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ABSTRACT 
 

 This dissertation studies the larger issue of antibiotic resistance with respect to 

how antibiotics are being introduced into the environment, focusing on two major 

anthropogenic pathways: animal husbandry for human consumption, and the recycling of 

wastewater and municipal sludge generated during conventional biological sewage 

treatment.  

 For animal production on land (agriculture) antibiotics are often used for growth 

enhancement and increased feed efficiency. For animal production in water (aquaculture) 

antibiotics are often used as a prophylactic. I found that the same antibiotics are being 

used in both industries and that the same strains of human pathogens have also been 

isolated from both sources, expressing identical resistance mechanisms. In U.S. seafood, 

five out of 47 antibiotics screened for were detected at levels of 0.3 to 7.7 ng/g fresh 

weight. Although compliant with FDA regulations, the risk for resistance still exists, as 

even low antibiotic concentrations have been shown to exert selective pressure on 

bacteria. 

 Similarly low concentrations of antibiotics were found in U.S. biosolids at levels 

of 0.6 to 19.1 ng/g dry weight. Of the five antibiotics detected, two have never been 

reported before in biosolids. Three have never been reported before in U.S. biosolids. 

Using the raw numbers obtained from antibiotic screenings in biosolids, I assessed the 

impact of employing four different LC-MS/MS methods, concluding that analysts should 

experimentally determine the most appropriate quantitation method based on the analyte 

targeted, matrix investigated, and research goals pursued. Preferred quantitation 
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approaches included the isotope dilution method with use of an analogous standard and, 

although time and resource demanding, the method of standard addition. 

  In conclusion, antibiotics introduced into the environment via agriculture, 

aquaculture, and wastewater recycling pose a combination of chemical and biological 

threats. Aside from exerting outright chemical toxicity to non-target organisms, antibiotic 

residues can promote the development of multi-drug resistance in human pathogens. 

Public health protection approaches to stem the risks posed by animal husbandry may 

include reserving drugs for exclusive, human use, decreasing their usage altogether, 

improving reporting efforts, reevaluating existing regulations on agricultural and 

aquacultural antibiotic usage, and improved risk assessment for biosolids application on 

land. 
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PREFACE 
 

Antibiotics are life-saving compounds that are now seeing resistance from many 

important human pathogens. This issue is exacerbated by the fact that antibiotics are not 

only used in human medicine, but also in animal farming. Wastewater treatment plants, 

the gateway between chemicals used by metropolitan human societies and the 

environment, are also not optimized to filter out antibiotics, but rather, many chemical 

groups as a whole, and thus result in antibiotics being introduced into the environment. 

This dissertation explores these two issues and the mass spectrometry quantitation 

methods typically used to obtain environmental and food safety data.  

 

Hypothesis: The current human antibiotic usage practices lead to detectable levels of 

residues in farmed animal flesh and wastewater treatment by-product biosolids, and these 

levels pose antibiotic resistance risks.  

 

Objectives: 1) Compare and contrast antibiotic usage in land-based and water-based 

animal farming and assess resistance risks based on published data; 2) Analyze 

representative seafood samples from the southwest U.S. for commonly used aquaculture 

antibiotics and assess resistance risks; 3) Develop and apply a liquid chromatography 

tandem mass spectrometry antibiotics method to analyze nationwide U.S. biosolids 

samples from the 2006/2007 EPA Targeted National Sewage Sludge Survey; 4) Evaluate 

how four different quantitation methods applied to identical mass spectrometry raw data 

affect the results obtained; calculate the magnitude of matrix effects on concentration 



xiii 

results for antibiotics in biosolids, and to also analyze published literature for trends in 

quantitation method usage. 

 

 

Overview figure. Flow of antibiotics into the environment and associated risks. Antibiotics used in animal 
farming and human medicine may eventually reach the environment and promote resistance development. 
Boxes with numbers indicate the chapter that addresses this part of the antibiotic flow cycle.  
 

 

Methods: All meta-analyses of data were performed using references published in peer-

reviewed journals as well as in non-academic literature from organizations such as the 

World Health Organization (WHO) and Food and Drug Administration (FDA). Using 
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liquid chromatography tandem mass spectrometry, seafood and biosolids samples were 

processed and analyzed for antibiotic content. Raw results from biosolids analyses were 

used for quantitation of drug residues using four different analytical methods: isotope 

dilution with stable isotope-labeled analogs of the analytical target, isotope dilution with 

heavy-labeled standards non-analogous to the analytical target, method of standard 

addition, and external calibration. 
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CHAPTER ONE. DOES THE RECENT EMERGENCE OF AQUACULTURE 

CREATE ANTIBIOTIC RESISTANCE THREATS DIFFERENT FROM THOSE 

ASSOCIATED WITH LAND ANIMAL PRODUCTION IN AGRICULTURE? 

 
 
ABSTRACT 

 
 
Important antibiotics in human medicine have been used for many decades in animal 

agriculture for growth promotion and disease treatment. Several publications have linked 

antibiotic resistance development and spread with animal production. Aquaculture, the 

newest and fastest growing food production sector, may promote similar or new 

resistance mechanisms. This review of 650+ papers from diverse sources examines 

parallels and differences between land-based agriculture of swine, beef, and poultry and 

aquaculture. Among three key findings was, first, that of 51 antibiotics commonly used in 

aquaculture and agriculture, 39 (or 76%) are also of importance in human medicine; 

furthermore, six classes of antibiotics commonly used in both agriculture and aquaculture 

are also included on the World Health Organization’s (WHO) list of critically 

important/highly important/important antimicrobials. Second, various zoonotic pathogens 

isolated from meat and seafood were observed to feature resistance to multiple antibiotics 

on the WHO list, irrespective of their origin in either agriculture or aquaculture. Third, 

the data show that resistant bacteria isolated from both aquaculture and agriculture share 

the same resistance mechanisms, indicating that aquaculture is contributing to the same 

resistance issues established by terrestrial agriculture. More transparency in data 

collection and reporting is needed so the risks and benefits of antibiotic usage can be 

adequately assessed. 
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INTRODUCTION 

 

 

Antibiotics are arguably the most successful and important family of drugs developed for 

the protection of human health. Since the discovery of penicillin in 1928, over 100 

antibiotics have been discovered and used, with the majority of these being introduced 

before 1970 (Davies, 2006). With the unveiling of each new antibiotic class, resistant 

bacterial strains were soon identified thereafter, and treatment of some are now a major 

medical challenge. Today, approximately 70% of characterized nosocomial infections are 

resistant to at least one clinically relevant antibiotic (Zhang et al., 2011a). Moreover, 

many strains have been discovered that exhibit multi-drug resistance (MDR) to nearly all 

commonly available classes of antibiotics (Nikaido, 2009). Coded by antibiotic resistance 

genes (ARGs), resistance mechanisms such as efflux pumps have made many zoonotic 

pathogens extremely difficult to treat, forcing doctors to use antibiotics of last resort, 

example, the fluoroquinolone ciprofloxacin, to treat pathogenic Escherichia coli strains 

(WHO, 2014). 

 

Usage of antibiotics in the production of food animals to sustain and nurture the world’s 

continually increasing human population has contributed to the development of antibiotic 

resistance (Mathew, 2007). In agriculture – referred to in this review as the farming of 

swine, poultry, and cattle – uses of antibiotics include disease prevention, treatment, 

control, and application as growth-promoting antibiotics (GPA) in order to improve feed 

utilization and production (EU, 2005).  The jurisdictions for specific antibiotics allowed 

and their usage in agriculture vary depending on the location; for example in the 
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European Union (EU), use of antibiotics for growth promotion is not allowed (EU, 2005).  

In aquaculture – referred to in this review as the production of aquatic seafood in 

captivity but excluding plants – application of antibiotics is regulated sparingly, differing 

greatly from country to country with little to no enforcement in many of the countries that 

produce the majority of the world’s aquaculture products (Pruden et al., 2013). Usage 

purposes are the same as those in agriculture, with the exception that in aquaculture, 

prophylactic treatment is more common (Cabello, 2006). Previous research has linked 

agricultural antibiotic usage practices with antibiotic resistance development, resulting in 

calls for more judicious usage of antibiotics (Mathew et al., 2014; Silbergeld et al., 2008). 

Many studies have found drug resistant bacterial strains in agricultural facilities, whether 

originating in the meat itself (Rasheed et al., 2014; Ta et al., 2014; Asadpour, 2012) or in 

the surrounding environment (Hsu et al., 2014; Li et al., 2013a; Knapp et al., 2010). The 

same has been shown for aquaculture (Sapkota et al., 2008; Shah et al., 2014; Ryu et al., 

2012), triggering repeated calls for improved regulation and enforcement (Pruden et al., 

2013). Efforts to document resistance have increased in recent years, a notable one being 

the National Antimicrobial Resistance Monitoring System (NARMS) that was 

established in 1996 as a collaboration between the U.S. Food and Drug Administration 

(FDA) Center for Veterinary Medicine (CVM, 2011), the U.S. Department of Agriculture 

(USDA), and the Centers for Disease Control and Prevention (CDC). However, the role 

of antibiotic usage in agriculture and aquaculture in the development of resistance and 

dissemination of ARGs is still poorly understood. 
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Acknowledging the recent growth of aquaculture as a major agricultural sector, this 

review explores similarities and differences between antibiotic resistance risks associated 

with agriculture and aquaculture. Specifically, I address whether the recent rise of 

aquaculture is creating new resistance issues or whether it is simply exacerbating the 

same ones already established for agriculture. To answer this question, I first discuss how 

antibiotics have been traditionally used in these industries around the world. I then focus 

on peer-reviewed academic literature contributions containing data on resistance 

development in foodborne pathogens. And finally, I use the United States as a case study 

to discuss in more detail specific issues identified in the global analysis. 

 

METHODOLOGY 

 

A systematic review was conducted of over 650 reports (see Appendix B for full list) 

extracted from the peer-reviewed academic literature, non-government organizations 

(NGOs), industry, and government (see Supplemental Information for full list of 

documents reviewed). Initial searches started with Web of Science and Google Scholar 

using key terms “antibiotics”, “livestock”, “agriculture”, “aquaculture”, and “food 

production”. Additional articles were identified using each article’s reference section and 

further searches were conducted depending on the topic section. Information was also 

obtained through conversations with food production experts. When possible, the most 

recent peer-reviewed academic literature was used as the cited reference. A total of 98 

key sources are cited in-text to illustrate key issues, show novel data or ways of analysis, 
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and highlight key research gaps still awaiting attention in future studies. A full list of 

references is available as supplemental information. 

 

Animal Farming and Antibiotic Usage 

In addition to the search terms above, various country/region names were searched 

alongside (European Union, Brazil, China, etc.). Each jurisdiction’s official government 

website was further surveyed to collect relevant data. Non-government documents such 

as ones from the Food and Agricultural Organization (FAO) were also extensively 

reviewed in this section. 

 

Foodborne Pathogens and Antibiotic Resistance Mechanisms 

A separate search was conducted to analyze the link between antibiotic resistance and 

animal production. The initial search of literature on Web of Science started with the 

search terms “antibiotics, resistance, and agriculture” and “antibiotics, resistance, and 

aquaculture/seafood” (see supplemental information). These results were then filtered 

based on title to exclude topics that are not covered in this review (see exclusion criteria 

in supplemental information). Further literature searches were conducted as needed using 

terms such as “drug resistance, seafood, and antimicrobials” in order to find articles not 

captured in the primary search.  

 

United States Agriculture and Aquaculture 

Much of these data were collected from governmental websites and through personal 

communications with personnel from various organizations such as the National Oceanic 
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and Atmospheric Administration (NOAA) and the National Resources Defense Council 

(NRDC). 

 

The cutoff date for the literature search was September 1, 2014. Information from the 

2007 U.S. Agriculture Census, kindly provided by the Food and Water Watch in raw and 

processed data formats, served to create the composite Geographic Information Systems 

(GIS) illustrations in Figure 5. Whenever possible, an update to currently reported data is 

provided.  

 

The use of terminology in the field of drug resistance is not always consistent. In this 

dissertation, I define prophylaxis as the precautionary administration of antibiotics at 

levels predetermined to be therapeutic in the absence of disease (sometimes also termed 

“disease prevention”). “Sub/non-therapeutic” usage of antibiotics refers to the usage of 

these compounds for growth promotion at concentrations lower than the dosages required 

to effectively inhibit the growth of harmful bacteria.  

 

AGRICULTURE VS. AQUACULTURE 

 

Animal Farming and Antibiotic Usage 

Over the last sixty years, worldwide production of swine, poultry, and cattle has grown 

continuously, with poultry outpacing the others (Figure 1-1A). World aquaculture 

production only became a major animal production industry around 1985 (Figure 1-1B). 

Before then, it was a largely non-commercial affair, representing a traditional way of life 
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for centuries and often providing the sole reliable source of nourishment for its producers 

(Cole et al., 2009). Reasons for the recent growth of aquaculture include an increased 

demand for what is now recognized as a healthy protein choice, advances in seafood feed 

production, depleted wild fish stocks, and improvements in farming facilities enabling 

high-density farming (Sapkota et al., 2008; Cole et al., 2009). Total seafood production is 

now almost evenly split between wild-caught and farmed with the former steadily 

becoming stagnant in volume for the past two decades. 

  

Figure 1-1. Animal production values 1950-2011 and top producing countries of cattle, 
swine, and aquaculture. A) 1950-2011 world production of swine (purple), cattle (blue), 
poultry (green), and total for all three (gray). B) 1950-2011world production of total 
seafood (orange), wild-caught seafood (red), and aquacultured seafood (purple). C) Top 5 
cattle producing countries in 2013, counting only beginning stocks by head. D) Top 5 
swine producing countries in 2013, counting only beginning stocks by head. E) Top 15 
aquaculture producing countries in 2010 by percentage of total world production. (USDA 
Production, Supply, and Distribution, 2014; FAOSTAT, 2014; FAO The State of World 
Fisheries and Aquaculture, 2012; FAO FishStat, 2010). 
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 Figure 1-1 panels C-E show the top countries that produce cattle, swine, and 

aquacultured seafood. Perhaps the most important detail here is that the majority (>90%) 

of aquaculture occurs in Asia whereas agriculture’s concentrated animal feeding 

operations (CAFOs) that confine large populations of animals in buildings or feedlots 

(Silbergeld et al., 2008) can be found distributed across several regions. Aquaculture 

facilities vary in design, with some keeping animals contained in ocean nets and others in 

secluded ponds or reservoirs. In Asia, aquaculture often links to the natural water 

environment (Rico et al., 2012). Many of these freshwater farms irrigate or flow through 

ponds that often tie with water reservoirs, lakes, and rivers (Rico et al., 2012). Brackish 

water aquaculture has more than doubled over the past decade and is primarily producing 

shrimp in coastal ponds and tanks (Rico et al., 2012).  

 
Data regarding the classes and amounts of antibiotics used for agriculture and aquaculture 

depends on the region. For example, in 2003, salmon aquaculture in Chile used about 0.5 

kg of antibiotic for each kg of salmon produced, whereas the amount in Norway was 

0.002 kg (Buschmann et al., 2009). Figure 1-2 shows the most recent data available 

regarding antibiotic sales in the U.S. and the EU (25 countries). It is important to keep in 

mind that antibiotic sales do not equate to antibiotic usage, and usage information is not 

readily available or even reported in most cases. In both regions, the tetracycline class is 

the largest class of antibiotics sold, comprising about 40% of total sales. Similar reliable 

data from other regions of the world proved to be unavailable. Antibiotic sales and usage 

in India are not regulated (Ganguly et al., 2011; NICD, 2011). In China, two different 

reports of antibiotic usage were found, one stating the annual usage in animal feeds as 
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6000 tons (Zhao et al., 2010) and the other stating over 8000 tons were used annually in 

animal husbandry (Chen et al., 2012). In Brazil, it has been reported that the most 

commonly used antibiotic classes are fluoroquinolones (34% of total antibiotics), 

ionophores (20%), and macrolides (10%) (Regitano and Leal., 2010). Overall, worldwide 

usage of antibiotics in both animal production and human medicine has increased in 

recent decades; agriculture accounts for the majority of drugs used, and the mass of 

antibiotics used for the production of terrestrial food animals is estimated to exceed the 

amount of drugs used in aquaculture (Marshall and Levy, 2011).  

Figure 1-2. Antibiotic classes sold 
annually for use by animal production 
industries in U.S. and EU (25 countries) 
in 2011. Total volume sold in the U.S. is 
approximately 13.5 million kg. Total 
sold in EU is approximately 8.4 million 
kg. (FDA, 2011; EMA, 2011). 
 

How the antibiotics are used 

depends on the location and is 

not typically reported. Global 

trends in agriculture, aquaculture, 

and human medicine point to a 

steady increase in the usage of antibiotics. The most important delineation in usage is 

whether antibiotics are used for growth promotion. Among the top five cattle- and swine-

producing countries (see Figure 1C-D), only the EU has a confirmed ban on use of GPAs 

(EU, 2005). In the US, ionophores are used only in animals for growth promotion; a 

usage which is probably true in Brazil as well where ionophores are also reported to be 

commonly used (Regitano and Leal, 2010). It should be noted that ionophores are 

typically reserved for animal usage and not for human usage, unlike the other antibiotic 
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classes (Chapman et al., 2010). These drugs can alter the stomach microorganisms in 

livestock to increase feed efficiency and energy extraction in the conversion of feeds 

(Coffman, 1999). As Figure 1-2 shows, ionophores are absent from EU antibiotic sales 

because of the 2006 ban on usage of GPAs in food animals (Maron et al., 2013; EU, 

2005). Although there is no law against GPA usage in the US, the FDA has recently 

issued formal guidance to industry strongly urging drug companies to withdraw their 

GPAs and/or convert their usage guidelines to “therapeutic only” (FDA #213, 2013). In 

China and Russia, antibiotic usage in animals is restricted to using only non-human 

medicine drugs (Sarmah et al., 2006) and since 2003, several reforms have been 

attempted in China to improve food safety (Broughton and Walker, 2010).  However, 

reports of medically important antibiotics such as tetracyclines being used (Jin, 1997) and 

detections of illegal veterinary antibiotics like chloramphenicol in Chinese waters suggest 

that enforcement of the regulation is lax (Hu et al., 2010; Chen et al., 2012). Today, 

unlike in the EU (Maron et al., 2013), no veterinary prescriptions are required in China 

for use of antibiotics in animals (Maron et al., 2013). One of the first steps that can be 

taken to ensure better monitoring of antibiotic usage is to require veterinary prescriptions 

when antibiotics are used in animals (Mathew et al., 2007; Cabello, 2006; Maron et al., 

2013). This approach is being favored in India, as reported in 2011 in a national policy 

document outlining details to contain antibiotic resistance (NICD, 2011). Whereas data 

on actual implementation of such measures are scarce, the current trend in published 

papers indicates that many countries are taking steps to better regulated and report 

antibiotic usage. 
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The data presented above is for all antibiotics used in animal production, which includes 

aquaculture. Specific data for antibiotic usage patterns in aquaculture is available mostly 

in non-academic literature from the FAO and reports based on surveys as to what 

antibiotics are commonly used. In 2008, a review article identified three antibiotics to be 

in common use in aquaculture: oxytetracycline, oxolinic acid, and chloramphenicol 

(Sapkota et al., 2008). A more recent survey conducted by the FAO of 21 countries 

engaging in aquaculture confirmed continued use of oxytetracycline as the top antibiotic 

applied in the treatment of disease in all major seafood species (Alday-Sanz et al., 2012). 

Florfenicol and trimethoprim/sulfadiazine were next in line with respect to usage 

frequency. Oxytetracycline was also reported as the most widely used antibiotic for 

prophylactic treatment. A total of 24 countries were surveyed, including 11 of the top 15 

aquaculture producers; the four countries missing from the survey were Egypt, Japan, 

South Korea, and Myanmar. 

 

To assess the similarities and differences in antibiotics used for agriculture, aquaculture, 

and human health, the 2011 World Health Organization (WHO) list of important 

antimicrobials was compared to the above data (WHO, 2012). The WHO list is a 

categorization system of 260 antimicrobials created in an effort to contain antimicrobial 

resistance development and spread and to reserve key drugs for human medicine (WHO, 

2007). This list was intended for public health and animal health authorities as a 

reference for prioritizing risk assessment with respect to antibiotic resistance 

development. Two criteria are considered for inclusion on this list: first, the antibiotic 

must be the sole or one of a few limited available therapies to treat serious human 
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diseases; and second, it must be used to treat diseases caused either by a) organisms that 

may be transmitted to humans from non-human sources or b) human diseases caused by 

organisms that may acquire resistance genes from non-human sources. “Critically 

important” antimicrobials (n=162) meet both criteria. “Highly important” antimicrobials 

(n=88) meet one of the two criteria, and “important” antimicrobials (n=10) meet neither 

criterion but are still recognized as drugs of importance in human medicine. In this paper, 

antibiotics from all three classes were screened for usage similarity with results shown in 

Figure 1-3 (excluding antibiotics listed for veterinary use only). Six common classes of 

antibiotics (aminoglycosides, macrolides, penicillins, quinolones, sulfonamides, 

tetracyclines) on the WHO list are regularly used in agriculture and aquaculture. Of the 

51 antibiotics reported to be used by the top agriculture and aquaculture countries, 39 are 

on the WHO list. Of these 39 antibiotics, only 2 are listed as “important”; the other 37 are 

either “critically important” or “highly important”. These numbers indicate that there is 

extreme crossover of antibiotic usage in human medicine and animal food production. It 

is important to note that data provided in Figure 1-3 most likely underestimate the 

antibiotics actually used as this information is not reported and recorded systematically. 

The most important message from these data is that several of the same classes of 

antibiotics are used for both human medicine and animal production. This parallel 

antibiotic usage may be promoting similar resistance issues in both aquaculture and 

agriculture. 
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Figure 1-3. Common antibiotics used in aquaculture, agriculture, and included in the 2011 WHO 
antimicrobials list. Displayed as number of antibiotics followed by antibiotic class. Aquaculture antibiotics 
include the ones reported to be used by top 15 aquaculture-producing countries. Agricultural antibiotics 
include the ones used in cattle, swine, and poultry farming. WHO antibiotics are ones on the antimicrobial 
list in all three labels: “critically important”, “highly important”, and “important”.  
(Yuan and Chen, 2012; Kemper, 2008; Hao et al., 2007; WHO, 2012; Sarmah et al., 2006; Sapkota et al., 
2008). 
 
