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ABSTRACT

Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no work done on fully conditional specification (FCS)

method. Moreover, the literature lacks any methodological evaluation of three-level

imputation. Thus, this thesis serves two purposes: (1) to develop an algorithm in

order to implement FCS in the context of a three-level model and (2) to evaluate

both imputation methods. The simulation investigated a random intercept model

under both 20% and 40% missing data rates. The findings of this thesis suggest

that the estimates for both JM and FCS were largely unbiased, gave good coverage,

and produced similar results. The sole exception for both methods was the slope for

the level-3 variable, which was modestly biased. The bias exhibited by the methods

could be due to the small number of clusters used. This finding suggests that future

research ought to investigate and establish clear recommendations for the number of

clusters required by these imputation methods. To conclude, this thesis serves as a

preliminary start in tackling a much larger issue and gap in the current missing data

literature.

i



For my parents, Betty and Ken, who have been there for both the highs and lows of

my life and unconditionally supported me through them. And for my brother Kyle,

who has always been there, not only as a brother, but as a friend, imparting his

knowledge on the roads he has already traveled.

ii



ACKNOWLEDGEMENTS

I would like to acknowledge all the people who have made a great impact in my

academic career thus far. Specifically, I would like to acknowledge Christian Geiser for

introducing me to and fostering my enjoyment for quantitative methodology, David

MacKinnon for always leaving me thinking in his ANOVA and mediation classes,

Leona Aiken for her initial class on regression and providing advice throughout my

career thus far, Steve West for acting as a mentor and his advice that will serve

me well throughout my academic career, and finally my advisor and friend, Craig

Enders, his continued mentoring and comments made this thesis possible. I would

also like to especially acknowledge Leona and Steve for developing and fostering such

an amazing program in quantitative methodology. What I have learned in my years

at Arizona State University will always serve as my foundation throughout my career.

Finally, I would like to acknowledge all the scholars who have come before me, for, as

attributed to Bernard of Chartres and famously stated by Isaac Newton, I “[stand]

on the shoulders of giants.”

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Maximum Likelihood and Multiple Imputation . . . . . . . . . . . . . . . . . . . . 1

1.2 Missing Data Handling for Multilevel Models . . . . . . . . . . . . . . . . . . . . . 3

1.3 Goals and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Single-Level Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Two-level Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Overview of the Three-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Three-Level Joint Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Three-Level FCS Imputation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

APPENDIX

A ALGORITHMIC DETAILS OF FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B TABLES AND FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



LIST OF TABLES

Table Page

1 Variance Decomposition by Level of All Variables . . . . . . . . . . . . . . . . . . . . 50

2 Level-1 Correlation Matrix for Simulated Data. . . . . . . . . . . . . . . . . . . . . . . 51

3 Level-2 Correlation Matrix for Simulated Data. . . . . . . . . . . . . . . . . . . . . . . 52

4 Level-3 Correlation Matrix for Simulated Data. . . . . . . . . . . . . . . . . . . . . . . 53

5 Average Estimates for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Bias Measures for Listwise Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Bias Measures for JM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Bias Measures for FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Correlations of FCS and JM Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



LIST OF FIGURES

Figure Page

A1 FCS Two-Level Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A2 FCS Three-Level Multiple Imputation Extension. . . . . . . . . . . . . . . . . . . . . 48

1 Trellis Plot for Three Measures of Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



Chapter 1

Introduction

While the best solution to missing data is to not have missing data, this is of-

ten not feasible in realistic research settings. Over the past few decades advances

have occurred in both the theory and the treatment of missing data. Previously re-

searchers were required to resort to so-called deletion methods (i.e., listwise deletion

and pairwise deletion), however, newer and more advanced techniques are capable

of estimating parameters more efficiently and without bias under less restrictive as-

sumptions. Currently there are two major techniques that are available to handle

missing data: Maximum likelihood and multiple imputation. While these methods

are well developed for single-level data, they are more limited in the multilevel case.

Furthermore, there has been little research done in extending missing data handling

techniques to three-level data structures. Thus, the aim of this thesis is to provide a

method for researchers to handle missing data on all variables in three-level models.

Moving forward I will give a brief overview of maximum likelihood and multiple

imputation. Next I will describe the current limitations in the context of multilevel

models and my rational for choosing multiple imputation over maximum likelihood.

Finally, I will summarize and give the goals of this paper.

1.1 Maximum Likelihood and Multiple Imputation

Maximum likelihood (ML) takes a likelihood-based approach towards the handling

of missing data (Little & Rubin, 2002; Schafer & Graham, 2002). The goal of ML

is to estimate the parameters using all available data. This can be achieved under

specific assumptions about the missingness of the data. If the assumptions hold, then
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the likelihood function that ML maximizes is written as:

L
(
θ | Yobs

)
=

∫
L
(
θ | Yobs, Ymis

)
dYmis (1.1)

where θ are the unknown parameters in the model and L
(
θ | Yobs, Ymis

)
dYmis denotes

the likelihood function based on the observed data only. In essence, ML integrates

over the missing data and eliminating the dependence on Ymis, basing the estimation

only on observed data (Schafer, 2001).

Multiple Imputation (MI) takes a Bayesian-based approach towards handling

missing data (Rubin, 1987; Schafer, 1997b). Instead of trying to estimate the pa-

rameters using all available data, MI “fills-in” the missing data from a distribution,

namely the posterior predictive distribution. Researchers subsequently fit one or more

analysis models to the filled-in data. MI then averages parameter estimates and stan-

dard errors across the data sets to obtain the pooled parameters. This process is

usually carried out with a Markov chain Monte Carlo (MCMC) method, such as the

Gibbs sampler or Metropolis-Hastings algorithm. The motivation behind MI is to

treat the missing data as a source of random variability that needs to be averaged

over. Similar to ML, MI accomplishes this by integration, however, MI solves the

problem via simulation methods instead of analytically. Furthermore, MI differs from

ML in the sense that MI employs a general model (e.g., a saturated linear regression

model for single-level data) to fill-in or impute the missing values for a variety of

analyses. Thus, MI is tailored for a family of analytic models, whereas ML is tailored

for a specific model of interest.
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1.2 Missing Data Handling for Multilevel Models

With single-level data there is often no reason to prefer ML or MI. Several studies

have shown that the two procedures tend to produce identical results, particularly

when using the same set of input variables (Collins, Schafer, & Kam, 2001; Schafer,

2003). Nevertheless, there are some advantages of MI over ML, especially with more

complex data structures like multilevel data. For several reasons imputation proce-

dures are often thought of as being more flexible than ML. They allow for mixtures

of both categorical and continuous variables and allow for one general procedure to

handle a variety of analyses. In addition, the maximization of the likelihoods specified

by ML are often problem-specific and sometimes must be approximated in complex

analyses, such as with multilevel modeling (Yucel, 2008). This is particularly true

when categorical outcomes are present. Another issue with ML is the handling of

incomplete predictors. In order to properly handle missing data, distributional as-

sumptions must be made about the missing variable. Multilevel modeling software

packages that implement ML tend to define predictors as fixed (i.e., do not make any

assumption about the predictors distribution), necessitating the exclusion of cases

with missing values on those predictors. The exclusion of cluster-level predictors (in-

complete level-2 variables) can be particularly damaging because the entire set of

level-1 observations are excluded for the cluster. Currently, ML solutions that do

exist for missing predictors are restricted to multivariate normal data and random

intercept models only (e.g., Shin & Raudenbush, 2007).

Although MI is well suited for clustered data structures, existing imputation meth-

ods have limitations. A variety of methods have been proposed to deal with two-level

multiple imputation and with accompanying software packages (Enders, Mistler, &

Keller, in press; Keller & Enders, 2014, May), but relatively little work has been
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devoted to three-level models. Considering the existing implementations of two-level

models, all techniques can handle random intercept models with normally distributed

variables, only some can handle categorical variables (e.g., Mplus and MLwIN) and

others can handle random slope models (e.g., MICE). Despite this, very few methods

offer a complete set of options that are often seen in social science data (i.e., both

continuous and categorical data with random intercepts and slopes). Furthermore,

the current approaches are limited in other ways. For example, MICE’s approach, as

currently implemented cannot handle missing level-2 variables at the same time as

missing level-1 variables, and the same applies to the original work on joint imputa-

tion (i.e., Schafer, 2001; Schafer & Yucel, 2002). More limitations to joint modeling

include the inability to tailor random effects for each variable and handle cross-level

interactions between incomplete variables as currently implemented.

1.3 Goals and Summary

In conclusion, there is limited methodological work for handling missing data in

the context of multilevel models and social scientists do not have adequate tools to

deal with missing data in multilevel structures. Furthermore, there are very limited

solution for three-level models with multiple imputation (Asparouhov & Muthén,

2010; Yucel, 2008) and even more limited simulation work assessing their performance.

The goal of this thesis was to develop an imputation procedure that accommodates a

three-level structure. Additionally, the aim of this paper was to assess the accuracy

and precision of the developed method and other current methods.

The thesis is organized as follows. First, Chapter 2 will provide background in-

formation required to understand three-level multiple imputation. This will then be

followed by a brief review of the current literature for multiple imputation with three-

levels. In Chapter 3, I go into the more algorithmic details of the method used in
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this thesis and describe the simulation used to compare the new method for three-

level imputation to available existing methods. Chapter 4 presents the results of the

simulation that was performed. Finally, Chapter 5 is a discussion of the results, the

implications and limitations of the simulation, and directions of future research.
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Chapter 2

Literature Review

This chapter provides a brief overview of the literature thus far and rational as

to some of the decisions made in Chapter 3. First, I give a brief introduction of

missing data mechanisms as this lays the theoretical foundation for using imputation

as a solution to some missing data problems. Next, I briefly outline the three steps

of multiple imputation (imputation step, analysis step, and pooling step). Then

I focus on just the imputation step, where I explain the two different frameworks

used within MCMC (joint imputation and fully conditionally specified imputation).

