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ABSTRACT 
 
No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such 

heterogeneity arise among patients with the same cancer type, among cancer cells within 

the same individual’s tumor and even among cells within the same sub-clone over time. 

The recent application of next-generation sequencing and precision medicine techniques 

is the driving force to uncover the complexity of cancer and the best clinical practice. The 

core concept of precision medicine is to move away from crowd-based, best-for-most 

treatment and take individual variability into account when optimizing the prevention 

and treatment strategies. Next-generation sequencing is the method to sift through the 

entire 3 billion letters of each patient’s DNA genetic code in a massively parallel fashion.  

The deluge of next-generation sequencing data nowadays has shifted the bottleneck of 

cancer research from multiple “-omics” data collection to integrative analysis and data 

interpretation. In this dissertation, I attempt to address two distinct, but dependent, 

challenges. The first is to design specific computational algorithms and tools that can 

process and extract useful information from the raw data in an efficient, robust, and 

reproducible manner. The second challenge is to develop high-level computational 

methods and data frameworks for integrating and interpreting these data. Specifically, 

Chapter 2 presents a tool called Snipea (SNv Integration, Prioritization, Ensemble, and 

Annotation) to further identify, prioritize and annotate somatic SNVs (Single Nucleotide 

Variant) called from multiple variant callers. Chapter 3 describes a novel alignment-

based algorithm to accurately and losslessly classify sequencing reads from xenograft 

models. Chapter 4 describes a direct and biologically motivated framework and 

associated methods for identification of putative aberrations causing survival difference 

in GBM patients by integrating whole-genome sequencing, exome sequencing, RNA-

Sequencing, methylation array and clinical data. Lastly, chapter 5 explores longitudinal 
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and intratumor heterogeneity studies to reveal the temporal and spatial context of tumor 

evolution. The long-term goal is to help patients with cancer, particularly those who are 

in front of us today. Genome-based analysis of the patient tumor can identify genomic 

alterations unique to each patient’s tumor that are candidate therapeutic targets to 

decrease therapy resistance and improve clinical outcome. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Cancer is a heterogeneous and complex disease 

No two cancers are alike. Cancer could be regarded as a complex, heterogeneous and 

evolutionary process. Spontaneous cancer commonly results from a series of mutations 

within a single cell (Marusyk and Polyak 2010). However, it has been previously reported 

that distinct subpopulations exist in various human cancers, including acute myeloid 

leukemia (AML), breast cancer, ovarian cancer, colorectal cancer, glioblastoma and 

pancreatic cancer (Marusyk and Polyak 2010, Meacham and Morrison 2013). 

Genetic changes (such as SNV), environmental differences (such as radiation) and 

reversible changes (such DNA repair during replication and epigenetic changes) are 

believed to mainly contribute to morphological, physiological and functional 

heterogeneity in cancer (Marusyk, Almendro et al. 2012). 

Therapeutic resistance has been proven to be one of the foremost obstacles limiting the 

clinical efficacy of cancer drug treatments across many tumor types. Recent evidence 

indicated that intrinsic heterogeneity of tumors is one of the main mechanisms of 

acquired drug resistance (Yap, Gerlinger et al. 2012). The response and thus killing of 

“sensitive” population of the tumor hardly could avoid the flourish of “insensitive” part 

and therefore cause the inevitable recurrence of the cancer.  

Tumor heterogeneity describes the observation that cancer cells display substantially 

distinct genetic and phenotypic features, such as cellular morphology, gene expression, 

metabolism, metastatic potential and invasiveness. In this case, although it remains 

unclear what inheritable mechanism and specific model the cancer cells follow, tumor 

heterogeneity definitely have profound implications both for tumor progression and 
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therapeutic response. In despite of the substantial clinical significance of tumor clonal 

heterogeneity, the issue still remains relatively poorly explored. To address this, a more 

systematic technique is desired to characterize the extent and molecular signatures of 

clonal heterogeneity of different cancer types through longitudinal stages of tumor 

progression. 

 

1.2. Precision medicine and Massively parallel sequencing 

In the field of cancer treatment, “one size” doesn’t fit all. Knowing the existence of 

heterogeneity within most cancer types, the idea of precision medicine is becoming 

increasingly popular and it is currently accepted that molecular information will improve 

the precision with which patients are categorized and treated. 

In this manner, the concept of treatment has now been extended to “5P” - Preemptive, 

predictive, personalized, participatory and precise (Bradley, Golding et al. 2011). The 

core concept of precision medicine is to take individual variability into account when 

optimizing the prevention and treatment strategies (Jameson and Longo 2015). 

Naturally the first the foremost task would be to accurately identify such individual 

variability in an effective fashion cost wise and time wise.  

Massively parallel sequencing, with increasing throughput and reducing cost, has 

enabled us to simultaneously screen for potential biomarkers -- genetic and epigenetic 

variants: copy number variants (CNV), single nucleotide variant (SNV), gene fusions, 

translocations, methylation and over-expression or under-expression of genes. Those 

individual characteristics of each patient could then be used to design tailored medical 

treatment, which may show higher susceptibility to the patient’s tumor. Achieving the 

goals of precision medicine thus will require the proper handling, integration and 

interpretation of multi-parametric “-omics” data.  On the other hand, the knowledge 
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gathered during the precision medicine studies would in turn enable better 

understanding of disease mechanisms and improvement of large-scale biological 

database (such as “Genomics of Drug Sensitivity in Cancer”) in the long term (Yang, 

Soares et al. 2013). 

 

1.3. Sequencing technology for personalized cancer treatment : 

Application and Challenges 

In order to fulfill the bi-directional communication gap of “Bench side and Bedside”, a 

key component of translational research is the management, integration and analysis of 

large amount of both genomic and clinical data.  

Some initial studies followed the “common disease – common variant” hypothesis and 

successfully identified potential cause of genetics disease (Klein, Zeiss et al. 2005). One 

example would be the identification of cause of Huntington’s disease (HD) to be 

excessive CAG trinucleotide repeats in the HD gene (Myers 2004).  However, due to the 

complexity of tumor and rareness of some genetic disorders, such hypothesis is 

challenged. In this case, more comprehensive characterization is imperative for 

identifying the key changes in the DNA as well as gaining the biological insights for 

diagnosis and therapies. 

The increasing affordability of high throughput assays (Exome sequencing, RNA 

sequencing, Whole-genome sequencing, and methylation assay) make it possible for the 

simultaneous measurement of several genomic features in the same biological samples. 

However, such emerging genomics technology and bioinformatics make the cancer field 

rapidly realize that the bottleneck in discovery is no longer data generation, but data 

analysis. As genetic features play a significant role in the metabolism and the function of 

the cells, the integration of genetic information (genomics – proteomics –metabolomics 
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- phenotype) to cancer research is now perceived by scientists not as a future trend but 

rather as a demanding need. 

The field of computational biology and bioinformatics are dealing with a growing range 

of genomic data types, including RNA transcriptional expression, SNV and INDEL (small 

insertion and deletion), DNA copy number variation, translocation, gene fusions and 

epigenetic markers. Moreover, integration of findings from multiple experimental 

approaches will be necessary to distinguish hidden interactions between various layers of 

data.  

Therefore, genomic data integration - the process of statistically combining diverse 

sources of information from these experiments - is becoming increasingly prevalent and 

challenging. 

 

1.4. Xenograft model as a key tool for cancer study and drug development 

Numerous murine models have been developed to study human cancer. One of the most 

widely used models is the human tumor xenograft. In this model, human tumor cells are 

transplanted, either subcutaneously or orthotopically into the organ type in which the 

tumor originated, using immune-compromised mice that do not reject human cells such 

as severely compromised immune-deficient (SCID) mice or other immune compromised 

mice. 

In general, human cancer xenografts represent the gold standard method used to 

investigate the factors involved in drug discovery, cancer stem cell biology, metastasis 

prediction, as well as response to therapy. Compared to in vitro cell culture models, 

xenografts usually show a higher validity across most assays. These models would be 

very helpful for testing in vivo the effect of novel/repurposing drugs which is 

individualized and was decided by genetic makeup of specific patient (DeRose, Wang et 
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al. 2011). A study led by Spanish National Cancer Research Center has demonstrated 

successful implementation of xenograft models as investigational platform for 

therapeutic decision-making. This study showed that known actionable alterations (such 

as NF1, PI3KA, and DDR2) accurately predicted the ineffectiveness of treatment of the 

patients based on the failure of the same drug tested on the xenograft models (Garralda, 

Paz et al. 2014).   

With the decrease in sequencing cost and increase in the sequencing capacity over the 

past decades, more and more studies have begun to apply NGS technology to xenograft 

models. One study (Bradford, Farren et al. 2013) established that RNA-seq could be 

applied to xenograft model to gain better understanding of drug mechanism of action 

and identify both tumor and host biomarkers. Specifically, they found increased 

expression of genes related to inflammatory response in mouse and induction of hypoxia 

genes in human when xenograft mouse were treated with cediranib (a potent vascular 

endothelial growth factor receptor kinase inhibitor). 

Due to unclear boundary of human and mouse stromal cells, samples that are extracted 

for parallel sequencing will inevitably contain various amounts of mouse contamination. 

Since there exists high degree of homology between human and mouse genome, short 

sequencing reads originating from mouse genome could potentially have an impact on 

the accuracy of downstream analysis (such as copy number analysis, gene expression 

profiling). Recent evidence points to the need for an appropriate method that could 

separate graft reads from host reads and thus ensure precise genomic aberration 

identification (Leong, Marini et al. 2014). For example, researchers showed that mRNA 

level change of stem/serrated/mesenchymal (SSM) genes were mostly due to mouse 

stromal expression instead of human cancer cells (Isella, Terrasi et al. 2015). Thus, it is 

important to apply bioinformatic techniques to ensure species specific gene expression. 
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1.5. Biology of Glioblastoma Multiforme (GBM) 

GBM is a common and extremely malignant form of brain cancer. The disease most 

commonly affects adults in their sixth decade of life; gliomas also affect children with an 

incidence of 2 to 3 out of 100,000, with 14% of these diagnosed as malignant glioma. Of 

the 12,000 or so patients diagnosed with GBM each year, about half die within the first 

year of diagnosis, with most of the rest succumbing to their disease within five years. 

Current treatment options for GBM patients are limited and largely ineffective. The 

mechanisms driving the development and recurrence of GBM are still unknown. This 

fact greatly limits the successful treatment of this disease. Currently, standard treatment 

includes surgical resection followed by radiation along with concurrent and adjuvant 

chemotherapy using temozolomide (TMZ), which only extends the current median 

survival to 14.6 months. 

Unfortunately, possibly due to the aforementioned heterogeneous and highly invasive 

characteristics, GBM often exhibits a high resistance to these standard therapies and 

recurrence is nearly assured. However, there is no established second-line regimen. In 

order to address the dismal prognosis & management of patients with GBM, it is 

essential to transform traditional clinical trial paradigms to allow for rapid and efficient 

therapeutic development. Thus, the development of new combinational therapies, 

together with an increase in the selectivity of the treatments based on a detailed 

molecular characterization of these tumors has significant potential to enhance the 

survival of patients suffering from GBM (Verhaak, Hoadley et al. 2010). 

Genomic characterization will constitute an ever-increasing fundamental role in the 

delivery of individualized care for oncologic patients. Emerging genomics technology and 

bioinformatics are now resulting in the molecular sub-classification of cancers with 

applications for more accurate characterization of disease, prognosis, and therapeutic 
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selection (Hanahan and Weinberg 2011, Brennan, Verhaak et al. 2013). Under this 

paradigm, therapy selection is guided by the molecular profile of targetable mutations 

and gene pathways that vary among patients. This phenomenon is well represented in 

GBM, which is among the most genetically heterogeneous and lethal of all human 

cancers (Marusyk, Almendro et al. 2012). 

 

1.6. Integration framework is needed to analyze multi-parametric “-

omics” data 

There is an increasing trend toward acquiring a number of types of data from the same 

patient in both clinical and research field. Once we get patient tumor aberrations from 

various types of data (E.g., Copy number, SNV, expression information), the remaining 

challenge is how to effectively integrate them and try to identify potential cancer causing 

variants (“drivers”)  and their corresponding drug/treatment.  

In recent large-scale cancer genome studies (Leary, Lin et al. 2008, Parsons, Jones et al. 

2008, Verhaak, Hoadley et al. 2010) preliminary integration approaches have been 

successfully applied; however, these approaches have been tailored to very specific 

niches and studies. In addition, previous studies are often at most of two or three data 

types; while in our GBM survival outlier project only, we have more than five types of 

data. A systematic framework shall be developed to integrate them.  Moreover, Current 

frameworks often lack the ability to predict key “drivers” in the disease, let alone the 

possible individualized treatment.  

Genomics, transcriptomics, proteomics, epigenomics and metabolomics data each of 

course enables us to get a specific and insightful view of genome functions, but those 

views are often limited to one-dimension. Just like complex biological processes, data 

describing those processes are usually complementary and shall not be treated totally 
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independently. To maximize the utilization of all available information, we should 

consider each assay as part of “big picture” with unified, global view.  

Few previous attempts have been made to integrate various “-omics” data in a systematic 

manner.  Integration of exome sequencing data, RNA-Seq, whole genome and epigenetic 

data in a coherent fashion is critical to comprehensive understanding of molecular 

interactions in complex genetic diseases. For instance, integrating highly informative yet 

individual datasets offer the potential to answer many long-standing research questions: 

what impact does variants in genetic code have on the gene expression variation? To 

what extent does the methylation and other regulatory elements contribute the disease 

phenotypes and gene expression? Is there always a corresponding structural 

rearrangement at DNA level for each gene fusion event at RNA level? Therefore, a more 

effective interpretation of accumulated and interacting information in the data analysis 

is in imperative demand.   

In this thesis, I present a computational and biology-motivated framework for 

integrating and interpreting multiple genomics data. My goal is to develop a general, 

scalable and rigorous statistical framework as well as algorithms designed for solving 

specific contexts. 

 

1.7. Temporal and spatial tumor evolution 

Solid tumors - especially the highly invasive types such as GBM and lung cancer - are 

often diverse in three dimensions and their oncogenesis processes are dynamic. For 

example, a study (de Bruin, McGranahan et al. 2014) focus on lung cancer sequenced 25 

spatially distinct regions from human non-small cell lung cancer (NSCLC) and found 

evidence of intratumor heterogeneity (ITH) and branched evolution. Another study 

(Zhang, Fujimoto et al. 2014) also indicated that all lung tumor regions they sequenced 
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showed clear evidence of intratumor heterogeneity but suggested that single region 

sequencing might be enough to identify the majority of known gene mutations. 

Such ITH may contribute to the clinical impact on drug resistance, surgery planning and 

actionable targets strategy (Yap, Gerlinger et al. 2012). Therefore, understanding the 

initiation, maintenance and evolution of tumor could shed insight into potential 

therapeutic interventions. Traditional tumor evolution model focused on linear 

cumulative genomic alterations over time, however, the authors in a leukemia study 

(Egan, Shi et al. 2012) reported the presence of a “clonal tides” model in tumor evolution. 

They found that the dominate clones at diagnosis then followed this “tide” model under 

the conceivable selective pressure of therapeutic drugs and could only be detected at 

alternating time points after treatment. These findings represent a novel paradigm in 

evolutionary biology and emphasize Darwinian mutational progression and shifting 

dominance of different clones over time. 

Although aforementioned several studies showed that subpopulations have been 

identified in lung cancer samples, the extent of genomic diversity or effect of such 

evolution in other tumor types still remains rudimentary. Moreover, few attempts have 

been made to explore temporal dynamics of tumor progression and the contribution of 

somatic aberrations to driver tumor growth overtime. 

To resolve spatial and temporal tumor evolution in GBM, we performed multiregional 

and longitudinal whole-exome, whole-genome and RNA sequencing on samples 

collected from patients who had primary, relapse and post-relapse GBM. Approaches to 

delineate the spatial heterogeneity to identify subclones will be described in Chapter 5. 

Our goal is to investigate the extent of genomic diversity in GBM and to infer ancestral 

relations between tumor regions and tumor samples over time.  
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1.8. Summary 

In summary, harnessing aforementioned flood of data requires the development of 

computational tools that can address two distinct, but dependent, challenges. The first is 

developing computational algorithms and tools that can process the data in an efficient, 

robust, and reproducible manner and thus extract useful information as output. For 

example, some of those tools will identify and catalog the genetic alterations present in 

cancerous cells. The second challenge is to develop computational methods and data 

frameworks for integrating and interpreting these data. This will augment our 

understanding of cancer at a systems level and generate testable hypotheses. Ultimately, 

it is hoped that this knowledge will be translated into better therapeutics and better 

diagnostics that can pair cancer patients with the appropriate treatment. In this thesis, 

chapter 2 and chapter 3 will mainly focus on the first challenge; chapter 4 and 5 will 

mostly address the second challenge. Chapter 2 presents a tool called Snipea (SNv 

Integration, Prioritization, Ensemble, and Annotation) to further identify, prioritize and 

annotate somatic SNVs called from multiple variant callers. Chapter 3 describes a novel 

alignment-based algorithm to accurately and efficiently classify sequencing reads from 

xenograft models.  Chapter 4 describes a direct and biologically motivated 

framework and associated methods for identification of putative aberrations causing 

survival difference in GBM patients by integrating whole-genome sequencing, exome 

sequencing, RNA-sequencing, methylation array and clinical data. Lastly, chapter 5 

explored longitudinal and intratumor heterogeneity studies to reveal the temporal and 

spatial context of tumor evolution.  
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CHAPTER 2 

SNIPEA: SNV INTEGRATION, PRIORITIZATION, ENSEMBLE, AND 

ANNOTATION 

 

2.1. Introduction 

2.1.1. SNV is essential for insightful cancer genome analysis 

Cancer is a complex disease caused by genetic mutations and generally requires several 

mutations to circumvent cellular defenses against carcinogenesis. These mutations and 

epigenetic modifications alter the expression or activity of genes responsible for 

maintaining the balance between cell proliferation and cell death.  

Two types of mutations are present as essential drivers in many human cancer types: 

germline and somatic mutations. Somatic mutations are limited to descendants of the 

original mutated cells (such as tumor) and thus not passable to progeny. But germinal 

mutations exist in parents’ germ cells and may be transmitted to some or all progeny. 

Compared to the relatively low contributions of germline alleles to the carcinogenesis, we 

usually focus on somatic mutations for determination of potential tumorigenic 

mechanisms. 

These somatic mutations further fall broadly into two categories: 1. oncogenes which 

trigger growth and differentiation and are often over-expressed or contain activating 

mutations. 2. Tumor suppressor genes which act as safeguards that induce apoptosis or 

retard the cell cycle, thereby preventing unrestrained growth (Goya, Sun et al. 2010, Wu, 

Li et al. 2014). 

In addition, exome sequencing has been widely used in detecting pathogenic non-

synonymous single nucleotide variants including SNVs and INDELs (small insertion and 

deletion). By sequencing to high depth and comparing the results to matched normal 
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tissue, it is possible to identify cancer-specific somatic mutations that may be 

contributing to carcinogenesis. 

 

2.1.2. Accuracy is critical for downstream analysis but remains an unsolved 

issue 

Recent evidence points to considerable attention to roles of SNV in cancer genome 

studies: Jiao et al. used the allele frequency of SNV was used to explore the subclonal 

lineage in patient tumor samples (Jiao, Vembu et al. 2014),  Salari et al. applied SNVs as 

linkage markers for phylogenetic tree reconstruction to compare and track longitudinal 

tumor progression (Salari, Saleh et al. 2013), SNV is regarded as key components to 

translation of pharmacogenomics  to clinical applications, somatic molecular alterations-

Gene-Drug association (e.g. Drug Bank) and has made individualized medicine possible 

(Crews, Hicks et al. 2012, Law, Knox et al. 2014). In addition, SNV could be used  to 

identify and monitor tumor burden and progression from circulating tumor DNA in 

plasma (Forshew, Murtaza et al. 2012). 

All those studies relied on a limited number of filtered SNVs; if any inaccurate SNV 

calling occurred, it could easily result in false conclusions. In light of this, the essential 

pre-requisite for accurate downstream analysis is to identify a list of high quality somatic 

variants from each available assay (Whole-genome or Exome). However, distinguishing 

genuine somatic mutations from artifacts (including germline variation, alignment 

mismatch, inherent machine error, tumor heterogeneity, normal contamination and 

genomic complexity) in NGS data is a particularly immense challenge.  

Several factors make detection of these mutations non-trivial. Error rates from current 

generation sequencing machines are still significantly higher than that seen in capillary-

based sequencing. This can be overcome by increasing the sequence depth, using 
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mapping algorithms that can tolerate mismatches, and using some sort of consensus 

calling at each base pair. Even we assume the difficulty of technical issues would be 

largely improved (such as alignment inaccuracy and sequencer error) by rapid 

development of bioinformatics and sequencing technology  – let alone bioinformatics 

field is still far from mature – the fundamental biological problem will still prevent SNV 

calling from an easy task.  

One issue is tumor purity. Tumor samples are derived from a heterogeneous population 

of cells, and also may have significant admixture with non-cancerous cells. There may 

also be variations in copy-number that lead to unconventional allelic ratios. 

Most of the times, it is almost impossible to obtain a 100% pure tumor sample and thus 

it will be sequenced "with contamination". Succinctly, we expect heterozygous somatic 

SNVs to be present in a sample at a frequency around 50% (and homozygous changes to 

be present at 100%). If the tumor is impure, these fractions will drop. For instance, 

assuming our sample is 10% normal cells, the actual frequency would change to 45% and 

90%. Regions with loss of heterozygosity (LOH) or single copy number loss provide 

larger numbers of somatic mutations that should occur at nearly 100%, making this 

estimation easier. 

Another complicating problem is that tumors are usually heterozygous and has abnormal 

variations (e.g. Copy number variation). We have to deal with mutations present along 

the entire tumor, but also mutations present in subpopulations of this tumor. It is much 

more difficult to determine these mutation genotypes because their frequencies are 

conditioned with the size of its population within the tumor. For example, considering a 

pure sample, a mutation with a frequency of 15% will be considered heterozygous, but it 

could also be homozygous if the mutation belongs to a tumor subpopulation that resides 

in 15% of the total tumor area. The combinations of those two problems, along with the 
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complexity of genome, make the variant allele frequency (VAF) range across almost the 

entire percentage spectrum, from 0% to 100% (Spencer, Tyagi et al. 2014). To address 

this, several tools and algorithms have been developed and widely used in academic and 

industry community.  

 

2.1.3. Single tool has its pros and cons 

Since accuracy of SNV calling has a huge impact on downstream analysis and even 

clinical decision making, the choice of somatic mutation detection tool/algorithm thus 

may have the most substantial influence on the output. The research community is still 

defining a best practice for cancer somatic variant calling; thus far no single tool has 

dominating performance. Multiple previous studies have done comparison between 

different somatic variant callers and suggested significant room for improvement in 

regards to the accuracy and discrimination of SNV and SNPs (Wang, Jia et al. 2013, 

Spencer, Tyagi et al. 2014, Xu, DiCarlo et al. 2014). 

Although each of those tools has been compared with some previous softwares and 

validated using certain datasets, their relative merits and robustness are largely 

unknown. Some tool will perform better with low coverage or low allelic frequency SNV 

and some tools will have better accuracy with alternate alleles in normal samples. 

Moreover, different strategies can perform better in different conditions based on 

varying parameters such read-depth, allele frequencies in tumor and control samples 

and tumor purity. After all, there might be no single approach that is in some sense best. 

Different approaches may work better with different data sets and with different disease. 

Most variant-calling algorithms are usually highly parameterized. Although we could 

tune the parameters to generate high quality output for each tool, we usually don’t have 

the resources to validate every finding and thus we are unable to know the optimal 
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selection threshold. In this fashion, an ensemble idea (similar to data mining technique 

random forest) could be applied to produce better SNV calling. However, in the literature, 

there are limited previous works that discuss how to merge results from different variant 

callers. 

 

2.1.4. Not every SNV has the same impact on clinical outcome 

“Driver” genes & pathways are those that are positively selected in the tumor 

microenvironment and provide growth advantage during cancer development. 

“Passenger” genes & pathways are viewed as byproducts of oncogenesis and make little 

or no contributions to tumor progression (Stratton, Campbell et al. 2009). Non-

synonymous variants are viewed as intrinsically more reasonable phonotype candidates 

compared to common, synonymous and non-coding variants. In this manner, not every 

SNV shall be further explored with equal significance especially when we have limited 

time and resources.  

The idea of “Common disease, common variant” which hypothesizes common variants in 

the population result in the fraction of susceptibility to common disease has outdated. 

But discovering driver cancer genes and pathways are still a vital part in cancer genomics 

and is traditionally identified by ranking the genes & pathways simply based on their 

alteration recurrence (Tamborero, Gonzalez-Perez et al. 2013). 

However, due to the limitation of the traditional approaches such as potential neglecting 

of low frequently mutated driver genes, the driver mutation should not only rely on the 

recurrence of the SNV event. The functional impact as well as pathway/network changes 

shall also be taken into consideration. 

Ranking algorithm that takes into account both accuracy and biological functions shall 

be introduced to the process of prioritizing somatic alterations. Snipea is thus developed 
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to rank the SNVs by the authenticity as well as their significance in potential disease 

causing functions. Top-ranking SNVs are believed to be more likely to be involved in 

oncogenesis, hence could be used to guide specialized cancer genomics researcher for 

further validation and mechanisms studies.   

 

2.1.5. Annotation is the key bridge between informatics and biology 

Once a genome is sequenced and analyzed, it needs to be annotated to make sense of it. 

Annotation is important to bridge the gap among bioinformatics, biological significances 

and clinical application. The complete genome annotation spans a diverse range of layers: 

nucleotide-level annotation, protein-level annotation and process-level annotation. The 

process of annotation -– integrating layers of information to the raw DNA sequence – 

has enabled us to extract & interpret the biological insights, and then place such findings 

into the context of prior knowledge of biological networks (Stein 2001).  

Nevertheless, genome annotation is still considered an unreliable and inaccurate 

procedure due the following potential reasons: 1) Error and inconsistency. The 

incompleteness of human genome and inconsistency of previous genomic studies, 

resulted in a considerable amount of errors. For instance, more variants would be 

annotated using ENSEMBL transcript set compared to Refseq set. 2) Automation. 

