

1

Real-Time Power System Topology Monitoring Supported

by Synchrophasor Measurements

by

Trevor Nelson Werho

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the
Graduate Supervisory Committee:

Vijay Vittal, Chair

 Gerald Heydt
Kory Hedman

 George Karady

ARIZONA STATE UNIVERSITY

December 2015

 i

ABSTRACT

This dissertation introduces a real-time topology monitoring scheme for power sys-

tems intended to provide enhanced situational awareness during major system disturb-

ances. The topology monitoring scheme requires accurate real-time topology information

to be effective. This scheme is supported by advances in transmission line outage detec-

tion based on data-mining phasor measurement unit (PMU) measurements.

A network flow analysis scheme is proposed to track changes in user defined min-

imal cut sets within the system. This work introduces a new algorithm used to update a

previous network flow solution after the loss of a single system branch. The proposed

new algorithm provides a significantly decreased solution time that is desired in a real-

time environment. This method of topology monitoring can provide system operators

with visual indications of potential problems in the system caused by changes in topolo-

gy.

This work also presents a method of determining all singleton cut sets within a giv-

en network topology called the one line remaining (OLR) algorithm. During operation, if

a singleton cut set exists, then the system cannot withstand the loss of any one line and

still remain connected. The OLR algorithm activates after the loss of a transmission line

and determines if any singleton cut sets were created. These cut sets are found using

properties of power transfer distribution factors and minimal cut sets.

The topology analysis algorithms proposed in this work are supported by line out-

age detection using PMU measurements aimed at providing accurate real-time topology

information. This process uses a decision tree (DT) based data-mining approach to char-

acterize a lost tie line in simulation. The trained DT is then used to analyze PMU meas-

 ii

urements to detect line outages. The trained decision tree was applied to real PMU meas-

urements to detect the loss of a 500 kV line and had no misclassifications.

The work presented has the objective of enhancing situational awareness during

significant system disturbances in real time. This dissertation presents all parts of the

proposed topology monitoring scheme and justifies and validates the methodology using

a real system event.

 iii

ACKNOWLEDGMENTS

 I would like to thank Dr. Vittal for all his help and support over the course of this

project. I would like to thank the members of my committee for their suggestions and

contributions that helped improve the quality of this work. I would also like to thank my

parents for always being supportive while I pursue my educational goals. Finally, I would

like to thank the PSERC industry sponsors that made this project possible.

 iv

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi!

LIST OF FIGURES .. vii!

NOMENCLATURE .. ix

CHAPTER

1. INTRODUCTION .. 1!

1.1 Introduction to the Research Focus ... 1!

1.2 Phasor Measurement Units .. 5!

1.3 Entergy System and Gustav Event Test Case ... 5!

1.4 Network Flow Algorithms .. 7!

1.5 The DC Power Flow Model .. 13!

1.6 CART Algorithm and Database .. 15!

1.7 Literature Review .. 18!

1.7.1 Network Flows ... 18!

1.7.2 Critical Line Identification ... 22!

1.7.3 PMU Line Outage Detection ... 24!

1.7.4 Applications of Decision Trees .. 28!

1.8 Objectives .. 29!

1.9 Organization of This Report .. 31!

 v

CHAPTER Page

2. TOPOLOGY ANALYSIS .. 32!

2.1 Network Flow Analysis ... 32!

2.1.1 Algorithm to Update a Network Flow Solution ... 33!

2.1.2 Network Flows Applied to the Gustav Test Case .. 39!

2.1.3 Advantages of Using Network Flow Monitoring .. 42!

2.2 One Line Remaining Algorithm .. 49!

2.2.1 Algorithm Explanation ... 51!

2.2.2 OLR Algorithm Validation .. 56!

3. LINE OUTAGE DETECTION ... 63!

3.1 PMU-Based Line Outage Detection .. 63!

3.1.1 Hurricane Isaac Simulations .. 63!

3.1.2 Feature Selection .. 67!

3.1.3 Decision Tree Training and Testing .. 68!

4. CONCLUSIONS .. 72!

REFERENCES ... 76

APPENDIX

A MATLAB IMPLEMENTATION OF NETWORK FLOW ALGORITHMS 81!

B MATLAB IMPLEMENATION OF THE OLR ALGORITHM 89!

 vi

LIST OF TABLES

Table Page

1.1 Time Instant of Tie Line Outages During Hurricane Gustav 8!

1.2 Example Admittance Matrix ... 13!

1.3 Example CART Database .. 19!

2.1 Network Flow Solutions Following the Loss of Each Transmission Line During the

Gustav Event ... 41!

2.2 DC Power Flow Solution of the 4 Bus System Example ... 53!

2.3 OLR Solutions for Several Outages in the 16 Bus System ... 58!

2.4 OLR Solutions for a Series of Outages in the IEEE 118 Bus System 58!

2.5 OLR Algorithm Solutions for the Gustav Event ... 62!

3.1 DT Training Results .. 70!

 vii

LIST OF FIGURES

Figure Page

1.1 The Entergy System and the Five Major Operating Areas [13] 6!

1.2 A Six Vertex Directed Graph .. 10!

1.3 The Edge Flows After the First Iteration of Edmonds and Karp 10!

1.4 The Edge Flows After the Second Iteration of Edmonds and Karp 11!

1.5 The Maximum Flow After the Third Iteration of Edmonds and Karp 11!

1.6 The Directed Representation of a Bidirectional Graph ... 12!

1.7 Example CART Decision Tree .. 20!

1.8 Filtered and Unfiltered PMU Data During a 500 kV Line Outage [6] 27!

1.9 Voltage Phase Angle PMU Data Showing a 500 kV Line Outage During the Gustav

Event ... 27!

2.1 The Maximal Flow in a Network with All Edge Capacities of One 34!

2.2 The Updated Solution for the Loss of the Type One Edge 2 to 6 37!

2.3 The Updated Solution for the Loss of the Type Two Edge 1 to 2 39!

2.4 The Maximum Flow to Selected Sinks Within the Entergy System Prior to the Event.

... 43!

2.5 The Maximum Flows to Selected Sinks Within the Entergy System at Approximately

1:30 PM During Hurricane Gustav ... 44!

2.6 The Maximum Flows to Selected Sinks Within the Entergy System at Approximately

2:10 PM During Hurricane Gustav ... 45!

2.6 Example Power System with Two Tie Lines .. 50!

2.7 Simple 4 Bus Power Network ... 51!

 viii

Figure Page

2.8 Admittance Matrix of the Network Shown in Fig 2.7 .. 52!

2.9 Admittance Matrix of the Network Shown in Fig. 2.7 After Suffering the Loss of

Branch 1 to 2 ... 52!

2.10 16 Bus Power System Network .. 57!

2.11 IEEE 118 Bus Power System .. 60!

2.12 PSS/E Drawing of the Entergy System in Southeast Louisiana. The PMUs Within

the Island and the Endpoints of the Final Two Tie Lines are All Labeled. 61!

3.1 Simulated Voltage Phase Angle Difference Between Buses 75400 and 52905 65!

3.2 Simulated Voltage Magnitude at Waterford Inside the Island Area 66!

3.3 Voltage Phase Angle Difference Between the Inside and Outside of the Island Area

Measured by PMUs During the Loss of 55026-63411 (500 kV) 66!

3.4 DT Trained with the Learning Dataset ... 69!

3.5 DT Applied to PMU Measurements of the Real 500 kV Line Outage 70!

 ix

NOMENCLATURE

B A susceptance

BFS Breadth first-search

C(i | j) The cost of misclassifying a class j as a class i

CA Critical attribute in a decision tree or Contingency Analysis

CAISO California Independent Transmission System Operator

CART Classification and Regression Trees

Con Edison Consolidated Edison Company

CSR Critical splitting rule in a decision tree

DC Direct current

dlk The line outage distribution factor looking at line l after an outage

of line k

DT Decision tree

E Voltage magnitude or the number of edges in a graph

fk
0 The original power flow on line k

fl The power flow on line l

G A conductance

GHz Gigahertz

GPS Global Positioning System

h, l Line labels

Ha Matrix of power transfer distribution factors

IID Imperial Irrigation District

 x

i(t) The Gini impurity at node t

i, j, and k Indices

kV Kilovolts

L A lower left triangular matrix that is part of a factored admittance

 matrix

LODF Line outage distribution factor

Max1 A feature used in decision tree training

Max2 A feature used in decision tree training

Min1 A feature used in decision tree training

Min2 A feature used in decision tree training

MISO Midcontinent Independent System Operator

MW Megawatts

n The number of buses in a system or a specific angle measurement

in edge detection

N The number of buses in a system

N+, N- Two disjoint sets

O In the order of

OLR One line remaining

p(i | t) The probability of a case being class i given that it falls into node t

p(t) The probability of a case being in node t

Pi The real power injection at bus i

Pik The real power flow from bus i to bus k

 xi

Pl
ij A power transfer distribution factor, the change in flow on line l

for a power transaction from point i to point j

pl The probability of sending a case to the left child node

PMU Phasor measurement unit

PSS/E Power systems analysis software

PTDF Power transfer distribution factor

Qi The reactive power injection at bus i

ri The number of non-zeros to the right of the diagonal in the U

 matrix

R A resistance

s The number of sinks within the system

SCADA Supervisory control and data acquisition

Slope 10 A feature used in decision tree training

Slope 5 A feature used in decision tree training

Slope 50 A feature used in decision tree training

TVA Tennessee Valley Authority

U An upper right triangular matrix that is part of a factored admit-

tance matrix

V The number of vertices in a graph

X A reactance or the number of buses or the number of buses found

by the OLR algorithm

xik The reactance between bus i and bus k

 xii

Y The admittance matrix

Yij The ith, jth element in the admittance matrix

Δfl The change in power flow on line l

Δi(s,t) The Gini impurity improvement

θ A voltage phase angle

τ The threshold used to identify events in edge detection

1

1. INTRODUCTION

1.1 Introduction to the Research Focus

Under normal operation, different areas of the power system are interconnected

together and operated synchronously to provide enhanced reliability. However, under

rare circumstances, an area of the system can become unintentionally separated from the

rest of the grid, forming an electrical island. If the isolated portion of the system has a

large imbalance between load and generation, the area can experience large fluctuations

in system frequency and bus voltages. This can lead to some loss of load due to automatic

protection actions or even a complete blackout of the area. These system events within

modern power systems are rare occurrences. However, when these events occur, they of-

ten involve the loss of many components over a significant amount of time, which leads

to a rapid and complete loss of load. For example, the 1977 Consolidated Edison Compa-

ny blackout consisted of 11 transmission lines or transformers outages over the course of

52 minutes [1]. These line outages represented the loss of critical interties that connected

the Consolidated Edison Company (Con Edison) to neighboring systems. One of the

causes of the failure was credited to “Failure to recognize that a critical interconnection to

the West (Y84) was effectively unavailable” [1]. Knowing the availability of an intertie

can be difficult. An intertie is not necessarily a single transmission line whose status can

be monitored. Rather, an intertie can be a portion of the network. This work proposes the

application of topology based analyses during real-time power system operation, assisted

by advances in synchrophasor measurement line outage verification, to provide better

network visualization and awareness.

2

Two different topology based analysis methods are proposed in this work, which

utilize graph theory and numerical methods. A graph theory based method is introduced

using maximum flow network flow algorithms to determine cut sets to different locations

within the system. In graph theory, a network flow can determine the maximum flow

from a source to a sink within a directed graph [2]. Each branch in the network has a spe-

cific capacity. Normally the capacity of each branch in the network is associated with

some quantity, such as amount of information in an information network or current in an

electric power network. However, the method proposed in this work uses network flow

algorithms where each branch in the network has a capacity of exactly one unit of flow.

This will result in a network flow solution where the maximum flow is equal to the min-

imum number of branches needed to be lost in order to guarantee disconnecting the

source from the sink [2]. As outages occur within the system, the value of maximum flow

is a strong indicator to system operators as to the availability of an intertie. The value of

using the proposed method is illustrated by discussing several major system events in-

cluding a detailed example of the 2008 island formation that occurred in the Entergy

power system. This island formation was caused by hurricane Gustav after 14 transmis-

sions lines were lost over the course of 8 hours [3]. The method was applied to a recrea-

tion of the 2008 event using a 20,000 bus model of the Entergy system.

The proposed network flow method utilizes well-known graph theory network

flow algorithms [4, 5], but also introduces a new algorithm for updating an old network

flow solution. This new algorithm takes advantage of the fact that the topology of a pow-

er system changes very slowly, often times changing by only the status of a single line.

When only a single line is removed from the system, a new network flow solution is not

3

needed. Instead, the old solution can be modified for the slight changes in system topolo-

gy for a solution time reduction that is specific to this application.

The network flow analysis method provides important information about the to-

pology of the system following transmission line outages. This information is intended to

inform operators when the system topology changes and help visualize and understand

the effects of the change. However, the only time corrective actions are required based

solely on the network flow solutions are when a group of buses could be disconnected

from the grid by the loss of only a single line. To assist with this situation, the second to-

pology based analysis method proposed in this work utilizes numerical methods and is

called the one line remaining (OLR) algorithm. The OLR algorithm is focused on identi-

fying potential island formation situations based on the criteria that a number of buses are

now connected to the rest of the system by only a single branch. These important branch-

es are referred to as critical lines or critical branches in this work. The OLR algorithm

utilizes a special DC power flow model of the system to obtain information about any

and all critical lines within the system. The OLR algorithm was also applied to the Enter-

gy Gustav island event to illustrate the information that would be available to system op-

erators if such a system had been in place.

Both topology based analysis methods presented here rely on the availability of

accurate system topology information in order to be effective. Telemetry data from the

supervisory control and data acquisition system (SCADA) cannot always be relied upon.

To aid with this issue, this work presents advances in line outage verification by using

phasor measurement unit (PMU) measurements. Line outage verification is achieved by

detecting when a transmission line has been lost by the constant monitoring of PMU

4

measurements within the system. Once a transmission line outage is detected, the interval

of measurements just following the outage is examined and compared to simulated out-

ages within a DC power flow model of the system. The comparison between PMU meas-

urements and simulation is used to match the observed outage to a specific line within the

system. This process was proposed in [6]. The study done in [6] uses an edge detection

method to detect when a line is lost within the system. The edge detection method used in

[6] used a small threshold to determine when an event had begun within the PMU meas-

urements. This approach may not work in all cases. For example, the PMU measurements

recorded during the Entergy island event in 2008 contained much larger variations in the

data. Therefore, a more robust method of line out detection is presented in this work. The

accurate detection of line outages is achieved by data-mining PMU measurements using

the program CART (classification and regression trees). The program CART is designed

to use a database of past measurements to train a decision tree (DT) that can be used to

classify future inputs. In this work, line outages are conducted in simulation to create a

sufficient CART database. The database is then used by CART to train a DT. Finally, the

DT can be used with PMU measurements to detect line outages within the system. To-

gether, these power system topology analysis methods, supported by advances in PMU

based line outage verification, amount to an improvement in visualization and system

awareness for operators during topology based system disturbances.

