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ABSTRACT  
   

Fossil resources have enabled the development of the plastic industry in the last 

century. More recently biopolymers have been making gains in the global plastics market. 

Biopolymers are plastics derived from plants, primarily corn, which can function very 

similarly to fossil based plastics. One difference between some of the dominant biopolymers, 

namely polylactic acid and thermoplastic starch, and the most common fossil-based plastics 

is the feature of compostability. This means that biopolymers represent not only a shift from 

petroleum and natural gas to agricultural resources but also that these plastics have 

potentially different impacts resulting from alternative disposal routes. The current end of 

life material flows are not well understood since waste streams vary widely based on regional 

availability of end of life treatments and the role that decision making has on waste 

identification and disposal.  

This dissertation is focused on highlighting the importance of end of life on the life-

cycle of biopolymers, identifying how compostable biopolymer products are entering waste 

streams, improving collection and waste processing, and quantifying the impacts that result 

from the disposal of biopolymers. Biopolymers, while somewhat available to residential 

consumers, are primarily being used by various food service organizations trying to achieve a 

variety of goals such as zero waste, green advertising, and providing more consumer options. 

While compostable biopolymers may be able to help reduce wastes to landfill they do result 

in environmental tradeoffs associated with agriculture during the production phase. 

Biopolymers may improve the management for compostable waste streams by enabling 

streamlined services and reducing non-compostable fossil-based plastic contamination. The 

concerns about incomplete degradation of biopolymers in composting facilities may be 

ameliorated using alkaline amendments sourced from waste streams of other industries. 
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While recycling still yields major benefits for traditional resins, bio-based equivalents may 

provide addition benefits and compostable biopolymers offer benefits with regards to global 

warming and fossil fuel depletion. The research presented here represents two published 

studies, two studies which have been accepted for publication, and a life-cycle assessment 

that will be submitted for publication.   
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CHAPTER 1 

INTRODUCTION 

Motivation and Vision 

 Over the last century the plastics industry has grown to become the third largest 

sector of U.S. manufacturing with plastic goods exceeding a $373 billion value annually 

(Carteaux 2013). This market, which is comprised in large part of containers, packaging, and 

non-durable goods, contributes nearly 13% of the waste generated in the United States 

(USEPA 2014a). The feedstocks for traditional plastics such as polyethylene (PE), 

polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) are fossil 

based resources. These feedstocks have provided a consistent source of raw materials for the 

development and improvement of plastics but increasing cost and scarcity of fossil resources 

could have effects on the plastics industry (Anastas and Kirchhoff 2002). Even without 

concern about availability of finite raw materials, the sheer size of the plastics industry 

represents a significant potential for gains in environmental performance if plastics, 

production methods, or waste handling could be improved. 

 Biopolymers have emerged as plant-based alternatives to fossil-based plastics. The 

concept of industrial scale biopolymer production began in the 1990s with the introduction 

of green chemistry and increasing fossil fuel prices (Iles and Martin 2013). Biopolymers 

constitute one of the fastest growing segments in the global plastics market with a growth 

rate around 25% annually and nearly one million tons annual production (Rapra 2012). 

Biopolymers are plastics that can be produced from renewable feedstocks such as sugar, 

corn, soy, hemp, algae, and methane captured from various wastes (Du and Yu 2002, Flieger, 

Kantorova et al. 2003). These feedstocks have varying amounts of both positive and 

negative environmental tradeoffs associated with agriculture-based production (Landis, 
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Miller, and Theis 2007, Álvarez-Chávez, Edwards et al. 2012). Many biopolymer products 

are not completely bio-based but are comprised of blends of both conventional and 

renewable resources which is characteristic of plastic production (Hartmann 1998, Shen, 

Haufe, and Patel 2009, Shen, Worrell, and Patel 2010). For example, the predominant 

globally produced biopolymer, Bio-PET, is a blend of conventional feedstocks and bio-

based ethylene derived from sugar (Morschbacker 2009).  

While being made from plants provides an interesting selling point, some 

biopolymers have material characteristics, such as PLA which has good thermal properties 

and stiffness to density ratio, which may make them more attractive for some applications 

than the commodity plastics that currently dominate global markets (Patel, Crank et al. 2006, 

Braasch 2015). However, some biopolymers, such as Bio-PET which is used in Coca-Cola’s 

PlantBottle™, are the chemical equivalent to their conventional counterpart with identical 

properties and the ability to be a ‘drop-in’ substitution when extruding and forming products 

and recycling them in the same waste streams (Philp, Ritchie, and Guy 2013). While there is 

the option to recycle those biopolymers which fall into the traditional 1 through 6 plastic 

resin recycling codes, such as Bio-PET which is a number 1 along with fossil PET, other 

biopolymers such as polylactic acid (PLA) and thermoplastic starch (TPS) may not be 

recyclable given the current infrastructure and are given the resin code 7 (a number 7 

designates “other” plastics which are not typically recycled). However, these number 7 

biopolymers often come with the additional feature of compostability (Lopez, Vilaseca et al. 

2012, Roland-Holst, Triolo et al. 2013, Landis 2010).  

 In the United States, about 91% of plastics are not recovered and end up in a landfill 

or are incinerated. Generally, 13% of municipal solid waste (MSW) that is not recovered is 

incinerated with energy recovery as a waste management strategy (USEPA 2015a). While the 
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overall recycling rate for plastics is only about 9%, certain plastic products and specific resins 

have higher rates of recovery. PET soft drink bottles were recovered at a rate of 31% in 

2013, while high-density polyethylene (HDPE) milk and water bottles were estimated at 

about 28%. Packaging and nondurable plastics in MSW totaled 20.5 million tons, of which 

10% were recovered (USEPA 2015a). The ability to compost biopolymers changes the 

traditional pathways for plastics at end of life (EOL) and creates the opportunity for material 

recovery from organic waste streams comingled with plastics via composting. Non-

compostable plastics and organic wastes would need to be sorted prior to being sent to 

separate waste streams or all of the waste would be destined for a landfill. 

 Compostable plastics must conform to American Society of Testing and Materials 

(ASTM) standards including ASTM D6400-04 Standard Specification for Compostable 

Plastics, ASTM D6868-03 Standard Specification for Biodegradable Plastics Used as 

Coatings on Paper and Other Compostable Substrates, and ASTM D5338-98(2003) 

Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under 

Controlled Composting Conditions (Song, Murphy et al. 2009, ASTM 2004, 2003b, a). Of 

compostable biopolymers, PLA is the most common in the United States, but TPS and 

polyhydroxyalkanoates (PHAs) are also common (EuBP 2014b, Tabone, Cregg et al. 2010, 

Rapra 2012). One significant problem for biopolymers is that some, primarily thicker PLA 

products, conform to the ASTM standards but in fact are reported to not degrade in 

compost facilities. 

Further complicating the problems associated with composting is the fact that some 

bioplastics are labeled ‘biodegradable’ rather than compostable, a distinction which is not 

always well understood by stakeholders. The plastics with the ‘biodegradable’ label are 

defined in ASTM D6400-04 as “a plastic that degrades because of the action of naturally 
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occurring microorganisms such as bacteria, fungi, and algae” but compostable plastics have 

more stringent requirements regarding the process and time frame of degradation (ASTM 

2004). Biodegradable plastics take more time to break down which does not conform to 

commercial composting processes (Kale, Auras et al. 2007). Biodegradable plastics are used 

in products like grocery bags, trash bags, packaging, diapers, and agricultural mulch films 

(Ammala, Bateman et al. 2011). While ASTM standards are an important classification for 

this burgeoning industry, many composting facilities are having trouble with biopolymers 

not degrading at rates consistent with their composting processes. 

With increasing interest in zero waste efforts (i.e. the practice of avoiding sending 

waste to landfills), there are more and more compostable products being sold with the 

promise of compostability and sustainability. The US Environmental Protection Agency 

(EPA) is encouraging a general shift towards composting as a means of avoiding emissions 

from organic materials, primarily food and yard waste, in the waste management industry 

(USEPA 2013b). Part of this transition is encouraged by the availability of biobased 

compostable plastics. The ability to market these products with phrases like “plant-based,” 

“made from corn,” and “we turn into soil” is a compelling argument for individuals, 

institutions, and cities that are seeking to reduce their environmental footprints or try to 

achieve zero waste goals (World Centric 2014, Coca-Cola 2012). Figure 1 shows a PLA cold 

cup labeled as “made from corn” (Appendix A shows additional labeling used for common 

biopolymer products). Biopolymers have the added benefit as disposable food service ware 

because they can be composted with food waste and do not need to be cleaned. Plastics 

fouled by food wastes cannot be recycled without significant pretreatment and compost 

operations will not accept organic wastes with excessive non-compostable plastic 

contamination(Wood 2014, Pfiefer 2014, Hill 2014).  
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Figure 1. An image of a PLA cold cup advertised as being “made from corn.” Image source 
http://www.staples.com. 
 

This research helps identify optimal disposal options and infrastructure for 

compostable biopolymers based on sustainability metrics. This dissertation reports the life-

cycle environmental impacts of different disposal options, organizational and structural 

barriers to the adoption of compostable products, consumer motivation and disposal habits, 

and methods to improve disposal habits and waste handling.  

 

Research Objectives 

 This dissertation reports the EOL impacts of biopolymers and provides solutions to 

improve the management of compostable plastics. The scope of this research extends from 

tracking waste scenarios at public events to evaluating how people identify different wastes 
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to solving the challenges faced in industrial composting operations. The following chapters 

will also explore solutions to real barriers experienced by the industry and focus on 

developing solutions that reduce contamination and increase the value of industrial compost. 

This work was guided by and seeks to address the following research objectives: 

 

1. Quantify end of life of waste flows of biopolymers via waste audits at public venues 

and waste handling facilities 

2. Identify best practices for facilities management and waste handling of compostables 

via surveys and focus groups  

3. Evaluate sustainable solutions for composting infrastructure options and factors 

influencing feasibility of scaling 

4. Quantify the end of life environmental impacts of compostable biopolymer scenarios 

via life-cycle assessment incorporating findings from objectives 1-3 

 

Intellectual Merit 

The environmental impacts associated with a shift toward using more biopolymers in 

lieu of fossil-based polymers in the US are unknown, particularly with respect to EOL. In 

addition the impacts that purchasing (i.e. supply chain decisions) and use of biopolymers 

have not been studied extensively in the life-cycle literature despite the fact that biopolymers’ 

ultimate environmental performance relies heavily on these factors. Similarly, while the U.S. 

EPA recommends that municipalities and facilities managers consider composting as a more 

sustainable method for landfill diversion, the sustainability of landfill diversion strategies has 

not been critically evaluated for the changing landscape of organic wastes, which now 
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include bioplastics. The environmental profiles of compostable materials will aid in science 

driven decision making for new approaches of municipal waste handling. 

The findings herein can be used to quantify the environmental EOL profile for 

biopolymers and contribute to the understanding of compostable biopolymer use in real-

world scenarios. Waste management defines a key interface between humans and the 

environment, determining atmospheric emissions and the fate of materials entering the waste 

stream. Decision making at EOL alters the impacts of products and can also change the 

environmental profile for new biopolymers and energy that can be recovered from waste. 

The results of the research presented in this dissertation can help guide future research and 

policy aimed at improving environmental performance of biopolymers and the larger organic 

and recyclable waste streams. 

 

Broader Impacts 

This research is relevant to a broad audience of businesses and policymakers who are 

looking for ways to improve the environmental performance of consumer goods. 

Determining a management approach for waste is a real decision that has far reaching 

impacts on the life-cycle of nearly every product. Only with a comprehensive knowledge of 

the cradle to grave impacts of biopolymers and an understanding of the factors contributing 

to biopolymer use and decision making associated with EOL will it be possible to make 

informed decisions related to appropriate selection of products for specific applications and 

the development of infrastructure for optimal disposal. This and subsequent efforts are 

needed to assess the environmental sustainability of compostable products and inform the 

decision making of researchers, manufacturers, and consumers. 



8 

This research connects to real-world dynamics through collaborations with 

industrial, commercial and governmental partners. Through engagement with organizations 

like Waste Management Inc. (WM), NatureWorks LLC., Garick, City of Phoenix and 

Arizona State University, this research provides a unique perspective with significant 

insights. The results of this research can help cities and facilities managers evaluate a wider 

range of options when selecting products with different properties and policies to reduce 

their environmental footprint.  

With funding through the Diane and Gary Tooker’s K-12 STEM education grants a 

module was created based on personal waste audits and the US Environmental Protection 

Agency’s Waste Reduction Model (WARM). This module was designed to scale to the 

appropriate educational level whether it is engaging high school students or engineering 

seniors at college. The activities and modeling encourage students to consider not just how a 

product is made but also what happens to it when it is thrown away and the module has 

students explore the substitution of different materials. Hundreds of students have taken 

part of this hands-on, experiential module that encourages them to use tools and metrics to 

understand their own connection to the environment. 
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Organization of Thesis 

Table 1 shows the chapters within this document and the peer-reviewed journal in 

which each study was published. The findings of the life-cycle assessment (LCA) in Chapter 

6 will also be submitted to a peer-reviewed journal which has yet to be determined.  

 

Table 1. Contributing publications and the corresponding objectives addressed by each 
chapter 

 

Literature Review and Background 

Drivers of Biopolymer Use 

The demand for biopolymers has been driven in large part by increasing interest in 

environmental performance of plastics. This is due in part to a concern over the impacts 

associated with fossil-based plastics which have led to calls to reduce plastic wastes as well as 

outright bans on various plastic products (Rochman, Browne et al. 2013, Steinmetz 2014, 

Goldstein 2013). Simultaneously demand for biopolymers has increased because of bio-

preferred policies and increases in efforts to divert organics from landfills as part of zero 

waste programs or specifically to avoid landfill emissions (Yepsen 2009, BioCycle 2014, EEA 

Thesis 
Chapter Publication Journal Objective(s) 

Ch. 2 Sustainability Assessment of Bio-Based Polymers 
Polymer Degradation 

and Stability (Published 
2013) 

review and 
background 

4 

Ch. 3 Toward Zero Waste: Composting and Recycling for 
Sustainable Venue Based Events 

Waste Management 
(Published 2015) 1 & 2 

Ch. 4 
Alkaline Amendment for the Enhancement of Compost 

Degradation for Polylactic Acid (PLA)Biopolymer 
Products 

Compost Science & 
Utilization (Accepted 

2015) 
3 

Ch. 5 
Compostable Biopolymer Use in the Real World: 
Stakeholder Interviews to Better Understand the 

Motivations and Realities of Use and Disposal in the US 

Resources Conservation 
and Recycling (Accepted 

2015) 
1 & 2 

Ch. 6 Biopolymer Production and End of Life Comparisons 
Using Life-Cycle Assessment TBD 4 
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2014, ASU 2014, San Francisco 2014). These various drivers have led major retailers with 

immense buying power to begin demanding greater use of biopolymers in the products they 

sell. It is just this sort of demand that promises to drive NatureWorks’ PLA production from 

one billion pounds of production in 2013 to double that in the near future (Miel 2015). 

Food waste reduction efforts have the potential to act as an indirect driver for the 

transition to compostable plastics. The EPA has developed a food recovery hierarchy which 

seeks to minimize the amount of organic wastes going to landfills. Composting is one of the 

treatment methods suggested for this effort (USEPA 2015b). It is the least prioritized 

method of reducing food wastes, but also is the easiest to implement on a significant scale. 

Biopolymers can be implemented in settings with high amounts of organic wastes without 

risking contamination that would prevent reduction efforts via composting.  

 

Biopolymers: Production and Feedstocks 

 Biopolymers can be produced using a wide variety of feedstocks by implementing 

different technologies to refine the raw materials into formable plastics. The production 

process for biopolymers can be as simple as isolating starches from corn and forming 

products using a few additives but production can also require complex fermentation and 

polymerization processes to create high value products (de Jong, Higson et al. 2012). While 

‘drop-in’ replacements can be utilized in existing infrastructure, unique biopolymers require a 

significant capital investment for production facilities such as the NatureWorks PLA 

production facility in Blair, Nebraska and the company’s planned facility in Thailand (Vink, 

Davies, and Kolstad 2010, Esposito 2012). The following chapters detail the production and 

applications of the most common biopolymers in the U.S. including PLA, TPS, PHA, PDO, 

and Bio-PET. PLA, a major focus of this research, is found in two main types, crystalline 
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and amorphous (Figure 2). Amorphous PLA is used for clear thermoformed products versus 

crystalline PLA, which undergoes additional processing with a number of different 

nucleating agents depending on the application and is used in high heat applications 

(NatureWorksLLC 2004, 2002b, a).  

 

 

Figure 2. Amorphous PLA cup and crystalline PLA spoons, products by World Centric. The 
crystal clear cold cup is produced using NatureWorks’ Ingeo PLA while the spoons are 
produced using a PLA/talc blend.  
 

Feedstock development and availability remains a top priority for bio-based materials 

which can use a wide variety of agricultural feedstocks (Dijkstra and Langstein 2012, 

Morschbacker 2009, Álvarez-Chávez et al. 2012). There has been a lot of research dedicated 

to feedstock improvement in order to develop crops that minimize processing while 

maximizing the amount of usable biomass. The goal of feedstock improvement is to enable 

more efficient production which is supported by more dependable  and consistent 

agricultural yields (Babu, O'Connor, and Seeram 2013, Gerngross and Slater 2000, van 

Beilen and Poirier 2007, de Jong et al. 2012). As investments in biopolymers increase, the 
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industry will continue find new uses and markets just as the fossil plastic industry did in the 

last century, for example, PLA has become one of the primary plastics used in the 3-D 

printing industry because of superior thermal properties. The simultaneous investments in 

biofuels technologies and biorefineries may also create positive synergies for bio-based 

chemicals, for example the same technology that is used to create ethanol from the 

gasification of waste could simply be used to create ethanol as a plastic feedstock or the 

syngas produced during gasification could be fermented to produce 1,3 butadiene, a 

chemical used in the production of nylon (Aylott and Higson 2013). 

The development of new feedstocks and polymers as well as the refinement of 

existing resins will broaden the applications for biopolymers and has the potential to 

improve the environmental footprints associated with products manufactured using 

biopolymer technologies (Snell, Singh, and Brumbley 2015, Mohan 2014, Reddy, 

Vivekanandhan et al. 2013, Brigham and Sinskey 2012). Near-term developments include the 

expansion of PLA and starch markets as well as the use of bio-based ethylene in the 

production of PE (including HDPE and LDPE) and PET (Iwata 2015, Laycock and Halley 

2014, Mohammadi Nafchi, Moradpour et al. 2013). Although the initial development of 

biopolymers for food and drink packaging has been expensive, the price stabilization of 

biopolymers will lead to “technological and environmental competitiveness” (Byrne 2015).  

 

End of Life Options 

 Landfilling is the primary form of waste management for MSW generally as well as 

for plastics. Landfills can have dramatically different internal conditions and a wide variety of 

technologies employed to reduce harmful environmental emissions. Landfills in the US are 

typically lined to reduce leaching into the surrounding soil and capped to control the flow of 
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landfill gasses (Weitz, Thorneloe et al. 2002, Denison 1996). The degradation of organic 

materials is particularly important for compostable and biodegradable plastics because under 

landfill conditions they can create methane which is a powerful greenhouse gas. While there 

are technologies to capture landfill gas and either flare it or burn it for energy recovery, these 

is a large amount of uncertainty around capture efficiency which may vary anywhere between 

50 to 95% with the EPA recommending the use of 75% capture efficiency for modeling 

purposes (Spokas, Bogner et al. 2006, USEPA 2008). Due to the emissions associated with 

landfills there have been efforts to increase the availability of options for material recovery 

and landfill avoidance. 

 Recycling is another EOL option for plastics and the primary alternative to 

landfilling. Recycling can be accomplished through different pathways depending upon the 

resin characteristics, some methods are as simple as chipping, heating, and reforming while 

others require more intensive chemical synthesis to yield a useful feedstock (Al-Salem, 

Lettieri, and Baeyens 2009). In the US, recycling has been increasingly utilized as an EOL 

option as a percent of total waste but rates remain low, with an average plastic recycling rate 

of 9% (USEPA 2015a). The process of recycling can have significant environmental benefits 

because it offsets the production of virgin materials and upstream energy use, however the 

quality of the recycled material can diminish the more it is recycled. The reduced quality of 

recycled plastics leads to ‘down-cycling’ through different types of applications. The balance 

between demand for recycled feedstocks and cost to process recyclables results in narrow 

profit margins for the industry (Hopewell, Dvorak, and Kosior 2009).  

Composting is method of processing organic wastes that utilizes the natural 

biological processes of aerobic bacterial communities to convert organics into stable soil 

carbon which serves to buffer nutrients in the soil, control moisture content, and sequester 
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biogenic carbon. The benefits of composting allow for the elimination of waste and the 

creation of a useful soil amendment which can be sold for landscaping, gardening, and 

farming. Despite the benefits, composting has largely been the purview of a few farmers and 

gardeners but with increasing levels of municipal-scale waste management. The composting 

process reduces the volume of wastes by up to 50% (CalRecycle 2006) which has made it 

useful in niche municipal services like neighborhood leaf disposal. Composting has also been 

used as a pretreatment for landfill wastes to reduce the overall volume and convert organics 

to CO2 rather than risk CH4 generation once the wastes are in the landfill (Komilis, Ham, 

and Stegmann 1999), avoiding the severe climate change implications of methane emissions 

(Bogner, Pipatti et al. 2008, Adhikari, Barrington, and Martinez 2006, Wang, Odle et al. 

1997). 

Incineration of MSW, with or without energy recovery, has been in decline since the 

1980s with 80 waste-to-energy facilities nationwide in 2013 down from 102 in 2000 with the 

majority of capacity in the Northeast and the least in the West (USEPA 2015a). Some 

combustion facilities, like composting of MSW, are used simply to reduce the volume of 

waste sent to landfill. The decline of combustion facilities was due in part to pressure from 

environmental groups and social movements who expressed concerns about the effects 

MSW incineration can have on air quality (MacBride 2013). There are some new efforts to 

expand the use of combustion facilities with energy recovery as an alternative to landfill, 

including pyrolysis and plasma technologies but because incineration facilities are expensive 

to site and there is significant opposition from neighborhoods and environmental groups, 

few have been built (Arena 2012, Zhang, Dor et al. 2012, MacBride 2013). 
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Increasing Interest in End of Life 

 While there have been many LCAs of biopolymers, a majority of them focus on the 

production related impacts with far fewer evaluating EOL. Chapter 2 details the use of LCA 

and the findings of previous biopolymer studies which largely focus on global warming and 

fossil fuel depletion impacts through July 2012. Despite the lack of scenarios evaluating 

composting in LCA, compostability is a critical feature of some biopolymers and a dramatic 

shift from recycling or landfilling. 

The technology for municipal scale composting is well developed with published 

best practices and equipment available for the chipping, mixing, and hauling organic wastes 

(Chen, Inbar et al. 1997, Campbell, Glasser et al. 2009). Composting is not widely adopted as 

a result of the ease and historically low costs of landfilling, which is the status quo, and the 

complications of diverting wastes for feedstock acquisition. This is due in large part to 

contamination in consumer separated wastes or the complexity in sorting unseparated wastes 

(Platt, Goldstein et al. 2014, Yepsen 2013, Bernstad 2014, Graham-Rowe, Jessop, and Sparks 

2014). However, the potential of food wastes to drive methane generation in landfills and 

the challenges of climate change have driven interest in composting as a more 

environmentally friendly approach to waste management. 

The ASTM specifications and ISO test methods used to determine whether a plastic 

is compostable under controlled composting conditions do not necessarily reflect 

performance under real composting conditions (ISO). The standard test methods differ 

from real composting processes due to climatic differences, types of organic feedstocks, and 

other variables such as internal temperature, moisture, and pH (Kale, Auras, et al. 2007). 

There are many published and anecdotal reports of biopolymers not composting sufficiently 

in commercial composting facilities (Ghorpade, Gennadios, and Hanna 2001, Mohee and 
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Unmar 2007, Gómez and Michel Jr 2013). Additionally, crystalline PLA has been shown to 

be stable within a landfill environment, which is an important feature in order to avoid 

unwanted CH4 emissions or premature degradation, while amorphous PLA does result in 

emissions under landfill conditions (Kolstad, Vink et al. 2012), leading to further questions 

about the life-cycle impacts of biopolymers.  

 

Decision Making Implications on EOL 

Consumer decision making, facilities management, and available waste services 

dictate how biopolymers, or any other products, are entering the EOL phase. The behavioral 

aspects of waste collection are complex and involve a wide variety of factors which 

contribute to different patterns of consumer behavior across demographics and locales.  

For individual consumers decision making is often based on awareness of 

environmental impacts and the ease with which they can alter their behaviors to conform to 

their preferences. By providing convenient services and communicating environmental goals, 

facility managers and waste collection companies can empower their customers to act in a 

way that conforms to the environmental preferences of their customers while achieving the 

goals of the businesses (Graham-Rowe, Jessop, and Sparks 2014, Bernstad 2014). Behavioral 

research which investigated waste collection strategies in public venues highlights the 

benefits of an approach which incorporates techniques to encourage positive behavior 

change through social dynamics and traditional outreach. Early adopters of new waste 

collection schemes can provide a model of behavior which in turn encourages others to 

follow suit (Zhang, Williams et al. 2011, Sussman and Gifford 2013, Sussman, Greeno et al. 

2013, Ohtomo and Ohnuma 2014, Schwab, Harton, and Cullum 2014, Mickaël 2014). 
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Waste management companies have focused largely on systems models and 

collection optimization to improve their performance, primarily to reduce costs associated 

with waste handling. Most of the work that has been done on modeling waste scenarios has 

focused on optimizing the current waste handling paradigm with recycling only becoming a 

piece of most models in the 1990s. Since then, there has been a slow progression towards 

the development of tools to identify more sustainable methods to waste management 

(Morrissey and Browne 2004). Waste management, which is characterized by a relationship 

between sources, sinks and offsets, has resulted in decreasing environmental impacts even 

while municipal solid waste (MSW) increased by 60% from 1974 to 1997. Significant 

improvements were largely due to methane emissions reduction from landfills and increased 

recycling rates (Weitz, Thorneloe et al. 2002).  

Approaches to waste management have been evolving as the cost of landfilling and 

the environmental concerns about siting new landfills increases (Lund 1990). Dynamic 

models of the waste management system have been designed to evaluate costs and efficacy 

policy interventions designed to measure flows to landfills (Dyson and Chang 2005, 

Kollikkathara, Feng, and Yu 2010). An increased desire to move wastes out of landfill and 

demand from large customers, including ASU, the City of Phoenix, and Intel, has driven 

more companies, like WM, to expand their services to include composting. 

Waste handling is a dynamic activity with constantly changing variables including the 

introduction of new types of waste and new approaches to managing wastes which have the 

potential to change impacts on a broad scale. While compostable biopolymers may help 

reduce landfill wastes, for plastics and other organics, this effort must be accomplished at 

scale. If biopolymers can be produced with similar or preferable impacts compared to fossil-
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based plastics, EOL processes may govern which plastics perform more favorably under 

different use paradigms. 

Furthermore, decision making must be informed by accurate assessments of current 

and near-term performance of biopolymers. In addition to LCAs, many environmental 

assessments of biopolymers have been done which can contribute to the development of 

biopolymer LCAs  including investigation of compost emissions (Hermann, Debeer et al. 

2011), investigation of degradation rates in landfill (Kolstad et al. 2012), updating life-cycle 

inventories (Vink and Davies 2015a), and evaluating useful service life of biopolymers 

(Miller, Srubar Iii et al. 2015).  
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CHAPTER 2 

SUSTAINABILITY ASSESSMENTS OF BIO-BASED POLYMERS 

 

This Chapter was published in the peer reviewed journal Polymer Degradation and Stability and 

appears as published with the exception of text and figure formatting. The citation for this 

article is:  

Hottle, T.A.., M.M. Bilec, and A.E. Landis. 2013. "Sustainability assessments of bio-based 

polymers."  Polymer Degradation and Stability 98 (9):1898-1907.  

 

This chapter addresses research objective 3) Evaluate sustainable solutions for composting 

infrastructure options and factors influencing feasibility of scaling 

 

Introduction 

As biopolymers capture a larger market share, the measurement of their life-cycle 

environmental impacts will be important to enable consumers and producers to identify 

more sustainable methods of use, production, and disposal for such products. This paper 

summarizes the range of reported findings from peer-reviewed life-cycle assessments (LCAs) 

and commonly used LCA databases. LCA is a tool that quantifies the environmental 

sustainability of bio-based polymers from their ‘cradle to grave’. A review of LCAs and LCA 

databases provides the research and polymer community with guidance toward the use of 

LCA in furthering the sustainability of the use, design, and disposal of bio-based polymers. 

Plastics are used in all aspects of life including textiles, electronics, healthcare 

products, toys, packaging for foods, and many other goods. Approximately 31 million tons 

of plastic were used in the United States in 2010 with 14 million tons used in packaging, 11 
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million tons used in durable goods, and 6 million tons used in non-durable goods such as 

disposable diapers, cups, and plates (USEPA 2010). Globally, plastic production exceeded 

260 billion kilograms of plastic in 2009 (Thompson, Swan et al. 2009). According to the US 

Census Bureau the population of the US in 2010 was nearly 309 million people (Mackun 

2011), which means an average of about 200 pounds of plastic per person was consumed 

that year. 

Currently the dominant feedstocks for plastic production are derived from the fossil 

fuel industry. The chemistry of plastics lends itself to the readily accessible constituents of 

petroleum and natural gas. These sources have been able to provide reliable, consistent 

feedstocks for plastics development over the last 60 years. Over time, plastics have become 

more and more prevalent in daily life and new technologies are improving the performance 

of plastics, but just as gasoline and diesel will decrease in availability due to the increasing 

cost or scarcity of petroleum and other fossil-based fuels, so too will plastics made from 

fossil resources (Anastas and Kirchhoff 2002). This increasing scarcity of resources 

emphasizes the need for alternative methods of creating plastics. Further, if resource 

availability were not a concern, it would be desirable to find methods of production that 

decrease the environmental impacts of ubiquitous materials because of the sheer scale of the 

industry. Petroleum-based plastics are crafted from carbon that has been locked up in the 

earth for millions of years. If this carbon were released through the incineration of the 

plastics, or some other form of degradation, it would result in a net increase of greenhouse 

gases in the atmosphere. 

Plastics have different useful lifespans and are disposed of in a number of ways with 

varied recycling rates. According to the US Environmental Protection Agency (EPA), in 

2009, plastics contributed to 12%, by weight, of the municipal solid waste (MSW) in the US, 
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and 7% of plastics that were disposed of in MSW were recovered for recycling, though 

recovery rate is not necessarily indicative of a final recycling rate. Of total plastics, about 

93% end up in a landfill or are incinerated. Generally, 12% of MSW that is not recovered is 

incinerated as a waste management strategy. When burned, 1 kg of plastic produces an 

average of 2.8 kg of carbon dioxide (EIA 2011). While overall recovery of plastics for 

recycling was only 7%, recovery of certain plastic containers is more significant. Polyethylene 

terephthalate (PET) soft drink bottles were recovered at a rate of 28% in 2009, while high-

density polyethylene (HDPE) milk and water bottles were estimated at about 29%. 

Packaging and nondurable plastics in MSW totaled 19.2 million tons, of which 9% were 

recovered (USEPA 2009). 

Biopolymers come in many different forms; they can be derived from renewable 

resources and may not be defined within the traditional plastics classification numbering 

system 1–6, like polylactic acid (PLA) (Landis 2010) or they can be partially made from 

renewables and synthesized like traditional plastics as in the case of bio-based PET (Tabone 

et al. 2010, Morschbacker 2009). Biopolymers offer a renewable alternative to traditional 

petroleum-based plastics and can be derived from a wide variety of feedstocks including 

agricultural products such as corn or soybeans and from alternative sources like algae or 

food waste (Flieger et al. 2003, Du and Yu 2002, Landis, Miller, and Theis 2007). 

Biopolymers can replace petroleum-based polymers in nearly every function from packaging 

and single use to durable products. 

Biopolymers are being designed with features such as biodegradability and 

compostability, which are standardized in the US according to ASTM D6400-04 Standard 

Specification for Compostable Plastics, ASTM D6868-03 Standard Specification for 

Biodegradable Plastics Used as Coatings on Paper and Other Compostable Substrates, and 
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ASTM D5338-98(2003) Standard Test Method for Determining Aerobic Biodegradation of 

Plastic Materials Under Controlled Composting Conditions (ASTM 2004, 2003b, a). 

Biopolymers offer the opportunity to reduce fossil resources required to produce the 21 

million tons of plastic annually consumed for packaging and non-durable goods, as well as 

divert the 16.7 million tons of plastic waste entering landfills. However, being derived from 

renewable resources does not guarantee that biopolymers will perform favorably when 

compared to petroleum-based polymers (Miller, Landis, and Theis 2007), and as such, 

sustainability assessments like LCA are conducted to compare and improve the 

environmental impacts of biopolymers. 

This review presents a broad summary of the current status of environmental impact 

assessments for biopolymers. We begin with an overview of biopolymers and an 

introduction to LCA. Then we review the output data from the commonly used life-cycle 

inventory (LCI) database, ecoinvent, and impact assessment tool. Finally, we review and 

analyze the findings of LCA studies on biopolymers that have been published within the 

peer reviewed literature. 

 

Common Biopolymers 

The studies reviewed in this paper focused on the LCA results of PLA, PHA, and 

thermoplastic starch (TPS). These are the most prevalent biopolymers currently represented 

in life-cycle literature. While there are other biopolymers on the market and in development, 

such as bio-based 1,3-propanediol (PDO) and bio-based polyethylene terephthalate (Bio-

PET), publicly available data and life-cycle assessment results were not available at the time 

of this review. 
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The applications of PLA include clear and opaque rigid plastics for packaging, 

disposable goods, durable goods, and bottles, as well as films and fibers for a variety of 

purposes (Vink, Rábago et al. 2004, Vink, Davies, and Kolstad 2010). PLA is made from 

lactic acid, which is produced through the fermentation of dextrose typically sourced from 

corn, however any starch-rich feedstock could be used. Lactic acid can be polymerized in a 

number of different ways to create granules that are used to make commercial products 

(Giorno, Chojnacka et al. 2002, Tay and Yang 2002, Gruber, Hall et al. 2001). PLA can be 

blended with petroleum-based polymers or fibers, either synthetic or natural, to improve the 

heat resistance or durability of the plastic (Landis 2010). PLA-based plastics can be 

biodegradable and compostable, features that offer a wider variety of options for disposal 

(Gerngross and Slater 2000). 

PHA had a short history of use in packaging and bottles but is not widely used in 

these applications today (Gerngross and Slater 2000). PHA is increasingly being used in 

more niche applications in a variety of industries from medicine to agriculture. PHA is 

produced through the bacterial fermentation of renewable feedstocks containing monomers 

such as glucose, sucrose, and vegetable oil, resulting in the formation of the polymer 

(Akiyama, Tsuge, and Doi 2003, Philip, Keshavarz, and Roy 2007). Similar to PLA, PHA can 

also be combined with other materials to form composites with improved properties. PHA 

is also biodegradable and can be used to create compostable plastics (Philip, Keshavarz, and 

Roy 2007). 