Aquaculture: qui-sarafloxacin; other- miloxacin.  
WHO: excludes antibiotics used solely for veterinary use. See reference WHO, 2012 for full list. 
Agriculture: ami- apramycin*, neomycin; ceph- cefquinome*, ceftiofur*; ion- monensin; qui- 
marbofloxacin*; other- virginiamycin*, narasin. 
Agriculture and Aquaculture: other- tiamulin, ormetoprim.  
Agriculture and WHO: mac- kanamycin, oleandomycin, spectinomycin, streptomycin; pen- cloxacillin, 
dicloxacillin, oxacillin; lin- lincomycin; sul- sulfamethazine, sulfathiazole; other- tylosin  
Aquaculture and WHO: qui- norfloxacin, ciprofloxacin, pefloxacin, oxolinic acid, nalidixic acid, 
flumequine; sul- sulfadiazine, sulfamerazine, sulfamethoxazole; other- chloramphenicol, colistin, 
florfenicol, furazolidone, thiamphenicol.  
Aquaculture, Agriculture, and WHO: ami- gentamicin; mac- spiramycin, erythromycin; pen- amoxicillin, 
ampicillin, penicillin G; qui- enrofloxacin; sul- sulfadimethoxine, sulfadimidine, sulfapyridine; tet- 
chlortetracycline, oxytetracycline, tetracycline; other- trimethoprim. 
* These agriculture antibiotics are included in the WHO list but are reserved for veterinary use only. 
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Foodborne Pathogens and Antibiotic Resistance Mechanisms 

As shown in the previous section, the antibiotics used in agriculture and aquaculture span 

many of the same antibiotic classes. Thus, as agriculture has been using antibiotics for 

much longer than aquaculture has, I ask whether the same resistance mechanisms exist in 

both or if the latter is promoting the development of new ones. In this section, I identified 

reported bacterial pathogens from meat and seafood, characterized how resistance may 

develop, and looked for resistance development pathways in agriculture and aquaculture. 

To relate the isolated strains to human health risks, I focused our identified strains on 

zoonotic foodborne pathogens. 

 

The most prevalent and serious emerging pathogens in agricultural meat products are 

Campylobacter jejuni, Salmonella enterica serovar Typhimurium DT104, and E. coli 

O157:H7 (Mor-Mur and Yuste, 2010). Often, these products are contaminated during 

handling and processing in the CAFOs where the animals are slaughtered. Pathogens 

present in feces and/or animal hides often are transferred to edible fractions, or spread as 

aerosols produced during dehiding, evisceration, and carcass splitting (Mor-Mur and 

Yuste, 2010). In aquaculture, foodborne diseases are not as well documented, but the 

literature shows that Salmonella and Vibrio spp. are likely to be the most common 

pathogens detected in seafood, with Listeria monocytogenes, Aeromonas, and 

Clostridium spp. becoming emerging threats (Feldhusen, 2000; Herrera et al., 2006; 

Normanno et al., 2006). Cases of human infections from seafood most often arise from 

handling, such as contact with the wash water or through processing in the food industry, 

and by oral consumption of infected fish or related products (Novotny et al., 2004).  
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Aside from the potential to cause infections in the people that are exposed, these bacteria, 

along with others that are less often found, are capable of developing and spreading 

antibiotic resistance. In both agriculture and aquaculture, development/persistence of 

resistance can occur when these bacteria are exposed to sub-therapeutic concentrations of 

antibiotics (Sapkota et al., 2007). In terrestrial agriculture, this exposure occurs when 

antibiotics used for growth promotion are added as a CAFO feed additive over a period 

of time for fattening and for increased feed efficiency (Phillips et al., 2004). In the US, 

about 55% of all antibiotic usage in cattle is during the feedlot stage of cattle production 

(Mellon et al., 2001). The feedlot stage is when the animals weigh in between 700 and 

1200 lbs, with average antibiotic dosages estimated at 80 mg/animal/day for about 120 

days (Mellon et al., 2001). This means that these cattle are subject to sub-therapeutic 

antibiotic concentrations for almost one third of a year. 

 

The commonly cited rationale behind using GPAs is an economic benefit, with average 

increases in animal mass reported in the range of four to eight percent (Butaye et al., 

2003). Other advantages reported in the literature include an improvement of animal 

health, decreases of bacterial contamination in animal products, a reduction of adverse 

environmental impacts such as greenhouse gas emissions, and prevention of water 

eutrophication (Hao et al., 2007). However, an economic analysis of using antibiotics in 

commercial broiler chickens for growth promotion showed that the net economic effect 

of using GPAs is negative, with an estimated lost value of $0.0093 per chicken or about 

0.45% of the total cost; the positive production changes associated with antibiotic use 

reportedly were insufficient to offset the cost of more expensive feed (Graham et al., 



16 

2007). The latter study did not consider the potential benefits of GPA removal in terms of 

preventing external costs from medical and public health burdens resulting from 

antibiotic-resistance infections. Considering such would further increase the cost incurred 

by the use of antibiotics. No other such analysis is available in the literature, and more are 

needed to assess the economic impact of using GPAs. 

 

In aquaculture, sub-therapeutic exposure concentrations are mostly encountered after the 

prophylactic use of antibiotics. Unconsumed fish feed and feces can contain residues that 

persist in the surrounding environment (Cabello, 2006), allowing for bacteria to be 

exposed to low concentrations that can select for resistance. The exposed bacteria then 

can spread ARGs to the natural microbiota in nearby ecosystems, which may pose a 

greater threat than low levels of residues, as resistance genes may persist for decades due 

to the marginal impact of gene maintenance on fitness (Pruden et al., 2013). As previous 

studies suggest that the environment already harbors ARGs (Marti et al., 2014), the 

mixing of residues that is made easier via the water pathway make aquaculture more 

likely to spread contaminants compared to agriculture. In many cases, these compounds 

are only slightly transformed, or even unchanged and conjugated to polar molecules, 

allowing for easier dispersion in water (Kemper, 2008) The added potential impacts on 

the environment include direct antibiotic toxicity in natural microbiota, flora, and fauna, 

have been voiced in literature (Rico et al., 2012; Baquero et al., 2008). However, not all 

detected antibiotic concentrations are environmentally relevant enough to negatively 

impact invertebrates and fish (Zounkova et al., 2011; Park and Choi, 2008). These reports 

in literature indicate that the risks associated with antibiotic residues in aquaculture may 
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vary depending on the situation and that there is a gap in knowledge regarding residues 

and their effects on resistance development. It must be noted that the usage of antibiotics 

in animal production has provided many benefits as well. Antibiotics have allowed for 

animal health to be improved, increasing economic gain for the farmers, as pathogens are 

significantly reduced when antibiotics are utilized (Phillips et al., 2004; Hao et al., 2007). 

However, despite these benefits, I cannot ignore the risks and potential negative human 

health and environmental impacts. 

 

To compare the potential for agriculture and aquaculture to be developing the same 

mechanisms of antibiotic resistance, I reviewed reports in literature of bacterial isolates 

resistant to commonly used antibiotics in these food production industries. In agriculture, 

four common resistance mechanisms have been identified (Figure 1-4). These categories 

are presented very broadly to be more inclusive; “altered intracellular target” can mean 

any mutation that allows for ribosomal active site changes or an RNA polymerase 

mutation that leads to reduced binding of the antibiotic (Giedraitiene et al., 2011). 

Antibiotics in many classes can be ineffective against these mechanisms; both macrolides 

and penicillins can be pumped out of the bacterial cell by efflux pumps, for example. In 

other words, co-resistance can occur with any of these mechanisms. The zoonotic 

pathogens of concern listed in Figure 1-4 are typical examples of bacteria exhibiting the 

common resistance mechanisms. For example, P. aeruginosa is well known for 

expressing MDR efflux pumps (Nikaido and Pages, 2012). Examples of these pathogens 

isolated from agriculture that have been molecularly shown to harbor each resistance 
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mechanism’s ARGs are also shown in Figure 1-4. Many are resistant to several 

antibiotics, but ones commonly used in agriculture are noted.  

 

The same four mechanisms were also found to be associated with aquaculture. Zoonotic 

pathogens resistant to aquaculture antibiotics have been isolated from seafood containing 

all of the four resistance mechanisms (Ryu et al., 2012; Uddin et al., 2013; Meng et al., 

2011; Nawaz et al., 2012). Some of these microbes are relevant pathogens in agricultural 

products as well (i.e., Salmonella). Tetracycline resistance is the most commonly seen 

resistance among bacterial isolates from aquaculture; a recent study showed that as the 

number of resistance reports increased, so did the incidence of tetracycline resistance 

(Done and Halden, 2015). Among 23 publications on drug resistant bacteria isolated from 

seafood for human consumption, 21 reported resistance to at least one antibiotic 

belonging to the class of tetracyclines. This previous study only reported publications 

from 2003-2013 and limited the search to bacterial strains from seafood products only 

(excluding aquaculture facilities, the surrounding water, etc.). If the exclusions were not 

applied, the number of resistant strains isolated would most likely increase. The major 

issue with detections of specific resistance determinants such as efflux pumps is the 

ability of these genes to be spread via horizontal gene transfer, possibly to bacteria that 

are even more pathogenic to humans. In both aquaculture and agriculture, native 

environmental bacteria are mixed with zoonotic bacteria, providing a situation where 

resistance can develop, spread, and linger amongst them. The biggest human health risk 

is coming into contact with pathogenic bacteria that are also resistant to multiple 

antibiotics, especially ones from different classes. 
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Figure 1-4. Resistance mechanism development in agriculture and aquaculture. Top panel explains how 
each row exhibits a resistance mechanism. Each row in chart is an example via a different resistance 
mechanism. Each resistance mechanism can allow bacteria to be resistant to many classes of antibiotics 
(leftmost column). Antibiotics reported to be used in agriculture and aquaculture (column 1) can select for 
resistance mechanisms (column 2) that are sometimes expressed by common pathogens listed here are 
examples (column 3). Column 4 shows bacterial isolates reported in literature that are resistant to the stated 
antibiotics and have been genetically shown to express the resistance mechanism in that row. AG= isolate 
from agriculture; AQ= isolate from aquaculture. Reference numbers for the publications are noted with the 
bacterial strain. Strain genera are as follows: P = Pseudomonas, E = Escherichia, S = Streptococcus 
pneumoniae/pyogenes or Staphylococcus aureus, N = Neisseria, E = Enterococcus, H = Haemophilus, K = 
Klebsiella, M = Moraxella, and B = Bacillus. Resistance mechanisms from Giedraitiene et al., 2011. 
References: 11=Ta et al., 2014 18= Ryu et al., 2012 65= Uddin et al., 2013 66= Chen et al., 2004 67= 

Meng et al., 2011 68= Van et al., 2007 69= Jiang and Shi, 2013 70= Nawaz et al., 2012 
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As noted above, several such cross-resistant isolates have already been found in 

terrestrial agriculture and aquaculture. These data suggest that identical resistance 

mechanisms are being promoted and developed in both agriculture and aquaculture. 

Alarmingly, some of the same pathogens have been isolated from both seafood and meat. 

Different strains of MDR Salmonella were isolated containing the same resistance genes 

from both shellfish and pork (Van et al., 2007). Similarly, E. coli strains isolated from 

pork, beef, poultry, and fish were resistant to several tetracyclines (Koo and Woo, 2011). 

This review only focuses on human health risks posed by edible animal products 

themselves, but it should be noted that additional risks result from the processing and 

handling of all materials involved, such as the disposal of animal feces containing 

resistant bacteria (Tadesse et al., 2013). The studies available and examined for this work 

show that the same resistance mechanisms are being promoted in agricultural and 

aquacultural environments (including processing and handling), thereby allowing for 

resistance to develop and spread via food and the environment, resulting in significant 

human health threats.  
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Figure 1-5. 2007 density maps of cattle, swine, poultry, and combined values of production and 2005 
number of aquaculture farms in US. 2007 U.S. density of A) cattle, B) swine, C) poultry, and D) combined 
production. Maps A-C show animal density by county. For map A cattle density level: very high = > 
17,400; high = 7,300-17,400; moderate = 2,175-7,299; some = < 2,175; none = 0. For map B swine density 
level: very high = > 48,500; high = 19,000-48,500; moderate = 9,500-18,999; some = < 9,500; none = 0. 
For map C poultry density level: very high = > 2.75 million; high = 1-2.75 million; moderate = 350-999 
thousand; some = < 350 thousand; none = 0. For map D combined production, the total number of livestock 
across different animals types was calculated using the U.S. Department of Agriculture definition of a 
livestock unit, which is 1000 pounds (454 kg) of live weight. Map D county density level (in livestock 
units): very high = > 13,200; high = 5,200-13,200, moderate = 2,000-5,199; some = < 2,000; none = 0. E) 

2005 U.S. density of aquaculture production by number of reported farms, with percentage of farm being 
freshwater or saltwater indicated in blue pie charts. States without a pie chart contain fully freshwater 
operations. (Food and Water Watch, 2007; Department of Agriculture, 2005). 
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CASE STUDY: UNITED STATES AGRICULTURE AND AQUACULTURE 

 

Animal Farming and Antibiotic Usage 

The U.S. is one of the largest producers of agriculture in the world, ranking (counting 

beginning year stock numbers) 4th in 2013 cattle production at approximately 89 million 

head and 3rd in swine production at approximately 66 million head (USDA Production, 

Supply, and Distribution, 2014). As seen in Figure 1-5, the cattle and swine industries 

dominate over the poultry industry, with much higher densities reported for many of the 

U.S. counties and states shown. These data (Figure 1-5A-D) are from the 2007 USDA 

Agricultural Census, which conducts a new survey every five years (the 2012 report is 

expected to be released within the next year). Shown at the county level, the majority of 

the U.S. cattle, swine, and poultry farming is done in the Great Plains states and along the 

west border of the Mississippi river. These geographic locations differ, as one would 

expect, from the locales of aquaculture, which are largely situated near the ocean and 

along the Gulf of Mexico (Figure 1-5E).  

 

Aquaculture can be divided into freshwater and saltwater culture (Figure 1-5E). By value 

of production, saltwater and freshwater aquaculture in the U.S. contributed approximately 

$800 and $550 million dollars, respectively, in 2011 (NOAA, 2012). About two-third by 

value of saltwater (or marine) aquaculture consists of mollusks such as oysters, clams, 

and mussels (NOAA, 2014A). This type of aquaculture takes place in cages that are 

located on the ocean floor or suspended in water column (NOAA, 2014B). The majority 

of this farming is done in the northwest region of the U.S. (see Figure 1-5E for blue pie 
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chart inserts) and in Washington and Oregon. Freshwater aquaculture is predominated by 

trout, catfish, and tilapia (NOAA, 2012A). Figure 1-5 only shows the density of 

aquaculture farms contained in each state based on the 2005 Agricultural Census, but 

these numbers don’t necessarily reflect the amount of production. The top 5 aquaculture 

states by value in 2005 were as follows: Mississippi, Arkansas, Alabama, Louisiana, and 

Washington, together producing about a half a billion dollars worth of products, which is 

about half of the total U.S. value produced (USDA, 2005).  

 
 
Table 1-1. Total reported U.S. antibiotic usage (in million kg) by animal industry and for human health. 

Reporting 

Source  
Year 
Reporteda  

Total Amt. 

Sold for 

Food 

Production 
Animals  
(Million kg)  

Reported Sub-

Therapeutic Usageb  

Million kg  

(% of Total Animal 

Amount)  

Total Human 

Usage  
(Million kg)  

% of 

Total AB 

Sold is for 

Animals  Reference  

AHI 2001 8.1 1.4 (18%) 14.6 35% 
Mellon et al., 
2001 

UCS 2001 12.5 11 (88%) 3 70% 
Mellon et al., 
2001 

USFRA 2007 NR (13%) NR NR USFRA, 2007 

FDA; Rep. 
Slaughter 

2009 13.1 NR 3.3 80% 
FDA, 2010; 
Slaughter, 
2011 

CSPI, 
NRDC, This 
Review 

2011 13.5 NR 3.3 80% 

FDA Drug Use 
Review, 2012;  
FDA, 2011; 
NRDC, 2014; 
DeWaal and 
Grooters, 2013 

aYear reported does not always correspond to year data was collected/formulated. NR= not reported in 
publication. 
bReported sub-therapeutic usage, does not differentiate between amounts of antibiotics used for 
prophylaxis, metaphylaxis, growth promotion, or feed efficiency. 
 
 

As production of cattle, poultry, and swine expanded to large-scale productions over the 

last half-century, the usage of antibiotics in agriculture has also become the norm and has 
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greatly increased. Based off of FDA reports, I calculated that in 2011, 80% of the 

antibiotics sold by weight were designated for animal usage (FDA, 2012; FDA, 2011). 

This percentage was calculated from the annual FDA released summary report on 

antimicrobials sold/distributed for food-producing animals (13.5 million kg) and from the 

FDA drug use review, where sales numbers for human medicine usage (3.29 million kg) 

were obtained (FDA, 2011). Similar numbers have previously been reported by several 

other NGOs, including the Natural Resources Defense Council (NRDC, 2014; DeWaal 

and Grooters, 2013), the UCS, and the Center for Science in the Public Interest, among 

others (Table 1-1). These organizations primarily based their estimates on annual FDA 

summary reports for antimicrobials. However, the numbers reported by the Animal 

Health Institute (AHI) are much different, resembling those reported by the U.S. Farmers 

and Ranchers Alliance, another entity representing the industry. The AHI estimates that 

only about 35% of antibiotics in the U.S. is used in animals for food production (Mellon 

et al., 2001). 

 

A second data discrepancy requiring more transparency is what antibiotics are annually 

used in animal production as well as their frequency of usage. This reporting is difficult 

in part because animal producers are not required to report this information, but also 

because “non-therapeutic” or “sub-therapeutic” usage of antibiotics can mean different 

things. As the FDA allows antibiotics to be used for growth promotion, feed efficiency, 

disease and metaphylaxis, it is hard to specifically enumerate the amount of antibiotics 

used in each of these categories (MacDonald and Wang, 2011). Thus, it must be noted 

that the numbers reported in Table 1-1 column “Reported Sub-Therapeutic Usage” are 
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only estimates by a few organizations and that these numbers may not reflect the situation 

accurately. As the FDA is now required to report antimicrobial usage numbers, the next 

step would be to report what the antibiotics are used for. Recent FDA/CVM guidance 

now provides recommendations for industry to voluntarily align their products with FDA 

#209 (FDA #209, 2012). This guidance includes two principles: 1) limiting medically 

important antimicrobials to uses in food-producing animals that are considered necessary 

for assuring animal health and 2) limiting these usages to only those with veterinary 

oversight or consultation (FDA #209, 2012). These guidelines encourage better 

documentation and usage practices. 

 

With regards to aquaculture production, the U.S. produces a relatively low amount 

compared to other countries. This is partly due to the fact that China provides close to 

70% of total aquaculture products, as well as the fact that the U.S. imports about 90% of 

its seafood. There is a major effort in place to expand the aquaculture industry in the US, 

so that the reliance on imported fish is reduced. The U.S. is a leading global consumer of 

fish and fishery products, and yet only about 5-7% of the national supply comes from its 

aquaculture industry (NOAA, 2014B). It has been estimated that up to 433,000 lbs 

(approximately 196,000 kg) of antibiotics were used in 2002 in U.S. aquaculture 

(Benbrook, 2002). These data indicates that the vast majority (approximately 80%) of 

animal antibiotics used in the U.S. are used in agricultural animal production (see Table 

1-1). Antibiotics do not improve growth or feed efficiency in fish like they have been 

reported to do in certain livestock (NOAA, 2014C). The usage of vaccines has also 

greatly limited antibiotic usage in the US, and at present, only three antibiotics are 
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registered and sold for disease control in fish: oxytetracycline, florfenicol, and 

sulfadimethoxine/ormetoprim (FDA, 2014). Thus, it can be assumed that the majority of 

the antibiotics used for food-producing animals in the U.S. are in livestock, which is most 

likely the case in other countries as well (Marshall and Levy, 2011).  

 

Foodborne Pathogens and Detected Resistance 

In the US, foodborne pathogens of concern in agricultural meats are E. coli, Salmonella, 

and Campylobacter. The NARMS Retail Meat Annual Report of 2011 identifies E. coli 

as the most commonly detected bacterium in all retail meat products (CVM, 2011). Out 

of 1,920 retail meats tested in 2011, 55.7% were found to culture positive for E. coli. 

Although no isolates were resistant to ciprofloxacin, some isolates were shown to be 

resistant to third-generation cephalosporins, and co-resistances to other β-lactam 

compounds were reported. For Salmonella, the three serotypes most commonly detected 

were Typhimurium, Kentucky, and Heidelberg. Resistance to ampicillin rose from 17% 

of isolates in 2002 to 41% in 2011. A similar trend was seen for third-generation 

cephalosporins (from 10% to 34%). Most concerning is the fact that 45% of retail 

chicken harbored isolates featuring resistance to three or more classes of antimicrobials. 

Approximately 27% showed resistance to at least 5 classes. With regards to 

Campylobacter, the species jejuni and coli were most commonly detected. The majority 

of the isolates (90%) were from retail chicken. Although macrolide resistance has 

remained low, tetracycline resistance increased by about 10% of isolates for both species 

from 2010 to 2011. MDR was low in Campylobacter, as only 9 out of 634 isolates were 

resistant to at least three antimicrobial classes. Enterococcus (faecalis and faecium) is 
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used as a sentinel for antibiotic selection pressures by anti-gram-positive antibiotics. 

Vancomycin resistance was not detected, and streptogramin resistance has significantly 

decreased in retail chicken from 56% of isolates in 2002 to 27% in 2011. Overall, it 

seems that most of the risk is from gram-negative bacteria and gram-positive bacteria 

pose a lesser risk to humans in retail meats. In reference to Figure 1-4’s resistance 

pipelines, these data support the notion that feeding food production animals with 

antibiotics like ampicillin and tetracycline may contribute to the increased drug 

resistances observed in the U.S. as shown in NARMS data (CVM, 2011).  

 

In U.S. aquaculture, as most of the seafood is imported, foodborne pathogens of concern 

are often ones that are considered food safety risks overseas as well. In 2004, it was 

reported that eating contaminated seafood resulted in about 15% of the reported 

foodborne outbreaks in the U.S. This is a greater percentage than was found for either 

meat or poultry, which are consumed at volumes eight and six times higher than those of 

seafood (Rakowski, 2012). Our literature search shows that Vibrio spp. and Salmonella 

are the most commonly isolated zoonotic pathogens from seafood. Specifically, V. 

vulnificus, followed by parahaemolyticus, are the two most important Vibrio spp. noted, 

causing gastroenteritis that may lead to septicemia (Powell, 1999). Vibrio spp. are a 

natural inhabitant of many aquatic organisms and are the leading cause of seafood-related 

deaths in the U.S. (William et al., 2014). Mostly a concern in oysters, Vibrio spp. have 

been isolated and characterized in several studies (Reynaud et al., 2013; Turner et al., 

2013; Givens et al., 2014). Antibiotic residue in bivalves is not a significant concern 

because they are not fed feed as they are filter feeders that survive on particles in the 
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water (NOAA, 2014C). Salmonella are an issue in almost all types of seafood, and 

species distribution is broad, with frequently reported serotypes including Weltevreden, 

Senftenberg, Lexington, and Paratyphi-B (Heinitz et al., 2000). Mostly of human origin, 

Salmonella also causes gastroenteritis, and primarily contaminates seafood during 

processing (Amagliani et al., 2012). This is similar to agricultural meat products, where 

Salmonella is also an important foodborne pathogen. Recent seafood outbreaks include 

three in 2011 where a total of 168 cases resulted in 48 hospitalizations and 1 death 

(DeWaal and Grooters, 2013). The Salmonella isolated in the latter study were all 

resistant to ampicillin, tetracycline, and amoxicillin/clavulanic acid, all of which are on 

the WHO list. These data suggest that resistance in zoonotic pathogens isolated from 

commonly eaten meats and seafoods is prevalent and a growing concern for the food 

industry. 