The subsequent section will go over multilevel imputation at two-levels with both

frameworks. I will then provide a critique of joint imputation and my rational for

choosing a fully conditionally specified model. The next section will introduce a brief

overview of the three-level model. This is then followed by a summary of Yucel (2008)

and the approach proposed using joint imputation for three-levels. Finally, I will give

a more in-depth statement of the purpose of this thesis.

2.1 Missing Data Mechanisms

There are two fundamental concepts in current missing data theory, missing data

patterns and missing data mechanisms. These are two distinct and separate concepts

that are often confused. A missing data pattern describes location of the missing

values in the data. It makes no attempt to describe how the data are missing, neither

mathematically nor conceptually. On the other hand, a missing data mechanism

provides a theoretical account for how the data are missing, be it directly via a

measured variable or indirectly through a spurious relationship caused by a third

variable.
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Rubin (1976) proposed the decomposition of any random variable into two parts:

observed scores (denoted with an obs subscript) and the would-be but unobserved

scores (denoted with a mis subscript). Building on this work, Little and Rubin (2002)

defined three different missing data mechanisms: missing completely at random, miss-

ing at random, and missing not at random. Missing completely at random (MCAR)

can be thought of as the data being missing in a haphazard fashion or truly random

in the colloquial sense. Formally, the MCAR mechanism is stated as:

P
(
RY | Yobs, Ymis, θ

)
= P

(
RY | θ

)
(2.1)

where θ represents the parameters of the model and RY is a vector of indicator vari-

ables that denotes missing and observed values. The equation can be read as the prob-

ability of missingness of a set of variables, Y , is unrelated to the observed or missing

values. For example, a researcher may be administering a survey and if respondents

inadvertently skip a survey item on income for reasons that are uncorrelated with

the data, the item would satisfy the MCAR mechanism. Other examples of MCAR

include planned missing data designs and the classical randomized experiment.

Missing at random (MAR) is a more general case and subsumes MCAR. In order

for MAR to hold, the probability of missingness of a set of variables, Y , is condi-

tionally independent of Ymis given Yobs and the parameters in the model. Or stated

algebraically:

P
(
RY | Yobs, Ymis, θ

)
= P

(
RY | Yobs, θ

)
(2.2)

To continue the example, suppose the respondents with higher education are more

likely not to respond to a survey item on income. The item would be MAR if there

was an equal probability of nonresponse among respondents with the same education
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level. Traditionally, software implementations of ML and MI make the assumption

that the data are missing under the MAR mechanism.

Finally, missing not at random (MNAR), states that the probability of missingness

of a set of variables, Y , is related to Y itself, be it directly or through a spurious

relationship due to unmeasured variables. For MNAR, the probability distribution

does not simplify:

P
(
RY | Yobs, Ymis, θ

)
(2.3)

To continue the above example, if the income item was skipped such that respondents

in a higher income bracket are more likely not to respond, even after conditioning on

other observed variables, then the mechanism is MNAR. While there are methods to

handle MNAR data, they are not the focus of this thesis and for the remainder of the

paper all variables will be assumed to be missing under the MAR mechanism.

2.2 Single-Level Multiple Imputation

In this section, I describe multiple imputation in the single-level case because

it lays a groundwork for understanding multiple imputation for more than one level.

Multiple imputation consists of three major steps: (1) an imputation step, (2) analysis

step, and (3) a pooling step. In the imputation step, the researcher imputes the

missing data with plausible values and saves multiple copies of the “filled-in” data

with different values imputed. Next, the analysis step is where the researcher analyzes

these saved copies of the data with a specified analysis model. Finally, the pooling step

is when the researcher pools the estimates from the analysis by averaging estimates

in accordance to specific formulas (Rubin, 1987; Schafer, 1997b). While this is the

general layout of MI, the focus of this thesis is on the imputation step.
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In the imputation step, imputations for the missing variable are generated by

sampling from a distribution of plausible values (a posterior predictive distribution)

determined by the imputation model. An iterative simulation method (e.g., Gibbs

sampler) is employed in order to generate imputed values. More specifically, there

are two steps per iteration of the simulation. For step (1), the simulation treats the

missing observations as known, using the imputations from the previous iteration (or

starting values for the first iteration) and then draws parameters. With single-level

imputation these parameters are typically (but not necessarily) a covariance matrix

and mean vector. For step (2), the simulation treats the parameter values from step

(1) as known and draws values for missing data based on the simulated parameters

in step (1). For single-level multivariate normal data, this is achieved by taking the

predicted score in a linear regression for the missing value and adding a random error

term, which restores the variability back into the data.

There are two main frameworks used to approximate the posterior predictive

distribution that the simulation samples from: (1) joint models approach and (2)

fully conditional specification models (also known as chained equations). To better

illustrate single-level imputation and the differences between the two approaches,

let us suppose I have three variables, x, y, and z, where x is complete and y and

z have both complete and missing values (denoted with an obs and mis subscript

or superscript). For simplicity, I will assume that all three variables are normally

distributed.

To begin, consider joint imputation. For this example, I specify a multivariate

normal distribution with a mean vector and covariance matrix. I can then reconstitute

the parameters of the joint distribution into an imputation model for each missing

data pattern. Because y and z are missing, there are three potential patterns: (1)

only y missing, (2) only z missing, and (3) y and z missing together. Thus, I must
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specify three separate pattern specific distributions to draw the imputations from:

y
(t)
mis ∼ N

(
α
(t)
0 + α

(t)
1 x+ α

(t)
2 zobs, σ

2(t)
(y|xz)

)
z
(t)
mis ∼ N

(
β
(t)
0 + β

(t)
1 x+ β

(t)
2 yobs, σ

2(t)
(z|xy)

)
y(t)mis
z
(t)
mis

 ∼MVN


γ(t)0 + γ

(t)
1 x

κ
(t)
0 + κ

(t)
1 x

 ,Σ(t)
(yz|x)


(2.4)

where (t) represents the tth iteration, α, β, γ, and κ are all regression coefficients

(with a subscript 0 indicating an intercept), σ2 represents a residual variance, and

Σ represents a residual covariance matrix. The coefficients and variance terms that

define the normal distributions are computed from the appropriate elements of the

simulated covariance matrix drawn at the previous step (described previously). See

Schafer (1997b) for a complete description of this process.

In contrast, fully conditional specification (FCS) algorithms take a different ap-

proach to approximating the posterior distributions of the missing data. Instead of

using a joint distribution, FCS specifies multiple conditional univariate distributions.

To illustrate this in a general fashion, Y denotes a set of multivariate variables, rang-

ing from 1 to m variables. The general form for the FCS at the tth iteration is as

follows (van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006):

θ
(t)
1 ∼ P

(
θ1 | yobs1 , y

(t−1)
2 , . . . , y(t−1)m

)
y
(t)
1 ∼ P

(
ymis1 | yobs1 , y

(t−1)
2 , . . . , y(t−1)m , θ

(t)
1

)
...

θ(t)m ∼ P
(
θm | yobsm , y

(t−1)
1 , . . . , y

(t−1)
m−1

)
y(t)m ∼ P

(
ymism | yobsm , y

(t−1)
1 , . . . , y

(t−1)
m−1 , θ

(t)
m

)
(2.5)
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where θ represents the parameters of the imputation model from 1 to m variables.

Note that the imputation scheme still follows the two steps described earlier, (1)

draw the parameters treating the missing observations as known and (2) draw the

missing observations treating the parameters as known; however, now these two steps

are applied to each incomplete variable. Furthermore, the parameters in θ are not

required to be functions of the parameters of a joint distribution (e.g., if y1 was

normally distributed and y2 was imputed with a logistic regression).

Returning to the three-variable example from earlier, in each iteration of the FCS

model one specifies a distribution for each missing variable, treating the previous

parameter draws as known. Therefore, I must specify two imputation steps, each of

which also requires supporting steps to generate the necessary parameters. For the

missing values at iteration t the imputation steps are as follows:

y
(t)
mis ∼ N

(
α
(t)
0 + α

(t)
1 x+ α

(t)
2 z

(t−1), σ
2(t)
(y|xz)

)
z
(t)
mis ∼ N

(
β
(t)
0 + β

(t)
1 x+ β

(t)
2 y(t), σ

2(t)
(z|xy)

) (2.6)

In contrast to Equation 2.4, the ‘obs ’ subscript for both y and z are gone and replaced

with superscripts of t and t−1, respectively, which denote the iteration number. This

is because the FCS method treats the missing values of other variables as known and

conditions on them. Thus, for the imputation of y at step t, FCS uses the previous

iterations imputed values for z. Similarly, for the imputation of z at step t, FCS uses

the newly imputed values of y. Also note that the ordering of y and z is arbitrary

(and the order may be switched as long as the subscripts are also swapped). Finally,

each draw for the variable requires a supporting draw of parameter values that are not

shown here, but well illustrated in the literature (see van Buuren, 2007; van Buuren

et al., 2006).
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2.3 Two-level Multiple Imputation

Thus far I have only discussed single-level imputation, but this can be extended

to a multilevel setting. The key feature with multilevel imputation is accounting

for the appropriate clustering. If clustering is ignored and a single-level imputation

model is used to impute the clustered data, estimates of the cluster-level variation

are attenuated (Enders et al., in press; Van Buuren et al., 2011). These, so-called

“flat-file” imputation methods have been studied by previous research (e.g., Cheung,

2007; Gibson & Olejnik, 2003; Roudsari, Field, & Caetano, 2008; Zhang, 2005) and

are not the focus of this thesis. Instead, the paper focuses on modeling the clustering

explicitly by including random effects and the associated parameters (i.e., variances

of said random effects) that account for the source of variability provided by the

clustering.

