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ABSTRACT

Vertical taking off and landing (VTOL) drones started to emerge at the beginning

of this century, and finds applications in the vast areas of mapping, rescuing, logistics,

etc. Usually a VTOL drone control system design starts from a first principles model.

Most of the VTOL drones are in the shape of a quad-rotor which is convenient for

dynamic analysis.

In this project, a VTOL drone with shape similar to a Convair XFY-1 is studied

and the primary focus is developing and examining an alternative method to identify

a system model from the input and output data, with which it is possible to estimate

system parameters and compute model uncertainties on discontinuous data sets. We

verify the models by designing controllers that stabilize the yaw, pitch, and roll angles

for the VTOL drone in the hovering state.

This project comprises of three stages: an open-loop identification to identify the

yaw and pitch dynamics, an intermediate closed-loop identification to identify the roll

action dynamic and a closed-loop identification to refine the identification of yaw and

pitch action. In open and closed loop identifications, the reference signals sent to the

servos were recorded as inputs to the system and the angles and angular velocities in

yaw and pitch directions read by inertial measurement unit were recorded as outputs

of the system. In the intermediate closed loop identification, the difference between

the reference signals sent to the motors on the contra-rotators was recorded as input

and the roll angular velocity is recorded as output. Next, regressors were formed by

using a coprime factor structure and then parameters of the system were estimated

using the least square method. Multiplicative and divisive uncertainties were calcu-

lated from the data set and were used to guide PID loop-shaping controller design.
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Chapter 1

INTRODUCTION

1.1 Overview

VTOL drones have gained great popularity since the beginning of this century.

They have been widely used in surveillance, mapping, and rescuing. Recently, Ama-

zon.com has been experimenting with delivering packages via VTOL drones.

The advantages of VTOL drones include their ability to take off and land almost

everywhere as well as its ability of switching between hovering mode and forward

flying mode. They are usually small in size such that they could be dispatched to

situations that have limited room for the task. Also due to recent development in

power electronics and electric machines, VTOL drones now have higher capability

of carrying weights.

Unfortunately, VTOL drone also comes with the disadvantage of being vulnera-

ble as it is easily affected by wind. Thus, it is critical for the control system to reject

the disturbances from wind and other factors and stabilize the drone. Another is-

sue with VTOL drones is the navigation, for the consideration of cost-performance,

the inertia measurement units (IMU) on VTOL drones do not have high precisions.

This is also due to the limitation of its size as high precision IMU modules are often

heavy and big in size. Thus it’s a challenge to design control and navigation systems

for VTOL drones to provide enough guarantee for the fulfillment of their tasks.

The design of navigation system precedes the control system as the control sys-

tem, typically referred as feedback control system, will have to take in the position

and attitude information provided by the navigation system as input. The position
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and attitude information is acquired from attitude estimation and position estimation.

Attitude estimation makes use of an IMU which typically comprises of an accelerom-

eter and a gyroscope that collect acceleration and Euler angular rates. Depending

on the algorithm used for attitude estimation, sometimes a magnetometer will be

used for collecting Euler angles. Attitude estimation also makes use of acceleration

data to complement the gyroscope and magnetometer data. Position estimation uses

a GPS receiver and a barometer that collects the coordinate and height, as well as

the acceleration data from IMU. For the present stage of this project, the focus is

on maintaining the hovering status, position estimation is not the main purpose of

using the acceleration data.

A well designed control system is necessary for a VTOL drone to fly as users

would demand. Generally speaking, the features of a control system we need to take

into considerations are: the transient response (including settle time, overshoot and

undershoot), the steady state error, the sensitivity to the disturbance, and the easiness

for implementation. For a VTOL drone, the transient response is themost important

thing as taking off could be vital, especially in the presence of wind it needs to take off

fast and settle quickly. In the hovering status, steady state error will cause the drone

to drift, so the system should minimize steady state error. With the disturbance

from the wind, vibration from the motors, measurement noises and quantization

error from digital implementation, the system will have certain level of uncertainties.

The robustness performance is the ability of the VTOL drone to remain steady in the

presence of uncertainties and is one of the targets for controller design in this project.

While good system performance could be achieved by using advanced and complex

control algorithms, we still need to consider the ease of implementation. Usually, the

performance of a computational source is positive related to the size and weight of it.
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With limited weight carrying capability, we need to use simple yet high performance

controller such as PID algorithm for an embedded system implementation.

In a systematic way of controller design, it is necessary to acquire a model either

in form of transfer function or differential equations. System identification is to esti-

mate system parameters from input and output data sets. For this project, linear time

invariant systems at the equilibrium of hovering state were identified. By designing

controllers for the models, the VTOL drone will stay hovering in the air, the pitch

and yaw angles will be in the vicinity of zero.

Traditionally, for the input signals, leading zeros and ending zeros should be

added to guarantee the system starts from rest and ends in rest. However, in the

system identification experiments of the VTOL drone, especially in the open loop

test, there was no controller that regulates the attitude of the drone and the drone

would quickly crash into the ground or hit the tethers which were used for restricting

the movement of the drone. Thus the input and output data have to be truncated

in which the VTOL drone is not hitting anything and the Euler angles are not too

deviated from zero. In this case, the data sets will be short and discontinuous which

are not suitable for traditional identification methods. An innovative way of con-

structing estimation problems in system identification is proposed in this thesis that

can make use of these discontinuous data sets to get reliable models.

1.2 Literature Review

For the purpose of maintaining the hovering status, attitude estimation is the pri-

mary focus in the navigation system because as long as the yaw and pitch angles are

zero, the VTOL drone would not fall down. When processing attitude data, it should

be noticed that the data from magnetometers are usually with respect to the earth
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gravity frame while the accelerometer and gyro-meter data are usually with respect

to the VTOL drone body frame. As the controller will be designed with respect to

the earth frame as input, the next step is sensor fusion in which the acceleration, an-

gular rate, and Euler angles will be all be corrected and converted to the earth frame.

Various methods have been developed to take care of this step such as Kalman fil-

ter based sensor fusion as presented in [22] and [5], Madgwick’s quaternion based

gradient descent algorithm as presented in [20] and [19], and Mahony’s nonlinear

complementary filter as presented in [21] and [14]. Madgwick’s and Mahony’s algo-

rithms are realized in FreeIMU which is an open source project that provides both

hardware realization to build navigation system as well as a software library that read

and process the data from IMU as represented in [37] [38].

If a system is fully known, the system model can be built from first principles.

McRuer et al elaborate the modeling and control of aircraft from aerodynamics in

[24]. And [3] written by Bouabdallah et al is a tutorial to the modeling and control

of an indoor purposed quadrotor, which is the most popular kind of VTOL drone.