 

CONCLUSIONS 

 

Swine, cattle, and poultry agriculture all have relied on antibiotic usage for over half a 

century, promoting the development and spread of antibiotic resistance. As aquaculture 

continues to grow, the knowledge gap regarding how antibiotic usage, development of 

resistance mechanisms, and human health risks connect with each other must be filled 

with scientific research and results. Here, I present data showing that agriculture and 

aquaculture share many similarities, from the antibiotics used to the resistance 

mechanisms shared by the zoonotic pathogens corresponding to these two important food 

production sectors. The bacteria isolated from both meat and seafood have been reported 
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to display resistance to antibiotics commonly applied in animal production. From the data 

gathered here, it is concluded that the recent growth of aquaculture is contributing to the 

development of the same resistance mechanisms also seen in agricultural production. The 

usage of antibiotics provides selective pressure that can accelerate ARG development and 

spread. As zoonotic pathogens have been isolated exhibiting resistance mechanisms 

known to be effective against multiple antibiotics, co-resistance is increasingly becoming 

a major concern. The lack of data and discrepancies in existing data regarding antibiotic 

usage contribute to the fact that it is challenging at present to accurately determine the 

magnitude of influence both aquaculture and agriculture has on resistance development. 

However, as water provides a constant and facile mechanism for dispersal of drug 

residues, microbial pathogens, and resistance genes, aquaculture will continue to pose a 

threat that may increase as the demand for seafood increases.  
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TRANSITION ONE 

 

Antibiotics are commonly used in agriculture to prevent and treat bacterial infections, but 

also to promote growth in cattle, swine, and poultry. As these antibiotics leach into the 

environment, several human and environmental health issues arise, the most prominent of 

which being antibiotic resistance. As Chapter 1 discusses, opportunities and likelihood of 

migration (movement) of antibiotics is greater in aquatic than in terrestrial environments. 

Thus, it is (even more) important to monitor antibiotic usage in aquaculture. The U.S. 

imports over 90% of its seafood from other countries, ones where antibiotic regulation 

may be more lax or absent all together. Chapter 2 conducts a wide reconnaissance of 47 

antibiotics in 27 seafood samples from 11 countries. The next three chapters use liquid 

chromatography mass spectrometry as a valuable tool for detecting key human health 

antibiotics in seafood (Chapter 2) and biosolids (Chapter 3).  
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CHAPTER TWO. RECONNAISSANCE OF 47 ANTIBIOTICS AND 

ASSOCIATED MICROBIAL RISKS IN SEAFOOD SOLD IN THE UNITED 

STATES 

 
 
 
ABSTRACT 

 
 
Aquaculture production has nearly tripled in the last two decades, bringing with it a 

significant increase in the use of antibiotics. Using liquid chromatography/tandem mass 

spectrometry (LC-MS/MS), the presence of 47 antibiotics was investigated in U.S. 

purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different 

countries. All samples (n= 27) complied with U.S. FDA regulations and five antibiotics 

were detected above the limits of detection: oxytetracycline (in wild shrimp, 7.7 ng/g of 

fresh weight; farmed tilapia, 2.7; farmed salmon, 8.6; farmed trout with spinal 

deformities, 3.9), 4-epioxytetracycline (farmed salmon, 4.1), sulfadimethoxine (farmed 

shrimp, 0.3), ormetoprim (farmed salmon, 0.5), and virginiamycin (farmed salmon 

marketed as antibiotic-free, 5.2). A literature review showed that sub-regulatory 

antibiotic levels, as found here, can promote resistance development; publications linking 

aquaculture to this have increased more than 8-fold from 1991-2013. Although this study 

was limited in size and employed sample pooling, it represents the largest reconnaissance 

of antibiotics in U.S. seafood to date, providing data on previously unmonitored 

antibiotics and on farmed trout with spinal deformities. Results indicate low levels of 

antibiotic residues and general compliance with U.S. regulations. The potential for 

development of microbial drug resistance was identified as a key concern and research 

priority. 
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INTRODUCTION 

 

It is estimated that within the next few years, aquaculture will account for almost 40% of 

total global seafood production by weight, up from 4% in 1970 (FAO, 2013; Cole et al., 

2009). This increase to a projected worldwide production of 83 million metric tons in 

2013 has been due to a heightened demand for seafood, improved aquaculture techniques, 

emergence as a key cash crop in certain regions of the world, and recognition as a 

cheaper way to obtain high-quality protein (Cole et al., 2009; Sapkota et al., 2008). 

However, as production surges, many aquaculture facilities resort to antibiotics to combat 

diseases in an environment that creates ample opportunities for bacterial pathogens to 

thrive (Cabello, 2006). Antibiotics are also commonly used as a prophylactic, sometimes 

on a daily basis (Defoirdt et al., 2011). Although some promising alternatives such as 

short-chain fatty acids and bacteriophage therapy have been proposed, many are not 

ready for mass usage (Defoirdt et al., 2011). Developed vaccines show promise in 

reducing antibiotic usage (Cabello, 2006), but are only available to treat certain diseases 

and are not as cost-effective as antibiotics. Thus, the usage of antibiotics in aquaculture 

remains high. 

 

Consequences associated with the use of antibiotics in aquaculture include the spread of 

antibiotics into the environment (Christensen et al., 2006; Baker-Austin et al., 2008), 

residual concentrations left in seafood, high exposure by aquaculture facility personnel, 

and antibiotic resistance development (Sapkota et al., 2008; Cabello, 2006). Another 

issue is the impact of antibiotics on the animals themselves, such as potential changes in 
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genetic expression (Barros-Becker et al., 2012; Lunden et al., 1998) and physiological 

anomalies.  These physiological anomalies include malformation of the spine reported in 

fish exposed to oxytetracycline (Lunden et al., 1998; Toften and Jobling, 1996). 

 

Many of the antibiotics used in aquaculture are also used in human medicine (Heuer et 

al., 2009). Amoxicillin and ampicillin are commonly prescribed for treating bacterial 

infections such as pneumonia and gastroenteritis (Struthers and Westran, 2003). As fish 

are a potential source of bacterial pathogens for humans, it is important to monitor the 

spread of antibiotic resistance amongst seafood (Novotny et al., 2004). Resistance to the 

most commonly applied antibiotics has been found in previous studies (Sapkota et al., 

2008; Ryu et al., 2012; Nawaz et al., 2009; Ponce et al., 2008), including several that are 

multi-drug resistant (MDR) to many classes of antibiotics important in treating human 

infections (Ponce et al., 2008; Zhao et al., 2003; Labella et al., 2013; Chiu et al., 2013) 

Thus, detecting and monitoring antibiotic residues in seafood is critically important to 

reduce potential environmental and human health risks.  

 

A large portion of aquaculture takes place in countries with few regulations and limited 

enforcement (Pruden et al., 2013), creating the need to monitor imported seafood strictly 

for antibiotic residues and presence of pathogens. In this study, twenty-seven seafood 

samples were collected by the National Oceanic and Atmospheric Administration 

(NOAA) from stores in Arizona and California for analysis. Samples included five of the 

top ten most consumed seafood varieties in the US: shrimp, tilapia, catfish, swai, and 

Atlantic salmon. Trout with visible deformed spines were also analyzed. Using liquid 
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chromatography tandem mass spectrometry (LC-MS/MS), 47 antibiotics identified from 

literature as drugs of concern were analyzed for using two methods. I also conducted a 

meta-analysis of published data on antibiotics and resistance development to note trends 

in aquaculture over the last few decades. 

 

MATERIALS AND METHODS 

 

Samples and Preparation 

A collaborating NOAA consumer safety officer obtained samples (n= 27) from retail 

grocery stores in Arizona and California (in southwest U.S.) over a period of three 

months from June to August in 2012 (Table 2-1). Samples originated from 11 different 

countries. Each sample was sold as a pre-packed unit or bought from store counter 

displays, meaning that each sample sometimes included multiple fish. Negative controls 

consisted of catfish donated from Louisiana State University that were never exposed to 

antibiotics. Normal and deformed rainbow trout (n=3 for each) were obtained to survey 

the potential link between antibiotic exposure and spinal deformities. Atlantic salmon 

marketed as “antibiotic-free” was also obtained from a local health food store.   

 

Whole fish were filleted and only edible parts were used for analysis. Shrimp (n=6), 

tilapia (n=3), catfish (n=5), rainbow trout (n=6), Atlantic salmon (n=5), and swai (n=2) 

were stored at minus 20°C prior to processing by homogenization, using a commercial 

meat grinder (STX Turbo Force 3000 Series Electric Meat Grinder, Lincoln, Nebraska).  
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Table 2-1. Aquaculture information and demographics on samples used in this study.  
General Information for the U.S. This Study 

Seafood 

Type 

2011 

Ranka 

2012 

Imports 

& Valueb 

2011  

Production 

& Valuec 

Composite 

Sample #d 

Origin 

# of Samplese 

Fillet (F) 

or 

Whole (W) 

Pack- 

agedf 

Shrimp 1 531,840 
$4,440M 

148,000 
$6M 

1. Farmed 
Shrimp 

Ind-2; Tha-1;  
Ban-1; Vie-1 

W Y 

2. Wild-caught 
Shrimp 

Mex-1 W N 

Tilapia 5 227,440 
$970M 

10,000 
$54M 

3. Farmed 
Tilapia 

Pan-1; Chi-2 F Y 

Catfish 7 107,690 
$370M 

163,000  
$395M 

4. Farmed 
Catfish 

U.S.-2 W N 

5. AB-Free 
Farmed Catfishg 

U.S. LSU-3 W N 

Trout N/A 9310 
$70M 

15,300 
$53M 

6. Farmed Trout 
w/ D Spine 

U.S.-3 W N 

7. Farmed Trout 
w/ Normal 
Spine 

U.S.-3 W N 

Salmon 3 120,640 
$720M 

373,000 
$720M 

8. Farmed 
International 
Atlantic Salmon 

Can-2 Chl-1 F Y 

9. Farmed AB-
Free Atlantic 
Salmonh 

Sco-1 

10. Farmed 
U.S. Atlantic 
Salmon 

U.S.-1 

Swai 6 N/Ai N/Ai 11. Farmed 
Swai 

Vie-2 F Y 

aRank in most consumed seafood. Data from National Fisheries Institute (National Fisheries Institute, 2013). 
bUnits: metric tons and millions of U.S. dollars. Fresh and frozen seafood imported for human consumption. 
Data from National Oceanic and Atmospheric Administration (NOAA) for the 50 U.S. states, District of 
Columbia, Puerto Rico, and the U.S. Virgin Islands (NOAA, 2012). Numbers have been rounded. 
cUnits: metric tons and millions U.S. dollars. Commercial U.S. landings and aquaculture. Data from NOAA 
(NOAA, 2012). Numbers have been rounded. 2012 U.S. aquaculture data were unavailable, thus limiting 
reported values to 2011 data. d11 total composites were made. 
eInd= Indonesia, Tha= Thailand, Ban= Bangladesh, Vie= Vietnam, Mex= Mexico, Pan= Panama, Chi= 
China, U.S.= United States, LSU= Louisiana State University, Can= Canada, Chl= Chile, Sco= Scotland. 
fPre-packaged seafood was provided in factory-sealed plastic packages. 
gCatfish bred from eggs for research purposes never exposed to antibiotics were provided by Dr. Javier 
Santander of Arizona State University and from Louisiana State University. 
hSalmon sold as “antibiotic-free” salmon. 
iSwai is also marketed as pangasius, channel catfish, catfish, basa, and tra, among other names. Thus, import 
data were not available, due to this inconsistency in labeling.  
 

Between processing of individual samples, the grinder was cleaned with water and soap, 

and then rinsed with acetone, ethanol, and distilled water three times each. Composite 

samples were prepared by pooling equal amounts of individual samples to result in 11 
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composite samples: farmed shrimp, wild-caught shrimp, farmed tilapia, farmed catfish, 

antibiotic-free catfish, farmed rainbow trout with normal spine, farmed rainbow trout 

with deformed spine, farmed international Atlantic salmon, farmed antibiotic-free 

Atlantic salmon, farmed U.S. Atlantic salmon, and farmed swai (Table 2-1).  

 

Sample Analysis  

Samples pre-processed as described above were frozen and shipped to a commercial 

laboratory (AXYS Analytical Services Ltd., Sydney, British Columbia, Canada). 

Approximately 2.5 grams fresh weight (wet weight) of homogenized seafood was 

subsampled and spiked with isotope-labeled surrogates. Samples were then extracted by 

bath sonication with 15 mL acetonitrile that was acidified to pH 2 using 0.14 M 

NaH2PO4/ 85% H3PO (1.93 g NaH2PO4 · H2O, 99 mL reagent water, 1 mL 85% H3PO4). 

The extract was then treated with 500 mg of solid ethylenediaminetetraacetic acid 

(EDTA). Resultant extracts were then filtered and cleaned using solid phase extraction 

(Waters Oasis HLB SPE cartridges 20 cm3/1g LP; Hartford, CT). For each sample, 30 

mL of extract was diluted to 200 mL total with ultra pure water. Prior to sample loading, 

the cartridges were conditioned using 20 mL of methanol, 6 mL ultra pure water, and 6 

mL pH 2 water. The cartridges were then washed with 10 mL of ultra pure water and 

subsequently dried under a vacuum. Analytes were eluted using 12 mL methanol, and the 

eluate concentrated under vacuum to a volume of 4 mL prior to analysis. The full 2.5 g of 

sample was extracted and contained in the final 4 mL extract. 

Samples were analyzed by positive electrospray ionization on a triple quadrupole LC-

MS/MS in multiple reaction monitoring (MRM) mode using a Waters Micromass Quattro 
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Ultima LC-MS/MS system paired with a Waters LC 2795.  Chromatography was 

conducted using reverse-phased C18 column (Waters, Milford, MA). A total of 60 

pharmaceuticals were analyzed according to the AXYS Method MLA-075, a 

modification of the USEPA Method 1694 as described previously (Chari and Halden, 

2012). Out of the 60 analytes screened for, 47 were antibiotics, and are the focus of this 

paper. All analytes and instrument parameters are listed in Appendix A Table A1 and 

A2. Two methods were used on the same extract (injection volume: 10 uL) to analyze for 

tetracyclines and non-tetracyclines, respectively. The tetracyclines method, totaling 30 

minutes in duration, had solvent A consisting of an equal mixture of acetonitrile and 

methanol with 0.5 mM oxalic acid and 0.5% (v/v) formic acid; solvent B consisted of 

HPLC-grade water containing 0.5 mM oxalic acid and 0.5% (v/v) formic acid. The 

starting mixture was 10% solvent A (flow rate 0.2 mL/min), increased to 90% A by 

minute 20 at a flow rate of 0.23 mL/min. The non-tetracyclines method had a run time of 

33 min, using as solvent A HPLC-grade water with 0.1% formic acid and 0.1% 

ammonium formate, and as solvent B a mixture of equal amounts of acetonitrile and 

methanol. The starting mixture was 95% solvent A (flow rate 0.15 mL/min), increased to 

100% solvent B by minute 23 at a flow rate 0.3 mL/min. For the 10 of the 60 total 

compounds for which a respective stable-isotope labeled analog was available, the 

concentration was determined using the isotope dilution technique (Halden and Paull, 

2005). For the remaining 50 compounds where a labeled analog was not available, the 

concentration was determined using an alternate isotope-labeled internal standard (see 

supplemental information). 
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Precision between intraday samples and duplicates was expressed as relative percent 

difference (RPD), which was calculated using the following expression as reported 

previously (McClellan and Halden, 2010): 

 

RPD [%] = 
�Csample - Cduplicate� x 100

(Csample + Cduplicate)/2
                     (Eq. 1)          

 

where Csample and Cduplicate are the concentrations detected in the original sample and in its 

duplicate, respectively. 

 

Quality Assurance and Control  

Several tests were performed before and during sample analysis to ensure system and 

laboratory performance. Initial calibration was performed using labeled surrogates, 

recovery standards and authentic targets to encompass the working concentration range. 

Retention times of native and labeled compounds had to be within 0.4 minutes of the 

respective retention time established during the previous calibration. A mid-level solution 

was analyzed every 12 hours or every 20 samples, whichever occurred first. All 

calibration curves consisted of at least 5 consecutive calibration levels. Native 

compounds with labeled surrogate standards had to elute within 0.1 minutes of the 

associated labeled surrogates in order to be authenticated. Method blanks and matrix 

spikes to evaluate recovery rates were also conducted, and duplicates were also analyzed 

for 5% of test samples within each batch on the same day (containing 7 or more test 
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samples). Method detection limits (MDLs) were determined as specified by EPA Federal 

Regulation 40 CFR Part 136, Appendix B.  

 

Meta-Analysis of the Peer-reviewed Literature for Antibiotic Resistance Articles  

A literature search of the Web of Knowledge was performed for studies published 

between 2003 and November 2013 using the search terms “antibiotic resistance AND 

aquaculture” and “antibiotic resistance AND seafood” to identify relevant strains of 

bacteria isolated from seafood shown to contain antibiotic resistant microorganisms. Only 

microbial strains isolated from finned fish or shrimp were included to make it relevant to 

this study and only seafood for human consumption was included; strains further had to 

show resistance to one or more specific antibiotics (as opposed to mere classes of 

antibiotics). Resistance to only four antibiotic classes, tetracyclines, sulfonamides, 

penicillins, and quinolones, was examined because these are the top drug classes 

customarily screened for in our study.  

 

The same search words were used to identify connections between antibiotic resistance 

and aquacultural practices (i.e., sediment, water pollution, resistant strains found on 

aquaculture facilities or seafood). Articles focusing on non-antibiotic pathogen reduction 

methods and/or ornamental fish were excluded. No publication-year limit was employed. 
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Calculation of Theoretical Maximum Concentrations in Individual Samples Used in 

Composites 

This study employed a composite sampling approach. Samples were pooled to create 11 

composites from 27 individual samples. Theoretical maximum concentrations in 

individual samples processed were calculated using the conservative formula:  

 

Ccomposite x n samples in pool = Cindividual sample       (Eq. 2) 

 

where Ccomposite is the concentration determined experimentally in the pool of samples, n 

is the number of samples contributing to the pool, and Cindividual sample  is the calculated 

theoretical maximum concentration of the analyte in individual samples contributing to 

the pool. Each composite sample was constructed from a different number of individual 

samples, depending on the species. See Table 2-1 for a complete list. 

 

RESULTS AND DISCUSSION 

 

Method Performance 

As this paper focuses on antibiotics, further discussion will only pertain to the 47 

antibiotic analytes that were screened for. Method detection limits for the various 

antibiotics ranged from 0.1 ng/g (roxithromycin/sulfadimethoxine) to 25.5 ng/g 

(minocycline) fw of seafood (Table 2-2; Appendix A Table A2). Recoveries of the 47 

antibiotics ranged from 15.9% (4-epianhydrochlortetracycline) to 138% (sulfathiazole), 

with the majority (35 out of 47) placing in the preferred range of 70 to 130% (Table 2-2). 
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No laboratory contamination was observed in method blanks. Method performance in this 

study was favorable and comparable to previously reported results (McClellan and 

Halden, 2010; Love et al., 2012). 

 

Occurrence of Antibiotics in Seafood 

Seven out of eleven composite samples were found to have detectible quantities of 

antibiotics, including oxytetracycline, 4-epioxytetracycline, sulfadimethoxine, 

ormetoprim, and virginiamycin (Table 2-2). The most commonly detected antibiotic was 

oxytetracycline, which is the number one used antibiotic in aquaculture, with 12 of the 

top 15 aquaculture-producing countries reporting usage (Sapkota et al., 2008). It was 

detected at a concentration of 8.6 ng/g fw, along with its 4-epimer at 4.1 ng/g fw, in 

farmed international Atlantic salmon comprised of samples from Chile and Canada 

(Figure 2-1), which are among the top four salmon-producing countries (FAO, 2013). As 

the 4-epimer is a known degradation product of oxytetracycline (Loke et al., 2003) it is 

likely that a higher oxytetracycline concentration was originally in these samples. 

Tetracyclines are regulated in the U.S. as a sum of all parent antibiotics and their 4-

epimers (FDA, 2013). The resultant combined concentration in farmed international 

Atlantic salmon of 12.6 ng/g was still under the maximum permitted concentration of 2 

µg/g in finfish (Table 2-3). 

 

The unexpected detection of oxytetracycline at a concentration of 7.7 ng/g fw in wild-

caught shrimp imported from Mexico may be due to several reasons. Unintentional or 

intentional mislabeling of the product and cross-contamination of seafood during 
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handling, processing and packaging are possible. Uptake of the drug from coastal waters 

and sediments impacted by inputs of raw and treated wastewater (Kim and Carlson, 

2007A) also could explain the observed detection but ultimately the origin of 

contamination remains unknown. 

 

Table 2-2. Antibiotics analyzed, recovery percentages, method detection limits, and concentrations 
detected in seafood samples in units of ng/g fresh weight. 

Antibiotic Class 
Compound, Recovery %, (MDLa), Concentration If Detected 

DETECTED NOT DETECTED 

Tetracyclines 

Oxytetracycline, 100, 
(2.4), 7.72, 2.73 3.96, 8.68 
 
4-Epioxytetracycline, 
112.5, (3.9), 4.18 

Anhydrochlortetracycline, 46.8, (7.4); 
Anhydrotetracycline, 137.5, (6.0); Chlortetracycline, 
130.5, (9.2); Demeclocycline, 97.7, (6.0); Doxycycline, 
117, (2.4); 4-Epianhydrochlortetracycline, 15.9, (24.1); 4-
Epianhydrotetracycline, 104.1, (6.2);  
4-Epichlortetracycline, 104, (9.1); 4-Epitetracycline, 
130.5, (4.2); Isochlortetracycline, 87.2, (2.4); 
Minocycline, 109.5, (25.5); Tetracycline, 135, (3.5) 

Sulfonamides 
Sulfadimethoxine, 79.5, 
(0.2), 0.31  

Sulfachloropyridazine, 83, (0.6); Sulfadiazine, 102.3, 
(0.6); Sulfamerazine, 111, (0.2); Sulfamethazine, 109, 
(0.4); Sulfamethizole, 85.5, (0.9);  
Sulfamethoxazole, 112.4, (0.2); Sulfanilamide, 56.5, 
(6.0); Sulfathiazole, 138, (0.6) 

Macrolides 
Virginiamycin, 89.5, 
(4.2), 5.29 

Azithromycin, 97.7, (0.7); Clarithromycin, 96.4, (0.6); 
Erythromycin-H2O, 117, (0.9); Lincomycin, 129.5, (1.2); 
Roxithromycin, 75.1, (0.1); Tylosin, 72.1, (2.4); 

Quinolones - 

Ciprofloxacin, 99.6, (2.); Clinafloxacin, 119, (2.6); 
Enrofloxacin, 119, (1.2); Flumequine, 104.7, (0.6); 
Lomefloxacin, 72.7, (1.2); Norfloxacin, 114, (6.); 
Ofloxacin, 81.8, (0.6);  
Oxolinic Acid, 54.8, (0.3); Sarafloxacin, 65.7, (0.6) 

Penicillins - 
Cloxacillin, 86, (1.2); Oxacillin, 87.7, (1.2);  
Penicillin G, 28.3, (1.2); Penicillin V, 120.5, (1.2) 

Cephalosporin - Cefotaxime, 65.1, (9.9) 

Other 
Ormetoprim, 93.1, (0.4), 
0.510 

Carbadox, 24.7, (0.6); Trimethoprim, 91.5, (0.6) 

Superscripts of detected concentrations indicate sample number; see Table 1 for additional sample 
information.  
aHighest method detection limit (MDL) for each analyte is reported. See Table A2 in the Appendix A for 
all MDLs. 
 