Manually input of each variant into the database search window is a nuisance and a 

major bottleneck of analysis. 3) Benchmarking. Benching marking is hard and not always 

straightforward to decide whether the results will improve on the original annotation 

since ground-truth is often unavailable  (Yandell and Ence 2012). 

Several mutation prediction tools have been previously developed to meet the strong 

need of functional annotation for genetic variants (Wang, Li et al. 2010, Cingolani, Platts 

et al. 2012). However, those current annotation tools such as SNPEFF and ANNOVAR do 
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not perform any interactions with large-scale genetic variation database (E.g. dbSNP, 

dbNSFP and COSMIC). In this case, those tools focus more on the nucleotide and protein 

level annotation; more comprehensive annotation (pathway and system level) needs to 

be included in the output as well. 

It is obviously tedious and time-consuming to manually search for information in large 

database. Therefore, an efficient, cross-platform algorithm shall be applied to 

incorporate update-to-date annotation information to cancer genomic variants report.  

Snipea will incorporate a comprehensive annotation engine that integrate industry 

standard cancer database (e.g. COSMIC), known short genetic variations (e.g. dbSNP, 

NCBI), pathway databases (e.g. KEGG), drug-gene interaction databases (e.g. Drug 

Bank), pharmacogenomics annotations (e.g. PharmGKB) and hand-curated cancer gene 

annotations from the literature to generate annotated cancer variant reports for somatic 

variants. Integration with these public archives will not only enable us to know whether 

the SNV has been identified before but also provide us with a more comprehensive 

annotation. 

In addition, integrating data retrospectively with the above databases might help us to 

carry out statistical analysis to identify frequent mutations in a certain cancer type in the 

population. It might also help us to identify alternative treatments for specific patients if 

the same mutation in previous study has been reported and targeted in a clinical trial. 

Moreover, by incorporating the information of public database such as 1000 genomic 

project and dbSNP, we could post-filter our variants list to leave only relatively rare and 

novel mutations. Generally speaking, those drivers for cancer are less likely to be present 

in those common SNP databases with high allele frequencies. On the other hand, we 

could utilize the crosstalk with COSMIC (catalogue of somatic mutations relating to 

human cancers) to rescue any ignored variants for downstream analysis.  
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2.2. Methods and Materials 

2.2.1 Snipea implementation and usage 

Snipea is a software application designed to systematically integrate, prioritize and 

annotate somatic SNV and small INDELs called from multiple variant callers. 

Snipea takes options from multiple variant callers instead of one. The idea is somewhat 

similar to the “random forests” which is a data mining ensemble prediction method. We 

run each selected variant callers with “best practice” parameter setting and then use 

majority voting to combine outputs of the each callers. 

 

Figure 2.1. Schema of Snipea ensemble and integration 

Since different variant callers generate different output file format, we used the Variant 

Call Format (VCF) 4.2 format (Danecek, Auton et al. 2011) as the universal standard and 

integrate those results based on the “primary key” field of chromosome number and 

coordinate positions of SNVs. We created index for each Snipea run for potential large 

quantity of SNVs called in a cancer sample. Snipea not only annotates the functional 
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impact of SNV using mainstream annotation tools such as Snpsift, SNPEFF and 

ANNOVAR but also crosstalk with public large-scale genetic variation databases (E.g. 

dbSNP, dbNSFP and COSMIC). The annotation was performed in batch using PBS 

(Portable Batch System) script jobs and fully automated and in the end all those 

information was incorporated into the final comprehensive output file. 

Snipea calculates the authenticity and statistical significance that an SNV is causative for 

a query disease and hence provides a means of prioritizing candidate SNVs. The ranking 

of SNVs is based on the integration of numerous sources of information (including the 

consensus of callers, functional impact of SNV, quality of the data and public database 

record) using a weighted sum approach.  

Based on previous literatures (Roberts, Kortschak et al. 2013, Wang, Jia et al. 2013, 

Spencer, Tyagi et al. 2014, Xu, DiCarlo et al. 2014), discussion in bioinformatics forum 

(http://seqanswers.com/ and https://www.biostars.org/) and our in-house testing at 

TGen, we selected Seurat, Strelka and Mutect (Saunders, Wong et al. 2012, 

Christoforides, Carpten et al. 2013, Cibulskis, Lawrence et al. 2013) as our input variant 

callers to Snipea. All three callers are widely used in research community and publicly 

available software tools, but no tool seems have completely satisfactory performance.  

A brief workflow is shown in figure 2.2. 

 

http://seqanswers.com/
https://www.biostars.org/


20 

Figure 2.2. Overview of the Snipea workflow. The process begins with sorted output of 

somatic SNV and INDEL calls from selected tools and ultimately produces a prioritized 

and annotated comprehensive file in variant call format  

 

2.2.2 Ensemble and Integration 

The first step in Snipea is to integrate results with various output formats into one 

standard universal format. Almost all SNV callers have the common columns 

“Chromosome” and “Position”, in this case, those two fields are used as primary key to 

create index for each record in output files. The integration is processed in the order of 

users’ input and the count of callers for each position is tracked and stored in a new 

column named “callers_count”. A special case would be the heterogeneous SNV changes 

at one position where two alternative nucleotide changes may then be called by different 

tools. The reference allele and the alternative allele are further used to create two distinct 

records. Therefore, we will have two or more lines for a position with more than one 

nucleotide alteration. 

I processed SNV and small INDELs with two separate functions due to the different 

length of altered nucleotide length. As Strelka seems to have a better performance of 

calling the INDELs, the prevalence for the INDELs has been assigned to Strelka. For the 

SNVs, the prevalence is in the order of Seurat, Strelka and Mutect. 

Each caller measures the quality of reported variants in a different way. The consensus 

quality score is calculated using the joint probability of a somatic variant and a specific 

genotype in the normal sample as well as the mapping/base quality in the position. The 

mapping and base quality was used to filter out data with low confidence calls and the 

mean average of joint probability was taken and then converted back to Phred scale score 

using formula  Q =  −10 × log10(Prob. ). 



21 

The final file would be in the VCF format which is a text file format for storing genotype 

data and gene sequence variation. Each VCF file generally has three parts: it starts with 

Meta-information lines (lines beginning with "##"); then it is followed with one header 

line which contains the basic column names (beginning with "#CHROM"); the rest 

would be the actual data records contain genome variants. An example VCF file is shown 

in Appendix A. Finally, an R program is run to automatically generate Venn diagrams 

which depict the overlap and unique SNV and INDEL calls for those input variants 

callers.  

 

2.2.3 Prioritization  

The ranking of SNVs is based on the integration of numerous sources of information 

(including the consensus of callers, functional impact of SNV, quality of the data and 

public database record) using a weighted sum approach. Specifically, the ranking 

algorithm takes into account the callers’ agreement, clinical impact (protein-altering 

aberrations such as non-synonymous SNV, Stop code gained/loss or Frame shift 

mutation), quality score from each tool and public database status (listed in COSMIC, 

etc.). 

Snipea’s ranking Algorithm is based on final weighted score (WS) and implemented 

using pseudo codes as follows: 

1. Measure the Callers agreement. WS=100* Callers_count 

2. Add Protein altering (Non-synonymous, stop code gain/loss, frame shift) index. If 

SNV has any functional impact on protein change, for callers_count = 1, WS = WS+50; 

for callers_count > 1, WS = WS+100. 

https://en.wikipedia.org/wiki/Gene_sequence
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3. Add Consensus Quality scores. Consensus quality score is calculated based on quality 

score from each tool as elucidated above and the range of consensus quality score is from 

0 to 60. WS = WS+ Consensus quality score. 

4. Add Public database status score. If SNV is stored in large-scale public cancer 

database, WS = WS+40. 

5. Normalize to 100 scale and sort. Final WS = WS/5. Sort the output file based on the 

final weighted score in the descending order. 

 

2.2.4. Annotation 

Snipea still applies current annotation tools such as Snpsift, SNPEFF.  It first sorts the 

VCF to makes it compatible with Genome Analysis Tool Kit (GATK) (McKenna, Hanna et 

al. 2010) format. Then it adds annotation from SNPEFF (version 3.6c) using ensemble 

Gene Transfer Format (GTF) reference file (version 37.74).  

Lastly it seeks information from various public databases for each SNV record: dbSNP 

(The Single Nucleotide Polymorphism database) database (version 137 corresponding to 

Hg19/GRch37 Assembly); National Heart, lung and Blood Institute (NHLBI) Exome 

sequencing project (ESP) SNP (ESP6500SI-V2_snps_indel.vcf); 1000 genome project 

(1000G, phase 1 high confidence snps); COSMIC (Catalogue of somatic mutations in 

cancer) database (Cosmic coding mutation version 66) and dbNSFP (database of human 

non-synonymous SNVs and their functional predictions and annotations) database 

(version 2.4). All the information is appended to the “INFO” column in VCF file and 

could be easily used to query or filtering during downstream analysis. 

 

2.2.5. Prerequisite and implementation 
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The assumption for Snipea is that the inputs files contain filtered variants, which will 

minimize the number of variants to process. If users would like to change to their own 

filtering parameters, they could modify them in the "Snipea.SNV_filtering.sh". Users 

also could use “Snipea.main.sh –-help” for examples of expected files. 

The prefix name for the output Snipea file is by default based on the Seurat's input 

filename but could also be defined by users. The prefix is any string of character up to the 

first dot encounter into the filename. For instance: if the input filename is << 

my_fileName_preFix.passed.filterd.snvs.vcf >>, the prefix will be: 

<<my_fileName_preFix>>. 

To better call genotype from variants data, we define thresholds for genotypes as follows: 

Homozygote reference if allele fraction (AF) <= 0.200, heterozygote if 0.200 < AF < 

0.900, and Homozygote alteration if AF >=0.900. There are two tiers of information in 

Strelka, we only use the more stringent tier1 values to calculate allele frequency and 

genotype. During the implementation, we also created several customized flags and tags. 

All of those extra fields are compatible with VCF format and have been added to the VCF 

Header. 

Snipea requires the following tools/software to be installed: basic Linux commands 

including cat, case, cd , cut, sed, grep, awk, sort, uniq, getopt, wc, mv, cp, head , pwd, 

echo, for while, if, bash, read, mkdir, wait, do, rm, local; Portable Batch system (PBS) 

module; bedtools version 2.17 or up; R version 2.15.2 with features TIFF, PNG enabled; 

R package Venn Diagram 1.6.5 or up, Vennerable 2.2 or up, gplots 2.11.0 or up. 

To implement Snipea, refer to the following example with the mandatory parameters: 

bash DIR_INSTALLATION/Snipea.main.sh \ 

--output DIR_OUTPUT \ 

--seu "Input.seurat.vcf" \ 
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--slksnv "Input.strelka.passed.somatic.snvs.vcf" \ 

--slkindel "Input.strelka.passed.somatic.indels.vcf" \ 

--mtcsnv “Input.MuTect.filt.vcf" 

 

2.2.6. Validation data and Pre-processing 

The establishing of SNV gold standards from actual patient samples is challenging for 

multiple reasons. For example, benchmarking is generally resource intensive and 

methods used to estimate 'ground truth' from validation data may still exhibit sources of 

error (such as machine error, inappropriate threshold) in despite of independent 

technology (such as q-PCR) or higher depth of coverage (such as deep sequencing). The 

performance of the proposed Snipea approach is thus determined using a synthetic 

validation dataset from International Cancer Genome Consortium (ICGC) Dialogue 

for Reverse Engineering Assessments and Methods (DREAM) challenge. 

ICGC DREAM somatic mutation calling challenge utilized BAMSurgeon 

(https://github.com/adamewing/bamsurgeon) tool for adding synthesized mutations to 

BAM files (Ewing, Houlahan et al. 2015). The data synthesized is originally from real 

tumor and normal samples and consists of millions of short reads with around 83 nt. 

Briefly, for each synthetic sample, I randomly sampled a deeply sequenced (60x-80x 

genome coverage) BAM file into two mutually exclusive subsets of about equal size (30-

40x). I then applied BAMSurgeon to generate a non-overlapping spectrum of mutations, 

randomly select mutation in known cancer-associated genes and add to one of the sub-

BAMs. The BAM to which the synthetic mutations were added turns into the “tumor” 

and the other sub-BAM becomes “normal”. In this manner, complete ground-truth is 

known for each dataset and we could evaluate the performance of various tools using 

those gold standard variants. 

https://github.com/adamewing/bamsurgeon
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I downloaded data through GeneTorrent client, an open-source software developed by 

Annai Systems from the website 

(https://dream.annailabs.com/cghub/data/analysis/download/*). SNV and INDELs 

were called using three aforementioned variant callers using manual recommended 

parameter setting.  All those computationally intensive algorithms were run in a cluster 

high performance computing (HPC) environment.  

 

2.3. Results 

2.3.1. Comparison of accuracy among Snipea and individual variant callers 

Our first goal was to generate an ensemble and integration format of SNVs from all input 

variant callers and evaluate the performance of Snipea using a validation dataset. For 

this purpose, we presented the snapshot of output from each individual caller and their 

integrated format. As shown in figure 2.3 through 2.5, each caller has different output 

and all that information was integrated into a universal format in figure 2.6. Some 

notable differences reside in the “Info” column which exhibit detailed statistics for this 

specific mutation in tumor and normal samples.  

 

Figure 2.3. Snapshot of Mutect output 

 

Figure 2.4. Snapshot of Strelka output 
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Figure 2.5. Snapshot of Seurat output 

The final output VCF for Snipea includes various information for each caller and they are 

separated by a semicolon “;”. Allele Pileup are also extracted and incorporated into 

Seurat field and this could be viewed as IGV visualization for this position in text format. 

 

Figure 2.6. Snapshot of Snipea output. The red boxes highlighted the separated tools; 

additional information is followed by each tool name. 

Next we further examined the performance of Snipea and explored the trade-offs among 

sensitivity, the false positive rate and F-measure for those methods. We assessed the 

sensitivity and false positive rate of each variant calling algorithm on each synthetic set 

using the gold standard variants provided by ICGC DREAM SNV challenge. Sensitivity 

was calculated as follows: 

Sensitivity (Recall) (%) =
Gold starndard variants detected

Total variants
 × 100 

False positive rate per Mb (Xu, DiCarlo et al. 2014) was calculated as follows: 

FPR (Mb−1) (False Positive Rate per Mb) =  
FP

(FP +  TN)
 × 106 

F-measure was calculated using harmonic mean of precision and recall as follows: 
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F − measure = 2 ×  
Precision × Recall

(Precision + Recall)
 

The summary is listed in Table 2.1. As we can see, for both set1 and set2, the highest F-

measure was achieved by Snipea. Mutect achieved higher sensitivity in both sets, but at 

the expense of a much higher false positive rate.  

 

  Set1 
  TP FP FN FPR(Mb-1) Precision Recall (Sens.) F-measure 

Mutect 3440 4040 224 134.6485 0.4599 0.9389 0.6174 
Strelka 3168 1248 496 41.5983 0.7174 0.8646 0.7842 
Seurat 3287 3875 377 129.1500 0.4590 0.8971 0.6072 
Snipea 3396 1251 268 41.6983 0.7308 0.9269 0.8172 

  Set2 
Mutect 4213 5312 444 177.0353 0.4423 0.9047 0.5941 
Strelka 3643 501 1014 16.6997 0.8791 0.7823 0.8279 
Seurat 3928 4427 729 147.5449 0.4701 0.8435 0.6038 
Snipea 4025 1849 632 61.6295 0.6852 0.8643 0.8336 

  Combined 
Mutect 7653 9352 668 311.6362 0.4500 0.9197 0.6044 
Strelka 6811 1749 1510 58.2966 0.7957 0.8185 0.8069 
Seurat 7215 8302 1106 276.6568 0.4650 0.8671 0.6053 
Snipea 7421 3100 900 42.5315 0.8406 0.8089 0.8245 
 

Table 2.1. The precision and recall of three variant callers and Snipea. 

We then examined the performance trade-offs by varying cutoffs for consensus quality 

score, which reflect the joint probability estimate of a somatic variant and a normal 

reference by three callers. The ROC-like curves summarizing sensitivity and specificity 

were listed the figure 2.7 & 2.8. In dataset 1, Snipea achieved significantly better false 

positive rate than Mutect and Seurat, and also better sensitivity than Strelka. On the 

other hand, in dataset 2, although Snipea has a slightly higher false positive rate than 

Strelka, the sensitivity is still much better than Strelka. This result further confirmed that 

variant-calling is still immature field and there is unlikely a single best caller. We show 
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that Snipea could integrate outputs from several callers, learn from their discrepancies 

and have a robust balance of sensitivity and specificity to some extent. 

 

Figure 2.7. ROC-like curves summarizing sensitivity and specificity of Mutect, Seurat, 

Snipea and Strelka in dataset 1 of the ICGC DREAM challenge. 
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Figure 2.8. ROC-like curves summarizing sensitivity and specificity of Mutect, Seurat, 

Snipea and Strelka in dataset 2 of the ICGC DREAM challenge. 

A Venn diagram of the mutations will be automatically produced for each Snipea run. 

Figure 2.9 shows an example of such Venn diagram. The counts of mutations detected by 

three callers were also listed in the diagram.  
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Figure 2.9. Venn diagram showing the overlap of SNV calls from three callers.  

Overall, our analysis demonstrated that the algorithms differ in sensitivity and specificity 

but Snipea acts like the buffer solution and achieves robust results. Users therefore could 

select their algorithm depending on which performance characteristics is the highest 

priority. In research studies, users could rely on Snipea to get the balanced performance 

characteristics. In clinical setting, tools with lower false positive rate might be preferable 

than others.   
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2.3.2. Ranking and Annotation 

Snipea generates high ranks for many known important genes in GBM (TP53, PTEN, 

NF1, PIK3R1, ERBB2, EGFR and RB1) (Verhaak, Hoadley et al. 2010), we regard this 

observation as a proof of concept for our algorithm. 

Figure 2.10 indicates an example of PTEN small deletion in chromosome 10. Since we 

did filtering during the Snipea processing, the status of  the “FILTER” column in the VCF 

file will always be “PASS”. We decided to replace the column with the final weighted 

score. Specifically PTEN gene was called by all three callers and predicted to have a 

frame-shift protein change function; it also has a high consensus quality score from all 

three callers and has been reported in COSMIC before. Therefore, it ended up with a 

99.61 high weighted score and ranked high among all SNVs. 

Snipea still applies current annotation tools such as Snpsift, SNPEFF and ANNOVAR, 

which will list the gene symbol, splicing region (exonic/intronic) and predict the SNV 

effects and functions. Moreover, Integration with public archives will not only enable us 

to know whether the SNV has been identified before but also provide us with a more 

comprehensive annotation. For example, dbSNP would include information from other 

sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human 

Genome Project data; COSMIC will combine curation of the scientific literature with 

tumor sequencing data from the Cancer Genome Project; dbNSFP will compile 

prediction scores from four popular algorithms (SIFT, Polyphen2, LRT, and Mutation 

Taster), along with a conservation score (PhyloP). Those scores would be obtained in a 

high-throughput fashion to evaluate SNVs function in a short time. 

Moreover, the annotation and ranking algorithm is independent of variant calling tools 

and implemented as separate functions. In this case, we could easily and continually 

update the various versions/release of biological database.  However, it is thus vital to 
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record the version information in our final output so that if needed, previous results 

could be checked and validated retrospectively. 

 

Figure 2.10. An example SNV call as PTEN deletion, content in red boxes shows the 

weighted score, callers counts, information extracted from large-scale public database 

and functional prediction. 

Snipea is implemented in UNIX shell and R and is supported to run on UNIX/Linux 

based platforms. The algorithm, UNIX shell scripts and R code are available for all non-

commercial users via https://github.com/spengInformatics/Snipea. 

 

2.4. Conclusion and Discussion 

As the key upstream step in cancer sequencing data analysis, identifying SNVs and 

INDELs with balanced sensitivity and specificity is critical for downstream analysis and 

treatment planning. One conclusion that can be drawn from Snipea tool is that the “one 

model fits all” approach is likely not optimal for cancer samples due to their complexity 

and heterogeneity. We demonstrated that Snipea has superior accuracy and specificity 

than the result of each single tool. Moreover, the ranking and annotation functions shed 

https://github.com/spengInformatics/Snipea
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light into the functional impact and could be used to pinpoint potential “drivers” of 

specific tumor types.  

The limitations of Snipea include: 1. Currently it is only designed for cancer in general, it 

does not take specific tumor types into account. 2. Snipea is mainly designed for SNVs 

with known biological knowledge and thus might be biased for discovery purpose. 3. 

Snipea will usually run robustly if all input results from various callers have a decent 

performance but it may still be vulnerable to extreme outlier tool output. However, those 

limitations could be addressed with further development and version update.  

Although Snipea is currently written for integration of three variant callers, it could be 

easily extended to more or different callers based on users’ preference. In addition, more 

databases or updated version could also be incorporated into the Snipea output without 

difficulty. The functions and methods in Snipea were deliberately divided into 

independent function classes which are implemented in a "cascade" type fashion. This 

ensures the easy update of different variant tools or annotation database version since 

the modified functions have little dependency on others. Furthermore, the ensemble and 

integration method could also be extended to other analysis other than SNV detection. 

Data from different regional parts of tumor, different stages (such as primary V.S. 

relapse) of tumor or different patients could also be integrated to garner biological 

insights. 

Snipea is mainly designed for SNVs involved in clinical relevance or decision making; 

therefore it is more suitable for known biological knowledge than discovery purpose. 

However, users shall choose the strategy based on priority of their performance 

characteristics. For example, CLIA certified labs would probably pay more attention to 

the accuracy - especially specificity - for clinical samples. They would like to discriminate 

true somatic SNV from alternate alleles from normal samples and discard SNV with 



34 

insufficient evidence. While on the other hand, during drug discovery process, false 

negative (FN) is less tolerated compared to false positive (FP). FP could also be 

eliminated later in drug efficacy step but FN would never be rescued and a potential new 

medicine would be missed. One solution to such trade-off dilemma is to produce output 

by two models, one is standard default and the other is high Confidence (HC). The final 

somatic variant score is calculated from the probability of allele frequency that is 

unequal in tumor & normal samples given the observed sequence data. In this case, we 

may define P(somatic) > 0.95 as standard and P(somatic) > 0.999 as HC. The Phred-

scale Quality score that converts P(call in Alt is wrong) becomes an intuitive criteria. 

Higher Phred QUAL score indicates higher confidence call. In the end, based on their 

needs, users are able to choose list of variants based on their stringency and confidence.  

Through many ongoing projects such as The cancer genome Atlas (TCGA) and 

International Cancer Genome Consortium (ICGC), we start to know that same SNV 

might play different role in different tissue/tumor types and thus have distinct 

regulatory mechanism or signaling pathway (Alexandrov, Nik-Zainal et al. 2013, 

Weinhold, Jacobsen et al. 2014). With the help of such knowledge, we might also to able 

to adjust the ranking algorithm to account for tissue types or tumor types. We even can 

take a “crowd-sourcing” approach to adjust ranking algorithm and assign credibility to 

each tool based on user’s feedback from research community. 

Snipea will usually run robustly under the assumption that all input results from various 

callers have a decent performance. But this might be not always true. Besides all the 

difficulties we discussed above for somatic SNV calling in cancer samples, the poor 

consensus between the predictions made by each tool may be explained in part by 

difference in the stringency settings (even by default). Each tool is sensitive to its own 

filtering threshold and initial requirement of mapping quality. Based on our manual 
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check and several previous studies (Cibulskis, Lawrence et al. 2013, Koboldt, Larson et al. 

2013), the sources of discrepancies in those callers likely come from the germline 

variants. A small dissimilarity in stringency settings could cause the “butterfly effect” and 

potentially lead to large difference in false calling germline variants as somatic ones. To 

address this, a pilot run might be used to tune parameters for each tool. Specifically, 5 

million reads could be randomly extracted from target bam files as pilot bam file, then 

20 different parameter combinations for each tool were tried and finally Snipea was 

applied to get the consensus SNVs set with 10 or more overlap. In this case, using this 

consensus SNV list as standard, we could determine the parameter setting for each 

variant caller for every sample. Furthermore, if a candidate mutation found in dbSNP 

but NOT in COSMIC, it has a higher chance to be a germline variant instead of somatic 

one. Ranking algorithm perhaps could take advantage of this and give less weight to SNV 

only reported in dbSNP. 
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CHAPTER 3 

NOVEL APPROACH FOR ACCURATE AND LOSSLESS CLASSIFICATION OF 

XENOGRAFT SEQUENCING READS 

 

3.1. Introduction 

3.1.1. Sequencing in xenograft models 

The xenograft model is a well-established investigational platform for studies involved in 

drug discovery, cancer and stem cell biology, metastasis prediction, as well as response 

to therapy. Recent growth in the use of patient-derived tumor xenografts (PDX) points to 

the key advantage of xenograft models:  1. They are biologically stable. When engrafted 

in to host species, it is usually stable for mutational status, metastatic potential, gene-

expression patterns, drug susceptibility and even genetic heterogeneity. 2. They have a 

short cycle. Generally results can be obtained in a matter of a few weeks in terms of 

response to therapy.  3. They reproduce the actual environment. Orthotopic xenografts 

can be appropriately placed to mimic the human organ environment (Joo, Kim et al. 

2013). This is especially important for brain tissue in which the blood brain barrier (BBB) 

plays a vital role in therapeutic decision making.   

The advent and prosperity of next generation techniques fuelled an acceleration and 

expansion of decoding genetic makeup in xenograft models. Global gene expression 

profiles from RNA sequencing data could be used to examine the similarities between 

originating tumors and xenografts. Mutation changes (before treatment V.S. after 

treatment) from exome sequencing data could be used to define drug-sensitivity patterns 

and explore selection process. Methylation profiling from bisulfite sequencing can be 

applied to measure modification of DNA methylome and identify upstream 

transcriptional regulators (Aparicio, Hidalgo et al. 2015).  
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In a word, biological and molecular characteristics (including genetic, epigenetic or 

signaling) in a patient tumor could be recapitulated and tested in a massively parallel 

fashion using xenograft models. Those results in turn will allow for detailed 

understanding of tumorigenic aberrations and individualized clinical decision making. 