Although first principles can provide sufficiently accurate models, there are always

unknown parameters to be determined in a system numerically. System identification

is another way of building models for a physical system. System identification could

be classified by how much we known about the system. Black box system identifi-

cation is suitable for cases where the system is completely unknown and gray box

identification is suitable for cases where the system parameters are partially known

[29]. Another necessity in system identification is that parameters could be varying,

such as for controlling time varying systems, we have to carry out system identifica-

tion online to determine the parameters of the controller for the purpose of indirect

adaptive control [32].
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System identification is the application of parameter estimation in control com-

munity. The key is to provide persistent excitation to the system and collect the

output as shown in [27] by Saaverdra et al. The excitation could be in form of step

signal, sum of sinusoid signals, random binary sequence (RBS) and pseudo-random

binary sequence (PRBS) with enough bandwidth. To process the input and output

(I/O) data set and identify the system, the mainstream methods are the subspace

identification method (SIM) and the prediction error methods (PEM) [11]. The sub-

space identification utilizes projection and provides state space representation for

the model. The only parameter for users to select is the order of the model. In

addition, SIM features the fast convergence rate and numerical stability [36]. Model

reduction is also necessary to achieve an appropriate order of the system [26]. PEM

utilizes many structures of models to describe the system and the disturbance, such

as auto-regressive–moving-average model with exogenous inputs (ARMAX) model

as presented by Ding et al in [7], Box-Jenkins model as presented by Ding et al in [6]

and Output-Error model as presented by Ding et al in [8] Prediction error method

tries to identify a system parameter vector that minimizes the prediction error and

makes the residue uncorrelated to the system input [17]. PEM has the advantage

of the ability to be easily applied in closed loop control. This method is closely re-

lated to the maximum likelihood estimation and thus has good asymptotic property

[18]. Drawbacks of the traditional SIM and PEM are their lack of description of the

uncertainties in the system: they assumed that the input and disturbances are uncor-

related, which is only an ideal condition [26]. The controller designed might stabilize

the identified plant, however, as the uncertainties are not systematically considered

in the design, there is no guarantee for the robust stability.

With the development of robust control theory, the emerging field of identifi-

cation for control helps alleviate this problem. Tsakalis and Zhan presented two
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robust-control-oriented system identification methods in [41] and [42]. The intro-

duction of an iterative identification method using normalized coprime factor struc-

ture in [35] presents a necessary and sufficient condition for the guarantee of the

robust stability in the controller design. Similar conclusions can also be achieved

by applying small gain theorem [43]. On the computation aspect of the coprime

factor uncertainty estimation, it is normally an optimization problem for the fitting

error and can be viewed as the sum of the perturbation from both input and output,

which is an one equation two unknowns problem. The problem could be solved

by applying the gap metric computation introduced in [10]. However, several sub-

optimal solutions that are simple to implement could be achieved by applying the

method introduced in [33], [31] and [34]. These methods are based on the assump-

tion that the error contribution from the input and that from output are orthogonal,

and compute the uncertainty bounds at frequency of interest (around bandwidth of

the system). Target loop complementary sensitivity and sensitivity bounds should

be carefully selected and provided for these methods, which means the optimiza-

tion depends on the actual controller. A comparison has been made between the

coprime factor uncertainty estimation and other methods in [1], which carried out a

paper machine case study. In the case study, it showed that coprime factor method

has the advantages of accurately predicting the stability bounds and low demand on

computational resources.

Various control design methods could be modified to be able to achieve a con-

troller that stabilizes the system, rejects the disturbance, while satisfies the robust

stability conditions (RSC). For example in [15], by applying linear matrix inequality

(LMI) method to solve a problem of minimizing an upper bound on the worst case

function, it is possible to formulate the model predictive control problem with de-

scription of uncertainties. In [13], it is possible to select a target loop that satisfies
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the RSC and then solve a convex optimization problem to get PID controller coeffi-

cients that is closest to the loop shape. It is also possible to get an discrete-time PID

controller directly using the loop shaping methods as shown in [28] by Shafique and

Tsakalis, which is convenient for control implementation on computers. However, it

should be noticed that there is a trade-off between maximizing the performance and

the guaranteeing robustness. A general method to get an optimal balance between

performance and robustness usingHinf optimization for multiple input and multiple

out case is proposed in [23].

1.3 Thesis Organization

This thesis is organized in six chapters.

In chapter 2, methods and techniques used in the system identification of this

project is presented: least square methods, coprime factorization of a system and the

uncertainty computation methods used in this project.

Chapter 3 contains the controller design methods including LQR, Hinf control

and the loop shaping method to acquire the PID parameters.

In chapter 4, we discuss the VTOL drone studied in this project and the system

identification experiment, including implementation of controllers designed for the

identified systems.

In chapter 5, the results of the experiments and the controllers designed for each

stages were presented.

In chapter 6, the conclusion, discussion, and the future work for this project were

presented.
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Chapter 2

SYSTEM IDENTIFICATION METHODS USING MULTIPLE

DISCONTINUOUS DATA SETS

2.1 Introduction

In this chapter, the method used for identifying a system model from discontin-

uous data sets is presented. The discussion begins by formulation of the estimation

problem, which takes the initial condition of the system into consideration. Follows

by the identifying MIMO systems by partitioning them into MISO systems. Next,

the way to construct estimation problems on multiple data sets is presented. A brief

introduction of the least square method used for solving the estimation problem is

also presented.

Robust stability is one of the major consideration in the control system design,

which requires the uncertainties in the identification results to be provided. And in

the second half of this chapter, the computation of the estimation error, co-prime

factor uncertainties, multiplicative uncertainty and divisive uncertainty in the system

is elaborated. The usage of multiple and discontinuous data sets in the computation

is introduced at the end of this chapter.

2.2 Estimation Problem Formulation for Discontinuous Data Sets

First we take a look at tradition way of coprime factorization on transfer function

described system. For the case of a MISO system P : u ∈ Rn 7→ y ∈ R1, we have the
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transfer function matrix as the following:

P(s) =
[
N1(s)
D1(s)

· · · Ni(s)
D(s)

· · · Nn(s)
D(s)

]
(2.1)

For a single element Pi(s) =
Ni(s)
D(s)

, we have the following:

Pi(s) =
Ni(s)

D(s)
=

Ni,1s
ni +Ni,2s

ni−1 + · · ·+Ni,n+1,

sm +D1sm−1 + · · ·+Dm

(2.2)

And we can write the input and output as

yi(t) =
Ni(s)

D(s)
[ui(t)] (2.3)

Where y(t) =
∑

yi(t). For a proper transfer function, we always have m > ni.