Another biopolymer included in the studies reviewed herein is TPS. It is created 

using the starch polymers from renewable sources, primarily corn, which is then processed 

and combined with additives and formed into shape (Bastioli 1998). TPS is generally 

incorporated into composites with synthetic polymers to create materials appropriate for the 
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market. These materials can be used in making films, rigid materials, such as plates and 

cutlery, packaging, and foams, and, depending upon the constituents may be biodegradable 

and compostable. Current research efforts are focused on creating new TPS based 

composites by incorporating fibers or nano-materials to improve or completely change the 

characteristics of starch products (Bastioli 1998, Lopez et al. 2012, Mohammadi Nafchi et al. 

2013, Cyras, Manfredi et al. 2008). 

Two other important plant-based materials in the polymer industry are bio-based 

1,3-propanediol (PDO) and bio-based polyethylene terephthalate (BIO-PET); however these 

polymers are not well represented in the LCA literature and thus were not included in the 

subsequent review. PDO is made through biological fermentation processes in conjunction 

with petroleum products to create materials comparable with nylon. The primary biological 

feedstock used in the fermentation process is corn grain, which makes up 37% of the 

polymer by weight. The remaining content is derived from fossil-based products (Álvarez-

Chávez et al. 2012). Current applications of polymers made with PDO include carpeting, 

apparel, and films, which are reported to outperform traditional petroleum-based materials 

(Kurian 2005). BIO-PET, which is made from combining bio-based ethylene and other 

petroleum-based feedstocks, is most notably used in clear plastic bottles. The ethylene 

portion is made from corn fermentation similar to the corn ethanol process, and is then 

synthesized in the same manufacturing process as traditional PET. This results in a product 

identical to traditional PET that is recyclable but not biodegradable (Shen, Haufe, and Patel 

2009). Efforts exist to create a completely bio-based PET product (Shiramizu and Toste 

2011). 

PDO and BIO-PET products should be evaluated in an ongoing basis, similar to 

PLA and PHA, to determine the environmental impacts of these products. Additionally, as 
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manufacturing methods are refined and additional biopolymers are created, future research 

will be needed to identify the impacts of these products and identify where improvements 

can be made. 

 

LCA as a Method for Quantifying Environmental Impacts 

To determine the environmental impacts of a product or process, a LCA is often 

conducted. LCA provides a comprehensive and quantitative analysis of the environmental 

impacts of a product or process throughout its entire life-cycle. LCA is a powerful and 

widely used tool for measuring the sustainability of an enterprise or concept and informing 

decisions with respect to sustainability and environmental considerations. Guidelines for 

conducting an LCA are defined by the International Organization for Standardization (ISO) 

14040 series (ISO 2006). There are four main steps to an LCA according to ISO: 

 

1) Goal and Scope Definition – defines the extent of the analysis including the goals 

and the system boundaries. The functional unit for the LCA is defined within this 

step. The functional unit describes a reference for what is being studied and how 

much or over what time frame (i.e. 1 kg plastic resin). 

 

2) Inventory Analysis – documents material and energy flows that occur within the 

system boundaries, often referred to as Life-cycle Inventory (LCI). 

 

3) Impact Analysis – characterizes and assesses the environmental effects using the 

data obtained from the inventory, often Life-cycle Impact Assessment (LCIA). LCIA 

expresses the LCI data in common terms, usually with respect to an equivalency 
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factor, such as CO2-equivients for greenhouse gas emissions. Common LCIA 

categories include global warming potential, non-renewable resource depletion, 

eutrophication, ecotoxicity, acidification, ozone depletion, smog formation, and 

human health (e.g. carcinogens, respiratory impacts, and non-carcinogens). 

 

4) Interpretation – reviews the results of the LCA, identifies opportunities to reduce 

the environmental burden throughout the product's life, and provides conclusions 

and recommendations. 

 

Many organizations have established guidelines for performing detailed LCAs, 

including the Environmental Protection Agency (EPA), and the Society for Environmental 

Toxicology and Chemistry (SETAC) (ISO 2006, Vigon, Tolle et al. 1992, Fava, Denison et 

al. 1991, UNEP/SETAC 2005). All of these organizations describe LCA steps similar to 

those listed above. Assessments can range from conceptual models to detailed quantitative 

analyses. There are a host of LCA software packages and tools available to aid in the 

construction of an LCA. Additional information is available in the further reading section of 

this chapter. 

LCAs can be comparative or stand-alone (i.e. an analysis of a single product). 

Through use of a stand-alone LCA, it is possible to observe which stage (creation, use, or 

disposal) causes the most impact and may offer suggestions to minimize impacts throughout 

the product life. Comparative LCAs among possible products help to determine the 

environmentally preferable alternative. 

The system boundaries of an LCA may extend from cradle to gate, cradle to grave, 

or cradle to cradle. As depicted in Figure 3, cradle to gate (dashed lines) implies that the life-
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cycle assessment covers activities prior to the use phase while cradle to grave (dashed and 

dotted lines) includes the product's use and end-of-life. Cradle to cradle (whole chart) 

indicates a product that can be disposed of and returned back to the natural environment; 

the life-cycle of PLA can be considered as such because when PLA degrades its carbon is 

recycled back into the environment for uptake by biomass. In LCAs of polymers, 

practitioners may also describe boundaries from the cradle to pellet; where the analysis stops 

at the creation of resin pellets, and excludes processes downstream including product 

manufacture, use, and disposal. Furthermore, LCA practitioners also refer the system 

boundaries in terms of ‘scope’. The system boundaries for a scope 1 LCA would include 

only the material and energy flows associated with the manufacturer; for example, Scope 1 

system boundaries for the polymer manufacturer would extend only to the direct inputs and 

outputs associated with their factory. Scope 2 system boundaries include Scope 1 in addition 

to all supply chain and raw materials extraction data. Scope 3 system boundaries are used to 

define the entire life-cycle, including any further production or processing downstream of 

Scope 1 as well as use and disposal. 

 

Figure 3. Generic life-cycle stages for polymers. The dashed line indicates a cradle to gate 
system boundaries, the dotted line is an extension of that system boundary to cradle to 
grave, and the entire figure is indicative of a cradle to cradle assessment. 
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Review of Environmental Impacts of Polymers Reported in Existing LCA Databases 

LCA data is readily accessible in existing LCA tools for some biopolymers and most 

petroleum-based polymers. To review the environmental impacts reported in these existing 

LCA databases, life-cycle data for biopolymers and petroleum-based polymers were obtained 

from the ecoinvent v2.2 database (Frischknecht, Jungbluth et al. 2005). LCA data is available 

within ecoinvent for high density polyethylene (HDPE), low density polyethylene (LDPE), 

polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and two 

biopolymers: PLA and TPS. This data is reported in ecoinvent by the “European plastics 

industry” for petroleum polymers, while biopolymer data is reported by NatureWorks for 

PLA compiled in 2007, and from Novamont from 2004 for TPS. In order to review and 

succinctly present the ecoinvent data (which otherwise would be tables of hundreds of 

material and energy flows), LCA software such as SimaPro enables LCI data from ecoinvent 

to be used in conjunction with the TRACI v2.00 (Tool for the Reduction and Assessment of 

Chemical and Other Environmental Impacts) (Bare 2011), developed by the US EPA, to 

compare life-cycle impacts from the database. TRACI calculates impacts for global warming 

potential (GWP), eutrophication, ecotoxicity, acidification, ozone depletion, smog 

formation, human health – carcinogens, human health – non-carcinogens, and human health 

– respiratory. The limitations to reviewing existing biopolymer LCI data in this manner are 

discussed in subsequent sections. 

The comparative life-cycle environmental impacts from existing databases for petro- 

and biopolymers are shown in Figure 4 and Figure 5, reported directly from ecoinvent and 

TRACI with no modifications. These figures present a simplified analysis of the ecoinvent 

data using TRACI to demonstrate life-cycle methodology, and can provide a baseline for the 

environmental impacts of PLA and TPS with commonly used data and tools. The results 
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reported from ecoinvent represent a cradle to granule (i.e. gate) system boundary for the 

production of 1 kg of granules for the five common petroleum-based plastics and PLA. 

Since TPS is not formed into granules, the functional unit for TPS was 1 kg of processed 

starch. While the polymers are compared in Figure 4 and Figure 5 by weight, the functional 

units and thus the comparative impacts of the subsequent products may vary. 

 

Figure 4. Global warming potential for cradle to granule (gate) of PLA and TPS compared to 
five common petroleum-based plastics. Data taken from ecoinvent v2.2 and TRACI v2.00. 
PLA = polylactic acid, TPS = thermoplastic starch, HDPE = high density polyethylene, 
LDPE = low density polyethylene, PET = polyethylene terephthalate, PP = polypropylene, 
PS = polystyrene. 
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Figure 5. Life-cycle environmental impacts of PLA and TPS compared to petroleum-based 
polymers per kg of granule (starch). Data taken from ecoinvent v2.2 and TRACI v2.00. PLA 
= polylactic acid, TPS = thermoplastic starch, HDPE = high density polyethylene, LDPE = 
low density polyethylene, PET = polyethylene terephthalate, PP = polypropylene, PS = 
polystyrene. CTUe = Comparative Toxic Unit ecosystem, CTUh = Comparative Toxic Unit 
human health. 
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While Figure 4 shows little difference between the biopolymers and petroleum-based 

plastics with regards to GWP, it is clear from the results of other impact categories included 

in Figure 5 that there are environmental tradeoffs between biopolymer and traditional 

polymer production. There are environmental impact categories, notably eutrophication, 

ozone depletion, and non-carcinogenic human health, in which the biopolymers exhibit 

higher environmental impacts when compared to the petroleum-based plastics. However, 

the relative significance of these impacts should be evaluated to determine whether or not 

some impacts occur at such small rates that there is no real impact as a result of the 

production process. The significance of the impacts can be determined through 

normalization and weighting, which assigns weighted values to the different impact 

categories and helps compare them to known impact values. This review paper does not 

apply weighting or normalization to determine significance; the reader is referred to 

Development of normalization factors for Canada and the United States and comparison 

with European factors (Lautier, Rosenbaum et al. 2010) for an example of normalization 

factors for TRACI. 

Using LCI data combined with an LCIA tool in a black box approach as depicted in 

Figure 4 and Figure 5 may result in overestimation of impacts or even an inaccurate model 

of the system. Many environmental impact categories have certain conditions that must be 

modeled accurately. For example, in the case of the eutrophication category, water bodies 

tend to be either nitrogen or phosphorus limited, which means that only N compounds 

would contribute to eutrophication in N-limited water bodies. As such, P emissions would 

not contribute to eutrophication in those areas. When LCI data is analyzed using LCIA tools 

without customization, these details related to regional implications and limitations of water 

bodies are not taken into account in existing LCA tools. Thus, eutrophication impacts can be 
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overestimated. Similarly, impacts related to smog tend to only manifest in urban areas. 

However, black box LCA tools do not account for regional variations in emissions, and 

again may overestimate the impacts of smog-related emissions. In the case of PLA, smog 

related emissions occur primarily at power production facilities (40%) and on farms (33%); 

farms in particular are generally located where they are less likely to contribute to smog. 

When conducting a comprehensive LCA of specific products with known production 

locations and known supply chains, it is important to understand and model the particulars 

of the system, while simultaneously utilizing sensitivity analysis and scenario analysis to 

determine any changes to LCA impacts resulting from changes to supply chains or 

production facilities. 

Based on the outputs from TRACI and the data supplied by ecoinvent, the 

eutrophication attributed to the biopolymers is due in large part to agricultural N and P 

emissions from intensive farming, which contributes 52% of the eutrophication impacts for 

PLA and 56% for TPS. Energy use during the production process was the secondary driver 

of eutrophication for biopolymers. Eutrophication from PET production results primarily 

from the use of ethylene and ethylene glycol, which is one of the primary compounds used 

to make PET (with either dimethyl terephthalate (DMT) or terephthalic acid (TPA)). 

Biopolymers' ozone depletion impacts are largely attributable to emissions that result from 

the transport of fossil fuels used in the process of creating the biopolymers. The non-

carcinogenic human health impacts from TPS can be associated with the ecoinvent data for 

intensive corn farming in Switzerland which results in zinc emissions to the soil. TPS 

exhibited more than 7 times greater noncarcinogenic human health impacts compared to 

PLA, which are both made from corn. A sensitivity analysis was performed to determine if 

the methods of farming defined by ecoinvent were impacting the results. Ecoinvent data for 
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PLA is derived from average corn production occurring in the US while ecoinvent data for 

TPS corn production is from Switzerland (Frischknecht et al. 2005). 

In order to evaluate the difference that the ecoinvent regional agricultural data has 

on resultant LCA environmental agricultural impacts, the original ecoinvent TPS results were 

compared to a modified TPS process that was built using the PLA corn agricultural data. 

Only the agricultural data was changed in the modified TPS process; and all data was 

obtained without modification from ecoinvent. Similarly, an additional sensitivity analysis 

was conducted to determine the effects of different electricity mixes between the TPS 

(ecoinvent utilizes Italy's mix) and PLA (ecoinvent uses a generic European mix) ecoinvent 

data. The results of the sensitivity analysis can be seen in Figure 6. This sensitivity analysis 

demonstrates minimal change due to the electricity mix. However, the effect of the data 

from ecoinvent's regions for corn production created dramatic effects on the results for non-

carcinogens that would bring the non-carcinogenic human health impacts for TPS down to 

1.99E-7 CTUh, falling between PLA and PET. When we reviewed the inventory data in 

ecoinvent we found that corn produced in the US resulted in negative zinc emissions, while 

corn grown in Switzerland results in zinc emissions to the soil. This is a discrepancy in the 

data that is characteristic of the types of problems that can manifest in LCA results if LCI 

data is not evaluated and properly validated. 
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Figure 6. Sensitivity analysis for the corn production and energy mix of TPS using the 
TRACI v2.00 results and data from ecoinvent 2.2 database. TPS original ecoinvent uses 
German corn production and an Italian electricity mix. TPS w/ US corn production swaps 
TPS original ecoinvent agricultural data with US corn production data used in ecoinvent 
PLA data. TPS w/ UCTE electricity swaps TPS original ecoinvent electricity data with 
ecoinvent electricity data for PLA processes, which were derived from Union for the 
Coordination of the Transmission of Electricity averages. 
 

When taken together, Figure 4 and Figure 5 make it difficult to determine if there is a 

significant difference between the cradle to gate production of biopolymers and 

petropolymers. Some LCAs attempt to answer this question through a normalization process 

to show whether or not different impact categories are significant. With ecoinvent system 

boundaries only from cradle to granulate (or kg of starch in the case of TPS), biopolymers 

do not exhibit a clear win or lose across any of the environmental indicators when compared 

to petroleum polymers. It is not clear that PLA and TPS are ‘better’ or ‘worse’ within the 

acidification, smog formation, ecotoxicity, carcinogen or respiratory categories. PLA's 

ecotoxicity impacts range from 3 times greater than PP and only 1.2 times greater than PET. 
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However, PLA and TPS result in higher eutrophication and ozone depletion impacts than 

their petroleum counterparts. Finally, TPS non-carcinogenic human health impact results 

from ecoinvent and TRACI may be overestimated by a factor of four as described in the 

sensitivity analysis. 

 

Review of Published LCAs 

 Table 2 summarizes LCAs of biopolymers published in the peer-reviewed literature 

through 2012. The environmental performance of PHA, PLA, and TPS has primarily been 

evaluated from the cradle to the production of resin or pellet with fewer than half of the 

studies including EOL in the system boundaries (Table 2). The studies compare biopolymers 

to petroleum-based polymers on the basis of GWP and nonrenewable energy use, while 

other EPA criteria air pollutants and nonpoint aqueous emissions are included in only a few 

of the studies. Figure 7 summarizes the distribution of environmental impact areas that were 

evaluated in recent biopolymer LCAs. Of the twenty-one studies reviewed, nearly all of them 

evaluated GWP and energy use, while other areas of impact were largely ignored with fewer 

than 25% of the studies evaluating ecosystem quality, eutrophication, human health, land 

use, or water use. The emphasis is clearly on greenhouse gas emissions and energy use. LCAs 

that assess only GHGs and nonrenewable energy consumption may miss potential 

unintended consequences resulting from switching from petro to biopolymers. For example, 

bio-based products have been shown to exhibit tradeoffs in the form of decreased 

greenhouse gas emissions while experiencing increased water quality degradation (Miller, 

Landis, and Theis 2007). Biopolymers may outperform petroleum-based polymers, but that 

cannot be confirmed unless LCA practitioners are creating clear assessments of the 

environmental impacts of both petroleum-based polymers and their bio-based counterparts. 
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Table 2. Impact categories and system boundaries of previous biopolymer LCAs. End of life 
(EOL) scenarios: I = incineration without energy recovery, IR = incineration with energy 
recovery, L = landfill without methane capture (* indicates the study assumed no methane 
production), LC = landfill with methane capture, R = recycle, T = litter, C = compost.  
 

 

Author
Date Accepted

Product
Global W

arming
Fossil Fuels/Energy

Ecosystem Quality
Eutrophication

Human Health
Land Use

W
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Resin
Pellet

Product
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Gerngross
August 2000

General
Dornburg

July 2003
General

I
Kijchavengkul

Februrary 2008
General

Tabone
September 2010

General
Heyde

July 1997
PHB

I, L, R
Kurdikar

July 2000
PHA

Akiyama
November 2002

PHA
Kim

June 2004
PHA

Pietrini
April 2007

PHB
IR

Yu
July 2008

PHA
Zhong

November 2008
PHA

Kendall
January 2012

PHB
Vink

November 2002
PLA

Bohlmann
November 2004

PLA
L*, LC

James
June 2005

PLA
C, LC, R, T

Vink
April 2007

PLA
M
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M

arch 2009
PLA
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Vink
June 2010

PLA
Groot

July 2012
PLA

Shen
M

ay 2008
TPS

IR
Piemonte

December 2010
TPS

Study Details
Life Cycle Im

pact Assessm
ent Categories Reported

System
 Boundaries, Cradle to . . .  
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Figure 7. Impact categories included in peer reviewed biopolymer LCAs. ‘General’ refers to 
studies that looked at biopolymers in general without focusing on TPS, PHA, or PLA. 
 

The LCAs summarized in Table 2 run the gamut in regards to system boundaries, 

research goals, product types, assumptions, and EOL scenarios. These are important 

differences that help to explain the variability of the results and determine which studies 

should inform the larger debate. A majority of the LCAs were conducted to evaluate specific 

products, such as PLA (Vink, Davies, and Kolstad 2010, Dornburg, Lewandowski, and Patel 

2003, Heyde 1998, Pietrini et al. 2007, Zhong, Song, and Huang 2009, Vink et al. 2003, 

Bohlmann 2004, James 2005, Madival et al. 2009, Shen and Patel 2008). Other studies 

focused primarily on the manufacturing process (Akiyama, Tsuge, and Doi 2003, Yu and 

Chen 2008, Kendall 2012, Vink et al. 2007), the types of feedstocks being used (Kurdikar et 

al. 2000, Kim and Dale 2004, Groot and Borén 2010), the overall sustainability of the 

polymers (Tabone et al. 2010, Gerngross and Slater 2000), the compostability of products 
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made from biopolymers (Kijchavengkul and Auras 2008), or the land use change associated 

with the production of biopolymers (Piemonte and Gironi 2011). 

Similarly, when the system boundaries extended to the product or end-of-life, there 

were significant differences in the types of products assessed; Heyde, James, and Piemonte 

looked at plastic bags (Heyde 1998, James 2005, Piemonte and Gironi 2011), Bohlmann and 

Madival looked at containers for food (Bohlmann 2004, Madival et al. 2009), and Shen 

assessed generic packaging (Shen and Patel 2008), all of which would be considered non-

durable goods or packaging. The study by Pietrini looked at monitor casings and car panels 

and was the only LCA reviewed that evaluated durable goods (Pietrini et al. 2007). 

The remaining figures are related to GWP reported for the biopolymers in these 

studies. Aside from greenhouse gases being significant factors in the environmental impacts 

of a product, GWP was the most consistent measure used in the studies and for which most 

of the data could be converted to a single unit of measure for comparative purposes. Of the 

twenty-one studies, fifteen reported data that could be used in the subsequent comparisons. 

Figure 8 illustrates the range of reported CO2 equivalents among fifteen LCAs 

published over a twelve-year period. Of the twenty-one studies, fifteen reported data that 

could be used in these comparisons, while the remaining six did not report in values that 

could be converted to CO2 equivalents. Study (f), (l), and (n) provided single data points 

while the others provided ranges due to scenario changes and uncertainty. Figure 8 also 

illustrates the overall range of CO2 equivalents reported among the reviewed LCAs of 

biopolymers that included greenhouse gases in their life-cycle inventory. The TPS data was 

sourced from a limited number of studies and does not indicate a very broad range. 
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Figure 8. Reported LCA ranges of CO2 emissions equivalents for PHA, PLA, and TPS from 
the reviewed studies. *Each study had different system boundaries and scenarios that 
contributed to this range. (a) Kurdikar, (b) Akiyama, (c) Vink, (d) Kim, (e) Bohlmann, (f) 
James, (g) Vink, (h) Pietrini, (i) Shen, (j) Yu, (k) Madival, (l) Vink, (m) Groot, (n) Piemonte, 
and (o) Kendall. 
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The system boundaries and assumptions within the studies significantly influence the 

GWP results reported in Figure 8. For example, transportation emissions and EOL scenarios 

in Madival's study (k) resulted in significantly higher GWP numbers than the other LCAs of 

PLA that omitted these emissions. 

Likewise some of the lower values reported can be attributed to the use of alternative 

energy scenarios in the LCAs; this is particularly visible in two studies by Vink (c, g) and the 

one by Groot (m). Vink's use of wind power and renewable energy certificates (RECs) in 

some scenarios results in the lower range of GWP reported for the biopolymers (Vink et al. 

2003, Vink et al. 2007). Vink's most recent paper does not incorporate wind energy offsets in 

this way (Vink, Davies, and Kolstad 2010). Similarly, the study by Groot (m) includes carbon 

offsets from burning left over biomass for energy, reducing the GWP of PLA by offsetting 

the need for fossil fuels in the manufacturing process (Groot and Borén 2010). 

Kurdikar's wide range of findings for PHA (a) are a result of divergent scenarios that 

assume single source heat and power generation with biomass power resulting in net 

negative carbon emissions. Kurdikar's coal scenario topped out the charts with around 5.5 kg 

CO2 equivalent per kilogram of PHA (Heyde 1998). Kurdikar's early study reports both the 

upper and lower limits in Figure 8 for the LCAs of PHA/PHB. The later studies, able to 

refine their scenarios and system boundaries, provided greater certainty with their results. 

The system boundaries of the studies and which EOL scenarios, if any, were 

included in the LCA can greatly influence the GWP results, which is explored in more detail 

in Figure 9 which depicts the average of the fifteen studies included in Figure 8, breaking 

them up based on the system boundaries used in the LCAs. Though the EOL scenarios are 

different in each LCA, Figure 9 demonstrates that when EOL is included in the system 

boundaries of an LCA for PHA and PLA, the GWP of the products increases up to 12-fold 
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and 6-fold from the pellet, respectively. Table 2 shows that three of the LCAs included only 

one method of disposal while the other four studies evaluated two or more methods of 

disposal. Furthermore, methane capture or lack thereof during landfill scenarios (Spokas et 

al. 2006) and uncertainty regarding composting methods, which may include too much 

moisture or not enough oxygen leading to methane emissions (Vink et al. 2003), may also 

drastically affect the greenhouse gas emissions from the biopolymers. 

 

Figure 9. Average global warming potential of biopolymers based on the extent of the 
system boundaries of the fifteen different LCAs assessed in this study. 
 

Including EOL provides a more comprehensive estimate of the life-cycle 

environmental impacts of biopolymers. However, the specific method of disposal may also 

provide varied results. In fact, despite the compostability of many biopolymers, the 

predominant method of plastics disposal in the US is recycling or landfilling. Few US cities 

have compost infrastructure. A sensitivity analysis of EOL studies is important to ensure the 
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results do not hinge on a single assumption, especially when the assumption is based on 

consumer behavior. Additionally, the scenarios must be representative of how the 

biopolymers are being disposed of or viable alternatives. Madival provided a nice example of 

scenarios for comparison: Scenario 1) 40% recycling, 30% incineration, 30% landfill, 

Scenario 2) 100% landfill, Scenario 3) 100% recycling, Scenario 4) 50% incineration, 50% 

landfill, and the Current Scenario for the US – 23.5% incineration, 76.5% landfill (Madival et 

al. 2009). These scenarios provide a wide variety of EOL combinations in order to explore 

the upper and lower limits of the impacts that result from the different methods of disposal. 

 

Summary 

Life-cycle Assessment is a tool that can quantify the environmental impacts of 

biopolymers. However, the environmental impacts associated with the creation, use, and 

disposal of biopolymers remains unclear, since biopolymers can be made into a variety of 

products for a variety of uses, and ultimately are disposed of in many different ways. One 

role of LCA practitioners is to identify current production benchmarks and to analyze future 

scenarios to help guide the development of manufacturing, use, and disposal for sustainable 

products. 

There are other factors and tradeoffs that are important to the life-cycle 

environmental impacts of biopolymers beyond a simple cradle to gate LCA study. The end-

of-life options for biopolymers may prove to alter the product's environmental profile. The 

general assumption is that biopolymers quickly degrade and recycle their carbon to other 

plants via biological recycling. However, recommendations for waste management of PLA 

state that the material should be composted at industrial facilities since the appropriate 

degradation conditions cannot be met in the typical ‘backyard’ compost pile (Vink et al. 
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2004, Gruber and O'Brien 2002, Kale, Kijchavengkul et al. 2007). Industrial composting may 

add additional cost and transportation dimensions to the disposal of compostable products 

that make composting more comparable to a landfilling scenario which may further decrease 

any GWP benefits that were achieved. Despite the ability to compost most biopolymers, 

landfilling is currently the dominant waste management method in the US, and a major 

effort would be required to change personal disposal habits, including education of 

consumers and infrastructure for composting (Denison 1996, Gross and Kalra 2002, 

Sartorius 2002). While PLA has been shown to be stable in landfills (Kolstad et al. 2012), 

landfilling may alter the environmental profile of other biopolymers with the potential for 

methane emissions and uncertainty surrounding the capture of landfill gas (Spokas et al. 

2006). 

Biopolymers can be made to be biodegradable and compostable, but most US cities 

do not have composting infrastructure. The LCA by James was the sole study that included 

composting as an EOL option (James 2005). This highlights a major discrepancy between 

the feature of compostability and LCAs that simply analyze current polymer disposal 

practices rather than exploring the potential of creating new waste management pathways 

that may provide future environmental benefits or unintended negative consequences. 

Little work has been done to assess the recycling options for biopolymers using LCA 

methodologies. It has been shown that of the different disposal options for petroleum-based 

products, recycling offers substantial environmental advantages over other alternatives 

(Denison 1996, Patel, von Thienen et al. 2000). However, proper labeling and handling 

procedures for recycling facilities will be needed to ensure that biopolymers do not foul 

other recycling streams. Recycling may provide other life-cycle benefits by reducing 

feedstock requirements and energy input (Piemonte 2011). However, similar to composting, 
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the current infrastructure and logistics required may be a barrier to recycling of certain 

biopolymers like PHA and PLA. As noted by Song and colleagues, “although it is feasible to 

mechanically recycle some bioplastic polymers such as PLA a few times without significant 

reduction in properties, the lack of continuous and reliable supply of bioplastics polymer 

waste in large quantity presently makes recycling less economically attractive” (Song, Murphy 

et al. 2009). While this is a problem with a number of recyclable materials, as the biopolymer 

market continues to grow it may eventually became economically feasible to recycle 

biopolymers, which in turn could have a beneficial impact on the environmental 

performance of these products. Organic contamination caused by the use of biopolymers in 

food packaging further complicates the recycling of biopolymers (Razza, Fieschi et al. 2009), 

but the ability to compost them provides alternative waste management strategies when 

compared to traditional plastics. The optimal disposal scenario could involve incineration, 

composting, recycling, landfilling, or a combination of the aforementioned alternatives and 

may be different depending on the type of biopolymer. 

Many of the EOL scenarios reported in the literature are based on typical MSW 

ratios for plastics, but with most disposable biopolymers being advertised as compostable, it 

is unclear how consumers are disposing of these biopolymers. In addition, it is not clear 

what mix of EOL scenarios would provide the greatest benefits to biopolymers' life-cycle 

environmental impacts. While there have been studies clearly stating that biopolymers will 

not break down under landfill conditions, particularly PLA (Kijchavengkul and Auras 2008, 

Madival et al. 2009, Kale, Kijchavengkul, et al. 2007, Kolstad et al. 2012), others still report 

methane emissions from landfilling as an impact in the life-cycle for these products (Heyde 

1998, Bohlmann 2004, James 2005, Groot and Borén 2010, Shen and Patel 2008), thus 

increasing the GWP associated with biopolymers. Scenario development and sensitivity 
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analyses can help identify where assumptions such as methane emissions from landfilling of 

biopolymers have significant impacts and in what areas additional research is needed to 

provide more accurate data for the LCA. 

It is important for LCA practitioners to present transparent data and assumptions 

and to provide the necessary context of their findings in order to accurately quantify the 

impacts from biopolymers and traditional plastics as well as to aid the industry in making 

effective improvements. Databases, while convenient, must be scrutinized for accuracy and 

completeness. As production methods change, updates to inventories must be made. For 

example, Vink has continued to provide updated profiles for the creation of NatureWorks' 

PLA which should be incorporated into any future LCAs of that product (Vink, Davies, and 

Kolstad 2010). The quality of LCA findings is not only a function of determining 

appropriate system boundaries but is also determined by the quality of the inventory data. 

The ecoinvent database with TRACI produced results that were not commensurate with the 

results from NatureWorks (Vink, Davies, and Kolstad 2010), as described in the review of 

environmental impacts of polymers. These types of discrepancies result from a wide range of 

variables, namely differences in system boundary selection, in methods of calculation for 

environmental impacts, and the quality of the inventory data. All of these factors and 

assumptions can influence resultant impacts like GWP which, depending on system 

boundaries, may exclude carbon uptake by plants or ignore the GHG emissions that result 

from end of life treatments. Further, the environmental impacts of polymer production 

estimated in peer-reviewed LCAs are not consistent throughout the literature. Exploring the 

impacts of the polymer industry will help determine which impacts are relevant to the 

discussion and those that prove to be insignificant. 
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The potential benefits of biopolymers in regards to GWP will not be realized until 

the material and energy demands from the farming and production processes are reduced. 

The use of REC's in Vink's 2003 and 2007 studies of PLA demonstrate the power of a low 

fossil fuel energy paradigm combined with carbon negative feedstocks (Vink et al. 2003, 

Vink 2007). There is a great potential to sequester atmospheric carbon into everyday 

material. As noted by Gerngross and Slater, “any manufacturing process, not just those for 

plastics, would benefit from the use of renewable energy” (Gerngross and Slater 2000). The 

mitigation of the other environmental impacts, such as water quality degradation from 

agricultural practices, will further enhance the environmental profile for biopolymer 

products. 

Biopolymers are relatively new to the market when compared to their petroleum 

counterparts. The industry has made significant gains over a short period of time (Vink et al. 

2004, Vink, Davies, and Kolstad 2010, Vink et al. 2003, Vink et al. 2007), and any 

comparison between biopolymers and fossil-based polymers must take these technology 

improvements and productivity into account. The fact that biopolymers are currently on par 

with traditional plastics means that further technology improvements and economies of scale 

have the potential to tip the scales in favor of biopolymers. Environmental impacts resulting 

from agricultural production will need to be managed in order to maintain and improve any 

benefits gained by transitioning to bio-based production. Better agricultural nutrient 

management practices or the development of new feedstocks that require minimal energy 

and nutrient inputs are two ways to improve the impacts from agriculture (Landis, Miller, 

and Theis 2007, Mohanty, Misra, and Drzal 2002). Taking a whole-systems approach to 

designing sustainable biopolymers will lead to a path of biopolymers with clear life-cycle 

environmental benefits compared to their petroleum counterparts. However, without a clear 
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understanding of the distribution for biopolymers in waste streams, the resultant cradle to 

grave life-cycle environmental impacts of biopolymers remain uncertain. Life-cycle analysis 

will continue to be a useful tool to identify more sustainable methods of production, use, 

and disposal of biobased products. 
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CHAPTER 3 

TOWARD ZERO WASTE: COMPOSTING AND RECYCLING FOR SUSTAINABLE 

VENUE BASED EVENTS 

 

This Chapter was published in the peer reviewed journal Waste Management and appears as 

published with the exception of text and figure formatting. The citation for this article is:  

Hottle, T.A., M.M. Bilec, N.R. Brown, and A.E. Landis. 2015. "Toward zero waste: 

composting and recycling for sustainable venue based events."  Waste Management 38:86-94. 

 

This chapter addresses research objectives 1) Quantify end of life of waste flows of 

biopolymers via waste audits at public venues and waste handling facilities, and 2) Identify 

best practices for facilities management and waste handling of compostables via surveys and 

focus groups   

 

Introduction 

Venue-based events are a major part of Americans’ lifestyles and often include food 

and drink services which generate a significant amount of waste. There were over 125 

million people who attended NBA, NHL, MLB, and NFL games in the 2013 seasons (ESPN 

2014a, c, b, d) while domestic movie theater attendance exceeded 1.3 billion in 2013 (Nash 

Information Services LLC 2014). These figures do not include non-professional sporting 

events, festivals, fairs, concerts, and other theaters all of which are venue-based events. The 

food and drink services provided by all of these venues represent a large amount of 

disposable products which must enter the waste stream. As institutions shift toward more 

environmentally friendly operations and aim for zero waste facilities, compostable products 
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and alternative material pathways like composting and recycling become more attractive. 

These options can complicate decision making as facility managers must consider factors 

including source material selection, employee training, public awareness, simplicity of 

collection, and environmental tradeoffs for different approaches to waste management. 

Sporting events and other venue based activities have increasingly become a focus 

for environmental improvement through sustainability initiatives. The environmental 

assessment of major sporting events, such as the Olympics and international championships, 

has become an important factor in determining where and how these events are hosted 

(Collins and Flynn 2008, Collins, Jones, and Munday 2009). Sustainability efforts at sporting 

events in North America have been spearheaded by the Natural Resources Defense Council 

(NRDC) and the Green Sports Alliance who view waste management as one of the key areas 

of focus for improvement of environmental performance (Hershkowitz, Henly, and Hoover 

2012). Waste management has also been highlighted as a major operational focus for event 

managers looking to incorporate more sustainable practices. Not only can managers ensure 

the impacts of events are lessened but that “the event itself can be used to promote a green 

message” (Laing and Frost 2010). This suggests that events may serve as a model of public 

waste disposal in the same way that behavioral models function, altering the way people 

behave collectively. Similar efforts aimed at waste reduction have been evaluated for airports 

and air travel, which is functionally similar to venue based events because of the captive 

audience and the control over what types of materials enter the waste stream (Coggins 1994, 

Li, Poon et al. 2003, Pitt and Smith 2003). 

This research seeks to address public waste generation at venue based events through 

a two-pronged approach, (1) evaluate total waste generation from venues to model alterative 

handling scenarios and (2) evaluate different methods to reduce contamination in recycling 
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and compost. Modeling was conducted using USEPA’s Waste Reduction Model (WARM), 

which is designed to assess greenhouse gas emissions and energy impacts related to material 

types and waste management practices (USEPA 2014b). WARM was developed to help 

waste planners model impacts by selecting material inputs and providing model parameters 

which include transportation distances and landfill conditions (e.g. methane capture 

efficiency and landfill moisture content). WARM enables scenario development to create 

comparisons between differing approaches to waste treatment and the subsequent impacts. 