 

3.1.2. Homology between mouse and human 

A large variety of animal species including dogs, sheep, pigs, birds, monkeys, zebrafish 

and of course mice have been widely used to better understand genetic and physiological 

processes involved in human disease (Agca 2012).  However, there is no doubt that mice 

are the most commonly used mammalian xenograft model in biomedical community, 

due to their exceedingly well-characterized genetics and low cost. Mice have many 

advantages over other model organisms: their genetic, biological and behavior 

characteristics closely reproduce those of humans; a comprehensive collection of genetic 

and molecular databases are already available and the mice are small and relatively 

inexpensive which made them easily housed and maintained. 

65 million years divergence during evolution does not stray us significantly from the 

mouse. Over 95% of the mouse (Mus musculus) genome is similar to human (Homo 

Sapiens) genome. A previous mammalian genome project utilized Whole-Genome 

Sequence and Assembly (WGSA) method (Church, Goodstadt et al. 2009) to show that  

95% of the mouse genome could be lined up with a region on the human genome and 99% 

of mouse genes turn out to have direct counterparts in humans. To date only 300 or so 

genes appear to be unique to one species or the other. 

However, this homology serves as a double-edged sword. Indeed the mouse model can 

better mimic the biological mechanism in human but it also raises the classification 

problem – it’s harder for us to tell them apart when needed. As shown in figure 3.1, when 
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a mixture of human and mouse tissue were sequenced, it becomes a challenge for us to 

separate sequencing reads for each species bioinformatically.  

 

Figure 3.1. Schematic overview of potential sequencing classification difficulty in 

xenograft models. 

 

3.1.3. K-mer method and its problem 

In order to have an accurate representation of human biological events, a K-mer based 

tool called xenome was proposed to partition the sequencing reads in xenograft models 

(Conway, Wazny et al. 2012). 

K-mer (also known as n-mer/k-tuples/n-grams) is originally used in cryptography or 

pattern matching for computational sequence analysis. In the context of Bioinformatics, 

k-mers refer to all the possible substrings of length k from DNA sequencing 

reads produced by the sequencer. The number of possible k-mers given n possibilities (4 
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in the case of DNA e.g. ACTG) is nk , and counting the occurrences of all those 

subsequences is an important step in many sequence alignment and sequence assembly 

tools. 

The authors described xenome as k-mer decompositions of host and graft reference 

(Conway, Wazny et al. 2012). The first step is to construct an index structure for both 

reference genomes; the k could be defined by users but has a recommended value of 25. 

Then classification was done by taking each coming read and map it to the pre-computed 

classes (graft, host, both, ambiguous and neither). 

Xenome is a simple and straightforward algorithm with decent performance.  However, 

it does have several potential aspects for improvement: First, xenome does not allow any 

mismatches in the sequence. We know if DNA sequences were generated totally 

randomly, there is a roughly 25% error rate. To date, next generation sequencing 

platforms have greatly decreased this percentage, among them Illumina Hiseq and Miseq 

show the lowest error rate up to around 0.5% (Quail, Smith et al. 2012). But if the error 

does not occur at the position which is different between host and graft reference 

genome, such error shall still be regarded as machine error and kept in the downstream 

analysis. Moreover, the “ambiguous” class in xenome was not further explained by the 

author and thus usually discarded at the end of classification. The second potential 

problem with xenome is the management of the “both” class. We already know that the 

human and mouse share a great amount of DNA sequence, therefore it is expected a 

significant portion of reads would fall into the “both” category for each run. One option 

to deal with them would be to simply ignore them, but this would run into the problem of 

under-estimating the expression of some genes, especially ones with high homology 

between mouse and human.  On the other hand, if we were to keep them as-is, we would 

obviously run into the opposite problem, of over-estimating the expression of 
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homologous genes. Last, xenome is likely to miss any influential genomic aberrations 

that do not previously exist in the reference genome. For example, two separate genes 

could form novel hybrid transcripts called gene fusion. Often the case, such genomic 

abnormality is novel and the information is not included in the reference genome. In this 

case, the spanning reads across the “break point” of genes would conceivably classified 

by xenome into the “neither” category and we would lose the capability to call the fusion 

genes in the downstream analysis.  

 

3.1.4. Gene fusion detection using RNA-seq 

Gene fusions are novel hybrid transcripts that are formed by two previously isolated 

genes. Gene fusion is a crucial genomic event in human cancer because abnormal 

proteins made by them appear to be more active than normal versions. Therefore, this 

abnormal genetic rearrangement can drive the development of cancer and provide an 

opportunity for potential prognostic tools and druggable targets in anti-cancer 

treatment. Gene fusion could be caused by several chromosome abnormalities including 

translocation, chromosome inversion and interstitial deletion (Wang, Xia et al. 2013). 

Next-generation sequencing technologies enable the possibility of systematic 

characterization of cancer cell transcriptome, including the accurate gene expression 

profiling and the detection of expressed fusion gene products. Since fusions genes were 

formed by the breakage and re-joining of two isolated genes, RNA sequencing has the 

potential to discover gene fusion events based on aligned reads matching on both sides 

of fusion and critical reads spanning the entire break point. Figure 3.2 presents a 

schematic view of gene fusion, and key RNA-seq reads that span the break point (in blue 

box). 

javascript:void(0)
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A.  

B.  

Figure 3.2. A) shows a schematic view of fusion gene. B) shows an actual gene from a 

sequence alignment point of view. Blue box highlights a fusion break point and spanning 

reads that support the fusion. 

Until recently, fusion genes have been an underappreciated class of genomic anomaly in 

cancer biology. Since then the field of fusion gene discovery is constantly evolving to 

garner more biological knowledge. 

Gene fusion could be used as a signature to identify new tumor subtypes. Pierron et al. 

(Pierron, Tirode et al. 2012) observed a new gene fusion between BCOR (encoding the 

BCL6 co-repressor) and CCNB3 (encoding the testis-specific cyclin B3) and defined a 

novel subtype of bone sarcoma. The authors confirmed that BCOR-CCNB3-positive cases 

are biologically distinct from other sarcomas and may be caused by a newly identified 

gene fusion mechanism. This subtype-specific gene fusion product has revolutionized the 

diagnostics of sarcoma and has provided new insight into oncogenesis. Gene fusion 

might also be the driver for pushing cells towards cancer and thus be regarded as novel 
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drug targets for therapeutic intervention. Columbia University Medical Center reported 

that a small subset (around 3%) of GBMs acquire tumorigenic chromosomal 

translocations that fuse the tyrosine kinase coding domains of fibroblast growth factor 

receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) 

coding domains of TACC1 or TACC3, respectively. They also found that oral usage of an 

FGFR kinase inhibitor prolongs survival of mice with intracranial FGFR3-TACC3-

initiated glioma. In this case, FGFR-TACC gene fusions could help us to potentially 

identify GBM patients who would benefit from targeted FGFR kinase inhibitor treatment 

(Singh, Chan et al. 2012). 

The presence of contaminating mouse DNA or RNA affects the accuracy of downstream 

NGS analysis. In addition, currently most NSG techniques still use short-read 

methodology and physical and biochemical removal of mouse can introduce a significant 

source of technical bias and usually require large amounts of resources. This leaves 

opportunity for an in-silico bioinformatic solution to classify reads to their species-of-

origin. Previous efforts such as the xenome tool have been made to tackle this issue but 

remain imperfect. Here, we describe and benchmark another alignment-based strategy 

to aim for more accurate and lossless classification of xenograft sequencing reads. 

 

3.2. Material and Methods 
 
To this end, we developed a novel alignment-based classification strategy and an 

algorithm to redistribute the “both” reads that takes into account the relative expression 

levels of mouse and human genes, gene boundaries, and differing mapping quality.  

3.2.1. An Alignment-based method 
 
This proposed approach does not try to reinvent the wheel but takes advantage of 

maturely developed algorithms specially designed for alignment. 
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The very first step in analysis of RNA-seq data is the proper alignment (mapping) of the 

reads to the reference genome, which is complicated by the presence of introns.  

Normally the mapping of RNA-seq reads to genes is a straightforward process that 

involves a sequence aligner (like STAR or TopHat) (Trapnell, Pachter et al. 2009, Dobin, 

Davis et al. 2013), a reference genome, and a corresponding GTF file that contains the 

location and structure of known genes.  In the case of xenograft samples, the mapping 

step is complicated by the fact that the RNA is extracted from a mixture of mouse and 

human cells. When the sequenced reads are mapped to the mouse or human genomes, 

the reads can either map exclusively to the human genome (human reads), map 

exclusively to the mouse genome (mouse reads), or map to both genomes (multi-

mapping reads).  
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Figure 3.3. Workflow of alignment-based strategy. 

Briefly, as shown in figure 3.3, the pre-processed reads were aligned to graft genome (in 

our case it is human genome) where reads are classified into graft-mapped and graft-

unmapped classes. Then those classes were realigned to the host genome (in our case it 

is the mouse genome) where reads were further divided into host related classes. 

Specifically, graft-mapped and host-unmapped reads shall fall into the category of 

“Both”, graft-mapped and host-mapped reads shall be regards as “Human specific”; 

graft-unmapped and host-mapped reads are “Mouse specific”, graft-unmapped and host-

unmapped reads shall be viewed as “Neither”. 

 

More formally, we compute the above function for each class as classification score. 

 

3.2.2. Read extraction  

Standard formats are needed for storage, processing and communication in NGS 

analysis. There are a lot of NGS related file formats, the most common ones are: FASTQ 

and FASTA files for reference sequence and pre-processed sequence data; BAM and SAM 

files for alignment output; and GTF, GFF and BED files for annotation and feature 

description; VCF for variants storage and management. FASTQ is a text-based format for 

storing both DNA sequence and its corresponding quality score.  SAM format is a generic 

format for storing large nucleotide sequence alignments. Usually for each alignment, we 

use FASTQ files as input and BAM/SAM files as output, mapped and unmapped reads 

are stored in BAM/SAM formatted files (Li, Handsaker et al. 2009). A table of 

mandatory fields of FASTQ and SAM files are listed in Appendix B. 
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The first technical problem for alignment strategy we met is how to extract mapped or 

unmapped reads from SAM files and locate the corresponding reads in raw FASTQ files. 

We used bitwise FLAG (as listed in Table 3.1) status in BAM files to separate and extract 

mapped/unmapped reads. In this case, 0x104 (104=100+4) could be used to separate 

mapped and unmapped reads in BAM files. Since we need to go back to FASTQ file to 

extract corresponding reads and make a new FASTQ as further input, we treated reads 

that mapped to multiple locations as one read. Once the multi-mapping reads are 

identified, these are temporarily excluded from the analysis and the uniquely mapping 

reads are counted first. Reads that map exclusively to the mouse or human genomes are 

mapped to the GTF file using htseq-count (Anders, Pyl et al. 2015). 

Bit Description  
0x1  template having multiple segments in sequencing  

0x2  each segment properly aligned according to the 
aligner  

0x4  segment unmapped  
0x8  next segment in the template unmapped  
0x10  SEQ being reverse complemented  

0x20  SEQ of the next segment in the template being 
reversed  

0x40  the first segment in the template  
0x80  the last segment in the template  
0x100  secondary alignment  
0x200  not passing quality controls  
0x400  PCR or optical duplicate  
0x800  supplementary alignment  

 

Table 3.1. Bitwise flag of SAM files. 

Next we used the field of “sequence ID” to extract relevant reads in FASTQ based on 

information of BAM files. To make things more complicated, the FASTQ reads are paired 

which indicates both Read1 and Read2 need to be addressed. Paired-end sequencing is 

largely used in today’s research since it is more likely to align to a reference and could 

facilitate detection of novel transcripts, gene fusions as well as repetitive sequence 
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elements. Since the experiment was done using paired-end sequencing, we also filter 

reads that are not properly paired, or have an unmapped mate. A Perl script was created 

to perform aforementioned functions. Since FASTQ and SAM are large files, all jobs were 

completed in TGen PNAP HPC cluster and Saguaro High Performance Computing 

cluster computer at Arizona State University (http://a2c2.asu.edu/resources/saguaro/). 

 

3.2.3. Take further care of “Both” Category Reads 

Reads that map exclusively to either genome can be handled using normal means, but 

things become complicated with the multi-mapping reads. One option would be to 

simply ignore them, but you would run into the problem of under-estimating the 

expression of some genes, especially ones with high homology between mouse and 

human.  If we were to keep them as-is, we would run into the opposite problem, of over-

estimating the expression of homologous genes.  The third option would be split the 

multi-mapping reads between the mouse and human genomes, so we can get a better 

estimate of their “true” expression levels. In this case, the method takes into account the 

number of uniquely mapping reads that already map to the genes. The multi-mapping 

reads are then split between the genes according to the proportion of unique reads in 

each gene and randomly assigned to each group based on their ratio. For example, if 5 

multi-mapping read were perfectly aligned to a mouse gene that had 15 mouse specific 

reads, and the analogous human gene with 10 human specific reads, then 

15/(15+10)*5=3 of the reads would go to the mouse gene, and 2 of the reads would go to 

the human gene.   The new total count would be 18 reads for the mouse gene, and 12 

reads for the human gene.  Since many methods that use RNA-seq data (like DEseq and 

EdgeR) require integer counts for the genes, final count was rounded to the smallest 

following integer using the ceiling function. 

http://a2c2.asu.edu/resources/saguaro/
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3.2.4. Data sets used for performance comparison 
 
40 PDX samples (named from JC001 to JC040) were generated at the Mayo Clinic by 

transferring primary GBM patient tumor directly into an immune-deficient mouse. 

Passage of brain tissue was sent to TGen for H&E staining. RNA extraction was done at 

TGen using QIAGEN AllPrep Kit. 

RNA samples were then sent to Department of Systems Biology at Columbia University 

where pair-end RNA sequencing was completed. Raw data was copied back to TGen for 

quality check downstream analysis. The transcriptome was sequenced at high depth 

coverage with average 110 million paired reads in each sample. At TGen, all samples 

were assessed for overall quality using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and low quality reads 

were filtered and if needed, hard trimming was performed using in-house script. 

Figure 3.4 shows initial check using xenome run output. It summarizes the number of 

reads that map to either the mouse or human genome in each sample. The reads that 

uniquely map to the mouse and human genomes are shown in dark blue and light blue, 

respectively.  

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 3.4. The number of reads that uniquely map to the mouse (in light blue) or 

human genomes (in dark blue). 

For most samples, a significantly greater number of reads are assigned to the human 

genome. This is to be expected for the human xenograft samples. However, for some 

samples there is a bias toward reads that map to the mouse genome. This might be due 

to variability in the collection of the samples, and it might be a good idea to analyze the 

samples separately. But this in turn serves as an excellent test dataset for the comparison 

between our alignment-based method and K-mer approach. The wide range of human 

mouse ratio would reduce the algorithm bias towards “pure” samples and achieve a 

balanced evaluation. 

 

3.3. Results 

3.3.1. Accuracy of classification 

The alignment strategy generated on average 19.13 GB output in BAM format which is 

around 110 million reads per sample. First, we checked the correlation of human 

percentage output between our alignment-based method and current K-mer method. As 

shown in figure 3.5, it indicates high agreement of both approaches, with Pearson 

correlation coefficient of 0.99937 and Spearman correlation coefficient of 0.99812. This 

result suggests that both methods did a decent job to roughly classify xenograft 

sequencing reads.  
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Figure 3.5. Correlation of human reads percentage using xenome and alignment-based 

methods.  

To evaluate the performance of our strategy and compare it to xenome, we used the 

following evaluation criteria: number of human-related reads, final percentage of aligned 

reads, pipeline run time, accuracy of read classification and the capability to keep 

necessary information for downstream analysis. In terms of final alignment percentage 

and run time (didn’t take into account for alignment, since xenome will perform 

alignment in later step), those two methods achieved very similar performance and we 

will focus on the other three standards. 
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Our alignment based method, presented in figure 3.6, assigned on average 6.3 million 

more pairs to human-related (human only, both classes) reads compared to xenome 

approach.  

 

Figure 3.6. Number of aligned reads (in million pairs) in human-related class for 

Alignment-based and xenome methods  

Next, we compared and looked into details of the difference between those two methods. 

We can tell from figure 3.7 that Alignment method assigns significant more reads (~10%) 

to “Both” class compared to xenome tool (~0.6%). 
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Figure 3.7. Read distribution of two methods. The x-axis is algined the human-related 

reads (human only in cyan and both in red) percentage by two methods. 

In a typical sample processed by alignment-based method, there are 7,000,000– 

9,000,000 reads that align to both the mouse and human genomes which represent 

around 10% of the total aligned reads. Of these reads, approximately 20% are filtered out 

because they do not map to regions of the genome that are within known gene 

boundaries. After filtering, there are 5,000,000 – 7,000,000 reads per sample that map 

within known gene boundaries in the mouse and human genomes. As one would expect 

with human xenograft samples, the greatest number of multi-mapping reads map to a 

known gene in the human genome.  This suggests that the reads mapped to non-

transcribed regions of the mouse genome that share homology with genes in the human 



52 

genome. We are aware that more read alignment does not necessary mean more accurate 

classification. Therefore, we then align again only the “both” class read to the human 

reference and compared with the “Complete List of Human and Mouse Homologs 

(downloaded from http://www.informatics.jax.org/homology.shtml) in Mouse Genome 

Database (MGD) of the Jackson Laboratory. For genes with an expression FPKM 

(Fragments Per Kilo base of transcript per Million mapped reads) more than 1, 83.67 % 

of them were found in the human mouse homology list and for genes of FPKM value 

more than 0.1, 77.5% of genes were found in the homology list. This result implies the 

majority of reads in “both” class belongs to the homology genes between human and 

mouse. It is concordant with the fact that protein-coding regions of the mouse and 

human genomes are 95 percent identical due to their requirement for similar 

evolutionarily conserved functions. 

Finally, reads in “both” group were split fairly and randomly between the mouse and 

human genes based on their ratio of exclusively aligned reads. Housekeeping gene 

expression  (Eisenberg and Levanon 2013) was used to assess the accuracy of read 

classification. Housekeeping genes are involved and required for the maintenance of 

basic cellular function and thus are expected to preserve constant expression level in all 

conditions and human cell types. Based on large amount of public available dataset, 

human housekeeping genes are defined using the following criteria: (1).They have to 

express in all tissues. (2). Low variance across all tissue types, specifically, they have to 

show a log2 (FPKM) standard deviation less than 1. (3). No exceptional expression in any 

single tissues (Eisenberg and Levanon 2013). Those criteria resulted in a list of 3808 

human housekeeping genes and of which 11 genes are selected as highly uniform and 

strongly expressed genes (Appendix C). 
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All 40 PDX samples were processed under different procedures (including K-mer 

xenome method, Alignment-based method but keep only human specific reads, 

Alignment-based method but keep all reads in “both” category, Alignment-based method 

and assign “both” class reads based on one ratio for all genes and Alignment-based 

methods but with our proposed strategy to assign reads randomly based on the human 

mouse ratio for each gene). Cufflinks (Trapnell, Williams et al. 2010) was used to 

quantify gene expression in the unit of PFKM. Coefficient of variation (CV), a 

dimensionless number shows the extent of variability in relation to the mean, was used 

to measure the degree of variation. A low CV is suggestive of a constant gene expression 

across all samples. Together with the definition of human housekeeping genes, we would 

view samples with low CV indicates more accurate and precise classification of reads. 
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Figure 3.8. Coefficient of variation analysis of expression of 11 highly uniform and 

strongly expressed genes in xenograft models using various approaches. 

 

Figure 3.9.  Coefficient of variation analysis of expression of 3808 housekeeping genes 

in xenograft models using various approaches. 

We can see from figure 3.8 and 3.9 that both the highly uniform short list and full list 

show the similar trend and our alignment-based method with proper handling with 

“Both” category reads displays lowest CV. Therefore, our approach achieved better 

accuracy with more reads aligned.  
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3.3.2. Gene fusions 

We also explored the calling of gene fusion for both methods. To avoid internal bias, we 

chose an totally independent and widely accepted gene fusion detector, Tophat-fusion 

(Kim and Salzberg 2011) instead of STAR’s fusion to call potential gene fusions. Output 

of gene fusions and their related reads from tophat-fusion were used as “standard” and 

evaluate the capability of keeping fusion related reads after classification using xenome 

and alignment-based methods.   

 

Figure 3.10.  Percentage of potential gene fusion products supporting reads that were 

retained by two methods. 
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As shown in figure 3.10, our strategy was able to retain constantly on average 96.4% 

fusion reads while the performance of xenome varies largely across samples and could 

only keep on average 72.4% related reads. More importantly, the stringent 

characteristics of xenome would have much lower chance to preserve reads that spans 

cross the break point of two fused genes. Unfortunately, those critical spanning reads 

happen to be the key evidence of gene fusion calling.  

 

3.3.3. Double-edged sword 

Sometimes the stringent characteristic of xenome k-mer methods will become double-

edged sword and show its advantage side. Usually we applied matched tumor-normal 

whole exome DNA sequencing to detect somatic single nucleotide variant (SNV), but 

sometimes RNA-seq is also used for variant calling to validate our findings in exome or 

to see what fraction of variants is expressed  during the biosynthesis of mRNA. To 

explore this, we utilized Varscan 2 (Koboldt, Larson et al. 2013) with identical 

parameters to call variants from BAM files generated by xenome and our approach 

respectively. Figure 3.11 displays the number of variants for both approaches. We can see 

that alignment-based method generally called significant more variants when compared 

to k-mer xenome tool. The only exception is the JC37 sample, the number variants called 

by xenome is more than that by our method.  

This result is expected to some extent due to the stringency of xenome during the 

classification step. However, xenome also tends to miss a lot of variants that are filtered 

before variant calling.  
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Figure 3.11. Number of Variants called by VARSCAN with same parameter, the x axis is 

the unit of thousand (k). Cyan color indicates more variants called in the current method 

and cyan shows vice versa. 

We then manually checked for random variant output for the purpose of validating the 

calls. As shown in figure 3.12, the snapshot of IGV in PTEN region reveals an example of 

discordance of two methods in regards to variant calling. Both methods produce the 

small insertion call but only alignment method called another potential SNV. We further 

checked the UCSC genome browser for sequence in this region for multiple species (e.g. 

Rhesus, mouse, dog, zebrafish). In this specific case, the mutation “T” happens to be the 
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sequence difference between mouse and other species including human. Therefore, we 

probably shall ignore the variant at this position and view it as false positive calling. 

Nevertheless, we also found cases where the mutation is correctly called but filtered out 

by xenome at a lower occurrence rate.   

 

Figure 3.12. Snapshot of IGV visualization of a SNV and a small insertion in PTEN 

gene. Multiple reference genomes are listed in the bottom.  

The alignment-based approach is implemented in UNIX shell, Perl (version 5.10.1) and 

portable batch system (PBS) and is supported to run on UNIX/Linux based platforms. 

The algorithm, UNIX shell scripts and Perl code are available for all non-commercial 

users via https://github.com/spengInformatics/xenograft. 

 

3.4. Conclusion and Discussion 

https://github.com/spengInformatics/xenograft
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Using an in-silico approach relied on developed and widely used aligners, such as STAR, 

Tophat or Bowtie, we have shown that xenograft sequencing reads can be accurately and 

losslessly classified and the data was internally consistent when compared with current 

K-mer method. In spite of being a more liberal method than xenome (higher number of 

reads fall into the “both” class), our approach is more robust and could achieve higher 

accuracy in regards to gene expression quantification. Moreover, our strategy retains the 

capability to discover one of the key genomic events - gene fusions which can only be 

efficiently detected in large scale using RNA -seq.   

The limitations of our alignment-based approach include: 1. Since our method is more 

lenient in regards to classification, more false positive calls are expected and should be 

eliminated in further validation.  2. The performance of our approach might be 

associated with different aligners or distinct tool versions. 3. More sophisticated 

algorithm is needed for better differentiation of machine error and true variants between 

the human and mouse. 

In addition, customizable and flexible stringency could be applied in our methodology by 

tuning the parameter for mapping tools. Customized modifications in specific 

parameters including number of mismatches allowed and minimum mapping quality 

score enable user to have elastic control of the stringency and therefore provide 

robustness of our approach. Furthermore, K-mer method can be viewed as a “pre-

processing” of the data but our alignment-based classification process and filters the 

sequencing reads along with the aligning step which avoids extra computing time and 

storage resources. Rather than being a disadvantage, our approach will align mouse 

related reads into mouse genome at the same time as byproduct. Intriguingly, this would 

provide us with informative knowledge about genomic features in stromal cells. 

Although the alignment–based approach is designed for RNA-seq read classification for 
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xenograft model, it is extensible for other NSG techniques for DNA samples including 

Exome-capture target sequencing and low-coverage whole genome sequencing. For 

example, we can change the aligner to DNA mapping tools such as BWA or Bowtie (Li 

and Durbin 2010) and go through similar workflow. The script for filtering and 

extracting reads could be directly applied in the case DNA sequencing as long as the 

sequencer uses the similar type of synthesis chemistry.  Additionally, we can foresee the 

advantage of alignment-based method in calling chromosomal translocations from DNA 

sequencing compared to xenome approach for similar aforementioned reasons. 

Again, in regards to the variant calling using RNA-seq, we would argue that users shall 

choose the strategy based on priority of their performance characteristics. For example, 

CLIA certified labs would like to initiate a clinical trial and want to validate the genotype 

before further testing. Instead of putting extensive amount of money and resources into 

the validation, they probably would prefer xenome processed files for lower chance of 

false positive calls. Generally speaking, we recommend calling variants based on xenome 

processed reads due to its relatively low false positive rate. In this case, we could avoid 

being overwhelmed by tons of data and draw meaningful biological conclusions. 

Our strategy is not limited to vertebrate model animals. Previous findings already show 

that the viruses play an important role in human cancer and disease and some of them 

could even integrate into human genome. Infection of hepatitis B virus (HBV) or 

hepatitis C virus (HCV) greatly promotes the chance of getting hepatocellular carcinoma 

and cervical carcinoma is almost exclusively caused by human papillomaviruses (HPV). 