5

1.2 Phasor Measurement Units

 Since their introduction in the 1980s, synchronized phasor measurement units

have become a mature technology with many differently applications being developed

around the world [7]. A PMU is a device that is located at a substation. The PMU takes

instantaneous measurements at a particular bus in the system and returns an approximate

phasor quantity. PMU measurements have magnitude accuracy that is better than 0.1%

[8]. Each PMU is equipped with a Global Positioning System (GPS) receiver, which re-

ceives a signal from the GPS system containing the year, day, hour, minute, and second

[9]. The signal from the GPS system is received once every second. The PMU then in-

ternally divides down this signal to allow sampling rates of 12, 30, 48, or 60 samples per

second. The PMUs used in this work take 30 samples every second. The PMU uses the

GPS time signal to accurately time stamp each measurement before it is sent off to a

phasor data concentrator or the control center. Each PMU measurement is time stamped

with precision better than 1 microsecond [8]. Once all the measurements are received by

the control center, the measurements from different PMUs are matched together via time

stamps to allow a clear picture of the system at a specific time regardless of the distance

separating the measurement locations. This ability allows PMU measurements to have a

major advantage over traditional SCADA monitoring.

1.3 Entergy System and Gustav Event Test Case

Throughout this work, the Gustav event is used as a test case to validate as well as

display the benefits of the proposed approach within an actual power system disturbance.

The Entergy power system serves 2.8 million customers in Arkansas, Louisiana, Missis-

6

sippi, and Texas. The system consists of over 1,500 substations with over 15,500 miles of

lines at voltages of 69 kilovolts (kV) and above. The system has a total generating capaci-

ty of around 30,000 megawatts (MW) with 10,000 MW coming from nuclear sources.

The system is part of the Eastern Interconnection in North America [10]. When this study

was conducted, the system included 19 PMUs that are located at important buses

throughout the system [11]. The Entergy system has 5 major operating areas: WOTAB,

Amite South, Central, Sheridan North, and Dell. The locations of the different areas with

the Entergy system can be seen in Fig. 1.1.

Fig. 1.1 The Entergy System and the Five Major Operating Areas [13]

On September 1, 2008 at 9:30 AM hurricane Gustav made landfall close to New

Orleans. Over the course of several hours the Entergy system lost 13 tie lines that inter-

connected the Baton Rouge and New Orleans area to the rest of the grid. At 2:49 PM the

14th and final tie line was tripped that resulted in the formation of an electrical island con-

taining most of Baton Rouge and New Orleans within the Amite South operating area.

7

The time instant of each tie line outage can be seen in Table 1.1. The outages shown in

Table 1.1 were not the only components lost during the hurricane. Hurricane Gustav

caused an outage of 241 transmission lines, 354 substations, and left 4,349 transformers

damaged or destroyed [12]. During this destructive storm, system operators were not

aware of the threat of islanding. Following the final tie line trip, system operators were

first altered to the island formation by diverging frequencies measured at different PMU

locations. The island was only identified 20 minutes after the island formed [12].

The island formed was composed of 139 buses. The island contained 3 generators

and 2 PMUs. The three generating units within the island were all fossil fuel units pro-

ducing 349 MW. The three generators had a combined maximum output of over 1500

MW. All of the nuclear generators in the system had been turned off in preparation for

the storm. The total load in the island was approximately 249 MW. At the time just be-

fore the island formed the area was exporting approximately 100 MW. Following the is-

land formation, the 3 generators within the area were able to regulate the frequency. The

area continued to operate independently from the grid despite no operator actions being

taken in preparation of the island formation.

1.4 Network Flow Algorithms

 One of the network analysis methods proposed in this work utilizes graph theory

network flow algorithms. In graph theory, a graph is composed of vertices and edges.

Vertices act as nodes within the graph while edges connect vertices together [2]. If a

power system is described as a set of buses connected together by transmission lines, then

8

buses in the system would become vertices and the transmission lines would become

edges.

Table 1.1 Time Instant of Tie Line Outages During Hurricane Gustav

Tie Line Lost Time of Outage
1st 8:52 AM
2nd 9:21 AM
3rd 10:19 AM
4th 11:40 AM
5th 11:59 AM
6th 12:15 PM
7th 12:28 PM
8th 12:45 PM
9th 1:14 PM
10th 1:16 PM
11th 1:22 PM
12th 1:28 PM
13th 2:08 PM

A network flow algorithm can determine the maximum flow that can be delivered

from a source to a sink within a directed graph where each edge has a specific flow ca-

pacity. A flow represents some physical quantity being transported such as information in

an information network or current in an electrical network. A directed graph is a graph

composed of directed edges. Directed edges can only allow flow in one direction. The

capacity of the edge in the opposite direction is zero [2]. One of the earliest network flow

algorithms was created by Edmonds and Karp in 1969 [4]. Consider the directed graph

depicted in Fig. 1.2. There is a fraction associated with each edge in the graph. The nu-

merator indicates the present amount of flow crossing the edge while the denominator

represents the maximum possible flow allowed. The Edmonds and Karp algorithm can be

9

used to find the maximum flow from vertex 1 to vertex 6 in this graph. A network flow

solution must satisfy specific criteria in order to be correct [5].

1. For every edge, the flow across an edge cannot exceed the capacity of that edge.

2. For every vertex other than the source and the sink, the sum of the flows entering

a vertex must equal the flow exiting that vertex.

3. The flow from source to sink must be maximal. The flow is maximal, if and only

if, the graph contains no more augmenting paths between the source and the sink.

 The Edmonds and Karp algorithm finds a solution by finding augmenting paths

between the source and the sink. A path is a set of vertices and edges in a series where no

vertex or edge is repeated. An augmenting path is a path where each edge along the path

has remaining capacity. These paths are found using the breadth first-search (BFS) path

finding algorithm [14]. Once such a path is found, flow is added to each edge along the

path and the process starts again. When no more augmenting paths are found the algo-

rithm terminates and a solution has been reached. The Edmonds and Karp algorithm re-

quires three iterations to find a solution for the graph in Fig. 1.2. The results after each

iteration of the algorithm can be seen in Figs. 1.3-1.5. Notice that the graph in Fig. 1.5

satisfies all of the solution criteria discussed previously and finds the network has a max-

imum flow of 6.

The Edmonds and Karp algorithm executes in O(E2V) time, where E is the num-

ber of edges in the graph and V is the number of vertices in the graph. More sophisticated

algorithms have achieved reduced orders of complexity, such as Dinic’s algorithm

O(EV2), Karzanov’s algorithm O(V3), and Goldberg and Tarjan O(EV log(V2/E)) [4]. The

application proposed in this work can utilize any of these algorithms.

10

Fig. 1.2 A Six Vertex Directed Graph

Fig. 1.3 The Edge Flows After the First Iteration of Edmonds and Karp

11

Fig. 1.4 The Edge Flows After the Second Iteration of Edmonds and Karp

Fig. 1.5 The Maximum Flow After the Third Iteration of Edmonds and Karp

12

A power system is not directed in nature because power can flow in either direc-

tion across a transmission line. Representing each transmission line as two directed edges

with equal capacity and opposite directions could solve this problem. Consider the di-

rected representation of a bidirectional graph shown in Fig. 1.6. The Edmonds and Karp

algorithm can also be applied to such a representation. To prevent unnecessary complica-

tion when using this representation, anytime flow is added to an edge, the algorithm

checks the value of flow along the edge in the opposite direction. If flow is also on the

opposing edge, then this flow is first reduced before new flow is added to the graph. This

process is handled “behind the scenes” within the algorithm program. The remainder of

this work will only discuss bidirectional graphs for simplicity.

Fig. 1.6 The Directed Representation of a Bidirectional Graph

13

1.5 The DC Power Flow Model

 The second topology analysis method proposed in this work utilizes the DC pow-

er flow model. The power flow problem consists of determining the steady state operat-

ing conditions of a known transmission network that is composed of transmission lines

and transformers. The scheduled generation and the loads within the system are known

and the power flow solution consists of obtaining the voltage magnitude and phase angle

at each node of the system. The equations that represent the power flow at each bus in an

alternating current (AC) system are nonlinear and given below in (1.1) and (1.2) [15],

Pi = Ei Ek Gik cos θi −θk()+Bik sin θi −θk()"# $%

k=1

n

∑
(1.1)

Qi = Ei Ek Gik sin θi −θk()+Bik cos θi −θk()"# $%

k=1

n

∑
,

(1.2)

where,

 P is real power

 Q is reactive power

 E is the bus voltage magnitude at node i or k

 Gik + jBik = Yik is the ikth term in the Y system matrix.

 The Y matrix, or bus admittance matrix, is a matrix of admittances that represent a

transmission network. An example admittance matrix can be seen in Table 1.2.

Table 1.2 Example Admittance Matrix

Y1g + Y12 -Y12 0 0
-Y12 Y2g + Y12 + Y23 -Y23 0

0 -Y23 Y3g + Y34 + Y23 -Y34
0 0 -Y34 Y4g + Y34

14

 A connection of R +jX from bus 1 to bus 2 is equal to 1/(R +jX) = G12 + jB12 =

Y12. Also, the subscript g represents a connection to ground or the reference bus [15].

 The nonlinearity of the power flow equations requires that they be solved using a

nonlinear method, such as the Newton-Raphson method. Nonlinear solvers are iterative

processes. One method of obtaining solutions faster is by making approximations in the

equations such that they become linear and can be solved directly. This process results in

the DC power flow model. In the DC power flow, the equation for reactive power flow

(1.2) is completely ignored. In (1.1), it is assumed that the voltage magnitudes in the sys-

tem are exactly 1 pu at all times. Also, the resistance in the transmission network is ne-

glected which results in all terms with G to disappear. Finally, it is assumed that the angle

difference across any line or transformer in the system will be very small. This allows

sin(θi −θk) to be expressed as θi −θk() in radians. The power flow on each line in the

system using this method is shown in (1.3),

Pik =

1
xik

θi −θk()
.

(1.3)

This equation written in matrix form is given by,

 P =Yθ (1.4)

where P is a vector of power injections, Y is the admittance matrix, and θ is a vector of

bus voltage phase angles [15]. Equation (1.4) is solved in two steps. The admittance ma-

trix is factored into LU components, where L is a lower left triangular matrix and U is an

upper right triangular matrix where LU = Y. Forward and backward substitution is em-

ployed to solve for bus angles for a given set of power injections. For a dense system, LU

decomposition takes O(n3) operations to complete and forward and backward substitution

15

takes O(n2) operations [16]. For a sparse system, the number of computations needed for

LU decomposition is,

n+ ri
i=1

n−1

∑ + ri
2 + ri()∑ / 2 , (1.5)

where n is the number of buses in the system and ri is the number of nonzero elements to

the right of the diagonal in row i of the U matrix. For a sparse system, the number of

computations needed for forward and backward substitution is shown in (1.6) which is

O(n) for a typical power system topology [17],

2n+ 2 ri
i=1

n−1

∑ . (1.6)

Every time a solution is desired, forward and backward substitution is required. However,

factorizing the admittance matrix only needs to be done when the system topology

changes. If the system network is altered by the status change of one line, four elements

in the admittance matrix need to be modified. For example, if line bus 1 to bus 2 no long-

er exists in Table 1.2, elements Y(1,1), Y(1,2), Y(2,1), and Y(2,2) must be modified. The

DC power flow allows rapid approximate solutions of real power flow in the system [15].

The DC power flow is utilized in this work to quickly analyze a power system topology.

1.6 CART Algorithm and Database

The program CART (classification and regression trees) produced by Salford Sys-

tems is a data-mining tool that can be used to analyze problems that contain a large num-

ber of variables. CART uses a procedure called binary recursive partitioning to build a

decision tree (DT). Starting at the root node, simple questions called critical splitting

16

rules (CSR) are asked regarding one of the input parameters. The parameter selected for

the critical splitting rule is called a critical attribute (CA). Each answer to the critical

splitting rule question creates two branching nodes. Each branching node will have its

own CSR regarding one of the input parameters. When any of the stopping criteria are

met at a node, the node will not branch off. Nodes that do not branch off to other nodes

are called terminal nodes that end the growth of the tree. Once all terminal nodes are

reached the DT is complete and can be used to categorize new inputs. Given a matched

set of input and output data, CART will determine its inherent input-output relationship

in the form of a DT. This process is called DT training. Once training is complete, new

input data can be dropped down the DT to generate the previously unknown output. Us-

ing this method, the historical PMU measurements and simulation results will serve as

the necessary information needed to train the DT [18].

 In order for CART to run an analysis it must first have a database. The database is

usually composed of a learning dataset and a test dataset. The learning dataset is used to

train the DT and the test dataset is used to test the DT. An example CART database can

be seen in Table 1.3. A CART dataset contains a single class along with several features.

The features act as input variables and the class is the categorical outcome. The CART

database can have a maximum of 32768 features. Adding an additional feature to the ex-

ample CART database would increase the database by 1 column. Additional rows may be

added to the database to increase the amount of data samples included in the analysis.

Each CART feature can be either continuous or categorical.

 CART builds a DT by considering all possible univariate CSRs and selecting the

CSR that makes the child nodes the purest. A node is considered pure if all the cases that

17

map to that node have the same class. CART then examines all the CSRs for the child

nodes and continues making addition splits until a stopping criterion is met. CART uses

the Gini criterion to determine the CSR at each node. The Gini impurity is a measure of

the partition purity of the data. The Gini impurity at a node t is defined,

 i t() = C(i | j)p(i | t)p(j | t)
i, j∑

,
 (1.6)

where C(i | j) is the cost of misclassifying a class j case as a class i case and p(j | t) is the

probability of a case being class j given that it falls into node t. The Gini splitting criteri-

on is the decrease of impurity defined in (1.7) for a node t and a split s,

 Δi s, t() = i t()− pli tL()− pRi tR() ,
(1.7)

where pL and pR are the probabilities of sending a case to the left child node tL and to

the right child node tR of node t respectively. The value of pL can be computed as

pL =

p tL()
p t() ,

(1.8)

where p(t) is the probability of a case existing in node t. CART will consider all possible

splits and compute their corresponding purity improvement Δi(s,t). The CSR with the

largest improvement will be chosen as the CSR for node t. The process of growing the

tree will continue until a stopping criterion is met. When a stopping criterion is met at a

node the node will not branch off. Examples of stopping criteria include: when a node

becomes pure, when all cases in a node have identical feature values, the DT has reached

the maximum tree depth specified by the user, the size of a node is less than the minimum

node size set by the user, or the best split s for node t has a purity improvement Δi(s,t)

smaller than the minimum specified improvement [19].