 

Oxytetracycline was also detected at concentrations of 2.7 and 3.9 ng/g fw, respectively, 

in farmed tilapia and in farmed rainbow trout with visibly deformed spines (Figure 2-



43 

2A). Oxytetracycline was not detected above the detection limit of 2.4 ng/g in trout 

without visible spinal deformities (supplemental information T2). Detection of the latter 

corroborates earlier reports that this antibiotic may cause spinal deformities in certain 

species (Toften and Jobling, 1996); however, due to the limited number of individual 

samples available (n =3), the present study was underpowered and cannot ascertain 

causation. As trout is a major market in the U.S., with over 700 trout-rearing farms 

(Agricultural Marketing Research Center, 2013), further work with a larger sample size is 

needed to elucidate the connection between oxytetracycline dosing and spinal deformities 

in trout and other fish species. Among the large group of sulfonamides, only 

sulfadimethoxine was detected and only in a single seafood variety, in farmed shrimp at 

0.3 ng/g fw. Sulfadimethoxine reportedly is used by 4 of the top 15 aquaculture-

producing countries (Sapkota et al., 2008). Yet, although screened for previously (Won et 

al., 2011; Tittlemier et al., 2007) and several detection methods have been developed 

(Gehring et al., 2006; Villar-Pulido et al., 2011), the result reported here constitutes the 

first detection of this drug in shrimp. There is no U.S. MRL set for this drug in shrimp, 

although it is regulated in salmonids and catfish at a level of 0.1 µg/g fw (Table 2-3). 
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Figure 2-1. Map showing countries from which seafood samples originated (n, number of samples). 
 
Ormetoprim, an antibiotic commonly used with sulfonamides, was detected at a 
concentration of 0.5 ng/g fw in farmed Atlantic salmon from the U.S. This concentration 
is about 200 times less than the regulatory limit of 0.1 µg/g. 
 

Contrary to the label stating culturing without antibiotics, virginiamycin was found at a 

concentration of 5.2 ng/g fw in farmed Atlantic salmon. The apparent presence of 

virginiamycin indicates that either the labeling was inaccurate or contamination of the 

seafood occurred. Although the detected concentration was much lower than the 

regulatory limit of 0.1 µg/g (Table 2-3), this finding is still important, as it indicates that 

the “antibiotic-free” label does not always accurately represent whether antibiotics are 

absent or present. 

 

The occurrence of antibiotics in seafood above method detection limits in the low ng/g 

range attained here appears to be the exception rather than the norm. Five antibiotics 

were detected at low ng/g concentrations in this survey. The present study is the first to 

consider the top consumed seafoods in the U.S. as well as the first to survey a large  
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Table 2-3. Maximum Residue Limits (MRLs) of antibiotics allowed for the USA, EU, Chile, and CODEX 
(µg/g fresh weight). For antibiotics lacking regulatory guidelines in seafood, values are given for other food 
animal varieties when available. 

Antibiotic USa EUb Chilec CODEXd 

Carbadox 0.03e - - - 

Cloxacillin 0.01g 0.3m - - 

Doxycycline 2f 0.1i - - 

Enrofloxacin 0.1h 0.1n 0 - 

Tetracyclinesr 2f 0.1o - - 

Erythromycin-H2O 0.1g 0.2m 0.2m 0.1q 

Lincomycin  0.1i 0.1m - 0.2q 

Ormetoprim  0.1j - - - 

Oxytetracycline 2f 0.1o 0.12m 0.2m 

Penicillin G  0k 0.05m - 0.05i 

Penicillin V 0k - - - 

Sulfadimethoxine 0.1j 
0.1 (sum of 

sulfonamides) 
0.1o 

- - 

Sulfamerazine 0l - - 

Sulfathiazole  0.1i - - 

Tetracycline 2f  - 0.2p 

Tylosin 0.2g 0.1m - 0.1g 

Virginiamycin 0.1i - - - 
aFDA USDA CFR 21 (FDA, 2013). 
bEU commission regulation no. 37/2010, Dec. 2009 (EU, 2013). 
cFAO 2012 Report (Bravo, 2012). 
dCodex Alimentarius Commenssion (CAC, 2009). 
eSwine liver. 
fSum of tetracyclines in finfish. 
gCattle. 
hCattle liver. 
iSwine. 
jSalmonids and catfish. 
kDifferent forms of penicillin are not differentiated. Chicken. 
lTrout. 
mAll fish. 
nSum of ciprofloxacin and enrofloxacin. 
oSum of 4-epimer plus parent drug. 
pSum of parent drugs. 
qPoultry. 
rIncludes 4-epianhydrotetracycline, 4-epianhydrotetracycline, 4-epichlortetracycline, 4-epioxytetracycline 
4-epitetracycline, demeclocycline, isochlortetracycline, minocycline. Currently unregulated/information not 
available for: anhydrochlortetracycline, anhydrotetracycline, azithromycin, cefotaxime, clarithromycin, 
clinafloxacin, omefloxacin, norfloxacin ofloxacin, and roxithromycin. Currently, no MRLs have been set in 
U.S. for ciprofloxacin, flumequine, oxacillin, oxolinic acid, sarafloxacin, and trimethoprim. 
 

 



46 

number of antibiotics. The majority of these antibiotics have never been screened for in 

our food supply. This study also represents samples from 11 countries (Figure 2-1), 8 of 

which are among the top 15 aquaculture-producing countries (Sapkota et al., 2008). 

Results of this study of modest sample size suggest that seafood, regardless of whether 

wild-caught, farmed, imported, or domestically produced, is typically compliant with 

U.S. chemical regulations. However, the results need further confirmation, ideally by 

studies featuring a large sample size. 

 

Antibiotic Resistance Development in Seafood 

Although the concentrations reported here are less than the FDA allowed maxima, these 

sub-therapeutic drug concentrations can often select for and enrich resistant bacteria 

(Andersson and Hughes, 2012). There has been a notable increase in resistant microbial 

strains associated with the antibiotics and seafoods examined in this study. Out of 179 

Escherichia coli strains isolated from commercial seafood in a study by Ryu et al., 55 

strains were found to be resistant to tetracycline (Ryu et al., 2012). Another 34 strains 

were found to hold intermediate resistance to tetracycline, which can be affected and 

selected for by sub-therapeutic antibiotic concentrations. Nawaz et al. also reported 

isolation of MDR Klebsiella spp. bacteria from imported shrimp obtained from grocery 

stores (Nawaz et al., 2012). The identification of these strains may be interpreted as being 

the result of extensive human use and misuse of antibiotics in the clinic, community, 

agriculture, and in animal husbandry such as aquaculture (Andersson and Hughes, 2012).  

The top antibiotics used by heavy aquaculture producers include the following: 

oxytetracycline, oxolinic acid, chloramphenicol, erythromycin, furazolidone, 
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trimethoprim, sulfadiazine, ampicillin, florfenicol, flumequine, and sulfadimethoxine 

(Sapkota et al., 2008). All of these antibiotics are included on the WHO list of 

critically/highly important antibiotics for human health (Heuer et al., 2009, Nawaz et al., 

2012; WHO, 2007). Multiple studies in the last three decades have revealed resistance to 

many of these antibiotics, the majority of which were screened for in this study (Figure 

2-3A). The fact that seafood examined for bacteria has resulted in isolates belonging to 

pathogenic genera causing infections in humans (e.g., Salmonella, Vibrio, Escherichia) 

(Baker-Austin et al., 2008; Ryu et al., 2012;Ponce et al., 2008) increases the likelihood of 

resistance spread from aquaculture to people.  This poses a risk to consumers as well as 

employees coming into contact with the seafood from production to store delivery. 

 

Indeed, literature volume statistics summarized in Figure 2-3 show that the topic of 

resistance to many antibiotics screened here is a major area of concern for the aquaculture 

community. The number of publications linking resistance to seafood has increased by 

800% between the 1990s and today (Figure 2-3B). The majority of papers report the 

ineffectiveness of tetracycline and oxytetracycline as one of the most commonly seen 

resistances. The observed publication trend also acknowledges an increased awareness of 

the fact that exponential growth has taken place in the aquaculture industry in the past 

few decades. This trend also suggests an association between the heavy usage of 

oxytetracycline (the number one used antibiotic in aquaculture) and resistance 

development. 
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Figure 2-2. Farmed trout with visible spinal deformities and applicable U.S. and EU MRLs in composite 
and individual samples. Panel A shows an image of spinal deformities in trout analyzed in this work. 
Arrows indicate abnormal spinal curvatures (Photo credit: Don McBride, NOAA, 2012). Panel B shows a 
comparison of oxytetracycline concentrations determined in this study to maximum residue limits (MRLs) 
allowed in the United States (US) and the European Union (EU) (FDA, 2013; EU, 2013). Concentrations of 
oxytetracycline and 4-epioxytetracycline in farmed international salmon were added, as regulation is for 
maximum total tetracyclines.  
 

Some bacterial strains identified in our literature review were found to be completely or 

intermediately resistant to certain antibiotics (Ryu et al., 2012; WHO, 2007). 

Furthermore, the transfer of plasmids among bacteria on seafood has been reported 

(Ferrini et al., 2008). Strains were found to have minimal inhibitory concentrations (MIC) 

far lower than the MIC requirement for the “resistant” classification, indicating that very 

low concentrations of antibiotics can select for resistance. One study found that only 

about half of the isolates from their aquaculture samples had MICs above the “resistant” 

concentration of 128 µg/mL; some isolates exhibited MICs as low as 0.25 µg/mL, over 

500 times less than the classification of resistance-promoting concentration (Guglielmetti 

et al., 2009). In Chile, the reported dose of oxytetracycline through feed is 100-120 µg 

per g fish per day, administered for 14-21 days, depending on the disease (Akinbowale et 

al., 2006). In China, the preventative dose for the fluoroquinolone compound oxolinic 

acid is 10-20 µg per g fish per day for 4-7 days (Bravo, 2012). These concentrations 
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currently in use are known to exert selective pressure. Since many of these antibiotics 

also are used in human medicine, selective pressure may promote the occurrence of 

resistant strains of potential human health concern. Overall, the information compiled in 

Figure 2-3 shows that the development and occurrence of drug resistant bacteria in 

seafood is an issue that is both timely and of notable importance. Thus, to ensure the 

safety of the food supply in the U.S. and abroad, the monitoring of seafood has to focus 

on both the residues of aquacultural drugs themselves and the drug resistance in 

pathogens these antibiotics can trigger. 

 

Study Limitations 

This study employed composite sampling. This approach is well suited for the 

economical screening of a large number of analytes and for accurately determining 

average concentrations therein (Yuan and Chen, 2012; Baron et al., 2014). This method 

of sampling was chosen here because the purpose of this study was to conduct a large-

scale screening of many analytes. However, this methodology is inappropriate for 

determining the full range of concentrations (i.e., minima and maxima) as well as 

detection frequencies. Accordingly, theoretical maximum concentrations of 

oxytetracycline and sulfadimethoxine were calculated for individual samples and the 

resultant values represent conservative estimates that are likely higher than the true 

concentration. The oxytetracycline values of 8.1, 11.7, and 37.8 ng/g calculated, 

respectively, in farmed tilapia, farmed trout with spinal deformities, and farmed 

international salmon are well below the U.S. limit of 2,000 ng/g (Figure 2-2B). Note that 

the concentration of 37.8 ng/g calculated for salmon includes both oxytetracycline and 4-
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epioxytetracycline; it is provided in this form because tetracyclines are regulated as a sum 

of drugs of this class. Values calculated for sulfadimethoxine (1.7 ng/g for each country’s 

sample) is also significantly under U.S. regulatory limits. 

 

Figure 2-3. Published studies reporting resistant bacteria isolated from aquaculture and seafood. Panel A 
shows select studies from 2003-2013 reporting the presence of bacteria resistant to 4 groups of antibiotics 
found on seafood available for human consumption. Numbers correspond to references. Panel B shows the 
number of publications featuring antibiotic resistance development in aquaculture and seafood (dark gray) 
and number of publications featuring resistance to the antibiotic class of tetracyclines (light gray). 
 
References: 14= Ryu et al., 2012 15= Nawaz et al., 2009 16= Ponce et al., 2008 17= Zhao et al., 2003 18 = 
Labella et al., 2013 19= Chiu et al., 2013 50= Fallah et al., 2013 51= Ansari et al., 2011 52=Khan et al., 
2009 53= Kumar et al., 2013 54= Budiati et al., 2013 55= Raissy et al., 2012 56= Deekshit et al., 2012 57= 
Yan et al., 2010 58= Kakatkar et al., 2011 59= Liu et al., 2009 60= Kumar et al., 2009 61= Adeyemi et al., 
2008 62= Thayumanavan et al., 2003 63= Kim et al., 2004 64= Sarter et al., 2006 

 
 

Another limitation is that sampling was done only in Arizona and California. The 

obtained results may not necessarily apply to other states and alternate sources (i.e., 

countries) of commercial seafood. Many wild-caught seafood varieties were not available 

for this survey because the vast majority of seafood for consumption in the U.S. is only 

readily available from aquaculture operations. Also, as I obtained fresh seafood in the 
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form most consumers choose, samples were either whole animals or fillets and either pre-

packaged or loose, which means that variation in handling and processing by the 

producer may affect antibiotic preservation and degradation in the tissue. This variation, 

as well as antibiotic sources that do not originate from aquaculture, could also have 

contaminated the seafood and affected our data. 

 

Samples were collected in June-August, 2012 and analyzed in November 2012, following 

storage for 3-5 months at -20°C. A previous study, examining the effect of sample 

storage at -18°C, showed that tetracyclines, sulfonamides, quinolones, macrolides, and 

aminoglycosides are stable and remain intact structurally and quantitatively, as 

demonstrated using a porcine muscle matrix (Berendsen et al., 2011). However, 

penicillins were observed to attenuate, by about 30% and 20%, respectively, for 

ampicillin and cloxacillin over the course of 3-6 months (Berendsen et al., 2011). Hence, 

the concentrations of penicillins at the time of purchase in samples of seafood analyzed 

here may have been higher than the values of less than <1.2 to <1.6 ng/g fw reported 

here. 

 

Our sample size of 27 is of a magnitude similar to other studies that utilized composite 

sampling to investigate poorly characterized potential human exposure sources (Kim et 

al., 2007B; Kim et al., 2008). The goal of the present work was not necessarily to identify 

specific antibiotics in individual samples, but rather to conduct a large-scale screening of 

U.S. seafood to assess whether there is a need for more aggressive monitoring. Whereas 

the present dataset cannot prove the safety or danger of imported seafoods, it provides an 
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incremental, yet significant step forward in assessing the safety of the U.S. seafood 

supply.  Data made available here suggest that there is no immediate threat to human 

health from trace levels of the analytes surveyed in this work. However, additional 

studies using a larger sample size would be beneficial to confirm the findings and 

conclusions of the results obtained here. 

 

Our literature review considered only a subset of papers based on the inclusion criteria 

stated. A less stringent search would have resulted in an even larger body of literature 

supporting the conclusion reached here that the promotion of antibiotic resistance 

constitutes a major health concern in aquaculture. 

 

CONCLUSIONS 

 

This study surveyed the concentrations of 47 antibiotics in 6 different seafood varieties 

originating in 11 countries purchased exclusively from the southwestern U.S. All samples 

studied demonstrated compliance under current federal regulations, suggesting that they 

are chemically safe to consume. This conclusion could be drawn from the analysis of 

pooled samples, an approach that did not permit to determine the actual concentration in 

each individual sample entering the survey, however. Five antibiotics were found at 

detectable levels and estimated concentrations were relatively low (0.3-8.6 ng/g fw). 

However, the development and spread of antibiotic resistance is a public health priority 

that is divorced from the regulatory limits designed to prevent adverse outcomes from 

human ingestion of drugs. Antibiotics present at levels well below regulatory limits still 



53 

can promote the emergence of (multi-) drug resistant microorganisms. Future studies are 

warranted to fully understand the connection between aquacultural use of antibiotics, 

development of drug resistance, human exposure to resistant pathogens, and ensuing 

morbidity and mortality in seafood consumers. The trend in the last 3 decades of notable 

increases in the number of resistant and multi-drug resistant strains identified in seafood 

is of concern. Monitoring studies such as the present work are one of multiple steps 

required to understand and manage potential risks posed by use of antibiotics in 

aquaculture and in society at large. The present study was limited in sample size and 

employed sample pooling. It is desirable to perform additional surveys to confirm the 

findings and preliminary conclusions reported here. 
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TRANSITION TWO 

 

 Antibiotics reach the environment in two primary pathways, via animal husbandry 

and through wastewater treatment plants (WWTPs). WWTPs may serve as urban public 

health observatories; an entire community reaches these plants for decontamination of 

biological and chemical contaminants. Often, contaminants of concern include important 

microbes such as Escherichia coli and hepatitis viruses. However, chemical contaminants 

must also be monitored as many of the compounds entering the plant may act as 

carcinogens, endocrine disruptors, antibiotic resistance promoters, and/or ecological 

toxicants upon incomplete removal and discharged into the natural ecosystems. Using the 

largest and most current repository of U.S. biosolids, I selected samples to screen for 9 

antibiotics on the World Health Organization list of important antimicrobials and 

commonly used in human health and aquaculture. Biosolids, the semi-solid byproduct of 

municipal sewage treatment, are often applied on agricultural land, making them a very 

important product to monitor for chemical contaminants, especially ones that will affect 

agricultural settings. In the case of antibiotics, increasing opportunities for unwanted 

microbial drug resistance in these agricultural fields will not only endanger the workers 

on these fields, but also potentially the downstream consumer that these crops may reach. 

In Chapter 3, I examined whether biosolids contain detectable levels of key antibiotics 

used in human medicine.  
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CHAPTER THREE. OCCURRENCE OF NINE ANTIBIOTICS IN ARCHIVED 

BIOSOLIDS FROM THE U.S. EPA TARGETED NATIONAL SEWAGE SLUDGE 

SURVEY 

 
 
ABSTRACT 

 
The occurrence of nine antibiotics was investigated in archived biosolids from 

wastewater treatment plants in 12 states sampled as part of the 2006/2007 U.S. 

Environmental Protection Agency (EPA) Targeted National Sewage Sludge Survey. 

Using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, five 

antibiotics were detected at the following average concentrations (ng/g dry weight): 

nalidixic acid (19.1), oxolinic acid (2.7), erythromycin (0.6), oxytetracycline (4.5), and 

ampicillin (14.8). Four were not detected in any samples (< MDL): sulfadimidine (<1.0), 

sulfadimethoxine (<0.5), NP-AOZ ((3-(2-nitrobenzylidenamino)-2-oxazolidinone), 

furazolidone metabolite; <20.0), and spiramycin (<2.0). At least one targeted antibiotic 

was found in 83% of samples analyzed. Oxytetracycline and erythromycin concentrations 

were lower than those previously reported for these samples by the EPA, suggesting that 

degradation of antibiotics had occurred during storage. This is the first report of oxolinic 

acid and ampicillin in biosolids worldwide and, along with nalidixic acid, the first report 

of these three antibiotics in U.S. biosolids. Occurrence data for key antibiotics used in 

human medicine may help to inform risk assessments for biosolids application on 

croplands. 
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INTRODUCTION 

 

The efficacy of antibiotics, arguably the most important class of life-saving compounds 

in human medicine, is now threatened by widespread microbial resistance due in part to 

overuse in human medicine and agricultural and aquacultural food animal production. 

Recent research has shown that wastewater treatment plants (WWTPs) are a dispersal 

route of antibiotic residues, resistant bacteria, and resistance genes into the water 

environment (Pruden, 2013). Among the two process streams exiting WWTPs, biosolids 

may be an important route of contaminant releases in addition to treated effluent. The 

U.S. Environmental Protection Agency (EPA) defines biosolids as treated solids 

produced from wastewater treatment that are nutrient-rich and can be safely recycled and 

applied as fertilizer (EPA, 2012). It is estimated that over eight million dry tons were 

generated in 2006 in the United States (EPA, 2006). Half of this mass is applied on land, 

and the remainder is either being incinerated or placed in landfills (Kinney et al., 2008; 

EPA, 2012).  

 

Several research gaps exist regarding the occurrence of antibiotics in biosolids applied on 

farmland. The identity and concentration in biosolids of many antibiotics is still not fully 

understood. This is a concern because antibiotics are biologically active compounds and 

may potentially retain their activity in biosolids for a long time (Jjemba, 2002). To the 

best of my knowledge, ampicillin, spiramycin, furazolidone, and nalidixic acid are four 

antibiotics that have never before been monitored in U.S. biosolids. Ampicillin and 

nalidixic acid are commonly used in human medicine. Screening of East Asian sewage 
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sludges (Matsuo et al., 2011; Gao et al., 2012b; Li et al., 2013b; Chen et al., 2013; Jia et 

al., 2011) resulted in only a single report on the occurrence of nalidixic acid at 

approximately 10 ng/g dry weight (Chen et al., 2013). No publications screening for 

furazolidone have been published to date.  

Oxytetracycline, sulfadimethoxine, sulfadimidine (aka sulfamethazine), erythromycin, 

and oxolinic acid have been previously screened for in multiple studies. Among the most 

notable is the publication by the U.S. Environmental Protection Agency (EPA) in 2009 

that surveyed the occurrence of 44 antibiotics in a Targeted National Sewage Sludge 

Survey (TNSSS) conducted in 2006/2007 (EPA, 2009). In this survey, oxytetracycline, 

sulfadimethoxine, sulfadimidine, and erythromycin were detected in approximately 38, 7, 

3, and 93% of 84 samples, respectively. Detected concentrations resided in the ng/g to 

µg/g range. Other publications produced similar results, with some papers reporting 

detections in the same range (Garcia-Galan et al., 2013; Gao et al., 2012a; Ding et al., 

2012; Chen et al., 2013) and some reporting non-detects (Tang et al., 2009; Gago-Ferrero 

et al., 2015). Overall, oxytetracycline and erythromycin are some of the most commonly 

detected antibiotics reported in the published literature. 

 

The above mentioned drugs are among the most medically important antibiotics, as 

defined by the World Health Organization (WHO, 2012). Together, these antibiotics span 

six medically important classes: penicillins, sulfonamides, quinolones, nitrofurans, 

macrolides, and tetracyclines. These antibiotics, such as the quinolones nalidixic acid and 

oxolinic acid, are often used to treat a variety of Gram positive and Gram negative 

bacterial infections (Jia et al., 2012). Presence of antibiotics in biosolids signals 
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widespread use as well as their persistence during wastewater treatment. Drug residues in 

land-applied sludge are a potential human health concern, directly due to their inherent 

toxicity and indirectly through their ability to promote antibiotic resistance, a medical 

issue that is on the rise globally (CDC, 2015). Aside from their importance in human 

medicine, these antibiotics are also increasingly important in the farming of food animals 

for human consumption, especially in aquaculture, the fastest growing agricultural sector 

in the world today (Sapkota et al., 2008; Heuer et al., 2009). Thus, the monitoring of 

antibiotics in biosolids destined for agricultural fields is important for understanding their 

fate during wastewater treatment and mass loadings to agricultural soils. 