Recall the three-variable example from the previous section, where x, y, and z are

normally distributed with three missing data patterns. To map onto this example,

assume that these three variables all have clustering (i.e., level-1 variables in a multi-

level model). For example, a researcher may be studying students within classrooms,

where y is a student’s score on a standardized math test at the end of year, z is a

student’s score on a standardized math test from the previous year, and x is a math

pretest given at the beginning of the year. Therefore, a researcher might be interested

in the following random intercept analysis model:

yij = β0 + β1xij + β2zij + u0j + εij (2.7)

where subscript i represents the student, subscript j is the classroom, and u0j is the

random intercept.
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In order to extend the joint model to this above example, one must generate

imputations from the following distribution:

y(mis)ij

z
(mis)
ij

 ∼MVN


β0(y) + β1(y)xij + u0j(y)

β0(z) + β1(z)xij + u0j(z)

 ,Σ(yz|x)

 (2.8)

It is important to note that the ‘(y)’ and ‘(z)’ subscripts denote that these parameters

are different, but the same letters are used to keep the notation concise. The algorithm

for the joint model differs by treating all missing variables as dependent variables and

all complete variables as predictors of the missing variables. Conceptually, the joint

model shares the same two steps (i.e., draw parameters and draw imputations) with

the single-level case; however, an additional draw is now required in the first step in

order to sample the random effects. Furthermore, the mean vector of the distribution

is defined by predicted values that now take into account the clustering via the random

effects (i.e., u0j) and now multilevel parameters are sampled instead of the covariance

matrix and mean vector. A number of resources in the literature give the draw steps

for the multilevel model parameters and residuals (i.e., W. Browne & Draper, 2000;

W. J. Browne, 1998; Goldstein, Bonnet, & Rocher, 2007; Kasim & Raudenbush, 1998;

Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008). The algorithmic work of this thesis

builds heavily from this previous work and is reviewed later in the paper.

There are several limiting factors with joint imputation. For example, joint impu-

tation naturally works the best at the lowest level and it struggles to accommodate

missing variables at different levels (which are not in our example). Currently, the

joint imputation approach is limited to only random slopes between complete and

incomplete variables and cannot estimate a random slope between two incomplete

variables (and some implementations of the method allow for only random inter-
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cepts). This can be illustrated in the Equation 2.8, where both y and z are drawn,

yet they do not have influence in the predicted score. Thus, any residual association

between the variables not explained by z must be specified in the residual covariance

matrix. However, because the residual covariance matrix is specified as homogenous

across clusters (denoted by the lack of subscripts), the model is unable to accommo-

date the random slopes. Conceptually, a random slope expresses that the relationship

between the two variables changes among clusters; however, a homogenous residual

covariance matrix implies that the slopes do not vary. Another limiting factor is

that, in some implementations, the complete variables are required to have the same

random slopes for all incomplete variable. Finally, the joint imputation method must

assume a common distribution (usually multivariate normal) among the variables (all

variables or only the incomplete variables depending on the joint models method).

This can often lead to trouble when some variables are categorical and some are con-

tinuous. A latent approach to handling categorical variables can avoid this limitation,

but this assumes the latent variable is normally distributed and thus imputes on the

latent metric (Carpenter & Kenward, 2013; Enders et al., in press).

The FCS method can also be extended to multilevel data. Recall the general

equation for one iteration of the FCS algorithm (Equation 2.5). As with the joint

model, the θ’s in the equation now contain multilevel parameters and random effects.

Thus, they must be drawn from their appropriate posterior distributions (which are

essentially the same as the draws of the joint model). For iteration t, the univariate

draw steps are in Equation 2.9 and 2.10.

y
(t)
ij ∼ N

(
β
(t)
0(y) + β

(t)
1(y)xij + β

(t)
2(y)z

(t−1)
ij + u

(t)
0j(y), σ

2(t)
(y|xz)

)
(2.9)

z
(t)
ij ∼ N

(
β
(t)
0(z) + β

(t)
1(z)xij + β

(t)
2(z)y

(t)
ij + u

(t)
0j(z), σ

2(t)
(z|xy)

)
(2.10)
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Once again the parameters in Equation 2.9 and 2.10 are not the same parameter and

the subscript reflects this, where ‘(y)’ represents the the parameter for the distribution

of ‘y’ at iteration ‘t’. While the previous equation includes the draws of the missing

variables, the main draws in the FCS Gibbs sampler for multilevel models are as

follows (Schafer & Yucel, 2002; Van Buuren et al., 2011; Zeger & Karim, 1991):

1. Sample fixed effects from P
(
β | y, u, σ2

)
.

2. Sample random effects from P
(
u | y, β,Σu, σ

2
)
.

3. Sample level-2 covariance matrix from P
(
Σu | u

)
.

4. Sample level-1 residual variance from P
(
σ2 | y, β, u

)
.

5. Sample missing values and impute them into the data set.

6. Repeat step 1 to 5 for z.

7. Repeat step 1 to 6 until convergence.

For a more technical breakdown of the Gibbs sampler see the Methods section and

Appendix A.

2.4 Overview of the Three-Level Model

Due to the complexity of three-level models, I will use a consistent notational

system throughout the remainder of the paper. A lowercase ‘y’ will always represent

the level-1 dependent variable, a lowercase ‘a’ will always represent a level-1 inde-

pendent variable, a lowercase ‘b’ will represent a level-2 independent variable, and a

lowercase ‘c’ will represent a level-3 independent variable. For example, a random

intercept model for the ith observation within level-2 cluster j and level-3 cluster k is
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represented in Equation 2.11:

yijk = β0 + β1aijk + β2bjk + β3ck + u0jk + v0k + εijk (2.11)

where subscript i represents the lowest level (i.e., level-1), subscript j represents the

level-2 cluster, and subscript k represents the level-3 cluster (i.e, the highest level).

β0 is the intercept, β1 to βp (i.e., p = 3 for this example) are the ‘fixed effects’ for 1 to

p predictors (these can be at any level, denoted by subscripting), u0jk is the random

effect for the intercept at level-2, v0k is the random effect for the intercept at level-3.

Finally, εijk is the residual for cluster i within level-2 cluster j and level-3 cluster k.

For completeness, Equation 2.12 represents the addition of a random slope to the

model for variable ‘a’, at both level-1 and level-2, and variable ‘b’, at level-2.

yijk = β0 +β1aijk +β2bjk +β3ck +u0jk + v0k +aijk ·
(
u1jk + v1k

)
+ bjkv2k + εijk (2.12)

Because the notational system can start to become cumbersome as the model

increases in complexity, it is also useful to represent the above equation in a matrix

notation. I will use the following matrix notation in the paper for when it increases

clarity of the three-level models:

yjk = Xjkβ + Wjkujk + Zjkvk + εjk (2.13)

where yjk is a column vector of the criterion, Xjk is a matrix of explanatory variables,

β is a column vector of regression coefficients, Wjk is a matrix containing a unit

vector and the level-1 variables that are allowed to have a level-1 random effect on

the outcome, and ujk is a column vector with the random effects for level-1 variables.

Zjk is a matrix containing a unit vector and level-2 variables that are allowed to have
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a level-2 random effect on the outcome, vk is a column vector with the random effects

for the Zjk matrix, and εjk is a column vector with the level-1 residuals for the level-2

cluster j within level-3 cluster k. To better illustrate the matrix notation consider

the subset of a level-2 cluster, j, and within level-3 cluster k with a cluster size of

njk = 3 cases:


y1jk

y2jk

y3jk

 =


1 a1jk bjk ck

1 a2jk bjk ck

1 a3jk bjk ck





β0

β1

β2

β3


+


1 a1jk

1 a2jk

1 a3jk


u0jk
u1jk



+


1 a1jk bjk

1 a2jk bjk

1 a3jk bjk




v0k

v1k

v2k

+


ε1jk

ε2jk

ε3jk



(2.14)

It is important to note that with the matrix notation, no distinction is made between

level-1, level-2 and level-3 predictors and they are all placed into the Xjk matrix.

2.5 Three-Level Joint Imputation

To date, only joint modeling has been extended to the three-level case (Asparouhov

& Muthén, 2010; Yucel, 2008). However, the three-level case for joint modeling has

the same limitations as previously discussed with two-level models (e.g., assuming

a common distribution among the variables, inability to tailor random effects, dif-

ficulty accommodating variables at multiple levels, etc.). Thus, this thesis extends

the FCS framework to three-levels in order to address the limitations of joint model-

ing. Because FCS’s treatment of three-levels builds heavily from certain algorithmic
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steps (e.g., the process of drawing parameters) a brief discussion of Yucel (2008) and

Asparouhov and Muthén (2010) is needed.

Yucel (2008) proposed an extension of Schafer and Yucel’s (2002) original work

on two-level imputation with the joint modeling framework. As discussed earlier,

one of the limiting factors of joint modeling is that it innately works best at the

lowest level. In order to bypass this limitation, joint modeling essentially uses three

separate Gibbs samplers (one for each level). In order to illustrate how this process

works at three-levels, suppose I have the four variables in Equation 2.12: ‘y’ (level-1),

‘a’ (level-1), ‘b’ (level-2), and ‘c’ (level-3). For the purpose of this illustration, all

four variables are normally distributed and incomplete. Let the analysis model I am

interested in be Equation 2.12. In order to impute the four variables, the following

steps would take place. Once again, in the below equations the ‘(a)’, ‘(b)’, ‘(c)’, and

‘(y)’ subscripts denote that the parameter is specific for that variable, (e.g., v0k(a) and

v0k(y) are different values representing the level-2 random effect for the intercept of

‘a’ and ‘y’ respectively).

Step (1). Run a standard single-level joint imputation algorithm in order to

impute the level-3 missing variables using the imputation model in Equation 2.15.

c
(mis)
k ∼ N

(
β0(c), σ

2
(c)

)
(2.15)

Run until convergence and then save the imputed values. Treat the imputed values

as known values and enter them in the predictor matrix for level-2 imputation, step

(2).

