Different Strate-

gies, cooperative Tabu search with periodic bulk synchronization. This approach

runs p concurrent tabu searches from different starting solutions, each with differ-

ent, stochastically generated TS parameters, and periodically synchronizes results to

propagate the ’best’ solutions across all workers. Recall that IFS generation com-

pleted with each local storage space being composed of a shared jxn + 1 solution

matrix with the zero index within each row containing the second component of the

objective function,
∑

i

∑
j|j>i dijtij and the global solution space has a standardized

p for all solutions.

Prior to initiating local search five parameters are set. First, each core is pa-

rameterized with a maximum number of iterations that define the total number of

independent local search phases a given core can make. Next, a maximum number

of failures is provided. This value is permuted, local to each code using Equation

6.13Cooperative Tabu Searchequation.6.1.13:

maxfailures = maxfailures+maxfailures ∗ U(−1.1, 1.2) (6.13)

where U is a uniform distribution. Stochastically computed maximum failures are

shown to improve the global solution quality (James et al., 2009a). Third, a constant

maximum number of iterations per core is added to control the number of times that a

local search will be applied to the local solution space. Fourth, an integer identifier is

assigned to each core in order to facilitate traversal across the solution space, described

below. Finally, each core determines tabu search list length, a differentiation of the

search strategy introduced by Taillard (1991), as defined by:
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smin = n · 0.9

smax = n · 1.1

∆ = {x| ∈ N, 0 ≤ x ≤ (smax − smin)}

TSlistlength = n±∆

(6.14)

James et al. (2009a) finds that variation of this parameter helps to diversify the

trajectory of solution traversal.

The remainder of this section describes the process of solution traversal, intensifi-

cation, and diversification from the perspective of a single core. This process occurs

concurrently across all cores on all nodes. First, the core applies Tabu Search to

the solution corresponding to the solution row with the same identifier, i.e., core one

works on row one. Once completed, the core locks and queries the global solution

space, comparing the newly computed solution to all other local solutions. If the

solution is better than the solution currently held in the corresponding index, the

local solution space is updated. If the solution is better than all other solutions in

the solution space, it is intensified to some percentage of the local solution space. If

the current solution is worse than all others, or the solution has not been improved

by the Tabu Search, the solution is diversified and then written to the global solution

space. Once completed the core identifier is incremented by 1 (or set to zero in the

case where index+ 1 is larger than j) and the next solution row processed.
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Data: Spatial Weights Object,Attribute Vector, MaxFailures, MaxIterations,

Optionally: IntensificationPercentage, Aspiration Criteria

Result: Local Search Object

performLocalSearch (As Above)

Lock the solution matrix

if currentsolution > allcurrentsolution then

Propagate current solution to IntensificationPercentage of the solution space

else if currentsolution > currentsolutioninlocalsolutionspace then

Add the solution to the solution space

else

Diversify the solution

end

if coreid + 1 > j then

coreid = 0

else

coreid += 1

end

Algorithm 7: Local Search using Tabu Search
Intensification and diversification provide two methods for improving the solution

quality. Intensification explicitly suggests that the current best solution is either

the global optima or a promising path to continue to explore. For this reason, that

solution is intensified to some percentage of the solution space for a variable number

of cores, with divergent TS parameters, to process. Intensification is parameterized

to allow the user to define the percentage of intensification. It is possible that the

assumption of high solution quality is erroneous and therefore, intensification is not

to 100% of the solution space. Conversely, a non-improving solution is assumed

to be a dead-end. Therefore, the solution is diversified, in order to significantly

alter the current realization, prior to allowing the next core to perform local search.
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Diversification is achieved by selecting the region composed of the maximum number

of atomic units and iteratively reassigning edge units to adjacent regions until any

additional atomic unit removal would violate the floor constraint. 2

6.2 Experiments

Two different data generation processes were employed in order to explore the im-

pact of varying Tabu Search parameters, intensification and diversification strategies,

and the impact of spatially autocorrelated data. Within this secretion I first describe

the data generation process and then present test performed.