It is necessary to have an auxiliary filter 1
F (s)

= 1
sm+F1sm−1+···+Fm

for the coprime

factorization:

yi(t) =
Ni(s)

F (s)
[ui(t)] +

F (s)−D(s)

F (s)
[yi(t)] = W⊤θi

Where

W =

[
sni

F (s)
[u1(t)] · · · 1

F (s)
[un(t)] ,

sm−1

F (s)
[yi(t)] · · · 1

F (s)
[yi(t)]

]
⊤ (2.4)

and

θi =



Ni,1

...

Ni,n+1

F1 −D1

...

Fm −Dm


(2.5)

For MIMO system identification case, it is convenient to identify by decomposing

the MIMO system to a bunch of MISO systems and combine them together to form

the final system. The auxiliary filter F (s) should be selected such that the bandwidth
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is greater or equal to the bandwidth of the target system but less than the Nyquest

frequency, and the order should be the same with the target system. In this sense, it

is a grey-box identification process, in which some a-prior information of the system

should be acquired.

An issue with this formulation is that the initial condition is not taken into con-

sideration. For discontinuous data sets, at the beginning of each data set, the system

is not necessarily at rest, for systems with unstable modes, this will cause huge error.

To solve this, we can make the initial conditions being part of the parameters to be es-

timated. Using a state-space formulation is convenient for integrating the estimation

of initial conditions. We as well first consider a MISO system case. For a system

G(A,B,C,D) : u(t) ∈ Rn 7→ y(t) ∈ R with order p, we can write the differential

equations as:

ẋ = Ax+ bu, y = Cx+Du (2.6)

We can select a matrix L such that F = A−LC is Hurwitz and write they system as

ẋ = Ax+Bu+ Ly − Ly, y = Cx+Du (2.7)

The pre-selected pair (F, q) should be completely observable and F should be Hur-

witz. A good way to choose (F, q) is to first choose the auxiliary filter F (s), and

then convert it to balanced realized state-space representation and (F, q) is the (A,C)

matrix of the state-space representation. Equation 2.7 could be written as

ẋ = Fx+ θ1u+ θ2y, y = qx+ θ3u (2.8)

where F = A−LC, θ1 = B−LD, θ2 = L, q = C, θ3 = D. And solution to the above

equations is

y = q(sI − F )−1θ1u+ q(sI − F )−1θ2y + θ3u+ q(sI − F )−1x0 (2.9)
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Since this is the MISO system, the above could be written as

y =
n∑

i=1

q(sI − F )−1uiθ1i + q(sI − F )−1θ2y +
n∑

i=1

uiθ3i + q(sI − F )−1x0 (2.10)

where θ1i is the column of θ1, ui is the element of u, and θ3i are rows of θ3. equation

2.10 could be written as:

y(t) = w⊤θ (2.11)

where

w = [q(sI − F )−1[u1(t)] · · · q(sI − F )−1[un(t)] · · ·

q(sI − F )−1[y(t)] u1(t) · · · un(t) q(sI − F )−1]⊤ (2.12)

and

θ =

[
θ⊤11 . . . θ

⊤
1n θ2 θ

⊤
31 . . . θ

⊤
3n x⊤

0

]⊤
(2.13)

Here the initial condition is considered as parameters that could be estimated to-

gether with system parameters from discontinuous data. In MATLAB, functions

lsim() and expm() could be used to construct the regressors.

2.3 MIMO Case and Multiple Data Sets

The above formulation is suitable for MISO systems. Consider a MIMO system

in state space representation G[A,B,C,D] : u(t) ∈ Rn 7→ y(t) ∈ Rm. In this case, we can

convert the identification of a MIMO system to combination of the identification of

each MISO system in it. First we partition the system as shown in equation 2.14 and

Gi takes all input and generates the ith output.

G =

[
G1 · · ·Gi · · ·Gn

]⊤
Gi : u(t) ∈ Rn 7→ yi(t) ∈ R (2.14)
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Model order reduction is a recommended step with which a minimal system will

be acquired.

For multiple data sets, it is necessary to concatenate the regressors constructed

on each date sets. Suppose data sets (u1, y1), · · · , (uk, yk) are input and output data

sets collected in the system identification experiments on a MIMO systemG[A,B,C,D] :

u(t) ∈ Rn 7→ y(t) ∈ Rm with pth order. To identify this system MIMO system, we

first partition the system as in equation 2.14. Thenwe partition each data set (ui, yi) as

(ui, yi1), . . . , (ui, yim). And the regressor for Gj is constructed as ωj =
[
ω⊤
1j . . . ω

⊤
kj

]⊤
where ωij is

ωij =
[
q(sI − F )−1[ui1(t)] . . . q(sI − F )−1[uin(t)] q(sI − F )−1[yij(t)] . . .

ui1(t) . . . uin(t) O1j q(sI − F )−1 O2j

]⊤ (2.15)

And O1j is a zero matrix with p(i− 1) columns and O2j is a zero matrix with p(k− i)

columns. The parameter vector θj for Gj is

θj =
[
θ⊤11,j . . . θ

⊤
1n,j θ

⊤
2,j θ

⊤
31,j . . . θ

⊤
3n,j x

⊤
0,j1 . . . x

⊤
0,jk

]⊤ (2.16)

where x0,ji is the initial condition of Gj in the ith data set. Then construct vector Yj

as

Y =
[
y⊤1j . . . y

⊤
kj

]⊤ (2.17)

Thus the system parameter problem could be formulated as

Yj = ω⊤
j θj (2.18)

By solving equation2.18, the system parameters of Gj is acquired. Next, as before,

the MIMO system G is acquired by concatenating each Gj estimated and carrying

out an order reduction procedure to get a minimal system.
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2.4 Least Square Estimation Methods

For solving the estimation problem, there are various estimation methods: best

linear unbiased estimation (BLUE) as presented in [16] by Legarra et al, maximum

likelihood estimation as presented in [39] by Wang et al. These methods require that

the probability distribution function known a priori. However, as the Gaussian dis-

tribution is the best guess, and thus we use least square estimation to solve equation

2.11 and 2.18.