The two-pronged approach focuses on the evaluation of waste scenarios that 

incorporate more compostable products and the public’s ability to adjust to new methods of 

collection through a case study at Arizona State University’s (ASU) Packard Stadium at the 

Tempe, Arizona campus where collegiate baseball games are played. ASU’s goal is to become 

a “zero waste institution” producing no landfill wastes, which corresponds to a larger 

regional effort by the City of Phoenix to achieve a 40% reduction in landfill wastes by the 

year 2020 (ASU 2014, Phoenix 2013, Reid 2013). 

Waste handling is an actively changing system with the introduction of new types of 

waste and new approaches to waste management that can alter impacts on a broad scale. 

Biodegradable and compostable plastics that meet the ASTM and ISO standards (ASTM 

2003a, b, 2004, ISO), such as PLA, may prove to be useful in reducing landfill wastes but the 

composting for these materials needs to happen at an industrial facility. The requirements 

for the degradation of these products requires sustained temperatures and biological activity 

that are difficult to reproduce in home composting systems (Song et al. 2009). Additionally, 

PLA, the most common compostable biopolymer in the US, can be recycled but the current 

quantity and flow of the material is not significant enough to be financially competitive with 

landfill disposal (Song et al., 2009). Cradle-to-gate life-cycle environmental impacts of 



51 

biopolymers are similar to traditional petroleum based plastics; however, end of life has not 

been well studied. The few life-cycle assessments of biopolymers which include waste 

management, use generic scenarios based on traditional plastics, with even fewer assessments 

including composting as an option despite the fact that recycling is not viable and 

composting as a waste management option is one of the main benefits of these products 

(Hottle, Bilec, and Landis 2013). Disposal is a key area of inquiry as it is a large source of 

uncertainty and is largely unexplored for these products. 

Consumer involvement in waste systems dictates how materials enter the different 

waste streams. This is true for residential and commercial waste handling and public 

collection. The social components of waste management are complex, including factors like 

convenience, perceived efficacy, consumer awareness, outreach, and participation; ultimately 

resulting in patterns of consumer behavior. Behavior change is a central factor, necessary for 

shifting to more sustainable waste management but there is a lack of research with regards to 

behavior change interventions (Zhang et al. 2011). Sussman and Gifford, 2013 and Sussman 

et al., 2013 found that prompts, such as signage, and people modeling how to sort compost 

in public settings have a significant influence on the behavior of the people around them. 

Additionally, they found that the positive behavior changes persisted even after the behavior 

models were removed from the research setting (Sussman and Gifford 2013, Sussman et al. 

2013). These studies, which have investigated behavior, inform the development of new 

waste collection strategies in public venues and highlight the benefits of an approach that 

incorporates techniques to encourage positive behavior change through social dynamics and 

traditional outreach. 
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Methods 

The methods are divided into three specific areas that were integral to this research. 

The first section, raw data collection, describes the process of conducting the waste audits 

including weighing, sorting, and determining the mix of materials in the waste stream. The 

second section, modeling and scenario analysis, describes the parameters used for the 

WARM tool and the seven scenarios that were modeled for the assessment. The final 

section, waste disposal behavior at public events, describes the use of signage and volunteers 

to aid in material identification that were used throughout the four games so that behavioral 

factors could be assessed. 

Through a partnership with ASU Athletics and University Sustainability Practices 

(USP) waste audits were conducted at four university baseball games. Events like the ASU 

baseball games provide an opportunity to run large experiments with reasonable control 

since most of the waste materials being handled are generated within the game and are 

limited to products that vendors offer. This research tracked the efficacy for different 

methods of waste collection that have been implemented at the games as well as determining 

the quantity and composition of the waste. ASU’s Packard Stadium has over 3000 

grandstand seats and can accommodate over 7800 attendees, with an average attendance of 

2809 per game in 2013 (Cutler 2013). 

As a part of ASU’s zero waste effort, Packard Stadium has moved to a two bin 

collection system offering receptacles for composting and recycling only. The bins are 

colored to help distinguish the two material streams, blue for recycling and green for 

composting (Figure 10). In addition to the bin color, ASU has attached signs to the front of 

each bin which labeled and described which materials belong in each bin. The composting 

signs listed food, liquid, napkins, plates & cups, and compostable spoons & forks. The 
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recycling signs listed paper, plastic, aluminum, glass, and cardboard. Using EPA’s WARM 

(USEPA 2014b) this research explored the dynamics between different management 

scenarios, carbon emissions, and energy use. 

 

Figure 10. Compost and Recycling containers being staffed by a volunteer bin guard at 
ASU’s Packard Stadium. 
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Data collection occurred over a span of four baseball games at Packard Stadium, 

three of which were in a consecutive weekend series. Figure 11 charts raw data collection 

and the subsequent analyses of this research which addresses two separate areas of inquiry: 

(1) Characterization of game-day wastes (quantification and categorization) and the 

assessment of different management scenarios using WARM and, (2) The public’s ability to 

adjust to new methods of material collection at venue-based events. 

 

Figure 11. Data collection from waste audits at four baseball games. The flow diagram 
depicts quantitative data collection and modeling as well as the qualitative analysis from the 
consecutive series. 
 

Raw Data Collection 

 Materials from the compost and recycling bins were weighed for each of the four 

games. At the games, attendees were required to discard all waste from outside of the 

stadium before entering the venue, so nearly all of the bin materials in the stadium originated 
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from vendors in the stadium. The bin materials were collected and weighed when full bags 

were removed during the game and at the end of the game when the bins were no longer in 

use. The material was weighed using a CPWplus L Floor Scale with a capacity of 75 kg and 

accurate to 20 g. The goal for the audit was to collect at least 50% of the waste generated at 

the games. The audits were successful, achieving an average of 66% of the bin waste from 

each game was collected, sorted, and weighed. The materials were sorted by hand, classified 

as either compostable or recyclable, and compared with the bin type in which it was found 

to determine the efficacy of the collection strategy. Data collection then followed a step by 

step process to record weights, contamination rates, and material types. 

The initial weight of each sampled bag was recorded followed by a sorting process to 

remove any contamination. An average bag weight was used to calculate an estimated mass 

for the unsorted bags from each game. After sorting, both the non-contaminated material 

and the contaminating materials were reweighed. Some products like polystyrene, plastic 

films, and foils (i.e. chip bags), which foul both the material streams, were categorized as 

contamination regardless of where they were placed. The composition, or the percentages of 

which types of materials make up the items in the bins, was estimated and recorded one bag 

at a time with the assistance of an ASU Recycling Technician. Estimation was used to 

determine composition in order to reduce sort time (three measurements of mass per bag as 

opposed to eleven) and because direct measurements of mass would have been confounded 

by food waste contamination which tended to stick to some materials (paper and cardboard) 

more than it would to others (plastic and polystyrene). The waste compositions included 

eight categories of managed waste which correspond to the WARM tool; aluminum, high 

density polyethylene (HDPE), polyethylene terephthalate (PET), polypropylene (PP), 

corrugated containers, newspaper, mixed paper, and mixed organics. 
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Modeling and Scenario Analysis 

The data for the mass of material generated at each game was used to estimate total 

material generation numbers for the games and the full season. The average waste generation 

of a baseball game at Packard Stadium was calculated by extrapolating the total material 

generation for each game then averaging the totals. This average was then multiplied by the 

games played in the stadium over the 2013 season, giving an estimate of total generation for 

a season. A ninety-five percent confidence interval was determined for game data and the 

season total to determine the uncertainty involved in the calculation of the data. Total 

seasonal generation was used along with the composition data (percent of each waste type) 

for the assessment of different handling scenarios to annualize the impacts for comparison 

purposes. 

USEPA’s WARM was used to calculate CO2 equivalent emissions and energy use 

that result from different waste management strategies. The energy calculations in WARM 

are limited to transportation, direct use, and generation. The model is designed to compare 

baseline strategies to alternative approaches and calculates emissions accordingly. The results 

from WARM, which was designed to help inform decision making on the municipal scale, 

are the total impacts calculated and not the difference between a baseline scenario and an 

alternative. The model assumes the end of life treatment inputs represent the end of life 

treatment impacts excluding the possibility of some materials being rerouted to other 

methods of treatment. 

All of the inputs for WARM were selected based on correspondence with ASU’s 

waste service provider (McLaren 2013). The preset Arizona electricity mix and current mix 

for source reduction were used. The following inputs were selected to represent the 

Butterfield Station Landfill, located in Mobile, Arizona, southwest of Phoenix; the landfill is 
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considered dry (which means organics do not degrade as quickly and generate less methane 

overtime) and has gas recovery systems that fall under the “typical operation” category for 

WARM. The methane gas is flared at Butterfield to meet regulatory compliance and all 

landfill scenarios included flared gas in the modeling. Transportation distances were 

estimated using Google Maps to represent the transport of waste to the tipping floor (where 

collection trucks are dumped and a decision is made determining the final destination for 

that waste) and the subsequent management sites. The distances are: landfill – 45 miles, 

recycling – 41 miles, and composting – 35 miles. Incineration, the combustion of wastes, is 

not part of the local waste management regime and was not used in the model. 

A scenario analysis was conducted to assess the variability associated with the model 

parameters. Each scenario described in the next paragraph and Table 3 was also analyzed 

using WARM inputs for national averages of gas recovery landfills which flare their gas. 

Additionally, the default WARM distance for management sites of 20 miles was used. This 

comparison highlights the categories that are most influenced by a change in the model 

parameters emphasizing the need for attention to accuracy within models and the 

importance of decision making in the real-world. 
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Table 3. Waste management scenarios by percent mass. The first three scenarios represent 
the current waste mix, which has no PLA. The subsequent scenarios investigate methods of 
altering the materials in the waste stream for improved performance. 
 

 

 

The seven scenarios were developed with USP and the ASU Recycling Technicians 

to represent realistic options for waste handling. The treatment methods are associated with 

tradeoffs beyond the impacts measured within the model and are the topic of debate within 

USP and among the Recycling Technicians. While a single stream system (e.g. an all 

compostable waste stream) simplifies collection and achieves high rates of landfill diversion, 

mixed stream systems including recycling provides economic return for the university but 

increases the amount of waste sorting required. The scenarios described below represent 

three options for waste mixes and possible treatment options across the three different 

mixes, resulting in seven scenarios. 

The seven scenarios for managing waste were explored using the WARM model 

(Table 3). They included management approaches for the current waste mix and two 

alternative mixes that substitute a varying amount of PLA for plastics and metals. The first 

1 2 3 4 5 6 7

Material Type Landfill Only Landfill/ 
Recycle

Compost/ 
Recycle

Aluminum, 
PET, PLA 

Landfill

Aluminum/ 
PET Recycle, 
PLA Compost

PLA/ Organics 
Landfill

PLA/ Organics 
Compost

Aluminum Cans 2.7% 2.7% 2.7% 2.7% 2.7%
HDPE 8.1% 8.1% 8.1%
PET 21.6% 21.6% 21.6% 21.6% 21.6%
PP 10.8% 10.8% 10.8%
Corrugated Containers 2.7% 2.7% 2.7%
Newspaper 2.7% 2.7% 2.7%
Mixed Paper 5.4% 5.4% 5.4%
Mixed Organics 46.0% 46.0% 46.0% 56.8% 56.8% 56.8% 56.8%
PLA 18.9% 18.9% 43.2% 43.2%

landfill recycle compost

Seven Scenarios for Waste Management
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three scenarios, (1) landfill only, (2) landfill/recycle, and (3) compost/recycle, were options 

for the management of the current waste composition at Packard. Scenario 1 and 2 are 

typical approaches to waste handling while Scenario 3 represented the actual approach to 

waste management at Packard Stadium. 

The next two scenarios, (4) aluminum, PET, PLA landfill and (5) aluminum/PET 

recycle, PLA compost, explored the possible substitution of all non-compostable materials 

with PLA except for PET and aluminum, which are commonly recycled products (USEPA 

2010). The substitution of PLA assumed 100% substitution by mass. The mixed organics 

waste was not altered. Scenario 4 served as a landfill scenario and Scenario 5 described a 

compost and recycling approach. 

The final two scenarios, (6) PLA/organics landfill and (7) PLA/organics compost, 

explored the possibility of shifting to a single stream waste handling approach in which all 

materials are compostable. Scenario 6 modeled a landfill approach to this organics only 

waste stream, while 7 looked at the possibility of all the materials being composted. In these 

scenarios PLA replaced plastics and aluminum while paper and cardboard were shifted into 

the mixed organics category. These scenarios were created to test a single stream approach 

while still achieving a 100% diversion rate. WARM does not account for composting as a 

waste management approach for paper or cardboard, but the EPA recommended using the 

mixed organics category for this modeling (USEPA 2013a). All the other compostable 

materials have specific categories for composting in WARM. The inclusion of a landfill 

scenario for the primary mix and the two alterative mixes provides a comparison for 

materials that may not end up at the expected end of life treatment. 

 

 



60 

Waste Disposal Behavior at Public Events 

In addition to modeling impacts from waste handling, this research sought to 

investigate the behavior of composting in public venues by exploring people’s understanding 

of and willingness to segregate material types for some perceived environmental benefits. 

Behavior herein is defined as the collective attitude and actions of people attending the 

ballgames toward waste disposal. The ability and willingness of attendees to change disposal 

habits was gauged through both quantitative and qualitative assessments of behavior. 

Two approaches were developed by ASU’s USP office for helping consumers 

identify in which bin to put their wastes were used to determine efficacy of the different 

approaches. The first was signage on the recycling and composting bins that describe what 

material types are appropriate to put in each bin. The second approach uses volunteer “bin 

guards” who received ten minutes of training prior to each game. Bin guards stood next to 

each waste station and aided ballpark visitors with their decision making when they had 

waste to throw away (see a bin guard at Packard Stadium in Figure 10). Each volunteer had a 

lanyard with a card to help them identify what types of materials go into each bin. Bin guards 

were instructed to put all inherently contaminating materials (e.g. polystyrene, plastic films, 

and foils) into the recycling bins because the recycling system is less sensitive to 

contamination than the composting system. 

The three game series between ASU and the University of Arizona was used to 

evaluate changing consumer behavior with education and outreach efforts (Figure 11). The 

first game in the series, May 17, 2013, served as a control with signs on the bins only. The 

second game, May 18, 2013, tested whether there was increased efficacy of collection (i.e. 

decreased contamination) when volunteer bin guards served by assisting patrons with 

sorting. And, finally, the third game, May 19, 2013, returned to a sign only approach to 
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determine if game attendees’ behavior had altered in response to their previous experiences 

that weekend. A learning period could only have occurred if the same audience (or some of 

it) returned to each game so attendance figures were tracked for each game. These metrics 

also included the number of season ticket holders and ticket sales for people attending more 

than one game, however, there was no way to confirm the tickets were used by the same 

individual for each game. 

 

Results 

Raw Data Collection 

The baseball game waste audits collected more than 180 kg of material produced 

over four games. This was an average collection rate of 66% for each game; the remaining 

bags were counted so total game wastes could be calculated. Table 4 presents the waste audit 

data that was collected at the games. First the total mass of materials collected during each 

game is reported under the collected bin material category. This is followed by a breakdown 

of that data into two categories, wastes correctly placed and contamination. The final section 

in Table 4 presents the estimated total game wastes as well as recorded attendance data, 

which are both used to calculate a per capita waste generation figure. 
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Table 4. Waste audit data for four games. Waste audit collection data from four ASU 
baseball games at Packard Stadium. Collected Bin Material only represents the bin materials 
that were sampled and weighed at each game, which accounts for 66% of total waste. 
Extrapolated total bin material was calculated by applying the average bag mass to the 
uncollected bags for each game and totaling that figure with collected bin material. 
 

 

 

4-May-13 17-May-13 18-May-13 19-May-13 All Games
Total (kg) 54.00 35.94 51.52 40.32 181.78
Recycle % 44% 55% 59% 60% 54%
Compost % 56% 45% 41% 40% 46%

4-May-13 17-May-13 18-May-13 19-May-13 All Games
Total (kg) 23.78 19.66 30.46 24.10 98.00
Correct (kg) 20.16 14.06 26.14 18.70 79.06
Incorrect (kg) 3.62 5.60 4.32 5.40 18.94
Contamination 15% 28% 14% 22% 19%

4-May-13 17-May-13 18-May-13 19-May-13 All Games
Total (kg) 30.22 16.28 21.06 16.22 83.78
Correct (kg) 28.72 9.84 19.56 12.56 70.68
Incorrect (kg) 1.50 6.44 1.50 3.66 13.10
Contamination 5% 40% 7% 23% 16%

4-May-13 17-May-13 18-May-13 19-May-13 Averages
Material (kg) 77.14 59.90 90.16 51.80 69.75
Attendance 3052 3198 3260 1500 2753
Per capita (g) 25.28 18.73 27.66 34.53 25.34

Waste Generation at Four Games

Shading indicates bin guards were used

Collected Bin Material

Recycle

Compost

Extrapolated Total Bin Material and Attendance
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The uncertainty was evaluated by calculating confidence intervals for the 

extrapolated game wastes for each game and the calculation of seasonal waste generation 

using the average total of the four games. The confidence intervals for the total mass of each 

game were ±4.24 kg (5.5%), ±4.99 kg (8.3%), ±10.49 kg (11.6%), and ±2.72 kg (5.2%) 

respectively. The confidence interval for the game average that was used to calculate the 

season total was ±16.88 kg (24.2% of the calculated average). The uncertainty regarding the 

total seasonal waste generation is quite high, however, the composition of material types was 

assessed across all games by a Recycling Technician for each disposable product category 

resulting in material ratios that are consistent across each scenario. Since the impacts increase 

in direct proportionality to the wastes produced, any increase or decrease in the amount of 

seasonal waste does not result in different relative impacts between the scenarios. 

To determine material composition, the types of contamination were also evaluated. 

Some contamination (7.6 kg, 24% of contamination) was a result of products such as films, 

foils, and polystyrene which do not belong in either compost or recycle but are still part of 

the vendors’ offered products. However, the majority of contamination (24.4 kg, 76% of 

contamination) was the result of recyclables in the compost or vice versa. This indicates that 

improved collection methods or a more developed understanding of composting and 

recycling could lead to decreased contamination improving the overall diversion rate of 

material generated at events. 

 

Scenario Analysis Using WARM 

Figure 12 presents the WARM findings for CO2 equivalent emissions of the seven 

scenarios for the materials that are generated at Packard Stadium over one season. WARM 

does not include a complete life-cycle assessment of products or waste handling; it accounts 
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for CO2, CH4, N2O, and perfluorocarbons emissions resulting from end of life, waste 

transportation, and offsets to future production of recycled materials which are reported as 

CO2 equivalent emissions (USEPA 2014a, b). The benefits of recycling are seen in Scenarios 

2, 3, and 5 where refined products are retained for use in future products, offsetting the 

emissions associated with processing virgin materials. The PLA landfill Scenarios (4 & 6) 

result in greater emission reductions when compared to composting (5 & 7) because the 

WARM model assumes PLA does not breakdown under normal landfill conditions (Kolstad 

et al. 2012, USEPA 2014a, b), essentially sequestering its carbon; however PLA releases CO2 

when it is composted. Despite the emissions from composted PLA, Scenario 5 outperforms 

Scenario 4 due to the benefits of recycling aluminum and PET. The organics only Scenarios 

(6 & 7) showed better performance in the landfill than composting. This difference in 

performance is due exclusively to the degradation of PLA in the compost while it is assumed 

to sequester its carbon when in the landfill. This assessment is limited to CO2 equivalent 

emissions and does not account for benefits of creating a saleable soil amendment, which 

should be the focus of additional research. 
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Figure 12. Scenario results of CO2 equivalent emissions in metric tons by waste type using 
WARM for one season of waste generated at ASU’s Packard Stadium. 
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Figure 13 presents the WARM findings for energy consumption of the seven 

scenarios for the waste that is generated at Packard Stadium over one season. Again there is 

a stark difference between the recycling Scenarios (2, 3, & 5) and the others. The recycling 

scenarios save energy and the non-recycling scenarios are net energy consumers. While 

recycling, landfilling, and composting use energy to process the waste material, recycling is 

the only approach that takes advantage of the embedded energy in the products, offsetting 

production energy of virgin products. This model does not balance the economics of 

different strategies or the energetic benefits of compost when applied to land (i.e. reduction 

of fertilizer use or reduced land use change impacts). 
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Figure 13. Scenario results of energy consumption in thousand BTUs by waste type using 
WARM for one season of waste generated at ASU’s Packard Stadium. 
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The current approach for composting and recycling materials (Scenario 3) coming 

out of Packard Stadium at ASU performs comparatively well in terms of CO2 equivalent 

emissions and energy consumption, but these impacts are not all that needs to be 

considered; The contamination rates, especially for composting (an average of 15.6%) are 

too high for the waste handler to accept and will be rejected at the tipping floor; the 

maximum contamination rate is less than 1% (Wood 2014). When contamination levels 

exceed the waste handler defined limit, the compost is diverted to landfill. The recycling 

stream can tolerate more variable materials and contamination (up to 15%) because of the 

efficacy of sorting that is accomplished by the material recovery facility, but food waste 

fouling can be problematic for recyclables. While food waste fouling may not result in 

diversion to landfill, it complicates the processing at the material recovery facility requiring 

additional cleaning and may reduce the value of the final products (McLaren 2013). 

Significant contamination in the compost and recycling streams may result in diversion to 

landfill and results in waste management Scenarios 2, 3, and 5 having an actual 

environmental impact that looks like Scenario 1, landfill only. Thus, reducing contamination 

in recycling and composting waste streams is an important factor for successful waste 

management diversion strategies. 

The modeling using the national average data and default distances within WARM 

did not produce results very different from the ASU scenarios with one notable exception. 

With methane being flared in both the experimental and national average modeling, the 

mixed organics in the landfill under the national average scenarios results in 0.27 metric tons 

(Scenarios 1 & 2) and 0.33 metric tons of CO2 equivalent emissions (Scenarios 4 & 6), an 

increase of 0.30 and 0.37 metric tons respectively when compared to the modeling specific 

to the Butterfield Station Landfill. This is due to increased degradation of organic materials 
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in landfills with higher moisture levels. The consequences of methane generation could 

result in two very different outcomes. Methane can be captured and burned for energy, 

providing additional value from the waste and reduced energy use. On the other hand, both 

methane and the CO2 that results from burning the landfill gas (for energy or flaring to meet 

compliance) are greenhouse gases. Other regions that receive more rain or are characterized 

by distributed, rural sources of waste have different impacts resulting from methane and 

transportation that will alter the results and may suggest a different approach for sustainable 

management of materials disposal. 

 

Waste Disposal Behavior at Public Events 

Despite the descriptive signage on the bins at the three game series, the data shows 

an improvement in identification and proper placement of materials when the bin guards 

were used during Game 2. The Saturday night game had twelve volunteer bin guards, each 

one assigned to a pair of bins, who covered all of the publicly available bins. The bin guards 

helped attendees sort their compost and recycling. Prior to the game the bin guards were 

trained by two staff members. The training was completed in ten minutes and at the end of 

the training the bin guards were given lanyards with cards which explain which materials go 

in each bin, similar to the signage on the bins. 

Attendance data (Table 4) supplied by the athletics department shows there are 1,392 

season ticket holders and 121 tickets purchased prior to the series for two or three games 

out of the series with University of Arizona. With an average attendance of 2,653 per game, 

more than half of the baseball fans had tickets for at least two of the three games. The 

attendance data and the different contamination rates between Game 1 (33.5%) and Game 2 

(11.3%) suggests that the bin guards may have served as a successful intervention that 
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enabled visitors to learn about proper disposal of venue materials. Contamination was 

reduced in unsupervised waste bins (i.e. no bin guards helping visitors) from Game 1 to 

Game 3 (22.5%) by 32.8%. This is especially encouraging for repeating events and venues 

that are continually providing reinforcement for correct disposal behaviors. In addition, for 

one-time events expected to generate large amounts of waste, bin guards may be employed 

to help reduce contamination rates. 

 

Discussion 

The benefits of recycling stand out in both the CO2 equivalent emissions and energy 

impacts (Figure 12 and Figure 13). However, recycling cannot exist alone in a zero waste 

strategy since food waste makes up a portion of the waste. While composting and recycling 

of the current mix results in the best modeled performance, the rates of contamination 

remained prohibitively high without manned bins, and a zero waste policy would not be 

possible under these conditions. Without significant efforts to increase outreach and public 

awareness, through strategies in addition to the bin guards and signage, it will be difficult for 

ASU to attain acceptable levels of contamination for multi-bin systems at Packard Stadium. 

Even with extensive levels of outreach, recyclables caked in food wastes will foul either 

waste stream without postconsumer treatment. 

Alternatively, simplifying the supply chain (and subsequently the waste stream) by 

limiting recyclables and having all other products compostable, like in Scenario 5 

(aluminum/PET recycle, PLA compost), may be more effective in reducing contamination. 

This simplification approach reduces recyclables to PET and aluminum, the two materials 

providing the greatest benefits in both energy and CO2 equivalent emissions (Figure 12 and 

Figure 13), while finding compostable alternatives for all the other products. Thus the 
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outreach effort (e.g. bin signage, bin guards, public announcements) can focus on clear 

disposal instructions based on product function, “all beverage containers get recycled, 

everything else gets composted.” Simplification can achieve relatively low CO2 equivalent 

emissions and energy impacts as well as divert all the materials generated from the landfill, 

thus achieving zero landfill waste. 

Despite higher greenhouse gas and energy impacts relative to traditional plastics that 

can be recycled, the use of biopolymers alters the composition of the material streams which 

can help to simplify management approaches. Compostable products provide an alternative 

waste management strategy for organically fouled materials, which are caked in food wastes. 

This makes it easier to eliminate landfill wastes; biopolymers, which perform as well as 

traditional plastics, can simply be composted along with food wastes without concern about 

organic matter contamination. In comparison, recyclable plastics that are contaminated with 

organic matter are typically sorted out of recycling and enter the landfill. This study of 

venue-based events suggests that the real benefits of biopolymers may be a result of these 

indirect benefits to management and contamination that are not necessarily captured within 

traditional modeling. Future research could evaluate the consequential impacts resulting 

from the use of biopolymers and the subsequent rates of organics that are diverted from 

landfills. If the methane avoided from the landfill is significant enough it may outweigh the 

additional impacts incurred from the use of biopolymers. If not, biopolymers may only be 

useful in landfill avoidance through simplifying waste streams and provide few 

environmental benefits. The modeling conducted for this research represented the regional 

dynamics for the case study of ASU. Waste services are diverse and regionally dependent 

with many variables, some of which are accounted for in the WARM model. The Phoenix 

metropolitan area is an urban environment with an arid climate and nearby waste facilities 
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offering diverse services. The Arizona-centered modeling represents a dry landfill which is 

not conducive for the breakdown of organics and could serve as a lower limit for climate 

emissions from landfills. The scenario analysis using the national averages highlights the 

potential for methane emissions from landfills that are more conducive to the degradation of 

organics. Increased degradation rates combined with uncertainty in capture efficiency and 

different methane handling approaches (e.g. flaring and energy recovery) may result in 

dramatically different impacts (Spokas et al. 2006). 

From a facilities management perspective a single stream system, in which there is 

only one bin, is much simpler with regards to contamination, collection, and handling. 

Scenario 7, compostables only, represents the only single stream system that also diverts all 

materials from landfill. Zero landfill wastes achieved via use of compostables requires a shift 

in management focus from the back-end of waste management to supply chain 

procurement. All disposable products must be compostable, a challenge in events which 

requires that service providers and vendors conform to purchasing standards. Such an 

approach also begs the question of who pays for potential additional costs of using 

compostable only materials. 

While achieving zero waste, energetic and emissions benefits of recycling are lost in 

this single stream composting approach, which is clear in Figures 12 and 13. By treating all 

materials the same, handlers are unable to take advantage of the strategies that maximize 

environmental goals for each type of material. Not analyzed in this research is the price of 

the different management approaches for the customer and the waste handler, which can 

dictate whether or not any given approach is economically viable. Additionally, the 

economics become even more important when valued products created from these materials 

like gas, energy, raw materials, or compost are taken into account. 
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An additional factor when considering the ease of single stream management versus 

a two stream system is consumer involvement. If the facility or institution is most interested 

in reducing its own landfill wastes a single stream may be best, but if the goal is to engage 

people in sustainability initiatives and introduce new norms there is an advantage to having 

consumers sort their wastes even if it reduces efficiency at the facility. The benefits of 

strategies like the use of bin guards may create new norms that will influence people in their 

lives beyond the stadium walls which is supported by previous literature on behavior 

modeling (Sussman and Gifford 2013, Sussman et al. 2013, Zhang et al. 2011). Taking this 

into account it may be better for one-time events to use single stream management while 

repeat events, like baseball games, may be more beneficial as a platform for education. 

The modeling assumed that once materials enter their respective end of life stream 

(compost, landfill, or recycle) they are actually processed in that system. However, some 

compostable materials like thermoplastic starch or PLA can be hard to distinguish from 

more common recyclable plastics. Biopolymer products could end up at a recycling facility 

and be diverted to the landfill or, worse yet, actually make it to the composting facility only 

to be screened out with other plastics. Screening at compost facilities may happen prior to 

the composting process to remove unwanted materials or once the compost is finished, and 

in either of these situations if the biopolymers remain intact they will be removed from the 

compost and discarded. These dynamics must be assessed to gain a complete understanding 

of how recyclables and compostables are moving through the compost and recycling 

streams. 

The increasing focus on venue-based events can help improve the environmental 

performance of sporting events, theaters, festivals and other gatherings (Collins and Flynn 

2008, Collins, Jones, and Munday 2009, Hershkowitz, Henly, and Hoover 2012, Laing and 
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Frost 2010), which may also provide insights into larger waste management trends. Venues 

such as Packard Stadium allow for the exploration of different aspects of sustainability and 

enable researchers and facility personnel to experiment with new management approaches. 

In addition to management scenarios, venues can control for the types of materials that enter 

the system and work with service providers to develop contracts which specify new 

standards. Venues can be a proving ground for improved environmental performance for 

shared spaces. 

 

Conclusions 

The findings of this research demonstrate how waste materials and end of life 

treatment have real tradeoffs for energy and climate change emissions. In addition to the 

impacts calculated using WARM, there are several management practices that achieve 

different objectives such as climate emissions reduction, landfill avoidance, maximum 

financial benefits, or ease of management. The assessment of collection methods at venues 

suggests that there are effective ways to teach consumers, over time, how to sort materials 

and that simple signage may aid in reinforcement of behavior but is not necessarily effective 

as a standalone strategy. These findings will help venue operators and facility managers 

better understand their options when deciding to change management approaches or 

improve the environmental impacts of their operations. This study helped inform the efforts 

of ASU to meet both its “Carbon Neutrality Action Plan” (ASU 2010) as well as the zero 

waste commitment and can provide insights for other organizations to meet their 

environmental goals. 
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CHAPTER 4 

ALKALINE AMENDMENT FOR THE ENHANCEMENT OF COMPOST 

DEGRADATION FOR POLYLACTIC ACID (PLA) BIOPOLYMER PRODUCTS 

 

This chapter was accepted for publication in the peer reviewed journal Compost Science & 

Utilization and appears as submitted with the exception of text and figure formatting. The 

citation for this article is:  

Hottle, T.A., M. Luna Agüero, M.M. Bilec, and A.E. Landis. 2015. "Alkaline Amendment for 

the Enhancement of Compost Degradation for Polylactic Acid (PLA) Biopolymer 

Products." Compost Science & Utilization. Accepted. 

 

This chapter addresses research objective 3) Evaluate sustainable solutions for composting 

infrastructure options and factors influencing feasibility of scaling 

 

Introduction 

Compostable biopolymers have become increasingly popular in the single-use 

disposable products market due to their compostability (Lunt 1998); however, in actuality 

they may not degrade in the time frame expected during the composting process (Gómez 

and Michel Jr 2013). While these plastics may be instrumental in altering the traditional 

approach to waste management because of their biodegradable and compostable properties 

(Razza et al. 2009), the role of compostable plastics in municipal solid waste is still somewhat 

uncertain because, despite ASTM certification as compostable materials (ASTM 2004, 

2003a), these products are slow to decompose compared to other organic wastes (Ghorpade, 

Gennadios, and Hanna 2001, Mohee and Unmar 2007, Gómez and Michel Jr 2013).  
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In order for polylactic acid (PLA, the most common compostable biopolymer in the 

US) products to degrade the wastes need to be processed at an industrial composting facility 

to meet the minimum thermal requirements for degradation. Composters can generally 

accept food waste and turn it into a product that can be utilized in landscaping, erosion 

control, and farming applications in anywhere from a couple weeks to a couple months 

(Goyal, Dhull, and Kapoor 2005); however, PLA products may take up to six months to 

breakdown under ideal conditions (World Centric 2014). While most PLA products meet the 

ASTM technical requirements for degradation, this may not translate to the reality of 

compost facilities where compostable food and yard waste is processed much more quickly.  

One possible solution to the degradation problems in commercial compost operations is 

creating limits as to what kind of products will be accepted at their facilities based on 

degradation rates. A good example of this is Cedar Grove’s program which tests 

compostable products to determine if the material will break down in their composting 

system in order to ensure a high standard of compost quality (Cedar Grove 2012).  

When biopolymers do not compost at the same rate as food and other organic waste, 

the biopolymers remain in the compost piles even when the food and yard waste compost is 

finished and ready to sell. This results in the accumulation of biopolymers in compost 

facilities. If biopolymers are returned to active compost piles to allow more time for 

degradation, the additional handling and processing results in size reduction of traditional 

plastics, increasing the difficulty of identifying and removing non-biodegradable plastics 

contamination from those piles (Figure 14). Ultimately biopolymers end up being screened 

out of compost and when too there is too much accumulation, are sent to landfills (Pfiefer 

2014). Landfilling incurs additional costs, both financial and environmental due to the 

additional handling and change in end of life treatment. Many compost facilities in the U.S. 
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are removing bioplastics from compost and sending them to landfills and others have begun 

to outright refuse bioplastics due to these challenges (Hill 2014, Elliot and Leif 2014). 

 

Figure 14. Proposed material flow for enhanced commercial composting process compared 
with the current process. The green arrow represents the organics, which includes food 
waste, grass clippings, etc. The blue arrow represents the industrial byproducts utilized as 
alkaline amendment. The orange arrows represent the biopolymers. The proposed process 
results in a product of higher quality that has neither uncomposted PLA. 
 

Research testing the compostability of PLA has relied on ASTM and ISO standards 

(Cadar, Paul et al. 2012, Kale, Kijchavengkul, et al. 2007, Pradhan, Misra et al. 2010, Kale, 

Auras, et al. 2007). ASTM D5338, Standard Test Method for Determining Aerobic 

Biodegradation of Plastic Materials Under Controlled Composting Conditions (ASTM 

2003a), and ISO 14855-1,  Determination of the Ultimate Aerobic Biodegradability and 
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Disintegration of Plastic Materials under Controlled Composting Conditions—Method by 

Analysis of Evolved Carbon dioxide (ISO). The ASTM and ISO test methods are used to 

determine whether a material can be considered compostable under controlled composting 

conditions, but do not evaluate performance in realistic composting conditions. The 

standard test methods differ from real composting processes due to climatic differences, 

types of compost materials, and other parameters such as internal temperature, moisture, 

and pH (Kale, Auras, et al. 2007). The degradation of PLA follows two steps: hydrolysis to 

low molecular weight oligomers followed by microbial degradation to CO2, water, and 

humus (Drumright, Gruber, and Henton 2000). Hydrolysis is primarily influenced by 

temperature, moisture, and pH (Drumright, Gruber, and Henton 2000, Kale, Kijchavengkul, 

et al. 2007). 