The first test data set, Figure 6.2Experimentssection.6.2 was generated in an

effort to control the regionalization process and identify a know optimal solution.

To that end, both random and spatially clustered point patterns were generated

over a defined extent. From these point patterns, Voronio diagrams were generated

and the area of each polygon computed. Using a derivation of the IFS generation

code, regions were generated using random initial seed assignment and grown until

a threshold total area achieved. Once this process was completed, enclaves were

assigned to the smallest adjacent region in an effort to balance total area without the

need to perform a complete area based regionalization. All members of a given region

were attributed the same region identifier. Recall from Equation 6.2Max-p Regions

Problemequation.6.1.2 that the right hand side of the objective function describes

sum of the inter-regional variance. By using the region identifier as that attribute,

it is known a priori that the right hand size should sum to zero. It is not possible

guarantee that the known solution is in fact an optimal space partitioning at any

2 I also test similar logic where the least homogeneous region reassigns units with little change to
the overall performance of the algorithm.
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other p value, only that it is optimal at the p defined in the data generation process.

Random and clustered datasets with 100 and 500 polygons were generated.

Figure 6.1: Synthetically Generated Data, Clockwise, 100 Randomly Distributed
Polygons, 100 Clustered Polygons with Inset to Highlight Tight Clustering, 500 Clus-
tered Polygons and 500 Randomly Distributed Polygons. All Figures Include Region
Overlay of the Known Optimal Partitioning at a given p.

The second data set, Figure 6.2Experimentsfigure.6.1 is designed to test the al-

gorithm when spatially autocorrelated data is present. Data sets with 100, 225, 400,

and 625 elements in regular lattices were generated to use as input areal units. Each

geometry is attributed with a uniformly distributed random scalar in the range [-1,

1] to be used as the threshold. Next, spatially lagged attributes were generated with

ρ = {0, 0.1, 0.3, 0.5, 0.7, 0.9}. Optimal solutions for the MPR problem are not known

for these data sets.
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Figure 6.2: Synthetically Generated, Spatially Autocorrelated Data on a 10 X 10
Lattice.

Using both datasets five tests were performed to explore the impact of varying

Tabu Search parameters, as well as the impact of increased quantity and type of

inter-core communication. First, TS search parameters were allowed to vary. These

parameters include the Tabu List length and total number of local search move failures

before termination. Next, solution space traversal iterations from the set 1, 2, 4, 8,

16, 32, 64 were tested. That is, each processing core is allowed to iterate around the

solutions space some number of times, before processing is terminated. As in the first

test TS parameters are allowed to vary. Third, the maximum number of iterations was

set to 16, TS parameters allowed to vary, and intensification percentages between 20%

and 80% at 20% intervals tested. Next, intensification strategies were disabled and

diversification enabled, meaning that a non-improving solution is permuted with the

assumption that non-improvement is indicative of either poorly defined TS parameters

or a local optima. Finally, TS parameters were allowed to vary, maximum iterations

fixed to 16, intensification to 60%, and diversification enabled. Given the stochastic

nature of the algorithm, each test was run 400 times.

All experiments were performing using four nodes from the GeoDa Center com-

puting cluster, a homogeneous high performance computing environment. Each node
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is composed of two quad-core Intel Xeon X5355 processors running at 2.93GHz. All

cores have access to 16 Gigabytes of shared memory RAM and are inter-conencted

via a high speed infiniband network. Input shapefiles, described below, are stored on

a network Lustre file system which is accessed by the rank 0, managing node.