Step (2). Run a two-level imputation algorithm (proposed by Schafer & Yucel,

2002) in order to impute the level-2 missing variables treating the values from step (1)

as known (i.e., use the filled-in level-3 variables as predictors) using the imputation
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model in Equation 2.16.

b
(mis)
jk ∼ N

(
β0(b) + β1(b)c

(imp)
k + v0k(b), σ

2
(b|c)

)
(2.16)

Note that the ‘(imp)’ superscript in Equation 2.16 is a reference to the fact that these

are the imputed values from Equation 2.15. Run until convergence and then save the

imputed values for use in step (3), treating the imputed values as known and entering

them in the predictor matrix for level-1 imputation, step (3).

Step (3). Run a three-level imputation algorithm in order to impute the level-1

missing variables, treating the values from step (1) and step (2) as known by using

the imputation model in Equation 2.17.

a(mis)ijk

y
(mis)
ijk

 ∼MVN





β0(a) + β1(a)c
(imp)
k + β2(a)b

(imp)
jk . . .

. . .+ u0jk(a) + v0k(a)

β0(y) + β1(y)c
(imp)
k + β2(y)b

(imp)
jk . . .

. . .+ u0jk(y) + v0k(y)


,Σ(ay|bc)


(2.17)

Run until convergence and then save the imputed values to use in step (4).

Step (4). Combine imputations from steps (1), (2), and (3) into a single imputed

data set.

Step (5). Repeat step (1) to (4) until desired number of imputed data sets are

generated. Alternatively, Yucel (2008) also suggest that one could run step (1) to

(3) consecutively (e.g., apply each step once, then iterate the three steps, as opposed

to iterating at each step before moving tot he next) and monitor convergence of the

entire Gibbs sampler before generating imputations.
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The limitations of the joint modeling approach become apparent upon examining

the imputation models for each step (Equations 2.15 to 2.17). More specifically,

Equation 2.15 lacks any conditioning on the lower levels. Thus, the lack of correlation

between level-3 and the lower levels assumes that MAR is satisfied by the complete

variables at level-3 only. This can be extended to level-2, where MAR must be

satisfied by the level-2 or level-3 variables only. In addition, the lack of random

slopes present in the model becomes apparent, which are present in the analysis model

(Equation 2.12). As with joint modeling at two-levels, these random slopes cannot be

specified between missing variables and the residual covariance matrix, Σay|bc, cannot

accommodate the association due to the assumption that the residual covariance

matrix is homogenous across clusters. More importantly, notice the misspecification

in Equation 2.16. The random slope between the level-2 variable bjk and the level-3

variable yijk cannot be modeled due to the nature of how joint modeling is treating the

levels (i.e., bjk can affect the imputations of yijk, but yijk cannot affect the imputations

of bjk, through cluster means).

In addition to Yucel’s approach to joint modeling, the software package Mplus

(Muthén & Muthén, 1998-2015) has extended Asparouhov and Muthén’s (2010) ap-

proach to single and two-level modeling to three-levels as well. Up to this point,

this thesis has mainly focused on multiple imputation with joint modeling using the

framework popularized by Schafer (1997a). However, there is also the joint model-

ing framework proposed by Asparouhov and Muthén (2010), in which all variables

(complete and incomplete) are treated as dependent variables. To continue the ex-

ample using yijk, aijk, bjk, and ck under Asparouhov and Muthén’s (2010) proposed

framework, the imputation model at iteration t is as follows:
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y
(t)
ijk

a
(t)
ijk

b
(t)
jk

c
(t)
k


∼MVN





β
(t)
0(y) + u

(t)
0jk(y)

+ v
(t)
0k(y)

β
(t)
0(a) + u

(t)
0jk(a)

+ v
(t)
0k(a)

β
(t)
0(b) + u

(t)
0jk(b)

+ v
(t)
0k(b)

β
(t)
0(c) + u

(t)
0jk(c)

+ v
(t)
0k(c)


,Σ(t)

ε


u
(t)
0jk
∼MVN

(
0,Σ(t)

u

)
v
(t)
0k
∼MVN

(
0,Σ(t)

v

)

(2.18)

where u0jk and v0k are vectors of the level-2 and level-3 random intercepts respec-

tively. Furthermore, Σε, Σu, and Σv are unstructured level-1, 2, and 3 covariance

matrices that are sampled from their appropriate posterior distributions. Equation

2.18 overcomes the limitation of including variables across multiple levels by placing

constraints on Σε and Σu. For example, with bjk the matrix Σε would be constrained

to have 0’s for all variances and covariances related to bjk because bjk lacks level-

1 variation in the variable. In the case of ck, both Σε and Σu would have similar

constraints. Thus, u0jk(c) would in essence be a constant equal to 0 and provide no

variation at level-2 for ck. Asparouhov and Muthén’s (2010) approach however does

not allow for random slopes due the same reasons previously described (i.e., assuming

homogenous residual variances across clusters).

2.6 Purpose

To reiterate the goal of this thesis, I have extended FCS to handle three-level data

structures in order to overcome some of the limitations of existing methods. As a brief

overview (and more detail is presented in the Methods section), the FCS procedure

that I extended begins by imputing level-1 variables, iterating through each variable
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once. In a similar fashion, the Gibbs sampler imputes level-2 variables by treating

the between-cluster means of the incomplete level-1 variables as known and iterating

through each variable once. Finally, the highest level (level-3) is imputed, one variable

at a time, by treating the cluster means of the level-1 and level-2 variables as known

predictors. Each step treats the previous steps imputed values as known, placing

the imputed plausible values into the appropriate matrices of subsequent variables

equations (i.e., X, W, and Z matrices in equation 2.13). This aforementioned process

continues to iterate until convergence, at which point an imputation is saved. The

chain subsequently continues, saving an imputation once the appropriate between-

imputation thinning interval has been reached and stopping once the desired number

of imputations is obtained.

As described earlier, due to FCS’s ability to breakup the computational problem

of obtaining a posterior predictive distribution for the incomplete variables, such that

the imputation model can be tailored for each incomplete variable, one is able to

overcome many of the limitations of joint imputation. For example, because each

variable is handled separately and the algorithm draws from a conditional univariate

distribution, one may specify a random slope with complete and incomplete vari-

ables alike. Furthermore, the flexibility of FCS allows researchers to accommodate

continuous, categorical, count, and other types of data. Although this functionality

can easily be added, it is beyond the scope of my thesis. Finally, FCS algorithm

affords researchers with the ability to easily incorporate variables at all three-levels

into the Gibbs sampler. Case in point, in the current formulation of joint modeling’s

Gibbs sampler, the three-levels are separate, treating the variables as orthogonal to

incomplete lower level variables (i.e., the level-3 variables are imputed without any

information from the incomplete level-1 and level-2 variables, and the level-2 vari-

ables are imputed without any information from the incomplete level-1 variables).
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Thus a variable is assumed to be uncorrelated with the between-cluster variation in

lower level variables. Furthermore, the lack of correlation between levels makes strict

assumptions about the missing data mechanism (i.e., MAR is satisfied by complete

variables at the current and higher levels) and a more general approach ought to be

used. Due to the iterative nature of the FCS algorithm, one is able to include the

cluster means at the higher levels (e.g., an incomplete level-1s cluster mean used in the

prediction of a level-2 incomplete variable). This follows standard multilevel theory,

where the means of lower level variables are associated with higher level variables.
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Chapter 3

Methods

Thus far this thesis has investigated the theoretical background and explained

some of the rational behind the choices that have been made. This section will now

explicate the specific algorithm that was used. Several sources provide the distribu-

tional draws and priors that are used (i.e., W. Browne & Draper, 2000; W. J. Browne,

1998; Goldstein et al., 2007; Kasim & Raudenbush, 1998; Schafer, 2001; Schafer &

Yucel, 2002; Yucel, 2008), therefore I have provided the conditional draws made in

Appendix A only. Furthermore, at the end of this section, I describe the simulation

that was used to compare the method to existing implemented methods.

3.1 Three-Level FCS Imputation Algorithm

The goals of this thesis were accomplished by extending the current implementa-

tion of FCS at two-levels (Keller & Enders, 2014, May). The implementation of FCS

used by Keller and Enders (2014, May) is a general latent framework for two-level

imputation, able to accommodate continuous, ordinal, and nominal variables. In the

interest of simplicity, I only addressed the continuous case. First, I will present a brief

discussion of the steps I implemented. A more detailed and technical treatment of

the algorithm used to implement FCS and the extension to three-levels is presented

in Appendix A.

Returning to the four variable example that was used to describe the joint mod-

eling steps in Section 2.5. Recall that the analysis model was that of Equation 2.12

and all four variables are normally distributed and incomplete. As with the two-level

case, FCS takes a much different approach to estimating the posterior predictive dis-

tribution and iterates variable by variable treating subsequent draws as known. In
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order to accomplish this for the illustration, the following steps would take place in

the Gibbs Sampler for iteration t.

Step (1). Run one iteration of a three-level FCS algorithm in order to draw the

level-1 missing variable, a from the following distribution:

a
(t)
ijk ∼ N

 β
(t)
0(a) + β

(t)
2(a)c

(t−1)
k + β

(t)
2(a)b

(t−1)
jk + β

(t)
3(a)y

(t−1)
ijk + . . .

. . . u
(t)
0jk(a)

+ v
(t)
0k(a)

+ y
(t−1)
ijk ·

(
u
(t)
1jk(a)

+ v
(t)
1k(a)

) , σ
2(t)
(a|cby)

 (3.1)

Next draw y from the following distribution (note the order between a and y is

arbitrary):

y
(t)
ijk ∼ N

 β
(t)
0(y) + β

(t)
1(y)c

(t−1)
k + β

(t)
2(y)b

(t−1)
jk + β

(t)
3(y)a

(t)
ijk + u

(t)
0jk(y)

. . .