Authors in one study observed recurrent fusion events of human papillomavirus 

insertions in RAD51B and ERBB2 genes (Tang, Alaei-Mahabadi et al. 2013). In light of 

this, even with “pure” human samples, we would apply our approaches to classify 

sequencing reads into human and non-human ones and then align non-human reads to 
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currently known virus genomes.  Based on the analysis of virus patterns, we would be 

able to explore many biological events including co-adaptation between virus and host 

mRNA expression and detection of viral integration such as host–virus fusions. At the 

very least, revealing the type of virus in the human sample is the low-hanging fruit by 

above analysis but would provide us great benefit and help for early detection of virus-

associated cancer. 
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CHAPTER 4 

INTEGRATION FRAMEWORK FOR GENOMIC CHARACTERIZATION OF 

SURVIVAL OUTLIERS IN GLIOBLASTOMA MULTIFORME 

 

4.1. Introduction 

4.1.1. Glioblastoma multiforme is an extremely malignant form of brain 

cancer 

Glioblastoma multiforme (GBM) is a common and extremely malignant form of brain 

cancer. The disease most commonly affects adults in their sixth decade of life. Of the 

12,000 or so patients diagnosed with GBM each year, about half die within the first year 

of diagnosis, with most of the rest succumbing to their disease within five years. The 

mechanisms driving the development and recurrence of GBM are still unknown. This 

fact greatly limits the successful treatment of this disease.  

Unfortunately, sometimes GBM exhibits a high resistance to these standard therapies 

and recurrence is nearly assured. However, there is no established second-line regimen. 

In order to address the dismal prognosis & management of patients with GBM, it is 

essential to transform traditional clinical trial paradigms to allow for rapid and efficient 

therapeutic development. Thus, the development of new combinational therapies, 

together with an increase in the selectivity of the treatments based on a detailed 

molecular characterization of these tumors has significant potential to enhance the 

survival of patients suffering from GBM (Verhaak, Hoadley et al. 2010). 

4.1.2. Outlier survivors 

Standard treatment includes radiation and chemotherapy with the DNA alkylating agent 

temozolomide (TMZ), which only extends the median survival to approximately 15 

months. Unfortunately, GB exhibits a high resistance to the standard therapy regimen 
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and recurrence is virtually assured due largely to highly invasive cells that aggressively 

disperse into the surrounding normal brain.  

However, a small percentage of GB patients respond to standard treatment and 

benefited with an average survival time greater than two years, with some patients living 

longer than ten years. In this case, “GBM outliers” can be identified: patients who 

responded (long-term survivor, LTS, average OS is 30 months) versus those who failed 

rapidly (short-term survivor, STS, average OS is 7 months). To date, it is unclear why 

some of these some of individuals with the same diagnosis of GB die quickly, while 

others have extended survival. Thus, studying the genomics of these “outlier” GB 

patients could inform ways to better treat GB patients.  

Several factors besides tumor size and location determine a patient’s survival changes. 

These include age at diagnosis (where younger patients often receive more aggressive 

treatment that is multimodal), functional status (which has a significant negative 

correlation with age), and histologic and genetic markers. Among them, genetic markers 

could effectively provide prognostic prediction of survival (Mutation and Pathway 

Analysis working group of the International Cancer Genome 2015) and thus are essential 

for transforming traditional clinical trial paradigms to allow for rapid and efficient 

therapeutic development. Since all patients with primary GB tumor received the same 

standard of care, what genomic features lead to such different outcome? The rationale is 

that genome-based analysis of the primary patient tumor can identify genomic 

alterations unique to each patient’s tumor that are candidate therapeutic targets to 

decrease therapy resistance and improve clinical outcome (Agarwal, Sane et al. 2011, 

Weiss, Liang et al. 2013). Moreover, by integrating and comparing data of patient groups 

(STS vs. LTS), we may further identify frequently altered events that distinguish patients 

with different survival outcome. We believe that targeting these genetic alterations 
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within the patient tumor in combination with standard of care therapy directly addresses 

the unique features of each tumor and will improve survival relative to standard of care 

alone (Stupp, Hegi et al. 2009, Barajas, Hodgson et al. 2010, Nowsheen, Whitley et al. 

2012). 

 

4.1.3. Integrative analysis for comprehensive understanding of the disease  

Genomic characterization will constitute an ever-increasing fundamental role in the 

delivery of individualized care for oncologic patients. Emerging genomics technology and 

bioinformatics are now resulting in the molecular sub-classification of cancers with 

applications for more accurate characterization of disease, prognosis, and therapeutic 

selection (Hanahan and Weinberg 2011, Brennan, Verhaak et al. 2013). Under this 

paradigm, therapy selection is guided by the molecular profile of targetable mutations 

and gene pathways that vary among patients. This phenomenon is well represented in 

GBM, which is among the most genetically heterogeneous and lethal of all human 

cancers (Marusyk, Almendro et al. 2012). 

Based on previous studies, germline and somatic genomic alterations have been directly 

linked to tumorigenesis, malignant progression, and drug resistance. Specific genomic 

alterations have utility to inform targeted therapeutic approaches. For example, patients 

with activated EGFR mutation positive non-small cell lung cancer have improved 

progression-free survival and overall survival when treated with gefitinib (Douillard, 

Shepherd et al. 2010). Similarly, a molecular profiling approach to select treatments 

resulted in longer progression-free survival in a significant percentage of patients with 

refractory cancers (Von Hoff, Stephenson et al. 2010). 

Recent technological advances in Next Generation Sequencing (NGS) platforms enable 

the determination of entire human genomes rapidly and at reasonable cost. There is also 
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an increasing trend toward acquiring a number of types of data from the same patient in 

both clinical and research field. Moreover, publicly accessible collections of data for 

various cancer types (such as The Cancer Genome Atlas (TCGA)) are cataloged and 

stored. However, our cohort is unique and superior in interrogating aforementioned 

questions compared to those data repositories. For instance, in TCGA, most studies were 

carried out independently and thus most patients only have one or two array/sequencing 

data available and very few patients have complete genomic profiling. Only 6 patients are 

available in the TCGA glioblastoma dataset who have comprehensive and complete “-

omics” data including copy number profiles, mRNA expression profiles, mutation 

sequencing data, methylation (HM450) data and clinical data (treatment naïve patients 

with standard therapy and survival days available). Unfortunately, all of those 6 patients 

are short-term survivors with average survival of 6 months (range 3.3 to 9.3 months), 

thus making the comparison of LTS and STS impossible.  

To Identify and characterize the genomic signatures indicative of tumor vulnerability, we 

performed comprehensive genomic analysis of various “-omics” data from GBM outliers. 

Genomics, transcriptomics and epigenomics data each of course enables us to get a 

specific and insightful view of genome functions, but those views are often limited to 

one-dimension. Just like complex biological processes, data describing those processes 

are usually complementary and shall not be treated totally independently. To maximize 

the utilization of all available information, we considered each assay as part of “big 

picture” with unified, global view. Integration of Exome sequencing data, RNA-Seq, 

whole genome and epi-genetics data in a coherent and systematic fashion is critical to 

comprehensive understanding of molecular interactions in complex genetic diseases. For 

example, integrating highly informative yet individual datasets offer the potential to 

answer many long-standing research questions: what impact does variants in genetic 
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code have on the gene expression variation? To what extent the methylation and other 

regulatory elements contribute the disease phenotypes and gene expression? Is there 

always a corresponding structural rearrangement at DNA level for each gene fusion 

event at RNA level?   

In a word, even after comprehensive enumeration of these genetic alterations becomes 

routine, understanding how they work together to cause the cancer phenotype is still a 

daunting challenge. As described above, primary analyses can offer some insight, 

especially when applied to large cohorts of samples. But our integrative methods promise 

to reveal a much more accurate view of what is going on in the cell by combining two or 

more disparate sources of information. Therefore, the development of new 

combinational therapies, together with an increase in the selectivity of the treatments 

based on a detailed molecular characterization of these tumors is likely to provide unique 

insights into specific molecular mechanisms of survival and has significant potential to 

enhance the survival of patients suffering from GBM (Verhaak, Hoadley et al. 2010, 

Brennan, Verhaak et al. 2013). 

 

4.2. Materials and Methods 
 
4.2.1. Ethics Statement and Sample Collection 

Clinical information was assimilated from patient records (figure 4.1) from the Case 

Western Reserve University. Informed consent was obtained for each patient on 

protocols approved by Case Western Reserve University Institutional Review Board. 

Clinical data elements collected comprise of gender, age at diagnosis/surgery, pathology 

(i.e. pre-treatment/recurrence/secondary tumor), MGMT status, G-CIMP status, IDH1 

status, therapy class, vital status, overall and progression-free survival. Tissue specimens 

and matched blood samples were collected fresh frozen and maintained below −80°C 
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until nucleic acid extraction. 

 

Figure 4.1. Schema of patient selection for Outlier study 

 

4.2.2. Sample Selection and DNA/RNA Isolation 

For this work, samples from 23 patients with known clinical data elements as listed 

above were screened and 23 samples, collected from treatment-naïve primary GBM 

patients who subsequently received surgery and standard of care treatment, representing 

two distinct survival groups were selected for the study. These included all long-term 

survivors who had an overall survival (OS) of > 18 months but < 60 months (LTS) and all 

short-term survivors who had an OS of > 3 months but < 12 months (STS). 

Samples from TCGA dataset were selected, by the criteria of deceased patient who 

received the same standard of care treatment (surgical debulking followed by radiation 

and chemotherapy) and whose survival days fall within one standard deviation of mean 

survival days of the LTS and STS groups, and used as a validation dataset.  

DNA and total RNA from fresh frozen tissue specimen were isolated using DNAeasy 
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Blood and Tissue Kit (Qiagen #69504) and RNAeasy Mini Kit (Qiagen # 74104). 

Matched normal patient DNA was extracted and purified from the blood using a QIAamp 

DNA Blood Midi Kit/QIAamp Mini Kit from QIAGEN as previously described (TCGA, 

2008) by Case Western Reserve University and supplied to TGen. 

 

4.2.3. Next Generation Sequencing (NGS) 

All NGS data acquisition and analysis was carried out using previously described 

methods (Borad, Champion et al. 2014). Methods for whole genome sequencing, exome 

sequencing, RNA sequencing and their analysis are described briefly here.  

  

4.2.3.1. Whole genome sequencing 

1.1 µg genomic tumor and normal DNA was used to generate separate long insert whole 

genome libraries for each sample using Illumina's (San Diego, CA) TruSeq DNA Sample 

Prep Kit (catalog# FC-121-2001). In summary, genomic DNAs are fragmented to a target 

size of 900–1000 bp on the Covaris E210. 100 ng of the sample was run on a 1% TAE gel 

to verify fragmentation. Samples were end repaired and purified with Ampure XP beads 

using a 1:1 bead volume to sample volume ratio, and ligated with indexed adapters. 

Samples are size selected at approximately 1000 bp by running samples on a 1.5% TAE 

gel and purified using Bio-Rad Freeze ‘N Squeeze columns and Ampure XP beads. Size 

selected products are then amplified using PCR and products were cleaned using 

Ampure XP beads. Whole genome libraries were prepared using Illumina's TruSeq DNA 

Sample Prep Kit. 

 

4.2.3.2. Exome sequencing 

1.1 µg genomic tumor and normal DNA for each sample was fragmented to a target size 
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of 150–200 bp on the Covaris E210. 100 ng of fragmented product was run on TAE gel to 

verify fragmentation. The remaining 1 µg of fragmented DNA was prepared using 

Agilent's SureSelectXT and SureSelectXT Human All Exon 50 Mb kit (catalog# G7544C). 

Exome libraries were prepared with Agilent's (Santa Clara, CA) SureSelectXT Human All 

Exon V4 library preparation kit (catalog# 5190-4632) and SureSelectXT Human All Exon 

V4+UTRs (catalog# 5190-4637) following the manufacturer's protocols. 

 

4.2.3.3. RNA sequencing 

1 µg of total RNA for each sample was used to generate RNA sequencing libraries using 

Illumina's TruSeq RNA Sample Prep Kit V2 (catalog# RS-122-2001) following the 

manufacturer's protocol. 

 

4.2.3.4. Paired end sequencing 

Libraries with a 1% phiX spike-in were used to generate clusters on HiSeq Paired End v3 

flowcells on the Illumina cBot using Illumina's TruSeq PE Cluster Kit v3 (catalog# PE-

401-3001). Clustered flowcells were sequenced by synthesis on the Illumina HiSeq 2000 

using paired-end technology and Illumina's TruSeq SBS Kit. 

 

4.2.4. Alignment and Variant Calling 

4.2.4.1. Whole genome and whole exome 

For whole genome and exome sequencing, we aligned FASTQ files with BWA 0.6.2 to 

GRCh37.62 and the SAM output were converted to a sorted BAM file using SAMtools 

0.1.18. We then processed BAM files through INDEL realignment, mark duplicates, and 

recalibration steps in this order with GATK 1.5 where dpsnp135 was used for known 

SNPs and 1000 Genomes' ALL.wgs.low_coverage_vqsr.20101123 was used for known 
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INDELs. Lane level sample BAMs were then merged with Picard 1.65 if they were 

sequenced across multiple lanes. Comparative variant calling for exome data was 

conducted with Seurat. 

We applied previously described copy number and translocation detection to the whole 

genome long insert sequencing data (Craig, O'Shaughnessy et al. 2013) (these are 

available through https://github.com/davcraig75/tgen_somaticSV). Copy number 

detection was based on a log2 comparison of normalized physical coverage (or clonal 

coverage) across tumor and normal whole genome long-insert sequencing data, where 

physical coverage was calculated by considering the entire region a paired-end fragment 

spans on the genome, then the coverage at 100 bp intervals was kept. We normalized 

normal and tumor physical coverage, smoothed and filtered for highly repetitive regions 

prior to calculating the log2 comparison. We used Genomic Identification of Significant 

Targets in Cancer (GISTIC) to identify regions of the genome that were significantly 

amplified or deleted across the LTS and STS groups (Mermel, Schumacher et al. 2011). 

GISTIC calculated a statistic (G-score) for the frequency of occurrence and the amplitude 

of the aberration. We computed the statistical significance of each aberration by 

comparing the observed G-score to the results expected by chance. Regions with false-

discovery rate (FDR) q-values less than 0.25 were considered statistically significant.  

Translocation detection was based on discordant read evidence in the tumor whole 

genome sequencing data compared to its corresponding normal data. In order for the 

structural variant to be called, their needs to be greater than 7 read pairs mapping to 

both sides of the breakpoint. The unique feature of the long-insert whole-genome 

sequencing was the long overall fragment size (~1 kb), where by two 100 bp reads flank a 

region of ~800 bp. The separation of forward and reverse reads increases the overall 

probability that the read pairs do not cross the breakpoint and confound mapping. 

https://github.com/davcraig75/tgen_somaticSV
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4.2.4.2. RNA 

For RNA sequencing, lane level FASTQ files were appended together if they were across 

multiple lanes. These FASTQ files were then aligned with STAR 2.3.1 and Tophat 2.0.8 to 

GRCh37.62 using ensembl.63.genes.gtf as GTF file. Changes in transcript expression 

were calculated with Cuffdiff 2.1.1 in FPKM format using upper-quartile normalization.  

Genes with mean FPKM less than 0.1 were filtered out and surrogate variable analysis 

(SVA) was applied to remove batch effect (Detecting and correcting systematic variation 

in large-scale RNA sequencing data).  We used Student’s t test to call differentially 

expressed genes (DEG) between LTS and STS groups using a p-value 0.05 as cutoff. We 

aligned novel fusion discovery reads with Tophat-Fusion 2.0.8 (Kim and Salzberg 2011). 

Clustering was performed using R heatmap.2 package with Euclidean Distance method 

and McQuitty clustering method. 

We performed unsupervised hierarchical clustering using expression of genes known to 

be related to the genome instability and are included in the CIN 70 gene list (Carter, 

Eklund et al. 2006). Additionally, to identify specific molecular programming that might 

be driving outcome to standard of care treatment, ontology and pathway enrichment 

analysis was carried out using genes differentially expressed between LTS and STS 

groups. 

4.2.5. DNA Methylation Profiling 

Genomic DNA from patient samples was profiled for DNA methylation using 

IlluminaInfiniumHumanMethylation450 (HM450) platform, which interrogates 

482,421 CpG sites as described previously (Hjelm, Salhia et al. 2013). Briefly, 1 µg 

genomic DNA per sample was used for the Illumina Infinium HumanMethylation450 

Bead Chip, and the chip was prepared and ran according to the manufacturer's 

instructions (Illumina) (Bibikova, Barnes et al. 2011). Differential methylation was 
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defined as a site that had a beta-value difference of at least 20% (i.e. ≥0.2). Analysis of 

differential methylation was performed for all methylation sites, as well as those specific 

to CpG Islands, shore or shelves. 

 

4.2.6. Integration framework 

The genomic sequencing coverage was more than 100X for exome and 10X for whole 

genome for tumor and germline genomes (Supplementary Table). Somatic mutations 

including SNVs, INDELs, translocations, intra-chromosomal rearrangements (inversion, 

etc.), and copy number alterations were determined from sequencing of tumor and 

germline pairs. Once we get patient tumor aberrations from various types of data (E.g. 

Copy number, SNV), the remaining challenge is how to effectively integrate them and try 

to identify potential cancer causing variants (“drivers”) & their corresponding 

drug/treatment. A bunch of previous studies have proposed methods to integrate data, 

however, their approaches often lack the ability to predict key “drivers” in the disease, let 

alone the possible individualized treatment (Beroukhim, Getz et al. 2007, Parsons, Jones 

et al. 2008, Verhaak, Hoadley et al. 2010, Salhia, Kiefer et al. 2014). 

We applied a framework (figure 4.2) which is a direct and biologically motivated 

approach to analyze these data types in an integrated way. For instance, it has been 

documented that SNVs in certain gene promoters may strengthen or weaken the binding 

affinity of the transcription machinery, but it is unclear exactly which factors modulate 

the strength of the effect. By integrating genomic assays with expression data, it is 

possible to assess how a particular gene’s expression is regulated by these mutations. 

Such framework provides a comprehensive synthesized set of guideline for the 

systematic data analysis and integration. 
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Figure 4.2. Tentative workflow of the biologically motivated framework. 
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4.3. Results 

4.3.1. Clinical characteristics of patients 

Our long-term and short-term survivor cohorts consisted of patients diagnosed with 

primary GBM. All tumor specimens were treatment naïve and contained an average of 

75% tumor cellularity (range 50%-95%). Long-term survivors are defined as patients 

with GBM with an average overall survival (OS) of 33 months (range 18-57 months), and 

short-term survivors are patients with an average OS of 6 months (range 3-11months; 

Table I). 

 

Table 4.1. Clinical characteristics of the primary GB patients in the study.  

 

4.3.2. Genomic landscape 

Compared to STS, we identified a significantly greater number of genomic alterations in 

LTS. Similar number of somatic coding mutations were identified in our cohorts, LTS 

showed a total of 425 somatic coding mutations, with an average of 53 mutations/tumor 

(range 34-80) whereas, STS harbor a total of 347 somatic coding mutations, with an 
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average of 35 mutation/Tumor (range 2-56) in STS (Figure 4.3). In addition, there is no 

significant difference of translocation events observed between LTS and STS where the 

average is 93 and 73, respectively. However, LTS cohort displayed a two-fold increased 

in copy number variants (CNV) loss with an average of 155 CNV loss as compared to STS 

with an average of 74 CNV loss; similar average CNV gains are observed in both LTS (18) 

and STS (12).  

 

Figure 4.3. Number of genomic alteration events between STS and LTS group. 

We used Snipea to detect the list of somatic single nucleotide variants (SNV) and small 

INDELs. Overall, we note the trend of more mutations in LTS compared to STS. If we 

overlap our findings with the previously identified, frequently altered genes of primary 

GBM, the spectrum showed similar frequency of known drivers variants in EGFR, 

CDKN2A and PTEN but more alterations in LTS for other genes.  
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Figure 4.4. Genomic Alterations Identified in Outlier Cohort. The spectrum of 

alterations identified within the two patient groups was mapped against the subset of 

frequently altered genes previously identified in primary GBM (TCGA, Cell 2013). Red 

indicates copy number gain, green is copy number loss, an asterisk (*) Indicates non-

synonymous mutation, where missense mutations are colored blue, nonsense mutations 
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colored grey, and frame-shift mutations colored yellow. The order of patients is ranked 

by their survival days in a descending order. We added a few known drivers in primary 

GB and no IDH1 mutation was found in our cohort.   

This co-mutations figure provide a comprehensive analysis profile within outlier exome 

data and enables us to rapidly infer the relationships between co-occurring results across 

patients and between survival groups. 

 

4.3.3. Copy number analysis 

A schematic of the total copy number changes in LTS and STS cohorts is shown in figure 

4.5. Of particular interest, among the focal amplification unique to LTS that occurred in 

more than 1 tumor includes PDGFR and KIT at (chromosome 4q12). In addition, focal 

amplification was also detected LTS cohort at 12q14.1 and 16p11.2. Moreover, the focal 

deletions observed in LTS as compared to STS, including 19q13.33, 17q11.2, 17q21.2 and 

2p22.1. Both LTS and STS showed similar frequency of focal amplification of EGFR at 

17p12.1, focal deletion of CDKN2A/B at 9p21.3, and PTEN deletion Chr. 10. Those 

observations were further confirmed by GISTIC analysis, which is shown in figure 4.6. 

The sum of CNV events is much greater in the LTS samples with the greatest difference 

being the high number of deletions in LTS samples.  The most frequently observed CNV’s 

were the classic GBM events such as EGFR amplification and CDKN2A deletion.   
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Figure 4.5. CNV compilation plot:  Long Term Survivors are highlighted in Green on 

the y-axis.  Short Term Survivors are highlighted in Red on the y-axis.  X-axis defines the 

chromosomes.  Each sample line represents DNA copy number data as the log2 ratio of 

fragment counts in the tumor specimen relative to the matched normal DNA. Copy 

Number Variations (CNV’s) can be identified in spikes where the log2 ratio is greater the 

+1 or less than -1.  Amplifications are marked in red and deletions marked in green. 

While both cohorts have classic GBM CNV’s (Chr 7 gain, EGFR amplification, Chr 10 

loss) the long term samples have many more CNV events. 
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Figure 4.6. GISTIC Analysis plot:  Each plot shows the frequency of CNV’s for each 

cohort (Left: STS Right: LTS).  In each plot the bottom axis defines the frequency of CNV 

amplifications in red.  The top axis of each plot defines the frequency of CNV deletions.  

The x-axis of each graph represents the genome with chromosomes marked with 

alternating white and gray regions.  The vertical green bars mark a threshold of 

significance. Annotations of a variety of significant regions are highlighted in boldface. 

Q-values for amplified (red) and deleted (blue) regions are displayed along the x-axis on 

bottom and top of figures, respectively.  

To validate our observation of increased genomic alteration in LTS cohort, we examined 

the CNV changes in GBM samples in the TCGA database. To ensure the sample cohorts 

are similar, we select the TCGA specimens with available genomic data based on the 

following criteria as our outlier cohorts which includes deceased patients, patients 
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receiving same standard of care (surgery with TMZ and IR therapies), and patients 

survival days. Based on these criteria, we identified 44 LTS and 28 STS in the TCGA 

dataset. Examination of the CNV alteration showed that the LTS cohort displayed 

increased genomic alterations as compared to STS (Figure 4.7; p = 0.034), thus 

corroborating with our GBM outlier dataset (p = 0.016). 

 

Figure 4.7. Validation of Copy number alterations in TCGA dataset. A) Box-plot 

showing the CNV score of STS (n=8) and LTS (n=10) in outlier dataset B) Box-plot 

illustrating the difference of CNV score in STS (n=44) and LTS (n=28) patients who met 

the same criteria. P-value was calculated using one-tail T-test. 

 

4.3.4. Methylation analysis 

We next assessed global DNA methylation patterns in the outlier GBM cohorts. We used 

the 450K-methylation platform to compare LTS and STS cohorts. We performed a logit 
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transformation on each sample, where logit transformation converts otherwise 

heteroscedastic beta values (bounded by 0 and 1) to M values following a Gaussian 

distribution. Overall, the analysis revealed 89 (263 regions) differentially methylated 

CpG loci (DML) encompassing 69 unique genes. We used Beta values for generating box 

plots to represent overall methylation levels across DML for LTS and STS. Median 

overall methylation was lower in STS (β =0.374) than in LTS (β =0.472) (Figure 4.8), 

indicating hypomethylation in STS. Examination of the overall methylation levels of the 

GBM Outliers in TCGA also showed an overall significant hypomethylation status in STS, 

corroborating with our data (p < 0.0001). Next we examined the distribution of DML 

across chromosomes, plotting the distribution of hypo- and hyper-DML after 

normalization to chromosome length (Figure 4.9). According to the analysis in STS 

cohort, chromosomes 10, 19, and 20 had the most hypomethylated loci and 

chromosomes 5, 8, 16, and 22 had the most hypermethylated loci, with chromosomes 10, 

19, and 20 having the most overall DML.  
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Figure 4.8.  Differential methylation analysis in GBM. A) Boxplot showing the higher 

beta value of differentially methylated loci in LTS compared to STS in GB outlier dataset. 

B) Boxplot illustrating the similar observations in TCGA dataset. 

 

Figure 4.9. Bar plot comparing the hypomethylated and hypermethylated probes on 

each chromosome between STS and LTS survival cohorts.  On the y-axis the number of 

differentially methylated probes (hypo in green, hyper in red) are shown.  The x-axis 

defines chromosomes.  This figure suggests that chromosomes 10, 19, 20 are frequently 

hypomethylated in STS samples relative to LTS samples.  Chromosomes 10, 16, 19, and 

22 are frequently hypermethylated in STS samples relative to LTS samples. 

Next we wanted to examine the regional and functional CpG distribution of DML in the 

Outlier GBM cohorts. Functional distribution relates CpG position to transcription start 

sites (TSS −200 to −1500 bp, 5′ untranslated region (UTR), and exons 1 for coding genes 

as well as gene bodies. Overall, majority of probes (>40%) were situated in gene bodies, 
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followed by ~20% of probes situated -1500 bp of TSS. STS cohort appears to harbor 

more hypothemethylation in probes situated in -200 bp of TSS and both exon 1 and 

5’UTR region (Figure 4.10A). 

 

Figure 4.10. Functional distribution analysis of differentially methylated loci in GB 

outlier.  
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Regional distribution of DML was assessed based on their proximity to the closest 

CpGisland. In addition to island cores, shores are 0-2 kb from CpG islands, shelves are 2-

4 kb away and open sea regions are isolated loci without a designation. When comparing 

the STS to the LTS cohorts, we identified the majority of DML in STS that were 

hypomethylated were in the islands (62.73%) and the shores (27%) (Figure 4.10B). In 

addition we note that the majority of hypermethylated loci (59.15%) were located in the 

open sea as compared to the majority of hypomethylated loci being situated in CpG 

island (62.73%) (Figure 4.10B).  