For system identification on data set gathered from experiments, it is suitable for

a batch processing. For example, to solve equation 2.18, we formulate the optimiza-

tion problem as

min
θj

∥∥ Yj − ω⊤
j θ

∥∥
2

(2.19)

Solution to the above is

θ̂j = (ωjω
⊤
j )

−1ωjYj (2.20)

2.5 Estimation Error Computation

Estimation error is the difference between the output achieved by the minimizer

of equation 2.11 and the real output: e(t) = y(t)− ŷ(t). Where

ŷ(t) = q(sI − F )−1θ̂1u+ q(sI − F )−1θ̂2y + θ̂3u+ q(sI − F )−1x̂0 (2.21)

However, there exist conditions where it is required to compute the uncertainties of

a given system on a given data set (uv, yv). For the consideration that the system may

not be at rest at the start, the first thing needed is to estimate the initial condition of
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the coprime factorized system. By choosingF (s) and computing (F, q) pair described

in section 2.2, we will have the following:

yv(t) = wuθu + wyθy + wx0x0 (2.22)

where

wu =

[
q(sI − F )−1[uv1(t)] · · · q(sI − F )−1[uvn(t)], uv1(t) · · ·uvn(t)

]
wy = q(sI − F )−1[yv(t)]

wx0 = q(sI − F )−1

θ̂u =

[
θ̂1 θ̂3

]
θ̂y = θ̂2

The initial condition could be estimated by solving the following optimization prob-

lem.
min
x0

∥ ev(t) ∥2

s.t. ev(t) = yv(t)− (wuθ̂u + wyθ̂y + wx0x0)

(2.23)

and e∗v(t)achieved by the optimizer x∗
0 could be used for the uncertainty computation.

2.6 Coprime Factor Uncertainty Computation

The system with coprime factor uncertainties are shown in Figure 1. ∆N is the

uncertainty on the numerator and ∆D is the uncertainty on the denominator. For

the nominal system G = NM−1, the actual system will be

y(t) = (NF +∆N)(DF +∆D)
−1 (2.24)
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Figure 1. Coprime factor uncertainty structure

From the coprime factor structure shown in Figure 1, the estimation error is the

contribution of both the input ant output:

e(t) = ∆N [u(t)] + ∆D[y(t)] (2.25)

In [33], an unfalsification approach of computing ∆D and ∆N is introduced, which

seeks the most favorable bounds for ∆D and ∆N that describes the estimation error.

Here a brief description of this method is presented for the consideration of a square

system. By applying the small gain theorem, we get the robust stability condition for

system with coprime factorization structure:

σ̄[P−1TD−1
F ]σ̄[∆N ] + σ̄[SD−1

F ]σ̄[∆D] < 1 (2.26)

The coprime factor uncertainty computation is then converted to the following op-

timization problem:

min
δ1,δ2

σ̄[P−1TD−1
F ]δ1 + σ̄[SD−1

F ]δ2 < 1

s.t. ∆N [u] + ∆D[y] = e

σ̄[∆N ] ≤ δ1, σ̄[∆D] ≤ δ2

(2.27)
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By selecting a target loop complementary sensitivity function T (s) and sensitivity

function S(s), the method in [33] provides a sub-optimal solution to ∆N and ∆D

under the assumption ∆N [u]⊥∆D[y]:

δ1 =
Φe(ω)

Φu(ω)

1√
1 + l2

; δ1 =
Φe(ω)

Φy(ω)

l√
1 + l2

(2.28)

where

l =
Φy(ω)

Φu(ω)

σ̄[P−1]σ̄[T ]

σ̂[S]
(2.29)

For the coprime factor uncertainties computed using this method, the robust sta-

bility condition is achieved if the targeted complementary sensitivity and sensitivity

functions are higher than or equal to those achieved by the controller. In equation

2.28, Φe(ω), Φu(ω) and Φy(ω) could be calculated through the algorithm introduced

in [40].

For multiple data sets (u1, y1), · · · , (ui, yi), · · · , (un, yn), estimation error e1, · · · ,

ei, · · · , en could be computed from each data sets using equation 2.21 or 2.23, and

power spectrum (Φe1Φu1 ,Φy1), · · · , (Φei ,Φui
,Φyi), · · · , (ΦenΦun ,Φyn) could be com-

puted on each data sets through algorithms introduced in [40] respectively. To com-

pute the uncertainties, the mean square of these are taken:

Φe(ωi) =

√√√√ 1

n

n∑
j=1

Φ2
ej
(ωi)

Φu(ωi) =

√√√√ 1

n

n∑
j=1

Φ2
uj
(ωi)

Φy(ωi) =

√√√√ 1

n

n∑
j=1

Φ2
yj
(ωi)

(2.30)
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2.7 Multiplicative and Divisive Uncertainty

The robust stability conditions for multiplicative ∆M and divisive ∆F structured

uncertainties are
∥ T (jω)∆M(ω) ∥∞ < 1

∥ S(jω)∆F (ω) ∥∞ < 1

(2.31)

Here we assume that the multiplicative uncertainty structure is adequate for repre-

senting the uncertainty bounds by itself and the same with the divisive uncertainty.

In this condition, the multiplicative uncertainty is contributed by perturbations from

the input signal and the divisive uncertainties is contributed by perturbations from

the output. Then we would have:

∆M =
Φe(ω)

Φu(ω)
× 1

σ[NF ]

∆F =
Φe(ω)

Φy(ω)
× 1

σ[DF ]

(2.32)

An alternative approach is based on the argument ∆N [u]⊥∆D[y]. This assumption

along with the fact that the complementary sensitivity function contributes more to

the low frequency range while the sensitivity function contributes more to the high

frequency range enable us to convert the coprime factor uncertainties to multiplica-

tive and divisive uncertainties structure.

∆M =
∆N

σ[NF ]

∆F =
∆D

σ[DF ]

(2.33)

If the robust stability condition 2.26 for coprime factor structure is achieved, with

the assumption ∆N [u]⊥∆D[y], 2.31 is guaranteed. In addition, for MIMO systems,

we distinguish between the multiplicative uncertainty at input and the multiplicative
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uncertainty at output. If equation 2.33 is adopted, we will have

NF (∆Min
+ I) = NF +∆N

⇒ ∆Min
= N−1

F ∆N

(2.34)

and
D−1

F (∆N +NF ) = (I +∆Mout)D
−1
F NF

⇒ ∆Mout = D−1
F ∆NP

−1

(2.35)
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Chapter 3

PID LOOP SHAPING CONTROLLER

3.1 Introduction

In this chapter we focus on the controller design part. The methods used for

controller design are from [13] and [31]. The chapter begins by the introduction of

concepts of the infinity norm of signals and systems. Then H∞ controller design

algorithms is presented and we also demonstrate the Linear Quadratic Regulator

(LQR) design algorithms. Next, the loop shaping algorithms which searches for the

optimized PID controller that shapes the loop as close as possible to the selected

target loop is elaborated.