. . .+ v
(t)
0k(y)

+ a
(t)
ijk ·

(
u
(t)
1jk(y)

+ v
(t)
1k(y)

)
+ b

(t−1)
jk v

(t)
2k(y)

, σ
2(t)
(y|abc)

 (3.2)

Step (2). Run one iteration of a two-level FCS algorithm in order to draw the

level-2 missing variable, b, treating the cluster means of the imputed variables from

step (1) as known (denoted with a ‘bar’ above them).

b
(t)
jk ∼ N

 β
(t)
0(b) + β

(t)
1(b)c

(t−1)
k + β

(t)
2(b)ā

(b,t)
jk + . . .

. . . β
(t)
3(b)ȳ

(t)
jk + v

(t)
0k(b)

+ ȳ
(t)
jk v

(t)
1k(b)

, σ
2(t)
(b|acy)

 (3.3)

Step (3). Run one iteration of a single-level FCS algorithm in order to draw the

level-3 missing variable, c, using the means for cluster k from the imputed values of

the level-1 and level-2 variables (treating them as known).

c
(t)
k ∼ N

(
β
(t)
0(c) + β

(t)
1(c)b̄

(t)
k + β

(t)
2(c)ā

(t)
k + β

(t)
3(c)ȳ

(t)
k , σ

2(t)
(c|aby)

)
(3.4)
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Then repeat Steps (1) to (3) until one reaches the desired ‘burn-in’ iteration

(assessed by convergence diagnostics). Once the burn-in iterations have finished,

one can begin imputing the first data set, where the values are saved as the first

imputation. Next one would run enough iterations until the between-imputation

thinning interval is reached, thus saving another imputation. This process can be

continued until the desired amount of imputations are saved.

It is important to point out how the FCS framework is allowing for all random

slopes to be specified. Looking at Equation 3.1 and 3.2, one can see the inclusion

of random slopes in the imputation model. Furthermore, Equation 3.3 also has a

random slope between ȳjk and bjk. Contrast this to Equation 2.16 where the random

slope is not present. This is just one example that exemplifies the flexibility that FCS

affords. While the previous steps are a very brief overview of the extension, Appendix

A highlights the conditional draws made and pseudocode for the algorithm.

For simplicity, Equations 3.1 to 3.3 have excluded the cluster means of variables

that have variation at multiple levels (e.g., in Equation 3.1, the terms ȳ
(t−1)
jk , ȳ

(t−1)
k , and

b̄
(t−1)
k along with their regression coefficients are excluded). Mistler (2015) suggests

that these cluster means are required in FCS if contextual effects are present. This

can be seen as a more general model and is what was implemented, however, they

have been excluded in this presentation.

3.2 Simulation

A simulation was performed to test the accuracy of the FCS algorithm previously

described. A 2 × 3 design was used with 1000 replications in each cell. The first

factor was missing data rate (20% and 40% missingness). The second factor was a

“within-subjects” factor, where the different levels are methods of handling missing

data at three levels: listwise deletion, Asparouhov and Muthén’s (2010) JM, and the
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FCS approach described in Section 3.1. The reason for Yucel’s (2008) JM approach

being excluded from the simulation was the lack of a software package currently

implementing the method. Given the aim of this simulation was to compare the FCS

algorithm to what researchers currently have access to, I decided to only use the

readily available methods. Finally, a random intercept model was only investigated

in the simulation. For the remaining part of this chapter, I will describe the method

used to generate the three-level data, how missingness was created, and how the data

was imputed and analyzed.

Data generation. The data was generated using R programming language for

statistical computing (R Core Team, 2015). A total of seven variables was generated

with the following separation at each level:

Level-1: Two incomplete (y and a), one complete (AV1),

Level-2: One incomplete (b), one complete (AV2),

Level-3: One incomplete (c), one complete (AV3).

The number of observations used was constant across conditions, with 30 clusters at

level-3, 50 clusters at level-2, and 10 observations per level-2 cluster. In total, there

were 15,000 observations per data set. The data structure was designed to represent

a longitudinal data set, where level-1 represents repeated measures, level-2 represents

participants, and level-3 represents a clustering variable (e.g., hospitals, schools, etc.).

The independent variables in the data generation model (a, b, and c) were gen-

erated by summing together three orthogonal deviation scores (denoted with a ‘L’

superscript followed by the number that corresponds to the level). The dependent

variables in the data generation model (y, AV1, AV2, and AV3) were generated as a

linear combination of the independent variables. Table 1 shows the decomposition of
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the variances used for each variable by level. The data generation model used by the

simulation is presented in Equation 3.5

yijk =β0 + β1

(
aL1i

)
+ β2

(
aL2j

)
+ β3

(
aL3k

)
+ β4

(
bL2j

)
+

β5

(
bL3k

)
+ β6

(
cL3k

)
+ u0jk + v0k + εijk

(3.5)

Table 2 through 4 give the level-specific correlation matrices used in the simulation.

They describe the population correlation matrices that were used for each level. In

general, each auxiliary variable (denoted with AV ) was associated with all deviation

scores (or residuals in the case of y) with a Pearson’s ρ = 0.40. This is inline with

Collins et al. (2001), which suggested that the cause of missingness ought to be

correlated with the incomplete variable at least 0.40 in order to see bias introduced.

The correlations of all other pairs of variables were equal to 0.30, which is based

on Cohen’s (1988) convention of a medium effect size in social science. In order to

generate the specific data, the following steps were used:

Step (1). Compute the level-specific regression coefficients for the multivariate

regression of level m:

Ym = Xmβm + R0m (3.6)

where Ym is a nm x 2 matrix containing the level-specific deviation scores for the

dependent variables (y and AVm), Xm is a nm x 3 matrix containing the level-m

deviation scores for the independent variables (a, b, and c), βm is a 3 × 2 matrix of

coefficients, and R0m are the residuals. Thus, solving for βm results in Equation 3.7:

βm = Σ−1Xm
ΣXYm (3.7)
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where ΣXm is a 3×3 covariance matrix of the independent variables and ΣXYm is a 3×2

matrix containing the covariances of the dependent variables with the independent

variables.

Step (2). Compute the level-specific residual covariance matrix for the dependent

variables using Equation 3.8.

Σr0m = ΣYm − βᵀ
mΣXYm (3.8)

The level-specific residual covariance matrix, Σr0m , is later used in order to draw the

residuals for each level and correlate y with the auxiliary variable.

Step (3). Draw the level-specific deviation score for the independent variables

from a multivariate normal distribution:

Xm ∼MVN (0,ΣXm) (3.9)

Step (4). Draw the level-specific residuals, r0m, from a multivariate normal dis-

tribution:

r0m ∼MVN (0,Σr0m) (3.10)

Step (5). Compute the level-specific deviation score for the dependent variable as

linear combinations of the independent variables plus the residuals:

Ym = Xmβm + R0m (3.11)

where R0m is a nm x 2 matrix of r0m concatenated.

Step (6). Repeat Steps (1) to (5) for all three levels.
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Step (7). Combine the orthogonal level-specific deviation scores for each variable.

For example for variable yijk:

yijk = yL1i + yL2j + yL3k (3.12)

All the dependent and independent variables were combined in the same process

and those with no variability at a specific level were given a vector of 0’s for that

level-specific deviation score.

Missing data. Only MAR was implemented in the simulation. As discussed

earlier, imputation assumes a MAR mechanism (which includes MCAR). A MAR

mechanism was simulated by having missingness determined by the complete auxiliary

variable at each level. A logistic model was used to regress a missing data indicator

variable, R, (where 1 is incomplete and 0 is complete) on the auxiliary variable.

The parameters of the logistic model were specified such that the pseudo r-square is

approximately 0.4, which is the squared approximation of the correlation between the

auxiliary variable and the missing data indicator. Furthermore, there were positive

relationships between the auxiliary variables and the missing data indicator, that

is, higher values on the auxiliary variables increased the likelihood of missingness.

Using the logistic model resulted in a predicted probability (p̂) of being missing for

each observation. The missing data indicator was drawn from a binomial distribution

with one trial, (e.g., Ryijk ∼ Binomial
(

1, p̂yijk

)
for individual i in level-2 cluster j

within level-3 cluster k on variable y). If the missing data indicator was equal to

1 for a particular case/cluster, then the observation/cluster was coded as missing.

This process was repeated for each missing variable, where the cause of missingness

changes depending on the level the variable is observed at (i.e., AV1 causes aijk, AV2

causes bjk, and AV3 causes ck).
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Imputation of data. For JM, the imputation of the data was carried out by

Mplus (version 7.11 Mac; Muthén & Muthén, 1998-2015). The imputation model

used by Asparouhov and Muthén’s (2010) is given in Equation 2.18. Modification

to these equations were made, where the auxiliary variables are included in order

to satisfy the MAR mechanism. For FCS, the imputation of data was carried out

using the algorithm in this thesis (see Section 3.1). The imputation model for FCS

used in the simulation is given in Equation 3.1 to 3.4. As with joint modeling,

modifications were made. The auxiliary variables, and subsequently their cluster

means, were included into the equations in order to satisfy the MAR mechanism.

Ten imputations were generated for each replication and each imputation method.

Finally, with both methods of imputation, convergence of the samplers was assessed

by running convergence diagnostics on several of the generated replications. These

acted as a guideline to set the burn-in iterations and the between-imputation thinning

interval.