6.3 Results

Table 6.1Maximum Iteration Results Showing Mean Objective Function Value

after IFS Generation, Mean Final Solution, Mean Improvement, and Best Final

Solutiontable.6.1 reports the results from testing increases to the maximum num-

ber of times a given core iterates around the solution space. The optimal partitioning

is unknown for all datasets. Constraining the region growth phase of the IFS was

possible for the 100 random and cluster polygon tests, resulting in a known opti-

mal solution. Constraining p for the 500 solution tests was not possible without

significantly altering the algorithm. Therefore, the known optimal solution for the

100 polygon tests is zero and parameterization performance is tested using the 100

polygon algorithm.
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Iterations 100 Random 100 Clustered

1 IFS 4.479761 17.746427

Final 4.070746 14.814066

Improvement 0.409016 2.932362

Best Obj. 0.98000 13.42909

2 IFS 4.622725 16.079658

Final 3.208718 15.567508

Improvement 1.414007 0.512150

Best Obj. 0.979167 9.287855

4 IFS 4.616459 15.035625

Final 2.752254 13.177657

Improvement 1.864205 1.857968

Best Obj. 1.911111 11.520000

8 IFS 4.534005 14.755537

Final 2.280461 11.217338

Improvement 2.253544 3.538199

Best Obj. 1.911111 0.976744

16 IFS 4.264563 16.931734

Final 2.112895 10.921694

Improvement 2.151668 6.010041

Best Obj. 1.911111 0.976744

32 IFS 4.753670 15.171829

Final 2.011258 10.935356

Improvement 2.742412 4.236473

Best Obj. 1.911111 0.976744

64 IFS 4.551710 17.268747

Final 1.967355 10.148520

Improvement 2.584355 7.120227

Best Obj. 1.911111 0.976744

Table 6.1: Maximum Iteration Results Showing Mean Objective Function Value
after IFS Generation, Mean Final Solution, Mean Improvement, and Best Final So-
lution.
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Aditional iteration succeeded in decreasing the mean objective function value for

all tests. The 100 random polygon tests at iterations equal one and two highlight the

random nature of the algorithm as these two found the best, non-optimal solution.

For all tests, significant improvement between the IFS objective function and the

final objective function is observed. Figure 6.3Resultstable.6.1 shows the distribution

of solutions from the 100 iterations. In the randomly distributed data, cases where

a processing cores iterates 8 to 64 times around a solution space resulted in signifi-

cantly higher convergence to local optima. The same phenomena is observable in the

clustered data, though the convergence is not as distinct.

Figure 6.3: Distribution of Solution Values in Random and Clustered, 100 Polygon
Datasets Achieved by Varying the Total Iteration Count.

Setting the maximum number of iterations to 16 and testing intensification be-

tween 20% and 80% at 20% intervals, Table 6.2Results of Intensification for the 100

Random and Clustered Polygon Teststable.6.2 illustrates significant improvement to

the best known objective function and the frequency with which the known optima

was reached. Unclustered data consistently reached the optima more frequently than

clustered data. Additionally, no correlation os observed between the quantity of in-

tensification and the frequency with which the optimal solution was achieved.
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% Intensification 100 Random 100 Clustered

20% IFS 4.482461 15.587122

Final 0.014694 1.091752

Improvement 4.467767 14.495370

Best Obj. 0 0

Best Obj. Frequency 397 346

40% IFS 4.561280 15.069903

Final 0.004898 0.908355

Improvement 4.556382 14.161549

Best Obj. 0 0

Best Obj. Frequency 399 355

60% IFS 4.551993 15.825269

Final 0.014694 0.775023

Improvement 4.537299 15.050246

Best Obj. 0 0

Best Obj. Frequency 397 362

80% IFS 4.602588 14.941264

Final 0.021924 0.925188

Improvement 4.580665 14.016077

Best Obj. 0 0

Best Obj. Frequency 395 355

Table 6.2: Results of Intensification for the 100 Random and Clustered Polygon
Tests.

Figure 6.3Resultstable.6.2 shows the solution distributions summarized in Table

6.2Results of Intensification for the 100 Random and Clustered Polygon Teststable.6.2.