Interestingly, unsupervised clustering analysis of DML demonstrated a distinct 

separation of LTS and STS samples, consisting of 89 probes (Figure 4.11).  
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Figure 4.11. Heat map of differentially methylated probes found with an absolute Delta 

Beta value of greater than 0.2 in LTS and STS samples. Y-axis lists the differentially 

methylated probes and the x-axis shows the samples with LTS samples highlighted in 

green and STS samples highlighted in red.  

4.3.5. mRNA expression analysis 

Gene expression profiling was performed using Cufflinks to identify differentially 

expressed genes (DEG) in Outlier cohort. The comparison identified 615 differentially 
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expressed genes. A heatmap was generated to show the clear separation of LTS and STS 

(Figure 4.12).  To reveal patterns of expression, we also performed unsupervised 

hierarchical clustering with genes known to be related genome instability included in the 

CIN 70 gene list (Carter, Eklund et al. 2006) using Euclidean distance. The trend 

observed was that LTS patient cluster generally has lower expression of CIN70 genes 

compared to STS patient.  

 

Figure 4.12. Analysis of differentially expressed genes in Outlier cohort. Hierarchal 

clustering of 615 genes distinguishing LTS from STS group. 
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In order to gain a better understanding of altered biological pathways and distinct cancer 

network patterns, we performed IPA (Ingenuity Systems) core analysis and biological 

concept enrichment analysis. All analysis was performed in IPA core analysis module 

using default settings.  The most significant IPA canonical pathways for LTS-STS 

comparison seem to be involved in immune response and lipid metabolism.  

The Disease and functions analysis portion of IPA enriched biological functions that are 

significantly altered among our differentially expressed genes (DEG). Significant 

categories were sorted based on their p-values and with a minimum of 10 supporting 

molecules. 59 out of 65 categories are mapped to “Cancer” and “Neurological Disease” 

functional annotations. We then applied the output of upstream regulator analysis to 

discover potential functional regulator in our DEG list. Six upstream regulators were 

identified as activated and three were identified as inhibited using z-score of 1 as filtering 

threshold. One of the activated regulator in STS was STAT5 a/b,   NFKB and IFNG. 

Inhibited regulators in STS (thus activated in LTS) were MAPK1 and ERK1/2 and ESR1. 

Two interesting highly scored and activated regulators NFKB and IFNG have two 

commonly regulated genes which is illustrated in a combined network (Appendix D)  

In order to determine representative biology associated with the DEG between LTS and 

STS samples we performed biological concept enrichment analysis using ClueGO 

software. DEGs for LTS and STS were analyzed as two separate gene lists using GO 

Biological Process, GO Cellular Component, KEGG, Reactome, and Wiki Pathways.  

The network-based modeling takes knowledge from prebuilt canonical pathways as well 

as potential network rules from each sample. Those analyses revealed a number of 

interesting biological concepts associated with LTS and STS gene expression changes. 

The LTS enriched biological concepts include those associated with development and 

morphogenesis, and also mTOR signaling pathway. The STS concepts are centered 
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around metabolic processes, APC degradation, and immune processes associated with 

MHC class I antigen presentation (figure 4.13). 

 

Figure 4.13. Biological concept analysis of differentially expressed genes between LTS 

and STS. Enrichment analysis was performed and results visualized with ClueGO v2.1.5 

+ CluePedia v1.1.5. The nodes in the diagram represent an enriched ontology category, 

pathway, or gene. Blue nodes are enriched for LTS samples and red are enriched in STS 

samples. Nodes with enrichment for both are represented as pie charts. Node size 

corresponds to how many genes in that ontology/pathway concept. Edges represent the 

statistical association between the nodes based on gene membership and location with 

gene ontology.  

 

4.3.6. Combined methylation and mRNA expression analysis 
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We combined gene expression and methylation analysis in order to identify several 

interesting genes that were hypomethylated and over-expressed in STS. Of note, we 

identified SLC10A4 and FAM24B. This finding highlights the possible epigenetic 

activation of those genes in the STS tumor progression. Furthermore, by overlapping 

outlier methylation analysis with TCGA validation data, we note two genes, DOCK2 and 

MIR886, were consistently hypomethylated in STS compared to LTS. They were 

previously found to be critical in regulating cell proliferation and migration. 

If we used a more lenient cutoff of beta value to call differentially methylated loci, 888 

probes were found to be differentially methylated between survival groups and 598 were 

annotated with gene symbols. The overlap is illustrated in figure 4.14. DNA methylation 

is one of the most vital epigenetic mechanisms that could regulate gene expression. 

Methylation and gene expression are often, but not always, correlated in the direction of 

negative for promoter CpG islands and positive for gene-body regions. 
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Figure 4.14.  Four-way Venn diagrams were used to identify genes that were 

overlapped between methylation and expression analysis.  The Blue oval represents 

genes annotated with hypomethylation in the STS group, the Yellow oval represent genes 

with hypermethylation in the STS group, the green oval represents genes with decrease 

expression in the STS group, and the Red oval represents genes with increased 

expression in the STS group. Genes that overlap in multiple lists are listed. 

 

4.3.7. Data visualization  

As seen from various methods and analysis outlined above, there has not been an 

comprehensive visualization approach to integrate exome, RNA, whole-genome and 

methylation data in a coherent fashion and abstract higher-level information such as 

pathway and network analysis. In light of this, we applied several data representation 

tools to incorporate those data into one figure for better identification of correlations 

among biological processes. Mutational “lollipop” plot (figure 4.14) could be used to 

visualize the distribution of functional protein changes across cohorts. Circos plot (figure 

4.15) can be applied to integrate all key alterations from multiple assays into one united 

diagram. 

 

 

Figure 4.15. A mutational "lollipop" plot, which illustrates the discovered amino acid 

changes for TP53 in our Outlier dataset in the context of previously reported protein 

mutations (red dot, if not reported, color is blue) and known domains.  
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Figure 4.16. Circos plot summarizes all significant genomic events that were identified 

in one GBM patient. Copy number changes are shown in the inner circle plot with red 

marking amplifications and green marking deletions. SNVs are indicated with dark blue 

tick marks and INDELs are indicated with light blue tick marks. Translocations are 

linked using arc inside the circle. 

 

4.4. Conclusions and Discussion 

Massively parallel sequencing, with increasing throughput and reducing cost, make it 
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possible for the simultaneous measurement of several genomic features in the same 

biological samples. Those individual characteristics of each patient could then be used to 

design tailored medical treatment which may show higher susceptibility to this patient’s 

tumor. Since glioblastoma multiforme is still a common and extremely malignant form 

of brain cancer, there is urgency to retrospectively explore the genomic difference of 

short and long term survivors as well as prospectively influence the treatment planning. 

Despite the general poor prognosis for patients with Glioblastoma multiforme (GBM), a 

proportion survives well beyond the median survival of 14 months following diagnosis. 

To elucidate molecular features associated with disproportionately protracted survival, 

we conducted deep genomic comparative analysis of a cohort of patients receiving 

standard therapy (surgery plus concurrent radiation and temozolomide) wherein “GBM 

outliers” were identified: patients who responded (long-term survivor, LTS) versus those 

who failed rapidly (short-term survivor, STS).  Those genomic alterations were assessed 

using next generation sequencing technology at the level of DNA copy number, DNA 

methylation, DNA somatic mutation and mRNA expression. We demonstrated that we 

were able to identify the genetic variations of GB patients with outlying survival.  Copy 

number analysis found out that both STS and LTS have similar frequency of common 

gains and losses of GB such as EGFR (chromosome 7), CDKN2A (chromosome 9) and 

PTEN (chromosome 10) but LTS showed a significantly “nosier” genome in other 

regions. Whole-exome sequencing detected frequently mutated genes from previous 

studies (EGFR, NF1, TP53, PTEN, etc) for both groups but displayed the trend of higher 

number of somatic mutation in LTS. Methylation analysis also presented distinct 

epigenetic modifier and functional patterns between STS and LTS which may affect key 

regulatory functions. Differential expression and network analysis reveals enriched 

biological processes associated with development in LTS and metabolic processes in STS. 
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Those genomic signatures may serve as classification factors and predicts vulnerability of 

GBM to standard therapy.  

Those high level integration and interpretation require accurate and trustworthy prior 

steps (e.g. SNV calling, removal of mouse contamination) as prerequisite. Just like 

groundwork foundation is important for building construction, the complete weight of 

the analysis “building” relies on the prerequisite “foundation”. For example, without 

accurate SNV calling and CNV analysis, the association generated from co-mutation 

analysis and circos investigation would easily lead to wrong conclusions. 

The limitations of the outlier work include: 1. We only have a medium-sized cohort and 

patient recruitment was based on the patient visit and thus not totally randomized. 2. 

The outlier study did not take into account the tumor heterogeneity which is common in 

GBM tumor types and therefore could affect variations within each survival group. 3. The 

outlier cohort lacks proteomics data. As a result, we were unable to fully investigate 

those genomic variants that are not expressed in protein form.  

Previous studies, where large scale genomic characterization was implemented, have 

associated altered retinoic acid signaling (PMID: 21346226), enhanced immune-related 

gene expression (PMID: 22802421), distinct DNA methylation profiles 

(PMID:23291739), and MGMT methylation and IDH1/2 mutation status (PMID: 

24615357) with long-term survival in GB. To date, there is no genomic study that 

comprehensively examines the outliers of primary GB patients from both ends of 

survival spectrum. Although the Cancer Genome Atlas (TCGA) GBM database provides 

genomic analyses of primary GB tumors, samples with “multi-omics” data including copy 

number variants, exome sequencing, mRNA expression profiles and global methylation 

data for the GB outliers are only available for six GB specimens. Thus, we identified 

glioma patients and employed Next Generation Sequencing (Exome, RNA, and Whole 
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Genome Sequencing) and methylation profiling to identify genetic, epigenetic, and 

transcriptomic differences between long-term survivors (LTS, OS > 18 months) and 

short-term survivors (STS, OS < 12 months). 

The observation of more genomic alterations in treatment naïve primary GB tumors in 

LTS compared to STS may be due to the following mechanism. It is possible that those 

patients are actually responders to current standard of care for GBM treatment. The 

tumor cells that try to gain advantages of fitness and growth with more genetic 

abnormalities perhaps be vulnerable to standard therapeutic approaches. Such trade-off 

between growth and drug resistance is inevitable owing to limited resources in 

organisms. Tumors usually have stronger competency than other cells to adapt now and 

mutate later. But when their adaption capability mismatch with novel and rapidly 

changing environments (treatment in our case), those cells might be pushed over the 

edge of the cliff and go through apoptosis. Specifically, high expression of CIN 70 

signatures and fewer genomic aberrant events together make the tumor in STS more 

immune (resistant) to the alkylating chemo and radiation therapy and therefore 

associated with poor prognostics.  

When an aberration has been identified and characterized, prior knowledge from 

previous literature could be applied to predict associated therapeutic implications and 

Contraindication. The range of knowledge base could be defined with different purposes 

for levels of FDA-approved drug, repurposing drug and investigational drug (Prados, 

Byron et al. 2015). Interestingly, the drug prediction lists 2.4 fold more chemotherapy 

agents for LTS patients (on average 3.13 per patient) compared to STS patients (on 

average 1.3 per patient) based on their genomic alterations. This match is consistent with 

our hypothesis that LTS patients are suitable for standard therapy and therefore become 

potential responders with improved survivals.  
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In our outlier cohort, we also noticed a potential gender inequality. The majority of 

female patients were long term survivors and on the contrary, most male patients were 

short term survivors. In order to investigate the role of age in prediction of survival, we 

performed statistical testing to see if such gender effect also holds in TCGA with larger 

number of samples. There is no significant difference (P = 0.332) in survival between 

male and female TCGA samples that have been filtered for treatment and survival to 

match the samples in the Outliers project. Moreover, even within the STS and LTS, 

TCGA dataset did not show a significant divergence between male and female patients 

(STS p-value: 0.8581; LTS p-value: 0.9628).   

Our long-term goal is to help patients with GBM, particularly the patient who is in front 

of us today. We posit that genomic instability predicts vulnerability of GBM to standard 

therapy and coupled with genetic and epigenetic signatures may identify patients where 

front-line entry into alternative, targeted regimens would be a preferred, more-

efficacious management. Those patients who are categorized to be potential LTS patient 

could just stick to standard therapy and for patients with STS signature, their treatment 

selection shall be guided by the molecular profile of targetable mutations and gene 

pathways that vary among patients. In light of this, molecular/genomic signatures in 

patient tumors may direct optimal or effective therapy selection, thereby enabling 

personalized treatment planning. The net result of this approach will be to have more 

effective therapy directed to identify features in profiled patient cancer specimens as 

opposed to the current paradigm of indiscriminately exposing patients to 

chemotherapeutic toxins and hoping for a response. Our studies have highlighted a 

number of genetic and epigenetic alterations occurring in STS and LTS which indicate 

targetable mutations and hold promise for better clinical outcomes.  
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CHAPTER 5 

LONGITUDINAL AND INTRATUMOR HETEROGENEITY STUDIES TO 

REVEAL THE TEMPORAL AND SPATIAL CONTEXT OF TUMOR 

EVOLUTION 

 
5.1. Introduction 

5.1.1. Tumor adapts and evolves over time 

Evolution is considered the ultimate oncogenesis experiment but even within a short 

period of time, tumor constantly adapts and evolves instead of staying static. Cancer-

promoting mutations such as oncogenes and tumor suppressor gene variations do not 

occur at once. Over time, accumulated mistakes and selective pressures that cancer cell 

acquires drive tumor evolution. For example, cells in the “core” of a proliferating tumor 

face hypoxia and shortages of nutrients. Invasive “rim” cells possess the 

metastatic potential but still must adapt to micro-environment in a foreign tissue. Such 

selective pressures are not only limited to natural characteristics of tissues but also 

include the human intervention. For instance, surgery, chemotherapy, radiation therapy 

and drug treatment all could influence the evolutionary context for the remaining tumor 

cells.  

From the perspective of long-term natural selection and evolution, development 

involving “hallmarks” of cancer may reveal the genetic progression that leads to 

cancer.  Previous attempts have been made to identify the six types of evolutionary 

explanations for our vulnerability to cancer: (1) Adaption capability mismatch with novel 

and rapidly changing environments (e.g., Cigarette smoking→ lung cancer) (2) Co-

evolution with faster-evolving pathogens (e.g., HBV,HCV →  hepatocellular carcinoma 

and HPV→ cervical cancer) (3) Limitations on what evolution can do (e.g.,. mutations → 

cancer and the ability of cancer cells to evade immune system’s detection) (4) Trade-offs 
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between traits with opposite functions (e.g.,. capacity for fast tissue repair versus risk of 

cancer) (5) Reproductive success at the expense of longevity (e.g., Competitiveness 

promoting allele enrichment in males may increase susceptibility to prostate cancer ) (6) 

Defenses with costs as well as benefits (e.g., inflammation is crucial for defending against 

harmful stimuli, but it also damages tissues and makes them more vulnerable to cancer) 

(Aktipis and Nesse 2013). 

 

5.1.2. Tumors are not spatially uniform 

Recent NGS technologic advances have enabled more comprehensive, rapid and deeper 

analysis of individual cancer genomes at the single-nucleotide level. Such development 

contributes a lot to the studies of the longitudinal tumor progression where vital 

information was gathered to reconstruct evolutionary history. Unfortunately, cancer is 

complex and we have another important issue to address - tumor morphologic 

heterogeneity. Tumors are often heterogeneous with mixed populations of cells, even at a 

single time point. Knowledge about cancer branched evolution would shed light on the 

consequences of such heterogeneity for clinical treatment planning, drug discovery, 

mechanisms of drug resistance and biomarker validation. Despite increasing 

observations of intratumor heterogeneity at the histopathologic, genetic and epigenetic 

level, our understanding of the extent of such subclonal diversity, as well as its 

underlying causes, has remained relatively unclear. 

Researchers have taken the strategy of sequencing spatially distinct regions in tumors 

and showed clear evidence of intratumor heterogeneity at genetic, transcriptomic, and 

functional levels. They were also able to identify the majority of known gene mutations 

as signatures for each region and use such information to infer phylogenetic tree and 
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subclonal evolution (de Bruin, McGranahan et al. 2014, Xu, DiCarlo et al. 2014, Zhang, 

Fujimoto et al. 2014).  

In recent years, researchers have improved the resolution of ITH studies even to single 

cell level. Nicholas Navin (Navin, Kendall et al. 2011) and his colleagues performed 

breast cancer single-cell sequencing by isolating nuclei with flow-sorting and then 

amplifying DNA using whole genome amplification for massively parallel sequencing. 

They explored the population substructure and relationship between subpopulations 

using neighbor joining and phylogenetic lineage approaches. They found out that robust 

high-resolution genetic profiles could be obtained by sequencing a single cell and we can 

make meaningful inferences about the clonal evolution and metastasis of cancer by 

examining multiple cells from the same cancer (Navin, Kendall et al. 2011). 

 

5.1.3. Integrating and monitoring tumor heterogeneity in space and time 

may have profound clinical influence  

Heterogeneity in tumors may help them to evade detection through traditional 

biomarkers methodology and therefore influence clinical outcome (Murugaesu, Chew et 

al. 2013). The changing spatial and temporal nature of cancer during its progression 

implies the need for longitudinal prospective monitoring of cancer evolution and 

integration of clinically actionable biomarkers identified from genetic diverse intratumor 

regions. 

The first issue such strategy could help to solve is tumor sampling bias. Tumor sampling 

bias may arise due to constant changes in the subclonal architecture of the tumor. 

Biopsies in one region of a heterogeneous primary tumor will discover genomic aberrant 

events for that specific region but may also miss more heterogeneous events not shared 

by all regions/subclones of the tumor. To make things worse, heterogeneity itself is also 
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dynamic and evolves over time. Current therapeutic decision making in clinical setting is 

often made with reference to the one biopsy from a random position in patient’s tumor 

which is probably obtained months or years previously. Such approaches suppose to 

work well and guide treatment planning if and only if these aberrant genomic events 

occur ubiquitously throughout all subclones and continue to maintain their presence.  

However, we already know from previous evidence that such assumptions are not likely 

to be always true. In this case, comprehensive sequencing on multiple regions or even on 

single cell would help us to detect a complete list of variants. Following treatment based 

on the complete list altogether could further prevent clonal competition with alternating 

dominance (clonal tide model) and achieve better clinical outcome (Egan, Shi et al. 2012). 

Another important application is the identification of key drivers of heterogeneity, either 

within the tumor or between primary tumors and their metastatic sites. In contrast to 

linear models of tumor evolution with sequentially acquired somatic mutations, up-to-

date finding is consistent with the fact that branched evolutionary variants in driver 

genes result in homogeneous tumor cell expansion. By integrative analysis of multiple 

heterogeneous regions, we could detect and infer the driver events for genomic 

heterogeneity (as the consensus mutation in the “trunk” of evolution tree) and may 

provide novel treatment to limit tumor diversity and adaptation. 

Similarly, Comparison of paired primary and metastatic biopsies may raise our ability to 

pinpoint “trunk” thus vital genomic events for therapeutic targeting. 

The third impact is the increase of capability to monitor and track the subclonal changes.  

Development of noninvasive diagnostic techniques would enable us to monitor and track 

the subclonal dynamics of tumor subpopulation. It may not only enhance our 

understanding of resistance mechanisms (branches are aimed and “pruned” at the 

expense of outgrowth of other branches with distinct resistance aberrations), but also 
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aims to pursue earlier, safer, more accurate and faster ways of diagnosing cancer. 

Monitoring the biomarkers would provide safer medical testing procedures and 

potentially more accurate diagnoses, leading to treatment that are more precise, 

according to each patient’s condition. Moreover, knowing the progression of tumor over 

time, we may use such information to help us detect cancer in its infancy. Noninvasive 

diagnostics using liquid biopsy such as circulating DNA and extracellular RNA holds 

promises for early detection of cancer signatures and thus earlier diagnoses, treatment 

and even cures.  

 

5.2. Materials and Methods 

5.2.1. Patient clinical characteristics 

5.2.1.1. Patient information of longitudinal study 

Two patients were selected for this longitudinal study for their availability of recurrent 

and post-recurrent GBM tumor. Tumor DNA and RNA with matched normal blood DNA 

were extracted for Exome and RNA sequencing respectively. First patient is a 61 year old 

female with the primary tumor located at the right posterior frontal lobe. First surgery 

was performed to remove the tumor and obtain “primary” biopsy, followed by radiation 

and temozolomide treatment. Second surgery was done to remove the recurrent tumor, 

followed by Avastin monotherapy and then Avastin with CPT-11 combination therapy. 

Third surgery was taken to remove the post-recurrent tumor and patient was placed with 

Gliadel wafers. First patient passed away with 22 month survival.  Second patient is a 55 

year old female with primary GBM tumor located at left temporal lobe. Similarly, three 

surgeries were performed to remove “primary”, “recurrent” and “post-recurrent” tumor 

respectively. However, the treatment for patient two is different. The treatment for 

primary and recurrent tumor is radiation with combination drugs of temozolomide and 
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erlotinib which is an EGFR inhibitor. The patient refused standard treatment for the 

post-recurrent tumor in the beginning and then took Avastin and CPT-11 at the same 

time. 

 

5.2.1.2. Patient information for spatial study   

9 patients were included with the study, SNV and copy number profiling were accessed 

for multiple regions of two patients’ tumors using Exome sequencing and CNV of other 7 

patients were determined with Array CGH (comparative genomic hybridization) (aCGH). 

To ensure the maximum probability of covering all subpopulation, several core regions 

(indicated as Enhanced region (Enh) in MRI image) and rim regions (indicated as Brain 

around Tumor (BAT)) were taken as biopsies.  

 

Figure 5.1. MRI images for patient 5 and present 4 different sampling regions 

(Courtesy of Dr. Leland Hu from Mayo Clinic) 
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5.2.2. DNA and RNA extraction 

DNA and total RNA from fresh frozen tissue specimen were isolated using DNAeasy 

Blood and Tissue Kit (Qiagen #69504) and RNAeasy Mini Kit (Qiagen # 74104). 

Matched normal patient DNA was extracted and purified from the blood using a QIAamp 

DNA Blood Midi Kit/QIAamp Mini Kit from QIAGEN as previously described. 

 

5.2.3. RNA library construction and sequencing 

We constructed paired-end mRNA libraries from 2 ug of total RNA following the TruSeq 

RNA Sample Preparation v2 Guide, Revision A (Illumina). Libraries were amplified for 

10 PCR cycles in order to reduce potential PCR duplicates. Final libraries were quantified 

by Bioanalyzer Finallibrary size (mode) fell between 260 and 280bp.Libraries were 

pooled and sequenced on the Illumina2000 HiSeq platform, usingv3 chemistry (one 

TruSeq PE Cluster Kit, and three TruSeq SBS 50-cycle HS kits per flow cell) (Illumina) to 

produce 83 x 83 paired end reads. 

 

5.2.4. Whole exome library construction and sequencing 

Whole genome libraries for exome capture were constructed from 3ug genomic DNA 

following the SureSelectXT for Illumina PE v1.2 Kit (Agilent), with SureSelectXT 70 Mb 

capture using V4+UTR capture oligos (Agilent). Libraries were pooled following capture, 

and amplified for 12 PCR cycles. Final libraries were quantified by High Sensitivity DNA 

chip (Agilent), and Qubit DNA High Sensitivity kit (Life Technologies). Pools averaged 

between 3000 and 8000 pM, with an average library size (mode) around 360 bp. 

 

5.2.5. Alignment and Variant Calling 
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For whole exome sequencing, FASTQ files were aligned with BWA 0.6.2 to GRCh37.62 

and the SAM output were converted to a sorted BAM file using SAMtools 0.1.18. BAM 

files were then processed through INDEL realignment, mark duplicates, and 

recalibration steps in this order with GATK 1.5 where dpsnp135 was used for known 

SNPs and 1000 Genomes' ALL.wgs.low_coverage_vqsr.20101123 was used for known 

INDELs. Lane level sample BAMs were then merged with Picard 1.65 if they were 

sequenced across multiple lanes. Comparative variant calling for exome data was 

conducted with Seurat, Strelka, Mutect and processed with Snipea. 

For RNA sequencing, lane level FASTQ files were appended together if they were across 

multiple lanes. These FASTQ files were then aligned with STAR 2.3.1 and TopHat 2.0.8 

to GRCh37.62 using ensembl.63.genes.gtf as GTF file. We calculated changes in 

transcript expression with Cuffdiff 2.1.1 in FPKM format using upper-quartile 

normalization. We then used DEseq and Edger to call differentially expressed genes 

(DEG) between LTS and STS groups using p-value 0.05 as cutoff. For novel fusion 

discovery reads were aligned with TopHat-Fusion 2.0.8 (Kim and Salzberg 2011).  

 

5.2.6. Array CGH preparation and analysis 

For array CGH, DNA from frozen tumor was extracted using the Allprep DNA/RNA mini 

kit (Qiagen) following the manufacturer’s protocol. With FFPE samples DNA was 

extracted using Allprep FFPE DNA/RNA mini kit (Qiagen). Pooled male or female DNA 

from a commercial source (Promega) was used as a reference. Tumor samples and 

references (1 μg each) were digested with DNaseI and labeled with Cy-5 dUTP and Cy-3 

dUTP, using the BioPrime labeling kit (Life Technologies). All labeling reactions were 

assessed using a Nanodrop assay before mixing and hybridized to 244,000 feature 

human genome CGH arrays (Agilent Technologies) according to manufacturer’s 
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instructions (CGH enzymatic protocol v6.2; Ref # G4410-90010). Microarray slides were 

scanned using an Agilent 2565C DNA scanner, and the images were analyzed with 

Agilent Feature Extraction version 10.5, using default settings. Data were assessed with a 

series of quality control metrics and analyzed using an aberration detection algorithm 

(ADM2) (Lipson, Aumann et al. 2006) implemented in the Genomic Workbench 

software package (Agilent). ADM2 identifies all aberrant intervals in a given sample with 

consistently high or low log ratios based on the statistical score derived from the average 

normalized log ratios of all probes in the genomic interval multiplied by the square root 

of the number of these probes. This score represents the deviation of the average of the 

normalized log ratios from its expected value of zero and is proportional to the height, h 

(absolute average log ratio), of the genomic interval and to the square root of the number 

of probes in the interval. 