18

Consider the example database in Table 1.3. This example database holds a very

simple input-output relationship that can be observed by examining the data. If input 1 is

larger then 6.7 then the output is 1 regardless of the value of input 2. However, if input 1

is smaller then 6.8, then the output is dependent on the sign of input 2. A CART DT us-

ing the example CART database can be seen in Fig. 1.7.

The CART DT in Fig. 1.7 also shows a very simple input-output relationship.

Here, if input 1 is larger then 6.75 then the output is 1 regardless of the value of input 2.

However, if input 1 is smaller then 6.75, then the output is dependent on the sign of input

2. The example CART database shown in Table 1.3. The corresponding CART DT

shown in Fig. 1.7 is an example of how CART can be used to generate a prediction mod-

el. In a real application the CART database could have many rows and the relationship

within the data could be very complicated to determine. The DT that is generated by

CART will always match the training data very well. In order to correctly judge the pre-

diction accuracy a DT, some of the available samples must be withheld from the learning

dataset to create a test dataset.

1.7 Literature Review

1.7.1 Network Flows

 One of the primary contributions of this work is the proposed algorithm

used to determine minimal cut sets within a power system to monitor system topology.

The first network flow algorithm, developed by Ford and Fulkerson, finds a solution us-

ing augmenting paths [20]. The Edmonds and Karp algorithm extended this concept by

19

Table 1.3 Example CART Database

Output Input 1 Input 2
1 1 0.01
0 1 %0.01
0 1 %0.3
1 1 0.4
1 1 0.3
1 1 0.2
0 1.5 %1
1 2 2
1 2.5 1.5
0 3 %0.73
0 3.5 %0.4
0 4 %3
1 4.5 0.6
1 5 0.8
1 5.5 4
0 6 %2.2
0 6.6 %2.3
0 6.7 0.2
1 6.8 %0.4
1 6.9 0.869
1 7 %0.3
1 7.1 %0.33
1 7.2 0.01
1 7.3 %0.99
1 7.4 %9.97
1 7.5 18
1 7.6 %3
1 7.7 0.12
1 8 %1

20

Fig. 1.7 Example CART Decision Tree

 INPUT_2 <= 0.00

Terminal
Node 1

Class = 0
Class Cases %

0 8 100.0
1 0 0.0

W = 8.00
N = 8

 INPUT_2 > 0.00

Terminal
Node 2

Class = 1
Class Cases %

0 1 10.0
1 9 90.0

W = 10.00
N = 10

 INPUT_1 <= 6.75

Node 2
Class = 0

INPUT_2 <= 0.00
Class Cases %

0 9 50.0
1 9 50.0

W = 18.00
N = 18

 INPUT_1 > 6.75

Terminal
Node 3

Class = 1
Class Cases %

0 0 0.0
1 11 100.0

W = 11.00
N = 11

Node 1
Class = 1

INPUT_1 <= 6.75
Class Cases %

0 9 31.0
1 20 69.0

W = 29.00
N = 29

21

only using the shortest possible augmenting path each iteration to achieve a run time of

O(E2V) [4]. Dinic proposed the used of search trees to find all the shortest paths of a spe-

cific length in one iteration [21]. Algorithms like the Karzanov algorithm are ideal for

dense graphs while algorithms like the Goldberg and Tarjan algorithm are ideal for sparse

graphs [4]. Network flows are utilized in image processing [22]. Reference [22] proposes

a network flow algorithm similar to [21] which uses search trees to find paths of a short-

est length. However, [22] proposes reusing the search trees in the next iteration. This al-

gorithm has a worst-case complexity that is worse than similar algorithms but was found

to have superior run time in practical applications [22]. This dissertation proposes a new

algorithm for finding the maximum flow in a graph in the case were a graph topology has

changed by the status of only a single edge and a new solution is desired. This work pro-

poses a way of obtaining the new solution using the old network flow information to pro-

vide a significant computational advantage.

 This work proposes the use of network flows to find minimal cut sets within a

power system to provide enhanced situational awareness during major system disturb-

ances. Other work that utilizes cut sets deal with cut set enumeration to determine com-

munication system reliability. In [23, 24], minimal cut sets within a network are deter-

mined to define the reliability of a communication between two points in the network.

Also, minimal cut sets have been used to identify the reliability of distribution systems

[25]. A graph-algebraic approach has been proposed that uses a spectrum plot of the sys-

tem Laplacian matrix to analyze system topology [26]. An eye-inspection metric is then

applied to the spectrum plot to help interpret the results. This spectrum plot method is

computationally intensive and may not be well suited for large system applications. This

22

dissertation presents an efficient method to monitor the topology of a power system, us-

ing graph minimal cut sets, which produces results with a very clear and concrete signifi-

cance.

1.7.2 Critical Line Identification

Another major objective of this work is to determine critical lines within a given

topology. In this work, a critical line is defined as a line that will disconnect two areas of

the system if it were taken offline. In graph theory this is referred to as bridge detection

[2]. A bridge in a graph is an edge that will disconnect two sets of vertices if removed

from the graph. There are two different types of approaches, graph theory based and ma-

trix based, that have been proposed that can address this problem [27, 28, 29]. Both [27]

and [28] propose to be used to find bridges specifically within a power system network.

One graph theory method involves the removal of cycles from a graph [27]. Recall that a

path in a graph is a set of vertices and edges were no vertex or edge is repeated. A cycle

is a path that begins and ends at the same vertex (creating a loop). In a cycle, there exist

two paths between every pair of vertices. Therefore, a cycle cannot contain any bridges.

Reference [27] presents an algorithm that finds and removes cycles from a graph. Once

the process terminates the only remaining edges are bridges within the original graph.

Both graph theory methods of [27] and [29] require O(E) operations to complete. Matrix

methods involve factoring some form of the network adjacency matrix to identify islands

or bridges. Reference [28] proposes the triangular factorization of the bus-branch inci-

dence matrix of a network to identify bridges. This method also requires O(E) operations

to complete. This dissertation proposes an alternative method of bridge finding in power

23

systems that utilizes standard operations used to solve a DC power flow study. The pro-

posed method also achieves O(E) complexity which is consistent with other algorithms.

 Other related work considers minimum cut set determination using generalized

line outage distribution factors [30]. When given a system topology and a set of lines, this

method can determine if the set of lines chosen contains a cut set and which lines of the

set are a part of that cut set.

Line outage distribution factors (LODF) deal with changes in line flows following

the loss of a transmission line or transformer using the DC power flow model and are de-

fined as,

dlk =
Δfl
fk
0 , (1.9)

where dlk is the line outage distribution factor looking at line l after an outage of line k,

Δfl is the change in MW flow on line l, and fk
0 is the original flow on line k. If the cur-

rent flow on lines l and k are known, the flow on line l after the loss of line k can be de-

termined by,

 lf =
l

0f + lkd k

0f , (1.10)

where fl
0 and fk

0 are the initial flows on lines l and k, and fl is the flow on line l with

line k removed [15]. A power transfer distribution factor (PTDF) deals with the change in

flow of a selected line caused by power injected at one point in the system and the same

power withdrawn from a different point in the system. For a transaction of t MWs be-

tween points i and j, the impact on line l is given by the PTDF Pl
ij where

 Δfl = Pl
ijt . (1.11)

24

For a set of chosen lines in the system a matrix Ha can be formed. Assume the lines se-

lected are l1 to la. Define the impact on line l for a transaction of t MWs between the end-

points of line l as Pl. Then matrix Ha takes the form

 Ha =
1−Pl1 −Pla

−Pla 1−Pla

"

#

$
$
$

%

&

'
'
'

 . (1.12)

If the matrix Ha is singular then the set of chosen lines contains a cut set [30].

One very important observation discussed in [18] has to do with the effect of sin-

gleton cut sets (bridges) on the PTDFs in the network. Consider the line l in a power sys-

tem that connects two subnetworks together (line l is a bridge). Also consider a transac-

tion of t MWs between the terminal buses of line l. Then the line l is a minimal cut set, if

and only if

 Plm
l =

1, lm = l
0, lm ≠ l

"
#
$

%$
 . (1.13)

This can be extended further. Consider two subnetworks N- and N+ that are connected by

line l. For any transaction from point i to point j, where point i is in N- and j is in N+, the

PTDF for this transaction on line l will be 1. The method used to detect critical lines in

this work takes advantage of this property and is discussed further in Chapter 2.

1.7.3 PMU Line Outage Detection

 The other portion of this work deals with transmission line outage determination.

This problem is addressed in [6, 31-37]. The problem can be broken down into detecting

when an outage occurs and then matching the outage to a specific line within the system.

25

One of the earliest proposed methods to address this problem is discussed in [6]. A meth-

od commonly used in edge detection is used to detect when an event has occurred. This

method uses a sliding window over the low-pass filtered phase angle measurements. The

angle at measurement n is compared with the measurement n-i. The variable i determines

the width of the window. A value of i = 40 measurements was used in [6]. Once the value

of n-i exceeds the threshold τ, the method determines that an event has occurred. A value

of τ = 0.57º was used in [6]. The window continues to move through the data until the

value of n-i begins to decrease. This signals that the event has ended and matching can

begin. The maximum value of n-i within the event interval determines the change in qua-

si-steady state voltage phase angle caused by the change in topology. The change in volt-

age phase angles measured by PMUs within the system creases a vector of phase angle

changes. This vector will have one dimension for every PMU in the system. An approxi-

mate DC power flow model of the system is used to determine the change in voltage

phase angles that would occur for the loss of any transmission line within the system. The

vector of angles recorded from PMUs is compared to all vectors found through simula-

tion. Finally, the vector from simulation that matches the vector from PMU measure-

ments the closest is declared the line that was lost.

 Later works expanded on the issue of matching [31-37]. Reference [31] applies

the idea proposed in [6] to identify a simultaneous double line outage. This method still

requires an exhaustive search to identify the lines lost but only requires a small number of

PMUs to be available. Reference [32] uses a support vector machine approach to match

outaged lines. Another work extends previous methods to work when observing only a

particular area of the system and also deals with the cases of islanding caused by the line

26

outage [33]. The work in [34] considers the case of a fully observable internal system

connected to an external system that contains some PMUs. The method uses measure-

ments from PMUs as well as power flow changes along tie lines in an integer programing

problem to determine lines lost within the external system. Also, several studies consider

the case where the system is fully observable by PMUs [35-37]. These methods include

applying alternating direction method of multiplies [35], a global stochastic optimization

technique based on cross-entropy optimization [36], and Gaussian Markov random fields

[37] to match outaged lines using PMU measurements.

 Of all the work done in this area only [6] discusses the problem of outage detec-

tion. Reference [6] uses real PMU data for testing while the remaining studies only test

using a simulated system. In a simulated system the problem of detection is not present.

During a simulated line outage, prior to the line outage, all the system parameters have no

variation, which makes the beginning of the event obvious. Recall the work in [6] ad-

dresses the problem of detection by using a small threshold (τ) to detect the beginning of

an event. However, this method could not be adapted to the Gustav event in the Entergy

power system. The issue arises from the PMU data itself. The work done in [6] shows the

PMU data during an outage of a 500 kV line carrying approximately 1072 MW in the

Tennessee Valley Authority (TVA) system and can be seen in Fig. 1.8. In contrast, the

PMU data during an outage of a 500 kV line during the Gustav event is shown in Fig.

1.9.

27

Fig. 1.8 Filtered and Unfiltered PMU Data During a 500 kV Line Outage [6]

Fig. 1.9 Voltage Phase Angle PMU Data Showing a 500 kV Line Outage During the

Gustav Event

 It is apparent by comparing the different measurements that the phase angle in the

Entergy system is far more erratic than the measurements in the TVA system. The study

in [19] arbitrarily chose a small value of τ and their method works well with their data.

However, the measurements taken during the Gustav event in the Entergy system are sig-

nificantly different. In order to find an acceptable event detection method using the En-

28

tergy data, a different approach is needed. This work proposes the use of a trained DT

approach to provide a robust method of line outage detection using PMU measurements.

1.7.4 Applications of Decision Trees

 Applying the DT data-mining techniques, available through the use of CART, to

analyze complex problems is not a new idea. DTs have been applied to many different

fields of study. One medical study conducted in Taiwan, used CART analysis to predict

the survival of patients that were diagnosed with liver cancer [38]. A predictive model

was desired to be able to provide information to patients for understanding treatment out-

comes. The study used a total of nine features (inputs) in the study. These variables

were age, tumor size, tracking period, gender, clinical stage, undergoing surgery, radio-

therapy, chemotherapy, and transcatheter arterial embolization. The class (output) was

whether the patient had survived after 5 years. The study used records of 136 patients

with liver cancer as training data for the decision tree training. The study then used the

records of 91 patients with liver cancer as the database to test the accuracy of the tree.

The CART model was able to correctly predict the 5-year survival of the 91 patients 74%

of the time [38].

 Sometimes the selection of features to use in DT training is not clear. The work

done in [39] uses a DT and simulated PMU measurements to detect an island formation

around a distributed generator. The study was interested in the transient signal measured

by PMUs during island formation. Data from PMUs are a series of measurements over

time. Simply providing CART with a series of measurements can make it very difficult to

train a DT with acceptable performance. Instead, intervals within the series are selected

29

around periods of interest. A discrete wavelet transform was used to determine the wave-

let coefficients for each interval. Only these coefficients were then used as features in the

DT datasets. This study showed a trained DT could identify an island formation around a

distributed generator with a classification accuracy of 98%. Similarly, the work done in

[40] uses a DT and simulated PMU measurements to detect high impedance faults. In this

study, the harmonic content within each interval was extracted using a fast Fourier trans-

form. The harmonic content was used as features in the DT datasets. This study showed a

trained DT could identify a high impedance fault with no misclassifications for 100 simu-

lated test cases. The work done in this dissertation uses a similar strategy for feature se-

lection.

1.8 Objectives

This work is intended to provide an efficient method of monitoring the topology

of a power system to provide enhanced situation awareness during significant topology

related system disturbances. The approach will use an efficient and effective topology

analysis method to identify the minimum number of lines connecting important points in

the system as well as critical lines (bridges). The method will also use a DT approach to

identify transmission line outages to allow accurate topology information to be main-

tained in the event of SCADA system telemetry deficiencies. The primary sub-tasks of

this research, with objectives and a description of the approach adopted for each sub-task,

are given below:

1. Present and explain the strategy of applying network flow solutions to a power

system. The network flow algorithm used to update the minimum cut sets after the

30

loss of a transmission line will be presented. A detailed example of the proposed

method will be presented with a recreation of the Gustav test case. Also, the value

of the proposed approach will be examined by discussing two other recent major

system disturbances.

2. Present and explain the OLR algorithm used to detect critical lines. The OLR al-

gorithm will then be verified using two test systems. The first system is a small

system of 16 buses. This small system will allow the reader to easily validate that

each case run by the OLR algorithm is correct. The next system is a larger 118

bus IEEE test system. Finally, the Gustav event will be recreated in the Entergy

system model and the OLR algorithm will be run after each tie line trip to illus-

trate the significance of having the OLR output during a real event.