Additives can be used to enhance the composting process of traditional organic 

wastes. There are several types of commercially available additives that include mixtures of 

different amounts of microorganisms, mineral nutrients, or readily available forms of carbon 

(Himanen and Hänninen 2009). Additives can also include pH-balancing compounds, like 

alkaline minerals, lime, and ash, which increase the pH levels of the compost (Gabhane, 

William et al. 2012). While alkaline amendments have been shown to enhance composting 

and certain soil environments, no work has been done to assess how they may impact 

biopolymers (Yu and Huang 2009, Cox, Bezdicek, and Fauci 2001, Himanen and Hänninen 

2009). 

Industrial alkaline wastes provide a resource which could be used as compost alkaline 

additives to improve PLA degradation and improve the quality of the finished compost. 

ALCOA Inc., a leading aluminum manufacturer, produces bauxite residue as a byproduct of 

aluminum manufacturing that has been used in remediation of soil in abandoned mine lands 
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due to its nutritional properties for the soil (McConchie, Clark et al. 2000, Doye and 

Duchesne 2003, ALCOA 2007). Another source, wood fly ash is composed of potassium 

carbonate (K2CO3) and magnesium oxide (MgO). Previous research evaluated the use of 

wood fly ash as a soil amendment, and both K2CO3 and MgO contribute to a pH of over 13 

as well as other nutritional components to soil (Kurola, Arnold et al. 2011, Weyerhaeuser 

2014). Mineral CSA produced by Harsco Minerals is another option. The product is 

composed largely of calcium silicate and is obtained from slag generated during stainless 

steel production (Harsco 2009). 

This research investigates the use of an alkaline amendment to enhance the 

degradation of biopolymers under thermophilic composting conditions. By utilizing waste 

products as amendments to improve composting, landfill wastes can be avoided in both 

systems (Figure 14). By enhancing the rate of PLA degradation, compostable biopolymers 

may be composted along with food and yard waste without sacrificing the quality of the final 

product. 

 

Materials and Methods 

This study was conducted in a laboratory setting using flasks as bioreactors to 

simulate a composting environment over a twenty-two day incubation period. In order to 

maintain a uniform environment, the bioreactors were monitored daily and moisture and 

temperature were kept constant. 

The compost experiment conducted herein differs from the ASTM standard lab 

methods to better represent actual composting processes. As opposed to the ASTM testing 

period of up to 180 days at 58°C, this experiment was truncated to 22 days to represent the 

lower limit of composting while taking in consideration the actual length of the key stage of 
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aerobic composting when the microbial community is dominated by thermophilic 

organisms. The thermophilic process of composting occurs within a period of 21 days which 

is also the most intensive stage of degradation (Barrington, Choinière et al. 2002, Goyal, 

Dhull, and Kapoor 2005). We were also looking for differentiation in degradation based 

upon the additive rather than complete degradation in all cases and this shorter time frame 

enabled this comparison.  

For this study raw food was included in the bioreactors in addition to the compost 

inoculant so the bioreactors would better simulate the actual composting process that occurs 

at commercial composting facilities in which food and yard wastes are processed along with 

biopolymers. This is in contrast to the ASTM method of using only mature compost which 

aids in tracking CO2 evolution for compostable materials (ASTM 2003a), but may 

simultaneously be withholding nutrients necessary for a robust microbial community capable 

of degrading biopolymers that may also react to changes in pH (Drumright, Gruber, and 

Henton 2000, Himanen and Hänninen 2009). 

 

Materials 

The compost environment was simulated in a bench-scale setting; the various 

experimental conditions contained different amounts of alkaline amendment but a constant 

amount of PLA, inoculant, and food scraps. Two different types of PLA were tested: 16oz 

clear PLA drinking cups designed for cold liquids, manufactured by World Centric using 

NatureWorks’ Ingeo™ amorphous PLA resin 2003D (NatureWorksLLC 2002b), and 

opaque PLA flatware, manufactured by World Centric using a 70% PLA (using Chinese 

grown corn), 30% talc blend (World Centric 2015). They are referred to as clear and opaque 

PLA throughout the remainder of this paper. Both sets of samples were cut into 2 cm2 
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pieces for use in the experimental bioreactors. These products were chosen because both are 

readily available, marketed as compostable, and the two products have different material 

characteristics including surface area to mass and volume ratios.  

The compost included food scraps, compost inoculant, and the alkaline additive. The 

food scraps used in the compost sample included one head of broccoli, two large apples, 2 

large carrots, 1 bag of lettuce (283 g), and one large cucumber. These food scraps were 

chosen based on an audit of back of the house food waste conducted at the Hasayampa 

dining hall at Arizona State University and characterize a mixture of wastes destined for 

composting. The food scraps were grated using a food processor for a consistent texture 

prior to being combined with the PLA and compost inoculant. The food scraps were added 

to the compost mixture in order to introduce new carbon, nitrogen, and moisture to the 

already decomposed inoculant so that the composting process is a similar environment to 

the commercial composters’ piles. The alkaline amendment was added at rates of 0%, 2%, 

and 10% as similar proportions have been used in previous experiments testing 

commercially available compost additives (Himanen and Hänninen 2009).  

A compost inoculant was used to introduce a microbial community necessary for 

composting to boost the initial stages of the composting process. The compost inoculant 

was collected on January 8, 2014 from a food waste compost pile at Garick’s Maricopa 

Organics Recycling Facility located in Maricopa, Arizona. The experiment was conducted 

within fifteen days of collecting the inoculant; the inoculant was stored in the lab in a plastic 

bin to achieve a consistent moisture content. The compost inoculant was collected from one 

to two feet within the food waste compost pile, which was four months old with a C:N ratio 

of 14.1:1 and 40.68% organic matter when dry (see Appendix B for Garick’s analysis of the 

compost sampled). The compost was filtered by hand to remove plastics and any large debris 
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such as twigs and rocks before being screened at 1/8”, Garick’s standard for finished 

compost.  

The alkaline additive used is a soil amendment distributed by Harsco Minerals. It is a 

processed alkaline material from steel operations, which would otherwise be waste.  The 

alkaline material, called Mineral CSA, is produced and sold for remediating acid mine lands. 

Mineral CSA undergoes additional processing to remove heavy metals and results in a 

uniform size and texture, which provides the consistency needed for this study. 

 

Product Density and Surface Area 

The density and surface area of the two PLA products were measured in order to 

determine which basic properties may be contributing factors in the degradation during the 

composting process. The densities of each type of PLA were calculated using a simple water 

displacement method. A 100 mL graduated cylinder (± 0.8 mL) was used to determine the 

volume for samples of a known mass for each PLA material type.  The density was 

calculated using the volume and mass for each sample. The surface area of each type of PLA 

was calculated by measuring the dimensions of the cup and the spoon and dividing the 

shapes into two dimensional calculable geometrical shapes (Appendix C). The area of each 

shape was calculated, summed, and doubled in order to produce a total surface area of each 

of the PLA products. The final surface area of each type of PLA was divided by their 

respective volumes and masses in order to find the surface area ratios of both products. 

 

Bioreactor Setup 

Six flasks served as bioreactors containing the materials described in section 2.1. 

Each bioreactor contained 400g of compost inoculant, 200g of food scraps, and 40g of PLA. 
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Mineral CSA was added in 2% and 10% concentrations (based on the combined weight of 

the inoculant and food scraps) to the bioreactors for both types of PLA. The experiment 

consisted of these six bioreactors; the conditions and contents for each bioreactor are 

described in Table 5. Three of these bioreactors contained the clear PLA while the other 

three contained the opaque PLA. For both types of PLA there was a control bioreactor and 

two test bioreactors with different concentrations of alkaline additive. The bioreactors were 

maintained at controlled temperatures using a water bath, and supplied with heated and 

humidified air. The bioreactors were exposed to an incubation temperature profile of 35°C 

for two days and following at 58±2 °C for twenty days. The controlled temperature increase 

over time was used to better simulate an actual compost process with a transition from a 

mesophilic biota to an environment favoring thermophilic organisms (Goyal, Dhull, and 

Kapoor 2005, Barrington et al. 2002, Kijchavengkul, Auras et al. 2006).  Water bath heat was 

supplied by a thermostatically controlled heating mat placed under aluminum trays 

(Appendix D). A thermistor was used for the controllers and a thermometer was used for 

calibration and continuous monitoring. The supplied air passed through a bubble humidifier, 

which was also heated by the water bath, and was then distributed via pipettes to the bottom 

of each individual bioreactor. At the beginning of the incubation period 100 mL of 

deionized water was added to each bioreactor. 
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Table 5. Contents of each bioreactor prior to incubation. The abbreviations for the 
bioreactor names include the percentage of the amendment added (0, 2, 10), followed by the 
type of plastic (clear, opaque). 
 

Bioreactor 
Compost 
inoculant  

(g) 

Food 
Scraps  

(g) 

PLA  
(g) 

Mineral 
CSA (g) 

Initial 
pH 

0 - clear 400 200 40 0 7.0 
2 - clear 400 200 40 12 7.3 
10 - clear 400 200 40 60 7.6 
0 - opaque 400 200 40 0 7.0 
2 - opaque 400 200 40 12 7.3 
10 - opaque 400 200 40 60 7.6 

 

Monitoring and Maintenance 

Moisture and pH were recorded every four days using an analog electric resistance 

moisture meter and a digital electrode probe for pH measurements, both Rapitest® products 

are specifically designed for use with soils. The moisture meter was calibrated at the 

beginning of the trials using soil that was saturated but not sitting in water. This baseline was 

used to determine whether water needed to be added to the flasks throughout the trial. 

Water was added in 10mL increments until the desired moisture level was confirmed with 

the meter. Occasionally, because of the composting process, moisture levels increased and 

additional water was not needed. The pH was measured after moisture adjustments were 

made. Testing was conducted outside of the water bath on a lab bench. The probes were 

inserted into the flasks to maintain the integrity of the samples over the test period. In order 

to preserve a stable incubation environment the bioreactors were checked on a daily basis 

with deionized water being added as needed to maintain consistent moisture levels, an 

average of 72.7 mL per day. 

Upon completion of 22 days of composting, the entire contents of each bioreactor 

were removed. The PLA samples were hand sorted from the compost and washed in a 
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rinsing tray using an irrigation bottle. This process of cleaning was repeated three times 

followed by a final rinse. PLA pieces that were too small to be separated by hand using this 

irrigation bottle approach were considered to be composted and were not included in final 

mass measurements. The samples were then spread out and allowed to air dry under a 

vented hood. The final masses were recorded using a scale with a sensitivity of ± 0.5 g. 

 

Visual Inspection of PLA Degradation 

After the PLA was hand sorted from the final compost, visual evidence of 

degradation was recorded using photographs for both types of PLA and microscopic images 

for the clear PLA. An Olympus Stylus digital camera was used to photograph the opaque 

PLA under the Super Macro setting. The microscope images of the clear PLA were taken 

using an Olympus IX70 microscope at 100X power and at maximum lightning with a Canon 

EOS 10D digital SLR camera. The photographed samples were selected as representative 

samples from each bioreactor to allow for comparisons across treatment scenarios. 

 

Results 

The degradation and compost conditions were evaluated based on pH, visual 

inspection, and PLA mass loss. These evaluations showed marked differences in the clear 

PLA with regards to mass loss and visual signs of degradation. There was no change with 

regard to mass loss for opaque PLA degradation; however, the opaque PLA bioreactors 

exhibited changes in pH as well as visual evidence of PLA degradation.  

Results of this study support the findings of previous studies which demonstrate that 

PLA products with low density and high surface area to volume ratios take less time to 

degrade (Kale, Auras, et al. 2007, Kale, Kijchavengkul, et al. 2007).  The surface area to 
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volume ratio, surface area to mass ratio, and the density measurements are shown in Table 6. 

While the densities of the two materials are similar, clear PLA has nearly 4 times the surface 

area to volume ratio. 

 

Table 6. Material characteristics for two PLA products. This table reports material properties 
for the PLA prior to blending and the properties of the specific products evaluated within 
this study. The clear PLA is NatureWorks’ Ingeo™ biopolymer 2003D (NatureWorksLLC 
2002b, Karamanlioglu and Robson 2013). *The data presented here for opaque PLA is for  
NatureWorks’ Ingeo™ biopolymer 4032D, which is used in blends with talc for hot 
applications such as flatware and is assumed to have similar properties to the Chinese PLA 
used in the product (NatureWorksLLC 2002a, 2004, Bondeson and Oksman 2007). 
 

 
PLA 

Density 
(g/cm3) 

PLA 
Molecular 

Weight 
(kg/mol) 

Product 
Surface 

Area 
(cm2) 

Product 
Volume 
(cm3) 

Product 
Density 
(g/cm3) 

Surface 
Area: 

Volume 
(cm2/cm3) 

Surface 
Area: 
Mass 

(cm2/g) 
Clear 1.24 159 654.4 10.0 1.2 65.5 53.5 

Opaque 1.24* 220-240* 52.5 3.8 1.4 13.8 9.6 
 

Variations in pH and Effect of Alkaline Amendment on pH 

Over the twenty-two day period the pH value of the compost decreased slightly over 

the course of the incubation period, as seen in Figure 15. In the case of the control 

bioreactors this pH change was not as great. The alkaline amendment introduced high levels 

of pH at the early stages of the composting process. In the composting process as CO2 and 

NH3 begin to form, the pH levels increase and reach a peak. After that, microbial activity 

increases and begins to breakdown the food scraps and PLA, a process corresponding to 

degradation during compost that has been previously described (Nakasaki, Yaguchi et al. 

1993).  
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Figure 15. pH levels over time in compost bioreactors with clear PLA drinking cups 
designed for cold liquids and PLA flatware, both cut into 2 cm2 squares. 
 

The pH levels within each bioreactor that received an alkaline treatment decreased 

over time as a result of the composting process. The pH for the bioreactors with no Mineral 

CSA (i.e. 0-clear and 0-opaque) varied throughout the process, however, in the initial and 

final values were 7.0 for both bioreactors (Figure 15). The acidification of the compost is 

characteristic of decomposition of organic materials (Yu and Huang 2009). While there is a 

large amount of variation in the pH readings our data suggests a general pattern of 

acidification within all of the bioreactors. 

 

Visual Inspection of PLA Degradation 

Based on a visual inspection and microscopic evaluation, the clear PLA with the 

alkaline amendment showed more signs of physical decomposition. The clear PLA plastic 

squares were more distorted and discolored when subjected to higher rates of alkaline 
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amendments. Figure 16 shows the clear plastic before the composting process and the PLA 

samples after they were removed from the bioreactors.  

 

Figure 16. PLA products before (A) and after composting process for 0% (B), 2% (C), and 
10% (D) amendment samples. The initial plastic (A) was cut into 2cm2 pieces. Images B.1-
D.1 are microscopic images of representative samples from each bioreactor under 100X 
power. Image A.1 is the uncomposted plastic under the same power. 

 

As seen in Figure 16, the microscope images of the clear PLA demonstrate that the 

samples in the control bioreactor became slightly cloudy when compared with the 

uncomposted PLA. The clear PLA that was composted with 2% alkaline amendment 
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appeared darker due to the solid white color resulting from the composting process over the 

22 day incubation period. The light of the bottom lit microscope could not penetrate the 

PLA as readily resulting in a darkened sample in the image (Figure 16, C.1). The most visual 

degradation was apparent in the sample that was composted with 10% alkaline amendment. 

The microscope images of the PLA with 10% alkaline amendment show that the PLA 

became translucent again because the physical degradation fragmented the material into 

many thinner layers (Figure 16, D.1). These visual signs of degradation may be associated 

with an increase crystallinity of the PLA, which has been previously described (Kale, Auras, 

and Singh 2006, Tsuji and Ikada 1998) 

Similar to the clear PLA samples, the opaque samples showed greater discoloration 

in proportion to the amount of alkaline amendment present (Appendix E). The opaque PLA 

under 10% alkaline treatment was clearly darker and more distorted than the other samples. 

There was almost no visual change in the opaque PLA in the control bioreactor. 

 Given the visual inspection and the changes in pH, the clear PLA and the opaque 

PLA differed in degradation resulting from the composting process. The greater density and 

reduced surface area/volume ratio may mean the opaque PLA, blended with talc and is 

manufactured to have higher heat resistance, requires more time to degrade than the clear 

PLA with or without an alkaline amendment.  

 

Mass Loss 

The degradation of the PLA was also measured by comparing the final mass with the 

initial mass (40g) for the PLA contained within each bioreactor. The clear PLA degraded 

more than the opaque PLA, which showed no loss of mass in any of the bioreactors. At the 

end of the twenty-two days the clear PLA in the control bioreactor (representing normal 
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composting conditions) had lost 2.5g, the 2% treatment bioreactor had lost 7.5g, and the 

10% alkaline treatment bioreactor had lost 6.6g (Table 7). That equates to 3 and 2.6 times 

greater total degradation for the PLA in the alkaline treatments respectively when compared 

to the PLA in the control bioreactor.  

 

Table 7. Initial and final mass calculations for the PLA in each bioreactor. The abbreviations 
for the bioreactor names include the percentage of the amendment added (0, 2, 10), followed 
by the type of plastic (clear, opaque). 
 

Sample 
Initial 
mass 
(g) 

Final 
mass 
(g) 

Percent 
Loss 

0-clear 40.0 37.5 6.25% 
2-clear 40.0 32.5 18.75% 
10-clear 40.0 33.4 16.50% 

0-opaque 40.0 40.0 0% 
2-opaque 40.0 40.0 0% 
10-opaque 40.0 40.0 0% 

 

Discussion 

The results of the amendment in the compost samples, including visual changes of 

the PLA and reductions in mass, suggest that the alkaline amendment may have aided in 

enhancing the degradation rate of the PLA during the incubation period. The mass loss data 

suggests that incorporating even small quantities of alkaline amendment may help to degrade 

PLA as shown by the percent mass loss in clear sample with 2% alkaline amendment (Table 

7). Even if it is difficult to obtain alkaline byproducts from industry, it remains promising 

that only a small portion of alkaline amendments are needed in order to greatly increase the 

level of compostability of the PLA. 
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While the time frame that the compost samples spent in the bioreactors was 

relatively short for this study, we saw complete degradation of the raw food and the PLA 

samples showed differentiated degradation results. Assuming a typical time frame for a 

compost pile in a commercial composting operation, which can be a couple months or 

more, the clear PLA with the amendment may degrade completely and the opaque PLA may 

show improved degradation. Additional research would need to be conducted to determine 

the reduction in time for complete degradation of the PLA or the efficacy of amendments at 

a commercial scale. The complete degradation of PLA would enable operators of 

commercial composting facilities in optimizing the screening process for the compost. If the 

PLA were to degrade by the end of the commercial composting process, then screening 

could remove any non-degradable plastic residues and reduce the amount of waste going to 

landfill.  

The ASTM test methods for compostable products could be improved to better 

represent real world composting conditions. Currently, ASTM tests for compostability by 

isolating test materials in finished compost inoculant, allowing for 180 days of 

decomposition at 58°C. By improving on methods described herein that rely on real 

composting conditions,  biobased polymers such as PLA can be properly labeled as 

“compostable” and thus can be processed within the existing composting infrastructure. 

Other updates to ASTM methods may include the shortened time frame with an alternative 

temperature profile or raw food, like this study, or other variables that can be incorporated 

in lab scale trials.  

There are several intriguing options of alkaline waste products from industry 

including alkaline clay (ALCOA 2007), coal ash (Belyaeva and Haynes 2009), wood ash 

(Kurola et al. 2011, Weyerhaeuser 2014), slag (Harsco 2009), or other industrial alkaline 
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products. According to the Material Safety Data Sheet, Mineral CSA complies with the 

40CFR 503.13 EPA Standards for the use or disposal of sewage sludge (Harsco 2009, 

USEPA 1993). This standard must be considered with the application of other alkaline 

amendments to compost.  

Industrial symbiosis, a concept developed out of the field of Industrial Ecology, 

focuses on identifying waste in one industry which can be used as a raw material or energy 

source in another industry (Chertow 2000). Industrial symbiosis can be applied in this case to 

benefit both the industries that create alkaline wastes as well as composting facilities that 

need new ways to enhance their processes and products. Industrial symbiosis encourages 

material flows among local industries, benefitting all parties in the system through 

collaboration and the synergistic possibilities offered by geographic proximity.  

One example of an industrial symbiosis system would be to connect The Frito-Lay 

facility in Casa Grande, AZ, which produces an alkaline ash waste product with the 

Maricopa Organics Recycling Facility operated by Garick LLC who has received a lot of 

biopolymers in the organic wastes delivered to their compost facility. Frito Lay has 

implemented a net zero waste plan where they installed high pressure biomass boiler that 

uses wood and agricultural waste as its fuel source. The biomass boiler provides steam to 

help power the plant and the byproduct of this process is wood ash (Drevensek 2011). The 

Maricopa Organics Recycling Facility operated by Garick LLC provides biomass for 

combustion to Frito-Lay while simultaneously providing composting services for other 

organic material streams. Through a mutually beneficial relationship with Frito-Lay, Garick 

could reclaim the ash waste to reintegrate into their composting operations in order to 

enhance biopolymer degradation at their facility while simultaneously reducing the waste 

generated through biomass combustion at Frito-Lay.  
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A new system benefitting from enhanced biopolymer degradation may also include 

organic wastes that would otherwise be contaminated by plastics. Improving the composting 

of biopolymers may also significantly alter the life-cycle impacts of these products (Hottle, 

Bilec, and Landis 2013). The enhanced degradation of biopolymers in compost may enable 

greater diversion rates for institutions and cities by enabling the acceptance of biopolymers 

and any mixed organics stream which includes biopolymers wastes. The development of an 

effective pathway for compostable products is crucial in realizing waste reduction goals 

(Hottle, Bilec et al. 2015).  Further, the proposed system could create industrial symbiosis 

between the composting industry and manufacturing industries, both of which can reduce 

their waste outputs as well as increase their profits by cutting their costs in waste treatment. 

The research presented herein lays the groundwork for further inquiry into the use of 

alkaline amendments to enhance biopolymer degradation. This study demonstrated 

improvements in PLA degradation when composted with the alkaline material called Mineral 

CSA. The use of other alkaline materials should be explored and amendment ratios can be 

optimized to enhance degradation of PLA under different compost conditions. Additional 

trials and more replicates will be needed to determine more precise rates of decomposition 

associated with the addition of an amendment and the associated statistical significance.  

Other methods of investigation could be employed to determine the exact nature of the 

interactions involved with introducing an alkaline amendment, both chemical and biological. 

This topic of research has the potential to help improve biopolymer degradation in the 

composting industry and ultimately improve the life-cycle impacts of bio-based products. 
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CHAPTER 5 

COMPOSTABLE BIOPOLYMER USE IN THE REAL WORLD: STAKEHOLDER 

INTERVIEWS TO BETTER UNDERSTAND THE MOTIVATIONS AND 

REALITIES OF USE AND DISPOSAL IN THE US 

 

This chapter was accepted for publication in the peer reviewed journal Resources, Conservation 

and Recycling and appears as submitted with the exception of text and figure formatting. The 

citation for this article is:  

Meeks, D.L., T.A. Hottle, M.M. Bilec, and A.E. Landis. 2015. "Compostable biopolymer use 

in the real world: Stakeholder interviews to better understand the motivations and realities of 

use and disposal in the U.S." Resources, Conservation and Recycling. Accepted. 

 

This chapter addresses research objectives 1) Quantify end of life of waste flows of 

biopolymers via waste audits at public venues and waste handling facilities, and 2) Identify 

best practices for facilities management and waste handling of compostables via surveys and 

focus groups   

 

Introduction 

Over the past five decades the use of plastic has become ubiquitous. Plastics are 

regularly used in the manufacturing of many products, from grocery bags to synthetic 

lumber, and from toothbrushes to sutures. Over 15,000 plastics manufacturers operate in the 

U.S. with facilities located in every state. The value of shipped plastic goods in the U.S. was 

over $373 billion, and the plastics industry is ranked as the third largest sector of U.S. 

manufacturing (Carteaux 2013). In addition, plastics make up approximately 13% of the 
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country’s municipal solid waste stream, which is roughly equivalent to 32 million tons of 

plastic waste generated annually (USEPA 2012).  

Biopolymers are one of the fastest growing segments within the global plastics 

market. Biopolymers (or bioplastics) are plastics that can be produced from renewable 

materials, including sugar, corn, soy, hemp and captured methane from waste. Biopolymers 

do not have to be made entirely out of renewable materials, as many produced today are 

blends of conventional and renewable feedstocks (Hartmann 1998, Shen, Worrell, and Patel 

2010, Shen, Haufe, and Patel 2009). Furthermore, some biopolymers such as Bio-PET have 

an identical polymeric structure as their conventional counterpart and can be recycled along 

with regular PET. With such a variety of feedstocks and manufacturing processes not all 

biopolymers are biodegradable or compostable (Roland-Holst et al. 2013, Hottle, Bilec, and 

Landis 2013, Lopez, Vilaseca et al. 2012b). Worldwide consumption of all biopolymers 

including compostable and non-compostable plastics in 2012 reached 981,056 tons (less than 

1% of total polymer consumption), and the market is expected to continue to grow in the 

United States (USDA 2008) and globally (Rapra 2012, Shen, Haufe, and Patel 2009). The 

growth of the biodegradable and compostable subset of biopolymers is predicted at a rate of 

around 13% annually (Platt 2006). Of total global biopolymer production, 43% are 

biodegradable plastics including compostable polymers (EuBP 2014b).  

Compostable plastics must be able to degrade in a commercial composting setting 

according to set American Society of Testing and Materials (ASTM) standards including 

ASTM D6400-04 Standard Specification for Compostable Plastics, ASTM D6868-03 

Standard Specification for Biodegradable Plastics Used as Coatings on Paper and Other 

Compostable Substrates, and ASTM D5338-98(2003) Standard Test Method for 

Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting 
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Conditions (Song et al. 2009, ASTM 2004, 2003b, a). Of compostable plastics, polylactic acid 

(PLA) is the most abundant, but thermoplastic starch (TPS) and polyhydroxyalkanoates 

(PHA) are also common (EuBP 2014b, Tabone et al. 2010). Biodegradable plastics still 

degrade but do not conform to the timeframe in which commercial composting occurs and 

have a different set of ASTM standards (Kale, Auras, et al. 2007). This technology is used in 

products like grocery bags, trash bags, packaging, diapers, and agricultural mulch films 

(Ammala et al. 2011). It is important to note that while ASTM standards are an important 

industry codification, many commercial compost facilities are struggling to process them; 

this issue is discussed in more detail below. 

The drivers behind the growth of compostable biopolymers vary across regions, 

often relating to bans on conventional plastics, bio-preferred purchasing, and zero waste 

initiatives. According to the literature these drivers are associated with concern over 

increased fossil fuel use, greenhouse gas emissions, plastics pollution, decrease in landfill 

space, and human health (Gironi and Piemonte 2011, Ren 2003, Gómez and Michel Jr 2013, 

Kijchavengkul and Auras 2008, Álvarez-Chávez et al. 2012). For example, there are many 

conventional plastic bans being implemented and compostable product mandates being 

established. Recently the State of California has banned single use plastic bags (Steinmetz 

2014), and it is estimated that over 100 U.S. cities have banned poly(styrene) (PS) food and 

beverage containers (Goldstein 2013). The U.S. federal government’s BioPreferred Program 

mandates federal bio-based product purchasing, and it is likely that it has inspired cities 

across the U.S. to implement similar programs. After speaking with a city representative, it is 

clear that the City of Phoenix is one example of this (Carsberg 2014). Organizations in every 

state are either voluntarily adopting or being mandated to create waste to landfill reduction 

plans. Additionally, growth in the composting industry and new organics waste diversion 
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policies, such as the newly passed legislation in both California and Massachusetts, which 

requires all commercial organic wastes be diverted from landfill, will continue to encourage 

waste to landfill reduction goals (EEA 2014, BioCycle 2014, Yepsen 2009).  

 Though compostable biopolymer use is growing in response to the aforementioned 

trends, there have also been well documented challenges and concerns related to their use. 

The U.S. Composting Council has identified five key challenges which include: labeling & 

identification,  enforcement & legislation, ASTM standards, consumer education, and 

impacts to the National Organics Program (California Organics Recycling Council 2011). 

Clear labeling or demarcation of compostable bioplastics is crucial for helping consumers 

(here consumers are defined as individuals who are using compostable biopolymer products, 

in either a residential or commercial setting) accurately identify and separate their waste in 

the right disposal bins.  Enforcement and legislative challenges refer to the lack of federal 

regulations for labeling products compostable, biodegradable, or biobased. Without 

enforcement concerning the use of these labels, some companies may mistakenly market 

products as compostable when they are not. In addition, some products that have been 

designed to meet ASTM compostability standards still are not degrading adequately 

compared to other organic wastes (Ghorpade, Gennadios, and Hanna 2001, Mohee and 

Unmar 2007, Gómez and Michel Jr 2013). The reasons for this are varied, but one may be 

that some ASTM standards include decomposition times that are longer than actual 

commercial composting timeframes. For example, a variety of ASTM certified compostable 

biopolymers take over three months to decompose in a commercial compost facility and one 

of the largest composters in the Pacific Northwest States they have a ninety day turn around 

time for creating finished compost (Worldcentric 2014, CedarGrove 2015). The challenges 

associated with consumer education are many as there is profound misunderstanding 
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between the terms biodegradable, compostable, bio-based, as so forth. Moreover, many 

consumers and compostable biopolymer users do not have a general knowledge of the 

differences in composting and landfilling compostable plastics.  Lastly, compost that has 

been made with compostable bio-plastic feedstock has caused problems for organic growers 

as there has been debate over whether compost made with these products violates USDA 

Organics label rules and regulations (California Organics Recycling Council 2011). 

In addition to these challenges, there has been concern over which disposal method 

is ideal for compostables (Yates and Barlow 2013, Weiss, Haufe et al. 2012, Rossi, Cleeve-

Edwards et al. 2014), the use of GMO feedstocks for bioplastics (Gerngross and Slater 2000, 

Snell, Singh, and Brumbley 2015, van Beilen and Poirier 2007), and possible impacts to 

human health (Roes and Patel 2007, Thompson, Moore et al. 2009, Álvarez-Chávez et al. 

2012). Research around compostable bioplastics is ongoing, and many stakeholders who 

currently handle these products are also trying to determine best practices. For example, 

cities now working to divert more waste from landfill are grappling with many of the 

aforementioned challenges. Trying to weigh the potential costs and benefits to determine the 

overall sustainability of these products has become an important task for many managers, 

purchasers, and policy makers. 

 To help inform decision makers various tools have been developed to accurately 

assess what the impacts of different plastics products may be. Over the past decade there has 

been a proliferation of life-cycle assessments for biopolymers but the assumptions that 

underpin assessment can drastically affect overall findings (Hottle, Bilec, and Landis 2013). 

To date many environmental assessments of biopolymers have been done, including 

inventory improvements for life-cycle assessments (Vink, Davies, and Kolstad 2010, 

Hermann et al. 2011) but few life-cycle assessments adequately address end of life and 
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findings vary widely (Hottle, Bilec, and Landis 2013, Yates and Barlow 2013, Koller, 

Sandholzer et al. 2013, Shen and Patel 2008, Weiss et al. 2012). Moreover, gaps exist in the 

available literature which document how compostable biopolymers are being used and their 

exact method of disposal. This US-based study provides information on where compostable 

biopolymers are most commonly found, who is using them, and how organizations using 

these products are actually disposing of them. In addition, the study evaluates the 

motivations behind purchase and disposal decisions. Our overall intent is to provide 

understanding for how these products are being used so that assessments are not limited by 

wide ranging assumptions and can produce more meaningful results.  

Through stakeholder and user interviews, this paper identifies where compostable 

plastics are being used and disposed, and the motivation behind purchase and disposal 

decisions. Stakeholders include producers and distributors in the compostable biopolymer 

industry, compostable biopolymer experts, and decision makers who currently manage these 

products like municipal solid waste professionals or commercial composters. Users include 

organizations that use compostable biopolymers, such as cafes, cafeterias, and recreational 

concessions. The findings from these interviews provide insight into how these products are 

now being managed and in doing so we hope to contribute key information for important 

environmental assessment tools, decision makers, and compostable biopolymer users, both 

food service businesses and customers. 

 

Methods 

To determine where compostable biopolymers are being used and by whom, we 

began with audits of bioplastics in eight local grocery stores and three preliminary interviews 

with stakeholders, including producers and distributors in the industry, in order to identify 



100 

where consumers were using compostable biopolymers. Following the preliminary 

interviews, we conducted twelve interviews with a variety of regional compostable 

biopolymer users, such as public and private cafeterias, restaurants, and sporting venues, to 

understand the motivations behind their purchasing and disposal practices. A limited 

number of participants were interviewed through non-representative qualitative expert 

elicitation, an established social science interviewing methodology (Trost 1986, Sandelowski 

1995). 

 

Grocery Store Audits 

In order to help define the scope of the research and gauge the availability of 

compostable biopolymers for use and disposal in a residential setting, an audit of eight local 

grocery stores was conducted. The audits were conducted over three days in the Phoenix 

metropolitan area. Costco, Wal-Mart, and Fry’s are food stores who also sell many other 

types of retail items such as clothes, toys, and electronics. Safeway, Albertsons, Trader Joes, 

Whole Foods, and Sprouts are food stores who carry mainly food items but could also have 

a small selection of other assorted retail items. The stores were selected as they cater to a 

wide range of consumers, affluence levels, and consumer preferences. Three stores were 

visited on June 16th, 2014: Fry’s, Trader Joes and Whole Foods. Two more were audited on 

June 17th: Costco and Wal-Mart, and the remaining three were visited on June 18th, 2014: 

Albertsons, Safeway, and Sprouts. For all grocers, the store manager was contacted and 

approval for the audit was received.  

The data (i.e. number and type of polymer) was visually collected and documented 

while walking through each aisle or section of the grocery store. In order to maintain a 

consistent review of product categories, any areas that fell outside of the baby, beverage, 
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bread and bakery, breakfast and cereal, canned goods, condiments, cookies and snacks, dairy 

and eggs, the deli, frozen foods, fruits and vegetables, grains and pasta, international foods, 

meats and seafood, and cleaning and home products were not audited as some larger grocers 

sell many non-food items, including personal care or clothing. All rigid plastic packaging in 

each aisle was inspected. In addition to packaging, we also looked for plastic products that 

were made out of biopolymers (of any type, compostable, biodegradable, or non-

biodegradable), such as PLA flatware. The item’s name, brand, size, and type of plastic were 

documented for all plastic packaging or products that were labeled with number seven 

recycling symbol, PLA, plant-based, or PlantBottle™. Plastics are often labeled with the 

number 1 through 7. Plastics labeled with a number 2-6, or that had no recycling symbol or 

any information about the plastic material were not documented. Number one plastics, 

which are PET, were inspected further to determine if they were bio-PET products. After 

compiling the data from the grocery stores, all products with a number seven were logged 

and a search was conducted through company websites to determine plastic type.  