 

5.3. Results  

5.3.1. Longitudinal study  

Our first purpose of this longitudinal investigation was to explore how GBM tumor 

evolve, adapt and change over time. Presented in figure 5.2 and 5.3, somatic SNVs was 

listed and overlap among primary, relapse and post-relapse was shown for patient 1 and 

2 respectively. Key mutations were marked in bold. For patient one, tumors at each stage 

share a list of common mutations throughout the entire time, but each tumor also 

acquired roughly 9 times more unique SNVs. In regards to patient 2, similar result was 

observed but post-relapse tumor showed fewer unique SNVs compared to primary and 

relapse. Based on that information, a phylogenetic tree that depicts relatedness among 

those tumors could be generated.  
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Figure 5.2. 3D Venn diagram showing unique and overlapping SNVs in primary, 

relapse and post-relapse tumor of GBM patient one. 
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Figure 5.3. 3D Venn diagram showing unique and overlapping SNVs in  primary, 

replapse and post-relapse tumor of GBM patient two. 

We further looked into the sources of SNVs. From table 5.1, Post-relapse tumor in 

patient one exhibited huge numbers of somatic TMZ-associated mutations. TMZ-

associated mutations were defined as C>T/G>A transition mutations that are not 

detected in treatment naïve primary tumor (Johnson, Mazor et al. 2014). 

 

Table 5.1. Table shows us the numbers and percentage of TMZ-associated SNVs in 

recurrent tumors 

Patient 01 TMZ-associated SNV total SNV Percentage
Relapse 32 297 10.77%
Post-Relapse 203 302 67.22%

Patient 02
Relapse 14 245 5.71%
Post-Relapse 10 69 14.49%
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Temozolomide, (TMZ) is an oral chemotherapy drug used in GBM standard therapy.  

Since it is an alkylating agent, TMZ has ability to alkylate/methylate DNA, which 

damages the DNA and triggers the death of tumor cells but it will also harms normal 

cells and potentially introduces mutations. Previous studies have showed that the 

majority of TMZ treated patients with hypermuations appear to be caused by TMZ-

associated mutagenesis.  

Our data also suggests the high number of unique mutations in recurrent tumor of 

patient one is attributable to TMZ exposure. This result is consistent with the finding of 

prior work. Therefore, optimizing glioblastoma temozolomide chemotherapy not only 

could increase TMZ efficiency to avoid resistance but also may keep off acquiring 

additional harmful mutations. 

Copy number profiles were then examined for patient 1 and 2. As shown in figure 5.4, 

copy number variants between patients and among different stages are distinct.   

 

Figure 5.4. Copy number Variants compilation plot for patient 1 and 2. Red arrows 

indicate the dissimlar region of chromosome 7 and 16. 

Spefically,  in figure 5.5, EGFR amplification was contantly detected for all three stages 

of tumor in patient 1. However, there’s no EGFR treatment applied to that patient, 
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instead, Avastin (a Vascular endothelial growth factor inhibitor) was tried for second line 

therapy. 

 

Figure 5.5. Enlarged copy number alteration at chromosome 7 with detailed genes for 

patient 1. 

On the contrary,  as shown in figure 5.6, patient 2 had CDK6 amplication in all three 

phases and gained additional amplication at BRAF and EZH2 region in post-relapse 

tumor. Ironically, Patient 2 was precribed with erlotinib (an EGFR inhibitor) but no 

corrosponding treatment for CDK6, BRAF or EZH2. 



109 

 

Figure 5.6. Enlarged copy number alteration at chromosome 7 with detailed genes for 

patient 2. 

Had we known that patient two didn’t have EGFR amplication, we could avoid treating 

her with Erlotinib. We already know that most drugs have possible side effect and 

unexpected interactions. The rational is why should we put a patient on a drug if we 

already know that drug will not do any benefit to the patient? Although there is no way to 

know for sure if a drug will cause side effects for patients, this “try and see” strategy at 

least put patients at huge risk for adverse drug reaction and mutagenesis while provide 

little or none benefit to treat target disease. 

Differentially gene expression, canonical pathway and network analysis were then 

performed to assess the higher level transcriptomic changes during tumor progession 

based on RNA sequencing data. Ingenuity Pathway Analysis (IPA) was introduced to 

further identify unique pathway involved in multiple tumor recurrence (Jimenez-Marin, 

Collado-Romero et al. 2009). IPA (Core) Analysis is the process of mapping data to the 
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IPA Knowledge Base (KB) to create molecular networks and to divide data into diseases, 

biological functions and signaling & metabolic canonical pathways that are over 

represented. All analysis was performed in IPA core analysis module using default 

settings. Figure 5.7 shows a snapshot of bio function analysis panel in relapse and post-

relapse tumors of patient 2 (other comparisons are not shown and could be found in 

Appendix E). 

A.  

B.  

Figure 5.7. Snapshot of bio function analysis panel using IPA  for relapse and post-

relapse tumors in patient 2. 

As expected, the enriched differentially expressed genes were mainly related to cancer 

(Relapse FDR P-value: 3.03 E−14; Post-relapse FDR P-value: 2.75 E−05), and Cell-to cell 

signaling and interaction (Relapse FDR P-value: 1.27 E−15; Post-relapse FDR P-value: 

1.47 E−10). Interestingly, in relapse tumor, inflammatory response (FDR P-value: 3.33 
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E−14) and immune cell trafficking (FDR P-value: 8.22 E−15) pathways were highly 

ranked while Nervous system development and function (FDR P-value: 2.39 E-09) 

ranked high in post-relapse tumor. Those findings suggests immune response and 

inflammation may play a role in first recurrence of paitent 2’s GBM and specific 

neuroligcal related pathways were more affected in second recurrence of the tumor.  

To gain a better understanding of distinct cancer network patterns, enrichment maps 

technique was applied using Cytoscape (Shannon, Markiel et al. 2003) for both patients. 

The network-based modeling take knowledage from prebulit canonical pathways as well 

as potential network rules from each sample (e.g. differentially expressed, amplified, 

deleted and mutated genes). 

 

A.  
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B.  

Figure 5.8. Enrichment map analysis for two patients. The size of circle indicates the 

size of the involved gene set. The thickness of lines shows the overlap degree of two gene 

sets. The color of outer circle stands for the comparison between post-relapse and 

relapse tumors and the color of inside circle stands for the comparison between relapse 

and primary tumors (red indicates up-regulation and blue indicates down-regulation). 

We could see from figure 5.8 that DNA pre-replication complex and DNA synthesis 

lagging strand networks (down-regulated in Relapse tumor but up-regulated in post-

relapse tumor) were enriched in both patients. This result suggests that relapse tumor 

might develop the invasiveness at the expense of DNA replication proliferation and post-

relapse tumor regain such ability to grow tumor. With the help of such knowledge, more 

targeted and precise treatment could have been designed for both patients. 

 

5.3.2. Spatial study  

To determine the intratumor heterogeneity of copy number aberrations, we also 

performed multi-region whole-exome and aCGH on a total of 36 tumor regions from 9 
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 patients. Spatial intratumor heterogeneity was identified in all nine patients. 

 

Figure 5.9.  CNV compilation plot for four tumor regions of patient 5. Clear evidence of 

heterogeneity in chromosome 11 was highlighted in yellow box.   

Specifically, as shown in figure 5.9, patients 5 displayed evidence for heterogeneity 

among several regions. A large fraction of genome had undergone copy number 

alterations expect for one BAT region; another BAT (Brain Around Tumor, Rim) shows 

very similar copy number profiling to other two ENH (Enhanced tumor, Core) sites 

except for the chromosome 11 region. Three additional copy number gains were detected 

in that rim region. Those novel genomic aberrations may later serve as drivers for 

constant tumor progression.  
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Figure 5.10. CNV compilation plot for 10 tumor regions of patient 8. Copy number 

variants of first three samples were assessed using aCGH and last 7 regions were 

evaluated by whole exome sequencing.  

From figure 5.10, we could see that aCGH and sequencing data agree well on most 

significant CNVs, but exome sequencing data provides better coverage and resolution. 

Most tumor locations displayed comparable patterns of copy number profiles, while 

sample “284844” had few copy number alterations and sample “284825” was only 

present with local major amplifications but lack of  global copy number events. 

To better investigate GBM cancer evolution, we performed a follow-up aCGH study for 

two recurrent tumors of the same patient. We collected ENH and BAT regions from 

primary, relapse and post-relapse tumors from the same patient 1676612. This unique 

regionally separated spatial study, coupled with longitudinal follow-up, enables us to 

decipher drivers of subclonal expansion, mechanisms of tumor recurrence and resolve 

the evolutionary principles of GBM tumor progression. 

 



115 

Figure 5.11. aCGH compilation plot for patient 1676612. Key events in chromosome 17 

are highlighted in yellow box. 

As shown in figure 5.11, relapse and post-relapse tumors had the exact same pattern of 

copy number aberrations in chromosome 17 as BAT (rim) region in primary tumor. This 

finding suggests that though surgical procedure removed the majority tumor chunk 

(enhanced core region in MRI image), remaining rim tumor cells would form another 

clone and begin to develop and eventually cause the recurrence of tumor.  

  

5.4. Conclusion and Discussion 

Through longitudinal study of primary and recurrent tumor of same patients, we showed 

that we could identify “trunk” mutations which exist in all staged tumor as well as unique 

“branch” variants for each tumor. Copy number and mutational analysis based on 

sequencing data greatly helped us to find potential druggable driver genes and genomic 

events. In addition, the higher level pathway and network analysis would enable us to 

group genetic aberrations using prior knowledge and thus avoid overwhelming data by 

reducing thousands of altered mutations and expressed gene to a limited number but 

more interpretable set of biological processes. Network analysis would also assist us to 

discover less-frequently mutated but functionally important targets. Through analyzing 

genomes of multiple surgically resected tumor regions, we were able to confirm the 

existence of intratumor heterogeneity in glioblastoma. 

The limitations of the longitudinal and spatial studies include: 1. The sample size for 

longitudinal study is small due to restrained number of patients who underwent multiple 

recurrence of tumor. In order to expand the sample size, we may perform the 

comparisons only between primary and relapse tumors. 2. More dedicated algorithms 

are required to deal with the exponential growth in complexity. For each tumor sample, 
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we often already have multi-parametric “-omics” data. Adding time and space as 

confounding factors would greatly increase the integration complexity and hence needs 

appropriate handling. 3. The efficient delivery of molecular therapies is hampered by 

insufficient exploration into the mechanism of heterogeneity in cancer. Further 

investigation is needed and should be integrated within the process of segregation of 

genetic changes in tumor cells during the clonal expansion and tumor progression. 

The longitudinal and spatial studies taught us a lesson and reinforced our belief and 

need of precision medicine. If we were able to know that patient 1 had EGFR 

amplification instead of VGFR alteration, and patient 1 had CDK6 instead of EGFR 

aberrations, we could have avoided giving patients the unnecessary drugs. If we were 

able to know the additional BRAF and EZH2 copy number gain in post-relapse tumor of 

patient 2 and uniquely acquired mutations for both patients, we could have adjusted 

treatment plan, quickly and efficiently, for the patients before optimal therapeutic 

window elapses. If we were able to realize the relapse tumor in patient 1676612 grew 

from rim BAT tumor cells which have distinct features from core cells, we could have 

designed treatment strategy based on the right information instead of sticking to data 

from surgically removed tumor. Those inappropriate or even wrong clinical decisions not 

only miss the precious treating time to relieve or control the patient’s illness, but also 

may possibly cause side effects and therefore worsen the current situation. And we shall 

not blame this on doctors, without the help and evidence from genomic profiling; they 

don’t have much to do with options and patient’s specificity. In this case, we shall utilize 

genomic biomarker classifiers – those are validated in clinical trials - to guide doctors 

and design therapeutic plans tailored to each patient. This could tremendously improve 

patient benefit compared to treating the patient with a standard of care treatment or 

simply based on guesses. Moreover, adaptive treatment - monitoring the genetic shift 
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during treatment and adjusting therapies accordingly - can considerably improve the 

therapeutic benefit to adverse effects ratio. Those strategies are cost-effective for patients 

as well as society.  

Those studies also could be coupled with xenograft models. For instance, in one of our 

recent studies, figure 5.12 illustrates the xenograft passages could represent the patient 

tumor very well and provide a useful tool for clonality investigation. 

 

Figure 5.12. CNV compilation plot for GBM patient and xenograft passages. X-axis is 

the chromosome and Y-axis is different xenograft samples, colors indicate multiple 

clusters. 
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Another point we would like to stress is that spatial and temporal evolution is not 

independent; they are happening at the same time and may interact with each other. 

Natural selection, like species striving for survival, or therapy selection, like selective 

killing of sensitive cancer cells, facilitate the progression towards favoring remaining 

clones with resistance to anticancer drugs and high proliferation rate. Those spatially 

resolved clones evolve over time and may gain advantage and replace other regions just 

like the expansion of an invasive species (Korolev, Xavier et al. 2014). Potentially the 

intratumor heterogeneity may undermine the clinical decision making to control tumor 

growth since single biopsy might not represent all clones in the tumor. However, we 

could also turn this evolution against cancer by guiding our therapeutic interventions to 

exploit the evolutionary response of tumors. For example, a drug cocktail that targets the 

altered genetic signatures and also suppresses the evolution of resistance could be 

developed to control tumor. Furthermore, lineage tracing techniques could be applied to 

uncover and monitor the population dynamics within the tumor. Briefly, a reported gene 

that can be switched on in a subset of cells is used a marker for a specific clone (Alcolea 

and Jones 2013). The dynamics of multicolor clones can then be monitored spatially and 

over time, thereby providing insights into the evolution of tumors.  
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CHAPTER 6 

CONCLUSION, DISCUSSION AND NEXT STEPS 
 

 
Complexity is the very nature of cancer. Mutations, epigenetic modification, 

heterogeneity and rapid evolution already make cancer one of the most complex 

biological systems of all. Nevertheless, as the Greek philosopher Aristole said：”The 

whole is greater than the sum of its parts”. Complex interaction and signaling networks 

between the players only boost the complexity to higher order. Fortunately, the wide 

application of massively parallel sequencing and the idea of precision medicine, provides 

a bird's-eye view of cancer genome with high-resolution. In today’s genomics-driven 

world, revolution of cancer research, diagnosis and therapy with genomic testing is 

simply a must. To this end, the studies described in this thesis give examples of tools to 

uncover information about the altered functional modules and ways to integrate 

individual data to higher level from a biological organization perspective.   

In Chapter 2, we demonstrated that Snipea could achieve better SNV calls and provide 

biological insights by prioritizing and annotating them. One logical next step would be to 

try to incorporate pathway and network into the ranking and annotation of Snipea. 

Grouping genetic aberrations using prior knowledge about network interactions allows 

investigation of cellular mechanism and determination of altered oncogenic pathway 

(Mutation and Pathway Analysis working group of the International Cancer Genome 

2015). Another SNV related expansion is to call somatic mutation without matched 

normal samples. The availability of the normal matched samples is obviously desired but 

sometimes unobtainable, especially for samples in retrospective studies. In this case, we 

could develop an algorithm to make the distinction between germline and somatic 

variants based on tumor alone. The quickest and simplest way is to find a “pooled” or 

“standard” sample as reference. For Copy number and other analysis, we perhaps shall 
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use pool samples to reduce the variance. By the central limit theorem, pooling 

independent samples helps reduce variance in depth-of-coverage and increases precision 

of the methods. However, for variant caller, sticking to one commercial control sample 

might be beneficial. Since the chance of low allele frequency variant in this patient tends 

to be filtered out, but with more people, more will be filtered out. Another strategy would 

be “filtering and rescue” approach. We could first conduct germline/or somatic calling 

using one reference genome with best practice setting, then filter out the potential 

germline variants based on large scale databases such as dbSNP, NHLBI and 

1000Genome. We then might want to rescue known cancer-related somatic variants in 

COSMIC for further validation. In addition, if the tumor sample is impure, which is often 

the case for solid tumors, we can take advantage of the fact that the allele fraction of 

variants would be shifted away from 50% (heterozygous mutation) or 100% 

(homozygous mutation).   

In chapter 3, we presented an alignment-based approach could accurately and losslessly 

classify sequencing reads from xenograft models. Especially this method takes good care 

of “both” category reads which could be aligned to both genomes due to homology. In 

addition to k-mer and alignment-based methodologies,  a “combined genome” strategy 

was mentioned by Yip and his colleagues (Tso, Lee et al. 2014). This approach tries to 

combine the host and graft reference genomes into an artificial genome, and align all 

sequencing reads to it. They claimed that such method handles with ambiguous reads 

which have DNA sequence similarity to both genomes and is  expected to yield a lower 

false negative alignment rate  and intermediate false positive rate. This method might be 

superior in some specific situation and shall be included in our benchmarking in the 

future studies. Another obvious follow up study would be to test the variant-associated 

drugs in vivo using xenograft models. By comparing patient tumor genome and 
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xenograft sequencing data, we could easily identify those druggable variants that are 

retained in xenograft. In light of this, investigational drugs can be tested in those model 

animals to assess drug safety and efficacy before going directly to expensive clinical trials.  

In chapter 4 and 5, we showed how to integrate and interpret multi-parametric “-omics” 

data using biologically motivated framework and to investigate tumor evolution over 

time and space. The importance of integrative analysis cannot be overemphasized; the 

integrated knowledge of datasets allows confirmation as well as novel hypothesis 

generation. For instance, if a variant is detected at DNA (Genome-sequencing) and RNA 

level (RNA-seq), the confidence of this call would dramatically increase. On the other 

hand, if any correlations were established, it may guide novel biological hypothesis. An 

example would be that we probably can identify new regulation factor if we discover a 

high correlation between a SNV and consistent altered expression and methylation 

status of the gene where SNV resides in. The comprehensive examination of an 

individual’s unique genetic and biochemical make-up raises the promises of “N of 1” 

study for everyone. This is trending quickly from benchside (research) to bedside (CLIA). 

Moreover, how to detect cancer in its infancy and eliminate cancer before they form 

become our next daunting challenge. To overcome such challenge, it requires developing 

biomarkers with high specificity, better ways to select genomic subsets of interest, 

monitoring individuals for very early signs and incorporating genomic insights into an 

individual’s daily health behavior and health care. 

With the advance of data collection techniques and computational data processing, 

several association studies have successfully identified cancer-susceptibility genetic 

variants and original driving event of cancer. We could apply inhibitor drugs to suppress 

the downstream signaling of such variants. However, we are only dealing with the 

“consequence” of the alteration. Since we already detected the very specific variants, we 
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might be able to use the direct approach and to reverse that variant. It was not plausible 

until the CRISPER (Clustered Regularly Interspaced Short Palindromic Repeats) 

technology was invented. The CRISPR/Cas system takes advantage of adaptive immunity 

in select bacteria and archaea to confer resistance and elimination to foreign genetic 

elements. Genome engineering by these RNA-programmable Cas9 nucleases has been 

widely used for gene editing (adding, disrupting or changing the sequence of specific 

genes) at almost any desired location (Shalem, Sanjana et al. 2014). CRISPR aims to 

directly repair the defect and actually correct the DNA itself. This exciting technology 

offers the promise not only of better understanding of the genetic machinery but also the 

potential to fix that machinery with much more efficient and precise gene modification. 

Lastly, while those approaches were mostly implemented on dataset in GBM, they could 

be easily extended to other types of tumor. Together, this dissertation aims to develop an 

innovative, cost-effective and time-sensitive methodology to identify clinically actionable 

vulnerabilities in cancer patients. The molecular/genomic signatures in patient tumors 

may direct optimal or effective therapy selection, thereby enabling personalized 

treatment planning. We would have more effective therapy directed to identify features 

in profiled patient cancer specimen as opposed to the current paradigm of 

indiscriminately exposing patients to chemotherapeutic toxins and hoping for a response. 
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APPENDIX A 

EXAMPLE OF VCF 4.2 FILE FORMAT 
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Cited from http://vcftools.sourceforge.net/VCF-poster.pdf 
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APPENDIX B 

MANDTORY FIELDS OF FASTQ FILE AND SAM FILE 
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FASTQ file: 

Element Requirements Description 

@ @ 
Each sequence identifier 

 line starts with @ 

<instrument> 

Characters allowed: 

a-z, A-Z, 0-9 and 

underscore 

Instrument ID 

<run number> Numerical Run number on instrument 

<flowcell ID> 
Characters allowed: 

a-z, A-Z, 0-9 
  

<lane> Numerical Lane number 

<tile> Numerical Tile number 

<x_pos> Numerical X coordinate of cluster 

<y_pos> Numerical Y coordinate of cluster 

<read> Numerical 
Read number. 1 can be single read  

or read 2 of paired-end 

<is filtered> Y or N Y if the read is filtered, N otherwise 

<control number> Numerical 

0 when none of the control bits are on,  

otherwise it is an even number. See 

below. 

<index sequence> ACTG Index sequence 
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SAM file: 

Column Description 

QNAME  Query template/pair NAME 

FLAG  bitwise FLAG 

RNAME  Reference sequence NAME 

POS 
 1-based leftmost Position/coordinate of clipped 

sequence 

MAPQ  Mapping Quality (Phred-scaled) 

CIGAR  extended CIGAR string 

MRNM  Mate Reference sequence Name (‘=’ if same as RNAME) 

MPOS  1-based Mate Position 

LEN  inferred Template Length (insert size) 

SEQ  query Sequence on the same strand as the reference 

QUAL  query Quality (ASCII-33 gives the Phred base quality) 

OPT 
 variable Optional fields in the format 

TAG:VTYPE:VALUE 
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APPENDIX C 

LIST OF HOUSE KEEPING GENES (EISENBERG AND LEVANON 2013) 
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11 highly uniform and strongly expressed genes:  

Gene 
Name 

RefSeq acces
sion number 

Gene 
description 

Genomic coordinates (hg19) of strongly 
and uniformly expressed exons 

C1orf43 NM_015449 chromosome 1 
open reading 
frame 43 

chr1        154192817              154192883 
chr1        154186932              154187050 
chr1        154186368              154186422 
chr1        154184933              154185100 
chr1        154184795              154184854 

CHMP2
A 

NM_014453 charged multive
sicular body 
protein 2A 

chr19      59065411                59065579 
chr19      59063625                59063805 
chr19      59063421                59063552 

EMC7 NM_020154 ER membrane 
protein complex 
subunit 7 

chr15      34382517                34382656 
chr15      34380253                34380334 
chr15      34376537                34376687 

GPI NM_000175 glucose-6-
phosphate isom
erase 

chr19      34857687                34857756 
chr19      34859487                34859607 
chr19      34868639                34868786 
chr19      34869838                34869910 
chr19      34872370                34872424 
chr19      34884152                34884213 
chr19      34884818                34884971 
chr19      34887205                34887335 
chr19      34887485                34887562 
chr19      34890111                34890240 
chr19      34890460                34890536 
chr19      34890623                34890690 

PSMB2 NM_002794 proteasome sub
unit, beta type, 
2 

chr1        36101910                36102033 
chr1        36096874                36096945 
chr1        36070833                36070883 

PSMB4 NM_002796 proteasome 
subunit 
, beta type, 4  

chr1        151372456              151372663 
chr1        151372917              151373064 
chr1        151373239              151373321 
chr1        151373714              151373831 

RAB7A NM_004637 member 
RAS oncogene f
amily  

chr3        128525214              128525433 
chr3        128526385              128526514 
chr3        128532169              128532262 

REEP5 NM_00566
9 

receptor 
accessory 
 protein 5  

chr5        112256859              112256953 
chr5        112238076              112238215 
chr5        112222711              112222880 

SNRPD
3 

NM_004175 small nuclear 
ribonucleoprote
in D3 

chr22      24953642                24953768 
chr22      24963951                24964144 

VCP NM_007126 Valosin 
containing 
 protein 

chr9        35067887                35068060 
chr9        35066671                35066814 
chr9        35064150                35064282 
chr9        35062213                35062347 
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chr9        35061999                35062135 
chr9        35061573                35061686 
chr9        35061011                35061176 
chr9        35060797                35060920 
chr9        35060309                35060522 
chr9        35059489                35059798 
chr9        35059060                35059216 
chr9        35057372                35057527 
chr9        35057116                35057219 

VPS29 NM_016226 vacuolar 
protein sorting 
29 homolog 

chr12      110930800              110931036 
chr12      110929812              110929927 

 

Full list of housekeeping genes: 

AAAS COMMD1 GSTM4 NAA15 RANGRF TJAP1 
AAGAB COMMD10 GSTO1 NAA20 RAP1A TLE1 
AAMP COMMD3 GTDC2 NAA38 RAPGEF1 TLK1 

AAR2 COMMD3-
BMI1 GTF2A1 NAA50 RAPGEF2 TM2D1 

AARS COMMD5 GTF2B NAA60 RARS TM2D2 
AARS2 COMMD6 GTF2F1 NABP2 RARS2 TM2D3 
AARSD1 COMMD7 GTF2F2 NACA RB1CC1 TM9SF1 
AASDHPPT COMMD9 GTF2H1 NACA2 RBAK TM9SF2 
AATF COMT GTF2H4 NACC1 RBBP4 TM9SF3 
ABCB10 COPA GTF2H5 NACC2 RBBP7 TM9SF4 
ABCB7 COPB1 GTF2I NAE1 RBCK1 TMBIM1 
ABCD3 COPB2 GTF3A NAMPT RBFA TMBIM4 
ABCE1 COPE GTF3C1 NANS RBM10 TMBIM6 
ABCF1 COPG1 GTF3C2 NAP1L4 RBM12 TMCC1 
ABCF2 COPS2 GTF3C3 NAPA RBM12B TMCO1 
ABCF3 COPS3 GTF3C5 NARF RBM14 TMCO3 

ABHD10 COPS4 GTF3C6 NARFL RBM14-
RBM4 TMED1 

ABHD12 COPS5 GTPBP10 NARG2 RBM15 TMED10 
ABHD13 COPS6 GTPBP4 NARS RBM15B TMED2 
ABHD14A COPS7A GTPBP5 NARS2 RBM17 TMED4 
ABHD16A COPS7B GTPBP8 NAT10 RBM18 TMED5 
ABHD4 COPS8 GUK1 NBN RBM19 TMED7 