3. Create a trained DT for use in line outage detection or SCADA outage verifica-

tion. First, the features to be used in the DT datasets will be selected and ex-

plained. The learning and testing datasets will be created using part simulation da-

ta and part real PMU data. All line outages in the datasets will come from simula-

tions while all the non-event data will come from real PMU measurements. The

DT will be trained with the learning dataset and then tested using the test dataset.

4. Test the accuracy of the trained DT using real PMU measurements. The PMUs in

the Entergy system captured the loss of a 500 kV transmission line that can be

seen in Fig. 1.9. This trained DT will be applied to this event to show the reliabil-

ity and accuracy of the approach.

31

1.9 Organization of This Report

 Following the introductory material in the first chapter, this report presents the

explanation and validation of the topology algorithms in Chapter 2, as well as a discus-

sion of their breadth of application. Then, details of training and validating the DT used

to detect line outages are presented in Chapter 3. Next, conclusions are drawn in Chapter

4. Also, the Matlab code implementation of the network flow algorithms can be seen in

Appendix A, and the Matlab code implementation of the OLR algorithm can be seen in

Appendix B.

32

2. TOPOLOGY ANALYSIS

2.1 Network Flow Analysis

 This work proposes the use of network flow algorithms to determine the mini-

mum number of lines connecting important locations within a power system. The im-

portant locations used by the algorithm are buses defined by the user. Recall that a net-

work flow algorithm can determine the maximum flow between a source and a sink with-

in a directed graph. If the edges within the graph have capacities of exactly one unit of

flow, then the maximum flow found within the graph will be equal to the minimum num-

ber of edges that must be removed in order to guarantee disconnecting the source from

the sink [2]. This work proposes the selection of a single reference that will act as the

source in all network flow cases. A number of sinks throughout the system are selected

by the user to create a reasonable number of network flow cases. The solution of each

case represents the minimum number of transmission lines or transformers that must be

lost in order to disconnect that specific sink from the reference. A realistic and detailed

example of this description is presented in Section 2.1.2. This work is included in the fu-

ture publication [41].

The locations of sources and sinks within the network must be defined before a

network flow algorithm can be applied to the system. A large power system may have

10,000 buses. If a single bus were selected as the source, and every other bus serves one

time as a sink, this would require 9,999 different cases to be run using the network flow

algorithm. Not only is this time consuming it is also unnecessary. Instead, only a small

subset of buses needs to be selected. For example, a single centrally located bus with high

33

degree can be selected as the source. These buses tend to be important to the system in

some way such as large generators, critical loads, large substations, or PMU sites. The

sinks in the system can be assigned to other important buses throughout the network.

Such as setup would guarantee that the network flow solutions would indicate a problem

if outages in the system begin to isolate any important buses from the source. Using this

method, it is possible that an island could form that does not include any of the chosen

sinks, which would be invisible to this approach. However, the intent of this approach is

to observe major system separations and the absence of a sink within the island implies

such an event is no a significant threat to the operation of the system.

2.1.1 Algorithm to Update a Network Flow Solution

 Consider a single case using the selected source and one sink. The first network

flow solution to determine the maximum flow must be done using one of the network

flow algorithms presented previously. Generating a new network flow solution is only

required when the topology of the system changes in some way. When the topology of a

power system changes, it is usually due to the outage of a single transmission line. This

work presents a method of modifying an existing network flow solution after the loss of a

single branch, to reduce the computational burden of the algorithm and to allow more

sink locations to be selected. Consider the bidirectional graph in Fig. 2.1.

34

Fig. 2.1 The Maximal Flow in a Network with All Edge Capacities of One

The Edmonds and Karp algorithm was applied to this network with a source at

vertex 1 and a sink at vertex 6. It is clear that the minimum cut set connecting vertex 1

and vertex 6 is of size 2, which is equal to the maximum flow in this graph. Recall the

criteria a network flow solution must satisfy in order to be correct (1, 2, and 3).

1. For every edge, the flow across an edge cannot exceed the capacity of that edge.

2. For every vertex other than the source and the sink, the sum of the flows entering

a vertex must equal the flow exiting that vertex.

3. The flow from source to sink must be maximal. The flow is maximal, if and only

if, the graph contains no more augmenting paths between the source and the sink.

35

 When an edge is removed from this graph there are three different possible cases

that could occur. In all cases, a new solution is reached when the capacity and flow on the

removed edge becomes zero while criteria 1, 2, and 3 are still satisfied.

• Type Zero – The edge being removed from the graph has zero flow in the current

network flow solution. This is the trivial case. If the edge being removed from the

graph has no flow then the capacity of that edge can be set to zero and the new so-

lution is reached. Because no flow was added to the graph, criteria 1, 2, and 3

must still be satisfied and the solution is correct. An example of a type zero edge

is edge 1 to 3 in Fig. 2.1.

• Type One – The edge being removed from the graph has flow in the present net-

work flow solution and is part of a cut set of minimum size. The removal of such

an edge will reduce the maximum flow in the graph by one. An example of a type

one edge is the edge 2 to 6 in Fig. 2.1. In the old network flow solution the flow is

maximal. There are no more augmenting paths between the source and the sink

and every cut set of minimum size is completely saturated. Also, there will be no

augmenting paths between the endpoints of the removed edge in the same direc-

tion as the edge flow. For example, all paths from vertex 2 to vertex 6 must cross

at least one edge that is part of a minimum cut set. However, all minimum cut sets

are saturated. Therefore, if no augmenting path can be found between vertex 2

and vertex 6, then the edge belongs to a cut set of minimum size. Then, the solu-

tion can be updated by finding a single valid path that starts at the sink and ends at

the source that includes the removed edge. A flow of one is added along this path

and effectively reduces the maximum flow in the network by one. The addition of

36

this flow will also eliminate the flow on the removed edge and the capacity of the

removed edge can be set to zero. Criteria 1 and 2 remain satisfied because the on-

ly flow added to the system was along a valid path that spanned from the source

to the sink. The criterion 3 is satisfied when the maximum flow in the graph is re-

duced by one. An updated solution for the removal of edge 2 to 6 can be seen in

Fig 2.2. The direction and location of the flow added to the system is shown. The

path used to adjust the solution is found using the BFS path finding algorithm

[14]. The BFS algorithm runs in O(E) time. The total time to update a solution for

the loss of a type one edge is also O(E).

• 3. Type Two – The edge being removed from the graph has flow in the current

network flow solution but is not part of a cut set of minimum size. An example of

a type two edge is the edge 1 to 2 in Fig. 2.1. The removal of such an edge must

not reduce the maximum flow in the system. Because this edge is not part of a

minimum cut set there must exist a path from 1 to 2 that does not require crossing

a saturated edge. This path can be used to create a cycle of flow that will elimi-

nate the flow across the removed edge while still maintaining the maximum flow

within the graph. An updated solution for the removal of edge 1 to 2 can be seen

in Fig. 2.3. Criterion 1 is satisfied because the added flow does not need to violate

any edge capacities. Criterion 2 is satisfied because adding flow around a closed

loop does not violate the conservation of flow. Finally, criterion 3 is satisfied be-

cause the maximum flow in the graph did not change. The path used to adjust the

solution is found using the BFS path finding algorithm. The total time to update a

solution for the loss of a type two edge is also O(E).

37

 Fig. 2.2 The Updated Solution for the Loss of the Type One Edge 2 to 6

Two steps are needed to determine the type of each edge within a network flow

solution. If there is no flow on the edge it must be type zero. If the edge in question con-

tains flow, the edge type can be determined using a single path search. If an augmenting

path can be found between the endpoints of the edge in question, in the same direction as

the edge flow, then the edge must be type two. If no augmenting path can be found, the

edge must be type one. Once the edge type is determined the new solution can be updated

after a single path search. This algorithm requires O(E) operations to update a solution

which is computational less expensive than creating a new solution using any known al-

gorithm.

Once the reference and sink locations are selected, the initial network flow solu-

tion for each reference-sink pair is found using Edmonds and Karp. Following a trans-

38

mission line outage during system operation, the solution for each reference-sink pair is

updated for the lost edge using the previous network flow solutions. The new values of

minimum cut sets can then be displayed over a visual representation of the system to pro-

vide the operator, at a glance, the approximate area that was stressed by the most recent

line outage. The values of minimum cut set provide an approximate indication as to the

severity of the stress when compared to their value during normal system operation. The

sinks that have reduced minimum cut sets following an outage provide an approximate

affected area. As states previously, only one sink needs to be in an affected area to indi-

cate system stress. If one sink lies within an affected area, a more specific group of buses

can be found by finding the disjoin bus sets associated with that specific reference-sink

cut set. For example, consider the network in Fig. 1.5. The source is at node 1 and the

sink is at node 6. The cut set separating the source and sink in this example are lines 1 to

2, 3 to 5, and 4 to 5. This cut set partitions the system into two disjoint node sets (1, 3, 4

and 2, 5, 6). This information can more accurately indicate the size of the area being

pulled away from the grid. A cut set and corresponding disjoin sets can be found using a

BFS of the network flow solution. Such an algorithm is described in [2, pg. 70] and runs

in O(E) time.

39

Fig. 2.3 The Updated Solution for the Loss of the Type Two Edge 1 to 2

2.1.2 Network Flows Applied to the Gustav Test Case

 A network flow solution can provide important information to system operators

during significant system disturbances. In 2008, hurricane Gustav made landfall off the

coast of Louisiana. Over the course of several hours a large electrical island was formed

around Baton Rouge and New Orleans following the loss of 14 transmission lines [12].

Network flows were applied to this system during a recreation of the island event to illus-

trate the information that would have been available to system operators following the

loss of each transmission line. This recreation was conducted using a 20,000-bus opera-

tions planning model of the system. The network flow algorithms were implemented in

Matlab. The Matlab implementation of the network flow algorithms can be seen in Ap-

40

pendix A. The source used in this study was located at the PMU site at El Dorado. El Do-

rado is a PMU site that is centrally located within the system. Ten sinks were used in this

study. The sinks include Sterlington, Rodemacher, Coughlin, Scott, Cecelia, Fancy Point,

Bogalusa, Willow Glen, Waterford, and Ninemile. The locations of Willow Glen, Water-

ford, and Ninemile lie within the islanding area. The results of the network flow algo-

rithms following the loss of each transmission line can be seen in Table 2.1. The first col-

umn in Table 2.1 indicates the most recent line outage (in the same sequence as in Table

1.1) while the remaining columns indicate the minimum cut sets between any sink (node

name given in the table) and the reference following that outage. It can be observed that

the system outages only have effect on a limited number of locations. Also, after the 13th

line outage the size of the minimum cut set between the reference bus and the three sinks

within the island, Waterford, Willow Glen and Ninemile, reduces to 1, indicating that on-

ly one remaining path exists and the loss of this path will cause an island to form. In the

subsequent row in Table 2.1, which shows the results for the loss of the 14th line, one

observes that the size of the minimum cut set between the reference bus and the sinks

Waterford, Willow Glen and Ninemile reduces to zero, confirming that an island has

formed.

The size of the minimum cut sets within the system before the event began can be

seen in Fig. 2.4. The minimum cut sets at 1:30 PM (after the 12th outage) and at 2:10 PM

(after the 13th line outage) during the event can be seen in Fig. 2.5 and Fig 2.6 respective-

ly. The numbers next to each node indicate the minimum cut set to that node as the sink.

41

Table 2.1 Network Flow Solutions Following the Loss of Each Transmission Line During

the Gustav Event
Line Lost Size of Minimum Cut Set with Node Shown as Sink

Sterlington

Rodemacher

Coughlin

Scott

Cecelia

Fancy

Point

Bogalusa

Willow

Glen

Waterford

Ninemile

Before

Outages

3

4

3

6

3

3

3

6

6

4

1st 3 4 3 6 3 3 3 6 5 3

2nd 3 4 3 6 3 3 3 5 5 3

3rd 3 4 3 5 3 3 3 5 4 3

4th 3 4 3 5 3 3 3 4 4 3

5th 3 4 3 5 3 3 3 4 3 2

6th 3 4 3 5 3 3 3 4 3 2

7th 3 4 3 5 3 3 3 4 3 2

8th 3 4 3 5 3 3 3 4 2 2

9th 3 4 3 5 3 3 3 4 2 2

10th 3 4 3 5 3 3 3 3 2 2

11th 3 4 3 5 3 3 3 2 2 1

12th 3 4 3 4 3 3 3 2 2 1

13th 3 4 3 4 3 3 3 1 1 1

14th 3 4 3 4 3 3 3 0 0 0

The figures 2.4, 2.5, and 2.6 also show the approximate geographical locations of

the selected nodes within the system. A comparison between Fig. 2.4 and 2.5 shows that

after the 12th line outage the minimum cut sets to nodes within the island area have sig-

nificantly reduced. This implies the cumulative effect of the outages in the system have

been to stress the intertie between the southeast area and the rest of the system. In Fig. 2.6

the system has reached a critical state where only one line outage is needed in order to

form and island around 3 of the selected sink locations. At 2:49 PM the 14th outage oc-

42

curs and the island forms. During the real event, system operators were unaware of the

risk of island formation and did not determine an island existed in the system until 20

minutes after island formation [12]. However, the network flow solutions provide a

strong indication of the effect that each outage has on the topology of the system.

The network flows were run on a desktop computer using a 2.93 GHz Intel Core

i7 quad core processor. The program determines the initial network flow solution using

the Edmonds and Karp algorithm. A single network flow solved using Edmonds and

Karp requires approximately 0.6 s using the 20,000-bus system. Following the loss of

each transmission line, each old solution is updated using the proposed method described

previously. Updating a solution for the removal of a type one or type two edge requires

approximately 0.06 s. Updating a solution for the removal of a type zero edge requires

only approximately 0.002 s. Also, because power systems are extremely sparse, the num-

ber of edges that contain flow within a given case is very small. For example, in the En-

tergy system, only about 4% of edges contain flow in each case. Therefore, using the

proposed approach provides a significant advantage in this application. This shows that

network flow algorithms can be applied to very large power systems and still respond

quickly following changes in system topology.

2.1.3 Advantages of Using Network Flow Monitoring

Network flow monitoring provides unique information about the system during a

variety of situations. Some of the unique benefits of using the application proposed in this

work are highlighted in this section.

43

Fig. 2.4 The Maximum Flow to Selected Sinks Within the Entergy System Prior to the

Event.

44

Fig. 2.5 The Maximum Flows to Selected Sinks Within the Entergy System at Approxi-

mately 1:30 PM During Hurricane Gustav

45

Fig. 2.6 The Maximum Flows to Selected Sinks Within the Entergy System at Approxi-

mately 2:10 PM During Hurricane Gustav

46

During normal operations, power systems are monitored with a variety of real-

time tools. For example, in the MISO (Midcontinent Independent Transmission System

Operator) system, the supervisory control and data acquisition system (SCADA) system

takes measurements throughout the system, such as breaker status and voltage magni-

tudes, and reports them back to the control room. State estimation is run every 50 seconds

using the SCADA data. The state estimate solution generates a power flow case that de-

scribes the current operation of the system that is used for real-time contingency analysis.