 

The purpose of the present study was to determine the concentration of nine medically 

important antibiotics in archived biosolids from the 2006/2007 U.S. EPA TNSSS. Four of 

the targeted drugs have never been screened for previously in U.S. biosolids. Using liquid 

chromatography tandem mass spectrometry (LC-MS/MS), I screened for ampicillin, 

erythromycin, nalidixic acid, furazolidone, oxolinic acid, oxytetracycline, spiramycin, 

sulfadimethoxine, and sulfadimidine in biosolids samples from a dozen samples across 

the continental U.S.   

 

MATERIALS AND METHODS  

 

Samples  

Biosolids grab samples were collected by the EPA as described previously (EPA, 2009; 

Venkatesan et al., 2014; see Appendix A Table A3 for full EPA sampling locations). 
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Out of these, 12 samples were randomly chosen, four from each of the four U.S. regions 

(Northeast n=9 states, South n=16, Midwest n=12, West n=11) (Figure 3-1). The regions 

were previously determined by the EPA during their sampling in 2006/2007. Composites 

of all samples in the each of the four regions were used for method development, analyte 

recovery, and method detection limit (MDL) determination. 

   

Materials 

Analytical standards of antibiotics AMP (ampicillin), ERY (erythromycin), NDA 

(nalidixic acid), OXA (oxolinic acid), OXY (oxytetracycline), SDD (sulfadimidine), SPI 

(spiramycin), SUL (sulfadimethoxine), NP-AOZ (3-(2-nitrobenzylidenamino)-2-

oxazolidinone) and LC-MS grade acetonitrile (ACN), water, acetic acid, and methanol 

(MeOH) were purchased from Sigma-Aldrich (St. Louis, MO). NP-AOZ is a metabolite 

of furazolidone and was used as the analytical target in this study (Vass et al., 2005). 

Ortho-phosphoric acid (85%) was purchased from Fisher Scientific (Waltham, MA, 

USA). Ultra pure water (18.3 Ohm) was provided by a NANOpure water system (Elga; 

Woodridge, IL, USA). Three isotopically-labeled analogs were also purchased from 

Sigma-Aldrich (St. Louis, MO): erythromycin-(N,N-dimethyl-13C2), 3-(2-

nitrobenzylidenamino-)-2-oxazolidinone-d4, and sulfadimethoxine-(phenyl-13C6). 

West 
n=12 

Midwest  
n=21 

South  
n=26 

 n=20 
Northeast 

Figure 3-1. EPA organization of 
sampling geography. Number of 
states are noted after n =. 
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Individual stock solutions of 1.0 g/L were created for each analyte in MeOH. The 

exceptions were ERY, which was purchased at a concentration of 1.0 g/L in water, and 

NDA, which was dissolved in 1% 0.1 M NaOH to increase solubility (Dinh et al., 2011). 

Combined standards were created of all antibiotics ranging from concentrations 0.5 μg/L 

to 100 mg/L and kept at -20 °C. All glassware used was baked at 550°C overnight 

(Thermolyne; Thermo Scientific; Waltham, MA, USA); caps were acid-washed using 

10% HCl and thoroughly rinsed three times with ultrapure water and allowed to air dry 

prior to use.  

 

Extraction 

Approximately 0.5 g of biosolids dry weight (dw) was weighed into 4 mL ashed glass 

vials and 100 ng of each isotopically labeled analog standards (NP-AOZ-d4, ERY-13C2, 

and SUL-13C6) were spiked in. Three times the biosolids mass (approximately 1.5 mL) of 

acetonitrile (pH 2 with 85% ortho-phosphoric acid) was added to each vial and the 

samples were shaken on a MaxQ 2000 horizontal shaker at 200 rpm (Thermo Scientific) 

for 6 h while wrapped in aluminum foil to exclude light. The vials were then centrifuged 

at 1800 rpm for 15 min (Eppendorf 5810R) and the entire supernatant was transferred to 

a new 4 mL glass vial. 1.5 mL of ACN was added again to each vial and the sample was 

vortexed until homogenized and re-centrifuged as above. The supernatants were 

combined and evaporated under N2 stream (ReactiVap Evaporator- Thermo Scientific) 

until volume was approximately 2 mL. The entire extract was contained in the 2 mL. 

Extracts were stored at -20 °C and centrifuged immediately before analysis. 
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LC-MS/MS  

Mass spectrometric analyses were carried out on an API 4000 instrument (Applied 

Biosystems, Framingham, MA, USA), coupled to a Shimadzu Prominence HPLC 

(Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) and controlled by Analyst 

1.5 software (Applied Biosystems, Framingham, MA, USA). Separation was carried out 

using XBridge BEH C8 Column, (130 Å, 3.5 μm particle size, 4.6 � 150 mm; Waters, 

Milford, MA, USA). The mobile phase consisted of solvent A (30 mM acetic acid water) 

and solvent B (MeOH) flowing at a rate of 600 μL/min with a total runtime of 10 min. 

The solvent gradient program consisted of a hold at 30% solvent B for 1.5 min, a ramp to 

60% solvent B over 30 seconds, then a ramp up to 80% solvent B over 1.5 min. Solvent 

B was then held at 80% for 2 min followed by a decrease to 30% over 30 seconds. The 

column was then equilibrated at 30% for 3 min before the next injection of 50 μL. 

Analytes were introduced to the mass spectrometer using an electrospray ionization probe 

in positive mode. Optimized conditions for the ionization and fragmentation of the 

analytes are specified in Appendix A Table A4. Two transition ions were used for each 

analyte. The one giving the highest signal was used as the quantitation ion and the one 

giving the second highest signal was used as the confirmation ion.  

 

Using Analyst 1.5 software (Applied Biosystems, Framingham, MA, USA), peak areas 

were smoothed and integrated automatically and then individually inspected and adjusted 

as needed to create robust calibration curves. For compounds with an isotopically labeled 

analog (ERY, SUL, NP-AOZ), quantitation was conducted using the isotope-dilution 

method. For all other compounds, quantitation was conducted using the method of 
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standard addition. Standard addition was conducted as follows: five identical aliquots of 

final extract were spiked with increasing known masses of analyte prior to analysis. A 

six-point calibration curve was created using these five concentrations plus the unspiked 

extract and the slope and abscissa were used to find the unknown concentration of the 

unspiked extract. Duplicate extractions were performed for 90% of the samples and the 

concentration of the duplicate sample was quantified using the standard addition curve of 

the primary sample (i.e., using the extract of the primary sample). Standard addition was 

used for quantitation instead of external calibration to account for matrix effects (Koester 

et al., 1990; Garcia-Rodriguez et al., 2014; Tusiimire et al., 2015). Absolute recoveries 

were determined by spiking 100 ng of analyte into composite samples (where background 

levels were determined to be non-detects of target analytes) prior to extraction and 

calculating the mass recovered in units of percent. Absolute areas under the curve were 

used with the y=mx+b equation obtained via standard addition for each of the six 

analytes for which isotopically-labeled analogs were lacking. 

 

Quality Assurance 

Calibration accuracy was verified for each batch using a calibration standard with native 

and isotopically-labeled analogs of the target analytes. Blanks were run before and after 

each batch, as well as in between every seven samples at a minimum. Retention times 

had to be within ±15 s of the value established during initial calibration. Lab blanks were 

analyzed to confirm absence of laboratory contamination. Precision between samples and 

duplicates was expressed as relative percentage difference (RPD), which was calculated 

using the following expression: 
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where Csample and Cduplicate are the concentration detected in the original sample and in its 

duplicate, respectively. Matrix spikes were performed for composited samples to evaluate 

recovery rates. Spikes of analyte into the sample extracts were conducted to confirm all 

detections via the increases of peak areas at the anticipated retention times.  

 

RESULTS AND DISCUSSION 

 

Data Quality Assurance 

Laboratory blanks showed no detections for any of the analytes. Relative recoveries for 

ERY, NP-AOZ and SUL were 103.4, 77.2, and 68.2%, respectively (Table 3-1). 

Absolute recoveries of the analytes ranged between 12.5 and 40.4% with an average of 

29.3% and standard deviations between 0.9 and 6.9% (Table 3-1). These recoveries are 

consistent with the range of absolute recoveries reported in literature for the detection of 

antibiotics in sewage sludge. Recovery percentages of 21% and 31% have been observed 

for SUL and OXY, respectively (Shafrir and Avisar, 2012). The 2009 EPA study 

conducted by AXYS Analytical (Sidney, Canada) reported an acceptable recovery range 

of 5-200% for some antibiotics in biosolids (EPA, 2009). The EPA acceptable recovery 

ranges for the five compounds in this study that were also monitored in their study are: 

ERY 50-158%, oxolinic acid 42-124%, SUL 50-120%, SDD 50-142%, and OXY 50-

183%. The lower than ideal (70-130%) recoveries may be explained by any one or a 

combination of the following reasons: 1) complexity of biosolids matrix, 2) inefficiency 
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of extraction method, or 3) diversity in analyte structure (Figure 3-2). Sample duplicates 

revealed relative percentage differences (RPD) between 5 and 32%, with seven out of 

nine analytes having a RPD below 20%. The average RPD for the five detected analytes 

was 12.4%. These RPDs are similar to reported values of precision for antibiotics 

previously reported as relative standard deviation in the range of 9 (OXY) to 14% (SDD) 

(Gago-Ferrero et al., 2015) and under 23% (Garcia-Galan et al., 2013). 

 

Method detections limits (MDLs) ranged from 0.1 ng/g (OXA) to 20.0 ng/g (NP-AOZ) 

(Table 3-1). Published studies report MDLs ranging from low concentrations of 0.02 

ng/g (for SUL, Gao et al., 2012b) to high concentrations of 500 ng/g (for OXY, Tang et 

al., 2012). Our limits are consistent with the ones reported in literature for the detection 

of antibiotics in sewage sludge.  

 

Occurrence of Antibiotics in Biosolids 

Out of the nine antibiotics screened for in this study, five were detected in at least one 

sample. The majority of samples (83.3%) showed the presence of at least one antibiotic, 

with 33.3% showing the presence of at least two.   

 

Oxytetracycline, the most frequently detected antibiotic, was found in five samples at 

concentrations 1.0, 2.7, 3.7, 5.2, and 9.7 ng/g. All concentrations were lower than those 

reported by the EPA (Table 3-2). In fact, two of the five detections were labeled as “non-

detects” by the EPA. This study achieved a lower MDL (0.5 ng/g) for oxytetracycline 

than the ones reported by the EPA of 38.8 and 37.2 ng/g (one for each of the two 
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samples), suggesting that they may have been non-detects because the concentrations 

present were lower than the MDLs of the EPA study. 

 

Table 3-1. Method performance and concentrations (ng/g dry weight) of antibiotics in U.S. biosolids. 
 

Targeted 

Compound 
CAS # Recovery  

(%)
b
 

Method 

Detection 

Limit  
(ng/g) 

Mean 

Biosolids 

Concentration  
(ng/g)  

(min, max) 

RPD 

(%)
c
 

Detection 

Frequency 

(%) 

Absolute Relative 

AMP
a
 69-53-4 39.9±2.8 

 
10.0 14.8 5 8.3 

ERY 114-07-8 35.9±5.8 103.4±16.9 0.3 0.6 (0.4, 1) 18±19 33.3 

NDA
a
 389-08-2 30.4±5.4 

 
9.0 19.1 (9.4, 33.2) 16±3 33.3 

NP-AOZ 19687-73-1 26.7±0.9 77.2±2.4 20.0 ND 19±5 - 

OXA 14698-29-4 30.3±4.3 
 

0.1 2.7 (0.1, 5.2) 10±10 16.7 

OXY 2058-46-0 40.4±6.9 
 

0.5 4.5 (1, 9.7) 13±19 41.7 

SPI 8025-81-8 12.5±6.7 
 

2.0 ND 32±19 - 

SUL 122-11-2 23.5±2.2 68.2±6.5 0.5 ND 16±9 - 

SDD 57-68-1 24.0±4.6 
 

1.0 ND 27±8 - 
aConcentrations of analytes lacking isotopically-labeled analogs are not recovery-corrected. bRelative 
recoveries were determined using area ratios of analyte to isotopically-labeled analog standards. Absolute 
recoveries were determined using absolute areas instead of area ratios. cRPD: relative percentage 
difference; was determined as an average of RPDs for each duplicate sample set. RPDs for non-detects 
were calculated using duplicate matrix spikes. ND= non-detect. 
 

The higher MDLs reported by the EPA may be due to the fact that the present analytical 

method screened for nine compounds while the EPA method screened for 97 compounds 

in two ranging from pharmaceuticals to hormones in two analytical methods (EPA, 

2009).  The EPA did report in two samples at concentrations 57.9 and 64.2 ng/g for 

which I found non-detect values (< 0.5 ng/g). It is likely that degradation of 

oxytetracycline occurred during storage, which may explain the low concentrations found 

and the absence of detections in two of the archived samples. Another explanation for the 
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different results may be the method of quantitation used. Standard addition was used here 

in order to account for matrix effects and recovery percentages as well as to positively 

confirm detections (Figure 3-3); however, the EPA study used the isotope dilution 

method with isotope labeled proxy standards rather than isotope labeled analogs of the 

target analyte. Oxytetracycline was quantified against thiabendazole-d6. The effect of 

using different quantitation methods is discussed in the next chapter. 

 

Just like with oxytetracycline, the four detections of erythromycin in this study, 0.5, 0.4, 

1.0, and 0.6 ng/g, were all significantly lower than the concentrations reported by the 

EPA (39.1, 44.8, 50.2, and 15.9 ng/g, respectively). Their detected concentrations range 

from 3.1 to 28.3 ng/g. Of the eight samples in this study that did not result in ERY 

detections, the EPA study reported detections in all but two of them. The four samples 

that had detections in this study and in the EPA study were among the highest ERY 

detections, suggesting that non-detects here were most likely due to degradation of target 

analyte during the prolonged, multi-year storage. 

 

Together, oxytetracycline and erythromycin are among the most frequently screened for 

and most often detected antibiotics reported in the literature (Figure 4), likely because 

these are popular antibiotics used in human medicine. Erythromycin is often used in 

common respiratory and skin infections among other diseases (Bpac, 2013; Amsden, 

2005). Both are broad spectrum antibiotics for which increasing antibiotic resistance has 

been reported in the past decades (Alvarez-Elcoro and Enzler, 1999). These data imply 

that erythromycin and oxytetracyline either do not degrade effectively during wastewater 
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treatment and instead stay in biosolids, or are used at such high concentrations that 

WWTPs cannot efficiently remove them, or a combination of both factors. 

 

Figure 3-2. Structures, transitions (parent ion m/z � quantitation product ion m/z, confirmation ion m/z), 
and LC-MS/MS chromatograms. All standards are 10 μg/L standards except for AMP which is 3 μg/L. 
Number next to y-axis is the intensity. Number next to analyte peak is the retention time. 
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Table 3-2. Antibiotic detections (ng/g dry weight) in this study and in the previous 2009 EPA screening of 
erythromycin, oxytetracycline, and oxolinic acid.  

  

ERY OXY OXA 

US Region This Study EPA This Study EPA This Study EPA 

Northeast 

<0.3  

  

6.4 
  

 <0.5 

  

<39.1 

<0.1 

<3.9 

17.9 <40.8 <4.0 

1.8 39.1 57.9 <3.9 

0.8±0.2 44.8 9.7±1.8 <38.8 <3.8 

West 

 <0.3 13 <0.5  64.2 <4.3 

1.2 50.2 1±0.1 87 <5.6 

  
  

 <0.3 
  

  

28.3 <0.5 <40.7 <5.6 
3.1 3.7±0.8 75.5 <3.6 

Midwest 

16.4 

  
  

 <0.5 
  
  

  

<41.2 <4.1 

<1.9 <39.4 5.2±0.5 <3.9 

<1.9 <38.5 

<0.1 

<3.8 

0.9±0.1 15.9 <40.4 <4.0 

South 

  
<0.3  

  

  

3.9 <39.8 <3.6 

24 <41.5 <5.4 
3.7 2.7±0.1 <37.2 <3.7 

16.2 5.2 98.9 0.1 <3.1 
Concentrations in bold are discussed in the text. Each row presents data for one sample. MDLs are shown 
as < MDL ng/g if the result is a non-detect. Detections in this study and in the EPA study are matched up 
by row. 
 
 

Oxolinic acid was detected in this study in two samples at concentrations of 5.2 and 0.1 

ng/g (Table 2). The EPA did not report any detections and had MDLs of 3.94 and 3.18 

ng/g, respectively. Oxolinic acid could very well have been present in the EPA sample 

but may have gone undetected due to differences in analytical method detection limits 

and losses during extraction. I report the first detection of oxolinic acid in biosolids. 

Oxolinic acid is a quinolone antibiotic that was previously screened for in three other 

studies (Okuda et al., 2009; McClellan and Halden, 2010; Jia et al., 2011). These had 

MDLs of 2.9 ±0.5, 0.03, and 5.8 ng/g. The fact that our low detections of 0.1 and 5.2 ng/g 
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are within the range of these MDLs suggest that these studies may also have had oxolinic 

acid present in their samples but were unable to detect them. 

 

 

Figure 3-3. LC-MS/MS chromatograms of 3 ng/mL standards, sample extracts, and standard addition 
spikes to the extract of five detected antibiotics. Number next to peak is the retention time and number next  
to y-axis is the intensity.  
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Figure 3-4. Range of reported concentrations and respective references in published studies. A) Reported 
concentrations of antibiotics detected in biosolids (including this study) presented in log-scale.  For studies 
that reported multiple concentrations, averages were taken. B) References for reports that found at least one 
detection (References detects) and references that found non-detects in all samples (References non-

detects), as well as minimums, medians, and maximum values for the former in ng/g. Some studies found 
detections in some samples and non-detects in others. These are listed as “detects”. *Median for all reports, 
including MDL concentrations of non-detects. Furazolidone (NP-AOZ) was also not detected in this study, 
the first to screen for this analyte in biosolids. This figure excludes concentrations reported by the EPA on 
the TNSSS.  
 

References: 1. Pamreddy et al., 2013 2. Garcia-Rodriguez et al., 2014 3. Garcia-Galan et al., 2013 4. Nieto 
et al., 2010 5. Tang et al., 2009 6. McClellan and Halden, 2010 7. Yan et al., 2014 8. Li et al., 2013 9. Zhou 
et al., 2013 10. Gao et al., 2012a 11. Gao et al., 2012b 12. Ding et al., 2012 13. Xu et al., 2007 14. Shafrir 
and Avisar, 2012 15. Lillenberg et al., 2010 16. Lillenberg et al., 2009 17. Chen et al., 2013 18. Tang et al., 
2012 19. Jia et al., 2011 20. Gago-Ferrero et al., 2015 21. Okuda et al., 2009 22. Matsuo et al., 2011 23. this 
study. 
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Nalidixic acid was detected here in four samples ranging from 9.4 to 33.2 ng/g. This is 

the second detection of nalidixic acid in biosolids, and the first in U.S. biosolids. Only 

two other papers have screened for the presence of this quinolone in biosolids (Jia et al., 

2011; Chen et al., 2013). Only one of them detected nalidixic acid, reporting an average 

concentration of 10 ng/g in sewage sludge samples from 20 cities in China (Chen et al., 

2013) and a detection frequency of 16.7%. Our detection frequency of 33.3% suggests 

that nalidixic acid is present in U.S. biosolids as well.  

 

The penicillin class of antibiotics, which contains ampicillin screened for here, was 

among the top prescribed antibiotic classes in 2010 (Hicks et al, 2013).  I found one study 

that previously looked for ampicillin in biosolids (Matsuo et al., 2011). This study 

reported non-detects for their sludge samples (n=3) that were obtained from one Japanese 

municipal WWTP. The detection of ampicillin in this study is the first report of its 

presence in U.S. biosolids at (14.8 ng/g) dw. 

 

Sulfadimidine, spiramycin, NP-AOZ, and sulfadimethoxine were not detected in this 

study. The EPA study also did not detect any sulfadimidine or sulfadimethoxine residues 

in these samples. It is surprising that these two sulfonamide drugs were not detected, as 

several reports in the published literature reported detections ranging from a 0.04-200 

ng/g for sulfadimidine and 0.34-280 ng/g for sulfadimethoxine (see Figure 3-4 for 

references).  
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Many of the antibiotics most likely degraded during storage and their levels dropped 

below MDLs. As most biosolids are stored in storage tanks for days to months before 

land applications (Wu et al., 2008) the chemical interactions between pharmaceuticals 

like antibiotics with other biosolids components and external factors such as temperature 

and oxygen content can greatly affect antibiotic stability. Few other studies in literature 

show experimentally-derived data regarding antibiotics and the factors affecting their 

degradation patterns in biosolids (and soils); however, reported experiments suggest that 

several factors contribute to the degradation rate of antibiotics, some relevant to this 

study (temperature, storage time), and some more relevant to the land application of 

biosolids (mixture ratio with soil, soil type, biosolids type). Half-lives of antibiotics can 

vary from days to years (Monteiro et al., 2009; Walters et al., 2010) even for 

pharmaceuticals within the same therapeutic class (Schlusener and Bester, 2006).  A 

recent study published experimentally-determined half-lives of select antibiotics in 

outdoor biosolids-amended soil mesocosms (Walters et al., 2010). Although our detected 

analytes were not included in the half-life calculations, other antibiotics in the same 

classes can be noted here. For tetracyclines, quinolones, and macrolides, the ranges were, 

respectively, 55-630, 866-3466, and 360-770 days. These data in literature indicate that 

degradation patterns vary greatly and the non-detects as well as detected concentrations 

are a result of many different factors. Thus, it must be a research priority to determine 

what factors lead to quicker degradation of biologically active pharmaceuticals so land 

application of biosolids can be made safer.  
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This study also employed raw extracts for direct injection into the LC-MS/MS, which is 

not a common technique. This was done because efforts to treat the extract prior to 

injection (SPE, filtration) did not yield better results and so were forsaken to save time. 

Previous studies have reported that SPE may not always be necessary. Large volume 

injection (LVI) constitutes the direct injection of a large sample volume into a high-

performance LC column with only minimal sample pre-treatment, such as centrifugation 

(Chiala et al., 2008; Backe and Field, 2012). Although this technique injects more 

volume (between 100-5000 μL) than the amount injected in this study (50 μL), the same 

concepts can still be applied. Past studies have reported that LVI involves minimal 

sample handling, an increase in sensitivity and accuracy (sometimes; due to negligible 

loss of target analyte). LVI has not been very commonly used but may prove to be an 

alternative to SPE-based methods. Here we show that analysis of extracts that have only 

been centrifuged and frozen prior to injection may also be an alternative to SPE-based 

methods. Depending on the analyte and matrix, direct injection of the extract may be 

better than or produce similar results as SPE-based preparation methods. 

 

Human health risks associated with the detection of antibiotics in biosolids largely 

revolve around antibiotic resistance development. Studies looking at the risk of coming 

into contact with bacteria containing resistance genes suggest that the land application of 

biosolids is a potential route of exposure to pathogenic bacteria that are under selective 

pressure to become resistant (Rahube et al., 2014; Burch et al., 2014).  The mix of many 

different kinds of bacteria, antibiotics, metals, and other antimicrobials such as triclosan 

increase the risk for co- and cross-resistance to develop in biosolids (Flores and Jay, 
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2014; Carey and McNamara, 2015). As many antibiotics and antibiotic-resistant bacteria 

can survive WWTP processes (Uyaguari et al., 2011), it is important to monitor the 

presence of antibiotics destined for land application to reduce the potential contact of 

resistant genes with human pathogens. 