ABHD8 COPZ1 GZF1 NBR1 RBM23 TMED7-
TICAM2 

ABI1 COQ10B H1FX NCAPH2 RBM27 TMED9 
ABT1 COQ2 H2AFV NCBP2 RBM28 TMEM101 
ACAD9 COQ4 H2AFX NCK1 RBM33 TMEM106B 
ACADVL COQ5 H2AFY NCKIPSD RBM34 TMEM106C 
ACAP3 COQ6 H2AFZ NCL RBM39 TMEM115 
ACBD3 CORO1C HADH NCLN RBM4 TMEM120A 
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ACBD5 COX11 HADHA NCOA1 RBM41 TMEM126A 
ACBD6 COX14 HAGH NCOA6 RBM42 TMEM127 
ACIN1 COX15 HARS NCOR1 RBM5 TMEM128 
ACLY COX16 HARS2 NCSTN RBM6 TMEM129 
ACOT13 COX19 HAT1 NDEL1 RBM7 TMEM131 
ACOT8 COX20 HAUS3 NDFIP1 RBM8A TMEM134 
ACOT9 COX4I1 HAUS4 NDNL2 RBMX TMEM141 
ACOX1 COX5B HAUS7 NDST1 RBMXL1 TMEM147 
ACOX3 COX6B1 HAX1 NDUFA10 RBX1 TMEM14B 
ACP1 COX6C HBP1 NDUFA11 RC3H2 TMEM14C 
ACSF3 COX7A2 HBS1L NDUFA12 RCAN1 TMEM161A 
ACSL3 COX7A2L HCCS NDUFA13 RCHY1 TMEM167B 
ACSS2 COX7C HCFC1 NDUFA2 RCN2 TMEM168 
ACTR10 COX8A HDAC2 NDUFA3 RDH14 TMEM177 
ACTR1A CPD HDAC3 NDUFA4 RDX TMEM179B 
ACTR1B CPNE1 HDAC6 NDUFA5 REEP3 TMEM18 
ACTR5 CPNE2 HDAC8 NDUFA6 REEP5 TMEM184C 
ACTR8 CPNE3 HDDC3 NDUFA7 RELA TMEM185B 
ACVR1 CPOX HDGF NDUFA8 REPIN1 TMEM186 
ACVR1B CPSF2 HDHD3 NDUFA9 REPS1 TMEM187 
ADCK2 CPSF3L HDLBP NDUFAF2 RER1 TMEM189 

ADCK4 CPSF4 HEATR2 NDUFAF3 REST TMEM189-
UBE2V1 

ADH5 CPSF6 HEATR5A NDUFAF4 REXO1 TMEM19 
ADI1 CPSF7 HEBP1 NDUFB10 RFC1 TMEM192 
ADIPOR1 CRADD HECTD3 NDUFB11 RFC2 TMEM199 
ADIPOR2 CRBN HELZ NDUFB2 RFC5 TMEM203 
ADK CRCP HEMK1 NDUFB3 RFK TMEM205 
ADNP CREB3 HERC4 NDUFB4 RFNG TMEM214 
ADO CREBZF HERPUD1 NDUFB5 RFT1 TMEM219 
ADPRH CREG1 HERPUD2 NDUFB6 RFWD2 TMEM222 
ADPRHL2 CRELD1 HEXA NDUFB7 RFXANK TMEM223 
ADPRM CRIPAK HEXDC NDUFB8 RGP1 TMEM230 
ADSL CRIPT HEXIM1 NDUFB9 RHBDD1 TMEM242 
AES CRK HGS NDUFC1 RHBDD3 TMEM248 
AFF4 CRKL HIAT1 NDUFC2 RHOA TMEM251 

AFTPH CRLS1 HIATL1 NDUFC2-
KCTD14 RHOB TMEM256 

AGFG1 CRNKL1 HIBADH NDUFS2 RHOT1 TMEM258 
AGGF1 CRTC2 HIGD1A NDUFS3 RHOT2 TMEM259 
AGPAT1 CRY2 HIGD2A NDUFS4 RIC8A TMEM30A 

AGPAT3 CSGALNAC
T2 HINFP NDUFS5 RIN2 TMEM33 

AGPAT6 CSNK1A1 HINT1 NDUFS6 RING1 TMEM39A 
AGPS CSNK1A1L HINT2 NDUFS7 RINT1 TMEM41A 
AHCY CSNK1D HIST1H2BC NDUFS8 RIOK1 TMEM41B 
AHSA1 CSNK1G3 HIVEP1 NDUFV1 RIOK2 TMEM42 
AIMP1 CSNK2A3 HMBS NDUFV2 RIOK3 TMEM5 
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AIP CSNK2B HMG20A NECAP1 RIPK1 TMEM50A 
AK2 CSRP2BP HMG20B NEDD8 RMDN1 TMEM50B 

AK3 CST3 HMGB1 NEDD8-
MDP1 RMDN3 TMEM55B 

AKAP8 CSTB HMGN3 NEIL2 RMI1 TMEM57 
AKAP9 CSTF1 HMGXB3 NEK4 RMND1 TMEM59 
AKIP1 CSTF2T HMGXB4 NEK9 RMND5A TMEM60 
AKIRIN1 CTAGE5 HMOX2 NELFB RMND5B TMEM62 
AKIRIN2 CTBP1 HN1L NELFCD RNASEH1 TMEM63B 
AKR1A1 CTCF HNRNPA0 NELFE RNASEH2C TMEM64 

AKR7A2 CTDSP2 HNRNPA2B
1 NENF RNASEK TMEM66 

AKT1 CTNNA1 HNRNPAB NEU1 RNF10 TMEM69 
AKT1S1 CTNNB1 HNRNPC NF2 RNF103 TMEM70 
AKTIP CTNNBIP1 HNRNPD NFATC2IP RNF11 TMEM81 
ALAD CTNNBL1 HNRNPF NFE2L2 RNF111 TMEM87A 
ALDH3A2 CTNND1 HNRNPH1 NFIL3 RNF113A TMEM9 
ALDH9A1 CTSA HNRNPH2 NFKBIB RNF115 TMEM9B 
ALG11 CTSD HNRNPK NFKBIL1 RNF121 TMF1 
ALG5 CTTN HNRNPL NFU1 RNF126 TMLHE 
ALG8 CTU2 HNRNPM NFX1 RNF13 TMPO 
ALG9 CUEDC2 HNRNPR NFYB RNF14 TMUB1 
ALKBH1 CUL1 HNRNPU NFYC RNF141 TMUB2 
ALKBH2 CUL2 HNRNPUL1 NGDN RNF146 TMX1 

ALKBH3 CUL4A HNRNPUL
2 NGLY1 RNF167 TMX2 

ALKBH5 CUL4B HNRPDL NGRN RNF181 TMX4 
ALS2 CUL5 HNRPLL NHP2 RNF185 TNFAIP1 
ALYREF CUTA HP1BP3 NHP2L1 RNF187 TNFAIP8L2 
AMBRA1 CUX1 HPS1 NIF3L1 RNF216 TNIP1 
AMD1 CWC15 HPS6 NINJ1 RNF220 TNKS2 
ANAPC10 CWC22 HS1BP3 NIP7 RNF25 TNPO1 
ANAPC11 CWC25 HS2ST1 NIPA2 RNF26 TNPO3 
ANAPC13 CXXC1 HS6ST1 NIPBL RNF31 TNRC6A 
ANAPC15 CXXC5 HSBP1 NISCH RNF34 TOB1 
ANAPC16 CXorf40A HSCB NIT1 RNF4 TOLLIP 
ANAPC2 CXorf40B HSD17B10 NIT2 RNF40 TOMM20 
ANAPC5 CXorf56 HSD17B12 NKAP RNF5 TOMM22 
ANAPC7 CYB5B HSD17B4 NKIRAS2 RNF6 TOMM40 
ANKFY1 CYB5D2 HSPA14 NMD3 RNF7 TOMM5 

ANKH CYB5R3 HSPA4 NME1-
NME2 RNH1 TOMM6 

ANKHD1 CYC1 HSPA5 NME2 RNMTL1 TOMM7 
ANKHD1-
EIF4EBP3 CYFIP1 HSPA8 NME3 RNPEP TOMM70A 

ANKRD10 CYHR1 HSPA9 NME6 ROMO1 TOP1 
ANKRD17 CYP2U1 HSPBP1 NMRK1 RP9 TOP2B 

ANKRD28 D2HGDH HSPE1-
MOB4 NMT1 RPA2 TOPORS 
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ANKRD39 DAD1 HTATIP2 NOA1 RPA3 TOR1A 
ANKRD46 DAG1 HTRA2 NOB1 RPAIN TOR1AIP2 
ANO6 DAGLB HTT NOC2L RPAP3 TOR1B 
ANP32A DALRD3 HUS1 NOL10 RPF1 TOR3A 
ANP32B DAP3 HUWE1 NOL11 RPF2 TOX4 
ANP32C DARS HYOU1 NOL12 RPL10A TP53RK 
ANP32E DARS2 HYPK NOL6 RPL11 TPCN1 
ANXA6 DAXX IAH1 NOL7 RPL14 TPD52L2 
ANXA7 DAZAP1 IARS NOL8 RPL26L1 TPGS1 
AP1B1 DBT IARS2 NOLC1 RPL27 TPI1 
AP1G1 DCAF10 IBA57 NOM1 RPL30 TPP2 
AP1M1 DCAF11 IBTK NONO RPL31 TPRA1 
AP2A1 DCAF12 ICK NOP10 RPL32 TPRG1L 
AP2A2 DCAF13 ICMT NOP14 RPL34 TPRKB 
AP2M1 DCAF5 ICT1 NOP16 RPL35 TPRN 
AP2S1 DCAF7 IDE NOP2 RPL35A TPST2 
AP3B1 DCAF8 IDH3A NOP56 RPL36AL TRA2A 
AP3D1 DCAKD IDH3B NOP58 RPL4 TRA2B 
AP3M1 DCTD IDH3G NOP9 RPL6 TRAF6 
AP3S1 DCTN2 IDI1 NPC1 RPL7L1 TRAF7 
AP3S2 DCTN3 IER3IP1 NPC2 RPL8 TRAP1 
AP4B1 DCTN4 IFNAR1 NPLOC4 RPN1 TRAPPC1 
AP5M1 DCTN5 IFNGR1 NPRL2 RPN2 TRAPPC10 
APEH DCTN6 IFRD1 NPRL3 RPP14 TRAPPC11 
APEX1 DCTPP1 IFT27 NQO2 RPP25L TRAPPC12 
APEX2 DCUN1D3 IKZF5 NR1H2 RPP30 TRAPPC13 
APH1A DCUN1D4 IL13RA1 NR2C1 RPP38 TRAPPC2L 
API5 DCUN1D5 IL6ST NR2C2AP RPRD1B TRAPPC3 
APIP DDA1 ILF2 NR3C2 RPS13 TRAPPC4 
APOA1BP DDB1 ILKAP NRBP1 RPS19BP1 TRAPPC5 
APOL2 DDB2 ILVBL NRDE2 RPS23 TRAPPC6B 
APOOL DDOST IMMT NRIP1 RPS24 TRAPPC8 
APOPT1 DDRGK1 IMP3 NSA2 RPS27L TRAPPC9 
APPL2 DDX1 IMP4 NSD1 RPS5 TRIAP1 
APTX DDX10 IMPAD1 NSDHL RPS6 TRIM26 
ARAF DDX17 INF2 NSFL1C RPS6KA3 TRIM27 
ARCN1 DDX18 ING1 NSMCE1 RPS6KB1 TRIM28 
ARF1 DDX19A INO80B NSMCE2 RPS6KB2 TRIM3 
ARF5 DDX19B INO80E NSMCE4A RPUSD3 TRIM39 

ARF6 DDX21 INPP5A NSRP1 RQCD1 TRIM39-
RPP21 

ARFGAP2 DDX23 INPP5K NSUN2 RRAGA TRIM41 
ARFGAP3 DDX24 INSIG2 NSUN5 RRM1 TRIM44 
ARFGEF2 DDX27 INTS1 NSUN6 RRN3 TRIM56 
ARFIP1 DDX39B INTS10 NT5C RRNAD1 TRIM65 
ARFIP2 DDX3X INTS12 NT5C3 RRP1 TRIM8 
ARFRP1 DDX41 INTS3 NT5DC1 RRP36 TRIP12 
ARHGAP35 DDX42 INTS4 NTAN1 RRP7A TRIP4 
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ARHGAP5 DDX46 INVS NTMT1 RRP8 TRMT1 
ARHGDIA DDX47 IP6K1 NTPCR RRS1 TRMT10C 
ARHGEF10
L DDX49 IP6K2 NUB1 RSAD1 TRMT112 

ARHGEF11 DDX54 IPO7 NUBP1 RSBN1L TRMT12 
ARHGEF40 DDX56 IPO8 NUBP2 RSC1A1 TRMT1L 
ARIH1 DDX59 IPO9 NUCB1 RSL1D1 TRMT2A 
ARIH2 DEDD IRAK1 NUCKS1 RSPRY1 TRNAU1AP 
ARIH2OS DEF8 IREB2 NUDC RSRC1 TRNT1 
ARL1 DEGS1 IRF2BP1 NUDCD1 RSRC2 TRPC4AP 
ARL14EP DEK IRF2BP2 NUDCD2 RTCA TRPT1 
ARL5A DENND1A IRF2BPL NUDT14 RTFDC1 TRUB2 
ARL6IP4 DENND4A IRGQ NUDT15 RTN4 TSC2 
ARL8A DENR ISCU NUDT2 RUFY1 TSEN15 
ARL8B DERA ISOC2 NUDT21 RUVBL1 TSEN34 
ARMC1 DERL1 IST1 NUDT22 RWDD1 TSFM 
ARMC10 DERL2 ISY1 NUDT3 RWDD3 TSG101 
ARMC5 DESI1 ISY1-RAB43 NUDT9 RXRA TSN 
ARMC6 DEXI ITCH NUFIP2 RXRB TSNAX 
ARMC7 DFFA ITFG1 NUP107 SAE1 TSPAN17 
ARMC8 DGCR14 ITFG3 NUP133 SAMD1 TSPAN31 
ARMCX3 DGCR2 ITGB1 NUP153 SAMD4B TSPYL1 
ARMCX5 DGCR6L ITGB1BP1 NUP54 SAMD8 TSR1 
ARNT DHPS ITM2B NUP62 SAMM50 TSR2 
ARPC1A DHRS12 ITPA NUP85 SAP18 TSR3 
ARPC2 DHRS7B ITPK1 NUPL2 SAP30 TSSC4 
ARPC5L DHX15 ITPKC NUTF2 SAP30BP TSTA3 
ARV1 DHX16 ITPRIPL2 NXF1 SAP30L TSTD2 
ASB1 DHX29 IVNS1ABP NXT1 SAR1A TTC1 
ASB6 DHX30 IWS1 OAT SARNP TTC17 
ASB7 DHX32 JAGN1 OAZ1 SARS TTC19 
ASB8 DHX33 JAK1 OAZ2 SART1 TTC32 
ASCC1 DHX36 JKAMP OBFC1 SART3 TTC33 
ASCC3 DHX38 JMJD4 OCEL1 SAT2 TTC37 
ASF1A DHX8 JMJD6 OCIAD1 SAV1 TTC4 
ASH2L DHX9 JMJD7 ODC1 SBDS TTC7B 
ASNA1 DIABLO JMJD8 OGFOD1 SCAF1 TTC9C 
ASNSD1 DIDO1 JOSD2 OGFOD3 SCAF11 TTI1 
ASPSCR1 DIEXF JTB OGFR SCAF4 TTI2 
ASUN DIMT1 JUND OGG1 SCAF8 TUBA1B 
ASXL1 DIRC2 KANSL2 OGT SCAMP2 TUBA1C 
ATAD1 DIS3 KANSL3 OLA1 SCAMP3 TUBB 
ATAD3A DIS3L2 KARS OPA1 SCAND1 TUBD1 
ATE1 DKC1 KAT2B OPA3 SCAP TUBGCP2 
ATF1 DLD KAT5 ORC4 SCARB2 TUBGCP4 
ATF2 DLG1 KAT8 ORMDL1 SCFD1 TUFM 
ATF4 DLGAP4 KBTBD2 ORMDL2 SCFD2 TUSC2 
ATF6 DLST KBTBD4 ORMDL3 SCNM1 TUT1 
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ATF7 DMAP1 KBTBD7 OS9 SCO1 TVP23B 
ATF7IP DNAAF2 KCMF1 OSBP SCO2 TXLNA 
ATG12 DNAJA2 KCTD20 OSBPL2 SCOC TXLNG 
ATG13 DNAJA3 KCTD21 OSBPL9 SCP2 TXN2 
ATG16L1 DNAJB11 KCTD6 OSGEP SCRIB TXNDC11 
ATG2A DNAJB12 KDM2A OSGIN2 SCRN3 TXNDC12 
ATG2B DNAJB9 KDM4A OSTM1 SCYL1 TXNDC15 
ATG3 DNAJC10 KDM5C OTUB1 SCYL2 TXNDC17 
ATG4B DNAJC11 KDSR OTUD5 SCYL3 TXNDC9 
ATG4D DNAJC14 KHDRBS1 OVCA2 SDAD1 TXNL1 
ATG5 DNAJC17 KHNYN OXA1L SDCBP TXNL4A 
ATG7 DNAJC19 KHSRP OXNAD1 SDCCAG3 TXNL4B 
ATIC DNAJC2 KIAA0100 P4HTM SDCCAG8 TXNRD1 
ATL2 DNAJC21 KIAA0141 PA2G4 SDE2 TYK2 
ATMIN DNAJC3 KIAA0195 PABPN1 SDF2 TYW1 
ATOX1 DNAJC4 KIAA0196 PACSIN2 SDF4 U2AF1 
ATP2C1 DNAJC5 KIAA0232 PAF1 SDHA U2AF1L4 
ATP5A1 DNAJC7 KIAA0319L PAFAH1B1 SDHAF2 U2AF2 
ATP5B DNAJC8 KIAA0391 PAGR1 SDHB UAP1 
ATP5C1 DNAJC9 KIAA0754 PAICS SDHC UBA1 
ATP5D DNASE2 KIAA0947 PAIP1 SDHD UBA2 
ATP5F1 DNLZ KIAA1143 PAIP2 SDR39U1 UBA3 
ATP5G2 DNM1L KIAA1191 PAK1IP1 SEC11A UBA5 
ATP5G3 DNM2 KIAA1429 PAK2 SEC13 UBA52 
ATP5H DNTTIP1 KIAA1430 PAM16 SEC16A UBAC2 
ATP5J DNTTIP2 KIAA1586 PANK2 SEC22B UBALD1 
ATP5J2 DOHH KIAA1704 PANK3 SEC22C UBAP1 
ATP5J2-
PTCD1 DOLK KIAA1715 PANK4 SEC23A UBAP2L 

ATP5L DPAGT1 KIAA1919 PANX1 SEC23IP UBB 
ATP5O DPH1 KIAA1967 PAPD4 SEC24A UBC 
ATP5S DPH2 KIAA2013 PAPD7 SEC24B UBE2A 
ATP5SL DPH3 KLC4 PAPOLA SEC24C UBE2B 
ATP6AP1 DPH5 KLF3 PARK7 SEC31A UBE2D2 
ATP6V0A2 DPM1 KLF9 PARL SEC61A1 UBE2D3 
ATP6V0B DPP7 KLHDC2 PARN SEC61B UBE2D4 
ATP6V0C DPY30 KLHDC3 PARP1 SEC61G UBE2E1 
ATP6V0D1 DR1 KLHL20 PARP3 SEC62 UBE2E2 
ATP6V0E1 DRAM2 KLHL25 PARP9 SEC63 UBE2E3 
ATP6V1C1 DRAP1 KLHL36 PATL1 SECISBP2 UBE2F 
ATP6V1D DRG2 KLHL5 PATZ1 SEH1L UBE2G2 
ATP6V1E1 DROSHA KLHL8 PAXBP1 SEL1L UBE2H 
ATP6V1F DSCR3 KPNA1 PBDC1 SELK UBE2I 
ATP6V1G1 DTWD1 KPNB1 PBX2 SELO UBE2J1 
ATP6V1H DUSP11 KRCC1 PCBP1 SELRC1 UBE2J2 
ATPAF2 DUSP14 KRR1 PCBP2 SELT UBE2K 
ATPIF1 DUSP16 KTI12 PCDHGB5 SENP2 UBE2L3 
ATRAID DUSP22 KTN1 PCF11 SENP3 UBE2M 
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ATRN DUT KXD1 PCGF1 SENP5 UBE2N 
ATXN10 DVL3 L3MBTL2 PCGF5 SENP6 UBE2NL 
ATXN1L DYM LACTB PCID2 SEPHS1 UBE2Q1 
ATXN2 DYNC1LI1 LAGE3 PCIF1 SERBP1 UBE2R2 
ATXN2L DYNLL2 LAMP1 PCM1 SERF2 UBE2V1 
ATXN7L3 DYNLRB1 LAMP2 PCMT1 SERGEF UBE2V2 
ATXN7L3B DYNLT1 LAMTOR1 PCNA SERINC1 UBE2W 
AUH E2F4 LAMTOR2 PCNX SERINC3 UBE2Z 
AUP1 E4F1 LAMTOR3 PCNXL4 SERPINB6 UBE3A 
AURKAIP1 EAF1 LAMTOR4 PCSK7 SERTAD2 UBE3B 
AXIN1 EAPP LAMTOR5 PCYOX1 SET UBE3C 
AZI2 EARS2 LAP3 PCYT1A SETD2 UBE4A 
AZIN1 EBAG9 LAPTM4A PDAP1 SETD3 UBE4B 
B3GALT6 EBNA1BP2 LARP1 PDCD2 SETD5 UBFD1 
B4GALT3 ECD LARP4 PDCD5 SETD6 UBIAD1 
B4GALT5 ECH1 LARP7 PDCD6 SETD7 UBL3 
B4GALT7 ECHDC1 LARS2 PDCD6IP SETD8 UBL4A 
BABAM1 ECHS1 LCOR PDE12 SETDB1 UBL5 
BAD ECI1 LDHA PDE6D SF1 UBL7 
BAG1 ECI2 LEMD2 PDGFC SF3A1 UBOX5 
BAG4 ECSIT LENG1 PDHB SF3A3 UBP1 
BAG6 EDC3 LEPROT PDHX SF3B1 UBQLN1 
BAHD1 EDC4 LETM1 PDK2 SF3B14 UBQLN2 
BANF1 EDEM3 LETMD1 PDLIM5 SF3B2 UBQLN4 
BAP1 EDF1 LGALSL PDP2 SF3B3 UBR2 
BAZ1B EED LHPP PDS5A SF3B4 UBR7 
BBS4 EEF1B2 LIAS PDZD11 SF3B5 UBTD1 
BCAP29 EEF1E1 LIG3 PDZD8 SFSWAP UBTF 
BCAP31 EEF2 LIG4 PEBP1 SGK196 UBXN2A 
BCAS2 EEFSEC LIN37 PEF1 SGMS1 UBXN4 
BCAT2 EFCAB14 LIN54 PELO SGPL1 UBXN6 
BCCIP EFHA1 LIN7C PELP1 SGSM3 UCHL3 
BCKDHA EFR3A LINS PEPD SGTA UCHL5 
BCKDK EFTUD1 LIPT1 PES1 SH3BP5L UCK1 
BCL2L1 EFTUD2 LMAN1 PET100 SH3GLB1 UCK2 
BCL2L13 EGLN2 LMBRD1 PET117 SHARPIN UCKL1 
BCL2L2-
PABPN1 EHMT1 LMF2 PEX1 SHOC2 UEVLD 

BCL7B EI24 LMO4 PEX11A SIAH1 UFC1 
BCLAF1 EID2 LNX2 PEX11B SIAH2 UFD1L 

BCS1L EIF1 LOC100129
361 PEX12 SIGMAR1 UFL1 

BECN1 EIF1AD LOC100289
561 PEX13 SIKE1 UFSP2 

BFAR EIF1B LOC441155 PEX14 SIL1 UGP2 

BIRC2 EIF2A LOC729020 PEX16 SIRT2 UHRF1BP1
L 

BIVM-
ERCC5 EIF2AK1 LONP1 PEX19 SIRT3 ULK1 
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BLMH EIF2AK3 LONP2 PEX2 SIRT5 ULK3 
BLOC1S1 EIF2AK4 LPCAT3 PEX26 SIRT6 UNC50 
BLOC1S2 EIF2B2 LPIN1 PEX5 SIVA1 UNG 
BLOC1S3 EIF2B3 LPPR2 PEX6 SKIL UPF1 
BLOC1S4 EIF2B4 LRFN3 PFDN2 SKIV2L UPF2 
BLOC1S6 EIF2B5 LRPAP1 PFDN4 SKIV2L2 UPF3B 
BLZF1 EIF2D LRPPRC PFDN5 SKP1 UPRT 
BMI1 EIF2S1 LRRC14 PFDN6 SLC15A4 UQCC 
BMS1 EIF2S2 LRRC24 PFN1 SLC20A1 UQCR10 
BNIP1 EIF3A LRRC28 PGAM5 SLC25A11 UQCR11 
BNIP2 EIF3B LRRC40 PGBD3 SLC25A26 UQCRB 
BOD1 EIF3D LRRC41 PGK1 SLC25A28 UQCRC1 
BOLA1 EIF3E LRRC42 PGLS SLC25A3 UQCRC2 
BOLA3 EIF3G LRRC47 PGP SLC25A32 UQCRHL 
BPGM EIF3H LRRC57 PGPEP1 SLC25A38 UQCRQ 
BPNT1 EIF3I LRRC59 PGRMC2 SLC25A39 URGCP 
BPTF EIF3J LRRC8A PHACTR4 SLC25A44 URI1 
BRAT1 EIF3K LRRFIP2 PHAX SLC25A46 URM1 
BRD2 EIF3L LRSAM1 PHB SLC25A5 UROD 
BRD4 EIF3M LSG1 PHB2 SLC27A4 UROS 
BRD7 EIF4A1 LSM1 PHC2 SLC30A1 USB1 
BRD9 EIF4A3 LSM10 PHF10 SLC30A5 USE1 
BRE EIF4E2 LSM14A PHF12 SLC30A9 USF1 
BRF1 EIF4G1 LSM14B PHF20L1 SLC35A2 USF2 
BRF2 EIF4G2 LSM2 PHF23 SLC35A4 USP10 
BRIX1 EIF4G3 LSM3 PHF5A SLC35B1 USP14 
BRK1 EIF4H LSM4 PHKB SLC35B2 USP16 
BRMS1 EIF5 LSM5 PHPT1 SLC35C2 USP19 
BRPF1 EIF5A LSM6 PHRF1 SLC35E1 USP22 
BRPF3 EIF5AL1 LSM7 PI4K2A SLC35E3 USP25 
BSDC1 EIF5B LSMD1 PI4KA SLC35F5 USP27X 
BSG EIF6 LSS PI4KB SLC38A2 USP33 
BTBD2 ELAC2 LTV1 PIAS1 SLC39A1 USP38 
BTD ELAVL1 LUC7L2 PICALM SLC39A3 USP39 
BTF3 ELF2 LUC7L3 PICK1 SLC39A7 USP4 
BUB3 ELK1 LUZP6 PIGC SLC41A3 USP47 
BZW1 ELK4 LYRM1 PIGF SLC46A3 USP5 
C10orf12 ELL2 LYRM4 PIGG SLC48A1 USP7 
C10orf2 ELMOD3 LYRM5 PIGH SLIRP USP8 
C10orf76 ELOVL1 LYSMD1 PIGK SLMO2 USP9X 
C10orf88 ELP2 LYSMD3 PIGP SLTM UTP11L 
C11orf1 ELP3 LYSMD4 PIGS SMAD2 UTP14A 
C11orf24 ELP4 LZTR1 PIGT SMAD4 UTP14C 
C11orf31 ELP6 M6PR PIGU SMAD5 UTP15 
C11orf57 EMC1 MAD2L1BP PIGW SMAP1 UTP23 
C11orf58 EMC10 MAD2L2 PIGX SMARCA2 UTP3 
C11orf73 EMC2 MAEA PIGY SMARCA4 UTP6 
C11orf83 EMC3 MAGED1 PIH1D1 SMARCAL1 UXS1 
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C12orf10 EMC4 MAGEF1 PIK3C3 SMARCB1 UXT 
C12orf23 EMC6 MAGOH PIK3CB SMARCE1 VAC14 
C12orf29 EMC7 MAGT1 PIK3R1 SMC1A VAMP3 
C12orf44 EMC8 MAK16 PIK3R4 SMC5 VAMP5 
C12orf45 EMC9 MALSU1 PIN1 SMCR7L VAPA 
C12orf5 EMD MAN1A2 PINK1 SMEK1 VAPB 
C12orf52 EMG1 MAN1B1 PINX1 SMEK2 VARS2 
C12orf57 ENDOG MAN2A2 PIP5K1A SMG5 VBP1 
C12orf65 ENOPH1 MAN2B2 PITHD1 SMG7 VCP 
C12orf66 ENSA MAN2C1 PITPNA SMG8 VDAC3 