There are over 40,366 buses and about 8,300 contingencies in the MISO network model

[42]. The MISO system runs two different implementations of contingency analysis,

Quick CA (contingency analysis) and Full CA. Each implementation of CA analyzes a

list of contingencies by solving the post contingency state using the fast decoupled power

flow. The full list of contingencies is solved every 4 minutes using 8 processors in paral-

lel. A smaller list of contingencies is run in the Quick CA that runs every 50 seconds

[42].

The proposed graph theory based method in this work can provide assistance to

system operators under a variety of scenarios were different amounts of information are

available. During normal operation, the existence of problems in the system is often iden-

tified by contingency analysis. Power flow computations have a computational complexi-

ty of approximately O(n1.2) using linear methods and O(n1.4) using Newton’s method for

a single contingency, where n is the number of buses in the network [43]. A system with

a large number of components requires many contingencies to be considered (such as the

MISO system) which causes CA studies to take several minutes. In contrast, updating a

single reference-sink case for the loss of a type one or type two edge takes O(n) opera-

47

tions (E is approximately equal to n in large power systems). Recall that power systems

are very sparse and most edges in a given solution contain no flow (less than 4%). There-

fore, the computations needed to update all cases following a line outage is approximate-

ly 0.04sn, where s is the number of sinks in the system and s << n. This allows the meth-

od to provide immediate indication of system degradation to operators following an out-

age. This information can be used in conjunction with live SCADA measurements to take

immediate actions, to influence which contingencies are handled first in the next iteration

of the real-time contingency analysis system, or help visualize the results of a CA study.

There are times during operation when state estimation, and therefore real-time

contingency analysis, is unavailable either from convergence failures or software prob-

lems. For example, on August 14th, 2003, a major widespread blackout occurred effecting

parts of the Northeast and Midwest United States and the Canadian province of Ontario

[44]. Transmission line outages began at approximately 3:05 PM. By 3:46 PM, the sys-

tem had lost a total of five 345 kV lines and fifteen 138 kV lines representing the loss of

several important Ohio interties. At this point, analysis of the event indicated that the

blackout still could have been avoided if around 2 GW of load was dropped in the Cleve-

land-Akron area. At 4:05 PM, another 345 kV line was lost that lead to the blackout

about 5 minutes later. One of the major causes of this event was a software bug that af-

fected the FirstEnergy Corporation (FE) control room in Ohio. The software bug effec-

tively disabled the alarm system that was integrated into all system monitoring tools. “FE

operators relied heavily on the alarm processor for situational awareness, since they did

not have any other large-scale visualization tools such as a dynamic map board. The op-

erators would have been only partially handicapped without the alarm processor, had they

48

known it had failed [44].” Also, just prior to the event, incorrect telemetry data disabled

the state estimator operated by MISO. An operator corrected the problem but forgot to

restart the monitoring tool to run every 5 minutes. As a result of these issues, system op-

erators were unaware of major system problems during the event [44]. Although the

alarm processing system failed, real-time information and measurements for the FE sys-

tem were still being collected and available. The network flow analysis method presented

in this work is only reliant on system topology information to remain operational. During

similar situations, a minimum cut set visualization method could still function and en-

hance situational awareness in the absence of state estimation or provide indications of

malfunctioning systems.

Lastly, it is common for neighboring systems to not be monitored with state esti-

mation or contingency analysis. As a result, serious issues along the boundary between

multiple systems can arise because no single operator is aware of all component failures.

For example, on September 8th, 2011, a blackout affected parts of Arizona and Southern

California in the southwest United States, as well as Baja California, Mexico [45]. This

event was initiated by the loss of a single 500 kV line that transported power from Arizo-

na, through the Imperial Irrigation District (IID), into the San Diego area. The outage oc-

curred at approximately 3:27 PM. In less than a minute after the outage, two transformers

in the IID system overloaded and tripped offline. Following these outages, over the

course of about 10 minutes, 5 transformers and 4 transmission lines are lost which dis-

connect the San Diego area from the rest of the grid. Later investigations found “Affected

transmission operators have limited real-time visibility outside their systems, typically

monitoring only one external bus. As a result, they lack adequate situational awareness of

49

external contingencies that could impact their systems” [45]. For example, after the 500

kV line outage, the California Independent Transmission System Operator (CAISO) had

partial visibility into IID’s system, but could not see that two transformers had overload-

ed and tripped. Likewise, IID operators did not learn of the 500 kV line outage in real-

time. During the event, different system operators observed large changes in flows into

their systems, but were unable to understand the cause or significance of the changes

[45]. One distinct advantage that the application of network flows has over traditional

monitoring systems is the ability to easily use a large system model. Increasing the area

analyzed by state estimation or contingency analysis is a large undertaking. The increase

in area requires many more component parameters and models to be maintained as well

as greatly affecting the solution time. However, network flows can be applied to a very

large system, as shown in the previous section, while still providing results quickly, and

can provide operators with basic topology information about areas not being monitored

by any other means.

2.2 One Line Remaining Algorithm

 The network flow analysis outlined in the previous section, tracks changes in min-

imal cut sets between user-defined system locations. The changes in a minimal cut set

over time can be a strong indicator of a problem with the system. However, the only time

it is certain the system cannot survive any line outages without a problem, is if a minimal

cut set is found to be of size 1. To address this situation, this thesis proposes an alterna-

tive method, using only standard power systems matrix operations, of detecting when

critical lines in the system are created. This algorithm is called the one line remaining

50

(OLR) algorithm. In this work, a critical line is defined as a line that will disconnect two

areas of the system if it were taken offline. The OLR algorithm can identify critical lines

in a power system following a transmission line or transformer outage, while also deter-

mining the area that would island following the loss of any critical line in the system. The

OLR takes advantage of the properties of singleton cut sets discussed in Chapter 1. An

example power system is shown in Fig. 2.6.

In Fig. 2.6, if line h is taken out of service, This is because all the power

flowing from point i must pass through line l in order to reach point j. Point i can be

placed at any point in area 1 and will not change. Therefore, if it is known what two

areas a critical line link together, PTDFs can be used to determine which line is the criti-

cal line. Consider that new critical lines can only appear in the system when the topology

changes.

Fig. 2.6 Example Power System with Two Tie Lines

For a line outage, if new critical lines have appeared in the system then the end-

points of the outaged line must be in different areas. Consider the system in Fig. 2.6. Line

l only becomes a critical line following the loss of line h. Also notice that the endpoints

Pl
ij =1.

Pl
ij

51

of line h exist in different areas that would be disconnected if line l was lost. The OLR

algorithm uses this knowledge to find the new critical lines in the system following each

line outage.

For each line outage, the OLR uses a DC power flow study to compute the system

line flows for power injections at the endpoints of the outaged line. If any lines in the sys-

tem carry all of the power injected, those lines are identified as critical. For each critical

line, the buses that are in the area of the system that is now vulnerable to islanding can be

determined by using the voltage phase angles from the DC power flow study.

2.2.1 Algorithm Explanation

 The OLR must be initialized before it is applied. Initialization is done by defining

the system structure in the form of the system admittance matrix. When constructing the

system admittance matrix all generators, loads, and shunt elements are ignored since the

purpose of this algorithm is to examine the topology of the network. All branches in the

network are represented with a reactance of 1 pu. By doing this, the admittance matrix

represents a uniform weighted graph of the system topology. Consider the 4 bus system

shown in Fig 2.7. The initialization of the 4 bus system in Fig. 2.7 can be seen in Fig. 2.8.

Fig. 2.7 Simple 4 Bus Power Network

52

−!
!!!3 −1
−1 !!!2

−1 −1
−1 !!!0

−1 −1
−1 !!!0

!!!2 !!!0
!!!0 !!!1

Fig. 2.8 Admittance Matrix of the Network Shown in Fig 2.7

This step only needs to be done the first time the OLR algorithm is initiated.

When a branch in the system is lost the OLR algorithm is invoked. The admittance matrix

must then be updated to reflect the lost branch. Assume the 4 bus system suffers the loss

of the branch from bus 1 to bus 2. The diagonals on rows 1 and 2 would need to be re-

duced by 1 while the off diagonals (1,2) and (2,1) would be set to zero. The updated ad-

mittance matrix can be seen in Fig. 2.9.

−!
!!!2 !!!0
!!!0 !!!1

−1 −1
−1 !!!0

−1 −1
−1 !!!0

!!!2 !!!0
!!!0 !!!1

Fig. 2.9 Admittance Matrix of the Network Shown in Fig. 2.7 After Suffering the Loss of

Branch 1 to 2

The OLR algorithm needs to identify areas with the potential to island based on

the criteria that a bus or (number of buses) is (are) now connected to the rest of the sys-

tem by only a single branch as a direct result of the initial outage. For example, for an

initial outage of the line from bus 1 to bus 2 in Fig. 2.7, the algorithm must identify any

lines that are required to allow buses 1 and 2 to remain connected together. For the ex-

ample of the 4 bus system, these lines are 2 to 3 and 3 to 1.

As discussed previously, the outage of line 1 to 2 can only create new critical

branches between buses 1 and 2. Therefore, power injections of +1 pu at bus 1 and -1pu

53

at bus 2 are added. All other buses have no power injection. These power injections will

establish a gradient in the voltage phase angles throughout the system. The highest angle

in the system will be at bus 1 and the lowest at bus 2. The phase angles at the buses that

span buses 1 and 2 will lie between the two extremes. Critical branches in the system can

be identified by using this phase angle gradient. Recall that the power flowing across a

line in the DC power flow is represented as shown in (1.3). With these power injections

in the system, if a particular line is required to allow buses 1 and 2 to remain connected

together, the power flowing across that line must be 1 pu. Recall that when the OLR was

initialized, the impedance of each line was set to 0+j1 pu. Therefore, the voltage angle

difference across any system branch that is required to allow buses 1 and 2 to remain

connected together must be equal to ±1 radian. Solving the DC power flow for this 4 bus

system yields the voltage phase angles shown in Table 2.2.

Table 2.2 DC Power Flow Solution of the 4 Bus System Example

Bus 1 2 3 4
Voltage Angle 0 rad -2 rad -1 rad 0 rad

Notice that the magnitude of the voltage angle difference across the line from bus

2 to bus 3 and the line from bus 3 to bus 1 is 1 radian. This signifies that the lines from

bus 2 to bus 3 and bus 3 to bus 1 are both required to allow buses 1 and 2 to remain con-

nected together. Notice also that the magnitude of the voltage angle difference across line

1 to 4 is 0 radian. This signifies that this line is not of interest.

Once the critical branches in the system are found, the algorithm evaluates the

number of buses that would be isolated for the loss of each critical branch. This is im-

portant to know because an island formation of a single bus may not be of interest to the

54

system operator. However, if the loss of a single branch would cause the isolation of a

significant portion of the system, the operator would need to be alerted. The algorithm

determines this information using the voltage phase angle solution of the DC power flow

study. It was mentioned previously that there is a gradient in the voltage phase angles

throughout the system. For each critical branch the algorithm examines the voltage angles

at each end of the line and compares them to the rest of the angles throughout the system.

For this example, for the critical line from bus 2 to bus 3 these angles are -2 radians and -

1 radian. The algorithm will select the more positive angle. In this case the algorithm will

select -1 radian. The algorithm will compare the angle at this bus to the angles at every

other bus in the system. All buses that have an angle of -1 radian or higher will remain

interconnected following the loss of line from bus 2 to bus 3. For the loss of the branch

from bus 2 to bus 3, buses 1, 3, and 4 would remain interconnected. The OLR algorithm

can then easily determine the number of buses that would be disconnected following the

loss of a particular critical line. Exactly which buses would remain within the island can

also be recorded during this process.

A summary of the steps used in the OLR algorithm are given as follows:

1. The first time the OLR is invoked the system admittance matrix is created. All

generators, loads, and shunts are neglected and the impedance of each system

branch is set to 0+j1 pu.

2. Following the loss of the system branch from bus A to bus B the system ad-

mittance matrix is updated to reflect the loss.

55

3. A DC power flow is formulated and solved with a power injection of +1 pu at

bus A and a power injection of -1 pu at bus B. All other buses have no power

injection.

4. The magnitude of the voltage phase angle change across each branch in the

system is evaluated. If the magnitude of the voltage phase angle change across

any branch in the system is equal to 1 radian then that branch is designated as

a critical branch.

5. For each critical branch the algorithm selects the more positive angle on either

end of the line. The algorithm compares this angle with the angle at all other

buses. Any bus with an angle equal to or larger than this angle will remain to-

gether after that critical line is lost. If the number of these buses is X, the al-

gorithm also computes N-X. The lower of these two numbers is reported as the

island area.

The OLR algorithm requires factoring the system admittance matrix each time the

topology changes and the algorithm is run. Once this is done the DC power flow can be

solved and a solution can be obtained. However, the most computationally expensive part

of the OLR algorithm is the factoring of the admittance matrix (O(n) to O(n3)). Therefore,

the OLR can reduce the time needed to report a solution by using post factoring. Again

consider the situation in Fig 2.6. Line h is taken offline and the new critical branches in

the system must be found. When the OLR is run, instead of removing line h from the sys-

tem for the DC power flow it is kept online. This will result in some flow on line h. As-

sume the flow on line h is 0.8 pu. If the loss of line h creates a singleton cut set in the sys-

tem, then the cut set in the system with line h online must be of size 2. The sum of the

56

flows across the cut set must be equal to the power injections. Therefore, if the flow on

any line in the system is 0.2 pu, then that line must be part of the cut set including line h.

This also signifies that this line will become a critical line following the loss of line h.

The OLR algorithm can apply this information very easily. The target flow that identifies

a critical line is normally 1 pu. If the flow on line h is x, then the new target flow be-

comes 1-x. Using this knowledge the OLR algorithm does not have to factor the system

admittance matrix in the first step of the algorithm. Instead the OLR algorithm uses the

old topology and uses the factored admittance matrix from the previous run of the OLR

algorithm. Once the OLR algorithm reports a solution to the system operator, the admit-

tance matrix can be factored to prepare for the next time it is called. This allows the algo-

rithm to go strait to forward and backward substitution in the DC power flow and allows

for a fast solution using O(E) operations.

2.2.2 OLR Algorithm Validation

 The OLR algorithm was applied to two different systems for testing purposes.

The first of these systems was the 16 bus system shown in Fig. 2.10. This system was

chosen to provide examples of OLR solutions that are simple to verify visually. A num-

ber of OLR solutions for outages within this system are shown in Table 2.3. Each outage

was applied independently of the other outages.