 

Biosolids for land application are not regulated for the presence of antibiotics in the U.S. 

In fact, the only two things that are regulated are microbes (pathogen load) and ten heavy 

metals (EPA Part 503). In addition to these set maximum concentrations, biosolids must 

also meet site restrictions depending on the purpose of the land amendment (e.g., parks, 

agricultural, home gardens). The data that this study and other published papers 

contribute indicate that other non-biological and non-metal pollutants are extant in 

biosolids that also merit consideration for better monitoring and potential regulation. The 

biological activity that is retained in many of the antibiotics in biosolids poses potential 

dangers to ecosystems that may be affected by small concentrations (e.g., sub-lethal/non-

lethal) of these compounds (Andersson and Hughes, 2012). As mentioned above, 

antibiotic resistance is a key issue, with recent data showing that antibiotics can shape the 

multi-level population biology of bacteria as well (Baquero et al., 2013). In view of such 

emerging information, a more detailed assessment of risks posed by antibiotic residues in 

biosolids is warranted. 

 

Study Limitations 

The prolonged storage of samples (8-9 years) between sampling event and analysis most 

likely affected the chemical structures and thus allowed for transformation of certain 
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analytes to occur; however, previous works have been published that took advantage of 

available archived biosolids (Hale et al., 2012; Xue et al., 2015). The results of this study 

should be viewed as conservative estimates of actual concentrations. Low recoveries 

were also seen for all analytes, meaning that detected concentrations are most likely 

underestimates of the true values. As only 12 samples were analyzed, four from each of 

the four regions, samples should not be seen as representative of the entire repository nor 

the region.  

 

CONCLUSIONS 

 

In this study, I screened for nine medically important antibiotics in 12 samples, four from 

each of the four U.S. regions geographically delineated by the EPA 2009 Targeted 

National Sewage Sludge Survey. Four of these analytes have never been screened for in 

U.S. biosolids. This study reports the first detections of oxolinic acid and ampicillin in 

biosolids, and the first for nalidixic acid in biosolids from the U.S. Out of the five 

compounds that were screened for previously by the EPA, three were found at much 

lower concentrations, suggesting that degradation of antibiotics occurred during storage. 

Different quantitation methods were also used in this study, which may also have led to 

different concentrations reported for the same analytes in the same samples. Compared to 

the EPA study, the present study had superior (i.e., lower) MDLs. Regardless, the 

presence of two newly-detected antibiotics and the detection of three others in archived 

U.S. biosolids shows that antibiotics are present and may negatively impact human and 

environmental health. The extent of this problem and the magnitude of risk ought to be 
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subject of additional research and potentially may lead to the conclusion that current 

regulations are inadequate to properly protect ecosystems and human populations. 
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TRANSITION THREE 

The detection of antibiotics in seafood and biosolids required the usage of liquid 

chromatography tandem mass spectrometry (LC-MS/MS), a methodology currently 

representing the gold standard of analytical tools for the identification and quantitation of 

small amounts of organic contaminants in complex sample matrices; however several 

factors can affect the accurate analysis of many chemicals such as antibiotics. One major 

factor is the quantitation method used. In Chapter 4, four different quantitation methods 

are used to explore the impact of the quantitation method used and a literature analysis is 

conducted to determine choice of analytical method trends. As some methods are more 

susceptible to interferences such as matrix effects, this chapter aims to see what 

differences, if any, can be seen in using four popular analytical methods: isotope dilution 

with heavy-labeled analogs, isotope dilution with heavy-labeled nonanalogs, external 

dilution, and standard addition.  
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CHAPTER FOUR. LITERATURE META-ANALYSIS AND EXPERIMENTAL 

COMPARISON OF FOUR DIFFERENT ANALYSIS STRATEGIES FOR LC-

MS/MS QUANTIFICATION OF ANTIBIOTIC RESIDUES IN BIOSOLIDS 

 

ABSTRACT 

 

This study explored the impact of using four different calibration methods on the 

quantitation of antibiotics in nationwide biosolids by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis. Ten previously analyzed samples showing 

detections of antibiotics (Chapter 3) were scrutinized as to the impact of using the 

following quantitation approaches: (i) external calibration; (ii) isotope dilution method 

with proxy compounds rather than true structural analogs; (iii) isotope dilution with 

structurally identically analog standards; and (iv) the method of standard addition. 

Results showed that the use of different calibration and quantitation techniques impacted 

the studied analytes in different ways. Concentrations obtained from quantitation of 

erythromycin using an isotopically-labeled analog were statistically different from those 

obtained using external calibration or standard addition (p<0.05). However, 

concentrations obtained for oxytetracycline using the method of standard addition were 

statistically indistinguishable from those obtained using external calibration (p=0.13) 

although using three non-analogous isotopically-labeled standards, ERY-13C2, NP-AOZ-

d4, and  SUL-13C6 did produce differing results (p<0.05).  Matrix effects were also 

quantified for spiramycin, NP-AOZ, and sulfadimethoxine using composite samples from 

four U.S. regions. Ion enhancement was as high as 734% (spiramycin) and ion 

suppression reduced signal intensity in organic extracts of biosolids by as much as 88% 
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(NP-AOZ). MDLs obtained for the analytes also showed great variation depending on the 

quantitation method used, with the presumed accurate method utilized in Chapter 3 

generally being lower than the rest. This study shows that biosolids are a very complex 

matrix that can enhance or suppress ion signal (range of 12-734% of signal) and that in 

the absence of isotopically-labeled analogs the most accurate alternate quantitation 

method may need to be experimentally determined depending on the analyte. Analysis of 

published literature (n=61) indicated that isotope dilution (with non-analogous and 

analogous standards) is more commonly used than standard addition and external 

calibration, although standard addition usage has increased in recent years. Future studies 

should report with more detail their exact quantitation method and justify their choice of 

quantitation method. 

 

INTRODUCTION 

 

Liquid chromatography mass spectrometry (LC-MS) and tandem mass spectrometry (LC-

MS/MS) are being applied extensively in environmental monitoring for their applicable 

analyte spectrum, speed, sensitivity, accuracy, precision, and suitability for high-

throughput analysis of emerging pollutants in complex environmental matrices 

(Richardson, 2011). Many organic emerging contaminants, such as pharmaceuticals and 

personal care products (PPCPs), have been identified and quantified using LC-MS and 

more recently LC-MS/MS (quadrupole or time-of-flight) technology. Although tandem 

mass spectrometry allows for the exclusion of many unwanted interferences in 

quadrupole one and observation of characteristic transformation products as identifiers, 
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matrix components present in environmental samples are known to interfere with both the 

identification and quantitation of analytes, especially when electrospray ionization (ESI) 

is used (Raji and Schug, 2008; Garcia-Rodriguez, 2014; Hao et al., 2007). Co-eluting 

compounds and mobile phase additives can also introduce interferences that suppress or 

enhance the analyte signal (Gomes et al., 2004). Whereas the exact mechanisms of ion 

suppression and enhancement are still under investigation, studies have shown that these 

matrix-induced phenomena can affect the performance of LC-MS/MS (Zhang et al., 

2011). 

 

Methods have been created in recent years to increase the sensitivity of LC-MS/MS and 

to decrease the potential impact of interferences. Ways to reduce interferences include 

extraction of target analyte and cleanup procedures as well as eluent additives (i.e., 

formic acid) to increase ionization of wanted analytes (Gomes et al., 2004). Extraction 

procedures vary greatly, with examples in the literature including ultrasound-assisted 

extraction (Yu and Wu, 2012), microwave-assisted extraction (Azzouz and Ballesteros, 

2012), pressurized liquid extraction (Pamreddy et al., 2013), and solid-phase 

(micro)extraction (Gao et al., 2012; Zhang et al., 2011b) to name just a few.  

 

To compensate for analyte loss during extraction and MS analysis, isotopically-labeled 

analogs of the native compounds are often used as internal standards using the so-called 

isotope dilution method (Pedrouzo et al., 2011; Cappiello et al., 2008). These surrogates 

are chemically the same as the target analyte with the exception that certain atoms 

featured an increased mass (i.e., 2H (deuterium) vs. 1H or 13C vs. 12C), implying that they 
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will behave the same as the native analytes of interest during pre-MS treatment but will 

be differentiated during MS by their specific mass differences (Hernandez et al., 2005). 

The ratio of native-to-surrogate concentrations is preserved throughout extraction and 

analysis, thus the original native analyte concentration can be calculated if a known 

surrogate mass is spiked initially and recovered only partially (<100% absolute recovery) 

(Halden and Paull, 2004). Adjusting analytical results for incomplete surrogate recovery 

enables reporting of relative recoveries that are normalized for losses occurring during 

sample workup and analysis; however, isotopically-labeled surrogates are not available 

for every analyte of interest (Hernandez et al., 2005). Even when available they can be 

very expensive, from a few hundred to several thousands of dollar for a few milligrams, 

depending on whether they are off-the-shelf products or custom synthesized in a small 

batch. When isotopically-labeled surrogates are unavailable, the analyst often selects 

from the following choices: (i) use an isotopically-labeled analog of a compound that is 

non-identical but similar to the target analyte of interest (Tang et al., 2009); (ii) use no 

surrogate standard but perform the method of standard addition to account for non-ideal 

chemical behavior during analysis (Lillenberg et al., 2009); or (iii) use external 

calibration and forego calculation of relative recoveries, arriving at quantitative estimates 

that frequently are considered as “lower bounds” of the true concentration (Pamreddy et 

al., 2013). The first method is, but not identical to, isotope dilution using analog 

standards; both require surrogate standard addition prior to analyte extraction so any 

losses taking place over the entire extraction process can be taken into account at the end. 

The second requires the spiking of chemically known increasing amounts of identical 

native analyte into the final extract (or spiked in at the beginning) just prior to injection 
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into the LC-MS/MS, so a calibration curve can be created for each individual sample 

using the known, spiked amounts. The third dilutes the chemically identical target analyte 

in a solvent (i.e., MeOH) to create an external calibration curve. 

 

Few studies have explored systematically how different calibration and quantitation 

approaches impact the quality and range of analytical results. To our knowledge, only 

one study analyzed how standard addition, external calibration, and internal isotopically-

labeled standards can affect quantitation results (vom Eyser et al., 2015). This study 

quantified 12 pharmaceuticals in biochar and biosolids using these quantitation methods 

and found that using standard addition prior to the entire extraction procedure yielded the 

best recovery rates by compensating all losses and matrix effects. Another recent study 

compared 52 analytical methods used to measure contaminants of concern in water 

(Vanderford et al., 2014). Results from 25 research and commercial laboratories using 

various MS instruments (GC and LC-MS) showed that LC-MS/MS coupled with isotope 

dilution most accurately quantified the majority of the compounds, including an antibiotic 

also quantified here, erythromycin. However, the purpose of this study was not to look at 

analysis methods, but rather, instrument analytical methods. A third study examined how 

five different calibration approaches affected results for quantifying proteins (Nouri-

Nigjeh et al., 2014). Although the calibration approaches are not comparable to ones 

here, as different methods are required for the analysis of proteolytic peptides, the goal of 

the study was the same. The study reported that different results were obtained from the 

different methods even though the same plasma samples were used.  
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In this paper, we employed four quantitation methods for the analysis of nine antibiotics 

in 12 samples from the U.S. Environmental Protection Agency’s (EPA) 2006/2007 

National Targeted Sewage Sludge Survey. The four quantitation methods examined 

included: standard addition (immediately prior to LC-MS/MS), external calibration, 

isotope dilution with a heavy-labeled analog of the native analyte, and isotope dilution 

with a non-analog of the native analyte. To our knowledge, this study is the first to 

compare the isotope dilution method using a surrogate non-analog standard with the three 

other quantitation methods. This method was included because it has been commonly 

used in literature (Evans et al., 2015; Dorival-Garcia et al., 2015). The goal of the work 

was to look for trends in quantitation method accuracy and analyze whether certain 

methods were better performing than others. 

 

MATERIALS AND METHODS 

 

Materials 

 

All materials, extraction methods, and LC-MS/MS procedures were previously described 

in Chapter 3. The results of detecting five antibiotics in ten biosolids samples were used 

for the analyses here.  

 
Isotope Dilution Method Quantitation 

 

The isotope dilution method was conducted as follows: 100 ng of heavy-labeled 

standards (SUL-13C6, ERY-13C2, NP-AOZ-d4) were spiked prior to extraction in each 

sample. The equivalent amount was added to the external calibration standards. The ratio 
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of area under the curve (signal responses) of the native analyte: isotopically-labeled 

analog was used to create a calibration curve from which the native analyte concentration 

was estimated according to the equation below: 

 
 

���� ��� ! = �"�� �#��" ��$#�� ��"%� &' #���%� �#��(��

�"�� �#��" ��$#�� ��"%� &' ��&�&������()��*���� �#��&$
                             (Eq. 1) 

 
 

Isotope dilution method using non-analog standards was conducted as noted above, 

except that the ratio used was the native analyte: non-analog isotopically-labeled standard 

signal areas.   

 

���� ��� ! = �"�� �#��" ��$#�� ��"%� &' #���%� �#��(��

�"�� �#��" ��$#�� ��"%� &' ��&�&������()��*���� #&#)�#��&$
                       (Eq. 2) 

 
 

Standard Addition Quantitation 

Standard addition quantitation was conducted as follows: with obtained extracts of the 

samples, increasing amounts of native analyte were added immediately prior to injection 

into the mass spectrometer. Five additional concentrations using the same extract were 

created (concentrations 0.2, 0.4 1, 2, and 4 µg/L if in clean matrix). The unspiked extract 

and these five additional concentrations were run through the mass spectrometer and the 

obtained six signal responses together created a sample-specific curve (Tusiimire et al., 

2015). Detections resulted in the following equation where a positive signal response (or 

area count) was yielded for x=0: 

 
+ = ,- + .                                      (Eq. 3) 
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where y is the signal of area under response curve, m is the slope, x is the concentration, 

and b is the y-intercept (i.e., the signal when the spiked mass of analyte is zero). 

 
This area count is corresponding to the signal response of the unknown mass of antibiotic 

present in the extract prior to spiking. To calculate the corresponding concentration, the 

absolute value of the x-intercept was used as the corrected, estimated concentration of the 

analyte present in the sample prior to spiking. Thus, obtained slopes and abscissa of each 

standard addition equation were used to find the unknown concentration. This process 

was repeated for each sample and each analyte investigated. 

 

External Calibration Quantitation 

External calibration was conducted as follows: analytes dissolved in MeOH of increasing 

amounts were used to create a linear curve that was then used to estimate analyte 

concentrations in samples. No further corrections were made for sample matrix effects on 

ionization or extraction losses during sample processing. 

 

Signal Response Quantitation 

Matrix effects were also calculated by obtaining the signal response (SR) using the 

following equation (Rodriguez-Alvarez, et al., 2014): 

 

/ 01�2 ��/3!1/� 4%5 = "���&#�� &' ���6�� �����

"���&#�� &' ���#��"�
× 100                                           (Eq. 

4)  
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Where the response of spiked sample equaled the area under the signal curve of analytes 

in samples that were spiked with 100 ng of native compound prior to extraction, and 

response of unspiked samples equaled the area under the signal curve of analytes in 

samples that did not have spiked antibiotics prior to extraction. The response of standard 

equaled the area under the signal curve of analytes in MeOH (standards). A SR of 100% 

indicates a lack of matrix effects; an SR% <100% indicates signal suppression, whereas 

an SR% > 100% indicates signal enhancement. 

 

Statistical Analysis of Data Sets (t-Test) 

The Student’s t-test was used to analyze whether there was a difference between reported 

values in Chapter 3 and the values obtained in this study using different quantitation 

methods. The data was assumed to be normally distributed. The α was set at 0.05 and a 

two-tailed, paired t-test was run between reported erythromycin, oxytetracycline, and 

nalidixic acid results. Duplicates of each sample were factored into the analysis except 

for two samples with detected nalidixic acid concentrations that did not have a duplicate. 

T-test calculations comparing erythromycin concentrations obtained using external 

calibration were calculated in two ways. The first way used only four values (from two 

samples) as two values resulted in non-detects (see Chapter 3). The second used all eight 

values and inputted the non-detects as the MDL/√2. Thus, for these t-tests with external 

calibration of erythromycin, two p-values are reported. 

 

Method Detection Limits Calculations 
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Method detection limits (MDL) for all detected antibiotics were calculated using results 

from composite samples where composites of each of the four U.S. regions were used. 

This was done because the original MDL calculations were conducted using composite 

samples, so the same values were used here in order to compare them. Each of the 

quantitation methods were applied to analyte peak areas used for MDL quantitation in 

Chapter 3 and reported here. 

 

Quality Assurance 

See Chapter 3 for full details on quality assurance regarding obtained signals for areas 

under the curves. For all new calculations reported in this study, duplicate sample results 

were used and the average was reported with the distance between the average and the 

min/max also being reported.  

 

Meta-Analysis of the Published Literature 

 
A literature search was conducted using Web of Science for years 2000-2015 to analyze 

quantitation methods used in LC-MS/MS publications. The search terms “liquid 

chromatography mass spectrometry pharmaceuticals” paired with “biosolids” and then 

paired with “sewage sludge”. The resulting abstracts were individually screened. 

Experiments using soil as biosolids, involving spiking in analytes just for method 

development, and drugs of abuse analyte papers were excluded. Papers using diode array 

detectors were also excluded.  Educated guesses were made when possible (e.g., if the 

paper said “internal standards were used” and listed labeled analogs and non-analogs in 
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the materials section, it was presumed that isotope dilution with both kinds of standards 

was used). In cases of extreme uncertainty regarding the method utilized, the author was 

contacted and if no response was received, the paper was excluded. A total of 61 papers 

were analyzed for standard addition (see Appendix C for complete list of analyzed 

references), external calibration, isotope dilution with analogous standards, and isotope 

dilution with non-analogous standards. Papers that used multiple methods were included 

in the total count of each of those methods. 

 
 
RESULTS AND DISCUSSION 

 

 

Quantitation Of Antibiotics In Biosolids Using Different Methods 

 

A Student’s t-test was conducted for three antibiotics, erythromycin, oxytetracycline, and 

nalidixic acid, to compare four quantitation methods (Table 4-1). For discussion 

purposes, it is being assumed that for erythromycin, the accurate concentrations are the 

ones reported using isotope dilution with ERY-13C2. For all others, it is being assumed 

that standard addition concentrations are the most accurate.  

 

When excluding the non-detects that resulted in external calibration of erythromycin, the 

concentrations quantitated using ERY-13C2 differed from the concentrations quantitated 

using external calibration (p=0.04), NP-AOZ-d4 (p=0.04), and standard addition (p=0.02) 

but did not differ from values obtained using SUL-13C6 (p=0.13) (Table 4-2). T-tests 

were also run amongst the newly calculated concentrations using isotope dilution and the 

results indicate that they were not different from each other. Interestingly, external 
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calibration results were different than standard addition results (p=0.04). However, when 

using the p-values obtained by using the concentration of MDL/√2 for the non-detected 

concentrations, results indicated that external calibration concentrations were different 

than concentrations obtained from all other quantitation methods (p=<0.00). This second 

method of calculation also concluded that external calibration produced different results 

than using erythromycin’s analogous standard of ERY-13C2. 

 

The p-values calculated from these results demonstrate that isotope dilution using ERY-

13C2, standard addition, and external calibration are all different from each other. It 

cannot be concluded whether one quantitation method is better than another one; that is 

not the purpose of a t-test. However, if isotope dilution using ERY-13C2 is considered the 

accurate method for comparison purposes here, based on the obtained p-values in Table 

4-2, it appears that using external calibration and standard addition produced different, 

and perhaps less accurate, results. Using isotope dilution with NP-AOZ-d4 did not change 

the results for this compound but using isotope dilution with SUL-13C6 did.  

 

For oxytetracycline, it appears that all quantitation methods yielded statistically different 

results with the exception of two pairings. External calibration and standard addition 

results did not differ from each other (p=0.13) and ERY-13C2 and NP-AOZ-d4 isotope 

dilution methods also did not differ from each other (p=0.21). These results show the 

differences that can be achieved from using different quantitation methods. If presuming 

standard addition concentrations as the accurate concentrations, results show that external 
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calibration is the only one that did not give statistically different concentrations, and, 

thus, is the most similar.  

 

Table 4-1. Concentrations (ng/g dw) of antibiotics detected in biosolids samples quantified using different 
quantitation methods.  

 
Sample 

External 

Calibration 

aERY-
13

C
2
 aNP-AOZ-d

4
 aSUL-

13
C

6
 

Standard 

Addition 

ERY 

NE 3 0.3±0.0 0.5±0.1 1.0±0.3 1.2±0.3 0.2±0.0 

NE 4 ND/0.07# 0.4±0.1 0.4±0.1 0.5±0.1 1.8±0.3 

W 2 0.1±0.0 1.0±0.0 1.1±0.1 0.4±0.0 2.5±0.1 

MW 4 ND/0.07# 0.6±0.1 1.4±0.2 1.3±0.2 1.2±0.1 

OXY 

NE 4 6.7±1.6 24.1±3.0 25±3.0 30.7±0.8 9.7±1.8 

W 4 11.8±3.1 110.4±8.0 28.9±4.6 545.6±110.2 3.7±0.8 

W 2 1.5±0.1 10.4±0.8 10.3±0.6 10.3±0.5 1.0±0.1 

S 3 5.7±0.5 13.7±0.6 16.2±0.3 358.4±16.9 2.7±0.1 

S 4 7.1±0.2 27.6±0.1 30.9±0.5 402.1±5.9 5.2±0.0 

NDA 

MW 1 1.4±0.1 9.5±0.3 11.3±0.0 7.4±0.1 9.4±0.6 

W 4* 13.6 1390.7 58.3 102.4 33.2 

NE 4 2.3±0.4 106.1±42.5 22.5±3.5 11.3±2.1 18.8±2.6 

NE 2* 1.9 8.7 18.9 10.6 15 

AMP S 4 16.4±0.3 46.1±1.8 14.8±4.4 667±45 14.8±0.4 

OXA 

MW 3 1.4±0.1 74.1±4.6 3.6±0.8 5.1±0.9 5.2±0.5 

S 4 0.05±0.0 12.6±0.8 0.8±0.1 0.5±0.0 0.1±0.0 

Names indicate sample region origin. In bold are the concentrations reported in Ch 3. Averages of duplicate 
extractions are shown with ± as the distance between it and the min/max. Values of ±0.0 resulted after 
rounding. aStandards for isotope dilution method. *Only a single sample was extracted. #Second value 
indicates result of MDL/√2. 
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Table 4-2. P-values for comparing erythromycin, oxytetracycline, and nalidixic detections using the 
different quantitation methods.  