Analysis of data. All estimation and pooling of the data was carried out by

Mplus (version 7.11 Mac; Muthén & Muthén, 1998-2015). The analysis model that

was used for the analysis phase of imputation was a random intercept model and is

shown in Equation 3.13.

yijk = β0 + β1aijk + β2bjk + β3ck + u0jk + v0k + εijk (3.13)

Instead of comparing to the population parameters, I used the mean estimates of

the 1000 complete-data samples as a baseline to compare bias. The rational behind

this is that the imputation methods ought not be expected to perform better than

maximum likelihood estimation with complete data, which itself may yield biased

estimates of certain parameters. Three measurements was used in order to assess the
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accuracy of the imputation algorithm: (1) proportional bias, (2) standardized bias,

and (3) confidence interval (C.I.) coverage, where proportional bias is defined as:

proportional bias =
|raw bias|

true parameter
(3.14)

standardized bias defined as:

standardized bias =
raw bias

SD of complete-data estimates
(3.15)

and C.I. coverage is:

C.I. coverage =
number of replications with population parameter in C.I.

total replications
(3.16)

Several criteria were used to judge bias. For proportional bias, Finch, West, and

MacKinnon (1997) recommends that proportional bias does not exceed 0.10. For

standardized bias, Collins et al. (2001) has suggested as ±0.4 to ±0.5 as a rule of

thumb to determine bias estimates or not. This means that the estimate on aver-

age falls roughly plus/minus half a standard error above the estimate. For 95 %

C.I. coverage, a conservative inference is considered when C.I. coverage is less than

0.95 and increased type 1 error is considered when the coverage is greater than 0.95.

Bradley’s (1978) suggested a “liberal” criterion for 95% C.I. coverage have a lower

limit of 0.925 and an upper limit of 0.975. Finally, as previously mentioned, compar-

isons were made between all three approaches to handling missing data (i.e., listwise

deletion, Asparouhov and Muthén’s JM, and FCS approach) across the conditions.
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Chapter 4

Results

Table 5 gives the average estimates in each missing data condition for the com-

plete data, listwise deletion method, joint models method (JM), and fully conditional

specification method (FCS). Note the average complete data estimates presented in

Table 5 were used in the computation of the bias measures. The average complete

data estimates serve as a baseline as it would be unreasonable to expect the missing

data methods to out perform the complete data estimates. As a reminder, the metrics

used to assess the performance of the method are given in Equations 3.14, 3.15, and

3.16. One ought to note that bias measures do not always agree with one another.

For example, proportional bias is not directly impacted by sample size or cluster size,

whereas standardized bias is. In contrast, standardized bias is not as affected by the

scale of the variables, whereas proportional bias is. This is best illustrated by the

intercept, which has a true parameter value of 0, proportional bias becomes undefined

and standardized bias is not.

Table 6 reports the bias measures for listwise deletion. Except for β3, listwise

deletion performed worse than both imputation methods. For example, the average

estimate of β1 had a proportional bias of −0.19 and −0.24 (20% and 40% missing

data rate respectively). In contrast, the corresponding parameter between the two

imputation methods had a maximum amount of proportional bias of 0.02 (in the 40%

in missing data rate for FCS). Similar results were also found for standardized bias,

where β1 had the largest standardized bias for listwise deletion (−7.03 and −8.47 for

20% and 40% missing data rate respectively). Turning to 95% confidence interval

(C.I.) coverage, listwise deletion values ranged from as low as 0.02 (for β1 in the 20%

missing data rate condition) to a maximum of 0.89 (for β1 and β2 in the 20% condition
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and β3 in the 40% condition). Recall, Bradley (1978) suggested a “liberal” criterion

for 95% C.I. coverage be equal to 0.925. These low coverage values are indicative of

listwise deletion’s lack of accuracy and precision. Listwise deletion did perform better

than both imputation methods on one parameter, β3, this issue is discussed in more

detail in Chapter 5.

Table 7 contains the bias measures for JM. Many of JM’s average estimates had

less than ±0.01 proportional bias (i.e., β1, β2, V ar(εijk), and V ar(vjk)) for both miss-

ing data rates. In fact, in both conditions, all but one estimate, β3, was considered

unbiased following the guidelines suggested by Finch et al. (1997). Turning to stan-

dardized bias, the results follow a similar pattern, with little to no bias in all estimates

across all conditions. For example, the highest standardized bias found for JM was

−0.19 for β3 in the 40% missing data rate condition. Note that β3 is considered un-

biased in terms of standardized bias when using the guidelines set forth by Collins et

al. (2001). Finally, JM performed well on 95% C.I. coverage. Across both conditions,

coverage was only below the 0.925 criterion three times (i.e., β1 for 40% missing data

rate and V ar(uk) for both conditions). It is important to note that normal theory

confidence interval coverage may not be an appropriate measure of bias for V ar(uk).

As a variance estimate, the sampling distribution follows a χ2 distribution. A χ2 dis-

tributions only approximates a normal distribution at large degrees of freedom (Box,

Hunter, & Hunter, 2005).

Table 8 gives the bias measures for FCS. Similar to JM, FCS exhibited little to

no bias in the proportional bias metric. The average estimates of β1, β2, V ar(εijk),

V ar(vjk), and V ar(uk) had proportional bias less than or equal to ±0.02 in the 20%

missing data rate condition and less than or equal to ±0.03 in the 40% missing

data rate condition. As with JM, β3 performed the worse, with −0.17 and −0.32

proportional bias in the 20% and 40% missing data rate respectively. Looking at
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standardized bias, β3 did not appear to exhibit bias. For FCS, only β1 was considered

biased under the standardized bias metric and only under the 40% missing data rate

condition (Stand. Bias = 0.55). Finally, FCS performed well under the 95% C.I.

coverage metric. As with JM, the same three parameter/condition combinations fell

below the 0.925 criterion (i.e., β1 for 40% missing data rate and V ar(uk) for both

conditions). The same issue applies for V ar(uk) and this result is expected. In

addition, β1 observed slightly lower coverage in the 40% condition (C.I. = 0.90) than

JM.

To facilitate the comparison between FCS and JM, Figure 1 contains trellis plots

that graphically depicts the similarity between FCS and JM for proportional bias,

standardized bias, and 95% C.I. coverage. The similarity is best illustrated by the

proportional bias column, where across the parameters, the biases were nearly iden-

tical. Standardized bias showed a bit more disparity between the two methods. For

example, the standardized bias of β1 for FCS in the 40% missing data rate condi-

tion was equal to 0.55 and 0.00 for JM. However, it is important to note that this

difference was due the small standard deviations of the complete data estimates (the

denominator of the standardized bias expression, see Equation 3.15) magnifying the

small disparities. In this example, β1 estimates were based on all 15,000 observa-

tions and were very precise. When β1 was evaluated under proportional bias, this

difference was inconsequential. Furthermore, Figure 1 illustrates another similarity

between FCS and JM. For both methods β3 was biased in terms of proportional bias,

but unbiased in terms of standardized bias. In contrast to β1, β3 was imprecise be-

cause it was based on only 30 level-3 units. Turning to 95% C.I. coverage, the only

non-negligible difference was β1 in the more extreme 40% missing data rate condi-

tion. In addition, the coverage value for V ar(uk) showed poor performance in both

conditions. As mentioned previous this was most likely an artifact of the fact that
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the variance estimate being based on a small number of level-3 units. Taken as a

whole, the tables and the trellis plots suggest that FCS and JM were equivalent in a

random intercept model, on average.

The similarity of the average estimates presented in Table 5 and biases illustrated

in Figure 1 leads to the question of whether, in any single data set, the two methods

would lead to similar answers or are only expected to be equivalent over repeated

sampling only. In order to investigate this, I treated the replications as observations

and correlated the estimates obtained from JM with the corresponding estimates

obtained from FCS in each condition. Correlations were estimated for each estimate

across each condition. Table 9 gives the results from this analysis. The correlations

ranged from r = 0.73 to r = 0.98, with the correlations for the 20% missing data

rate condition (ranging r = 0.73 to r = 0.79) lower than the 40% missing data rate

condition (ranging r = 0.91 to r = 0.98). Considering these correlations as a whole,

the magnitude and direction suggests that FCS and JM will frequently produce similar

estimates when applied to the same data set, thereby providing more evidence that

the methods may be equivalent in a random intercept model.
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Chapter 5

Discussion

Until now, only the joint model (JM) approach to imputation has been extended to

the three-level case. Yucel (2008) took the approach of extending the two-level work

done by Schafer and Yucel (2002); however, only an application of the procedure

was given, and the absence of simulation evidence did not allow for an assessment of

the bias associated with his method. Asparouhov and Muthén (2010) gave a closely

related joint model for two-level imputation, which was extended to three-levels in the

Mplus program (Muthén & Muthén, 1998-2015). Thus far, there has only been focus

on the theoretical and algorithmic work required to implement three-level imputation

using the JM method and there was a clear gap when it came to evaluation of three-

level imputation methods. In addition, methodologists have investigated the fully

conditional specification (FCS) as a method for two-level imputation (Enders et al.,

in press; Van Buuren et al., 2011). Despite this, there is a lack of work on using

FCS to impute data with a three-level structure. Therefore, the goals of this study

were to fill the gaps in the literature by developing the appropriate FCS method for

three-levels, compare FCS to current software implementations of JM (Asparouhov

& Muthén, 2010), and assess both models’ performance with a three-level random

intercept model.