3.2 Infinity Norms of Signals and Systems

Here we distinguish between the infinity norms of signals and systems. For a

signal s(t), its infinity norm is:

∥ s(t) ∥∞ = sup
t

|s(t)| (3.1)

And for a system P : u(t) 7→ y(t), its infinity norm is:

∥ P ∥∞ = sup
∥ u ∥∞ ̸=0

(
∥ y(t) ∥∞
∥ u(t) ∥∞

)
(3.2)
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3.3 H∞ Controller Design

The H∞ design guarantees the robustness of the system in the sense of H∞ as it

minimizes theH∞ norm of the loop. For standardH∞ controllers, depending on the

user’s selection, the complementary sensitivity function or the sensitivity function is

designed to be placed below the bounds indicated by corresponding uncertainties

computed from the system identification experimental data sets. [30] gives detailed

derivation for the design ofH∞ controller, the procedure is briefly introduced in this

section.

F

P
u1

u2

y1

y2

Figure 2. Standard H∞ control connection scheme

K Pu1

u2- y2

y13y12y11

Figure 3. Transformation of control loop to H∞ standard control connection
scheme

For a system control loop in 3, it is possible to transform it to the form of Figure

2, the inputs to the system are u1, which is the reference signal, and u2 which is
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the manipulated signal. The outputs of the system are y1, the error signal and the

measured output y2. The relation between (u1, u2) and (y1, y2) are:y1(t)
y2(t)

 =

P11(s) P12(s)

P21(s) P22(s)



u1(t)

u2(t)


 (3.3)

Now we can partition the system as

P =

A B

C D

 =


A B1 B2

C1 D11 D12

C2 D12 D22

 (3.4)

which means
ẋ = Ax+B1u1 +B2u2

y1 = C1x+D11u1 +D12u2

y2 = C2x+D12u1 +D22u2

(3.5)

In H∞ design procedure, the target is to find a controller K such that with K :

y2 7→ u2, the system T : u1 7→ y1 is stable and has small H∞ norm. When the system

is LTI, we can write T as:

T (s) = P11(s) + P12(s) [I −K(s)P22(s)]
−1 K(s)P21(s) (3.6)

The formulation of the problem could be either in the form of minimizing the H∞

norm (optimal H∞ control) or making the H∞ norm under a certain level (standard

H∞ control). Generally we have:

min
K

∥ Tu1,y1 ∥∞

s.t. ∥ Tu1,y1 ∥∞ < γ

(3.7)
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For a special case where the internal stability is guaranteed and the system is both

stabilizable and observable, we can write down the minimal entropy controller which

is also called the central controller:

K∞ =

A∞ −Z∞L∞

F∞ 0

 (3.8)

where
A∞ = A+ γ−2B1B

⊤
1 X +B2F∞ + Z∞L∞C2

F∞ = −B⊤
2 X

L∞ = −Y C⊤
2

Z∞ =
(
I − γ−2Y X

)−1

(3.9)

where X ≥ 0, and is the solution to the control Riccati equation

A⊤X +XA+X
(
γ−2B1B

⊤
1 −B2B

⊤
2

)
X + C⊤

1 C1 = 0 (3.10)

and Y ≥ 0, which is the solution to the observer Ricatti equation

Y A⊤ + AY + Y
(
γ−2C1C

⊤
1 − C2C

⊤
2

)
X +B1B

⊤
1 = 0 (3.11)

3.4 Linear Quadratic Regulator

Linear quadratic regulators minimize a cost function in the quadratic forms by

generating specific control input. For a system in form of of 2.6, the object function

is selected as:

J =

∫ ∞

0

[
x⊤(t)Qx(t) + u⊤T (t)Ru(t)

]
dt (3.12)
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by applying algorithms introduced in [25], we can have the control input to the

system as

u = Kx = −R−1B⊤Px (3.13)

where P is the solution to the control Riccati equation

A⊤P + PA− PBR−1B⊤P +Q = 0 (3.14)

The system is guaranteed to be asymptotically stable as long as Q and R are positive

definite.

3.5 PID Tuning by Frequency Loop Shaping

Proportional-Integral-Derivative (PID) controller is a feedback control imple-

mentation with a proportional filter, a integral filter, and a derivative filter, and is

widely used in industry. Although there are all kinds of control design algorithms,

a simple and reliable way introduced in [12] is to use frequency loop shaping opti-

mization to get an PID controller C for the plant G that makes the loop GC close to

the targeted loop L we designed using algorithms like H∞ and LQR as described in

previous sections in the sense of H∞ norm. A PID control law is:

u(t) = C(s)[r(t)− y(t)] =

[
Kp +

Ki

s
+

Kds

τs+ 1

]
[r(t)− y(t)] (3.15)

The C(s) is equivalent to

C(s) =
K1s

2 +K2s+K3

s(τs+ 1)
(3.16)

where
Kp = K2 −K3τ

Ki = K3

Kd = K1 −K2τ +K3τ
2

(3.17)
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The PID control parametrization in 3.16 is convenient as we can formulate a convex

optimization problem for the selection of PID parameters:

min
K1,K2,K3

∥ W1 (GCK1,K2,K3 − L) ∥∞ (3.18)

where W1 is selected as:

∥ W1(jω) ∥ ≥
∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ , ∀ω (3.19)

This is to preserve the robust stability condition indicated by the small gain theorem:

∥ SO∆ ∥∞ =

∥∥∥∥ 1

1 + L
(GC − L)

∥∥∥∥
∞

< 1 (3.20)

For plant with unstable poles, the target loop selection through H∞ or LQR design

would generally provide better guess in the sense that the stability has more guarantee,

while for stable plants, we can simply choose the target loop as λ
s
if the plant doesn’t

have any slow poles and choose λ(s+a)
s(s+e)

if the plant has one or more slow poles. Also

as PID controllers has limited degree of freedom, it is required to put a low-pass

filter in series with the PID controller to provide enough roll off.
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Chapter 4

EXPERIMENT DESIGN AND IMPLEMENTATION OF CONTROLLERS

4.1 Introduction

In this chapter, VTOL drone we conducted the system identification on in this

project is shown and a brief introduction to the system identification experiment

procedures is made. The implementation of the controllers is discussed, including

the hardware and software libraries used in the project and some details of converting

PID parameters to a real controller.

4.2 Description of the VTOL Drone

The three-view drawing of the VTOL is shown in Figure 4. Figure 5 provides

a 3D graph of the VTOL drone and. Figure 6 provides a photo of the drone in

hovering state. The VTOL drone has two symmetric ailerons (longer) and two sym-

metric rudders (shorter). The wing configuration is similar to the Lockheed XFV-1.