ERYTHRO-

MYCIN* 
External 

Calibration 

Isotope Dilution 
Standard 

Addition 
ERY-

13
C

2
  

NP-AOZ-

d
4
  SUL-

13
C

6
  

External 

Calibration  
0.04/0.00 0.11/0.00 0.11/0.00 0.04/0.00 

Is
o

to
p

e 

D
il

u
ti

o
n
 

ERY-
13

C
2
    

0.04 0.13 0.02 

NP-AOZ-d
4
  

   
0.58 0.27 

SUL-
13

C
6
      

0.15 

 

OXYTETRA-

CYCLINE 
External 

Calibration 

Isotope Dilution 
Standard 

Addition ERY-
13

C
2
  

NP-AOZ-

d
4
  SUL-

13
C

6
  

External 

Calibration  
0.03 0.00 0.01 0.13 

Is
o

to
p

e 

D
il

u
ti

o
n
 

ERY-
13

C
2
    

0.21 0.01 0.03 

NP-AOZ-d
4
  

   
0.01 0.00 

SUL-
13

C
6
      

0.01 

 

NALIDIXIC ACID 
External 

Calibration 

Isotope Dilution 
Standard 

Addition ERY-
13

C
2
  

NP-AOZ-

d
4
  SUL-

13
C

6
  

External 

Calibration  
0.28 0.01 0.18 0.00 

Is
o

to
p

e 

D
il

u
ti

o
n
 

ERY-
13

C
2
    

0.31 0.29 0.30 

NP-AOZ-d
4
  

   
0.92 0.13 

SUL-
13

C
6
      

0.56 
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Red highlights indicate quantitation methods used in Chapter 3 that are assumed to yield the most reliable 
estimate of the true value. *P-values calculated for comparing external calibration with the other methods 
were calculated in two different ways (see Methods). The first p-value represents the answer calculated 
when four of the eight concentrations (two for each sample, as there were duplicates) calculated using 
external calibration for erythromycin were not included in the t-test because these concentrations resulted 
in non-detects. The second p-value represents the answer calculated when these four concentrations were 
calculated as the MDL/√2. 
 

Nalidixic acid comparisons showed that most pairings were statistically similar, with the 

exception of two pairings. Standard addition and external calibration yielded differing 

results (p<0.01) and external calibration and isotope dilution using NP-AOZ-d4 yielded 

differing results (p=0.01). For this compound, it appears that using a non-analog isotope 

as a standard universally did not statistically change the concentrations calculated, but 

using standard addition did. Based on these numbers alone, it may be concluded that 

using non-analog isotopes resulted in the most accurate data for nalidixic acid 

quantitation in biosolids.  

 

The MDLs for each of the five detected antibiotics in Chapter 3 were also re-determined 

by applying the different quantitation methods to the peak areas obtained for the five 

detected analytes. The numbers reported in Table 4-3 show the large range of MDLs 

obtained for each compound. It is important to note that these values should only be 

compared to each other as they were determined using composite samples and thus 

should not be applied to Table 4-1, which lists concentrations of individual values. As 

expected, using different quantitation methods with the same signal of the area under the 

curve will yield different results for each compound. Results for the four compounds that 

originally used standard addition for quantitation showed a very high range of MDLs. For 

example, nalidixic acid, with a reported MDL of 9.0 ng/g in Chapter 3, now has a range 
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of 1.0-321.1 ng/g. Ampicillin, with a reported MDL of 10.0 ng/g, now has a range of 10-

90.2 ng/g. In general, the MDL obtained using the assumed accurate method is either in 

the middle (i.e., erythromycin and nalidixic and oxolinic acids) or on the lower end of the 

range of concentrations (e.g., oxytetracycline, ampicillin). This suggests that the 

“accurate” methods may also have the lower MDLs.  

 

Table 4-3. MDLs for composite samples in ng/g dw determined from different quantitation methods. 
MDLs in red indicate the presumed accurate value determined in Chapter 3. 

Analyte External 

Calibration 
Isotope Dilution with Standard as: Standard 

Addition 

ERY-
13

C
2
 NP-AOZ-d

4
 SUL-

13
C

6
 

Erythromycin 0.1 0.3 0.6 0.3 0.2 

Oxytetracycline 3.4 181.1 13.5 12.6 0.5 

Nalidixic Acid 1.0 321.1 12.8 6.4 9.0 

Oxolinic Acid 0.1 13.6 0.5 0.04 0.1 

Ampicillin 11.5 90.2 39.7 36.9 10.0 
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Matrix Effects: Ion 

Enhancement and Suppression 

For all five detected antibiotics 

(ampicillin, erythromycin, 

nalidixic acid, oxolinic acid, and 

oxytetracycline) the calibration 

curves obtained with standard 

addition and external calibration 

were different (Figure 4-1). This 

likely is due to ion 

suppression/enhancement from 

interferences present in the 

extracted matrix. It must be noted 

here that the raw extract was used 

in these analyses without the aid 

of a clean-up method. This was 

done because undesirably low 

recoveries resulted (see Chapter 

3) when solid-phase  

Figure 4-1. Calibration curves resulting 
from the use of standard addition 
method (sample) and external 
calibration (standard) for individual 
samples. *Ampicillin has a different x-
axis because the standard curve had a 
higher linear range.  
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Extraction (SPE) was utilized as a cleanup step. The use of raw extract still resulted in 

low recoveries, but these were much higher (20-40%) and produced more repeatable 

results than when SPE was utilized. As reliable recoveries and precision were still 

achieved, the raw extract was used for further analyses.  

 

Figure 4-2. Matrix effects and standard addition curves compared to standard curves. (Top) Spiramycin, 
NP-AOZ, and sulfadimethoxine standard addition curves of composited samples from the four U.S. regions 
compared to the external calibration standard (blue diamonds). Equations belong to the standard curve. 
First panel on left shows that analyte curves with steeper slopes than the standard indicate signal 
enhancement. Analyte curves with less steep slopes indicate signal suppression. (Bottom) Signal response 
was calculated (see Materials and Methods) for each composite sample and analyte. Responses above 
100% indicate signal enhancement. Responses below 100% indicate signal suppression. 
 

But because raw extracts were used, there are presumably a large number of interfering 

compounds in our extract that could have caused ion suppression and enhancement. ESI 

is the preferred ionization mode as it is universally applicable for polar compounds and 
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can be applied to the ionization of many different kinds of analyte (Hernandez et al., 

2005). The major drawback of ESI is its susceptibility to unwanted influences from the 

sample matrix (Stahnke et al., 2012) which likely were abundant in our raw extracts. This 

probably is a factor contributing to the differences in calibration curves.  

 

A common discrepancy is that the slopes feature 2-5 fold differences in magnitude. 

Slopes steeper than the external calibration curve, which can be assumed as the “ideal” 

(with no interferences), are ones showing signal or ion enhancement (Figure 4-2). Slopes 

less steep than the “ideal” curve are ones showing signal or ion suppression. Both 

situations may lead to severe errors in quantitation (Hernandez et al., 2005).  

 

As calculated according to the equation in Eq. 4, signal response (SR) percentages are 

given in Figure 4-2. Matrix effects could manifest as signal enhancement (SR>100%) or 

signal suppression (SR<100%). Signal enhancement, exhibited by three samples in the 

graph of the spiramycin calibration curves, all have SRs greater than 100%. These values 

of 734, 432, and 115%, respectively, show that these matrices increased the signal 7.34, 

4.32, and 1.15-fold above the response obtained in pure MeOH. Here, pure MeOH is the 

“ideal” signal as it has no matrix interferences and is the eluent the LC-MS/MS method is 

based on. All other samples showed an SR of less than 100% indicating that ion 

suppression occurred, with a range of 12-60% of the response obtained using MeOH. The 

sample curves presented are calibration curves obtained from standard addition using 

composite samples of the four different U.S. regions. It should be noted that the 

individual samples in each composite could have different SR percentages for each of the 
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analytes. Matrix effects on spiramycin showed the greatest signal enhancement (up to 

734%) to the greatest signal suppression (up to 60%) in the following order of samples: 

Midwest (734%), Northeast (432%), South (115%), and West (60%). For NP-AOZ and 

SUL, the order for least suppressing to most suppressing is: West (NP-AOZ 30%/ SUL 

22%), Northeast (24%/20%), Midwest (23%/16%), and South (16%/12%). Very little 

differences were seen for NP-AOZ and SUL from sample to sample (7% difference in 

Midwest sample; 4% in Northeast and South, 8% in West), suggesting that depending on 

the analyte, general trends may perhaps be seen in certain types of matrices. A smaller 

standard deviation indicates that a general assumption may be true for these two 

compounds and how they are suppressed in U.S. biosolids, but must be validated with 

more samples. 

 

Data for SPI showcase that it is impossible to make a generic statement about matrix 

effects, not even for a single compound and a single type of sample matrix. It is clear that 

a general statement regarding matrix effects cannot be made with confidence, although it 

appears that signal enhancement is more common than is signal suppression. The causes 

for signal enhancement are not well understood (Stahnke et al., 2012); however, with LC-

MS/MS by ESI, ionization suppression is a well-known phenomenon (Mei et al., 2003). 

For suppression, it is assumed that matrix components may outcompete the target 

analytes during ionization. In other words, the target analyte is suppressed due to loss of 

charge (Gosetti et al., 2010). These components can range from inorganic electrolytes to 

organic molecules such as carbohydrates. Other reasons for suppression include co-

eluting compounds, mobile phase additives, and equipment design (Gomes et al., 2014). 
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The extraction process may also introduce interfering compounds such as plastic polymer 

residues and phthalates (Mei et al., 2003). Future studies should focus on signal 

suppression/enhancement with more analytes in biosolids matrices to look for patterns 

and key influencing factors. 

 
Table 4-4. Potential limitations each quantitation method may be subject to. 
Results May Be 

Limited By:  

External 

Calibration 

Isotope 

Dilution (non-

analog) 

Isotope Dilution 

(analog) 

Standard 

Addition 

Extraction Losses V S1 R R 
Matrix Effects V S1 R R 
Costly Labeled 
Standards 

R S V R 

Availability of 
Labeled Standard 

R S V R 

Increased 
Preparation Time 

R S2 S3 V 

Extra Lab Materials 
Needed 

R S2 S3 V 

A value of “R” = robust; this method is not affected by this limitation. A value of “S”= susceptible; this 
method may be affected by this limitation. A value of “V”= vulnerable; this method is most likely affected 
by this limitation. 1As these analog standards are not chemically identical to the target analyte, extraction 
losses and matrix effects may affect the obtained signal. 2May be susceptible if multiple non-analog 
standards are tested to experimentally determine best fitting standard. 3May be susceptible if optimization 
of analog standard on mass spectrometer proves to be difficult. 
 

Strengths and Weaknesses of the Quantitation Methods Evaluated 

Many potential issues exist in LC-MS/MS analysis of analytes (Table 4-4). The 

predominantly accepted method for quantitation is using isotope dilution with a stable 

isotope-labeled analog of the target analyte. The labeled analog is introduced at the 

beginning of extraction and therefore accounts for recovery losses during sample 

preparation procedures, whether it be due to inefficient extraction, analyte interactions 

with the matrix, or speciation differences due to pH, among all possible reasons. The 

labeled analog also chemically acts the same way as the native compound, thus it is 
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subject to the same matrix effects and ionization pattern regardless of what mass 

spectrometer is used; however, these compounds are costly, not always commercially 

available, and may prove to be time-consuming to obtain and optimize on the mass 

spectrometer so other heavy-labeled standards may sometimes be used (Tang et al., 

2009). These standards are not the same as the target analyte. For example, a heavy 

labeled thiabendazole-d6 was used to quantitate oxytetracycline (EPA, 2009). The 

approach to using these surrogate labeled standards is to ensure that they have the same 

response pattern as the target analyte. This means that they must be extracted the same 

way, yield the same recovery percentage, and are subject to the same matrix effects and 

ionization patterns. This may prove to be more time-consuming and costly in the long 

run, as the selection of this non-analog standard requires experimentation since ionization 

behaviors can be so different from compound to compound (Sancho et al., 2002) and 

from samples to sample; however, if a surrogate labeled proxy is already available, it may 

be easier and cheaper to use it as a standard in the isotope dilution method instead of 

purchasing the actual target compound’s isotopically-labeled counterpart. As sample 

preparation counts for 70-90% of time and significantly affects reliability and quality of 

data (Garcia-Rodriguez et al., 2014), it is important to take all factors in Table 4-2 into 

account.  

 

Standard addition and external calibration do not require the usage of isotopically-labeled 

chemicals (Figure 4-3). Standard addition sees the addition of increasing amounts of 

native analyte to the extract to form a calibration curve that then can be used to back-

calculate the actual concentration, if there is a detection. Ionization patterns and matrix 
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effects of the extract are factored into this analysis, but this method does not take into 

account extraction recoveries as the standards are spiked after extraction; however, 

concentrations can be recovery-corrected. It is important to keep in mind that standard 

addition is time-consuming as multiple concentration vials need to be created for every 

individual sample and thus may not be a viable method for commercial labs and/or high-

throughput analyses where using one vial per sample and use of an auto-injector is 

commonly established. External calibration is the usage of native analytes dissolved in a 

clean matrix such as MeOH to create a standard curve. This curve does not take into 

consideration extraction recoveries or matrix effects. 

 

Thus, the quantitation method used will vary depending on matrix, analyte, and lab 

resources. Analytically, looking at the four methods in Figure 4-3 and taking into account 

the issues in Table 4-2, it could be argued that the “best” quantitation method is the 

isotope dilution method with analog standards (panel C). It must still be kept in mind that 

severe matrix effects can lead to poor sensitivities regardless (Hernandez et al., 2005). A 

simple dilution of the extract can be used to minimize matrix effects, but this will also 

minimize differences between samples and target analyte levels (Hernandez, et al. 2005).; 

however, if the matrix effect can be decreased, satisfactory results can be obtained 

without the use of an analog isotope standard (Sancho et al., 2002). Thus, proper clean-up 

and analyte ionization (i.e., chromatography optimization) must be top concerns even 

when using isotopically-labeled analogs. Arguably, the second “best” method is standard 

addition. Using the same compound for a calibration curve in the same sample matrix is 

ideal but the time-consuming nature of this method makes it less appealing. External 
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calibration and isotope dilution with non-analog standards arguably is the least accurate 

methods, although they are the easiest and most efficient methods. In a situation where 

concentration isn’t as important than the confirmation of the analyte presence, external 

calibration may suffice analysis goals; however, if the exact concentration is needed, 

using isotope dilution with an analog standard and standard addition methods should be 

employed.  

 

Meta-Analysis of the Published Literature 

The analysis of the published LC-MS/MS studies indicates that from 2000 to 2015, 

internal standards were used most frequently. Standards that were analogous to the 

analytes of interest were used most frequently (in 37 studies; ~59%) followed by the 

usage of standards that were not analogous to the analyte of interest (in 28 studies; 44%). 

The usage of standard addition and external calibration were less frequent (in 29% and 

25% of the studies, respectively). It is important to keep in mind that some studies 

employed multiple methods and so were counted twice. These numbers show that using 

surrogate standards, whether analogous or non-analogous to the target analyte, are far 

more common than standard addition and external calibration. As using surrogate 

standards are generally considered more accurate since they are internal, meaning that 

they are added into the sample prior to extraction, these results are not surprising. It is 

interesting to note that as mass spectrometry instrumentation improved over the years, 

and analytical chemists developed more and more isotopically-labeled standards, the use 

of external calibration seems to be decreasing. It is also interesting to note that standard 

addition usage is increasing. One paper noted that standard addition was used because 
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isotopically-labeled standards were not available and the non-analog standards that they 

tested didn’t correct for ion suppression (Echeverria et al., 2014). Another paper actually 

tested multiple methods before settling on standard addition (vom Eyser et al., 2015). The 

data presented in this chapter suggest that different quantitation methods can produce 

different results, and that it is important to experimentally determine what method is best 

suited for each analyte and sample matrix. This means that the data in many of these 

papers could have been negatively affected by the choice of their quantitation method. 

The present study shows how the usage of isotopically-labeled non-analogous standards 

in biosolids greatly varies depending on the standard of choice and analyte of interest. 

The majority of papers that reported using these standards did not specify what standard 

was used for what analyte. The usage of terminology also differed greatly; standard 

addition and matrix-matched calibration are presumed to be the same technique in this 

analysis as the descriptions of both appeared to be identical methods. The differentiation 

between internal and external standards is important, as the former means that the 

standard is present during the entire extraction process. However, merely stating that an 

internal standard was used does not specify exactly how it was used as the reason could 

be for recovery, quantitation, matrix effects determination or any other reason. Similarly, 

educated guesses had to also be made for papers mentioning that a calibration curve was 

used for quantitation but did not state what was used to make the calibration curve. These 

were presumed to be external calibration if no isotopically-labeled standards were 

included in the “materials” section of the paper.  

The trend in LC-MS/MS papers over the years did show an increase in efforts to reduce 

and quantitate matrix effects (Arbelaez et al., 2014; Chu and Metcalfe, 2007). A few even 
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used a different method for quantitation but then switched to standard addition for 

analyzing matrix effects (Chu and Metcalfe, 2007; Lajeunesse et al., 2012; Ding et al., 

2011). Future studies need to include in their quantitation how matrix effects were 

circumvented. 

 

A few key points can be taken away from this literature analysis. The first is that using 

isotopically-labeled standards is more common than using standard addition and external 

calibration (although it appears that the use of standard addition is increasing and the use 

of external calibration is decreasing). The second is that the data obtained in this study 

indicates that many of these published papers where a quantitation method was chosen 

without prior experimental evidence indicating that the chosen method is the most 

accurate may have reported concentrations that were not the best estimate of the true 

value. The third is that although many papers did indeed take into account (or at least 

note) potential matrix effects on obtained data, few specified reasons as to why their 

method of quantitation was chosen and fewer still experimentally determined the best 

standards for usage. This leads to the final point that the rigor in LC-MS/MS quantitation 

needs to be strengthened and better reporting of quantitation methods needs to occur. 

Many of the “methods” sections in the analyzed papers were vague regarding 

quantitation. Certain papers were excluded if there was no response from the author. This 

highlights the need for authors to be more specific in their reporting of how quantitation 

was conducted (perhaps in the supplemental information section) and the need for 

uniformity of language to be used.  
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Study Limitations 

This study had two main limitations. The first is that few samples were used. In Chapter 

3, only 12 samples were analyzed and ten were found to contain detectable amounts of 

antibiotics. Thus, general conclusions must be taken with caution as the trend may 

change with the analysis of more samples. The second limitation is that few analytes 

were screened for. Out of the nine antibiotics in Chapter 3, five were detected and thus 

analyzed in this chapter; however, this is the first study where the same LC-MS/MS data 

was analyzed using different quantitation methods. Thus, this study establishes the need 

for future studies where a larger sample size is used with more analytes of interest, not 

just antibiotics.  

 

The literature search was only limited to pharmaceuticals reported in biosolids. Different 

analytes in different matrices may produce different patterns in quantitation method 

usage. However, the conclusions reached here regarding how methods should be chosen 

and improvements in the reporting of method details can be applied to all LC-MS/MS 

analyses. 
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Figure 4-3. Methods for quantitating analytes on LC-MS. A) External calibration curve is analyte standard 
in clean solvent at increasing concentrations. Calibration curve is used to find concentration of unknown. 
B) Isotopically-labeled analogs are spiked into the sample prior to extraction. The ratio is conserved 
through extraction and the end calibration curve is based on the ratio of the signals. C) Instead of the 
denominator being the isotopically-labeled analog signal, the non-analog isotopically-labeled standard 
signal is used. D) Standard addition method utilizes spikes of known analyte amounts into the final extract. 
Curve obtained is used to back-calculate for unknown concentration.  
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CONCLUSIONS 

 

This chapter is the first study to systematically explore the impact of these four different, 

yet common quantitation approaches in the use of LC-MS/MS for antibiotics analysis in 

biosolids.  Using the same LC-MS/MS data results for five detected analytes, different 

concentration results were obtained using four different quantitation methods. As these 

methods are commonly used in literature, it is important to evaluate their accuracy as 

well as their strengths and weaknesses. Based on the results and theoretical 

considerations raised in this chapter, it is concluded that isotope dilution with a 

structurally identical analog standard is the preferred quantitation method. In situations 

where it cannot be applied, the next best choice is standard addition due to this method’s 

ability to account for of matrix effects in its results. Using external calibration and 

isotope dilution with non-analog standards run the risk of the results being influenced in 

an unpredictable fashion by matrix effects, recovery losses, and different signal patterns 

through ionization. Finally, in the case of antibiotics in biosolids, it appears that although 

signal suppression is more common than signal enhancement, both can still be observed, 

even for the same analyte in different biosolids matrices (spiramycin). Though some 

quantitation methods presented here are better than others, it is still important to evaluate 

which may be best suited for each study as different variables exist (i.e., availability of 

standard). The literature analysis indicated that isotope dilution (with analogous and non-

analogous standards) was reported to be used more often than standard addition and 

external calibration were. The trend in recent years is to consider matrix effects in data 

analysis, and thus standard addition has become more common. More detailed reporting 
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of quantitation methods and uniformity of terminology should be used in future reports. 

As the information presented here is relevant to antibiotics in biosolids, more 

comparative studies should be conducted in the future with more analytes and matrices to 

better judge the strengths and weaknesses of each LC-MS/MS quantitation method. 
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CHAPTER FIVE. RESEARCH IMPLICATIONS AND FUTURE DIRECTIONS 

 

Antibiotics are arguably the most important human chemicals to have ever been 

discovered. They have saved countless lives and have the potential to save countless 

more.  In order for their efficacy to continue, we as a society must be more prudent with 

their usage. This dissertation explored the two main ways antibiotics are 

anthropogenically introduced into the environment. The first way is through animal 

farming, where antibiotics are often used for growth promotion, disease prevention, and 

treatment. The second way is through persistence in wastewater treatment plants, where 

antibiotics sometimes accumulate in biosolids, a solid by-product frequently applied on 

land. This dissertation contributes knowledge to both these areas, as well as technical 

data regarding how antibiotics can be quantified for these purposes.  

 

The farming of animals on land (agriculture) and in water (aquaculture) strives to meet 

the many growing demands of the human population. Aside from providing critical food 

protein, other essential products include dairy, wool for clothing, fish oil, as well as food 

for other animals. These industries support the livelihoods for billions of people around 

the planet. It is important to find more sustainable and economical practices to continue 

the development of these industries without causing irreparable harm and threatening 

future generations. Chapters one and two discuss how antibiotics are used in agriculture 

and aquaculture. Predominantly, there are two main issues. The first is that not enough 

reporting of key antibiotic statistics is occurring (Figure 5-1, questions 1-2). We as a 

society don’t know what antibiotics are used, in what concentrations, at what frequencies, 
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and for what reasons. This is especially true in Asian countries where the majority of 

aquaculture is taking place. The second is that many negative consequences are being 

reported in literature regarding animal farming and its role in promoting the development 

of antibiotic, which is indeed occurring. Specific genetically-identified resistances (i.e., 

efflux pumps) to individual or classes of antibiotics have been reported. Of greatest 

concern is the occurrence of cross- and co-resistances in many different environmental 

and animal farming matrices. As aquaculture continues to grow, the potential for 

resistance spread through water increases and the urgency to improve animal farming 

practices becomes more and more apparent. 

 

In this dissertation, a comprehensive study was conducted by screening for 47 antibiotics 

in 27 seafood samples from 11 different countries. This was the first U.S. screening of 

top consumer choice fresh seafood for a large number of medically important antibiotics. 