C14orf1 ENTPD4 MAP1LC3B
2 PITPNB SMIM11 VEZT 

C14orf119 ENTPD6 MAP2K1 PITRM1 SMIM12 VIMP 
C14orf142 ENY2 MAP2K2 PLA2G12A SMIM8 VMA21 
C14orf166 EPC1 MAP2K5 PLAA SMNDC1 VPS16 
C14orf2 EPM2AIP1 MAP3K7 PLBD2 SMPD1 VPS18 
C14orf28 EPN1 MAP4K4 PLD3 SMPD4 VPS25 
C15orf38-
AP3S2 EPRS MAPK1 PLEKHA1 SMU1 VPS26A 

C15orf57 ERAL1 MAPK1IP1L PLEKHJ1 SMUG1 VPS26B 
C16orf13 ERAP1 MAPK6 PLEKHM1 SNAP23 VPS28 
C16orf62 ERCC1 MAPK8 PLGRKT SNAP29 VPS29 
C16orf72 ERCC2 MAPK9 PLIN3 SNAP47 VPS33A 
C16orf91 ERCC3 MAPKAP1 PLOD1 SNAPC3 VPS36 
C17orf49 ERCC5 MAPKAPK2 PLOD3 SNAPC5 VPS37A 
C17orf51 ERGIC2 MAPKAPK5 PLRG1 SNAPIN VPS4A 
C17orf58 ERGIC3 MAPRE2 PMF1 SND1 VPS51 

C17orf59 ERH MARCH2 PMF1-
BGLAP SNF8 VPS52 

C17orf70 ERI3 MARCH5 PMPCA SNRNP200 VPS53 
C17orf85 ERICH1 MARCH6 PMPCB SNRNP25 VPS72 
C18orf21 ERLEC1 MARCH7 PMS1 SNRNP27 VRK2 
C18orf25 ERO1L MARK3 PMVK SNRNP35 VRK3 
C18orf32 ERP44 MARK4 PNISR SNRNP40 VTA1 
C18orf8 ESD MARS PNKD SNRNP48 VTI1A 
C19orf43 ESF1 MARS2 PNKP SNRNP70 VTI1B 
C19orf53 ETF1 MAT2B PNN SNRPA WAC 
C19orf60 ETFA MAVS PNO1 SNRPB WAPAL 
C19orf70 ETFB MAX PNPLA6 SNRPB2 WARS2 
C1GALT1 ETV6 MAZ PNPLA8 SNRPC WBP11 
C1QBP EWSR1 MBD1 PNPO SNRPD1 WBP1L 
C1orf109 EXD2 MBD2 PNPT1 SNRPD2 WBP2 
C1orf122 EXOC1 MBD3 PNRC2 SNRPD3 WBP4 
C1orf123 EXOC2 MBD4 POFUT1 SNRPG WBSCR22 
C1orf174 EXOC3 MBLAC1 POLD2 SNUPN WDR1 
C1orf43 EXOC4 MBNL2 POLDIP2 SNW1 WDR12 
C1orf50 EXOC7 MBTPS1 POLDIP3 SNX12 WDR13 
C1orf52 EXOC8 MBTPS2 POLE3 SNX13 WDR18 
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C20orf111 EXOSC1 MCAT POLE4 SNX17 WDR20 
C20orf24 EXOSC10 MCCC1 POLG SNX18 WDR24 
C21orf2 EXOSC2 MCEE POLH SNX19 WDR25 
C21orf33 EXOSC4 MCFD2 POLK SNX2 WDR26 
C21orf59 EXOSC7 MCM3AP POLL SNX25 WDR3 
C22orf28 EXOSC8 MCM7 POLM SNX3 WDR33 
C22orf29 EXT2 MCMBP POLR1C SNX4 WDR36 
C22orf32 EXTL3 MCOLN1 POLR1D SNX5 WDR41 
C2orf47 FADD MCPH1 POLR1E SNX6 WDR43 
C2orf49 FAF1 MCRS1 POLR2A SNX9 WDR44 
C2orf69 FAF2 MCTS1 POLR2B SOCS4 WDR45 
C2orf74 FAHD1 MCU POLR2C SOCS6 WDR45B 
C2orf76 FAM104B MDC1 POLR2D SOD1 WDR46 
C3orf17 FAM108A1 MDP1 POLR2E SON WDR55 
C3orf37 FAM108B1 ME2 POLR2F SPAG7 WDR59 
C3orf38 FAM114A2 MEAF6 POLR2G SPAG9 WDR5B 
C3orf58 FAM118B MECP2 POLR2H SPATA2 WDR6 
C4orf27 FAM120A MED10 POLR2I SPATA5L1 WDR61 

C4orf3 FAM120AO
S MED11 POLR2J SPCS1 WDR70 

C4orf52 FAM120B MED13 POLR2K SPCS3 WDR73 
C5orf15 FAM122A MED14 POLR2L SPECC1L WDR74 
C5orf24 FAM127B MED16 POLR3C SPEN WDR75 
C6orf1 FAM134A MED19 POLR3E SPG11 WDR77 
C6orf106 FAM134C MED20 POLR3GL SPG21 WDR81 
C6orf120 FAM136A MED21 POLR3K SPG7 WDR83OS 
C6orf136 FAM149B1 MED24 POM121 SPHAR WDR85 
C6orf226 FAM160A2 MED29 POM121C SPNS1 WDR89 
C6orf47 FAM160B1 MED31 POMGNT1 SPOP WDTC1 
C6orf57 FAM160B2 MED4 POMP SPPL2B WIBG 
C6orf62 FAM162A MED6 POMT1 SPPL3 WIPI2 
C6orf89 FAM168B MED7 POP4 SPRYD3 WIZ 
C7orf25 FAM173A MED8 POP5 SPRYD7 WRAP53 
C7orf26 FAM173B MEF2A POP7 SPSB3 WRB 
C7orf49 FAM174A MEF2BNB PPA1 SPTSSA WRNIP1 
C7orf50 FAM175B MEMO1 PPA2 SPTY2D1 WSB2 
C7orf55 FAM177A1 MEN1 PPAN SRA1 WTAP 
C7orf55-
LUC7L2 FAM178A MEPCE PPAN-

P2RY11 SRD5A3 WTH3DI 

C7orf73 FAM192A METAP1 PPARA SREBF2 WWP1 
C8orf33 FAM199X METAP2 PPARD SREK1IP1 WWP2 
C8orf40 FAM200A METRN PPCS SRM XIAP 
C8orf59 FAM204A METTL13 PPFIA1 SRP14 XPA 
C8orf76 FAM206A METTL14 PPHLN1 SRP19 XPC 
C8orf82 FAM208B METTL16 PPID SRP54 XPNPEP1 
C9orf123 FAM20B METTL17 PPIE SRP68 XPO1 
C9orf16 FAM210B METTL18 PPIF SRP72 XPO7 
C9orf37 FAM32A METTL20 PPIG SRP9 XPOT 
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C9orf64 FAM35A METTL21A PPIH SRPR XRCC5 
C9orf69 FAM3A METTL23 PPIL4 SRPRB XRCC6 
C9orf78 FAM50A METTL2A PPM1A SRR XYLT2 
C9orf89 FAM50B METTL2B PPM1B SRRD YAF2 
CAB39 FAM58A METTL3 PPP1CA SRRM1 YARS 
CALCOCO2 FAM63A METTL5 PPP1CC SRSF1 YARS2 
CALM1 FAM73B MFAP1 PPP1R10 SRSF10 YIF1A 
CALR FAM8A1 MFAP3 PPP1R11 SRSF11 YIF1B 
CALU FAM96A MFF PPP1R15B SRSF2 YIPF1 
CAMTA1 FAM96B MFN1 PPP1R37 SRSF3 YIPF3 
CAMTA2 FAM98A MFSD11 PPP1R7 SRSF4 YIPF4 
CANT1 FARS2 MFSD12 PPP1R8 SRSF7 YIPF5 
CANX FARSA MFSD3 PPP2CA SRSF8 YIPF6 
CAPN1 FARSB MFSD5 PPP2CB SS18L2 YKT6 
CAPN7 FASTK MGAT2 PPP2R1A SSB YME1L1 
CAPNS1 FASTKD2 MGAT4B PPP2R2A SSBP1 YPEL2 
CAPRIN1 FASTKD5 MGME1 PPP2R2D SSNA1 YRDC 
CAPZA2 FBRSL1 MGMT PPP2R3C SSR1 YTHDC1 
CAPZB FBXL15 MGRN1 PPP2R4 SSR2 YTHDF1 
CARKD FBXL17 MGST3 PPP2R5A SSR3 YTHDF2 
CARS FBXL3 MIA3 PPP2R5B SSRP1 YTHDF3 
CARS2 FBXL4 MIB1 PPP2R5C SSSCA1 YWHAB 
CASC3 FBXL5 MICALL1 PPP2R5D SSU72 YWHAE 
CASC4 FBXL6 MICU1 PPP2R5E ST3GAL2 YY1 

CASP3 FBXO11 MID1IP1 PPP4C ST6GALNA
C6 YY1AP1 

CASP7 FBXO18 MIDN PPP4R1 ST7 ZADH2 
CASP9 FBXO22 MIEN1 PPP4R2 STAM ZBED4 
CBR4 FBXO28 MIER1 PPP5C STAM2 ZBED6 
CBX3 FBXO3 MIF PPP6C STAMBP ZBTB1 
CBX5 FBXO38 MIF4GD PPP6R2 STARD3 ZBTB10 
CC2D1A FBXO42 MIIP PPP6R3 STARD7 ZBTB11 
CC2D1B FBXO45 MINOS1 PPWD1 STAT3 ZBTB14 
CCAR1 FBXO6 MIS12 PQBP1 STAU1 ZBTB17 
CCBL1 FBXO7 MITD1 PQLC1 STAU2 ZBTB18 
CCDC12 FBXW11 MKI67IP PQLC2 STIM1 ZBTB21 
CCDC124 FBXW2 MKKS PRADC1 STIP1 ZBTB25 
CCDC127 FBXW4 MKLN1 PRCC STK11 ZBTB33 
CCDC130 FBXW5 MKNK1 PRDM4 STK16 ZBTB39 
CCDC137 FBXW7 MKRN2 PRDX1 STOM ZBTB44 
CCDC149 FCF1 MLEC PRDX2 STOML1 ZBTB45 
CCDC174 FDFT1 MLF2 PRDX3 STOML2 ZBTB5 
CCDC22 FDPS MLH1 PRDX5 STRAP ZBTB6 
CCDC23 FDX1 MLLT1 PRDX6 STRIP1 ZBTB7A 
CCDC25 FECH MLLT10 PREB STRN3 ZBTB8OS 
CCDC47 FEM1C MLST8 PREP STT3A ZC3H10 
CCDC50 FEN1 MLX PRKAA1 STT3B ZC3H11A 
CCDC51 FEZ2 MMAA PRKAB1 STUB1 ZC3H13 
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CCDC59 FGFR1OP2 MMADHC PRKACA STX10 ZC3H15 
CCDC71 FH MMS19 PRKAG1 STX17 ZC3H18 
CCDC86 FIBP MNAT1 PRKAR1A STX4 ZC3H3 
CCDC90A FICD MNF1 PRKRIP1 STX5 ZC3H7A 
CCDC92 FIP1L1 MOB4 PRMT1 STX8 ZC3H7B 
CCDC94 FIS1 MOGS PRMT5 STXBP3 ZCCHC10 
CCM2 FIZ1 MON1A PRMT7 STYXL1 ZCCHC11 
CCNB1IP1 FKBP3 MON2 PROSC SUB1 ZCCHC3 
CCNDBP1 FKBP8 MORC2 PRPF18 SUCLA2 ZCCHC7 
CCNG1 FKBPL MORF4L2 PRPF19 SUCLG1 ZCCHC9 
CCNH FKRP MOSPD1 PRPF3 SUCLG2 ZCRB1 
CCNK FLAD1 MPC2 PRPF31 SUGP1 ZDHHC14 
CCNL1 FLCN MPDU1 PRPF4 SUGT1 ZDHHC16 
CCNL2 FLOT1 MPG PRPF40A SUMO1 ZDHHC2 

CCNY FLOT2 MPHOSPH1
0 PRPF4B SUMO3 ZDHHC3 

CCPG1 FNDC3A MPI PRPF6 SUN2 ZDHHC4 
CCT3 FNTA MPLKIP PRPF8 SUPT4H1 ZDHHC5 
CCT4 FNTB MPND PRPS1 SUPT5H ZDHHC8 
CCT5 FOPNL MPPE1 PRPSAP1 SUPT6H ZFAND1 
CCT6A FOXK2 MPV17L2 PRR14 SUPT7L ZFAND2B 
CCT7 FOXP4 MRFAP1 PRRC1 SUPV3L1 ZFAND3 
CCT8 FOXRED1 MRFAP1L1 PRRC2A SURF1 ZFAND5 
CD164 FPGS MRI1 PRRC2B SURF4 ZFAND6 
CD320 FPGT MRM1 PRUNE SURF6 ZFP91 
CD46 FRA10AC1 MRP63 PSEN1 SUV420H1 ZFPL1 
CD63 FTO MRPL1 PSEN2 SUZ12 ZFR 
CD81 FTSJ1 MRPL10 PSENEN SYAP1 ZFYVE1 
CD82 FTSJ2 MRPL11 PSKH1 SYF2 ZFYVE19 
CD99L2 FTSJ3 MRPL12 PSMA1 SYMPK ZFYVE27 
CDC123 FTSJD1 MRPL13 PSMA2 SYNCRIP ZGPAT 
CDC16 FTSJD2 MRPL14 PSMA3 SYNJ2BP ZHX1 

CDC23 FUBP1 MRPL15 PSMA4 SYNJ2BP-
COX16 

ZHX1-
C8ORF76 

CDC27 FUK MRPL16 PSMA5 SYPL1 ZHX2 
CDC37 FUNDC2 MRPL17 PSMA6 SYS1 ZHX3 
CDC37L1 FXN MRPL18 PSMA7 SYVN1 ZKSCAN1 
CDC40 FYTTD1 MRPL19 PSMB1 SZRD1 ZMAT2 
CDC42 FZR1 MRPL2 PSMB2 TAB1 ZMAT3 
CDC5L G3BP1 MRPL20 PSMB3 TAB2 ZMAT5 
CDIP1 GAA MRPL21 PSMB4 TACO1 ZMPSTE24 
CDIPT GABARAP MRPL22 PSMB5 TADA1 ZMYM2 

CDK12 GABARAPL
2 MRPL23 PSMB6 TADA3 ZMYND11 

CDK13 GABPB1 MRPL24 PSMB7 TAF10 ZNF121 

CDK16 GADD45GI
P1 MRPL27 PSMC2 TAF11 ZNF131 

CDK2AP1 GALK2 MRPL28 PSMC3 TAF12 ZNF134 
CDK4 GALNS MRPL3 PSMC4 TAF13 ZNF138 
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CDK5RAP1 GALNT1 MRPL30 PSMC5 TAF15 ZNF142 
CDK8 GALNT2 MRPL32 PSMC6 TAF1D ZNF143 
CDK9 GALT MRPL33 PSMD1 TAF4 ZNF146 
CDS2 GANAB MRPL35 PSMD10 TAF5L ZNF174 
CDV3 GAPVD1 MRPL36 PSMD11 TAF8 ZNF181 
CDYL GARS MRPL37 PSMD12 TAF9 ZNF189 
CEBPG GART MRPL38 PSMD13 TALDO1 ZNF195 
CEBPZ GATAD2A MRPL4 PSMD14 TAMM41 ZNF197 
CECR5 GATAD2B MRPL40 PSMD2 TANGO2 ZNF207 
CELF1 GATC MRPL41 PSMD3 TANGO6 ZNF22 
CENPB GBA MRPL42 PSMD4 TANK ZNF226 
CENPT GBA2 MRPL43 PSMD5 TAOK2 ZNF232 
CEP104 GBF1 MRPL44 PSMD6 TAPBP ZNF24 
CEP57 GCC1 MRPL45 PSMD7 TAPT1 ZNF259 
CEP63 GCDH MRPL46 PSMD8 TARDBP ZNF274 
CERK GCLC MRPL47 PSMD9 TARS ZNF277 
CERS2 GCLM MRPL48 PSME1 TATDN1 ZNF280D 
CGGBP1 GDE1 MRPL49 PSME3 TATDN2 ZNF281 
CHAMP1 GDI2 MRPL50 PSMF1 TAX1BP1 ZNF3 
CHCHD1 GDPGP1 MRPL51 PSMG2 TAZ ZNF32 
CHCHD2 GEMIN7 MRPL52 PSMG3 TBC1D1 ZNF322 
CHCHD3 GEMIN8 MRPL53 PSMG4 TBC1D14 ZNF326 
CHCHD4 GET4 MRPL54 PSPC1 TBC1D15 ZNF330 
CHCHD5 GFER MRPL55 PTCD1 TBC1D20 ZNF335 
CHCHD7 GFM1 MRPL9 PTCD3 TBC1D22A ZNF33A 
CHD1L GFOD2 MRPS10 PTDSS1 TBC1D23 ZNF343 
CHD4 GGCT MRPS11 PTEN TBC1D7 ZNF347 
CHD8 GGNBP2 MRPS12 PTGES2 TBC1D9B ZNF37A 
CHERP GGT7 MRPS14 PTGES3 TBCA ZNF384 
CHID1 GHDC MRPS15 PTOV1 TBCB ZNF394 
CHKB GHITM MRPS16 PTP4A2 TBCC ZNF397 
CHMP1A GID8 MRPS17 PTPMT1 TBCCD1 ZNF398 
CHMP2A GINM1 MRPS18A PTPN1 TBCD ZNF408 
CHMP2B GIPC1 MRPS18B PTPN11 TBCE ZNF41 
CHMP4A GLCE MRPS18C PTPN23 TBK1 ZNF410 
CHMP4B GLE1 MRPS2 PTRH1 TBRG1 ZNF414 
CHMP5 GLG1 MRPS21 PTRH2 TBRG4 ZNF419 
CHMP6 GLI4 MRPS22 PTRHD1 TCAIM ZNF438 
CHP1 GLO1 MRPS23 PUF60 TCEANC2 ZNF444 
CHPT1 GLRX2 MRPS24 PUM1 TCEB1 ZNF446 
CHRAC1 GLRX3 MRPS25 PUM2 TCEB2 ZNF48 
CHST12 GLRX5 MRPS26 PURA TCEB3 ZNF480 
CHST7 GLT8D1 MRPS27 PURB TCERG1 ZNF491 
CHTOP GLTP MRPS28 PUS3 TCF12 ZNF506 
CHUK GLTPD1 MRPS30 PUS7 TCF20 ZNF507 
CHURC1 GLYR1 MRPS31 PUSL1 TCF25 ZNF513 
CHURC1-
FNTB GMPPA MRPS33 PWP1 TCP1 ZNF518A 
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CIAO1 GMPR2 MRPS34 PWP2 TCTN3 ZNF526 
CIB1 GNB1 MRPS35 PWWP2A TDP2 ZNF561 
CIC GNB2 MRPS5 PXMP4 TDRD3 ZNF574 
CINP GNE MRPS6 PYCR2 TECR ZNF576 
CIR1 GNL2 MRPS7 PYGO2 TEF ZNF579 
CIRH1A GNL3 MRPS9 PYURF TEFM ZNF580 
CISD1 GNPAT MRRF QARS TELO2 ZNF592 
CISD2 GNPDA1 MRS2 QRICH1 TERF2 ZNF593 
CISD3 GNPNAT1 MRTO4 QRSL1 TERF2IP ZNF598 
CKAP4 GNPTG MSANTD3 QSOX1 TEX2 ZNF620 
CLCC1 GNS MSH3 QTRT1 TEX261 ZNF622 
CLCN3 GOLGA1 MSH6 R3HCC1 TEX264 ZNF623 
CLCN7 GOLGA2 MSL3 R3HDM2 TFAM ZNF638 
CLINT1 GOLGA3 MSMP RAB10 TFB1M ZNF639 
CLK3 GOLGA5 MSRA RAB11A TFB2M ZNF641 
CLNS1A GOLGA7 MSRB2 RAB11B TFCP2 ZNF644 
CLOCK GOLGB1 MTA2 RAB14 TFDP1 ZNF649 
CLP1 GOLPH3 MTCH1 RAB18 TFE3 ZNF654 
CLPP GOLT1B MTCH2 RAB1A TFG ZNF655 
CLPTM1 GOPC MTDH RAB1B TFIP11 ZNF664 
CLPTM1L GORASP1 MTERFD1 RAB21 TFPT ZNF668 

CLPX GORASP2 MTERFD2 RAB22A TGIF2-
C20orf24 ZNF672 

CLTA GOSR1 MTERFD3 RAB2A TGOLN2 ZNF687 
CLTB GOSR2 MTFMT RAB2B THADA ZNF688 
CLTC GPAA1 MTFR1 RAB3GAP1 THAP3 ZNF691 
CMAS GPANK1 MTFR1L RAB3GAP2 THAP4 ZNF7 
CMC1 GPATCH4 MTIF3 RAB40C THAP5 ZNF706 
CMC2 GPBP1 MTM1 RAB4A THAP7 ZNF721 
CMC4 GPBP1L1 MTMR1 RAB5A THOC5 ZNF740 
CMPK1 GPHN MTMR3 RAB5B THOC7 ZNF76 
CNBP GPI MTMR6 RAB5C THOP1 ZNF764 
CNIH GPKOW MTO1 RAB6A THRAP3 ZNF770 
CNIH4 GPN1 MTPAP RAB7A THTPA ZNF777 
CNNM2 GPN2 MTRR RAB9A THUMPD3 ZNF787 
CNNM3 GPN3 MTSS1 RABEP1 THYN1 ZNF805 
CNOT1 GPR107 MTX2 RABEPK TIA1 ZNF814 
CNOT11 GPR108 MUL1 RABGEF1 TIAL1 ZNF830 
CNOT2 GPS1 MUS81 RABGGTA TICAM1 ZNF865 
CNOT3 GPS2 MUT RABGGTB TIGD5 ZNF91 
CNOT4 GPX4 MVD RAD1 TIGD6 ZNHIT1 
CNOT7 GRAMD4 MXD4 RAD17 TIMM10 ZNHIT3 
CNST GRHPR MXI1 RAD23B TIMM10B ZNRD1 
COA1 GRINA MYBBP1A RAD50 TIMM13 ZRANB1 
COA3 GRIPAP1 MYEOV2 RAD51C TIMM17A ZRANB2 
COA4 GRPEL1 MYL12B RAF1 TIMM17B ZSCAN21 
COA5 GRSF1 MYNN RALA TIMM21 ZSCAN29 
COA6 GRWD1 MYO1E RALBP1 TIMM22 ZSCAN32 
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COASY GSK3A MYPOP RALY TIMM44 ZSWIM1 
COG1 GSK3B MZF1 RAN TIMM50 ZSWIM7 
COG2 GSPT1 MZT2A RANBP1 TIMM8B ZSWIM8 
COG3 GSPT2 MZT2B RANBP2 TIMM9 ZW10 
COG4 GSR N4BP1 RANBP3 TIMMDC1 ZXDA 
COG7 GSS N4BP2L2 RANBP6 TINF2 ZXDB 
COG8 GSTK1 NAA10 RANGAP1 TIPRL ZZZ3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 

APPENDIX D 

NFKB AND IFNG NETWORK 
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APPENDIX E 

BIO FUNCTION ANALYSIS PANEL IN RELAPSE AND POST-RELAPSE TUMORS OF 

PATIENT ONE 
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Bio function analysis between primary and relapse tumor of patient one: 

 

 Bio function analysis between relapse and post-relapse tumor of patient one:

 

 

 