It is possible that some biopolymers were not accounted for. We sought to capture 

all of the Bio-PET, but it is visually indistinguishable from PET, shares the same resin 

recycling code (number one), and is not always labeled as plant based or have a 

PlantBottle™ trademark so it is possible not all Bio-PET products were identified. Film, or 

flexible plastic packaging, was not inspected because it is difficult to determine what thin 

films are made from as they are not often labeled. In addition, global production of rigid 

bioplastics packaging greatly exceeds that of flexible packaging (EuBP 2014a). 
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Interviews 

To scope and refine the interviews, which aimed to understand where compostable 

biopolymers are being used, we first conducted preliminary, unstructured interviews. We 

reached out to six producers and/or distributors in the supply chain who either make or sell 

compostable biopolymer products: Sodexo, Arizona Restaurant Supply, Western Paper, a 

Sprout’s Farmers Market, NatureWorks LLC, and EcoProducts. Out of the six contacted 

three were available for interviews:  a Sprouts manager, a representative from Natureworks, 

and a representative from EcoProducts. Both NatureWorks and EcoProducts produce  and 

distribute compostable biopolymers, with NatureWorks being one of the largest producers 

of compostable PLA resin in the United States (Nampoothiri, Nair, and John 2010).The 

preliminary interviews were semi-structured and broad themes were set out beforehand with 

follow up questions that varied based on interviewees’ responses.  Themes included: where 

individual consumers are most likely coming into contact with compostable bioplastics, the 

distribution of compostable biopolymers, and where the majority of product sales occur. 

Preliminary interviews lasted between 15-45 minutes and were all conducted over the phone. 

During the preliminary interviews, responses were documented on a laptop by the 

interviewer. After each preliminary interview, the interviewer immediately reviewed the 

questions to ensure each one was answered adequately, check for errors, and follow up with 

clarifying questions. 

In addition to this, a variety of other stakeholders connected to compostable 

biopolymer use were also interviewed. These stakeholder interviews included three 

governmental employees who help manage municipal solid waste, two from the City of 

Portland and one from the City of Phoenix, three commercial-scale composters (Recycled 

City LLC, Roots Composting LLC, and the University of New Hampshire), and a 
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biopolymers industry expert to further develop our knowledge of current practices, 

challenges, and implications of compostable biopolymer use. These stakeholder interviews 

followed the same protocol as before with the exception that contact with the City of 

Phoenix was in the form of an email exchange.  

The grocery store audit and the first three preliminary interviews with producers and 

distributors suggested that residential consumers were not coming in contact with 

biopolymers (of any type, compostable, biodegradable, or non-biodegradable), as the overall 

number of biopolymer products in the store was low and products that were there were not 

selling quickly. As such, the interview process was modified to gain an understanding of 

where compostable biopolymers were being used and disposed so that we could identify 

organizations (compostable biopolymer users) that would be appropriate for this research 

(Sandelowski 1995). Since compostable biopolymers are largely found in the food service 

industry, we utilized the food service market segmentation strategy developed by the USDA 

to create categories where compostable biopolymers are being used (USDA 2010). This 

statistically non-representative stratified sampling allowed for a wider elicitation in overall 

participant experiences (Trost 1986).  We delineated five main categories which included: 

limited service eating places (organizations where customers pay prior to receiving food or 

drink, such as a café), cafeterias (both public and private), recreational food concessions 

(such as at sporting events), caterers, and hospitals. A list of establishments, within the 

Phoenix Metropolitan area, which had the possibility of carrying compostable biopolymers 

was made for each category, upon which each establishment was contacted to confim the 

use of compostable plastic. A total of twelve establishments confirmed using compostable 

biopolymers; and were interviewed about their use and disposal practices. The second set of 

twelve interviewees are summarized in Table 8. Stanford was the one exception, being 
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located outside of the Phoenix area, and was chosen as an organization to interview because 

no other large cafeterias were available and they are well known for their waste reduction 

goals and as users of compostable biopolymers.  
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Table 8. Interviews conducted with various stakeholders across the compostable biopolymer 
supply chain. ~ indicates the second set of interviews, * indicates preliminary interviews. 

 

Compostable Biopolymer Users ~ Location Date
Cafeterias
Arizona State University Tempe, AZ 8/13/2014
Intel Chandler, AZ 8/1/2014
Stanford University Stanford, CA 7/31/2014

Catering Companies
Atlasta Catering and Event Concepts Phoenix, AZ 7/25/2014
Bruce Brown Catering Company Phoenix, AZ 7/21/2014
Santa Barbara Catering Company Tempe, AZ 7/9/2014

Limited Food Service Establishments
Anonymous Café Tempe, AZ 7/8/2014
Pomegranate Café Phoenix, AZ 7/30/2014
The Cutting Board Bakery and Café Mesa, AZ 8/11/2014

Recreational Concessions
Arizona Diamondbacks Phoenix, AZ 8/27/2014
Desert Botanical Gardens and Arizona 
Science Center Tempe & Phoenix, AZ 8/29/2014
Phoenix Convention Center Phoenix, AZ 7/28/2014

Other Compostable Biopolymer Stakeholders *
Composters
Recycled City LLC Phoenix, AZ 7/23/2014
Roots Composting LLC Flagstaff, AZ 7/31/2014
Universtiy of New Hampshire Durham, NH 7/10/2014

Industry Expert

Brenda Platt, Institute For Local Self Reliance Washington, D.C. 8/29/2014

Government
City of Phoenix Phoenix, AZ 7/30/2014
City of Portland, Solid Waste and Recycling: 
Residential Composting Portland, OR 6/23/2014
City of Portland, Solid Waste and Recycling: 
Commercial Composting Portland, OR 6/24/2014

Producers and Distributors 
EcoProducts Boulder, CO 7/25/2014
NatureWorks LLC Minnetonka, MN 6/20/2014
Sprouts Farmers Market Tempe, AZ 6/29/2014

Completed Interviews
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For the second set of twelve interviews, initial contact was made through email or 

phone, where upon the interviewer explained the research and scheduled an interview in 

order to speak with a representative about the organization’s use and disposal of 

compostable biopolymers. All interviews were over the phone or in person except one 

exchange with a catering company (Bruce Brown Catering) that was conducted over email. 

The interviews were semi-structured and each category of food service had a list of questions 

and general themes to address. In all cases, respondents answered questions about the types 

of compostable biopolymers they used, why they chose to purchase them, and the method 

of disposal. The interviewers also asked follow up questions to gain further insight and 

elucidate their compostable biopolymer use and disposal stories. Again, while interviewing, 

answers to questions and notes were typed in real time. After each interview the interviewer 

immediately reviewed the questions to ensure each one was answered adequately, check for 

errors, and follow up with clarifying questions. The original interview questions can be 

found in Appendix F.  

The interviews were analyzed using qualitative content analysis (Hsieh and Shannon 

2005). The results and interview analysis only represent organizations from the second set of 

interviews with compostable biopolymer users (Table 7). Responses were classified 

according to three critical questions identified based on gaps in the literature including: 

motivations behind compostable biopolymer purchase, disposal practice, and motivation 

behind disposal choice. Next we searched for the challenges each organization associated 

with using and disposing of biopolymers. In addition, special attention was paid to how 

much influence individual consumers had on the purchase decision and disposal of these 

products. 
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Results and Discussion 

Grocery Store Audit 

Eight out of nine grocers carried items that were made from or packaged with 

biopolymers. Figure 17 presents the findings of the audit for all grocers audited. There were 

a variety of different types of products found with some of the most common being bio-

PET bottles, PLA utensils, and compostable trash bags. Figure 18 shows the types of 

products found at all of the grocers. This represents the total number of biopolymer 

products available in each store and does not account for the total number of plastic 

products in each store. The percentage of biopolymer products, compared to all 

conventional plastic, was very small, and the biopolymer products are not always clearly 

identifiable. For example, the Stonyfield yogurt cup label does not mention anywhere on it 

that the packaging is plant based, instead the bottom of the yogurt cup states "this cup is 

made from plants." There were an abundance of number seven products, over forty items 

across the eight stores, including items such as 4 oz. Motts Applesauce packs, Nescafe 

Tasters Choice packaged coffee, and some of the one gallon bottles of Arizona Tea. 

According to the ASTM a number seven resin code on plastics incorporates all other 

possible types of polymers and materials which are made out of multiple resins or are multi-

layered (Wilhelm 2008). 
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Figure 17. The number of biopolymer products found at each grocery store categorized by 
the type of biopolymer material. Products where no information on the type of biopolymer 
material used are labeled as unknown. 
 

 

Figure 18. The total count of biopolymer products found categorized by product type. The 
"other" type consists of sponges, a soap bottle, straws, and a party pack with assorted 
biopolymer products such as compostable utensils and cups. BP = biopolymer 
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There are a limited number of biopolymer products (of any type, compostable, 

biodegradable, or non-biodegradable) available for residential consumers to buy and the 

Sprouts store manager described the sales volume for compostable utensils as low. 

Furthermore, even with the number seven plastics, the total number of products identified 

represents a very small portion of all the plastic products and packaging in the grocery 

section of the stores, which the Spouts manager estimated ranged from hundreds for smaller 

grocers, to thousands for larger grocery stores. The results from this audit show that 

individuals are not coming into contact or purchasing many biopolymer products, of any 

kind, via their local grocers, and as such, use and disposal of any type of biopolymers in a 

residential setting is still quite low. 

Preliminary interviews with NatureWorks LLC and EcoProducts supported these 

findings, and suggested that if and when consumers do come into contact with compostable 

biopolymers, it is most likely occurring in a commercial foodservice setting (e.g., restaurant) 

rather than at home. A representative from NatureWorks, stated that though they have some 

sales in grocery retail and food packaging they have more contact with the commercial food 

service sector. EcoProducts, a large manufacturer and distributor of compostable plastic 

products, reported that the vast majority of their sales are to commercial food service 

businesses. The main types of businesses EcoProducts sells to fall into six main categories: 

colleges and universities, corporate campuses, health care, large venues (e.g. professional 

sports arenas), restaurants, and the hospitality industry. The EcoProducts respondent also 

noted that as these products are not as competitive in a retail setting, such as a grocery store, 

compostable biopolymers do not see as much use in homes. In addition to this she stated 

that because of new mandates, such as the ones banning conventional plastics, larger 

organizations are increasingly turning towards compostable biopolymers. Though consumers 
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are using compostable plastics in a limited way in a residential setting, the majority of contact 

is within institutional settings, specifically commercial food service. 

 

Compostable Biopolymer User Interviews 

More than thirty organizations with a commercial food service component and 

possible compostable biopolymer use were contacted. Out of those thirty, twelve interviews 

were conducted between June 1st, 2014 and September 1st, 2014. Each food service 

category had three interviews attributed to it, except hospitals as we were not able to find 

any in the Phoenix area that used compostable biopolymer products. The interview process 

proved helpful because it revealed information typically missed in quantitative data collection 

related to compostable biopolymer disposal, particularly related to the importance of 

communication in the overall waste management system. Generally, most organizations 

using compostable biopolymers sent their waste to landfill. Out of the twelve organizations, 

three composted their compostable biopolymers – all from the cafeteria category. None of 

the organizations interviewed disposed of their compostable biopolymers by recycling, 

which is logical as these products are not accepted in municipal recycling facilities (Song et 

al. 2009).The motivation behind these disposal decisions, and reasons given for purchase, 

will be discussed in the subsequent sections. 

 

Understanding Motivation 

For each food service category there were a variety of reasons cited for the decision 

to purchase and use these products. Figure 19 is a graphical representation of the 

motivations that food service organizations shared for purchasing compostable plastics. 

Many of the reasons given from recreational concessions, limited food service 
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establishments, and caterers were related or overlapped, and out of the four food service 

types all but cafeterias sent their compostable biopolymers to landfill. All companies who 

landfilled their compostable biopolymers (recreational concessions, limited food service 

establishments, and caterers) stated that using compostable biopolymer products aligned 

with the organizations’ intention and desire to be a sustainable company. In addition, they 

wanted to use biopolymers for their perceived environmental benefits, to have the 

"greenest" footprint possible, and to align with their environmental branding. Another 

common reason given among the landfillers of biopolymers was that integrating 

sustainability into business practices is considered the norm and that using compostable 

products helped them fulfill that expectation. Many recreational concessions noted the need 

to stay competitive in contract renegotiations and used compostable biopolymers as a way to 

signal a move towards sustainable business operations and to align with their contractors’ 

goals. Other reasons given across the organizations who landfill compostable biopolymers 

included wanting to use products that broke down (they believed the PLA products would 

degrade in landfills), wanting to avoid the use of conventional plastics, and that they wanted 

to support products that used bio-based feedstocks. There was only one case where the main 

reason for purchase was driven by individual consumer preference. In this instance, a caterer 

bought biopolymers to have on hand in case a client specifically asked for them. 
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Figure 19. Responses given to the question "why does your organization choose to use 
compostable plastics?" For each food service category there were three organizations 
interviewed; the four categories are Caterers, Limited Food Service Establishments, 
Recreational Concessions, and Cafeterias. The numbers in parentheses next to the stated 
reasons indicate how many organizations gave that particular response. 
 

Cafeterias, the only food service category where compostable biopolymers were 

being sent to compost facilities, had noticeably different reasons for purchasing biopolymers. 

It is important to note that this is not likely the case for all cafeterias across the nation, as an 

elementary school or correctional facility cafeteria may operate in a much different manner. 

Like the other food service types, all three cafeterias valued integrating sustainability into 

their business practices or are motivated by broader sustainability goals to use compostable 

bioplastics, but unlike the rest of the organizations they all cited specific and measurable 
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waste reduction goals that they were trying to achieve. All three organizations also said that 

they used biopolymers in order to simplify sorting so as to achieve greater waste diversion. 

Using compostable biopolymers can reduce the time individuals spend sorting trash and help 

simplify the process, which reduces contamination and thus helps drive diversion rates 

higher, as previous research has shown (Hottle, Bilec et al. 2015). Other reasons given were 

that that switching to completely reusable products (e.g. ceramic plates and cups) was cost 

prohibitive and that compostable biopolymers were able to replace a wide variety of 

products typically destined to landfill which would further reduce the overall waste of the 

organization.  

 Out of all the reasons given between cafeterias and the other food service categories, 

interviewers documented very few instances of greenwashing, which is defined as “a 

superficial or insincere display of concern for the environment” (Collins English Dictionary, 

2014). In most cases the organizations felt strongly about working to make decisions that 

produced positive impacts for both the environment and the organization. For most all food 

service categories, these products were more expensive than conventional disposables, but 

purchasers were willing to pay more because they believed they were making the right 

choice. One limited food service establishment was so committed to buying compostable 

biopolymers that after a period of financial hardship where they were not able to afford 

compostable bioplastics they promptly resumed buying them even before they had 

completely recovered financially.  

 Though all organizations cared about the environment and the responsibility of the 

choices they were making, not all organizations had the resources to allocate to detailed 

analysis and management of these products. This can been seen in the two instances where 

respondents’ purchase decision was motivated in part, because they believed the 
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compostable biopolymers would degrade in landfills; compared to cafeteria managers who 

thoroughly understood where these products would and would not degrade. All of the 

cafeterias interviewed (ASU, Stanford, and Intel) were part of larger organizations that 

employ hundreds or thousands of people and have substantial annual operating budgets. 

Similarly, all cafeterias also had strategic sustainability plans and measurable sustainability 

goals. Even for recreational food courts, which are relatively large, their concessions were 

contracted (in two out of the three cases) by smaller local companies. In addition, each 

cafeteria had a dedicated project manager who specifically focused on issues related to 

sustainability and waste management.  

 For the most part, companies from the other three categories were much smaller, 

and the individual deciding what to purchase had many other duties and responsibilities. For 

example, for all limited food service establishments the owner was the purchaser, as well as 

the marketing director, human resources, the kitchen manager, and they also often worked in 

the café during the day cooking or serving. All organizations from the different food service 

categories were trying to make good choices but the disparity in overall organizational 

resources impacted decision making. In the case of organizations with limited resources, 

some switched over traditionally recyclable products (such as cold cups) to a compostable 

biopolymer product which resulted in an increase in waste being sent to landfill as they could 

not compost the cups, which could have previously been sent to a recycling facility.  

Larger drivers, i.e. conventional plastic bans, organics recycling mandates, and a 

growing trend to reduce waste to landfill could also be seen in organizations’ decision to 

purchase compostable plastics. It is most clearly reflected in the cafeteria food service 

segment, especially in Stanford's case where they are working to meet state and city waste 

diversion goals and abide by laws that ban PS and conventional plastic bags. Over the past 
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few years both Intel and ASU decided, independent of regional laws, to establish waste to 

landfill reduction goals, with ASU originally having set a goal to reach zero waste by 2015. In 

every case organizations were using compostable biopolymer products in response to the 

growing social trend to integrate sustainability into business practices and, for a variety of 

reasons, they believed using compostable biopolymers represented a more sustainable 

option. Aside from cafeterias, the decision to purchase compostable plastics did not seem 

linked to organizations’ ability to compost them. In addition, purchasing decisions had very 

little to do with individual consumer preference. Out of the twelve organizations only one 

stated that they bought compostable biopolymers because of customer demand. Many 

organizations stated that few customers had ever explicitly commented on the use of 

compostable bioplastics or seemed to have any awareness of them. Overall, our findings 

suggest that neither residential consumers nor food service patrons are driving the purchase 

and use of compostable biopolymers; the primary drivers are linked to organizational waste 

diversion and sustainability goals. Legislative bans were not found to be the exclusive drivers 

among interviews; though they did accompany organizational drivers in states with bans. 

 

Understanding Disposal 

As noted before, all organizations in the catering category, the limited food service 

category, and the recreational concessions category sent compostable biopolymers to landfill. 

In contrast, all three organizations in the cafeteria category did their best to send the 

compostable biopolymers to composting facilities. Out of the nine facilities that sent their 

compostable bioplastics to landfill, all stated lack of access to commercial composting 

infrastructure which were also able to accept these products, as the main reason for 

landfilling. Two of the three limited food service establishments have a commercial 
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composter, but explained that their composter did not accept compostable biopolymers. For 

recreational concessions and caterers a handful of organizations had some kind of pre-

consumer organics disposal stream, so that organics could be composted or anaerobically 

digested. Pre-consumer organic wastes are the kitchen food scraps, and other organic waste 

such as cardboard, that is generated behind the counter by the kitchen or the organizations 

staff. The Phoenix Convention Center used an ORCA on-site organic waste aerobic digester 

which allows food waste to be sent to wastewater treatment for disposal, Desert Botanical 

Gardens had staff that came and picked up food scraps to use for composting, and Atlasta 

Catering composted all pre-consumer organics with a local commercial facility. All nine of 

the organizations that did not compost their compostable biopolymers explicitly stated a 

desire to find a commercial facility that would accept them, even if it meant paying more for 

the service. One of the catering companies stated that they have been looking for two years 

to find a composter in the Phoenix valley that will accept their post-consumer organics 

waste. The Arizona Diamondbacks, which have occasionally held zero waste events, noted 

that they were only able to do so because the events were special occurrences and as such 

they had organics trucked approximately 140 miles away to a facility that accepted 

compostable plastics. It was decided that long-term transport to this facility was neither 

economically or environmentally sustainability for the organization. For the Phoenix area, 

and many other parts of the country, there is no easily accessible composting infrastructure. 

Even if there are commercial composters, it can be a challenge to find one that will accept 

organics mixed with compostable biopolymers.  

Despite the infrastructure challenges, cafeterias that were located in the Phoenix 

metropolitan area were able to find a composter for their pre and post-consumer organics 

waste. Even though the cafeterias have been able to compost their compostable plastics, all 
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three also stated sufficient composting infrastructure as one of the biggest challenges to 

using compostable biopolymers. In each of the three organizations project managers worked 

hard to find, collaborate with, or create the necessary composting infrastructure. For 

example, ASU worked with their hauler, Waste Management Inc., to find a location to which 

they could send their organic waste. In contrast, Stanford has had access to more 

commercial composting facilities, but finding a good fit was still a challenge. Stanford’s 

respondent explained that development of the composting market has been crucial. In 

Stanford’s vicinity three composting facilities are now operating: one that only accepts and 

sells high quality organics and soil amendment, one that creates a low quality compost for fill 

in construction projects and accepts most anything, and a composter that sits in between – 

they will accept compostable biopolymers and work to create a medium quality soil 

amendment that can be sold to residential and commercial customers. For Stanford it was 

the development of the regional compost market that dictated their ability to find a facility 

that would accept their post-consumer organics and compostable biopolymers. In sum, it 

seems that three components created the necessary conditions that enabled cafeterias to 

send their compostable biopolymers to a compost facility: they each had measurable waste to 

landfill goals, waste diversion and organics programs were actively managed and monitored, 

and each cafeteria had the resources to dedicate to the above tasks and to secure a 

commercial composter or connect to robust regional infrastructure that was already intact.  

 It is important to note that even with organizations who have commercial composter 

services, some compostable biopolymers still ended up being sent to landfill. For all 

cafeterias interviewed, this was the case, though the percentage lost to landfill could not be 

determined. For post-consumer separated waste streams this is a common occurrence, and 

can be seen with recycling as well as with separated organic streams. For a number of 
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reasons, it is very difficult to get 100% of waste sorted correctly and to the desired waste 

treatment facility. For compostable biopolymers, organizations noted that diversion loss can 

occur in two ways, onsite and then at the commercial composters facility itself. Within the 

organization, individuals not sorting their waste into the correct bin (i.e. throwing their 

compostable cup into the landfill bin), custodial staff not correctly sorting bags at dumpster, 

and staff being directed to toss composting waste because it looks as if it has too much 

contamination, are all ways compostable biopolymers could end up being sent to landfill. At 

the compost facility, composters could reject entire organic waste loads because of too much 

contamination, and composters may screen biopolymers out of compost because it cannot 

be sorted from the other conventional plastic contaminates. Both of these decisions result in 

biopolymers being sent to landfill.  

Contrary to what was observed for purchasing decisions, it is clear that individual 

consumers have more of an impact on compostable biopolymer end of life. Though 

individuals have more impact via their disposal decision, every type of organization was 

working to alter the overall system design to reduce this impact, both purposefully and 

otherwise. For example, caterers have many events where trained servers clear and sort trash 

(regardless of the type of disposables used), some of the limited food service establishments 

do a post sort of all their organic waste, recreational concessions may utilize bin-guards (staff 

that stand by the waste bins and help consumers sort all waste correctly). Cafeterias also 

identified a number of additional ways they mitigate losses in order to get organics diversion 

rates as high as possible. Intel closely monitors all landfill and compost dumpsters and 

follows up immediately with staff if there are unexpected tonnage increases or decreases. 

Strong relationships, supported by regular meetings and trainings with property management 

and their contract cleaning company is used to drive better diversion rates as well. ASU and 
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Stanford use a variety of different management strategies to correct individual sorting error 

including effective signage and bin placement, bin guards, and post event sorting. In 

addition, they also work closely with their contractors be they food service, custodial staff, or 

waste handlers.  

For all organizations the most important factor related to compostable biopolymer 

disposal decisions was access to compost infrastructure and the overall compost market 

development. For key decision makers, such as municipal solid waste managers or directors, 

especially in cities where bio-preferred purchasing is encouraged, it may be beneficial to 

devote equal attention and resources to support the composting infrastructure for products 

that demonstrate improved environmental impacts for composting rather than landfilling 

(Yates and Barlow 2013). The choice to compost biopolymers may also result in 

consequential diversion of food waste for composting, improving the environmental impacts 

of food waste and those associated with biopolymer disposal (Levis and Barlaz 2011). This 

would include the opportunity for all organizations with pre and post-consumer organics 

access to commercial composting, and for composters to be supported by a robust market 

that supplies compost to a variety of different sectors. 

 

Conclusion 

After the grocery store audits which identified relatively few biopolymers were 

available in retail settings, this research focused on compostable biopolymers in commercial 

food service settings. The decision to purchase these products is impacted by larger social 

trends, such as zero waste initiatives and plastics bans, but individual user motivation was 

based on a variety of different factors. For all food service categories disposal decisions 

relied heavily on the regional waste infrastructure that was available. In Phoenix where 
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municipal commercial composting is not readily available, for the organizations we spoke 

with, most compostable biopolymers were being landfilled. Consequently, in regions where 

there is no commercial composting infrastructure, this research suggests that most food 

service providers are sending biopolymers to landfill, however quantifying the mass of 

composting and landfill waste streams will require waste audits and material flow analyses. 

This research also found that motivation to purchase was not explicitly linked to the ability 

to compost the compostable biopolymers nor driven by individual consumer preference.  

Sustainability of biopolymers with a potential use in food service industries must 

consider the available waste infrastructure and disposal methods of commercial food service 

providers. In addition, the most appropriate method of disposal for compostable 

biopolymers may depend on individual business factors and with which impacts the 

organization is most concerned.  For example, with a commercial food service business 

which uses large quantities of disposable cold cups, and is most concerned with decreasing 

waste to landfill, it may be more sustainable to stay with conventional plastic products that 

can be readily recycled (Hottle, Bilec et al. 2015). Alternatively, a business that creates large 

quantities of disposable, food-soiled products, and is concerned with decreasing waste to 

landfill, may find that the most appropriate option for their business is compostable 

biopolymers as most material recovery facilities do not accept small plastics like utensils and 

have trouble with organic contamination in the recycling process.  

However, it is beyond the scope of this paper to decide if compostable bio-polymers 

can ultimately be considered a sustainable product or which end of life treatment is the most 

environmentally beneficial. It is important to note that the peer reviewed literature lacks 

evidence and consensus one way or the other related to the sustainability of compostable 

biopolymers. Most compostable biopolymer assessments to date focus on plastic production 
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and ignore the complicated realities of waste handling (Hottle, Bilec, and Landis 2013, 

Tabone et al. 2010, Vink and Davies 2015b, Gerngross and Slater 2000). Many studies on 

municipal solid waste treatment methods vary widely.  For example, composting has been 

found to be one of the best ways to treat food and food soiled waste because of the reduced 

methane generation compared to landfill while on the other hand it has been demonstrated 

to be one of the worst options because there is no opportunity for energy recovery via 

anaerobic digestion or landfill gas capture (Finnveden, Björklund et al. 2007, Marchettini, 

Ridolfi, and Rustici 2007, Kim and Kim 2010, Saer, Lansing et al. 2013, Favoino and Hogg 

2008). For compostable bioplastics which are not food soiled some studies show it may be 

preferable to landfill them (Lundie and Peters 2005). 

This research demonstrates a demand for compostable biopolymer plastics among 

various food service providers but the ambiguity regarding end of life is pervasive. The 

uncertainty concerning end of life could undermine the investments and efforts of 

stakeholders throughout the supply chain who are creating and using products they hope will 

have improved environmental performance. Though there is clearly a need for further 

research around what end of life treatments are the most beneficial, the compostable 

biopolymers continue to expand into the plastics market. In order to improve the overall 

environmental performance of compostable biopolymers it is important to understand the 

motivations behind purchasing, and for compostable biopolymers that perform better in 

composting situations, create robust waste systems that can accommodate increasing 

volumes of compostable waste. Increased communication along the life-cycle for 

compostable biopolymers can help stakeholders create a dialogue, clarifying their goals and 

expectations as they assume greater responsibility for the impacts of the products they use. 
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CHAPTER 6 

BIOPOLYMER PRODUCTION AND END OF LIFE COMPARISIONS USING LIFE-

CYCLE ASSESSMENT 

 

This chapter addresses research objective 4) Quantify the end of life environmental impacts 

of compostable biopolymer scenarios via life cycle assessment incorporating findings from 

objectives 1-3 

 

Introduction  

Biopolymers are a growing segment of the plastics market primarily in packaging and 

disposable products (Shen, Worrell, and Patel 2010). These bio-based plastics have gained 

interest as an alternative to fossil based plastics because of the potential to shift to more 

environmentally friendly production and waste handling. Some commercially available 

biopolymers are compostable, though many require conditions only attainable in 

commercial-scale composting facilities (Hottle, Bilec, and Landis 2013, Yates and Barlow 

2013). This life cycle assessment (LCA) seeks to explore the impacts associated with the 

production and disposal of biopolymers compared to fossil-based plastics; most literature on 

biopolymers has neglected EOL, which studies say could significantly impact the overall life-

cycle impacts of biopolymers. 

Traditional plastic production is a mature industry with materials produced using 

fossil resources such as petroleum and natural gas. The US Environmental Protection 

Agency (EPA) reported that in 2013, plastics contributed to 13%, by weight, of the 

municipal solid waste (MSW) in the US totaling about 32.5 million tons of plastic waste 

generated annually (USEPA 2015a). Nine percent of plastics entering the waste stream were 
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recovered for recycling, though recovery rate is not necessarily indicative of a final recycling 

rate. Of total plastics, about 91% are discarded to a landfill or are incinerated. While overall 

recovery of plastics for recycling was only 9%, recovery of certain plastic containers is more 

significant. In 2013 polyethylene terephthalate (PET) soft drink bottles were recovered at a 

rate of 31% while high-density polyethylene (HDPE) milk and water bottles were estimated 

at about 28%. Packaging and nondurable plastics in MSW totaled 20.5 million tons, of which 

10% were recovered (USEPA 2015a). 

Despite the ability to increase recovery rates of fossil based plastic materials, 

concerns over increased fossil resource use, greenhouse gas emissions, pollution, costs of 

landfilling, and human health impacts associated with plastics have driven an increasing 

interest in the use of biopolymers (Gironi and Piemonte 2011, Ren 2003, Gómez and Michel 

Jr 2013, Kijchavengkul and Auras 2008, Álvarez-Chávez et al. 2012). Biopolymers are 

plastics that can be produced, at least in part, from renewable materials such as corn and 

sugar cane. Some biopolymers, like Bio-PET, are blends of conventional and renewable 

feedstocks (Hartmann 1998, Shen, Worrell, and Patel 2010, Shen, Haufe, and Patel 2009). 

Bio-PET is the same polymer as PET aside from the fact that the ethylene 

component is bio-based rather than fossil-based and they can be recycled together since they 

are chemically identical (Tabone et al. 2010, Morschbacker 2009). Bio-PET is used in Coca-

Cola’s Plantbottle™ and is the most prevalent biopolymer in the market (European 

Bioplastics 2014, Coca-Cola 2012). Other biopolymers such as PLA and thermoplastic starch 

(TPS) are compostable but not recyclable given the current infrastructure and markets (Song 

et al. 2009). PLA is the most prevalent compostable biopolymer in the market (European 

Bioplastics 2014). Compostable biopolymers must conform to American Society of Testing 

and Materials (ASTM) standards; ASTM D6400-04 Standard Specification for Compostable 
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Plastics, ASTM D6868-03 Standard Specification for Biodegradable Plastics Used as 

Coatings on Paper and Other Compostable Substrates, and ASTM D5338-98(2003) 

Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under 

Controlled Composting Conditions (Song et al. 2009, ASTM 2004, 2003b, a). Some 

biopolymer products are coming under increasing scrutiny because they are not fully 

degrading in commercial composting facilities, complicating the waste management for users 

and waste handlers of these products (Cedar Grove 2012, Ghorpade, Gennadios, and Hanna 

2001, Mohee and Unmar 2007, Gómez and Michel Jr 2013). 

LCA is a well-established method used to quantify the environmental impacts of 

products and processes.  Previous life cycle assessments of biopolymers are largely limited to 

assessments of global warming potential and fossil fuel depletion which may favor 

biopolymers because of the inherent properties of plastics made from biogenic carbon 

compared to fossil based plastics and may miss the potential environmental tradeoffs that 

can occur when shifting to agriculturally produced feedstocks (Miller, Landis, and Theis 

2007, Landis, Miller, and Theis 2007, Hottle, Bilec, and Landis 2013). 

End of life (EOL), the processes involved in handling and treating a material after it 

enters the waste stream, has been shown to be significant for traditional plastics (Björklund 

and Finnveden 2005, Hopewell, Dvorak, and Kosior 2009, USEPA 2015a). Few of the past 

LCAs for biopolymers adequately address EOL. When waste scenarios are included in 

LCAs, findings vary widely based on the chosen EOL scenarios (e.g. landfilling, recycling, 

incinerating, composting) which are not always based on realistically available disposal 

methods (Hottle, Bilec, and Landis 2013, Yates and Barlow 2013, Koller et al. 2013, Shen 

and Patel 2008, Weiss et al. 2012). Of the twenty-one LCAs reviewed in Hottle et al. (2013) 

only seven included EOL within the system boundaries. Of the seven studies which 
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evaluated EOL, only one study included composting as an EOL scenario for compostable 

biopolymers while five included scenarios for incineration which is a less common disposal 

method for plastics compared to landfilling and recycling (USEPA 2015a). Increasingly there 

have been calls to further investigate the EOL for biopolymers (Yates and Barlow 2013, 

Weiss et al. 2012, Rossi et al. 2014, Hottle, Bilec, and Landis 2013, Hermann et al. 2011). At 

the same time, there have been inventory improvements for the production of biopolymers 

and waste streams in the United States that can be used for refining LCAs (Vink, Davies, 

and Kolstad 2010, Hermann et al. 2011, Pressley, Levis et al. 2015, Kolstad et al. 2012, Vink 

and Davies 2015a).  

The LCA presented herein models the production of biopolymers and traditional 

fossil based plastics as well as EOL scenarios including landfill, compost, and recycle. For 

each recyclable polymer (PET, Bio-PET, HDPE, Bio-HDPE, LDPE, and Bio-LDPE) 

landfill and recycling scenarios are used, while the remaining compostable polymers (PLA 

and TPS) are modeled using compost and landfill scenarios. PLA has two landfill scenarios 

to model two different forms of PLA, amorphous and crystalline, both of which are used in 

products on the market. Amorphous PLA is used in applications such as clear cups, films, 

and coatings. Crystalline PLA is used in applications such as cutlery and hot coffee cup lids. 

The amorphous PLA emits some methane as it breaks down in the landfill, while the 

crystalline PLA does not degrade under landfill conditions (Kolstad et al. 2012). 

 

Methods 

Scope and System Boundary 

Figure 20 depicts the system boundaries for the LCA. The functional unit for the 

study is 1 kg of polymer. Eight polymers were evaluated in the study: PLA, TPS, PET, Bio-
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PET, HDPE, Bio-HDPE, LDPE, and Bio-LDPE. These polymers were selected because 

PLA, TPS, Bio-PET, and Bio-PE represent the most common biopolymers globally, with 

11.4%, 11.3%, 12.3% and 37% market shares of biopolymers respectively (European 

Bioplastics 2014). PLA is made from corn grown in the US and produced at the 

NatureWorks facility in Blair, Nebraska. The Bio-PET is synthesized in part from ethylene 

glycol which comes from sugar cane grown and distilled in Brazil. Bio-HDPE and Bio-

LDPE modeled the use of Brazilian sugar cane based ethylene. Both the ethylene glycol and 

ethylene processes included freighter shipment to the U.S. 
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Figure 20. System boundaries for the LCA of eight biopolymers including production and 
EOL processes. Included in the assessments is transportation between EOL processes and 
energy inputs for all of the processes. All of the polymers undergo the same initial EOL 
processes of ‘Waste Collection’ and ‘Tipping Floor’ handling. The colors represent different 
EOL pathways with recyclable polymers and recycling processes in blue, compostable 
polymers and compost processes in green, and landfill in brown which is a scenario for all 
polymers. The bio-ethylene and starch processes contribute to the raw materials used in the 
respective inventories. PLA production was modeled using gross emissions data and not a 
process flow within the modeling software (Vink, Davies, and Kolstad 2010). 