Convergence rates are significantly higher using intensification, but are attributable

to the use of the previous iterative strategy. In contrast to the previous strategy,

convergence rates, to the known optimal solution, are higher. Therefore, I conclude
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that this convergence, unseen using iteration alone, is a function of the intensification

operator.

Figure 6.4: Solution Distributions with Intensification Between 20% and 80% for
the 100 Random and Clustered Polygon Tests.

Removing all intensification and setting iterations to 16 it is clear that diversifi-

cation alone is not sufficient to escape local optima, Table 6.3One Hundred Polygon

Tests with Iterations Set to 16 and Diversification Enabledtable.6.3. In fact, the

frequency with a high quality solution is found suggests that intensification is signif-

icantly more important than the diversification algorithm tested. Comparing these

results to the intensification results, it is clear that the diversification operator is

performing too well. That is, the solution is being diversified sufficiently that the

algorithm is becoming trapped in a local optima, 1.91 and 0.9767 for random and

clustered data, respectively.
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100 Random 100 Clustered

IFS 4.506932 14.80696

Final 2.028983 7.176011

Improvement 2.47795 7.630949

Best Obj. 1.911111 0.976744

Best Obj. Frequency 267 25

Table 6.3: One Hundred Polygon Tests with Iterations Set to 16 and Diversification
Enabled.

Finally, Table 6.4Results for Full Cooperative, Parallel Tabu Searchtable.6.4 shows

the results of testing solution space iteration, intensification, and diversification for

the 100 and five hundred polygon data sets. Optimality is being regularly achieved

in the 100 polygon tests and low mean final solution values. The 500 polygon tests

show significant improvement due to local search with over 50% improvement in the

500 clustered tests.

100 Random 100 Clustered 500 Random 500 Clustered

IFS 4.485775 14.510799 8223.544158 6404.556761

Final 0.095361 1.402004 5978.578674 3089.399333

Improvement 4.390414 13.108795 2244.965483 3315.157427

Best Obj. 0 0 4292.370605 1750.955933

Best Obj. Frequency 383 288 1 1

Table 6.4: Results for Full Cooperative, Parallel Tabu Search.

Figure 6.3Resultstable.6.4 reports the distribution of testing the algorithm across

regular lattice data sets with varying degrees of spatial autocorrelation. For all tests

greater than 100 polygon units, diversification, and the fully cooperative method are

consistently outperformed by methods utilizing iteration and / or intensification. This

is inline with previous tests; the diversification operator is over performing and local

optima are not escaped. This behavior is consistent across all value of ρ. Interestingly,
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at n = 102 polygon units, it appears that as ρ increases, the dependence upon the

diversification operator appears to also increase.

Figure 6.5: Results Regular Lattice Tests Varying ρ.

6.3.1 Speed

While the goal of this work was not to reduce the overall compute time of the

algorithm, it is still essential to discuss the impact to overall speed. Local search

requires greater than 90% of the total compute time for all tests run. Therefore,

increases in the maximum number of times a given core will perform local search can

significantly increase total compute time. This increase is linear. Communication

incurred by the standardization of IFS and periodic locks during local search are
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extremely small, requiring less than 1% of total compute time. This may increase as

the total problem size increase and the network becomes more saturated.

6.4 Discussion

Intuitively, spatial regionalization is a stochastically driven process. In a highly

parallel environment, a frequent question is: why apply local search, the most com-

putationally expensive process, when a higher number of IFS could be generated in

the same amount of time? Using stochastically driven seed selection, region growth,

and enclave assignment processes, I show significant improvement with the applica-

tion of local search. To my knowledge, no study has been performed to quantify the

component contribution of each aspect of IFS generation, and until such a study is

completed, local search is an essential component of high-quality solution generation.

The first experiment, testing the maximum number of iterations around the so-

lution space also shows that simply varying Tabu Search parameters is insufficient

in locating an optimal solution. In instances where cooperative complexity would be

too high, simple iteration across solutions with different TS search parameters does

more frequently drive the algorithm to higher quality solutions.