The lift force for taking off is generated from the contra-rotating propellers. For the

convenience of achieving horizontal flying in the future, the Euler angle directions

are defined as shown in Figure 4. When the drone is placed on the ground in rest,

the Euler angles with respect to the drone body and with respect to the ground are

regarded as overlapping.

As in the vicinity of zero, the Euler angles are decoupled, the yaw and pitch

dynamics can be treated as decoupled systems. We can control the yaw and pitch
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angles through rudders and ailerons separately when the plane is in the hovering

state.

Figure 4. Three-view drawing of the VTOL drone we studied in this project

4.3 System Identification Experiments

In this project, we conducted three system identification experiments. The first

one is the open-loop identification, the second one is an intermediate closed-loop

identification and the third one is the closed-loop identification. In the first and

third experiments, we recorded the reference signals that were fed into the servos that

control the flaps on rudders and ailerons as inputs to the system, and we recorded the

yaw and pitch angular rates and Euler angles as system output. It should be noted

that in the recorded data sets, the reference signals we recorded are subtracted by
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Figure 5. 3D Graph of the VTOL drone we studied in this project

Figure 6. A picture of the VTOL drone we studied in this project in hovering state
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1490µs which is the reference for the neutral position of rudders and ailerons. In

the intermediate closed-loop identification, we record the difference of the speed

references that were fed to the two electronic speed controllers (and eventually to

the two motors that provide lift to the drone) as input and the roll angular velocity

as output.

In open-loop identification, we used 4 tethers each with one end connected to

the drone and the other end connected to a ring that was set on a rod penetrated

to the ground to constrain the movement of the VTOL drone. The PRBS (pseudo

random binary sequence) signals were added to the reference signals. Afterward we

truncated the data recorded in this process and selected those segments where the

VTOL drone was not hitting the theaters for system identification.

In the intermediate closed-loop experiment, VTOL drone movement wasn’t con-

strained by any physical connections, and the yaw and pitch actions of the VTOL

drone was regulated by controllers designed for the system identification result in

open-loop stage. PRBS signals were injected at the output of the controller. At this

step, the drone could stay longer in the air and longer data set is recorded.

In the closed-loop experiment, we used the same setup as the intermediate closed-

loop experiment where the drone is not contained by tethers. In this experiment, as

all three rotations were regulated, longer data sets were acquired.

Remote 
PWM 

Receiver

Signal 
Routing

Servo 
Controllers

Gyroscope/  
Magnetometer

PRBS 
Signal

Input u Output y

Figure 7. Diagram of the control program used in the open-loop experiment.
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Remote 
PWM 

Receiver

Signal 
Routing

ESC for 
Upper Motor

Gyroscope/  
Magnetometer

PRBS 
Signal

Output y

ESC for 
Lower Motor

Input u

Figure 8. Diagram of the control program used in the intermediate closed-loop
experiment.

Remote 
PWM 

Receiver

Signal 
Routing

Servo 
Controller

Gyroscope/  
Magnetometer

PRBS 
Signal

Input u Output y
Controller

PWM to 
Angle 

Convert
�

Figure 9. Diagram of the control program used in the closed-loop experiment.

4.4 Hardware and Software Libraries

For the PRBS signals design, we used the method from [2]. The bandwidth of

the PRBS was designed to be higher than the bandwidth of the system to guarantee

sufficient excitation as described in [9] by Fairweather et al. The PRBS generator has

a 6 bit shift register and the minimum switching time is 0.05 sec. Thus a single full

length of the PRBS signal is 3.15 sec.

In this project, we used Arduino DUE for building controller, reading sen-

sor signal, reading PWM receiver output, and sending measurements/input

signals. Arduino Mini Pro was used for recording input and output sig-

nals to an SD card. For the sensor, we used GY-86 integrated gyro-

scope/accelerometer/magnetometer/barometer break board.
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FreeIMU open source library was used for reading signals fromGY-86 board and

the fusion functions in it were used for getting clean measurements. We also made

use of the model based design feature from MATLAB Simulink for creating control

programs that run on Arduino DUE.

4.5 Implementation of PID Controller Design

PID controllers are straightforward for implementation for their simple struc-

tures. Basically a PID controller comprises of a gain element Kp, an integrator Ki

s
,

and a differentiator Kds.

The first issue with a PID controller is that a differentiator couldn’t exist in con-

tinuous system. The solution to this is replacing Kds with a low pass filter Kd
s

τs+1

which has a small time constant τ to mimic a differentiator. The time constant τ is

usually selected as ωc/100 where ωc is the targeted cross over frequency of the loop

G(s)C(s).

The second issue is the wind-up phenomenon. As all actuators have saturation

limits, once the output of the controller (input to the actuator) hits this limit, the plant

output would keep deviating from the reference signal while the integrator keeps

integrating the error signal. And this will lead to the failure of control. The solution

to this issue is setting a saturation limit which is smaller than the saturation limit of

the actuator on the integrator and hold the integrator output as long as the output is

staying at the limit. It is also critical to eliminate the bias in the sensor output as it

will accelerate the saturation of the integrator. In some cases, a dead-zone should be

conservatively considered.

The third issue is the initialization. In some filtering algorithms, the measurement

will take time to get to zero. For example, in this project the Euler angle measure-
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ment will take 30-40s to be zero depending on the parameters selected for sensor

fusion algorithm. In this case, the integrator should be disabled during the sensor

initialization process to avoid the integral action that will lead to saturation before

the drone taking off. It is also critical to eliminate the bias in the sensor output as it

will accelerate the saturation of the integrator.
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Chapter 5

EXPERIMENT RESULTS

5.1 Introduction

In this chapter, the results from all three identification experiments with proce-

dure introduced in Chapter 4 are presented. Also included is the controller design

based on the results from identification experiments.

This chapter begins by reviewing the identification results from open-loop experi-

ment, including transfer function, singular values, estimation errors and uncertainties

identified in the system. Next, controller designed for the system identified is shown

including the parameters and step response features. The same thing is conducted

on both the intermediate closed loop experiment and closed loop experiment data.

Next, the robust stability condition is being checked through comparing the com-

plementary sensitivity and sensitivity to the corresponding uncertainties.

Last, the verification of controller design is presented by showing the reference

tracking performance of the regulated system.