 

In addition to the production of the polymer resins, this assessment included EOL 

processes starting with waste services common to all polymers which are waste collection 

and tipping floor activities (Figure 20) and ended with three possible options for final EOL; 

recycle, compost, or landfill. Each polymer was evaluated using two EOL scenarios; landfill 

and one alternative EOL treatment. All polymers were evaluated using a landfill EOL 
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scenario because landfilling is the predominant destination for plastics in the United States. 

The second EOL scenario was based upon whether the material is recyclable or 

compostable. The different methods of transportation used to move waste materials 

between the EOL processes were included in the assessment. The EOL scenarios, travel 

distances, and handling processes were based on services in the Phoenix metropolitan 

region, where this study took place. The recycling process for plastics included baling at a 

material recovery facility (MRF), shipment via semi-truck to Long Beach, California, and 

transportation on an ocean freighter to Hong Kong (Campbell 2014). The benefits of 

offsetting virgin material production via recycling are allocated to the plastics during EOL in 

this LCA. 

The product formation (e.g. blown film extrusion, sheet extrusion, thermoforming, 

and injection molding) and use of plastics were excluded from this LCA because these 

processes are similar for both biopolymers and their fossil-based counterparts. 

 

Inventory 

Table 9 presents the various processes used to compile the life cycle inventory (LCI) 

data for the eight polymers; detailed LCI is presented in the SI. The process used to model 

the tipping floor is based on data collected during site visits to the Waste Management Inc. 

(WM) Sky Harbor Tipping Floor located in Tempe, Arizona from 11 July 2014 to 17 July 

2014 and follow-up communications with WM employees. The remaining processes were 

created or customized using data available within existing databases and literature so the 

inventories are applicable to the scope and boundaries of the study. These processes are 

described in further detail. 
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Table 9. Sources of inventory data for the processes used in the LCA and the name of the 
processes within the database or literature. More details are presented in the SI.. 
 

Process Database or Source Process Name 

PLA production Vink 2010 2009 Ingeo PLA  

 TPS production ecoinvent v2/Hottle 2013   revised TPS production including: Modified 
starch, at plant/RER unit process 

 PET production Franklin Associates 2011 cradle-to-resin life-cycle inventory results for 
PET resin  

 HDPE production Franklin Associates 2011 cradle-to-resin life-cycle inventory results for 
HDPE resin  

 LDPE production Franklin Associates 2011 cradle-to-resin life-cycle inventory results for 
LDPE resin  

 Bio-ethylene production ecoinvent v2/Tabone 2010 multiple scenarios  

 PLA landfilling ecoinvent v2/Kolstad 
2012 

 custom PLA landfilling including: Disposal, 
polyethylene, 0.4% water, to sanitary 

landfill/CH unit process 

 PLA composting 

average – ecoinvent 
v3/site visit, personal 

communication, 
and Kruger 2009 (Kruger, 
Kauertz, and Detzel 2009) 

 custom PLA composting and Biowaste 
[CH] treatment of, composting | Alloc Def 

unit process 

 TPS landfilling ecoinvent v2  Disposal, packaging cardboard, 19.6% 
water, to sanitary landfill/CH unit process 

 TPS composting 

average – ecoinvent 
v3/site visit, personal 

communication, Piemonte 
2011 and Hermann 2010 

 custom TPS composting and 
Biowaste [CH] treatment of, composting 
and custom TPS composting | Alloc Def 

unit process 

 PET landfilling ecoinvent v2  Disposal, polyethylene terephtalate, 0.2% 
water, to sanitary landfill/CH unit process 

 PET recycling Franklin Associates 2011 custom process including: PET (waste 
treatment) [GLO] recycling of PET  

 PE landfilling ecoinvent v2 Disposal, polyethylene, 0.4% water, to 
sanitary landfill/CH unit process 

 PE recycling Franklin Associates 2011 custom process including: PE (waste 
treatment) [GLO] recycling of PE  

MRF operations Pressley 2015 multiple scenarios based on polymer type 

tipping floor operations site visit, personal 
communication custom process 

waste collection   ecoinvent v3 
Municipal waste collection service by 21 

metric ton lorry [GLO] market for | Alloc 
Def, unit process 

 local transportation 
& 

recyclables ground 
shipping 

 USLCI v1.6 Transport, single unit truck, diesel 
powered/US  

recyclables international 
shipping USLCI v1.6 Transport, ocean freighter, average fuel 

mix/US 
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Production Inventories 

The production of TPS was modeled using the ‘Modified starch, at plant/RER U’ 

process in the ecoinvent 2 (Frischknecht et al. 2005) database and adjustments to base the 

process on global corn production and US natural gas (Hottle, Bilec, and Landis 2013). This 

was done by modifying the sub-process ‘Maize starch, at plant/DE U’ which contributes 

0.33561 kg/kg to TPS. Within the ‘Maize starch’ process 1.261 kg/kg ‘Grain maize IP, at 

farm/CH U’ was replaced with an equal quantity of ‘Maize grain GLO market for Alloc Def, 

U.’ Within the ‘Modified starch, at plant/RER U,’ 12.547 MJ of ‘Natural gas, high pressure, 

at consumer/IT U’ was replaced by an equivalent energy content of ‘Natural gas, at 

consumer/RNA U.’ 

The ethylene glycol derived from Brazilian grown sugar cane was used to synthesize 

Bio-PET. Ethylene production, which is a sub-process of ethylene glycol production, was 

used to synthesize Bio-HDPE and Bio-LDPE (Figure 20). The production processes of bio-

ethylene and bio-ethylene glycol were modeled using data from Tabone et al. (2010) which 

details the structure of these scenarios in SimaPro. The scenarios included both high and low 

rates of emissions for sugar cane production and two methodologies for modeling the 

production of ethylene. Ocean transport for Bio-PET was adjusted from Tabone's (Tabone 

et al. 2010) 15,000 miles to 12,482 km (6,740 nautical miles) representing transport from 

Santos, Brazil to Port of Houston, which equates to 0.01248 tkm per kilogram of material 

shipped. The Bio-PET inventories were created by subtracting 0.4101 kg of ethylene glycol 

within the ecoinvent database from the Franklin Associates inventory for PET resin 

(Franklin Associates 2011) and replacing it with an equivalent amount of bio-based ethylene 

glycol for each of the four emissions scenario. The Bio-LDPE inventories were created by 

subtracting 1.008 kg/kg ‘ethylene, average GLO market for Alloc Def, U’ from the Franklin 
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Associates inventory for LDPE resin(Franklin Associates 2011) and replacing it with 1.008 

kg/kg of bio-ethylene production for each of the four emissions scenario. The Bio-HDPE 

inventories were created by subtracting 0.990 kg/kg ‘ethylene, average GLO market for 

Alloc Def, U’ from the Franklin Associates inventory for HDPE resin(Franklin Associates 

2011) and replacing it with 0.990 kg/kg of bio-ethylene production for each of the four 

emissions scenarios. 

 

EOL Inventories 

The tipping floor process was developed using data collected at the WM Sky Harbor 

Tipping floor. The facility handles 1,995,806 kg (2,200 short tons) of waste material per day. 

The facility uses around 27,255 L (7,200 gal) of water and 530 L (140 gal) of diesel fuel per 

day. The process was created by adding the following sub-process together: 0.0225788526 kg 

‘Tap water, at user ROW market for Alloc Def, U,’ 0. 000266 L ‘Diesel, at refinery/l/US,’ 

and 0.0095494 MJ ‘Equipment use - diesel, burned in building machine GLO’ (based on the 

energy content of the diesel fuel) per kilogram of waste handled(Frischknecht et al. 2005, 

Weidema, Bauer et al. 2013). Diesel fuel was removed as a sub-process for the ‘Equipment 

use’ process since there was data available for the amount of diesel consumed and the 

inventory for US diesel was used. For PET, Bio-PET, HDPE, Bio-HDPE, LDPE, and Bio-

LDPE MRF inventories were developed based on literature which includes wire for baling, 

diesel, and electricity at varying rates depending upon the waste stream entering the MRF 

(e.g. single stream, pre-sorted, mixed waste, dual stream) and the type of polymer being 

sorted (Appendix G). LDPE was assumed to be film waste and was modeled as such in the 

MRF scenarios.  
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For the transportation processes, the average distance to processing centers for the 

Phoenix, Arizona service area were mapped using Google Earth and used as a baseline for 

the model (Appendix H). Recycling incurred additional transport of the baled materials; 610 

km ground transport (Phoenix, AZ to Long Beach, CA) and 11,686 km ocean freighter 

transport (Long Beach, CA to Hong Kong, China).  

TPS and PLA composting were modeled using two separate inventories for each 

material. One compost scenario used the ‘Biowaste [CH] treatment of, composting’ unit 

process with customized carbon dioxide and methane emissions based on stoichiometric 

calculations for the degradation of PLA and TPS. The calculations for both PLA and TPS 

were based on 60% degradation with 95% of the degraded material converting to CO2 and 

the remaining 5% converting to CH4 (Piemonte 2011, Hermann et al. 2011). For PLA this 

equated to 0.010 kg of biogenic methane and 1.05 kg of biogenic carbon dioxide per 

kilogram of PLA. For TPS this equated to 0.0089 kg of biogenic methane and 0.93 kg of 

biogenic carbon dioxide per kilogram of TPS, which has 88.8% of the carbon content of 

PLA (Hermann et al. 2011). The second scenario used to model composting for PLA and 

TPS used the same CO2 and CH4 emissions described above but the underlying processes 

were based on data collected during site visits to the Maricopa Organics Recovery Facility 

operated by Garick in Maricopa, Arizona between January 2013 and June 2014. The facility 

handled 6,000 kg (reported as lbs 400,000 lbs/month) of organic waste per day. The facility 

used around 68,000 L (reported as 18,000 gal/day) of water and 150 L (reported as 40 

gal/day) of diesel fuel per day. The composting inventory developed to model Garick’s 

composting operations was created by adding the following sub-process together: 5.1 kg 

‘Tap water, at user ROW market for Alloc Def, U,’ 0.0050197608 L ‘Diesel, at 

refinery/l/US,’ and 0.180063801 MJ ‘Equipment use - diesel, burned in building machine 
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GLO’ (based on the energy content of the diesel fuel) for one kilogram of organics 

processed (Frischknecht et al. 2005, Weidema et al. 2013). Diesel fuel was replaced as a sub-

process for the ‘Equipment use’ process since there was data available for the actual amount 

of diesel consumed and the upstream inventory for US diesel was used. 

The two PLA landfill scenarios distinguished between different forms of PLA, 

amorphous and crystalline. The amorphous PLA emits some methane as it breaks down in 

the landfill, while crystalline PLA does not degrade under landfill conditions (Kolstad et al. 

2012). Both scenarios use the ‘Disposal, polyethylene terephtalate, 0.2% water, to sanitary 

landfill/CH’ process from the ecoinvent v2 database (Frischknecht et al. 2005) as a template. 

The ‘‘Disposal, polyethylene terephtalate’ process was modified by eliminating outliers when 

compared to PE and cardboard landfill processes as summarized in Table 10.  
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Table 10. Modifications for PLA landfill scenarios based on the ecoinvent process for 
landfilling of PET 

Original Emission Unit Value 

New 
emission 

for 
crystalline 

PLA 
landfill 

scenario 

New 
emission 

for 
amorphous 

PLA 
landfill 

scenario 

Value Rationale 

Carbon dioxide, 
fossil 
burden from 
direct release or 
incineration of 
landfill biogas 

kg/kg 1.39e-2 None None - 
Fossil emissions based 
on degradation do not 
apply to PLA 

Carbon monoxide, 
fossil 
burden from 
direct release or 
incineration of 
landfill biogas 

kg/kg 7.86e-7 None None - 
Fossil emissions based 
on degradation do not 
apply to PLA 

Methane, fossil 
burden from 
direct release or 
incineration of 
landfill biogas 

kg/kg 2.13e-3 None Methane, 
biogenic 3.38e-2 

Fossil emissions based 
on degradation do not 
apply to PLA. Biogenic 
methane added based on 
40% degradation yielding 
189 L/kg (Kolstad et al. 
2012). All emissions were 
modeled as methane with 
no conversion to CO2 via 
combustion. 

Antimony, 
groundwater, 
long-term, 
emissions from 
long-term leachate 

kg/kg 1.60e-5 None None - 

Antimony to 
groundwater was 
removed because it was 
an outlier more than 1 
order of magnitude 
higher than the landfill 
process for polyethylene 
and 5 orders higher than 
the landfill process for 
cardboard. 

 

TPS landfilling was modeled using a proxy process, ‘Disposal, packaging cardboard, 

19.6% water, to sanitary landfill/CH.’ There were no EOL inventories available for TPS; 

TPS and cardboard have similar material properties and carbon content (Hermann et al. 

2011, Shen, Haufe, and Patel 2009). 
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The recycling processes for PET and PE, developed by Pré Consultants, were 

modified to represent the Franklin Associates inventories for US produced plastics. This was 

accomplished simply by replacing the sub-process for the offset of virgin plastic production 

from the ecoinvent process for PET and HDPE production to the corresponding Franklin 

Associates inventories.  

Using the LCI data described above, the midpoint life cycle impact assessment 

factors (Appendices I, J, and K) were calculated using TRACI v2.1 (Tool for the Reduction 

and Assessment of Chemical and Other Environmental Impacts) (Bare 2012). TRACI 

calculates impacts based on the inventories for global warming, eutrophication, ecotoxicity, 

acidification, ozone depletion, smog formation, carcinogens, non-carcinogens, respiratory 

effects, and fossil fuel depletion. 

A sensitivity analysis was conducted to determine the impact that variables and 

assumptions within the study affect the overall results of the LCA and which life cycle 

phases may yield the greatest return when looking for system improvement. The sensitivity 

analysis was conducted using the minimum and maximum values for the variables and 

assumptions within the model based on processes with multiple inventory scenarios (e.g. 

ethylene and ethylene glycol production scenarios) as well as  regionally specific 

transportation and infrastructure (e.g. compost facility and MRF type). The results are 

reported in terms of percent change from the baseline scenario which was used for the LCA. 

 

Results and Discussion 

Figure 21 illustrates the differences for the life-cycle impacts of production and the 

two EOL scenarios for each polymer type. The production impacts for the bio-ethylene 

plastics (i.e. Bio-PET, Bio-HDPE, and Bio-LDPE) manufactured using sugar cane grown in 
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Brazil are greater for all the impact categories except for global warming and fossil fuel 

depletion. Bio-ethylene production introduces different production processes with the most 

increases across impact categories resulting from distillation and farming. The process for 

distillation of ethanol from sugar contributes significantly to ozone depletion, smog, 

acidification, carcinogens, and respiratory effects. The process for sugar cane farming 

contributes significantly to ozone depletion, acidification, eutrophication, carcinogens, non-

carcinogens, and ecotoxicity. The processes of ethylene dehydration from ethanol, 

phosphorus based fertilizers, and ocean freighter transportation also contributed to the 

differences between fossil plastics and the bio-ethylene based alternatives. The task of using 

low density feedstocks such as sugar cane to produce chemical feedstocks (i.e. ethylene) for 

plastic production requires processes like farming, distillation, and dehydration. 
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Figure 21. LCA results using TRACI 2.1(Bare 2012) for impact assessment. The graph 
presents findings for the production and EOL of eight different plastic materials. The 
production impacts are indicated by a black diamond. The net impacts from EOL are 
presented as a shaded bar ranging between two EOL options for each polymer; EOL 
impacts were added to production, but the range can be less than (due to offsets from 
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avoiding production of virgin plastics) and more than production. PLA has an amorphous 
and crystalline scenario in the ‘Global warming’ category. For all other categories there was 
no more than 1% difference between the two scenarios so only the impacts for crystalline 
PLA were graphed. All values for net life-cycle impacts are included in Appendix L. 
.  

 

PLA and TPS, which are both manufactured using corn, have greater impacts to 

acidification and eutrophication than any of the fossil-based plastics. These impacts are the 

result of phosphorous, nitrogen, and sulfur which are used in fertilizers for the agricultural 

processes (e.g. diammonium phosphate, urea, and ammonium nitrate) as well as effluent 

wastes generated in starch production. TPS has additional nitrogen impacts from natural gas 

based plasticizers which contributed to acidification.  

The EOL scenarios alter the life-cycle impacts in several different ways. 

Eutrophication impacts from landfilling for all polymers and fossil fuel depletion impact 

reductions from recycling stand out as the largest changes relative to production impacts. On 

the other hand, none of the EOL scenarios in the non-carcinogenics category change very 

dramatically one way or the other. Global warming impacts vary significantly based on EOL 

scenario and polymer degradation under landfill conditions. Amorphous PLA and TPS, 

which degrade under landfill conditions (Kolstad et al. 2012, Hermann et al. 2011), emit 

methane that causes higher global warming impacts than composting. Methane can be 

captured from landfills at various rates and flared or burned for energy recovery (Spokas et 

al. 2006). The emissions from TPS and PLA degradation in landfill cause higher global 

warming impacts than the alternative composting processes. Composting results in 57% CO2 

and 3% CH4 based on the carbon content of the biopolymer and the remaining carbon 

persists in the soil (Piemonte 2011). 
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The TPS landfill scenario includes landfill gas capture and combustion resulting in 

1.18e-2 kg of CO2, 2.30e-5 kg of CH4, and 7.57e-6 kg of CO per kilogram of TPS 

(Frischknecht et al. 2005). The amorphous PLA landfill scenario evaluated the worst case 

scenario for methane generation and did not include any conversion to CO2 via combustion, 

providing an upper bound for impacts for PLA in landfills. Crystalline PLA does not 

degrade under landfill conditions (Kolstad et al. 2012) and therefore landfilling does not 

incur any emissions from the breakdown of the crystalline PLA. 

 Recycling has major implications for the life-cycle impacts of the traditional plastics 

and their bio-based counterparts. In some categories, recycling decreases the impacts 

associated with production because the benefits from offsetting virgin plastic production are 

allocated to the materials. This is the case for global warming and fossil fuel depletion for all 

of the recyclable plastics, as well as carcinogenics for PET and Bio-PET. For ozone 

depletion and smog, recycling incurs additional impacts beyond those of landfilling due to 

the transportation of the recyclable plastics from the material recovery facility to the 

recycling facility in China. 

 The offsets gained by recycling in the global warming and fossil fuel depletion 

categories are further accentuated by the use of bio-based ethylene for the production of 

Bio-PET, Bio-HDPE, and Bio-LDPE. Because recycling these polymers offsets the fossil-

based resins, the recycled bio-polymers can achieve negative life-cycle impacts in the fossil 

fuel depletion category, shown in Figure 21. While the initial production processes are 

important, including EOL demonstrates that waste scenarios are also a critical factor in the 

environmental performance of plastics. 

Figure 22 shows the process contribution to each impact category for EOL. For the 

recyclable materials, the most notable impacts result from the energy used during recycling, 
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the equipment and fuel used at landfills, and the freighter shipping for bailed recyclables. 

The waste collection, ground transportation, and intermediate handling (i.e. tipping floor and 

MRF) are not major contributors for most of the impact categories; these processes 

combined for recyclables contribute, at most, to eleven percent (HDPE) of the maximum 

category impact in the ozone depletion and ten percent (HDPE) of the maximum impact for 

respiratory effects. International shipping does not need to be inherent to the process of 

recycling and the shipping incurs significant impacts, particularly for smog (47%), 

acidification (31%), non-carcinogenics (24%), respiratory effects (20%), and ecotoxicity 

(17%). Greater environmental benefits from recycling could be achieved if recyclable 

materials did not need to be shipped long distances.  
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Figure 22. Process contributions to EOL impacts. TF = tipping floor, MRF = material 
recovery facility, port to port = shipping from Long Beach, CA to Hong Kong, China. 
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For PLA and TPS the most notable impacts result from the equipment and diesel fuel used 

at landfills and compost facilities are the dominant contributors to the EOL impacts for 

PLA and TPS. Composting PLA and TPS results in higher impacts than landfilling in six 

categories, smog, acidification, carcinogenics, respiratory effects, ecotoxicity, and fossil fuel 

depletion. The impacts that are higher for composting result from the active management 

and additional water use associated with the composting process. Similar to the recyclable 

materials, PLA and TPS have contributions to ozone depletion and respiratory effects 

resulting from waste collection, ground transportation, and intermediate handling. In the 

case of PLA and TPS these processes are an even larger proportion of the total EOL 

impacts including 46% of the ozone depletion impacts for composting of TPS and PLA, 

71% of the global warming impacts for landfilling crystalline PLA, 68% of smog for 

landfilling of PLA, 68% of smog impacts for landfilling of PLA, and 100% of the fossil fuel 

depletion impacts for landfilling of PLA and TPS. The large difference between the global 

warming impacts of amorphous and crystalline PLA in the landfill scenarios is due entirely to 

the CH4, which contributes 94% of the global warming emissions for landfilled amorphous 

PLA. For composting PLA, 82% of the global warming impacts are due to the biogenic 

emissions from the PLA degrading. Likewise, biogenic emissions from composting and 

landfilling TPS equate to 80% and 98% respectively for global warming impacts of TPS 

EOL scenarios.  The landfill emissions for amorphous PLA and TPS are worse than for 

composting. Because degradation of these materials is inherent to the composting process, 

any improvements aimed at minimizing global warming impacts must focus on reducing the 

contributions from transportation and handling. Transportation and handling contribute to 

the global warming emissions for the composting scenario for PLA with 10.5% resulting 
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from the waste collection, tipping floor processes, and transportation while 5.5% are due to 

operations of the compost facility. For TPS those values are 11.5% and 8.5% respectively. 

  Figure 23 presents the binary EOL options on a sliding scale from 100% landfill and 

0% recycling/compost to 0% landfill and 100% recycling/compost. Figure 23 shows the 

difference in impacts from landfilling amorphous (A) and crystalline (B) PLA. This figure 

highlights the additional impacts resulting from the CH4 emissions associated with the 

degradation of amorphous PLA in the landfill scenario. Additionally, Figure 23 also shows a 

traditionally recyclable plastic, PET (C), and the results for TPS (D), which incurs greater 

impacts when landfilled due to methane generation from anaerobic degradation like 

amorphous PLA. Figure 23 also shows the current recycling rate of PET in the United States 

and the potential impact reductions that could be achieved if the recycling rate increased. 

 

Figure 23. Global warming impacts for EOL scenarios scaled from 100% landfilling and 0% 
recycling/composting to 0% landfilling and 100% recycling/composting for amorphous (A) 
and crystalline (B) PLA, PET and Bio-PET (C), and TPS (D). The current recycling rate for 
PET is indicated (C). A zero waste strategy would be represented by reading the values at the 
far right of the graphs. For crystalline PLA (B) a zero waste approach would result in greater 
impacts. Results for all polymers and impact categories can be found in Appendix M.  
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 The graphs in Figure 23 enable EOL decision makers to visualize the impacts 

associated with disposal and quantify their environmental goals. An organization with 

specific environmental goals could use these results to optimize their material selection and 

waste treatment strategy to achieve their objectives. The results suggest that a zero waste (i.e. 

landfill avoidance) strategy, as has been the approach for some institutions and 

municipalities, may not achieve the greatest environmental performance in all cases. 

Specifically; zero waste strategies should not be used for venues or organizations that have 

crystalline PLA in their waste streams; Figure 21 and Figure 22 show that landfilling 

crystalline PLA has lower impacts than composting in seven categories. However, the 

systemic impacts of the entire waste stream can also be important. If, for example, food 

waste to landfill could be avoided using crystalline PLA cutlery and a single stream 

composting collection at event venues and food service establishments, the benefits of 

creating an easily compostable waste stream to avoid methane generation from food waste 

may outweigh the crystalline PLA compost emissions. 

Figure 24 displays the results for sensitivity analyses for global warming impacts 

(Appendix N presents the full results for all of the polymers and impact categories). For each 

set of variables (e.g. MRF technology, ethylene inventory, and local transportation) the 

minimum and maximum scenarios (ethylene scenarios are described in Methods section and 

Appendices G and H address inventories for MRFs and transportation) were tested against 

the scenario which was used to model the life-cycle impacts displayed in Figure 21. Bio-

LDPE (A) and LDPE (B) are representative of the ratios for all of the bio-ethylene and 

fossil based plastics but the exact percent difference changes due to differing baseline impact 

values. 
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Figure 24. Sensitivity analysis of global warming impacts based on high and low ranges for 
variables used within the LCA. The 0% baselines are the findings for the recycled LDPE and 
Bio-LDPE as well as the composted PLA and TPS. 
 

The Bio-LDPE the ethylene inventories, which were developed by Tabone et al. 

(2010) and revised for this study, were very similar and do not create significant sensitivities 

in the model. ‘Baled Recyclables Shipping’ was represented in the LCA by the high scenario, 

which is 610 km ground transport (Phoenix, AZ to Long Beach, CA) and 11,686 km ocean 

freighter transport (Long Beach to Hong Kong). The lower boundary represents not sending 

recyclable plastics to China (no international freight) but includes the same 610 km of 

ground transport. Since the LCA modeled shipping to China based on current real-world 

operations the sensitivity represented here demonstrates only negative values. The process 

‘Baled Recyclables Shipping’ stood out as the most significant in terms of sensitivity for 

global warming impacts with shifts in the results as much as -63.5% for Bio-LDPE and -
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18.9% for LDPE, suggesting a large share of the global warming emissions in the recycling 

scenarios are driven by international shipping (also shown in Figure 22).  

 This study demonstrates that production and EOL of biopolymers and fossil-based 

plastics must be accounted for when evaluating the life cycle environmental impacts of 

plastics. Environmental performance is not limited to purchasing decisions (i.e. production 

of plastics), and availability of disposal options can significantly influence the overall life-

cycle impacts. Despite shipping or recyclables in the current market, recycling proves to have 

major benefits due to avoidance of creating new plastics from virgin resources. The benefits 

of recycling could extend to biopolymers if they can be recycled in existing waste streams. 

TPS and PLA may find additional life-cycle benefits if they can scale adequately to warrant 

recycling. The benefits of fossil based plastics are most notable in the global warming and 

fossil fuel depletion impact categories. Decision makers along the supply chain looking to 

improve environmental performance for packaging and disposable goods can use these 

results to better understand purchasing and waste handling in the context of real-world 

waste handling options. For example; zero waste, or landfill avoidance, waste management 

strategies do not always result in lower environmental impacts, as shown in Figure 24.  
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CHAPTER 7 

CONCLUSION 

For Objective 1) Quantify end of life of waste flows of biopolymers via waste audits 

at public venues and waste handling facilities, this research found that people are not coming 

into contact with or purchasing many biopolymer products on an individual consumer level. 

Furthermore, there are several management practices that can optimize different objectives 

such as climate emissions reduction, landfill avoidance, maximum financial benefit, or ease 

of management. The assessment of collection methods at venues suggests that there are 

effective ways to teach consumers, over time, how to sort materials and that simple signage 

may aid in reinforcement of behavior but is not necessarily effective as a standalone strategy. 

For Objective 2) Identify best practices for facilities management and waste handling 

of compostables via surveys and focus groups, this research found that best practices for 

disposal of biopolymers may be regionally dependent and producers as well as consumers in 

this growing market need to be adaptable as systems adjust to achieve greater environmental 

outcomes for plastic materials. Increased communication along the life-cycle for 

compostable biopolymers can help stakeholders create a dialogue, clarifying their goals and 

expectations as they assume greater responsibility for the impacts of the products they use. 

For Objective 3) Evaluate sustainable solutions for composting infrastructure 

options and factors influencing feasibility of scaling, this research suggests collection 

schemes should be considered based on the available treatment options and ease of 

management to reduce sorting time and contamination while minimizing environmental 

impacts. Further, compost facilities and biopolymer manufacturers need to work to find 

solutions, such as alkaline enhanced degradation to aid in the composting process for 

biopolymers. 
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For Objective 4) Quantify the end of life environmental impacts of compostable 

biopolymer scenarios via life-cycle assessment incorporating findings from objectives 1-3, 

this research demonstrated that recyclability remains as a highly effective method of reducing 

life-cycle impacts for plastics regardless the feedstock and is more widely understood in 

public collection schemes. For compostable biopolymers to be effective as a strategy to 

minimize environmental impacts during EOL the materials must avoid landfill if they are 

prone to anaerobic degradation. Zero-waste policies may not be resulting in optimal 

environmental performance and a better metric may be overall material performance 

including production and EOL. 

Compostable biopolymers can find a niche in helping to optimize waste streams if 

there is a concerted effort between consumers, facilities, and waste handlers. By helping 

other organics avoid landfills biopolymers may have consequential impacts that can reduce 

the overall impacts of waste, however they do not provide any real advantages in systems 

where recycling is already efficient or where waste is sent to landfill by default. 

Recommendations for improving the overall performance of compostable biopolymers 

include revising standards for compostability to reflect real-world conditions, creating 

effective messaging in public collection areas, empowering consumers to make 

environmentally friendly decisions easily, optimizing biopolymer degradation in compost 

facilities by incorporating alkaline wastes from other industries, rather than using a zero 

waste policy organizations should focus on the life-cycle performances for products to 

optimize purchasing and disposal patterns, and, finally, use biopolymers which do not break 

down in landfills in durable goods or non-organic waste streams so the plastic will remain 

intact in landfills, reducing the potential for harmful emissions.  
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APPENDIX A  

EXAMPLES OF BIOPOLYMER LABELS ON CONSUMER PRODUCTS 
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Coca-Cola label image source: http://www.coca-colacompany.com/press-center/image-

library/plantbottle-labels/ 

Nature House image source: http://www.savannahnaturehouse.com/ 
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APPENDIX B 

ANALYSIS OF THE COMPOST FROM WHICH THE INOCULANT WAS 

COLLECTED 
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APPENDIX C  

GEOMETRIC SHAPES USED FOR SURFACE AREA CALCULATIONS OF WORLD 

CENTRIC PLA SPOONS 
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APPENDIX D 

PHOTOGRAPH OF BIOREACTOR SETUP 
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The large tube on the bottom right of the image is the incoming air going into the bubble 

humidifier (blue lid). The humidified air passes through a tub splitter to distribute the air to 

the six flasks evenly. The water baths are warmed by the thermostatically controlled pads 

(orange). The thermistors are immersed in DI water in the small flasks on the left of the 

water baths. 
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APPENDIX E 

IMAGES OF DECOMPOSITION OF OPAQUE PLA/TALC BLEND 
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Images taken with Olympus TG-2 on Super Macro mode.
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APPENDIX F 

INITIAL INTERVIEW QUESTIONS FOR BIOPOLYMER STAKEHOLDERS 
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Interview Questions for Recreational Concessions 

Organization Name:         Date:  

Person Spoken To:     Title:  

Does your venue use compostable plastic service ware? 

For how long have you had them available? 

What types of compostables do you use (type of service ware and product name)? 

Why did your company choose to offer these types of compostable products? 

Does your company have sustainability goals they are trying to meet, and if so what are they? 

What are the challenges, if any, associated with using these products? 

How have your employees or customers reacted to these products? 

Do you feel there is a general level of understanding in your staff about these products? 

Have you had any specific feedback about them, from customers or staff? 

Compared to conventional food service ware how much more expensive are these products? 

How are they disposed of at your organization? 

What kind of disposal options does your company have?  

Does your company compost? 

If so, is post-consumer compost included in your composting stream? 

If you don't have compost and it became available to your company through as a city service 

would you participate?  

What if they required post-sorting?  

What if it cost more than land filling? 

Do you train service staff on these products? 