Combined with iteration, intensification significantly improves the performance of

a cooperative Tabu Search driven regionalization. In contrast, diversification alone

is insufficient in permuting the solution space. I suggest that additional testing is

required using varied methods of diversification as the operations research literature

suggests that diversification is an essential component of successful algorithms.

The cumulative inclusion of iteration across the solution space, intensification

at 40%, and diversification illustrate the potential gains achievable using a parallel,

cooperative search strategy. The methods described, at the parameters tested, do

not preclude the algorithm becoming trapped in a local optima, but 6.4Results for
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Full Cooperative, Parallel Tabu Searchtable.6.4 shows that the likely of convergence

to a (near) optimal solution is significantly increased. I suggest that diversification,

as implemented, has a negative impact on the regionalization process. This may be

because of the extent of diversification, i.e. shrinking the largest region to minimal

size may be too drastic of a diversification, is too large, or that the diversification is

rapidly reversed returning to a local optima.

The second set of tests, performed by varying levels of spatial autocorrelation il-

lustrate the overall performance of the diversification operators in all but the smallest

problem sizes. It is at these small problem sizes that insight into tuning the diversi-

fication operator may be found. For example, if the total size of each region is near

the threshold, the diversification operator can make limited alteration to the current

solution. Quantifying the diversification potential as a function of the solution quality

distributions may allow for limited diversification, sufficient to escape local optima,

but incapable of driving a solution so far from the global optima that reverie is not

possible.

6.5 Conclusion

This work has focused on the application of a cooperative, multi-start parallel

Tabu Search implementation to solve synthetically generated spatial regionalization

problems. Solution quality has been the paramount goal. In the short term, future

work will focus on testing inter vs. intra node intensification. That is, is it more

efficient to perform bulk synchronization at some interval during local search across

all nodes, or more efficient to keep intensification local to each individual node. Longer

term work will focus on improvements to speed, without attention to solution quality,

the quantification of the speed - quality relationship, and finally the development of

a hybrid approach which allows the end user fine-grained control over where along
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the speed - quality boundary they wish to process. From here, it may be possible

to identify convergence criteria to allow a highly communicative implementation to

collectively terminate computation due to a non-improving solution. Additional work

leveraging spatial regionalization will focus on an analysis of regionalization as a

preprocessing step for other spatial analysis tasks, e.g. map classification. Through

this work, I sought to apply the above methods and quantify potential performance

gains, and the associated accuracy reductions, achievable through regionalized data

size reduction.
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Chapter 7

CONCLUSION

The continued exponential growth in depth and breadth of digital data capture with

accompanying spatial data is unquestionable. Across all sciences, strategies for stor-

ing, processing, analyzing, and synthesizing these data sets continue to be active areas

of research. The emergent Cyber Infrastructure paradigm, and derived Geospatial

Cyber Infrastructure, will continue to be essential tools to facilitate scientific discov-

ery leveraging these increased data sizes and increasingly complex process models.

A view of the current landscape of parallel spatial analysis algorithms shows that

algorithm development has been diverse in terms of implementation methodology

and hardware environments. This diversity is healthy but lacks a common, unify-

ing vocabulary from which future implementations can be driven. In implementing

many parallel algorithms, the number of dead-ends, e.g. implementations techniques

which fail, are significantly higher than the number of techniques which exceed ex-

pectations. For this reason the National Science Foundation (2012), issued a call

for reusable, maintainable software frameworks to support common research tasks

across diverse, inter-disciplinary research teams. This dissertation seeks to answer

this call, not through the development of a software framework, but through the

contribution of a theoretical classification mechanism, a taxonomy of vector spatial

analysis algorithms. Leveraging this taxonomy, and the common vernacular it sug-

gests, maintainable, extensible, interoperable software frameworks can be specified

and developed.