57

Fig. 2.10 16 Bus Power System Network

The second system used for verification was the IEEE 118 bus system. A diagram

of this system can be seen in Fig. 2.11 [46]. This system was used to show the OLR solu-

tions when a system suffers a series of outages that lead to an island formation. This

would be very similar to what happened during the Gustav event. A series of outages was

applied to this system such that an island would form in the southeast portion of the sys-

tem. A total of 5 lines were removed in order to form the island. The OLR solution after

each outage in the series can be seen in Table 2.3. Notice that after the 4th outage in the

series the OLR identifies that the loss of branch 47 to 69 would cause an island formation

of 47 buses. Once an outage actually forms an island the OLR can no longer generate a

solution.

The OLR algorithm was then applied to the Entergy system to demonstrate the

benefit of using the algorithm during a recreation of the Gustav event. The load in the

system during hurricane Gustav was very small. As a result, the island would not form

before every tie line is lost. If the OLR could detect that only a single tie line remained,

that would be a very significant advanced warning that that area of the system needs im-

58

Table 2.3 OLR Solutions for Several Outages in the 16 Bus System

Initial Outage Critical Branches Number of Buses in Identi-
fied Area

1 to 6 None 0
6 to 7 1 to 5

5 to 10
3
4

5 to 10 1 to 5
6 to 7

1
4

11 to 15 7 to 3
3 to 8
8 to 11
14 to 15

6
4
3
1

10 to 14 None 0
3 to 8 7 to 3

8 to 11
11 to 15
14 to 15

2
1
4
5

mediate attention. The power flow data for the Entergy system, corresponding to the time

hurricane Gustav impacted the system, was provided by Entergy. This power flow case

represented the system with just over 20,000 buses. The current implementation of the

OLR algorithm does not apply sparsity techniques to reduce the computation requirement

when solving large systems. Therefore, the network size had to be reduced in order for

the current version of the OLR to be applied to the Entergy system.

Table 2.4 OLR Solutions for a Series of Outages in the IEEE 118 Bus System

Initial Outage Critical Branches Number of Buses in Identi-
fied Area

65 to 68 None 0
49 to 69 None 0
24 to 72 70 to 71

71 to 72
3
1

70 to 24 23 to 24
47 to 69

1
47

47 to 69 Island forms Island forms

59

 This reduction could be avoided in practical applications. The island that formed

during the Gustav event contained around 140 buses. The OLR algorithm was applied to

a 1122 bus portion of the Entergy system network around the Baton Rouge and New Or-

leans area. A diagram of this section of the Entergy system can be seen in Fig. 2.12. The

Matlab code implementation of the OLR algorithm can be seen in Appendix B.

The network of the Entergy system shown in Fig. 2.12 was drawn using PSS/E

and does not correspond to the geographical representation of the real Entergy system in

this area. The area that disconnected from the rest of the system is illustrated in Fig. 2.12.

Recall that 14 tie lines were lost during the hurricane before the island formed. A series

of 13 outages were applied to the Entergy system to simulate the progress of the Gustav

event. The OLR algorithm was invoked after the loss of each branch. The solutions for all

of the tie line outages during the event can be seen in Table 2.5.

The OLR solutions have several interesting aspects. The outage of the first tie line

in the series creates two potential islanding areas of 22 and 23 buses. This may have been

important to know at the time of the event. Also, the loss of almost every branch creates

small potential island areas (all but the 9th outage). After the 13th tie line was lost the

OLR algorithm identifies several critical branches that could each potentially create an

island of significant size. The actual line outage that created the island was bus 53226 to

bus 53173 230 kV. The algorithm identifies that the loss of this line would create an is-

land containing 139 buses. This shows that the OLR algorithm can correctly identify the

critical branches in the system. Also, the OLR identifies that there were 5 other critical

branches at that operating condition that could have led to a large island formation in the

same area.

61

Fig. 2.12 PSS/E Drawing of the Entergy System in Southeast Louisiana. The PMUs

Within the Island and the Endpoints of the Final Two Tie Lines are All Labeled.

 In the identified area at the time the 13th tie line was lost, there were 3 generators

supplying approximately 346 MW. The load in this area was approximately 246 MW

with the area exporting 100 MW using the final tie line (the 6 critical branches identified

are in series). The goal of the OLR algorithm is to prevent loss of service to customers (if

possible) in the event an island forms. If operators had the OLR algorithm output they

could have chosen to reduce the flow exiting the island in anticipation of the possible is-

land formation. This would result in higher confidence that the island would remain oper-

ational after island formation. Also, if any of the 6 identified branches were reported to

have gone offline the operators would know immediately that the island had formed and

62

Table 2.5 OLR Algorithm Solutions for the Gustav Event

Tie Line Removed Number of Critical Branch-
es

Number of Buses in Identi-
fied Area

1st 3 1, 22, 23
2nd 5 1, 1, 2, 3, 2
3rd 14 1, 4, 3, 1, 3, 11, 13, 11, 8, 9,

6, 10, 10, 2
4th 4 1, 3, 4, 1
5th 6 6, 4, 3, 2, 1, 2
6th 1 1
7th 5 3, 2, 4, 5, 7
8th 8 1, 3, 4, 5, 6, 7, 8, 10
9th None 0
10th 1 1
11th 4 1, 3, 2, 1
12th 7 6, 7, 5, 1, 1, 2, 3
13th 53266-53173

7 others
139, 173, 172, 19, 147, 148,

146, 20

required special attention. Recall that in the real event it took 20 minutes to confirm the

island had formed.

Together, the network flow and OLR algorithms track changes in the system to-

pology and present results to system operators that have a clear physical significance.

Significant power system events sometimes require several major component outages be-

fore a rapid system collapse or serious problem occurs [1, 12, 41]. The components that

lead to these scenarios are serving as interties to different operating areas. The constant

monitoring of these cut sets provides system operators with a fast approximation of the

location and severity of potential problems within the power system.

63

3. LINE OUTAGE DETECTION

3.1 PMU-Based Line Outage Detection

 The topology monitoring algorithms presented in the pervious chapter require ac-

curate real-time system topology information in order to be effective. The statuses of

components in a power system are usually reported by the SCADA system. SCADA te-

lemetry is then used by the topology processor to determine the structure of the system in

real-time [42, 47]. However, during severe system events such as hurricanes, earth-

quakes, or even system malfunction, some or all SCADA measurements may be unavail-

able, leading to an uncertain system topology. Prior to such an event, the topology of the

system would be known. If changes in line status could be tracked independently of

SCADA measurements, an accurate system topology could be maintained. This thesis

presents an advanced method of detecting line outages using PMU measurements to be

used in conjunction with existing line outage matching techniques [6, 31-37]. The pro-

posed method of line outage detection is accomplished by training a DT to detect the sig-

nature of a line outage in PMU measurements.

3.1.1 Hurricane Isaac Simulations

It was discussed in Chapter 1 that a DT method needs sufficient training data in

order to be effective. A method that requires having historical events to train with would

not be as useful as a method that only requires simulating new events. For this reason, the

DT is trained using simulation data. The event in the PMU data available from the Enter-

gy system was withheld from the training data to be used for method validation. To be

64

sure the trained DT can be applied to the real data for validation, line outages were simu-

lated in the same area as the real event. Specifically, 50 Gustav island formations were

created in simulation to supply the line outages needed for DT training. These simula-

tions were conducted using an operations planning representation of the system. It was

desired to simulate the line outages using power flow cases with a variety of operating

conditions. For this purpose, five power flow cases were provided by Entergy, which cor-

responded to hurricane Isaac. Hurricane Isaac made landfall at 7:00 PM on August 28,

2012 near the mouth of the Mississippi River [48]. The five power flow cases correspond

to different times during the operating horizon; 10:30 AM August 28th, 12:00 PM August

28th, 12:00 PM August 29th, 6:00 PM August 29th, and 12:00 PM August 31st. Along with

using the five different operating conditions, ten different orders were used to create a

total of 50 simulations. The order of line outages that actually occurred during the Gustav

event was included as one of the ten orders. The remaining nine orders were random. The

simulations were conducted using PSS/E v33.3. As stated previously, the same island in

each simulation was created using one of the five power flow cases and one of the ten tie-

line outage orders, providing a total of 50 simulations. During each simulation, the values

of bus frequency, voltage magnitude, and voltage phase angle, were recorded at each of

the PMU sites at Buses 75400, 76821, 52905, and 53120. Buses 75400 and 76821 are

located outside the island area. Buses 52905 and 53120 are located within the island. In

each simulation, the 14 tie lines were removed at a rate of one every five seconds until

the island formed.

After studying the simulation results, several characteristics were observed. The

frequency data in each simulation did not seem to show any useful information. Both the

65

voltage magnitude and voltage phase angle showed unique characteristics, and the simu-

lations appeared to create two categories. In the first category, a sudden change in differ-

ence in phase angle of at least 5º was observed during the removal of at least one tie line.

In some simulations, a sudden change in phase angle could be observed for the loss of

several lines. A clear example of this can be seen in Fig. 3.1. In the other category, a sud-

den change in voltage magnitude in the islanded area of at least 5% was observed during

the removal of one tie line. An example of this can be seen in Fig. 3.2.

Fig. 3.1 Simulated Voltage Phase Angle Difference Between Buses 75400 and 52905

After looking through the simulations it was found that all 50 simulations fell into

category one while 31 of the 50 simulations fell into category two. After studying the

simulations, the real PMU voltage magnitude and voltage phase angle data were studied

at the times when tie lines were removed from the system. In the real event, last two lines

to go offline before the island formed were bus 55026 to bus 63411 500 kV (penultimate)

and bus 53266 to bus 53173 230 kV (last).

66

Fig. 3.2 Simulated Voltage Magnitude at Waterford Inside the Island Area

 The period of interest was the time when the penultimate tie line went offline. The

PMU data at this point showed a signature in the phase angle measurements, but nothing

was found in the voltage measurements. A plot of the voltage phase angle difference be-

tween the inside and outside of the island can be seen in Fig. 3.3.

Fig. 3.3 Voltage Phase Angle Difference Between the Inside and Outside of the Island

Area Measured by PMUs During the Loss of 55026-63411 (500 kV)

At the moment the 500 kV line was lost, the PMU data observed a ~12º change in

the difference between phase angles that stands out from the rest of the data. This is con-

sistent with what was seen in the simulated line outages.

67

3.1.2 Feature Selection

 It was decided to use a feature selection strategy similar to the one used in [39]

and [40]. Here, intervals were selected around the times of interest. Rather than using the

time series data as the feature to classify, only specific characteristics within each interval

are included. Recall that [39] uses a discrete wavelet transform on each interval to deter-

mine the wavelet coefficients to identify an island formation around a distributed genera-

tor. These coefficients are then used as features in the CART datasets. In the other exam-

ple, [40] uses root means square and harmonic content of each interval to detect high im-

pedance faults. For this work the features need to capture a sudden large change followed

by a smaller oscillation. The features for each interval were then chosen to be:

• End: The value of the last data point in the interval.

• Max1: The largest value in the interval.

• Min1: After the time of Max1, the smallest value in the remaining interval.

• Max2: After the time of Min1, the largest value in the remaining interval.

• Min2: After the time of Max2, the smallest value in the remaining interval.

• Slope 5: The largest slope between any two data points that are 5 data points

apart in the interval.

• Slope 10: The largest slope between any two data points that are 10 points apart

in the interval.

• Slope 50: The largest slope between any two data points that are 50 points apart

in the interval.

68

The CART database was built using only voltage phase angle data. The intervals

selected from the simulation data would begin at the loss of a tie line when a sudden drop

in phase angle was observed and would extend approximately 1200 measurements. An

example of an interval used in the CART database can be seen between the dotted lines in

Fig. 3.1. Before features could be computed the data within the selected interval would

need to be preconditioned. It is desired that the DT only look at the relative change in

phase angle within the interval. For example, if the phase angle begins at -30º and in-

creases to -20º, then this should be the same as going from 0º to 10º. This was done so

that the DT would not need as much training data to define all possible changes in angle.

Also, the DT needs to treat positive changes in angle the same as negative changes, for

the same reason. For each interval selected, the first data point was defined to be zero and

all other data points would be adjusted accordingly. Also, the absolute value of every

measurement was taken. Once each interval was selected, the features could be comput-

ed. Of the 50 simulations conducted, 80 intervals were selected out of the simulated

phase angle data to be used in the CART database. These intervals would have a Class of

1 to indicate a line was lost. The intervals that would have a Class of 0 (or no line lost)

were drawn from the real PMU data around times were it was known that no line was

tripped. There were 79 intervals of Class 0 selected from the real PMU data to complete

the CART database.

3.1.3 Decision Tree Training and Testing

 The CART database contains features from 159 intervals. The CART database

was divided into two parts. Data from 81 intervals would serve as the learning dataset and

69

data from 78 intervals would serve as the test dataset. A DT was trained using the learn-

ing dataset with equal misclassification cost. The resulting DT can be seen in Fig. 3.4.

Fig. 3.4 DT Trained with the Learning Dataset

The DT produced by CART contains 2 terminal nodes and has no misclassifica-

tions. It states that if the Slope 50 is less than or equal to 5.32 then no line was lost during

that time interval. Otherwise, a line was lost. The DT has only one splitting rule using the

feature Slope 50. This indicates that the feature Slope 50 is the only feature necessary to

determine if a line has tripped. The DT was then tested using the test dataset. The results

of the test can be seen in Table 3.1. In Table 3.1, the column “Total Class” lists the total

number of samples in the data that should be classified as the “Actual Class.” The

possible classes are 1 indicating an outage, and 0 indicating no outage. The column la-

beled “Class 0” indicates how many times the DT classified the inputs from the pool in

“Total Class” as 0. The column “Percent Correct” for row one is found by dividing col-

umn “Class 0” by column “Total Class.” The test database contains data from 39

intervals that should be classified as 0, and 39 intervals that should be classified as 1. The

 SLOPE_50 <= 5.32

Terminal
Node 1

Class = 0
Class Cases %

0 41 100.0
1 0 0.0

W = 41.00
N = 41

 SLOPE_50 > 5.32

Terminal
Node 2

Class = 1
Class Cases %

0 0 0.0
1 40 100.0

W = 40.00
N = 40

Node 1
Class = 1

SLOPE_50 <= 5.32
Class Cases %

0 41 50.6
1 40 49.4

W = 81.00
N = 81

70

DT was able to correctly classify every case in the test database, giving the DT 100%

accuracy in this test.

Table 3.1 DT Training Results

Actual Class Total Class Percent Correct Class 0 Class 1
0 39 100% 39 0
1 39 100% 39 0

This DT was also applied to the real PMU voltage phase angle data around the

time that line 55026 to 63411 was reported to have gone offline. The DT applied to 45

minutes of PMU voltage phase angle data can be seen in Fig. 3.5. The features in this

figure were caluclated using a sliding interval. Each time the interval advances, the

features for that interval would be calculated and dropped down the DT.