Do you train your janitorial staff on how to handle these products?
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APPENDIX G 

INVENTORY DATA FOR MATERIAL RECOVERY FACILITY SCENARIOS 
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Single-stream MRF Inventory Values 

Process Unit 
PET/Bio-

PET 
HDPE/Bio-

HDPE 

Film Wastes 
(LDPE/Bio-

LDPE) 
Bailing 
Wire kg/Mg 0.6 0.6 0.6 
Diesel Fuel MJ/Mg 25 25 25 
Energy Use kWh/Mg 9.9 32.7 3.0 

     
  

Mixed-waste MRF Inventory Value 

Process Unit 
PET/Bio-

PET 
HDPE/Bio-

HDPE 

Film Wastes 
(LDPE/Bio-

LDPE) 
Bailing 
Wire kg/Mg 0.3 0.3 0.3 
Diesel Fuel MJ/Mg 25 25 25 
Energy Use kWh/Mg 36.9 116.1 4.7 

     
  

Dual-stream MRF Inventory Value 

Process Unit 
PET/Bio-

PET 
HDPE/Bio-

HDPE 

Film Wastes 
(LDPE/Bio-

LDPE) 
Bailing 
Wire kg/Mg 0.6 0.6 0.6 
Diesel Fuel MJ/Mg 25 25 25 
Energy Use kWh/Mg 6.9 22.0 2.1 

     
  

Pre-sorted MRF Inventory Value 

Process Unit 
PET/Bio-

PET 
HDPE/Bio-

HDPE 

Film Wastes 
(LDPE/Bio-

LDPE) 
Bailing 
Wire kg/Mg 0.7 0.7 0.7 
Diesel Fuel MJ/Mg 25 25 25 
Energy Use kWh/Mg 3.1 3.1 3.1 

Adapted from Pressley et al. (2015)  
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APPENDIX H 

BASELINE TRANSPORATION VALUES AND SCENARIOS FOR SENSITIVITY 

ANALYSIS 
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Transportation scenarios (km) baseline min max
Waste Collection to Tipping Floor (TF) = 15 10 30

TF to Landfill/MRF/Composting = 60 30 120
From MRF to Port = 610 610 610

Port to Port (Recycling Facility) = 11686.12 0 11686.12
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APPENDIX I 

PLASTIC PRODUCTION – PER KILOGRAM OF PLASTIC MIDPOINT IMPACT 

FACTORS CALCULATED USING TRACI 
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2.73E+00

1.15E+00
1.93E+00

Sm
og

kg O
3 eq

2.82E-01
2.82E-01

2.82E-01
2.82E-01

2.82E
-01

6.44E-02
6.83E-02

1.45E-01
2.08E-01

8.61E-02
A

cidification
kg SO

2 eq
1.58E-02

1.58E-02
1.58E-02

1.58E-02
1.58E

-02
6.12E-03

6.46E-03
1.15E-02

1.64E-02
1.59E-02

Eutrophication
kg N

 eq
1.14E-03

1.14E-03
1.14E-03

1.14E-03
1.14E

-03
1.22E-04

1.34E-04
4.85E-04

1.30E-03
2.67E-03

C
arcinogenics

C
TU

h
4.39E-08

4.40E-08
4.39E-08

4.40E-08
4.39E

-08
5.01E-09

5.29E-09
3.84E-08

1.75E-11
4.47E-09

N
on carcinogenics

C
TU

h
2.67E-07

2.67E-07
2.67E-07

2.67E-07
2.67E

-07
5.42E-08

5.76E-08
8.62E-08

1.93E-10
5.18E-08

R
espiratory effects

kg PM
2.5 eq

9.15E-04
9.15E-04

9.15E-04
9.15E-04

9.15E
-04

4.09E-04
4.29E-04

7.54E-04
5.03E-04

1.12E-03
Ecotoxicity

C
TU

e
3.25E+00

3.45E+00
3.25E+00

3.45E+00
3.35E

+00
8.74E-01

9.31E-01
1.40E+00

3.40E-04
1.98E+00

Fossil fuel depletion
M

J surplus
7.14E+00

7.14E+00
7.14E+00

7.14E+00
7.14E

+00
1.12E+01

1.20E+01
9.05E+00

3.91E+00
1.94E-01

Plastic Production - Per K
ilogram

 of Plastic 
M

idpoint Im
pact Factors C

alculated U
sing T

R
A

C
I

H
D

PE (Franklin A
ssociates 2011) w

ith 
B

ioethylene (Tabone 2010)
LD

PE (Franklin A
ssociates 2011) w

ith 
B

ioethylene (Tabone 2010)

Plastic Production - Per K
ilogram

 of Plastic 
M

idpoint Im
pact Factors C

alculated U
sing T

R
A

C
I

PET (Franklin A
ssociates 2011) w

ith 
B

ioethylene (Tabone 2010)
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APPENDIX J 

WASTE TREATMENT – PER KILOGRAM OF PLASTIC MIDPOINT IMPACT 

FACTORS CALCULATED USING TRACI 
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H
D

PE, LD
PE, 

B
io-H

D
PE, B

io-
LD

PE

H
D

PE, LD
PE, 

B
io-H

D
PE, B

io-
LD

PE
PET

, B
io-PET

PET
, B

io-PET
A

ll Polym
er 

Types

Im
pact category

U
nit

R
ecycling

Landfill
R

ecycling
Landfill

C
om

posting 
(ecoinvent v3)

C
om

posting 
(custom

)

A
m

orphous, 
Landfilled 

(K
olstad 2012)

C
rystalline, 

Landfilled 
(K

olstad 2012)
C

om
posting 

(ecoinvent v3)
C

om
posting 

(custom
)

Landfill, 
C

ardboard 
Proxy 

(ecoinvent v2)
Tipping Floor 

(custom
)

O
zone depletion

kg C
FC

-11 eq
2.48E-08

4.11E-09
1.01E-08

4.12E-09
3.74E-09

3.08E-10
4.12E-09

4.12E-09
3.08E-10

3.74E-09
4.39E-09

5.05E-12
G

lobal w
arm

ing
kg C

O
2 eq

-1.47E+00
1.13E-01

-2.31E+00
8.01E-02

3.06E-01
2.45E-01

7.67E-01
1.30E-02

2.20E-01
2.81E-01

1.22E+00
9.01E-04

Sm
og

kg O
3 eq

-4.05E-02
2.50E-03

-1.22E-01
2.53E-03

1.15E-02
5.35E-03

4.54E-03
2.53E-03

5.35E-03
1.15E-02

3.06E-03
2.66E-04

A
cidification

kg SO
2 eq

-3.52E-03
8.92E-05

-8.90E-03
9.00E-05

1.93E-03
2.04E-04

1.48E-04
9.00E-05

2.04E-04
1.93E-03

2.63E-04
9.04E-06

Eutrophication
kg N

 eq
9.95E-05

1.46E-02
-2.63E-04

1.17E-02
1.36E-04

2.77E-05
1.17E-02

1.17E-02
2.77E-05

1.36E-04
7.13E-03

7.17E-07
C

arcinogenics
C

TU
h

-4.55E-09
1.32E-09

-3.79E-08
9.87E-10

3.17E-09
1.08E-09

9.87E-10
9.87E-10

1.08E-09
3.17E-09

1.69E-09
3.26E-11

N
on carcinogenics

C
TU

h
-3.86E-08

2.87E-08
-7.06E-08

1.41E-08
7.68E-09

4.04E-09
8.20E-09

8.20E-09
4.04E-09

7.68E-09
1.64E-08

1.49E-10
R

espiratory effects
kg PM

2.5 eq
8.07E-05

1.04E-05
-2.64E-04

1.03E-05
5.95E-05

2.62E-05
1.22E-05

1.03E-05
2.62E-05

5.95E-05
2.27E-05

1.10E-06
Ecotoxicity

C
TU

e
-8.22E-01

6.04E-01
-1.35E+00

3.17E+00
2.07E-01

1.15E-01
1.12E-01

1.12E-01
1.15E-01

2.07E-01
1.34E-01

3.07E-03
Fossil fuel depletion

M
J surplus

-1.09E+01
2.38E-05

-8.72E+00
2.46E-05

7.13E-02
3.60E-02

2.46E-05
2.46E-05

3.60E-02
7.13E-02

4.08E-05
1.73E-03

Im
pact category

U
nit

R
ecycle D

ual 
Stream

 M
R

F
R

ecycle M
ixed 

W
aste M

R
F

R
ecycle Pre-

Sorted M
R

F
R

ecycle Single 
Stream

 M
R

F
R

ecycle D
ual 

Stream
 M

R
F

R
ecycle 

M
ixed W

aste 
M

R
F

R
ecycle Pre-

Sorted M
R

F

R
ecycle 

Single Stream
 

M
R

F
R

ecycle D
ual 

Stream
 M

R
F

R
ecycle 

M
ixed W

aste 
M

R
F

R
ecycle Pre-

Sorted M
R

F

R
ecycle 

Single Stream
 

M
R

F
O

zone depletion
kg C

FC
-11 eq

3.30E-10
4.59E-10

3.86E-10
3.78E-10

1.38E-09
6.31E-09

3.86E-10
1.94E-09

5.82E-10
2.15E-09

3.86E-10
7.40E-10

G
lobal w

arm
ing

kg C
O

2 eq
4.18E-03

5.92E-03
4.95E-03

4.83E-03
1.86E-02

8.67E-02
4.95E-03

2.64E-02
7.66E-03

2.93E-02
4.95E-03

9.83E-03
Sm

og
kg O

3 eq
7.70E-04

8.72E-04
8.13E-04

8.07E-04
1.59E-03

5.45E-03
8.13E-04

2.03E-03
9.67E-04

2.20E-03
8.13E-04

1.09E-03
A

cidification
kg SO

2 eq
3.18E-05

4.29E-05
3.64E-05

3.58E-05
1.20E-04

5.37E-04
3.64E-05

1.68E-04
5.31E-05

1.86E-04
3.64E-05

6.64E-05
Eutrophication

kg N
 eq

8.42E-06
1.50E-05

1.12E-05
1.08E-05

6.18E-05
3.14E-04

1.12E-05
9.05E-05

2.13E-05
1.01E-04

1.12E-05
2.93E-05

C
arcinogenics

C
TU

h
3.43E-10

3.06E-10
4.09E-10

3.69E-10
9.22E-10

3.55E-09
4.09E-10

1.23E-09
4.82E-10

1.24E-09
4.09E-10

5.70E-10
N

on carcinogenics
C

TU
h

4.22E-10
7.28E-10

5.59E-10
5.37E-10

2.97E-09
1.50E-08

5.59E-10
4.34E-09

1.04E-09
4.85E-09

5.59E-10
1.42E-09

R
espiratory effects

kg PM
2.5 eq

4.90E-06
6.98E-06

5.76E-06
5.65E-06

2.15E-05
9.99E-05

5.76E-06
3.04E-05

8.90E-06
3.38E-05

5.76E-06
1.14E-05

Ecotoxicity
C

TU
e

1.22E-02
1.80E-02

1.59E-02
1.49E-02

7.14E-02
3.49E-01

1.59E-02
1.03E-01

2.65E-02
1.14E-01

1.59E-02
3.54E-02

Fossil fuel depletion
M

J surplus
5.99E-03

7.37E-03
6.57E-03

6.49E-03
1.71E-02

6.96E-02
6.57E-03

2.31E-02
8.67E-03

2.54E-02
6.57E-03

1.03E-02

W
aste T

reatm
ent - Per K

ilogram
 of Plastic M

idpoint 
Im

pact Factors C
alculated U

sing T
R

A
C

I
PLA

TPS

LD
PE, B

io-LD
PE

W
aste T

reatm
ent - Per K

ilogram
 of Plastic M

idpoint 
Im

pact Factors C
alculated U

sing T
R

A
C

I
H

D
PE/B

io-H
D

PE
PET/B

io-PET
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APPENDIX K 

TRANSPORTATION – PER TONNE-KILOMETER MIDPOINT IMPACT FACTORS 

CALCULATED USING TRACI 
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Impact category Unit

Municipal 
Waste 

Collection

Transport, 
Ocean 

Freighter

Transport, 
Single Unit 

Truck
Ozone depletion kg CFC-11 eq 1.13E-07 6.91E-13 7.58E-12
Global warming kg CO2 eq 1.30E+00 1.83E-02 1.99E-01
Smog kg O3 eq 2.05E-01 1.11E-02 3.45E-02
Acidification kg SO2 eq 6.95E-03 3.79E-04 1.24E-03
Eutrophication kg N eq 6.63E-04 2.05E-05 6.96E-05
Carcinogenics CTUh 9.53E-09 2.48E-10 2.72E-09
Non carcinogenics CTUh 9.19E-08 2.39E-09 2.62E-08
Respiratory effects kg PM2.5 eq 8.50E-04 6.28E-06 2.21E-05
Ecotoxicity CTUe 1.01E+00 4.62E-02 5.07E-01
Fossil fuel depletion MJ surplus 2.59E+00 3.26E-02 3.58E-01

Transportation - Per Tonne-Kilometer Midpoint 
Impact Factors Calculated Using TRACI
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APPENDIX L 

SUMMARIZED LIFE-CYCLE IMPACT RESULTS FOR FULL SYSTEM BOUNDARY 

AND EOL ONLY 
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Impact category
Unit

Bio-HDPE
Landfilled

Bio-HDPE 
Recycled 
(average)

Bio-HDPE 
EOL ONLY
Landfilled

Bio-HDPE 
EOL ONLY
Recycled 
(average)

HDPE
Landfilled

HDPE 
Recycled 
(average)

HDPE EOL 
ONLY
Landfilled

HDPE EOL 
ONLY
Recycled 
(average)

Bio-LDPE
Landfilled

Bio-LDPE 
Recycled 
(average)

Bio-LDPE 
EOL ONLY
Landfilled

Bio-LDPE 
EOL ONLY
Recycled 
(average)

LDPE
Landfilled

LDPE 
Recycled 
(average)

LDPE EOL 
ONLY
Landfilled

LDPE EOL 
ONLY
Recycled 
(average)

Ozone depletion
kg CFC-11 eq

6.53E-08
8.85E-08

5.80E-09
2.90E-08

1.20E-08
3.52E-08

5.80E-09
2.90E-08

1.16E-07
1.37E-07

5.80E-09
2.72E-08

6.20E-08
8.31E-08

5.80E-09
2.72E-08

Global warming
kg CO2 eq

1.27E+00
5.46E-02

1.45E-01
-1.07E+00

2.04E+00
8.30E-01

1.45E-01
-1.07E+00

1.55E+00
3.14E-01

1.45E-01
-1.09E+00

2.35E+00
1.11E+00

1.45E-01
-1.09E+00

Smog
kg O3 eq

2.53E-01
3.63E-01

7.91E-03
1.18E-01

7.23E-02
1.83E-01

7.91E-03
1.18E-01

2.58E-01
3.66E-01

7.91E-03
1.17E-01

7.62E-02
1.85E-01

7.91E-03
1.17E-01

Acidification
kg SO2 eq

1.41E-02
1.59E-02

2.77E-04
2.07E-03

6.40E-03
8.19E-03

2.77E-04
2.07E-03

1.45E-02
1.61E-02

2.77E-04
1.92E-03

6.74E-03
8.36E-03

2.77E-04
1.92E-03

Eutrophication
kg N eq

1.65E-02
2.40E-03

1.46E-02
5.16E-04

1.47E-02
6.38E-04

1.46E-02
5.16E-04

1.65E-02
2.33E-03

1.46E-02
4.23E-04

1.47E-02
5.42E-04

1.46E-02
4.23E-04

Carcinogenics
CTUh

1.73E-08
1.75E-08

1.66E-09
1.88E-09

6.67E-09
6.89E-09

1.66E-09
1.88E-09

1.77E-08
1.68E-08

1.66E-09
8.74E-10

6.95E-09
6.00E-09

1.66E-09
8.74E-10

Non carcinogenics
CTUh

7.42E-07
7.25E-07

3.18E-08
1.41E-08

8.60E-08
6.83E-08

3.18E-08
1.41E-08

7.57E-07
7.34E-07

3.18E-08
9.70E-09

8.94E-08
6.66E-08

3.18E-08
9.70E-09

Respiratory effects
kg PM

2.5 eq
1.72E-03

1.91E-03
2.55E-05

2.22E-04
4.35E-04

6.31E-04
2.55E-05

2.22E-04
1.76E-03

1.92E-03
2.55E-05

1.93E-04
4.54E-04

6.17E-04
2.55E-05

1.93E-04
Ecotoxicity

CTUe
7.76E+00

7.32E+00
6.53E-01

2.10E-01
1.53E+00

1.08E+00
6.53E-01

2.10E-01
7.92E+00

7.36E+00
6.53E-01

1.08E-01
1.58E+00

1.02E+00
6.53E-01

1.08E-01
Fossil fuel depletion

M
J surplus

3.06E+00
-7.17E+00

6.21E-02
-1.02E+01

1.12E+01
1.02E+00

6.21E-02
-1.02E+01

3.74E+00
-6.51E+00

6.21E-02
-1.02E+01

1.21E+01
1.84E+00

6.21E-02
-1.02E+01

Impact category
Unit

Bio-PET
Landfilled

Bio-PET 
Recycled 
(average)

Bio-PET 
EOL ONLY
Landfilled

Bio-PET EOL 
ONLY
Recycled 
(average)

PET
Landfilled

PET 
Recycled 
(average)

PET EOL 
ONLY
Landfilled

PET EOL 
ONLY
Recycled 
(average)

PLA 
Landfilled 
(amorph-ous)

PLA 
Landfilled 
(crysta-lline)

PLA Compost 
(average)

PLA   EOL 
ONLY
Landfilled 
(average)

PLA   EOL 
ONLY
Compost 
(average)

TPS 
Landfilled

TPS Compost 
(average)

TPS   EOL 
ONLY
Landfilled 

TPS   EOL 
ONLY
Compost 
(average)

Ozone depletion
kg CFC-11 eq

3.61E-08
4.31E-08

5.82E-09
1.28E-08

2.67E-08
3.37E-08

5.82E-09
1.28E-08

5.82E-09
5.82E-09

3.72E-09
5.82E-09

3.72E-09
1.52E-07

1.49E-07
6.08E-09

3.72E-09
Global warming

kg CO2 eq
2.73E+00

6.93E-01
1.13E-01

-1.92E+00
2.85E+00

8.09E-01
1.13E-01

-1.92E+00
1.95E+00

1.20E+00
1.46E+00

4.22E-01
3.08E-01

3.18E+00
2.21E+00

1.25E+00
2.83E-01

Smog
kg O3 eq

2.90E-01
3.18E-01

7.94E-03
3.59E-02

1.53E-01
1.81E-01

7.94E-03
3.59E-02

2.18E-01
2.16E-01

2.22E-01
8.95E-03

1.38E-02
9.46E-02

1.00E-01
8.47E-03

1.38E-02
Acidification

kg SO2 eq
1.61E-02

1.24E-02
2.78E-04

-3.44E-03
1.18E-02

8.06E-03
2.78E-04

-3.44E-03
1.67E-02

1.66E-02
1.76E-02

3.07E-04
1.25E-03

1.63E-02
1.71E-02

4.51E-04
1.25E-03

Eutrophication
kg N eq

1.29E-02
1.22E-03

1.18E-02
7.46E-05

1.22E-02
5.60E-04

1.18E-02
7.46E-05

1.31E-02
1.31E-02

1.40E-03
1.18E-02

9.68E-05
9.82E-03

2.77E-03
7.14E-03

9.68E-05
Carcinogenics

CTUh
4.53E-08

1.16E-08
1.33E-09

-3.24E-08
3.97E-08

6.03E-09
1.33E-09

-3.24E-08
1.34E-09

1.34E-09
2.48E-09

1.33E-09
2.46E-09

6.50E-09
6.94E-09

2.03E-09
2.46E-09

Non carcinogenics
CTUh

2.84E-07
2.45E-07

1.72E-08
-2.16E-08

1.03E-07
6.46E-08

1.72E-08
-2.16E-08

1.15E-08
1.15E-08

9.15E-09
1.13E-08

8.96E-09
7.13E-08

6.08E-08
1.95E-08

8.96E-09
Respiratory effects

kg PM
2.5 eq

9.41E-04
7.69E-04

2.55E-05
-1.47E-04

7.79E-04
6.07E-04

2.55E-05
-1.47E-04

5.31E-04
5.29E-04

5.61E-04
2.64E-05

5.80E-05
1.16E-03

1.18E-03
3.78E-05

5.80E-05
Ecotoxicity

CTUe
6.57E+00

2.95E+00
3.22E+00

-4.03E-01
4.62E+00

9.98E-01
3.22E+00

-4.03E-01
1.61E-01

1.61E-01
2.10E-01

1.61E-01
2.10E-01

2.16E+00
2.18E+00

1.82E-01
2.10E-01

Fossil fuel depletion
M

J surplus
7.20E+00

-9.03E-01
6.21E-02

-8.04E+00
9.11E+00

1.00E+00
6.21E-02

-8.04E+00
3.97E+00

3.97E+00
4.03E+00

6.21E-02
1.16E-01

2.57E-01
3.10E-01

6.21E-02
1.16E-01
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APPENDIX M 