The development of said taxonomy is the primary contribution of this disserta-

tion. The taxonomy succeeds in providing high level representations that inform,
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but do not dictate, implementation. This is achieved by avoiding tight coupling to

hardware and those classification criteria that can cause a devolution to a one-to-one

mapping. I suggest that, from an implementation perspective domain decomposition,

communication granularity, file I/O, and performance are all essential decisions. In-

clusion of these criteria cause the taxonomy to dictate implementation as a function

of hardware, data, and algorithm; this results in a cookbook style set of directives.

By existing at a higher level and identifying generalities in communication patterns,

drawn from an array of successful parallelization efforts, I suggest that the taxonomy

avoids this pitfall. Finally, the taxonomy succeeds in being comprehensive across

the spatial analysis stack, and in those instances where it may not be, is extremely

extensible. This dissertation contributes a means to drive the development of parallel

vector spatial analysis software frameworks.

Leveraging the classification scheme of Asanovic et al. (2006) I map the concept

of computational dwarfs, or those core computational methods and the associated

distributed communication requirements, to algorithms within the spatial analysis

stack. I suggest that the existing Dense Linear Algebra, Sparse Linear Algebra,

and MapReduce dwarfs are ideally suited for classifying some algorithms within the

spatial analysis stack. Both Dense and Sparse Linear Algebra dwarfs leverage the

fact that data vectors and matrices are composed of contiguously stored, homoge-

neous data. This representation drives point-to-point and local communication that

is generally fine-grained. Vectorization plays a key role in providing processor-level

parallelism during local computation. The MapReduce dwarf maps to a wide range of

spatial analysis methods where no inter-core communication is required, i.e. embar-

rassingly parallel implementations. In addition to the three aforementioned classes,

I propose Geometric, Topological, and Exploratory dwarfs. These dwarfs leverages

the additional information inherent in spatial data; spatial is special. Geometric and
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Topological dwarfs share significant commonalities, focusing on GIScience problems

largely drawn from the computational geometry domain. I draw a key distinction

in the quantity and frequency of communication, with the former generally utiliz-

ing point-to-point communication, e.g. parallel sorting, and the latter requiring the

global communication of the data topology, e.g. a tree search.

Case studies both inform and are informed by the taxonomy. The development of

the Geometric and Topological dwarfs are a prime example of the former. An analyt-

ical approach suggested that atomic computational operations focusing on geometric

comparison were largely identical. Communication patterns would be data depen-

dent, a function of the underlying density. Through implementation and simulation,

it became clear that the previously identified thresholds, at which communication

would shift from sort based methods to global methods, no longer held. The case

studies directly informed the development and identification of the topological dwarf.

In contrast, dwarfs drawn from Asanovic et al. (2006) rest upon a wealth of literature

from the Computer Science domain. The Dense Linear Algebra and MapReduce case

studies were directly informed by this previous work. The taxonomy and case studies

are symbiotic.

I implement a three-phase, Fisher-Jenks optimal choropleth map classification

algorithm with both the computation of dense distance and error matrices using

vectorization and parallel computing paradigms. The addition of a lockless, shared

memory space removes the previous need for in-memory data duplication and further

improves overall scalability. This implementation is deployed to SMP computing

environments and shows significant speedup over all other existing methods. The

implementation is not without drawbacks, and still scales quadratically (O(n2)) in

memory requirements. Within the context of the taxonomy, this is a classic Dense

Linear Algebra problem where a set of operands are applied to a decomposition of a
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dense matrix. This model is mappable to Sparse Linear Algebra problems with the

addition of element position metadata, e.g. the location of non-zero entries.