5.2 Open-Loop System Identification Experiment Results

The input and output data we collected from the open-loop experiment was

shown in Figure 10, it comprises of 5 discontinuous data sets and the sample rate is

100Hz. However as the measurement contains high frequency noise (e.g. vibration

of the motor), it is necessary to carry out a pre-filtering on the collected data to add

weights to the frequency domain so that the information contained in the frequen-
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Figure 10. NaN-separated data sets collected from open-loop system identification
experiment.

cies around bandwidth will be emphasized. The pre-filter we used was a digital filter
0.7127z+0.1299

z2−0.1642z+0.006738
with sample rate 100Hz and bandwidth 162 rad/s. For the equiva-

lency of the transfer functions, both the input and output should be filtered with the

pre-filter.

Then the algorithms described in Chapter 2 was used for the identification, the

pole for the auxiliary filter was -5rad/s. The singular value of the system was shown

in Figure 11 and the Bode magnitude plot was shown in Figure 12.

For the purpose of providing constraints for controller design, the multiplicative

and divisive uncertainties were computed and shown in Figure 13.

TheDC gain of the system transfer functionmatrix is

 5.62× 10−1 1.61× 10−1

− 1.57× 10−2 8.28× 10−1

 ,

we can approximate treat the system as a diagonal system that the yaw direction and

pitch direction are decoupled. Having this approximation, it is possible to design

controllers for the diagonal elements of the transfer function matrix only.
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Figure 11. Singular value of the system identified from the open-loop experiment
data sets
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Figure 12. Bode magnitude plot of the system identified from the open-loop
experiment data sets
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Figure 13. Multiplicative uncertainties and divisive uncertainties computed from
the open-loop experiment data sets

By using the methods in Chapter 4, second order low pass filters were used pro-

vide PID controllers with higher degree of freedom. The controller selected is 10
s+10

and it was converted to a digital filter 0.04762z+0.04762
z−0.9048

by Tustin method for Simulink

implementation. The PID controllers along with the low pass filters for the yaw and

pitch direction angular rate are

CY awRate(s) =

(
4.04 + 3.71

1

s
+ 0.532

s

0.01s+ 1

)
10

s+ 10

CPitchRate(s) =

(
19.8 + 15.5

1

s
+ 0.505

s

0.01s+ 1

)
10

s+ 10

(5.1)

The above controllers regulates the angular rate, however, we still need controller

to regulate the angles. Thus we augmented the complementary sensitivity function

TRate(s)of the angular rate control feedback loops with integrators 1/s and designed

controllers for the new systems TRate(s)
s

that regulates the yaw and pitch angles at the

vicinity of 0 which are:

CY awAngle(s) =

(
1.04 + 0.312

1

s
+ 0.0542

s

0.01s+ 1

)
CPitchAngle(s) =

(
1.49 + 1.15

1

s
+ 0.0654

s

0.01s+ 1

) (5.2)
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Figure 14. Step responses of inner and outer loops with controllers designed for
the system identified from the open-loop system identification experiment.

And the step responses of the inner and outer loops are as shown in Figure 14.

In Figure 14, there are oscillations in the response due to the fact that PID struc-

tured controllers have only 3 degrees (4 to 5 if augmented by a low-pass filter) of

freedom and the loop shaping result may have some approximation error if the sys-

tem to be controlled has high orders. However, this is a preliminary result and better

results will be acquired in the following experiments.

5.3 Intermediate Closed-Loop System Identification Results

With the above controllers, we stabilized the pitch and yaw actions and made sure

that the drone would not fall in the hovering state. In order to make the drone more

easy for users to control, we need to stabilize the roll actions. The drone is lifted

up by a pair of contra-rotators, and the difference in the torques of the two motors

would generate a torque that would make the drone rotate in the vertical direction.
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Figure 15. Data sets for roll action system identification.

We had an intermediate closed-loop test to identification the transfer function from

the difference in the torque to the roll angular velocity.

We had a total of three data sets from the experiment and they were shown in

Figure 15. The data sets have a clear structure, and we didn’t used any frequency

weightings in the identification. By using the method introduced in Chapter 2 and

some iterations on the order and bandwidth of the target, we came to a 3rd order

system with 2 zeros. The singular value of the system is shown in Figure 16, and

the estimated uncertainties are shown in Figure 17. With the identified system ready,

we could now proceed to the controller design. By using the loop-shaping method

introduced in Chapter 3, the PID controller we designed to regulate the roll action

is:

CRollRate(s) =

(
2.67 + 20

1

s
+ 1.66

s

0.01s+ 1

)
(5.3)

And the step response of the loop is shown in Figure 18.
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Figure 16. Singular value of the identified system that describes the roll dynamics.
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Figure 17. Estimated Uncertainties in the identified system for roll angular velocity
dynamics.

5.4 Closed-Loop System Identification Experiment Results

In this section, we used one single data set for system identification and 5 discon-

tinuous data sets for uncertainty computation. The data set for system identification

is shown in Figure 19 and the data sets for uncertainty computation are as shown in
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Figure 18. Step response of the controlled roll dynamics.

Figure 20. In this stage, we used the raw data for uncertainty computation while a

pre-filtered data set was used for system identification. The pre-filter was a Cheby-

shev II filter with order of 4, the stop-band attenuation was 45dB and the stop-band

edge frequency was 20Hz.

By using the algorithms introduced in Chapter 2, a new system is identified. The

pole of the auxiliary filter was -60rad/s which is below the Nyquist frequency. The

singular values of the new system is as shown in Figure 21, and the bode magnitude

plots are as shown in Figure 22. Next the multiplicative and divisive uncertainties

were computed and they are shown in Figure 23.
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Figure 19. Raw and filtered data sets from the closed-loop system identification
experiment for the computation of the system. Blue: raw data; Red: filtered data.
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Figure 20. Nan-seperated discontinuous raw data sets from the closed-loop system
identification experiment.

The DC gain of the system transfer function matrix is

 3.3441 0.33095

− 0.47298 2.5984

 ,

we can still approximate treat the system as a diagonal system that the yaw direction

and pitch direction are decoupled as the case in section 5.1. We also adopted the

two-loop control where an inner controller regulates the angular rate and an outer
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Figure 21. Singular values for the system identified from the closed-loop
experiment data

controller regulates the angle. Both inner and outer controllers are PID structures

augmented by low-pass filters as before:

CY awRate(s) =

(
0.405 + 1.24

1

s
+ 0.0309

s

0.01s+ 1

)(
1 + s/0.13

(1 + s/8)2

)
CPitchRate(s) =

(
10.3 + 15.5

1

s
− 0.103

s

0.01s+ 1

)(
1 + s/0.16

(1 + s/8)2

)
CY awAngle(s) =

(
1.98 + 0.961

1

s
+ 0.0904

s

0.01s+ 1

)
CPitchAngle(s) =

(
2.05 + 1.03

1

s
+ 0.0709

s

0.01s+ 1

)
(5.4)

The step response of the inner and outer loop are shown in Figure 24.