In this paper I developed a Markov chain Monte Carlo algorithm by drawing on the

analytic work of Browne (1998) and Yucel (2008), both of which derive the appropriate

sampling steps and posterior distributions needed for the parameters of a three-level

linear model. By building on their contributions, I constructed an FCS algorithm to

draw from the posterior predictive distributions and form imputations for a three-

level model. The procedure accomplished this by first imputing the missing level-1
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variables one by one, conditioning on the previously imputed variables and complete

variables at all levels. The cluster means of the level-1 variables were then computed

for the level-2 clusters (treating the imputations as known). These means were then

included with the level-2 and level-3 variables and were used to impute the missing

level-2 variables. Consistent with level-1 imputation, the level-2 procedure cycled

through the variables one at a time, conditioning on the previously imputed variables

and complete variables at all levels. Finally, cluster means were computed for both

level-1 and level-2 variables for the level-3 clusters. These computed cluster means

were used with the level-3 variables in order to impute the missing level-3 variables

one by one. Importantly, the cluster means of lower level variables were included in

the imputation of higher level variables in order to preserve cross-level associations

(e.g., the relation between level-3 variables and the level-3 variation in lower level

variables). The notion of preserving cross-level associations has been suggested by

the literature (e.g., Enders et al., in press; Gelman & Hill, 2006), but has not been

fully investigated and is a direction of future research.

Simulations were conducted to evaluate the FCS approach previously described.

The simulation used a random intercept model, with only the percentage of miss-

ingness being varied at 20% and 40% with a missing at random mechanism. As

theoretically expected, both FCS and JM had limited bias and good coverage for

most of the estimates in the conditions examined. In addition, the simulation showed

imputation as a whole, under the specific conditions examined, had lower bias and

better coverage than listwise deletion. This finding was in line with statistical the-

ory (Rubin, 1976). Furthermore, the estimates, bias, and efficiency were similar for

both FCS and JM, which suggests that FCS and JM were possibly equivalent for the

random intercept model used in this paper. The equivalency was expected in light

of Mistler (2015) demonstration of the algebraic equivalence for FCS and JM in the
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context of a two-level random intercept model. A direction of future research would

be the extension of Mistler’s (2015) work to three-level models or more generally to

any number of levels.

Although most estimates displayed little bias and good coverage, the simulations

suggested that the fixed effect estimate of the level-3 predictor exhibited bias. This

was an unexpected finding and the cause is unclear. One possible explanation is the

number of clusters used (i.e., 30), which Hox (2010) suggests as a bare minimum for

the number of clusters at the highest level in a two-level model with complete data.

It could be possible that this rule of thumb does not hold in three-level models or in

models with missing data at the highest level. In addition, the low number of clusters

may interact with the low interclass correlation (ICC) that the simulation used at

the highest level; recall the population model assigned 10% of the total variation in

the variables observed at level-1 to be accounted for by level-3. The reliability of the

group means of a variable is dependent on the ICC and the number of observations

within a cluster (see Snijders & Bosker, 2011). This issue is a well known issue in

the complete-data literature for multilevel modeling (Lüdtke, Marsh, Robitzsch, &

Trautwein, 2011; Lüdtke et al., 2008). Although the simulation had a large cluster size

(i.e., njk = 500), increasing the ICC could have a positive impact on the quality of the

estimates. The bias in this estimate demonstrates the lack of any clear guidelines as

to how many clusters are needed at level-3 in order to obtain accurate estimates. Even

though this study presented a limited set of conditions where 30 clusters appeared to

be insufficient, it is the only study to examine this issue thus far, and future studies

should attempt to clarify the sources of this bias.

As with any simulation study, this study has a number of limitations that ought

to be noted. Most importantly, the simulation had limited conditions, implementing

only two missing data rates that were constant across levels. Moreover, the cluster
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sizes and ICC were kept constant and were chosen to mimic longitudinal data (with

the lowest level being repeated measures). The correlation structure (i.e., effect sizes)

was also kept constant, to mimic medium effect sizes in social science data (Cohen,

1988). Therefore, future studies ought to investigate the method’s performance under

different simulated three-level data structures, varying the number of clusters at each

level, the distribution of variance across the levels, and the magnitude of the associ-

ations between the variables, among other things. Another avenue of research is to

investigate random slope models in the context of FCS, which, as mentioned earlier in

this paper, can potentially preserve associations. In addition, heterogeneous residual

variances presents another line of important research. Within-person variability is of-

ten an outcome of interest in psychological research, and the data collected from such

research (e.g., diary data) lends itself to a three-level model. The models presented

in this paper are not currently equipped to preserve cluster-specific variation that is

often the focus of within-person research designs (Hoffman, 2007). Methodologists

have proposed approaches to investigate this (e.g. Hoffman, 2007; Kasim & Rauden-

bush, 1998; Yucel, 2011) and these methods could be extended to the three-level case.

Finally, the simulation examined only normally distributed continuous data. There-

fore, future research ought to investigate the extension of categorical and non-normal

data to three-level multiple imputation.

In summary, the current literature is very sparse and not much work has been

done. Researchers routinely work with data structures requiring three-level models

(e.g., individuals within families within neighborhoods, children within classrooms

within schools, days within people within clinics, etc.); however, missing data tech-

niques for three-level data are still in their infancy, leaving researchers with few so-

phisticated options for addressing the problem. This study serves as a preliminary

start in tackling a much larger issue and gap in the current missing data literature.
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Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén,
B. (2008). The multilevel latent covariate model: a new, more reliable approach
to group-level effects in contextual studies. Psychological methods , 13 (3), 203.

Mistler, S. A. (2015). Multilevel multiple imputation: An examina-
tion of competing methods (Doctoral dissertation). Retrieved from
http://repository.asu.edu/items/29655.

Muthén, L. K., & Muthén, B. O. (1998-2015). Mplus User’s Guide. Seventh Edition.
Los Angeles, CA: Muthén & Muthén.

R Core Team. (2015). R: A language and environment for statistical com-
puting [Computer software manual]. Vienna, Austria. Retrieved from
http://www.R-project.org/

Roudsari, B., Field, C., & Caetano, R. (2008). Clustered and missing data in the us
national trauma data bank: implications for analysis. Injury prevention, 14 (2),
96–100.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581–592.

42



Rubin, D. B. (1987). The calculation of posterior distributions by data augmentation:
Comment: A noniterative sampling/importance resampling alternative to the
data augmentation algorithm for creating a few imputations when fractions of
missing information are modest: The sir algorithm. Journal of the American
Statistical Association, 543–546.

Schafer, J. L. (1997a). Analysis of incomplete multivariate data. New York: Chapman
& Hall.

Schafer, J. L. (1997b). Imputation of missing covariates under a general linear mixed
model. Technical report available at www.stat.psu.edu/-jls .

Schafer, J. L. (2001). Multiple imputation with pan. In A. G. Sayer & L. M. Collins
(Eds.), New methods for the analysis of change (pp. 355–377). Washington,
DC: American Psychological Association.

Schafer, J. L. (2003). Multiple imputation in multivariate problems when the impu-
tation and analysis models differ. Statistica Neerlandica, 57 (1), 19–35.

Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the
art. Psychological methods , 7 (2), 147.

Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate
linear mixed-effects models with missing values. Journal of computational and
Graphical Statistics , 11 (2), 437–457.

Shin, Y., & Raudenbush, S. W. (2007). Just-identified versus overidentified two-level
hierarchical linear models with missing data. Biometrics , 63 (4), 1262–1268.

Snijders, T., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and
advanced multilevel modeling. SAGE Publications.

van Buuren, S. (2007). Multiple imputation of discrete and continuous data by
fully conditional specification. Statistical methods in medical research, 16 (3),
219–242.

van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C., & Rubin, D. B. (2006).
Fully conditional specification in multivariate imputation. Journal of statistical
computation and simulation, 76 (12), 1049–1064.

Van Buuren, S., et al. (2011). Multiple imputation of multilevel data. Handbook of
advanced multilevel analysis , 173–196.

Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel con-
tinuous data with ignorable non-response. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences , 366 (1874),
2389–2403.

43



Yucel, R. M. (2011). Random covariances and mixed-effects models for imputing
multivariate multilevel continuous data. Statistical modelling , 11 (4), 351–370.

Zeger, S. L., & Karim, M. R. (1991). Generalized linear models with random effects;
a gibbs sampling approach. Journal of the American statistical association,
86 (413), 79–86.

Zhang, D. (2005). A monte carlo investigation of robustness to nonnormal incomplete
data of multilevel modeling (Unpublished doctoral dissertation). Texas A&M
University.

44



APPENDIX A

ALGORITHMIC DETAILS OF FCS
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In order to extend the current two-level FCS algorithm to three-levels, I will first
go over the current implementation of FCS in the context of a three-level model. The
rational behind this is, in terms of imputation, the first and second levels of a two-
level model can be thought of as the second and third levels of a three-level model.
Thus, I will refer to level-1 in a two-level model as level-2 in a three-level model.

Suppose that we are interested in one replication of the Gibbs sampler, t, with
a set of Y incomplete variables, such that, Y = {X,Z}, where X is the set of
level-2 incomplete variables (in a three-level model) of size ML2, and Z is the set of
level-3 incomplete variables (in a three-level model) of size ML3. Furthermore, the
subsets (i.e., X and Z) can be further decomposed into two parts, X = {Xmis, Xobs},
where Xmis =

{
xmis1 , . . . , xmisML2

}
and Xobs =

{
xobs1 , . . . , xobsML2

}
. In addition, I define

for a single variable (i.e., xm, ym, zm) a set that is compliment to its super set,

X
c(xm)
mis = Xmis \ xmism . Finally, we have a set of variables, ‘A’, which contains all

complete auxiliary variables. As explained previously, the FCS cycles through the
incomplete variables one at a time. The pseudocode in Figure A1 describes the steps
in both words and the conditional draws used for each line.