Fig. 3.5 DT Applied to PMU Measurements of the Real 500 kV Line Outage

The DT made several classifications of 1 near minute 8. This is the same time that

line 55026 to 63411 was known to have gone offline. The DT also classified all other

samples as 0. These results indicate that this method of line outage detection provides a

71

reliable way of detecting changes in system topology. The DT was trained with only

simulated line outages but still had great performance when tested using real PMU

measurements. This method can be used in conjunction with existing line outage

matching techniques to maintain an acurate system topology in real-time in the event of

SCADA data telemetry deficiencies. This method can also be used as a way to verify

SCADA line outage reports. If system topology informaiton can be maintained, the

topology monitoring methodology proposed in this work can be fully utilized during

system disturbances. This method of PMU line outage detection using decision trees is

included in the publication [49].

72

4. CONCLUSIONS

This dissertation proposes a real-time topology monitoring scheme for power sys-

tems intended to provide enhanced situational awareness during major system disturb-

ances. The topology monitoring scheme requires accurate real-time topology information

to be effective. This scheme is supported by advances in transmission line outage detec-

tion based on data-mining PMU measurements.

A network flow analysis is capable of tracking the change in user defined minimal

cut sets within a power system, which can alert system operators to significant changes in

system topology. The network flow approach proposed in this work makes use of well

known graph theory network flow algorithms, but also introduces a new algorithm for

updating an old network flow solution for the loss of only a single system branch. The

network flow approach was applied to the Entergy system in a recreation of the Gustav

island formation. The algorithm was able to track significant changes in the system to-

pology and visually present clear indication that a portion of the system was being sever-

ally effected by transmission line outages. For cases within the 20,000-bus Entergy sys-

tem, the Matlab implementation of Edmonds and Karp requires approximately 0.6 s to

generate an initial solution. However, updating a previous solution for the loss of a type

one or type two edge requires 0.06 s. Updating for the loss of a type zero edge requires

only 0.002 s. Also, because power systems tend to be extremely sparse, the vast majority

of branches in a given solution do not contain flow. Therefore, the proposed method of

updating pervious network flow solutions provides a significant computational advantage

in this application.

73

 Network flow based topology monitoring provides unique benefits to system op-

erations. The algorithm only requires network topology information in order to generate a

solution. This approach can supplement conventional system monitoring methods and

serve as backup monitoring in the event of computer system failures. The proposed

method is also fast enough to be used with a large system model. This allows system op-

erations to monitor the topology of a large area beyond the network managed by state es-

timation and real-time contingency analysis.

 This work also presents a method of determining all singleton cut sets within a

given network topology called the OLR algorithm. The OLR can provide additional in-

formation in the event a minimal cut set is determined to be of size one. The OLR can

also identify less significant potential island formations that are not visible in the user de-

fined minimal cut sets being monitored. The OLR algorithm activates after the loss of a

transmission line and determines if any singleton cut sets were created. The algorithm

also identifies all groups of buses that would remain connected together following the

loss of a singleton cut set. The OLR algorithm requires only standard matrix operations,

which are common in power system analysis studies. This allows utilities to easily im-

plement and maintain their own program as opposed to other methods. This method was

applied to a recreation of the Gustav island event. The algorithm correctly identified the

last tie line lost before the island of 139 buses was formed as well as 5 other lines that

could have created an island of similar size and location.

 The topology analysis algorithms proposed in this work are supported by line out-

age detection using PMU measurements aimed at providing accurate real-time topology

information. This process uses a DT based data-mining approach to characterize a lost tie

74

line in simulation. A DT was trained using intervals containing simulated line outages

and intervals of real PMU data that did not contain an event. The DT training determined

Slope 50 was the best and only feature necessary to detect the outage of transmission

lines. The threshold for this feature to detect a line outage was found to be Slope 50 >

5.32. The trained DT was applied to real PMU measurements around the time a 500 kV

line was known to have gone offline. The DT was able to correctly identify the time of

the 500 kV line outage with no misclassifications. This method of DT training is an accu-

rate and effective method of detecting line outages in PMU measurements even when

large variations exist within the data.

This method of line outage detection provides a reliable way of detecting changes

in system topology. This method can be used in conjunction with existing line outage

matching techniques to maintain an acurate system topology in real-time in the event of

SCADA data telemetry deficiencies. If system topology informaiton can be maintained,

the topology monitoring methodology proposed in this work can provide insight into

potential problems in the network even in the absence of state estimation and real-time

contingency analysis.

The topology monitoring method proposed in this work is one implementation of

local vulnerability metrics using minimum cut sets. This work could be extended to inclu-

deed more complex setups. For example, every line within a power system does not need

to be included in the study when applying the method. By only including specific eleme-

nts, the method could be tuned for a specific system. One possible extension of this work

is determining the optimal setup when using network flows in a specific system. Also, the

maximum flows found in this work focus on the special case when all edges have a

75

capacity of one unit of flow. Another possible extension of this work is using maximum

flows when edges have different capacities such as the maximum power flow across each

line or the present value of power flowing. Including additional studies using different

edge capacities in conjunction with the strategy proposed in this work may result in

improved performance.

The greatest difficulty faced when using PMU line outage detection in a real

power system is the fact that power systems today contain very few PMUs compared to

the number of buses in each system. When only a small number of PMUs exist in a

power system, not all line outages will be observable at all operating conditions.

Additional work could be done by developing a method to find all observable line outa-

ges within a power system for the present system operating condition. This would allow

operators to know which line outages could be tracked using a PMU measurements.

76

REFERENCES

[1] FERC Staff, “The Con Edison Power Failure of July 13 and 14, 1977,” U.S. De-
partment of Energy Federal Energy Regulatory Commission, pp. 2, 3, 19-20, June
1978.

[2] Bollobás, B., Modern Graph Theory. New York, NY: Springer, pp. 8, 9, 67-73,

1998.

[3] Kolluri, S.; Mandal, S.; Galvan, F.; and Thomas, M., "Island Formation in Enter-

gy Power Grid during Hurricane Gustav," in Power & Energy Society General
Meeting, pp. 1-5, 2009.

[4] H. S. Wilf, Algorithms and Complexity, Philadelphia, PA: University of Pennsyl-

vania, pp. 63-77, 1994.

[5] A. V. Goldberg; E. Tardos; R. E. Tarjan, Network Flow Algorithms, New York,

NY: Springer, pp. 105, 106, 114-119, 1990.

[6] Tate, J.E.; Overbye, T.J., "Line Outage Detection Using Phasor Angle Measure-

ments," in IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1644-1652,
November 2008.

[7] De La Ree, J.; Centeno, V.; Thorp, J.S.; Phadke, A.G., "Synchronized Phasor

Measurement Applications in Power Systems," in IEEE Transactions on Smart
Grid, vol. 1, no. 1, pp. 20-27, June 2010.

[8] Cokkinides, G.J.; Meliopoulos, A.P.S.; Stefopoulos, G.; Alaileh, R.; Mohan, A.,

"Visualization and Characterization of Stability Swings via GPS-Synchronized
Data," in 40th Annual Hawaii International Conference on System Sciences,
pp.120, January 2007.

[9] Phadke, A.G., "Synchronized Phasor Measurements in Power Systems," in IEEE

Computer Applications in Power, vol. 6, no. 2, pp. 10-15, April 1993.

[10] Entergy, “EntergyFACTS,” [Online] Available:

http://entergy.com/about_entergy/entergy_facts.aspx

[11] Kolluri, S.; Mandal, S.; Galvan, F.; and Thomas, M., "Island Formation in Enter-

gy Power Grid during Hurricane Gustav," in IEEE Power & Energy Society Gen-
eral Meeting, pp. 1-5, 2009.

77

[12] Galvan, F.; Mandal, S.; Thomas, M.; “Phasor Measurement Units (PMU) Instru-
mental in Detecting and Managing the Electrical Island Created in the Aftermath
of Hurricane Gustav,” in IEEE Power Systems Conference and Exposition, pp. 1-
4. March 2009.

[13] Vittal, V., “An Online Dynamic Security Assessment Scheme using Phasor

Measurements and Decision Trees,” PSERC seminar, Feb. 2008. [Online]. Avail-
able:
http://www.pserc.org/cgipserc/getbig/generalinf/presentati/psercsemin1/4psercse
min/vittal_pserc_project_s-27_tele-seminar_slides_021908.pdf

[14] Skiena, S., The Algorithm Design Manual. 2nd ed. New York, NY: Spring, pp.

162, 2008.

[15] Wood, A. J.; Wollenberg, B. F., Power Generation Operation and Control, 2nd

ed. New York, NY: Wiley, pp. 108-111, 1996.

[16] Tinney, W.; Meyer, S.; “Solution of Large Sparse Systems by Ordered Triangular

Factorization,” in IEEE Transactions on Automatic Control, vol. ac-18, no. 4, pp.
333-346, August 1973.

[17] Tinney, W.; Walker, J.; “Direct Solutions of Sparse Network Equations by Opti-

mally Ordered Triangular Factorization,” in Proceedings of the IEEE, vol. 55, no.
11, pp. 1801-1809, November 1967.

[18] Bittencourt, H.R.; Clarke, R.T., "Use of Classification and Regression Trees

(CART) to Classify Remotely-Sensed Digital Images," in IEEE Geoscience and
Remote Sensing Symposium, vol. 6, pp. 3751-3753, July 2003.

[19] IBM, “CART Algorithm,” [Online]. Available:

ftp://ftp.boulder.ibm.com/software/analytics/spss/support/Stats/Docs/Statistics/Al
gorithms/14.0/TREE-CART.pdf

[20] Ford, L. R., Jr.; Fulkerson, D. R, “Maximal Flow Through a Network,” Canadian

Journal of Mathematics, 8(1965), pp. 399-404.

[21] Dinic, E. A., “Algorithm for Solution of a Problem of Maximum Flow in Network

with Power Estimation,” Soviet Mathematic – Doklady, 11(1970), pp. 1277-1280.

[22] Boykov, Y.; Kolmogorov, V., “An Experimental Comparison of Min-Cut/Max-

Flow Algorithms for Energy Minimization in Vision,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137, Sep-
tember 2004.

78

[23] Rai, S., “A Cutset Approach to Reliability Evaluation in Communication Net-
works,” in IEEE Transactions on Reliability, vol. R-31, no. 5, pp. 428-431, De-
cember 1982.

[24] Ariyoshi, H., “Cut-Set Graph and Systematic Generation of Separating Sets,” in

IEEE Transactions on Circuit Theory, vol. ct-19, no. 3, pp. 233-240, May 1972.

[25] Cheng, L.; Liu, M.; Ye, C.; Li, Q.; Zhao, Q., “An Extended Minimal Cut Set Al-

gorithm Applied into Overall Power System Reliability Assessment,” in Interna-
tional Conference on Power System Technology, pp. 1-6, October 2014.

[26] Jia, Y.; Xu, Z., "A Graph-algebraic Approach for Detecting Islands in Power Sys-

tem," in IEEE Innovative Smart Grid Technologies Europe (ISGT EUROPE),
pp.1-5, October 2013.

[27] Tsai, M., "Development of Islanding Early Warning Mechanism for Power Sys-

tems," in IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 22-26,
2000.

[28] Theodoro, E.A.R.; Benedito, R.A.S.; Alberto, L.F.C., "A Fast Method for Island-

ing Analysis in Power System Grids," in IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pp.1856-1859, May 2011.

[29] Tarjan, R. E., “A Note on Finding the Bridges of a Graph,” Information Pro-

cessing Letters, vol. 2, no. 6, pp. 160-161, 1974.

[30] Güler, T.; Gross, G., "Detection of Island Formation and Identification of Causal

Factors Under Multiple Line Outages," in IEEE Transactions on Power Systems,
vol. 22, no. 2, pp. 505-513, May 2007.

[31] Tate, J.E.; Overbye, T.J., "Double Line Outage Detection Using Phasor Angle

Measurements,” in IEEE Power & Energy Society General Meeting, pp.1-5, July
2009.

[32] Abdelaziz, A.Y.; Mekhamer, S.F.; Ezzat, M.; El-Saadany, E.F., "Line Outage De-

tection Using Support Vector Machine (SVM) based on the Phasor Measurement
Units (PMUs) technology," IEEE Power and Energy Society General Meeting,
pp.1-8, July 2012.

[33] Sehwail, H.; Dobson, I., "Locating Line Outages in a Specific Area of a Power

System with Synchrophasors," in North American Power Symposium (NAPS),
pp.1-6, 2012.

[34] Emami, R.; Abur, A., "External System Line Outage Identification Using Phasor

Measurement Units," in IEEE Transactions on Power Systems, vol. 28, no. 2, pp.
1035-1040, May 2013.

79

[35] Zhao, L.; Song, W.; Tong, L.; Wu, L., "Monitoring for Power-Line Change and

Outage Detection in Smart Grid via the Alternating Direction Method of Multipli-
ers," in 28th International Conference in Workshops on Advanced Information
Networking and Applications (WAINA), pp. 342-346, May 2014.

[36] Chen, J.; Li, W.; Wen, C.; Teng, J.; Ting, P., "Efficient Identification Method for

Power Line Outages in the Smart Power Grid," in IEEE Transactions on Power
Systems, vol. 29, no. 4, pp. 1788-1800, July 2014.

[37] He, M.; Zhang, J., "Fault Detection and Localization in Smart Grid: A Probabilis-

tic Dependence Graph Approach," First IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 43-48, 2010.

[38] Chen, C.; Hsu, C; Chiu, H.; Rau, H., "Prediction of Survival in Patients with Liv-

er Cancer using Artificial Neural Networks and Classification and Regression
Trees," in Seventh International Conference on Natural Computation, pp. 811-
815, July 2011.

[39] Lidula, N.W.A.; Rajapakse, A.D., "A Pattern Recognition Approach for Detecting

Power Islands Using Transient Signals—Part I: Design and Implementation," in
IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3070-3077, October
2010.

[40] Sheng, Y.; Rovnyak, S.M., "Decision Tree-Based Methodology for High Imped-

ance Fault Detection," in IEEE Transactions on Power Delivery, vol. 19, no. 2,
pp. 533-536, April 2004.

[41] Werho, T.; Vittal, V.; Kolluri, S.; Wong, S. M., "A Potential Island Formation

Identification Scheme Supported by PMU Measurements," in IEEE Transactions
on Power Systems, vol. PP, no. 99, pp. 1-9, February 2015.

[42] Dondeti, J. R.; Yang, C.; Trotter, K.; Witmeier, A; Sherd, K., "Experiences with

Contingency Analysis in Reliability and Market Operations at MISO," in IEEE
Power and Energy Society General Meeting, pp. 1-7, July 2012.

[43] Davis, M. C.; Overbye, T. J., “Multiple Element Contingency Screening,” in

IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1294-1301, August
2011.

[44] NERC Steering Group, “Technical Analysis of the August 14, 2003, Blackout:

What happened, Why, and What Did We Learn?” North American Electric Relia-
bility Council, pp. 1-5, 27-52, July 13th, 2004.