I show that the classification of algorithms as either Geometric or Topological is

contingent upon the underlying data structure as well as the quantity and timing of

required communication. Point based Nearest Neighbor Search (NNS) and polygon

adjacency algorithms are implemented using methods classifiable as both Geometric

and Topological. Static grid based and adaptive decomposition methods are applied

to spatial data sets with varying underlying densities. I show that resultant data

structures map well to communication requirements in parallel environments; this re-

quires the definition of two computational dwarfs. Regular gridded decomposition and

global parallel sorting, a geometrically classifiable method, are shown to significantly

outperform topological approaches in the case of polygon adjacency. In contrast, the

same geometrically classifiable methods are significantly slower than the generation of

a tree based, topological structure for NNS. I show that KD-Trees outperform global

sorting methods across all problem sizes. The classification of methods is invariant

to data clustering, suggesting that these classifications are robust.

Two spatial regionalization algorithms, p-Compact regions (PCR) and Max-p re-

gion (MPR), are implemented under the MapReduce and Exploratory dwarfs, respec-

tively. I show that even though largely driven by stochastic processes, the probability

that a PCR implementation yields high-quality results can be improved through a zero

communication, MapReduce approach. This work serves as a benchmark for other

parallel implementations as communication overhead is limited to initial data trans-

mission and final data aggregation. The relationship between cooperative methods

(moving the implementation to the exploratory classification), solution quality, and

overall performance can be measured against this initial implementation. The PCR

case study also highlights the potential to deploy closely related implementations to
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both SMP and HPC environments, thereby reducing the overall development time.

Again, this is a trade-off between raw performance and more qualitative concerns,

e.g. implementation time, code, readability and maintainability.

I present an MPR implementation that leverages Exploratory computational and

communication techniques within the local search phase. Bulk synchronization is

utilized to reduce the implementation complexity while still providing the necessary

functionality to allow for a highly cooperative local search phase. I show that inten-

sification, diversification, and controlled randomization in algorithm parametrization

are essential drivers of the search process and consistently locate the highest quality

solutions. Specifically, the process of intensification is shown to have the largest im-

pact of overall solution quality across all tested data sets. It should be noted that this

implementation highlights the composite nature of dwarfs, with the generation of the

adjacency structure being classified as a geometric dwarf, Initial Feasible Solutions

(IFS) being modeled as a MapReduce dwarf, and local search being realized as an

exploratory dwarf.

It is within the MPR case study, that the power and scalability of this classifica-

tion method becomes apparent. Low level classifications rapidly map at a one-to-one

ratio to spatial analysis methods. The ability to chain elements in the classification

becomes an exercise in individual algorithm parallelization. Invariant to low level im-

plementation concerns, the presented taxonomy offers enough theoretical scaffolding

to logically decompose an algorithm and suggest low-level implementation specifics

without any stringent requirement.

Potential for future work within this domain is vast. Constrained to the context of

the CyberGIS middleware layer a wide array of algorithms still require initial parallel

implementations. I see the development of fully distributed sparse and dense linear

algebra operations as an essential component to continued spatial algorithm scala-
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bility. This process is not composed of just the relatively trivial requirement that

a matrix be generated across many memory address, but also the requirement that

subsequent dwarfs leverage the distributed representations . Future work seeks to re-

alize this in the case of the Fisher-Jenks algorithm where lookup within the distance

matrix for error matrix computation is non-trivial. Within the context of Geomet-

ric and Topological algorithms additional work is clearly required to explore more

efficient topological data structures, such that polygon adjacencies can be rapidly

computed via a tree-based data structure in an HPC environment. This work is

distinct from the current push to more efficiently leverage spatial databases and the

accompanying indexing structures, as it seeks to focus on efficient techniques for

commonly applied ‘one-off’ processing. Scalable spatial regionalization algorithms,

classifiable as exploratory, remain relatively unstudied and significant improvement

to the techniques of intensification and diversification across other heuristic solutions

methods is required. Finally, the process of accessing and utilizing HPC resources,

the primary computational environment for these methods, remains challenging. A

future research goal target is the development of interfaces to support the utilization

of these high-performance methods through an easy to use abstraction. In this way,

the developed methods can be integrated more fully into the CyberGIS stack.
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