In order to extend this algorithm to three-levels, I added another step before the
first for loop that deals with missing data at level-2. To illustrate, suppose that Y
now can be separated into three distinct groups, Y = {W,X,Z}, where W is a set
of level-1 incomplete variables of size ML1. The pseudocode in Figure A2 can be
added in front of the code in Figure A1 in order to extend the current FCS algorithm
to impute three-levels. This pseudo-code provides an algorithmic, programmatic,
and conditional probabilistic explanation of FCS and the extension to FCS for the
continuous case.
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1: procedure FCS
2: for m := 1 to ML2 do
3: Sample imputations for xm from posterior predictive distribution;

x
(t)
mis ∼ P

(
xmis | Xobs, X

c(xm)
mis , A,V(t−1),Σ

(t−1)
V , σ2(t−1)

ε , β(t−1)
)

4: Sample level-3 residuals for xm;

v
(t)
k ∼ P

(
vk | Xobs, x

(t)
mis, X

c(xm)
mis , A,Σ

(t−1)
V , σ2(t−1)

ε , β(t−1)
)

5: Sample level-3 covariance matrix for xm;

Σ
(t)
V ∼ P

(
ΣV | Xobs, x

(t)
mis, X

c(xm)
mis , Z(t−1), A,V(t), σ2(t−1)

ε , β(t−1)
)

6: Sample fixed effects for wm;

σ2(t)
ε ∼ P

(
σ2
ε | Xobs, x

(t)
mis, X

c(xm)
mis , Z(t−1), A,Σ

(t)
V ,V

(t), β(t−1)
)

7: Sample level-2 residual variance for xm;

β(t) ∼ P
(
β | Xobs, x

(t)
mis, X

c(xm)
mis , Z(t−1), A,Σ

(t)
V ,V

(t), σ2(t)
ε

)
8: end for
9: for m := 1 to ML3 do
10: Sample imputations for zm from posterior predictive distribution;

z
(t)
mis ∼ P

(
zmis | Zobs, Zc(zm)

mis , X(t), A, σ2(t−1)
ε , β(t−1)

)
11: Sample level-3 residual variance for zm;

σ2(t)
ε ∼ P

(
σ2
ε | Zobs, z

(t)
mis, Z

c(zm)
mis , X(t), A, β(t−1)

)
12: Sample regression coefficients for zm;

β(t) ∼ P
(
β | Zobs, z(t)mis, Z

c(zm)
mis , X(t), A, σ2(t)

ε

)
13: end for
14: end procedure

Figure A1: FCS two-level multiple imputation. Where k = 1, . . . , c level-2 clusters,
‘P ’ is a general probability distribution, and ‘B’ is a matrix containing the random
effects at level-3 with n rows and columns equal to the number of random effects per

level-2 cluster. Also note that X
c(xm)
mis and Z

c(zm)
mis contains no iteration scripting (i.e,

t). This is because X
c(xm)
mis and Z

c(zm)
mis vary between t and t − 1 depending on the

variables in set X and Z respectively.
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1: procedure FCS Extension
2: for m := 1 to ML1 do
3: Sample imputations for wj from posterior predictive distribution;

w
(t)
mis ∼P

(
wmis | Wobs,W

c(wm)
mis , X(t−1), Z(t−1), A, . . .

. . . ,U(t−1),V(t−1),Σ
(t−1)
B ,Σ

(t−1)
C , σ2(t−1)

ε , β(t−1)
)

4: Sample level-3 residuals for wm;

v
(t)
k ∼P

(
vk | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A, . . .

. . . ,U(t−1),Σ
(t−1)
U ,Σ

(t−1)
V , σ2(t−1)

ε , β(t−1)
)

5: Sample level-2 residuals for wm;

u
(t)
jk ∼P

(
ujk | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A, . . .

. . . ,V(t),Σ
(t−1)
U ,Σ

(t−1)
V , σ2(t−1)

ε , β(t−1)
)

6: Sample level-3 residuals for wm;

Σ
(t)
V ∼P

(
ΣV | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A, . . .

. . . ,U(t),V(t),Σ
(t−1)
U , σ2(t−1)

ε , β(t−1)
)

7: Sample level-2 residuals for wm;

Σ
(t)
U ∼ P

(
ΣU | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A,U(t),V(t),Σ

(t)
V , σ

2(t−1)
ε , β(t−1)

)
8: Sample level-1 residual variance for wm;

σ2(t)
ε ∼ P

(
σ2
ε | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A,U(t),V(t),Σ

(t)
U ,Σ

(t)
V , β

(t−1)
)

9: Sample fixed effects for wm;

β(t) ∼ P
(
β(t) | Wobs, w

(t)
mis,W

c(wm)
mis , X(t−1), Z(t−1), A,U(t),V(t),Σ

(t)
U ,Σ

(t)
V , σ

2(t)
ε

)
10: end for
11: end procedure

Figure A2: FCS three-level multiple imputation extension. Where k = 1, . . . , c level-2
clusters, j = 1, . . . , dk level-1 clusters, ‘C’ is a matrix containing the random effects
at level-2 with lk rows and columns equal to the number of random effects per level-1

cluster. Also note that W
c(wm)
mis contains no iteration scripting (i.e, t). This is because

W
c(wm)
mis varies between t and t− 1 depending on the variables in set W .
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APPENDIX B

TABLES AND FIGURES
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Table 1
Variance Decomposition by Level of All Variables

Variable Level 1 Level 2 Level 3 Total σ2

yijk 4.0(40%) 5.0(50%) 1.0(10%) 10.0
aijk 4.0(40%) 5.0(50%) 1.0(10%) 10.0
bjk 0 5.0(83%) 1.0(17%) 6.0
ck 0 0 1.0(100%) 1.0
AV1ijk 4.0(100%) 0 0 4.0
AV2jk 0 5.0(100%) 0 5.0
AV3k 0 0 1.0(100%) 1.0

Note. In parentheses is the percent of total variance accounted
for across the row.
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Table 2
Level-1 Correlation Matrix for Simulated Data.

Variable 1 2 3

1. yL1 —
2. aL1 0.3 —
3. AV1L1 0.4 0.4 —
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Table 3
Level-2 Correlation Matrix for Simulated Data.

Variable 1 2 3 4

1. yL2 —
2. aL2 0.3 —
3. bL2 0.3 0.3 —
4. AV2L2 0.4 0.4 0.4 —
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Table 4
Level-3 Correlation Matrix for Simulated Data.

Variable 1 2 3 4 5

1. yL3 —
2. aL3 0.3 —
3. bL3 0.3 0.3 —
4. cL3 0.3 0.3 0.3 —
5. AV3L3 0.4 0.4 0.4 0.4 —

53



Table 5
Average Estimates for Simulation

20% missing data rate 40% missing data rate
Complete Listwise FCS JM Complete Listwise FCS JM

β0 0.00 -0.61 0.00 0.00 0.00 -0.89 -0.01 -0.01
β1 0.29 0.24 0.30 0.29 0.29 0.22 0.30 0.29
β2 0.21 0.19 0.21 0.21 0.21 0.19 0.20 0.21
β3 0.15 0.16 0.13 0.13 0.16 0.17 0.11 0.12

V ar(εijk) 3.64 3.48 3.64 3.64 3.64 3.45 3.63 3.64
V ar(vjk) 4.32 4.19 4.32 4.32 4.33 4.18 4.34 4.32
V ar(uk) 0.79 0.74 0.78 0.78 0.78 0.68 0.75 0.75
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Table 6
Bias Measures for Listwise Deletion

20% missing data rate 40% missing data rate
Prop
Bias

Stan
Bias

C.I.
Coverage

Prop
Bias

Stan
Bias

C.I.
Coverage

β0 — -3.33 0.16 — -5.08 0.07
β1 -0.19 -7.03 0.02 -0.24 -8.47 0.09
β2 -0.09 -0.79 0.89 -0.11 -0.95 0.88
β3 0.05 0.04 0.89 0.10 0.08 0.89

V ar(εijk) -0.04 -3.57 0.41 -0.05 -4.50 0.59
V ar(vjk) -0.03 -0.74 0.87 -0.03 -0.80 0.89
V ar(uk) -0.06 -0.22 0.84 -0.12 -0.38 0.79

Note. ‘Prop’ and ‘Stan’ are abbreviations for ‘Proportional’
and ‘Standardized’ respectively.
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Table 7
Bias Measures for JM

20% missing data rate 40% missing data rate
Prop
Bias

Stan
Bias

C.I.
Coverage

Prop
Bias

Stan
Bias

C.I.
Coverage

β0 — -0.01 0.93 — -0.06 0.94
β1 0.00 -0.02 0.95 0.00 0.00 0.92
β2 0.00 -0.02 0.94 -0.01 -0.05 0.94
β3 -0.13 -0.11 0.93 -0.22 -0.19 0.95

V ar(εijk) 0.00 0.05 0.93 0.00 -0.01 0.94
V ar(vjk) 0.00 -0.01 0.94 0.00 0.00 0.94
V ar(uk) -0.01 -0.05 0.90 -0.04 -0.12 0.88

Note. ‘Prop’ and ‘Stan’ are abbreviations for ‘Proportional’
and ‘Standardized’ respectively.
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Table 8
Bias Measures for FCS

20% missing data rate 40% missing data rate
Prop
Bias

Stan
Bias

C.I.
Coverage

Prop
Bias

Stan
Bias

C.I.
Coverage

β0 — -0.02 0.93 — -0.07 0.95
β1 0.01 0.29 0.93 0.02 0.55 0.90
β2 -0.02 -0.15 0.94 -0.04 -0.31 0.94
β3 -0.17 -0.14 0.93 -0.32 -0.27 0.95

V ar(εijk) 0.00 0.02 0.93 0.00 -0.10 0.93
V ar(vjk) 0.00 0.04 0.94 0.00 0.10 0.95
V ar(uk) -0.01 -0.05 0.89 -0.03 -0.11 0.88

Note. ‘Prop’ and ‘Stan’ are abbreviations for ‘Proportional’
and ‘Standardized’ respectively.
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Table 9
Correlations of FCS and JM Estimates

Missing data rate
20% 40%

β0 0.78 0.98
β1 0.79 0.94
β2 0.80 0.95
β3 0.73 0.91

V ar(εijk) 0.79 0.95
V ar(vjk) 0.78 0.98
V ar(uk) 0.79 0.98
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