EOL IMPACTS FOR WASTE TREATMENT OPTIONS AT DIFFERENT RATIOS 

FOR SIX POLYMERS INCLUDING AMORPHOUS AND CRYSTALLINE PLA 
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PET
U

nits
Landfill/
Recycle

100%
 landfill

0%
 recycle

90%
 landfill

10%
 recycle

80%
 landfill

20%
 recycle

70%
 landfill

30%
 recycle

60%
 landfill

40%
 recycle

50%
 landfill

50%
 recycle

40%
 landfill

60%
 recycle

30%
 landfill

70%
 recycle

20%
 landfill

80%
 recycle

10%
 landfill

90%
 recycle

0%
 landfill

100%
 recycle

O
zone depletion

kg CFC-11 eq
Landfill

5.8E-09
5.2E-09

4.7E-09
4.1E-09

3.5E-09
2.9E-09

2.3E-09
1.7E-09

1.2E-09
5.8E-10

0.0E+00
kg CFC-11 eq

Recycle
0.0E+00

1.3E-09
2.6E-09

3.8E-09
5.1E-09

6.4E-09
7.7E-09

9.0E-09
1.0E-08

1.2E-08
1.3E-08

kg CFC-11 eq
Total

5.8E-09
6.5E-09

7.2E-09
7.9E-09

8.6E-09
9.3E-09

1.0E-08
1.1E-08

1.1E-08
1.2E-08

1.3E-08
Global w

arm
ing

kg CO
2 eq

Landfill
1.1E-01

1.0E-01
9.0E-02

7.9E-02
6.8E-02

5.6E-02
4.5E-02

3.4E-02
2.3E-02

1.1E-02
0.0E+00

kg CO
2 eq

Recycle
0.0E+00

-1.9E-01
-3.8E-01

-5.8E-01
-7.7E-01

-9.6E-01
-1.2E+00

-1.3E+00
-1.5E+00

-1.7E+00
-1.9E+00

kg CO
2 eq

Total
1.1E-01

-9.1E-02
-2.9E-01

-5.0E-01
-7.0E-01

-9.1E-01
-1.1E+00

-1.3E+00
-1.5E+00

-1.7E+00
-1.9E+00

Sm
og

kg O
3 eq

Landfill
7.9E-03

7.1E-03
6.4E-03

5.6E-03
4.8E-03

4.0E-03
3.2E-03

2.4E-03
1.6E-03

7.9E-04
0.0E+00

kg O
3 eq

Recycle
0.0E+00

3.6E-03
7.2E-03

1.1E-02
1.4E-02

1.8E-02
2.2E-02

2.5E-02
2.9E-02

3.2E-02
3.6E-02

kg O
3 eq

Total
7.9E-03

1.1E-02
1.4E-02

1.6E-02
1.9E-02

2.2E-02
2.5E-02

2.8E-02
3.0E-02

3.3E-02
3.6E-02

Acidification
kg SO

2 eq
Landfill

2.8E-04
2.5E-04

2.2E-04
1.9E-04

1.7E-04
1.4E-04

1.1E-04
8.3E-05

5.6E-05
2.8E-05

0.0E+00
kg SO

2 eq
Recycle

0.0E+00
-3.4E-04

-6.9E-04
-1.0E-03

-1.4E-03
-1.7E-03

-2.1E-03
-2.4E-03

-2.8E-03
-3.1E-03

-3.4E-03
kg SO

2 eq
Total

2.8E-04
-9.4E-05

-4.7E-04
-8.4E-04

-1.2E-03
-1.6E-03

-2.0E-03
-2.3E-03

-2.7E-03
-3.1E-03

-3.4E-03
Eutrophication

kg N
 eq

Landfill
1.2E-02

1.1E-02
9.4E-03

8.2E-03
7.1E-03

5.9E-03
4.7E-03

3.5E-03
2.4E-03

1.2E-03
0.0E+00

kg N
 eq

Recycle
0.0E+00

7.5E-06
1.5E-05

2.2E-05
3.0E-05

3.7E-05
4.5E-05

5.2E-05
6.0E-05

6.7E-05
7.5E-05

kg N
 eq

Total
1.2E-02

1.1E-02
9.4E-03

8.3E-03
7.1E-03

5.9E-03
4.7E-03

3.6E-03
2.4E-03

1.2E-03
7.5E-05

Carcinogenics
CTUh

Landfill
1.3E-09

1.2E-09
1.1E-09

9.3E-10
8.0E-10

6.6E-10
5.3E-10

4.0E-10
2.7E-10

1.3E-10
0.0E+00

CTUh
Recycle

0.0E+00
-3.2E-09

-6.5E-09
-9.7E-09

-1.3E-08
-1.6E-08

-1.9E-08
-2.3E-08

-2.6E-08
-2.9E-08

-3.2E-08
CTUh

Total
1.3E-09

-2.0E-09
-5.4E-09

-8.8E-09
-1.2E-08

-1.6E-08
-1.9E-08

-2.2E-08
-2.6E-08

-2.9E-08
-3.2E-08

N
on carcinogenics

CTUh
Landfill

1.7E-08
1.5E-08

1.4E-08
1.2E-08

1.0E-08
8.6E-09

6.9E-09
5.2E-09

3.4E-09
1.7E-09

0.0E+00
CTUh

Recycle
0.0E+00

-2.2E-09
-4.3E-09

-6.5E-09
-8.6E-09

-1.1E-08
-1.3E-08

-1.5E-08
-1.7E-08

-1.9E-08
-2.2E-08

CTUh
Total

1.7E-08
1.3E-08

9.4E-09
5.5E-09

1.7E-09
-2.2E-09

-6.1E-09
-1.0E-08

-1.4E-08
-1.8E-08

-2.2E-08
Respiratory effects

kg PM
2.5 eq

Landfill
2.5E-05

2.3E-05
2.0E-05

1.8E-05
1.5E-05

1.3E-05
1.0E-05

7.6E-06
5.1E-06

2.5E-06
0.0E+00

kg PM
2.5 eq

Recycle
0.0E+00

-1.5E-05
-2.9E-05

-4.4E-05
-5.9E-05

-7.3E-05
-8.8E-05

-1.0E-04
-1.2E-04

-1.3E-04
-1.5E-04

kg PM
2.5 eq

Total
2.5E-05

8.2E-06
-9.0E-06

-2.6E-05
-4.3E-05

-6.1E-05
-7.8E-05

-9.5E-05
-1.1E-04

-1.3E-04
-1.5E-04

Ecotoxicity
CTUe

Landfill
3.2E+00

2.9E+00
2.6E+00

2.3E+00
1.9E+00

1.6E+00
1.3E+00

9.7E-01
6.4E-01

3.2E-01
0.0E+00

CTUe
Recycle

0.0E+00
-4.0E-02

-8.1E-02
-1.2E-01

-1.6E-01
-2.0E-01

-2.4E-01
-2.8E-01

-3.2E-01
-3.6E-01

-4.0E-01
CTUe

Total
3.2E+00

2.9E+00
2.5E+00

2.1E+00
1.8E+00

1.4E+00
1.0E+00

6.8E-01
3.2E-01

-4.0E-02
-4.0E-01

Fossil fuel depletion
M

J surplus
Landfill

6.2E-02
5.6E-02

5.0E-02
4.3E-02

3.7E-02
3.1E-02

2.5E-02
1.9E-02

1.2E-02
6.2E-03

0.0E+00
M

J surplus
Recycle

0.0E+00
-8.0E-01

-1.6E+00
-2.4E+00

-3.2E+00
-4.0E+00

-4.8E+00
-5.6E+00

-6.4E+00
-7.2E+00

-8.0E+00
M

J surplus
Total

6.2E-02
-7.5E-01

-1.6E+00
-2.4E+00

-3.2E+00
-4.0E+00

-4.8E+00
-5.6E+00

-6.4E+00
-7.2E+00

-8.0E+00
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HDPE
U

nits
Landfill/
Recycle

100%
 landfill

0%
 recycle

90%
 landfill

10%
 recycle

80%
 landfill

20%
 recycle

70%
 landfill

30%
 recycle

60%
 landfill

40%
 recycle

50%
 landfill

50%
 recycle

40%
 landfill

60%
 recycle

30%
 landfill

70%
 recycle

20%
 landfill

80%
 recycle

10%
 landfill

90%
 recycle

0%
 landfill

100%
 recycle

O
zone depletion

kg CFC-11 eq
Landfill

5.8E-09
5.2E-09

4.6E-09
4.1E-09

3.5E-09
2.9E-09

2.3E-09
1.7E-09

1.2E-09
5.8E-10

0.0E+00
kg CFC-11 eq

Recycle
0.0E+00

2.9E-09
5.8E-09

8.7E-09
1.2E-08

1.5E-08
1.7E-08

2.0E-08
2.3E-08

2.6E-08
2.9E-08

kg CFC-11 eq
Total

5.8E-09
8.1E-09

1.0E-08
1.3E-08

1.5E-08
1.7E-08

2.0E-08
2.2E-08

2.4E-08
2.7E-08

2.9E-08
Global w

arm
ing

kg CO
2 eq

Landfill
1.5E-01

1.3E-01
1.2E-01

1.0E-01
8.7E-02

7.3E-02
5.8E-02

4.4E-02
2.9E-02

1.5E-02
0.0E+00

kg CO
2 eq

Recycle
0.0E+00

-1.1E-01
-2.1E-01

-3.2E-01
-4.3E-01

-5.3E-01
-6.4E-01

-7.5E-01
-8.5E-01

-9.6E-01
-1.1E+00

kg CO
2 eq

Total
1.5E-01

2.4E-02
-9.7E-02

-2.2E-01
-3.4E-01

-4.6E-01
-5.8E-01

-7.0E-01
-8.2E-01

-9.4E-01
-1.1E+00

Sm
og

kg O
3 eq

Landfill
7.9E-03

7.1E-03
6.3E-03

5.5E-03
4.7E-03

4.0E-03
3.2E-03

2.4E-03
1.6E-03

7.9E-04
0.0E+00

kg O
3 eq

Recycle
0.0E+00

1.2E-02
2.4E-02

3.5E-02
4.7E-02

5.9E-02
7.1E-02

8.3E-02
9.5E-02

1.1E-01
1.2E-01

kg O
3 eq

Total
7.9E-03

1.9E-02
3.0E-02

4.1E-02
5.2E-02

6.3E-02
7.4E-02

8.5E-02
9.6E-02

1.1E-01
1.2E-01

Acidification
kg SO

2 eq
Landfill

2.8E-04
2.5E-04

2.2E-04
1.9E-04

1.7E-04
1.4E-04

1.1E-04
8.3E-05

5.5E-05
2.8E-05

0.0E+00
kg SO

2 eq
Recycle

0.0E+00
2.1E-04

4.1E-04
6.2E-04

8.3E-04
1.0E-03

1.2E-03
1.5E-03

1.7E-03
1.9E-03

2.1E-03
kg SO

2 eq
Total

2.8E-04
4.6E-04

6.4E-04
8.2E-04

1.0E-03
1.2E-03

1.4E-03
1.5E-03

1.7E-03
1.9E-03

2.1E-03
Eutrophication

kg N
 eq

Landfill
1.5E-02

1.3E-02
1.2E-02

1.0E-02
8.8E-03

7.3E-03
5.8E-03

4.4E-03
2.9E-03

1.5E-03
0.0E+00

kg N
 eq

Recycle
0.0E+00

5.2E-05
1.0E-04

1.5E-04
2.1E-04

2.6E-04
3.1E-04

3.6E-04
4.1E-04

4.6E-04
5.2E-04

kg N
 eq

Total
1.5E-02

1.3E-02
1.2E-02

1.0E-02
9.0E-03

7.5E-03
6.1E-03

4.7E-03
3.3E-03

1.9E-03
5.2E-04

Carcinogenics
CTUh

Landfill
1.7E-09

1.5E-09
1.3E-09

1.2E-09
9.9E-10

8.3E-10
6.6E-10

5.0E-10
3.3E-10

1.7E-10
0.0E+00

CTUh
Recycle

0.0E+00
1.9E-10

3.8E-10
5.6E-10

7.5E-10
9.4E-10

1.1E-09
1.3E-09

1.5E-09
1.7E-09

1.9E-09
CTUh

Total
1.7E-09

1.7E-09
1.7E-09

1.7E-09
1.7E-09

1.8E-09
1.8E-09

1.8E-09
1.8E-09

1.9E-09
1.9E-09

N
on carcinogenics

CTUh
Landfill

3.2E-08
2.9E-08

2.5E-08
2.2E-08

1.9E-08
1.6E-08

1.3E-08
9.5E-09

6.4E-09
3.2E-09

0.0E+00
CTUh

Recycle
0.0E+00

1.4E-09
2.8E-09

4.2E-09
5.6E-09

7.1E-09
8.5E-09

9.9E-09
1.1E-08

1.3E-08
1.4E-08

CTUh
Total

3.2E-08
3.0E-08

2.8E-08
2.6E-08

2.5E-08
2.3E-08

2.1E-08
1.9E-08

1.8E-08
1.6E-08

1.4E-08
Respiratory effects

kg PM
2.5 eq

Landfill
2.6E-05

2.3E-05
2.0E-05

1.8E-05
1.5E-05

1.3E-05
1.0E-05

7.7E-06
5.1E-06

2.6E-06
0.0E+00

kg PM
2.5 eq

Recycle
0.0E+00

2.2E-05
4.4E-05

6.7E-05
8.9E-05

1.1E-04
1.3E-04

1.6E-04
1.8E-04

2.0E-04
2.2E-04

kg PM
2.5 eq

Total
2.6E-05

4.5E-05
6.5E-05

8.4E-05
1.0E-04

1.2E-04
1.4E-04

1.6E-04
1.8E-04

2.0E-04
2.2E-04

Ecotoxicity
CTUe

Landfill
6.5E-01

5.9E-01
5.2E-01

4.6E-01
3.9E-01

3.3E-01
2.6E-01

2.0E-01
1.3E-01

6.5E-02
0.0E+00

CTUe
Recycle

0.0E+00
2.1E-02

4.2E-02
6.3E-02

8.4E-02
1.1E-01

1.3E-01
1.5E-01

1.7E-01
1.9E-01

2.1E-01
CTUe

Total
6.5E-01

6.1E-01
5.6E-01

5.2E-01
4.8E-01

4.3E-01
3.9E-01

3.4E-01
3.0E-01

2.5E-01
2.1E-01

Fossil fuel depletion
M

J surplus
Landfill

6.2E-02
5.6E-02

5.0E-02
4.3E-02

3.7E-02
3.1E-02

2.5E-02
1.9E-02

1.2E-02
6.2E-03

0.0E+00
M

J surplus
Recycle

0.0E+00
-1.0E+00

-2.0E+00
-3.1E+00

-4.1E+00
-5.1E+00

-6.1E+00
-7.1E+00

-8.1E+00
-9.2E+00

-1.0E+01
M

J surplus
Total

6.2E-02
-9.6E-01

-2.0E+00
-3.0E+00

-4.0E+00
-5.1E+00

-6.1E+00
-7.1E+00

-8.1E+00
-9.1E+00

-1.0E+01
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LDPE
U

nits
Landfill/
Recycle

100%
 landfill

0%
 recycle

90%
 landfill

10%
 recycle

80%
 landfill

20%
 recycle

70%
 landfill

30%
 recycle

60%
 landfill

40%
 recycle

50%
 landfill

50%
 recycle

40%
 landfill

60%
 recycle

30%
 landfill

70%
 recycle

20%
 landfill

80%
 recycle

10%
 landfill

90%
 recycle

0%
 landfill

100%
 recycle

O
zone depletion

kg CFC-11 eq
Landfill

5.80E-09
5.22E-09

4.64E-09
4.06E-09

3.48E-09
2.90E-09

2.32E-09
1.74E-09

1.16E-09
5.80E-10

0.00E+00
kg CFC-11 eq

Recycle
0.00E+00

2.72E-09
5.44E-09

8.16E-09
1.09E-08

1.36E-08
1.63E-08

1.90E-08
2.18E-08

2.45E-08
2.72E-08

kg CFC-11 eq
Total

5.80E-09
7.94E-09

1.01E-08
1.22E-08

1.44E-08
1.65E-08

1.86E-08
2.08E-08

2.29E-08
2.51E-08

2.72E-08
Global w

arm
ing

kg CO
2 eq

Landfill
1.45E-01

1.31E-01
1.16E-01

1.02E-01
8.70E-02

7.25E-02
5.80E-02

4.35E-02
2.90E-02

1.45E-02
0.00E+00

kg CO
2 eq

Recycle
0.00E+00

-1.09E-01
-2.18E-01

-3.27E-01
-4.36E-01

-5.45E-01
-6.55E-01

-7.64E-01
-8.73E-01

-9.82E-01
-1.09E+00

kg CO
2 eq

Total
1.45E-01

2.14E-02
-1.02E-01

-2.26E-01
-3.49E-01

-4.73E-01
-5.97E-01

-7.20E-01
-8.44E-01

-9.67E-01
-1.09E+00

Sm
og

kg O
3 eq

Landfill
7.91E-03

7.12E-03
6.32E-03

5.53E-03
4.74E-03

3.95E-03
3.16E-03

2.37E-03
1.58E-03

7.91E-04
0.00E+00

kg O
3 eq

Recycle
0.00E+00

1.17E-02
2.34E-02

3.50E-02
4.67E-02

5.84E-02
7.01E-02

8.17E-02
9.34E-02

1.05E-01
1.17E-01

kg O
3 eq

Total
7.91E-03

1.88E-02
2.97E-02

4.06E-02
5.14E-02

6.23E-02
7.32E-02

8.41E-02
9.50E-02

1.06E-01
1.17E-01

Acidification
kg SO

2 eq
Landfill

2.77E-04
2.49E-04

2.22E-04
1.94E-04

1.66E-04
1.38E-04

1.11E-04
8.31E-05

5.54E-05
2.77E-05

0.00E+00
kg SO

2 eq
Recycle

0.00E+00
1.92E-04

3.84E-04
5.76E-04

7.69E-04
9.61E-04

1.15E-03
1.35E-03

1.54E-03
1.73E-03

1.92E-03
kg SO

2 eq
Total

2.77E-04
4.41E-04

6.06E-04
7.70E-04

9.35E-04
1.10E-03

1.26E-03
1.43E-03

1.59E-03
1.76E-03

1.92E-03
Eutrophication

kg N
 eq

Landfill
1.46E-02

1.31E-02
1.17E-02

1.02E-02
8.75E-03

7.29E-03
5.83E-03

4.38E-03
2.92E-03

1.46E-03
0.00E+00

kg N
 eq

Recycle
0.00E+00

4.23E-05
8.46E-05

1.27E-04
1.69E-04

2.12E-04
2.54E-04

2.96E-04
3.39E-04

3.81E-04
4.23E-04

kg N
 eq

Total
1.46E-02

1.32E-02
1.18E-02

1.03E-02
8.92E-03

7.50E-03
6.09E-03

4.67E-03
3.26E-03

1.84E-03
4.23E-04

Carcinogenics
CTUh

Landfill
1.66E-09

1.49E-09
1.33E-09

1.16E-09
9.94E-10

8.29E-10
6.63E-10

4.97E-10
3.31E-10

1.66E-10
0.00E+00

CTUh
Recycle

0.00E+00
8.74E-11

1.75E-10
2.62E-10

3.49E-10
4.37E-10

5.24E-10
6.12E-10

6.99E-10
7.86E-10

8.74E-10
CTUh

Total
1.66E-09

1.58E-09
1.50E-09

1.42E-09
1.34E-09

1.27E-09
1.19E-09

1.11E-09
1.03E-09

9.52E-10
8.74E-10

N
on carcinogenics

CTUh
Landfill

3.18E-08
2.86E-08

2.54E-08
2.22E-08

1.91E-08
1.59E-08

1.27E-08
9.53E-09

6.35E-09
3.18E-09

0.00E+00
CTUh

Recycle
0.00E+00

9.70E-10
1.94E-09

2.91E-09
3.88E-09

4.85E-09
5.82E-09

6.79E-09
7.76E-09

8.73E-09
9.70E-09

CTUh
Total

3.18E-08
2.96E-08

2.74E-08
2.52E-08

2.29E-08
2.07E-08

1.85E-08
1.63E-08

1.41E-08
1.19E-08

9.70E-09
Respiratory effects

kg PM
2.5 eq

Landfill
2.55E-05

2.30E-05
2.04E-05

1.79E-05
1.53E-05

1.28E-05
1.02E-05

7.66E-06
5.11E-06

2.55E-06
0.00E+00

kg PM
2.5 eq

Recycle
0.00E+00

1.93E-05
3.87E-05

5.80E-05
7.73E-05

9.66E-05
1.16E-04

1.35E-04
1.55E-04

1.74E-04
1.93E-04

kg PM
2.5 eq

Total
2.55E-05

4.23E-05
5.91E-05

7.59E-05
9.26E-05

1.09E-04
1.26E-04

1.43E-04
1.60E-04

1.76E-04
1.93E-04

Ecotoxicity
CTUe

Landfill
6.53E-01

5.88E-01
5.22E-01

4.57E-01
3.92E-01

3.26E-01
2.61E-01

1.96E-01
1.31E-01

6.53E-02
0.00E+00

CTUe
Recycle

0.00E+00
1.08E-02

2.16E-02
3.24E-02

4.32E-02
5.39E-02

6.47E-02
7.55E-02

8.63E-02
9.71E-02

1.08E-01
CTUe

Total
6.53E-01

5.98E-01
5.44E-01

4.89E-01
4.35E-01

3.80E-01
3.26E-01

2.71E-01
2.17E-01

1.62E-01
1.08E-01

Fossil fuel depletion
M

J surplus
Landfill

6.21E-02
5.59E-02

4.97E-02
4.35E-02

3.73E-02
3.11E-02

2.49E-02
1.86E-02

1.24E-02
6.21E-03

0.00E+00
M

J surplus
Recycle

0.00E+00
-1.02E+00

-2.04E+00
-3.06E+00

-4.07E+00
-5.09E+00

-6.11E+00
-7.13E+00

-8.15E+00
-9.17E+00

-1.02E+01
M

J surplus
Total

6.21E-02
-9.63E-01

-1.99E+00
-3.01E+00

-4.04E+00
-5.06E+00

-6.09E+00
-7.11E+00

-8.14E+00
-9.16E+00

-1.02E+01
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PLA Am
orphous

U
nits

Landfill/
Recycle

100%
 landfill

0%
 com

post
90%

 landfill
10%

 com
post

80%
 landfill

20%
 com

post
70%

 landfill
30%

 com
post

60%
 landfill

40%
 com

post
50%

 landfill
50%

 com
post

40%
 landfill

60%
 com

post
30%

 landfill
70%

 com
post

20%
 landfill

80%
 com

post
10%

 landfill
90%

 com
post

0%
 landfill

100%
 com

post
O

zone depletion
kg CFC-11 eq

Landfill
5.816E-09

5.234E-09
4.653E-09

4.071E-09
3.490E-09

2.908E-09
2.326E-09

1.745E-09
1.163E-09

5.816E-10
0.000E+00

kg CFC-11 eq
Com

post
0.000E+00

3.719E-10
7.439E-10

1.116E-09
1.488E-09

1.860E-09
2.232E-09

2.604E-09
2.975E-09

3.347E-09
3.719E-09

kg CFC-11 eq
Total

5.816E-09
5.606E-09

5.397E-09
5.187E-09

4.977E-09
4.768E-09

4.558E-09
4.348E-09

4.139E-09
3.929E-09

3.719E-09
Global w

arm
ing

kg CO
2 eq

Landfill
7.992E-01

7.193E-01
6.393E-01

5.594E-01
4.795E-01

3.996E-01
3.197E-01

2.398E-01
1.598E-01

7.992E-02
0.000E+00

kg CO
2 eq

Com
post

0.000E+00
3.077E-02

6.153E-02
9.230E-02

1.231E-01
1.538E-01

1.846E-01
2.154E-01

2.461E-01
2.769E-01

3.077E-01
kg CO

2 eq
Total

7.992E-01
7.500E-01

7.009E-01
6.517E-01

6.026E-01
5.534E-01

5.043E-01
4.551E-01

4.060E-01
3.568E-01

3.077E-01
Sm

og
kg O

3 eq
Landfill

9.952E-03
8.957E-03

7.962E-03
6.967E-03

5.971E-03
4.976E-03

3.981E-03
2.986E-03

1.990E-03
9.952E-04

0.000E+00
kg O

3 eq
Com

post
0.000E+00

1.383E-03
2.765E-03

4.148E-03
5.531E-03

6.914E-03
8.296E-03

9.679E-03
1.106E-02

1.244E-02
1.383E-02

kg O
3 eq

Total
9.952E-03

1.034E-02
1.073E-02

1.111E-02
1.150E-02

1.189E-02
1.228E-02

1.266E-02
1.305E-02

1.344E-02
1.383E-02

Acidification
kg SO

2 eq
Landfill

3.360E-04
3.024E-04

2.688E-04
2.352E-04

2.016E-04
1.680E-04

1.344E-04
1.008E-04

6.721E-05
3.360E-05

0.000E+00
kg SO

2 eq
Com

post
0.000E+00

1.253E-04
2.507E-04

3.760E-04
5.014E-04

6.267E-04
7.521E-04

8.774E-04
1.003E-03

1.128E-03
1.253E-03

kg SO
2 eq

Total
3.360E-04

4.278E-04
5.195E-04

6.113E-04
7.030E-04

7.948E-04
8.865E-04

9.783E-04
1.070E-03

1.162E-03
1.253E-03

Eutrophication
kg N

 eq
Landfill

1.176E-02
1.058E-02

9.409E-03
8.232E-03

7.056E-03
5.880E-03

4.704E-03
3.528E-03

2.352E-03
1.176E-03

0.000E+00
kg N

 eq
Com

post
0.000E+00

9.683E-06
1.937E-05

2.905E-05
3.873E-05

4.841E-05
5.810E-05

6.778E-05
7.746E-05

8.714E-05
9.683E-05

kg N
 eq

Total
1.176E-02

1.059E-02
9.428E-03

8.262E-03
7.095E-03

5.929E-03
4.762E-03

3.596E-03
2.430E-03

1.263E-03
9.683E-05

Carcinogenics
CTUh

Landfill
1.326E-09

1.193E-09
1.061E-09

9.281E-10
7.956E-10

6.630E-10
5.304E-10

3.978E-10
2.652E-10

1.326E-10
0.000E+00

CTUh
Com

post
0.000E+00

2.464E-10
4.928E-10

7.392E-10
9.855E-10

1.232E-09
1.478E-09

1.725E-09
1.971E-09

2.217E-09
2.464E-09

CTUh
Total

1.326E-09
1.440E-09

1.554E-09
1.667E-09

1.781E-09
1.895E-09

2.009E-09
2.122E-09

2.236E-09
2.350E-09

2.464E-09
N

on carcinogenics
CTUh

Landfill
1.130E-08

1.017E-08
9.044E-09

7.913E-09
6.783E-09

5.652E-09
4.522E-09

3.391E-09
2.261E-09

1.130E-09
0.000E+00

CTUh
Com

post
0.000E+00

8.961E-10
1.792E-09

2.688E-09
3.584E-09

4.481E-09
5.377E-09

6.273E-09
7.169E-09

8.065E-09
8.961E-09

CTUh
Total

1.130E-08
1.107E-08

1.084E-08
1.060E-08

1.037E-08
1.013E-08

9.899E-09
9.664E-09

9.430E-09
9.196E-09

8.961E-09
Respiratory effects

kg PM
2.5 eq

Landfill
2.742E-05

2.468E-05
2.194E-05

1.919E-05
1.645E-05

1.371E-05
1.097E-05

8.226E-06
5.484E-06

2.742E-06
0.000E+00

kg PM
2.5 eq

Com
post

0.000E+00
5.803E-06

1.161E-05
1.741E-05

2.321E-05
2.902E-05

3.482E-05
4.062E-05

4.643E-05
5.223E-05

5.803E-05
kg PM

2.5 eq
Total

2.742E-05
3.048E-05

3.354E-05
3.660E-05

3.966E-05
4.273E-05

4.579E-05
4.885E-05

5.191E-05
5.497E-05

5.803E-05
Ecotoxicity

CTUe
Landfill

1.609E-01
1.448E-01

1.287E-01
1.126E-01

9.654E-02
8.045E-02

6.436E-02
4.827E-02

3.218E-02
1.609E-02

0.000E+00
CTUe

Com
post

0.000E+00
2.097E-02

4.195E-02
6.292E-02

8.390E-02
1.049E-01

1.258E-01
1.468E-01

1.678E-01
1.888E-01

2.097E-01
CTUe

Total
1.609E-01

1.658E-01
1.707E-01

1.755E-01
1.804E-01

1.853E-01
1.902E-01

1.951E-01
2.000E-01

2.049E-01
2.097E-01

Fossil fuel depletion
M

J surplus
Landfill

6.213E-02
5.592E-02

4.970E-02
4.349E-02

3.728E-02
3.106E-02

2.485E-02
1.864E-02

1.243E-02
6.213E-03

0.000E+00
M

J surplus
Com

post
0.000E+00

1.157E-02
2.315E-02

3.472E-02
4.630E-02

5.787E-02
6.945E-02

8.102E-02
9.260E-02

1.042E-01
1.157E-01

M
J surplus

Total
6.213E-02

6.749E-02
7.285E-02

7.821E-02
8.358E-02

8.894E-02
9.430E-02

9.966E-02
1.050E-01

1.104E-01
1.157E-01
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PLA Crystalline
U

nits
Landfill/
Recycle

100%
 landfill

0%
 com

post
90%

 landfill
10%

 com
post

80%
 landfill

20%
 com

post
70%

 landfill
30%

 com
post

60%
 landfill

40%
 com

post
50%

 landfill
50%

 com
post

40%
 landfill

60%
 com

post
30%

 landfill
70%

 com
post

20%
 landfill

80%
 com

post
10%

 landfill
90%

 com
post

0%
 landfill

100%
 com

post
O

zone depletion
kg CFC-11 eq

Landfill
5.816E-09

5.234E-09
4.653E-09

4.071E-09
3.490E-09

2.908E-09
2.326E-09

1.745E-09
1.163E-09

5.816E-10
0.000E+00

kg CFC-11 eq
Com

post
0.000E+00

3.719E-10
7.439E-10

1.116E-09
1.488E-09

1.860E-09
2.232E-09

2.604E-09
2.975E-09

3.347E-09
3.719E-09

kg CFC-11 eq
Total

5.816E-09
5.606E-09

5.397E-09
5.187E-09

4.977E-09
4.768E-09

4.558E-09
4.348E-09

4.139E-09
3.929E-09

3.719E-09
Global w

arm
ing

kg CO
2 eq

Landfill
4.538E-02

4.084E-02
3.631E-02

3.177E-02
2.723E-02

2.269E-02
1.815E-02

1.361E-02
9.077E-03

4.538E-03
0.000E+00

kg CO
2 eq

Com
post

0.000E+00
3.077E-02

6.153E-02
9.230E-02

1.231E-01
1.538E-01

1.846E-01
2.154E-01

2.461E-01
2.769E-01

3.077E-01
kg CO

2 eq
Total

4.538E-02
7.161E-02

9.784E-02
1.241E-01

1.503E-01
1.765E-01

2.027E-01
2.290E-01

2.552E-01
2.814E-01

3.077E-01
Sm

og
kg O

3 eq
Landfill

7.938E-03
7.144E-03

6.350E-03
5.556E-03

4.763E-03
3.969E-03

3.175E-03
2.381E-03

1.588E-03
7.938E-04

0.000E+00
kg O

3 eq
Com

post
0.000E+00

1.383E-03
2.765E-03

4.148E-03
5.531E-03

6.914E-03
8.296E-03

9.679E-03
1.106E-02

1.244E-02
1.383E-02

kg O
3 eq

Total
7.938E-03

8.527E-03
9.116E-03

9.705E-03
1.029E-02

1.088E-02
1.147E-02

1.206E-02
1.265E-02

1.324E-02
1.383E-02

Acidification
kg SO

2 eq
Landfill

2.778E-04
2.500E-04

2.222E-04
1.944E-04

1.667E-04
1.389E-04

1.111E-04
8.333E-05

5.555E-05
2.778E-05

0.000E+00
kg SO

2 eq
Com

post
0.000E+00

1.253E-04
2.507E-04

3.760E-04
5.014E-04

6.267E-04
7.521E-04

8.774E-04
1.003E-03

1.128E-03
1.253E-03

kg SO
2 eq

Total
2.778E-04

3.753E-04
4.729E-04

5.705E-04
6.680E-04

7.656E-04
8.632E-04

9.608E-04
1.058E-03

1.156E-03
1.253E-03

Eutrophication
kg N

 eq
Landfill

1.176E-02
1.058E-02

9.406E-03
8.230E-03

7.054E-03
5.879E-03

4.703E-03
3.527E-03

2.351E-03
1.176E-03

0.000E+00
kg N

 eq
Com

post
0.000E+00

9.683E-06
1.937E-05

2.905E-05
3.873E-05

4.841E-05
5.810E-05

6.778E-05
7.746E-05

8.714E-05
9.683E-05

kg N
 eq

Total
1.176E-02

1.059E-02
9.425E-03

8.259E-03
7.093E-03

5.927E-03
4.761E-03

3.595E-03
2.429E-03

1.263E-03
9.683E-05

Carcinogenics
CTUh

Landfill
1.326E-09

1.193E-09
1.061E-09

9.281E-10
7.956E-10

6.630E-10
5.304E-10

3.978E-10
2.652E-10

1.326E-10
0.000E+00

CTUh
Com

post
0.000E+00

2.464E-10
4.928E-10

7.392E-10
9.855E-10

1.232E-09
1.478E-09

1.725E-09
1.971E-09

2.217E-09
2.464E-09

CTUh
Total

1.326E-09
1.440E-09

1.554E-09
1.667E-09

1.781E-09
1.895E-09

2.009E-09
2.122E-09

2.236E-09
2.350E-09

2.464E-09
N

on carcinogenics
CTUh

Landfill
1.130E-08

1.017E-08
9.044E-09

7.913E-09
6.783E-09

5.652E-09
4.522E-09

3.391E-09
2.261E-09

1.130E-09
0.000E+00

CTUh
Com

post
0.000E+00

8.961E-10
1.792E-09

2.688E-09
3.584E-09

4.481E-09
5.377E-09

6.273E-09
7.169E-09

8.065E-09
8.961E-09

CTUh
Total

1.130E-08
1.107E-08

1.084E-08
1.060E-08

1.037E-08
1.013E-08

9.899E-09
9.664E-09

9.430E-09
9.196E-09

8.961E-09
Respiratory effects

kg PM
2.5 eq

Landfill
2.545E-05

2.291E-05
2.036E-05

1.782E-05
1.527E-05

1.273E-05
1.018E-05

7.636E-06
5.090E-06

2.545E-06
0.000E+00

kg PM
2.5 eq

Com
post

0.000E+00
5.803E-06

1.161E-05
1.741E-05

2.321E-05
2.902E-05

3.482E-05
4.062E-05

4.643E-05
5.223E-05

5.803E-05
kg PM

2.5 eq
Total

2.545E-05
2.871E-05

3.197E-05
3.523E-05

3.848E-05
4.174E-05

4.500E-05
4.826E-05

5.152E-05
5.478E-05

5.803E-05
Ecotoxicity

CTUe
Landfill

1.609E-01
1.448E-01

1.287E-01
1.126E-01

9.654E-02
8.045E-02

6.436E-02
4.827E-02

3.218E-02
1.609E-02

0.000E+00
CTUe

Com
post

0.000E+00
2.097E-02

4.195E-02
6.292E-02

8.390E-02
1.049E-01

1.258E-01
1.468E-01

1.678E-01
1.888E-01

2.097E-01
CTUe

Total
1.609E-01

1.658E-01
1.707E-01

1.755E-01
1.804E-01

1.853E-01
1.902E-01

1.951E-01
2.000E-01

2.049E-01
2.097E-01

Fossil fuel depletion
M

J surplus
Landfill

6.213E-02
5.592E-02

4.970E-02
4.349E-02

3.728E-02
3.106E-02

2.485E-02
1.864E-02

1.243E-02
6.213E-03

0.000E+00
M

J surplus
Com

post
0.000E+00

1.157E-02
2.315E-02

3.472E-02
4.630E-02

5.787E-02
6.945E-02

8.102E-02
9.260E-02

1.042E-01
1.157E-01

M
J surplus

Total
6.213E-02

6.749E-02
7.285E-02

7.821E-02
8.358E-02

8.894E-02
9.430E-02

9.966E-02
1.050E-01

1.104E-01
1.157E-01
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TPS
U

nits
Landfill/
Recycle

100%
 landfill

0%
 com

post
90%

 landfill
10%

 com
post

80%
 landfill

20%
 com

post
70%

 landfill
30%

 com
post

60%
 landfill

40%
 com

post
50%

 landfill
50%

 com
post

40%
 landfill

60%
 com

post
30%

 landfill
70%

 com
post

20%
 landfill

80%
 com

post
10%

 landfill
90%

 com
post

0%
 landfill

100%
 com

post
O

zone depletion
kg CFC-11 eq

Landfill
6.084E-09

5.475E-09
4.867E-09

4.259E-09
3.650E-09

3.042E-09
2.433E-09

1.825E-09
1.217E-09

6.084E-10
0.000E+00

kg CFC-11 eq
Com

post
0.000E+00

3.719E-10
7.439E-10

1.116E-09
1.488E-09

1.860E-09
2.232E-09

2.604E-09
2.975E-09

3.347E-09
3.719E-09

kg CFC-11 eq
Total

6.084E-09
5.847E-09

5.611E-09
5.374E-09

5.138E-09
4.901E-09

4.665E-09
4.429E-09

4.192E-09
3.956E-09

3.719E-09
Global w

arm
ing

kg CO
2 eq

Landfill
1.250E+00

1.125E+00
1.000E+00

8.751E-01
7.501E-01

6.250E-01
5.000E-01

3.750E-01
2.500E-01

1.250E-01
0.000E+00

kg CO
2 eq

Com
post

0.000E+00
2.827E-02

5.655E-02
8.482E-02

1.131E-01
1.414E-01

1.696E-01
1.979E-01

2.262E-01
2.545E-01

2.827E-01
kg CO

2 eq
Total

1.250E+00
1.153E+00

1.057E+00
9.599E-01

8.632E-01
7.664E-01

6.697E-01
5.729E-01

4.762E-01
3.795E-01

2.827E-01
Sm

og
kg O

3 eq
Landfill

8.468E-03
7.621E-03

6.774E-03
5.928E-03

5.081E-03
4.234E-03

3.387E-03
2.540E-03

1.694E-03
8.468E-04

0.000E+00
kg O

3 eq
Com

post
0.000E+00

1.383E-03
2.765E-03

4.148E-03
5.531E-03

6.914E-03
8.296E-03

9.679E-03
1.106E-02

1.244E-02
1.383E-02

kg O
3 eq

Total
8.468E-03

9.004E-03
9.540E-03

1.008E-02
1.061E-02

1.115E-02
1.168E-02

1.222E-02
1.276E-02

1.329E-02
1.383E-02

Acidification
kg SO

2 eq
Landfill

4.511E-04
4.060E-04

3.609E-04
3.158E-04

2.707E-04
2.256E-04

1.805E-04
1.353E-04

9.023E-05
4.511E-05

0.000E+00
kg SO

2 eq
Com

post
0.000E+00

1.253E-04
2.507E-04

3.760E-04
5.014E-04

6.267E-04
7.521E-04

8.774E-04
1.003E-03

1.128E-03
1.253E-03

kg SO
2 eq

Total
4.511E-04

5.314E-04
6.116E-04

6.918E-04
7.721E-04

8.523E-04
9.326E-04

1.013E-03
1.093E-03

1.173E-03
1.253E-03

Eutrophication
kg N

 eq
Landfill

7.144E-03
6.429E-03

5.715E-03
5.001E-03

4.286E-03
3.572E-03

2.857E-03
2.143E-03

1.429E-03
7.144E-04

0.000E+00
kg N

 eq
Com

post
0.000E+00

9.683E-06
1.937E-05

2.905E-05
3.873E-05

4.841E-05
5.810E-05

6.778E-05
7.746E-05

8.714E-05
9.683E-05

kg N
 eq

Total
7.144E-03

6.439E-03
5.734E-03

5.030E-03
4.325E-03

3.620E-03
2.916E-03

2.211E-03
1.506E-03

8.015E-04
9.683E-05

Carcinogenics
CTUh

Landfill
2.027E-09

1.824E-09
1.621E-09

1.419E-09
1.216E-09

1.013E-09
8.106E-10

6.080E-10
4.053E-10

2.027E-10
0.000E+00

CTUh
Com

post
0.000E+00

2.464E-10
4.928E-10

7.392E-10
9.855E-10

1.232E-09
1.478E-09

1.725E-09
1.971E-09

2.217E-09
2.464E-09

CTUh
Total

2.027E-09
2.070E-09

2.114E-09
2.158E-09

2.202E-09
2.245E-09

2.289E-09
2.333E-09

2.376E-09
2.420E-09

2.464E-09
N

on carcinogenics
CTUh

Landfill
1.945E-08

1.751E-08
1.556E-08

1.362E-08
1.167E-08

9.726E-09
7.781E-09

5.836E-09
3.890E-09

1.945E-09
0.000E+00

CTUh
Com

post
0.000E+00

8.961E-10
1.792E-09

2.688E-09
3.584E-09

4.481E-09
5.377E-09

6.273E-09
7.169E-09

8.065E-09
8.961E-09

CTUh
Total

1.945E-08
1.840E-08

1.735E-08
1.630E-08

1.526E-08
1.421E-08

1.316E-08
1.211E-08

1.106E-08
1.001E-08

8.961E-09
Respiratory effects

kg PM
2.5 eq

Landfill
3.784E-05

3.405E-05
3.027E-05

2.648E-05
2.270E-05

1.892E-05
1.513E-05

1.135E-05
7.567E-06

3.784E-06
0.000E+00

kg PM
2.5 eq

Com
post

0.000E+00
5.803E-06

1.161E-05
1.741E-05

2.321E-05
2.902E-05

3.482E-05
4.062E-05

4.643E-05
5.223E-05

5.803E-05
kg PM

2.5 eq
Total

3.784E-05
3.986E-05

4.187E-05
4.389E-05

4.591E-05
4.793E-05

4.995E-05
5.197E-05

5.399E-05
5.601E-05

5.803E-05
Ecotoxicity

CTUe
Landfill

1.823E-01
1.641E-01

1.459E-01
1.276E-01

1.094E-01
9.117E-02

7.293E-02
5.470E-02

3.647E-02
1.823E-02

0.000E+00
CTUe

Com
post

0.000E+00
2.097E-02

4.195E-02
6.292E-02

8.390E-02
1.049E-01

1.258E-01
1.468E-01

1.678E-01
1.888E-01

2.097E-01
CTUe

Total
1.823E-01

1.851E-01
1.878E-01

1.906E-01
1.933E-01

1.960E-01
1.988E-01

2.015E-01
2.043E-01

2.070E-01
2.097E-01

Fossil fuel depletion
M

J surplus
Landfill

6.214E-02
5.593E-02

4.972E-02
4.350E-02

3.729E-02
3.107E-02

2.486E-02
1.864E-02

1.243E-02
6.214E-03

0.000E+00
M

J surplus
Com

post
0.000E+00

1.157E-02
2.315E-02

3.472E-02
4.630E-02

5.787E-02
6.945E-02

8.102E-02
9.260E-02

1.042E-01
1.157E-01

M
J surplus

Total
6.214E-02

6.750E-02
7.287E-02

7.823E-02
8.359E-02

8.895E-02
9.431E-02

9.967E-02
1.050E-01

1.104E-01
1.157E-01
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SUMMARIZED RESULTS OF SENSITIVITY ANALYSIS FOR EIGHT POLYMERS 
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Bio-PET Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 4.31E-08 0% 0% -1% 3% 0% 0% -1% 4% 0% 0%
Global warming kg CO2 eq 6.93E-01 0% 0% -1% 2% -1% 2% -1% 3% -31% 0%
Smog kg O3 eq 3.18E-01 0% 0% 0% 0% 0% 1% 0% 1% -41% 0%
Acidification kg SO2 eq 1.24E-02 0% 0% 0% 1% 0% 1% 0% 1% -36% 0%
Eutrophication kg N eq 1.22E-03 0% 0% -2% 5% 0% 0% 0% 1% -20% 0%
Carcinogenics CTUh 1.16E-08 -1% 1% -2% 5% -1% 1% 0% 1% -25% 0%
Non carcinogenics CTUh 2.45E-07 0% 0% -1% 1% 0% 1% 0% 1% -11% 0%
Respiratory effects kg PM2.5 eq 7.69E-04 0% 0% -1% 2% 0% 0% -1% 2% -10% 0%
Ecotoxicity CTUe 2.95E+00 -3% 3% -1% 2% -1% 1% 0% 1% -18% 0%
Fossil fuel depletion MJ surplus -9.03E-01 0% 0% 1% -1% 1% -2% 1% -4% -42% 0%

PET Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 3.37E-08 -2% 4% 0% 0% -2% 5% 0% 0%
Global warming kg CO2 eq 8.09E-01 -1% 2% -1% 1% -1% 2% -26% 0%
Smog kg O3 eq 1.81E-01 0% 1% -1% 1% -1% 2% -72% 0%
Acidification kg SO2 eq 8.06E-03 -1% 1% 0% 1% 0% 1% -55% 0%
Eutrophication kg N eq 5.60E-04 -5% 11% 0% 1% -1% 2% -43% 0%
Carcinogenics CTUh 6.03E-09 -4% 9% -1% 3% -1% 2% -48% 0%
Non carcinogenics CTUh 6.46E-08 -2% 4% -1% 2% -1% 2% -43% 0%
Respiratory effects kg PM2.5 eq 6.07E-04 -2% 3% 0% 0% -1% 2% -12% 0%
Ecotoxicity CTUe 9.98E-01 -3% 7% -2% 3% -1% 2% -54% 0%
Fossil fuel depletion MJ surplus 1.00E+00 -1% 1% -1% 2% -1% 4% -38% 0%

Bio-HDPE Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 8.85E-08 0% 0% -2% 4% 0% 0% -1% 2% 0% 0%
Global warming kg CO2 eq 5.46E-02 0% 0% -53% 96% -11% 22% -12% 36% -392% 0%
Smog kg O3 eq 3.63E-01 0% 0% 0% 1% 0% 1% 0% 1% -36% 0%
Acidification kg SO2 eq 1.59E-02 0% 0% -1% 2% 0% 0% 0% 1% -28% 0%
Eutrophication kg N eq 2.40E-03 0% 0% -5% 8% 0% 0% 0% 0% -10% 0%
Carcinogenics CTUh 1.75E-08 -2% 2% -6% 12% 0% 1% 0% 1% -17% 0%
Non carcinogenics CTUh 7.25E-07 0% 0% -1% 1% 0% 0% 0% 0% -4% 0%
Respiratory effects kg PM2.5 eq 1.91E-03 0% 0% -2% 3% 0% 0% 0% 1% -4% 0%
Ecotoxicity CTUe 7.32E+00 -6% 6% -2% 3% 0% 0% 0% 0% -7% 0%
Fossil fuel depletion MJ surplus -7.17E+00 0% 0% 0% -1% 0% 0% 0% -1% -5% 0%

HDPE Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 3.52E-08 -6% 11% 0% 0% -2% 5% 0% 0%
Global warming kg CO2 eq 8.30E-01 -4% 6% -1% 1% -1% 2% -26% 0%
Smog kg O3 eq 1.83E-01 -1% 2% -1% 1% -1% 2% -71% 0%
Acidification kg SO2 eq 8.19E-03 -2% 4% 0% 1% 0% 1% -54% 0%
Eutrophication kg N eq 6.38E-04 -17% 30% 0% 1% -1% 2% -38% 0%
Carcinogenics CTUh 6.89E-09 -16% 29% -1% 2% -1% 2% -42% 0%
Non carcinogenics CTUh 6.83E-08 -8% 14% -1% 2% -1% 2% -41% 0%
Respiratory effects kg PM2.5 eq 6.31E-04 -5% 10% 0% 0% -1% 2% -12% 0%
Ecotoxicity CTUe 1.08E+00 -11% 20% -1% 3% 0% 1% -50% 0%
Fossil fuel depletion MJ surplus 1.02E+00 -2% 4% -1% 2% -1% 4% -37% 0%

Bio-LDPE Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 1.38E-07 0% 0% 0% 1% 0% 0% 0% 1% 0% 0%
Global warming kg CO2 eq 3.18E-01 0% 0% -2% 4% -2% 4% -2% 6% -67% 0%
Smog kg O3 eq 3.66E-01 0% 0% 0% 0% 0% 1% 0% 1% -35% 0%
Acidification kg SO2 eq 1.61E-02 0% 0% 0% 0% 0% 0% 0% 1% -27% 0%
Eutrophication kg N eq 2.35E-03 0% 0% -1% 2% 0% 0% 0% 0% -10% 0%
Carcinogenics CTUh 1.70E-08 -2% 2% -1% 3% 0% 1% 0% 1% -17% 0%
Non carcinogenics CTUh 7.35E-07 0% 0% 0% 0% 0% 0% 0% 0% -4% 0%
Respiratory effects kg PM2.5 eq 1.93E-03 0% 0% 0% 1% 0% 0% 0% 1% -4% 0%
Ecotoxicity CTUe 7.37E+00 -6% 6% 0% 1% 0% 0% 0% 0% -7% 0%
Fossil fuel depletion MJ surplus -6.50E+00 0% 0% 0% 0% 0% 0% 0% -1% -6% 0%

LDPE Recycling
Impact category Unit Baseline Min Max Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 8.34E-08 0% 1% 0% 0% -1% 2% 0% 0%
Global warming kg CO2 eq 1.11E+00 0% 1% -1% 1% -1% 2% -19% 0%
Smog kg O3 eq 1.85E-01 0% 0% -1% 1% -1% 2% -70% 0%
Acidification kg SO2 eq 8.38E-03 0% 1% 0% 1% 0% 1% -53% 0%
Eutrophication kg N eq 5.58E-04 -3% 8% 0% 1% -1% 2% -43% 0%
Carcinogenics CTUh 6.16E-09 -4% 8% -1% 3% -1% 2% -47% 0%
Non carcinogenics CTUh 6.73E-08 -1% 3% -1% 2% -1% 2% -41% 0%
Respiratory effects kg PM2.5 eq 6.22E-04 -1% 2% 0% 0% -1% 2% -12% 0%
Ecotoxicity CTUe 1.04E+00 -2% 5% -1% 3% 0% 1% -52% 0%
Fossil fuel depletion MJ surplus 1.84E+00 0% 1% -1% 1% -1% 2% -21% 0%

PLA Composting
Impact category Unit Baseline Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 3.72E-09 -46% 46% 0% 0% -15% 45%
Global warming kg CO2 eq 1.46E+00 -2% 2% 0% 1% 0% 1%
Smog kg O3 eq 2.22E-01 -1% 1% 0% 1% 0% 1%
Acidification kg SO2 eq 1.76E-02 -5% 5% 0% 0% 0% 1%
Eutrophication kg N eq 1.40E-03 -4% 4% 0% 0% 0% 1%
Carcinogenics CTUh 2.48E-09 -42% 42% -3% 7% -2% 6%
Non carcinogenics CTUh 9.15E-09 -20% 20% -9% 17% -5% 15%
Respiratory effects kg PM2.5 eq 5.61E-04 -3% 3% 0% 0% -1% 2%
Ecotoxicity CTUe 2.10E-01 -22% 22% -7% 14% -2% 7%
Fossil fuel depletion MJ surplus 4.03E+00 0% 0% 0% 1% 0% 1%

TPS Composting
Impact category Unit Baseline Min Max Min Max Min Max
Ozone depletion kg CFC-11 eq 1.49E-07 -1% 1% 0% 0% 0% 1%
Global warming kg CO2 eq 2.21E+00 -1% 1% 0% 1% 0% 1%
Smog kg O3 eq 1.00E-01 -3% 3% -1% 2% -1% 3%
Acidification kg SO2 eq 1.71E-02 -5% 5% 0% 0% 0% 1%
Eutrophication kg N eq 2.77E-03 -2% 2% 0% 0% 0% 0%
Carcinogenics CTUh 6.94E-09 -15% 15% -1% 2% -1% 2%
Non carcinogenics CTUh 6.08E-08 -3% 3% -1% 3% -1% 2%
Respiratory effects kg PM2.5 eq 1.18E-03 -1% 1% 0% 0% 0% 1%
Ecotoxicity CTUe 2.18E+00 -2% 2% -1% 1% 0% 1%
Fossil fuel depletion MJ surplus 3.10E-01 -6% 6% -3% 7% -4% 13%

Baled Recyclables Shipping

Local Transportation Waste Collection Baled Recyclables Shipping

Ethylene Inventory MRF Technology

MRF Technology

Ethylene Inventory MRF Technology Local Transportation Waste Collection Baled Recyclables Shipping

Ethylene Inventory MRF Technology Local Transportation Waste Collection Baled Recyclables Shipping

MRF Technology Local Transportation Waste Collection Baled Recyclables Shipping

Composting InventoryLocal Transportation Waste Collection

Baled Recyclables Shipping

Composting Inventory Local Transportation Waste Collection

Local Transportation Waste Collection

MRF Technology Local Transportation Waste Collection