80

[45] FERC and NERC Staff, “Arizona-Southern California Outages on September 8,
2011,” Federal Energy Regulatory Commission and the North American Electric
Reliability Corporation, pp. 23-47, 86-88, April 2012.

[46] Christie, R., IEEE Power System Test Cases from EE of UW. University of

Washington., Washington. [Online]. Available: http://sys.elec.kitami-
it.ac.jp/ueda/demo/WebPF/testdata.html

[47] Huang, J. A; Loud, L.; Vanier, G.; Lambert, B.; Guillon, S., "Experiences and

Challenges in Contingency Analysis at Hydro-Quebec," in IEEE Power and En-
ergy Society General Meeting, pp. 1-9, July 2012.

[48] Jervis, R., “Hurricane Isaac Pounds Louisiana, Water Pours Over Levee,” USA

Today, August 29th, 2012.

[49] Werho, T; Vittal, V.; Kolluri, S.; Wong, S. M., “Power System Connectivity

Monitoring Using a Graph Theory Network Flow Algorithm,” in IEEE Transac-
tions on Power Systems – Under review

81

APPENDIX A

MATLAB IMPLEMENTATION OF NETWORK FLOW ALGORITHMS

82

function[]=Network_Flows

%---
%Network Flow Algorithms
%Trevor Werho
%2015
%Matlab (R2011a)

%Determines the minimum cut set between a source and a sink in
%a network using Edmonds and Karp
%After the removal of a branch is specified the solution
%is updated using the old solution
%The process of removing and updating can be repeated
%---

clc
format short
%specify the source bus number
source=1;

%specify the sink bus number
sink=2;

%constructs the network and generates the initial solution
[S,Flows,LinesIn,New_num,Vec1,Vec2,N,r_org,c_org]=Points(source,sink);
S

%specifies the branch that is removed and updates the solution
%the first two inputs define the removed branch, example: (3,4,S…
[S,Flows,LinesIn]=lineout(3,4,S,Flows,LinesIn,...
 New_num,Vec1,Vec2,N,r_org,c_org);
S

end

function[S,Flows,LinesIn,New_num,Vec1,Vec2,N,r_org,c_org]=Points(r,c)

%constructs the network and generates the initial solution

[New_num,N,T,F,Status,Vec1,Vec2,LinesIn,Flows]=BuildYbus(r,c);

%generates the initial solution using the Edmonds and Karp method
[S,Flows,LinesIn]=mostflow(r,c,New_num,LinesIn,Flows);

r_org=New_num(r);
c_org=New_num(c);
end

function[New_num,N,T,F,Status,Vec1,Vec2,LinesIn,Flows]=BuildYbus(r,c)

%this function reads the system information in from a text file
%used to initialize the program
%the file is a list of system branches in the form:
%from bus to bus resistance reactance susceptance line-status
%(1 or 0)

83

[T, F, R, X, B, Status]=textread('file name.txt','%d %d %f %f %f %d');
M=length(T);

%the buses are renumber starting at bus 1
check=zeros(1,505000);
New_num=zeros(1,505000);

%the source location is specified to be bus 1
New_num(r)=1;
check(r)=1;

i=1;
k=2;
while i < M+1
 if check(T(i)) == 0
 if Status(i)==1

 if T(i) ~= c
 New_num(T(i))=k;
 check(T(i))=1;
 k=k+1;
 end

 end
 end

 if check(F(i)) == 0
 if Status(i)==1

 if F(i) ~= c
 New_num(F(i))=k;
 check(F(i))=1;
 k=k+1;
 end

 end
 end
 i=i+1;
end

New_num(c)=k;
check(c)=1;

%the sink location is specified to be the last bus
N=k;
Ybus=zeros(N);

Old_num=zeros(1,N);
i=1;
while i < 505000+1

 if New_num(i) ~= 0
 Old_num(New_num(i))=i;

84

 end

 i=i+1;
end

%build graph sparse matrix
i=1;
k=1;
while i < M+1

 if check(T(i)) == 1

 if check(F(i)) == 1

 if Status(i) == 1

 Vec1(2*k-1)=New_num(T(i));
 Vec1(2*k)=New_num(F(i));
 Vec2(2*k-1)=New_num(F(i));
 Vec2(2*k)=New_num(T(i));
 k=k+1;

 end
 end
 end
 i=i+1;
end

M=k-1;

LinesIn=sparse(N,N); %keeps track of all lines that are in service
Flows=sparse(N,N); %keeps track of all lines that contain flow

%records the lines that are in service in a sparse matrix
M=length(Vec1);

i=1;
while i < M+1

 LinesIn(Vec1(i),Vec2(i))=1;

 i=i+1;
end

end

function[S,Flows,LinesIn]=lineout(r,c,S,Flows,LinesIn,New_num,...
 Vec1,Vec2,N,r_org,c_org)

%this function updates a network flow solution following the loss
%of a system branch

%checks for line flow

85

step=3;

if Flows(New_num(r),New_num(c))==0
 if Flows(New_num(c),New_num(r))==0
 LinesIn(New_num(r),New_num(c))=0;
 LinesIn(New_num(c),New_num(r))=0;
 step=0;
 end
end

if Flows(New_num(r),New_num(c))==1
 if Flows(New_num(c),New_num(r))==0
 Flows(New_num(r),New_num(c))=0;
 LinesIn(New_num(r),New_num(c))=0;
 LinesIn(New_num(c),New_num(r))=0;
 step=1;
 end
end

if step==3
if Flows(New_num(r),New_num(c))==0
 if Flows(New_num(c),New_num(r))==1
 Flows(New_num(c),New_num(r))=0;
 LinesIn(New_num(r),New_num(c))=0;
 LinesIn(New_num(c),New_num(r))=0;
 step=2;
 end
end
end

%for a flow from r to c
if step == 1

 %check for augmenting path
 [D,path]=graphshortestpath(LinesIn,New_num(r),...
 New_num(c),'Method','BFS','Directed','true');

 %if a path is found the edge is type 2
 if D < 999999999

 i=1;
 while i < D+1

 LinesIn(path(i),path(i+1))=0;
 Flows(path(i),path(i+1))=1;

 if Flows(path(i+1),path(i))==1
 Flows(path(i),path(i+1))=0;
 Flows(path(i+1),path(i))=0;
 end

 i=i+1;
 end

86

 end

 %if no path is found the edge is type 1
 if D > 999999999

 if r_org ~= New_num(r)
 [D,path]=graphshortestpath(Flows,r_org,...
 New_num(r),'Method','BFS','Directed','true');

 i=1;
 while i < D+1

 Flows(path(i),path(i+1))=0;
 LinesIn(path(i),path(i+1))=1;

 i=i+1;
 end

 end

 if c_org ~= New_num(c)
 [D,path]=graphshortestpath(Flows,New_num(c),...
 c_org,'Method','BFS','Directed','true');

 i=1;
 while i < D+1

 Flows(path(i),path(i+1))=0;
 LinesIn(path(i),path(i+1))=1;

 i=i+1;
 end

 end

 S=S-1;

 end
end

%for a flow from c to r
if step == 2

 %if a path is found the edge is type 2
 [D,path]=graphshortestpath(LinesIn,New_num(c),...
 New_num(r),'Method','BFS','Directed','true');

 if D < 999999999

 i=1;
 while i < D+1

 LinesIn(path(i),path(i+1))=0;
 Flows(path(i),path(i+1))=1;

87

 if Flows(path(i+1),path(i))==1
 Flows(path(i),path(i+1))=0;
 Flows(path(i+1),path(i))=0;
 end

 i=i+1;
 end

 end

 %if no path is found the edge is type 1
 if D > 999999999

 if r_org ~= New_num(r)
 [D,path]=graphshortestpath(Flows,r_org,New_num(c),...
 'Method','BFS','Directed','true');

 i=1;
 while i < D+1

 Flows(path(i),path(i+1))=0;
 LinesIn(path(i),path(i+1))=1;

 i=i+1;
 end

 end

 if c_org ~= New_num(c)
 [D,path]=graphshortestpath(Flows,New_num(r),c_org,...
 'Method','BFS','Directed','true');

 i=1;
 while i < D+1

 Flows(path(i),path(i+1))=0;
 LinesIn(path(i),path(i+1))=1;

 i=i+1;
 end

 end

 S=S-1;

 end

end

end

88

function[S,Flows,LinesIn]=mostflow(r,c,New_num,LinesIn,Flows)

%this function determines the initial network flow solution using
%Edmonds and Karp

count=0;
flag=0;
while flag < 1

 [S,path]=graphshortestpath(LinesIn,New_num(r),...
 New_num(c),'Method','BFS','Directed','true');

if S < 999999999
 count=count+1;
i=1;
while i < S+1

 LinesIn(path(i),path(i+1))=0;
 Flows(path(i),path(i+1))=1;

 i=i+1;
end
else
 flag=1;
end
end
S=count;
end

89

APPENDIX B

MATLAB IMPLEMENATION OF THE OLR ALGORITHM

90

function[]=OLR_Algorithm

%---
%OLR Algorithm
%Trevor Werho
%2014
%Matlab (R2011a)

%Determines all singleton cut sets in a system following the removal of
%a specified line
%---

clc

%command to build the admittance matrix for the system
%only used once to initialize the program
%[Ybus,New_num,N,T,F,Status]=BuildYbus();
[Ybus,New_num,N,T,F,Status]=BuildYbus();

%Define the line that has gone offline
%update the admittance matrix to reflect the loss
%[Ybus,r,c]=ModYbus(Ybus,bus #, bus #,New_num);
[Ybus,r,c]=ModYbus(Ybus,1,2,New_num);

%display the first bus number of the outaged line
r

%display the second bus number of the outaged line
c

%Solve the DC power flow for injections at both ends of the
%outages line
[Ang2]=FindAngles(Ybus,r,c,New_num);

%Find all critical lines as well as the area that corresponds to
%each line
[Branches,Area]=FindLines(Ang2,T,F,Status,New_num,N)

end

function[Ybus,New_num,N,T,F,Status]=BuildYbus()

%this function reads the system information in from a text file
%used to initialize the program
%the file is a list of system branches in the form:
%from bus to bus resistance reactance susceptance line status
%(1 or 0)
[T, F, R, X, B, Status]=textread('file name.txt','%d %d %f %f %f %d');
M=length(T);
check=zeros(1,505000);
New_num=zeros(1,505000);

%the buses are renumbered starting at bus 1
i=1;
k=1;

91

while i < M+1
 if check(T(i)) == 0
 if Status(i)==1
 New_num(T(i))=k;
 check(T(i))=1;
 k=k+1;
 end
 end

 if check(F(i)) == 0
 if Status(i)==1
 New_num(F(i))=k;
 check(F(i))=1;
 k=k+1;
 end
 end
 i=i+1;
end

%the program checks for double lines
%double lines are represented as one connection
i=1;
tempnum=0;
while i < 505001

 tempnum=tempnum+check(i);

 i=i+1;
end
N=tempnum;
Ybus=zeros(N);

%if Same_X=1 then lines resistances and reactances are ignored
Same_X=1;

%builds the system admittance matrix
i=1;
while i < M+1

 if check(T(i)) == 1

 if check(F(i)) == 1

 if Status(i) == 1

 if Same_X == 0

Ybus(New_num(T(i)),New_num(F(i)))=Ybus(New_num(T(i)),...
 New_num(F(i)))-1/(R(i)+1i*X(i));

Ybus(New_num(F(i)),New_num(T(i)))=Ybus(New_num(F(i)),...
 New_num(T(i)))-1/(R(i)+1i*X(i));

Ybus(New_num(T(i)),New_num(T(i)))=Ybus(New_num(T(i)),...

92

 New_num(T(i)))+1/(R(i)+1i*X(i));

Ybus(New_num(F(i)),New_num(F(i)))=Ybus(New_num(F(i)),...
 New_num(F(i)))+1/(R(i)+1i*X(i));

 else

Ybus(New_num(T(i)),New_num(F(i)))=Ybus(New_num(T(i)),...
 New_num(F(i)))-1;

Ybus(New_num(F(i)),New_num(T(i)))=Ybus(New_num(F(i)),...
 New_num(T(i)))-1;

Ybus(New_num(T(i)),New_num(T(i)))=Ybus(New_num(T(i)),...
 New_num(T(i)))+1;

Ybus(New_num(F(i)),New_num(F(i)))=Ybus(New_num(F(i)),...
 New_num(F(i)))+1;

 end

 end
 end
 end
 i=i+1;
end

end

function[Ybus,r,c]=ModYbus(Ybus,r,c,New_num)

%this function updates the admittance matrix for the loss of a line

Ybus(New_num(r),New_num(r))=Ybus(New_num(r),New_num(r))+...
 Ybus(New_num(r),New_num(c));
Ybus(New_num(c),New_num(c))=Ybus(New_num(c),New_num(c))+...
 Ybus(New_num(r),New_num(c));
Ybus(New_num(r),New_num(c))=0;
Ybus(New_num(c),New_num(r))=0;

end

function[Ang2]=FindAngles(Ybus,r,c,New_num)

%this function solves the DC power flow

N=length(Ybus);
I=zeros(N,1);
Ang=zeros(N,1);

I(New_num(r))=1;
I(New_num(c))=-1;

Ybus2=Ybus;

93

I2=I;
Ang2=Ang;

Ybus2(N,:)=[];
Ybus2(:,N)=[];
I2(N)=[];
Ang2(N)=[];

[Q,R] = qr(Ybus2);
A=Q'*I2;
Ang2=R\A;
Ang2(N)=0;
end

function[Branches,Area]=FindLines(Ang2,T,F,Status,New_num,N)

%this function finds the critical lines and areas

M=length(T);
Branches=[0,0];
Area=[0];

%critical lines are found and stored in Branches
p=1;
i=1;
while i < M+1

 if Status(i) == 1
 Angle=abs(Ang2(New_num(T(i)))-Ang2(New_num(F(i))));
 if Angle > .999
 if Angle < 1.0001
 Branches(p,1)=New_num(T(i));
 Branches(p,2)=New_num(F(i));
 p=p+1;
 end
 end
 end

 i=i+1;
end

%determines the number of buses in each critical area
%stored in Area
i=1;
while i < p

 temp_ang1=Ang2(Branches(i,1));
 temp_ang2=Ang2(Branches(i,2));
 temp_ang=max(temp_ang1,temp_ang2);

 area_count=0;
 k=1;
 while k < N+1

 if Ang2(k) > temp_ang-.1

94

 area_count=area_count+1;
 end

 k=k+1;
 end

 temp_area=min(area_count,N-area_count);

 Area(i)=temp_area;

 i=i+1;
end

%buses are returned to their original numbering
i=1;
while i < 3

 k=1;
 while k < p

 j=1;
 while j < 505001

 if Branches(k,i) == New_num(j)
 Branches(k,i)=j;
 j=505001;
 end

 j=j+1;
 end

 k=k+1;
 end

 i=i+1;
end

end