5.5 Robust Stability Condition Verification

Robust stability conditions (RSC) stated by equation 2.26 and equation 2.31 are

checked by comparing the complementary sensitivity functions or sensitivity func-
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Figure 22. Bode magnitude plots for the system identified from the closed-loop
experiment data
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Figure 23. Multiplicative and divisive uncertainties of the system identified from
the closed-loop experiment data.
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Figure 24. Step responses of inner and outer loops with controllers designed for
the system identified from the closed-loop system identification experiment.

tions with their bounds indicated by uncertainties. Here the RSC expressed in 2.31

was adopted.

For the inner loop (yaw and angular rates) controllers for the systems identified

from the open-loop and the closed-loop experiments, the RSC is verified in Figure 25.

For the controller regulating the roll direction dynamics identified in the intermediate

closed-loop experiment, the RSC is verified in Figure 26.

It should be noticed that for the controllers designed for the system identified

from the open-loop experiment data, we still need to test the RSC for the outer

loop separately. The RSC for the inner loop could be verified directly by checking

2.31, however, for the two loop structure shown in Figure 27, the RSC should be

modified to be in form of 5.5 which only considers the SISO case, however similar

results could be derived for the MIMO case.
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Figure 25. RSC verification for inner loop (yaw and pitch angular rates) controllers
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Since the Euler angles were recorded in the closed loop experiment, we can run

a system identification from the Euler angle rates to Euler angles to confirm that
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Figure 27. Two loop structure with multiplicative uncertainty for inner loop plant.

the system Po in Figure 27 is an integrator. The singular values of the system Po is

shown in Figure 28 and the uncertainties are shown in Figure 29. The data sets used

for identifying the system is shown in Figure 30 and the data sets used for computing

the uncertainties are shown in Figure 31. In the singular values plot, the system is

shown to a -20dB/Dec roll off rate, which is exactly what integrators should look like.

And the uncertainties shown in Figure 29 is small which implies that the integrator

is an good approximation of Po.

10-1 100 101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1
Identified Plant Singular Values

Figure 28. Singular value of the system identified from the data set in which the
input is the yaw and pitch angular rates and the output is the yaw and pitch angles.
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Figure 29. Uncertainties of Po.
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Figure 30. Data set used for the integral relation verification. Blue: raw data; Red:
filtered data

The RSC’s of the outer loop (yaw and angles) controllers for the systems identified

from the open-loop and the closed-loop experiments is verified in Figure 32.
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Figure 31. NaN-separated Data sets used for uncertainties computation of Po.
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Figure 32. RSC verification for outer loop (yaw and pitch angles) controllers

5.6 Reference Tracking Performance in Closed-loop Experiment

In this section we show the reference following performance of the controllers de-

signed for both the model identified from the open-loop experiment and the model

identified from the closed-loop experiment. In Figure 34, we show results of two

experiments where the reference tracking performances of the yaw and pitch con-
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trollers designed for yaw and pitch dynamics identified from the open-loop experi-

ment data sets were tested. In the test, the operator will give yaw/pitch angle com-

mands to the drone through the remoter. The yaw/pitch angle commands are within

the range of −10◦ to 10◦. In the figure, yaw control is not so well. And there is bias

in the pitch angle output of the system, due to the poor low frequency accuracy the

data sets for identification can provide.

In Figure 33, we show two experiments where the reference tracking performance

of the roll controller designed for roll dynamics identified from the intermediate

closed-loop experiment was tested. In the test, the reference given by the operator

stays at 0 for most of the time. As this is a preliminary result, the reference tracking

is not so well, and the controller can barely maintain the roll angular rate staying at

zero.

In Figure 35, results of two experiments that test the reference tracking perfor-

mances of the yaw and pitch controllers designed for yaw and pitch dynamics iden-

tified from the closed-loop experiment data sets were shown. The operator did the

same thing as in the first test. The performance is greatly improved as the controllers

are faster and the model is more accurate.
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Figure 33. Reference tracking performance of the roll control system from the
intermediate closed-loop experiment.
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Figure 34. Reference tracking performance of the yaw and pitch control system
from the open-loop experiment.
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Figure 35. Reference tracking performance of the yaw and pitch control system
from the closed-loop experiment.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion of Current Work

This project is to develop an alternative method of building models and designing

controllers for VTOL drones. Our current work enables the drone to stay hovering

and respond to reference signals that command it to tilt with small angles and thus

move horizontally.

The system identification way of building models helps us circumvent the aero-

dynamics and refine the model by iterating on system identification experiments. As

indicated by the well-known saying all models are wrong but some are useful by

G.E.P Box in [4], this method of building models ensures the system dynamics of

interest are captured instead of building nonlinear models that takes all corner-cases

into consideration which would compromise the straightforwardness of analyzing.

The method of identifying models from discontinuous data sets is a powerful tool

as input-output data sets that are recorded with non-zero initial state could be used to

refine the identification. Also characterizing the estimation error into uncertainties

gives alleviation to the conflict between fitting into model and fitting into noise. And

this alleviation is augmented when combined with certain level of pre-filtering.

Controller design with the restriction of robust stability condition gives confi-

dence in the controller and enables the controller work while the system deviates

from the linearization point with certain degree. Sometimes bounds that are unreal-

istic for controller design could be resulted from low SNR in the measured output,

especially when raw data are used for uncertainty computation while filtered data
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sets are used for system identification. In this case, iterations on the assumption of

system structure is necessary for a successful identification. However using raw data

for uncertainty computation givesmore confidence while less flexibility for controller

design and using filtered data for uncertainty computation leads to conservativeness.

Last but not least, the experiment could be iterated as controllers with better

performance could be designed from data sets collected in experiments. And with

longer single data sets collected, the low-frequency performance of the identification

could be improved indicating less bias in the system parameters.

6.2 Future Work

The to-do list of this project would be considerable long. However several high-

priority improvements should be implemented first. The first is to use H∞ or LQR

controllers directly instead of loop-shaping them into PID controllers augmented

by low-pass filters. This would give more better guarantee for the robust stability

conditions.

The second thing would be to get longer single data sets so as to acquire more

reliable models for control design. Also we should explore the implementation of

various adaptive control algorithms to regulate the drone even it is deviated from the

hovering state.

The ultimate goal of this project is to achieve switching between vertical hover-

ing and horizontal flying. This would need more delicate design of identification

experiments. Also a nonlinear description of the system would be necessary to fully

capture the dynamics.
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