Low concentrations of five antibiotics were found to be in compliance with U.S. (and 

EU) regulations. Although these seafoods are deemed chemically safe to consume, the 

detection of antibiotics still points to a problem as they should have cleared out of the fish 

by the time they reached the market. The detection of antibiotics in wild-caught shrimp 

and farmed salmon marketed as antibiotic-free also brings up issues of possible 

contamination and mislabeling. Low concentrations of antibiotics like the ones detected 

here have been shown to exert selective pressure on bacteria to develop resistance.  

Literature publications report that more and more resistant strains of bacteria have been 

identified in recent years, some of which are pathogenic to humans. 
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Figure 5-1. Research gaps, needs, and questions that future research should focus on. 

 

Antibiotics are introduced into the environment via wastewater treatment as well. 

Wastewater treatment plants serve to recycle human wastes as well as take out harmful 

biological and chemical contaminants that may negatively impact the environment and 

human health. With the large range of contaminants, it is unrealistic to have products 

from this process that are completely void of health hazards. Thus, this dissertation looks 

at biosolids, which are known to concentrate just the organic and inorganic contaminants 

and are regularly applied on land. Using samples from the EPA’s 2006/2007 Targeted 

National Sewage Sludge Survey, five antibiotics (out of nine screened for) were detected 
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at concentrations between 0.1 and 33.2 ng/g dry weight. This study reports the first 

detection of ampicillin and oxolinic acid in biosolids, and the first detection of these two 

antibiotics along with nalidixic acid in U.S. biosolids. Oxytetracyline was the most often 

detected antibiotic, found in five out of 12 samples (41.7%). Interestingly, this was also 

the most often detected antibiotic in the seafood study (detected in four out of 11 

composite samples~ 36.6%). Oxytetracycline is the most popular antibiotic to be used in 

aquaculture and is also popular in human medicine. These results confirm that medically 

important antibiotics are being introduced into the environment via animal farming and 

biosolids land application pathways.  

 

The selection of quantitation methods to analyze data using LC-MS/MS, as discussed in 

Chapter 4, affects the results obtained. It is necessary to define the quality of data before 

considering their implications. This dissertation conducts an initial study to analyze how 

four different commonly reported quantitation methods may affect resulting 

concentrations of antibiotics in biosolids. A meta-analysis of studies reporting detections 

of pharmaceuticals in biosolids was also completed to determine the frequency of usage 

for each of these methods. It is concluded that using isotopically-labeled analogs in the 

isotope dilution method is the most accurate, followed by standard addition. External 

calibration and isotope dilution with non-analog standards should be used with discretion 

and experimentation in the lab should occur in order to determine which is better suited 

for each specific analyte. The literature analysis indicated that although the use of 

isotopically-labeled standards is more common than standard addition and external 

calibration, standard addition usage has been increasingly, perhaps due to the realization 
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that matrix effects play a large role in data quality. Biosolids as a complex matrix also 

was shown to enhance and suppress ion signals depending on the analyte considered. 

Ideally, corrections can be made to already published data if patterns can be identified 

based on quantitation method, analyte, and matrix. The results in this dissertation were 

based on too few samples for this analysis to be conducted here, but this research does set 

the basis for more detailed studies in the future.   

 

Just as with the usage of antibiotics in animal farming, the application of biosolids 

containing antibiotics on land can also promote antibiotic resistance. Studies have been 

published that look at the risk in consuming crops grown under exposure of bacteria 

exhibiting resistance genes, how WWTPs influence the concentration and dissemination 

of antibiotic-resistant genes into the environment, the presence of resistant bacteria and 

resistance genes in soils and biosolids, as well as the development of multidrug resistance 

in the environment. These issues are congruent with resistance issues posed by the usage 

of antibiotics in animal farming. Both must be evaluated and addressed in order to 

effectively reduce the current promotion of antibiotic resistance in the environment. 

 

Many research gaps and needs (some of which are mentioned above) are necessary to 

fully understand how antibiotic resistance is developing and how to protect the current 

efficacy of these drugs. Above all, eliminating the unnecessary usage of antibiotics in the 

beginning is key (Figure 5, question 3). Not only will this reduce the amount of 

antibiotics to be accounted for later, it will also allow for easier regulation and uniformity 

of usage practices to be adopted across the globe. This is a goal that is, realistically, 
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difficult to achieve and enforce as antibiotics are available from many sources without a 

prescription.  However, much progress has been made, especially in animal farming. 

Examples have already been set in Europe where the usage of antibiotics is limited to 

only disease treatment in many countries. In the case of swine, no negative effects were 

observed on productivity, the number of Danish pigs produced per sow, average daily 

weight gain achieved, or the amount of feed used to produce a kilogram of meat.  This 

example can be followed in all countries with the help of farmers and government 

support. Initiatives such as the one in the U.S. published earlier this year in March, 2015 

by President Barack Obama’s administration aim to guide action by public health and 

veterinary officials in an effort to slow the development of resistance. One result this plan 

strives for is to eliminate the use of medically-important antibiotics for growth promotion 

in food animals. Initiatives such as this one need to be adopted and actively pursued by 

all countries that produce animals for human consumption. As antibiotic usage statistical 

information is lacking, this initiative will hopefully strengthen surveillance and reporting 

in the U.S. as well.   

 

In terms of eliminating antibiotic resistance promotion through WWTPs, the most 

economical thing is probably not to re-engineer existing WWTPs to be more efficient at 

transforming pharmaceuticals, but to instead treat biosolids prior to land application. 

However, before this happens, more information is needed regarding exactly how 

resistance is being promoted in biosolids and in the soil. DNA is easily damaged with UV 

light, and the water treatment process is typically very rigorous with regard to eliminating 

biological contaminants. Thus, more needs to be understood about how genes and 
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microbes survive to spread resistance and where there are some that are more likely to 

survive certain kinds of water treatment, biosolids storage, and application (Figure 5-1, 

question 4). After this information is obtained, specific treatment of biosolids can be 

implemented depending on the final destination and usage on land (i.e., as fertilizer, as 

ground cover, etc.). 

 

The end fate of biologically active antibiotics is also largely unknown. This partly has to 

do with the uncertainty in degradation patterns and half-lives in the environment, but also 

because run-off of chemicals from soils/agricultural fields/animal farms into surrounding 

ecosystems occurs and therefore makes it hard to track where antibiotics end up (Figure 

5-1, question 5). Human exposure pathways also need be studied; risk-assessment 

analyses need to be done with the published concentrations of antibiotics that have been 

found in the environment (Figure 5-1, question 6). 

 

Above all, there is a major research need to understand when and where antibiotic 

resistance develops and under what conditions. We already understand that bacteria can 

survive in the presence of toxic chemicals (antibiotics) to live and procreate. But we 

don’t know the importance of sub-lethal concentrations of drugs in the promotion and 

maintenance of heritable drug- and multidrug resistance. Basic research on this topic has 

recently been started (Nair et al., 2012; Mirani and Jamil, 2011) and now needs to be 

continued and applied to animal farms and WWTPs (Figure 5-1, question 7). 
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The efficacy of antibiotics can be preserved if judicious usage is agreed upon by both the 

animal production and human health sectors. Eliminating the usage of antibiotics as a 

growth promoting compound in animal husbandry will drastically reduce the amount of 

antibiotics used and decrease opportunities for antibiotic resistance to develop. 

Agreements to reserve certain antibiotics (or classes of antibiotics) for just human 

medicine will also eliminate the intersection of drugs used for humans and animals. This 

dissertation contributes new data regarding antibiotic concentrations in U.S. seafoods and 

biosolids, as well as a new LC-MS method for the multiclass detection of key human and 

animal health antibiotics. This dissertation also contributes public health data regarding 

antibiotic resistance in animal husbandry practices and technical information regarding 

LC-MS quantitation methods. Together with lawmakers and public health officials, 

scientists can help prevent antibiotics from becoming obsolete and create consensus to 

reduce the unnecessary usage of antibiotics and preserve their efficacy. 
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Table A1. All pharmaceuticals analyzed and their respective detection and quantification parameters.  
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aAnalytes were determined by one LC-MS/MS method; all others were determined using a second method. 
bRetention Time.  
cRelative percent difference from matrix spike and matrix spike duplicate. 
dCo-elutes with its isomer theophylline, so % recovery is calculated from the reported maximum possible 
concentration.  
 
 
 
 

L
om

ef
lo

xa
ci

n 
98

07
9-

51
-7

 
an

ti
bi

ot
ic

 
11

.1
4 

35
2.

2 
30

8.
1 

13
C

3,
 15

N
-C

ip
ro

fl
ox

ac
in

 
19

.9
 

72
.6

5 

M
ic

on
az

ol
e 

22
91

6-
47

-8
 

an
ti

fu
ng

al
 

20
.9

3 
41

7 
16

1 
13

C
3-

T
ri

m
et

ho
pr

im
 

4.
13

 
42

.2
5 

M
in

oc
yc

li
ne

a  
10

11
8-

90
-8

 
an

ti
bi

ot
ic

 
3.

43
 

45
8 

44
1 

d 6
-T

hi
ab

en
da

zo
le

 
11

.7
 

10
9.

5 

N
or

fl
ox

ac
in

 
70

45
8-

96
-7

 
an

ti
bi

ot
ic

 
10

.5
9 

32
0 

30
2 

13
C

3,
 15

N
-C

ip
ro

fl
ox

ac
in

 
13

.7
 

11
4 

N
or

ge
st

im
at

e 
35

18
9-

28
-7

 
pr

og
es

to
ge

n 
21

.8
 

37
0.

5 
12

4 
13

C
3-

T
ri

m
et

ho
pr

im
 

10
.0

 
44

.7
5 

O
fl

ox
ac

in
 

82
41

9-
36

-1
 

an
ti

bi
ot

ic
 

10
.5

3 
36

2.
2 

31
8 

13
C

3,
 15

N
-C

ip
ro

fl
ox

ac
in

 
17

.2
 

81
.8

 

O
rm

et
op

ri
m

 
69

81
-1

8-
6 

an
ti

bi
ot

ic
 

10
.5

3 
27

5.
3 

25
9.

1 
13

C
3-

T
ri

m
et

ho
pr

im
 

9.
08

 
93

.0
5 

O
xa

ci
lli

n 
66

-7
9-

5 
an

ti
bi

ot
ic

 
16

.3
 

43
4.

1 
16

0.
2 

13
C

3-
T

ri
m

et
ho

pr
im

 
6.

57
 

87
.7

 

O
xo

li
ni

c 
A

ci
d 

14
69

8-
29

-4
   

an
ti

bi
ot

ic
 

13
.1

1 
26

2.
1 

24
4 

13
C

3-
T

ri
m

et
ho

pr
im

 
0.

45
8 

54
.8

 

O
xy

te
tr

ac
yc

li
ne

 a  
79

-5
7-

2 
an

ti
bi

ot
ic

 
7.

29
 

46
1.

2 
42

6.
2 

d 6
-T

hi
ab

en
da

zo
le

 
0.

22
1 

10
0 

P
en

ic
ill

in
 G

 
61

-3
3-

6 
an

ti
bi

ot
ic

 
14

.4
6 

36
7.

1 
15

9.
9 

13
C

3-
T

ri
m

et
ho

pr
im

 
2.

93
 

28
.3

 

P
en

ic
ill

in
 V

 
87

-0
8-

1 
an

ti
bi

ot
ic

 
15

.2
9 

38
3.

2 
15

9.
9 

13
C

3-
T

ri
m

et
ho

pr
im

 
2.

40
 

12
0.

5 

R
ox

ith
ro

m
yc

in
 

80
21

4-
83

-1
  

an
ti

bi
ot

ic
 

17
.8

3 
83

7.
6 

67
9 

13
C

6-
Su

lf
am

et
ha

zi
ne

 
1.

44
 

75
.0

5 

S
ar

af
lo

xa
ci

n 
98

10
5-

99
-8

 
an

ti
bi

ot
ic

 
12

.2
9 

38
6.

1 
29

9 
13

C
3,

 15
N

-C
ip

ro
fl

ox
ac

in
 

11
.2

 
65

.7
 

S
ul

fa
ch

lo
ro

py
ri

da
zi

ne
 

80
-3

2-
0 

an
ti

bi
ot

ic
 

10
.9

7 
28

5 
15

6 
13

C
6-

Su
lf

am
et

ha
zi

ne
 

13
.6

 
82

.9
5 

S
ul

fa
di

az
in

e 
68

-3
5-

9 
 

an
ti

bi
ot

ic
 

5.
32

 
25

1.
2 

15
6.

1 
13

C
6-

Su
lf

am
et

ha
zi

ne
 

8.
97

 
10

2.
3 

S
ul

fa
di

m
et

ho
xi

ne
 

12
2-

11
-2

 
an

ti
bi

ot
ic

 
13

.3
3 

31
1 

15
6 

13
C

6-
Su

lf
am

et
ho

xa
zo

le
 

0.
14

8 
79

.5
 

S
ul

fa
m

er
az

in
e 

12
7-

79
-7

 
an

ti
bi

ot
ic

 
8.

78
 

26
5 

15
6 

13
C

6-
Su

lf
am

et
ha

zi
ne

 
18

.1
 

11
1 

S
ul

fa
m

et
ha

zi
ne

 
57

-6
8-

1 
an

ti
bi

ot
ic

 
10

.3
1 

27
9 

15
6 

13
C

6-
Su

lf
am

et
ha

zi
ne

 
5.

54
 

10
9 

S
ul

fa
m

et
hi

zo
le

 
14

4-
82

-1
 

an
ti

bi
ot

ic
 

10
.0

9 
27

1 
15

6 
13

C
6-

Su
lf

am
et

ho
xa

zo
le

 
17

.6
 

85
.5

 

S
ul

fa
m

et
ho

xa
zo

le
 

72
3-

46
-6

 
an

ti
bi

ot
ic

 
11

.3
3 

25
4 

15
6 

13
C

6-
Su

lf
am

et
ho

xa
zo

le
 

31
.4

 
11

2.
4 

S
ul

fa
ni

la
m

id
e 

63
-7

4-
1 

an
ti

bi
ot

ic
 

2.
02

 
19

0 
15

5.
8 

13
C

6-
Su

lf
am

et
ha

zi
ne

 
10

.0
 

56
.5

 

S
ul

fa
th

ia
zo

le
 

72
-1

4-
0 

an
ti

bi
ot

ic
 

8 
25

6.
3 

15
6 

13
C

6-
Su

lf
am

et
ho

xa
zo

le
 

4.
67

 
13

8 

T
et

ra
cy

cl
in

ea  
60

-5
4-

8 
an

ti
bi

ot
ic

 
7.

74
 

44
5.

2 
41

0.
2 

d 6
-T

hi
ab

en
da

zo
le

 
5.

57
 

13
5 

T
hi

ab
en

da
zo

le
 

14
8-

79
-8

 
fu

ng
ic

id
e 

10
.5

9 
20

2.
1 

17
5.

1 
d 6

-T
hi

ab
en

da
zo

le
 

5.
37

 
92

.9
 

T
ri

m
et

ho
pr

im
 

73
8-

70
-5

 
an

ti
bi

ot
ic

 
9.

94
 

29
1.

2 
23

0 
13

C
3-

T
ri

m
et

ho
pr

im
 

1.
84

 
91

.4
5 

T
yl

os
in

 
14

01
-6

9-
0 

an
ti

bi
ot

ic
 

16
.3

7 
91

6.
6 

77
2.

5 
13

C
6-

Su
lf

am
et

ha
zi

ne
 

16
.9

 
72

.1
 

V
ir

gi
ni

am
yc

in
 

11
00

6-
76

-1
 

an
ti

bi
ot

ic
 

17
.4

 
52

6.
3 

50
8.

3 
13

C
3-

T
ri

m
et

ho
pr

im
 

4.
98

 
89

.4
5 

1,
7-

D
im

et
hy

lx
an

th
in

ed  
61

1-
59

-6
 

st
im

ul
an

t 
7.

02
 

18
1.

2 
12

4 
13

C
3-

C
af

fe
in

e 
3.

55
 

29
9.

5d  
a A

na
ly

te
s 

w
er

e 
de

te
rm

in
ed

 b
y 

on
e 

L
C

-M
S

/M
S

 m
et

ho
d;

 a
ll

 o
th

er
s 

w
er

e 
de

te
rm

in
ed

 u
si

ng
 a

 s
ec

on
d 

m
et

ho
d.

 



139 

Table A2.  Concentrations/detection limits of pharmaceuticals determined in composite samples reported 
on a ng/g fresh weight basis. 
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Table A3. Facilities samples in the 2006/2007 National Sewage Sludge Survey.  

Facility Name and 

Flow Group 

Flow Stratum City State 

Sugar Creek WWTP 1<MGD<10 Alexander City AL 
Aldridge Creek 
WWTP 

1<MGD<10 Huntsville AL 

Phoenix WWTP 10<MGD<100 Phoenix AZ 
Valley Sanitary 
District STP 

1<MGD<10 Indio CA 

San Francisco >100 MGD San Francisco CA 
El Estero WWTP 1<MGD<10 Santa Barbara CA 
Santa Rosa 1<MGD<10 Santa Rosa CA 
Stockton Water 
Quality Plant 

>100 MGD Stockton CA 

Los Angeles County 
Sanitation District 

10<MGD<100 Whittier CA 

Boulder WWTP 1<MGD<10 Boulder CO 
South Windsor 1<MGD<10 South Windsor CT 
Three Oaks WWTP 1<MGD<10 Estero FL 
Orange County 
Northwest WRF 

1<MGD<10 Orlando FL 

Tampa 1<MGD<10 Tampa FL 
Albany 10<MGD<100 Albany GA 
Americus-Mill 
Creek 

1<MGD<10 Americus GA 

Boone STP 1<MGD<10 Boone IA 
Calumet Water 
Reclamation Plant 

>100 MGD Chicago IL 

Plainfield WWTP 1<MGD<10 Plainfield IL 
Lake County DPW, 
New Century STP 

1<MGD<10 Vernon Hills IL 

Dupage County-
Knollwood STP 

1<MGD<10 Wheaton IL 

Blucher Poole 
WWTP 

1<MGD<10 Bloomington IN 

William Ross 
Edwin WWTP 

10<MGD<100 Richmond IN 

Parsons 1<MGD<10 Parsons KS 
Topeka 10<MGD<100 Topeka KS 
Mayfield WWTP 1<MGD<10 Mayfield KY 
Eunice 1<MGD<10 Eunice LA 
Jefferson Parish 
East Bank WWTP 

1<MGD<10 Marrero LA 
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Nantucket 1<MGD<10 Nantucket MA 
Salisbury 1<MGD<10 Salisbury MD 
Mechanic Falls 
Treatment Plant 

1<MGD<10 Mechanic Falls ME 

Benton Harbor-St. 
Joseph WWTP 

1<MGD<10 St. Joseph MI 

Wixom WTP 1<MGD<10 Wixom MI 
Festus Crystal City 
STP 

1<MGD<10 Crystal City MO 

Elizabeth City 
WWTP 

1<MGD<10 Elizabeth City NC 

Hillsborough 
WWTP 

1<MGD<10 Hillsborough NC 

Beatrice 1<MGD<10 Beatrice NE 
Wildwood Lower 
WTF 

10<MGD<100 Cape May Court 
House 

NJ 

Middlesex County 
Utility Authority 
WRC 

>100 MGD Sayreville NJ 

Verona TWP DPW 1<MGD<10 Verona NJ 
Buffalo >100 MGD Buffalo NY 
Canajoharie WWTP 1<MGD<10 Canajoharie NY 
Geneva A-C Marsh 
Creek STP 

1<MGD<10 Geneva NY 

NYC DEP- Jamaica 
WPCP 

10<MGD<100 New York City NY 

North Tonawanda 
STP 

1<MGD<10 North Tonawanda NY 

Clermont County 
Commissioners 

1<MGD<10 Batavia OH 

Bedford 1<MGD<10 Bedford OH 
Metropolitan Sewer 
District Little 
Miami 

10<MGD<100 Cincinnati OH 

Northeast Ohio 
Regional Sewerage 
District Southerly 
WWTP 

>100 MGD Cleveland OH 

Delaware County 
Alum Creek WWTP 

1<MGD<10 Delaware OJ 

Mingo Junction STP 1<MGD<10 Mingo Junction OH 
Duncan public 
Utilities Authority 

1<MGD<10 Duncan OK 

City of Klamath 
Falls WWTF 

1<MGD<10 Klamath Falls OR 
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Western 
Westmoreland 
Municipal Authority 

1<MGD<10 Irwin PA 

Allegheny County 
Sanitary Authority 

1<MGD<10 Pittsburgh PA 

Greater Pottsville 
Area Sewer 
Authority 

1<MGD<10 Pottsville PA 

Punxsutawney 1<MGD<10 Punxsutawney PA 
South Kingstown 
WWTF 

1<MGD<10 Narragansett RI 

Plum Island WWTP 10<MGD<100 Charleston SC 
Lawson Fork WTP 1<MGD<10 Spartanburg SC 
Elizabethton 1<MGD<10 Elizabethton TN 
Amarillo 10<MGD<100 Amarillo TX 
Dallas Southside 
WWTP 

>100MGD Dallas TX 

Trinity River 
Authority of Texas 

1<MGD<10 Ellis County TX 

Fredericksburg 1<MGD<10 Fredericksburg TX 
Odo J. Riedel 
Regional WWTP 

1<MGD<10 Schertz TX 

Wagner Creek 
WWTP 

1<MGD<10 Texarkana TC 

Tyler Southside 
WTP 

1<MGD<10 Tyler TX 

Spanish Fork City 
Corporation 

1<MGD<10 Spanish Fork UT 

Buena Vista 1<MGD<10 Buena Vista VA 
Everett City SVC 
Center MVD 

10<MGD<100 Everett WA 

Beaver Dam 1<MGD<10 Beaver Dam WI 
Elkins WWTP 1<MGD<10 Elkins WV 
Huntington 10<MGD<100 Huntington WV 
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Table A4. LC-ESI-MS/MS parameters for analysis of antibiotics. The source parameters 
were set as follows: curtain gas = 30 psi, ion source gas 1 = 80 psi, ion source gas 2 = 80 
psi, ion spray voltage= 4000 V, temperature = 700ºC, and collision activated dissociation 
gas = 10 psi. 

 
Analyte 

(m/z) 
Primary (top) & 

Secondary (bottom) 
Transitions (m/z) 

Declustering 

Potential  
(V) 

Collision 
Energy 

 (V) 

Collision Cell 
Exit Potential  

(V) 

Retention 
Time  
(min) 

Dwell  Time  
(ms) 

AMP 
(350.2) 

106 56 37 4 5.83 150 

159.9 21 8 20 

ERY 
(734.5) 

158.1 81 71 10 6.32 150 

116.2 41 14 20 

NDA 
(233.1) 

215 61 23 12 7.14 50 

187.1 37 10 20 

NP-
AOZ 

(236.1) 

104 41 35 18 6.37 50 

133.9 19 6 20 

OXA 
(262.1) 

216 46 29 12 6.53 150 

243.9 41 10 20 

OXY 
(461.2) 

426.2 60 29 8 5.78 50 

443.5 21 8 20 

SPI 
(843.6) 

174.1 136 55 8 5.71 50 

101 71 8 20 

SUL 
(311.1) 

156.1 76 31 8 6.38 50 

245 29 12 20 

SDD 
(279.1) 

124.2 71 35 10 5.84 50 

108 41 10 20 

Isotopically-labeled Standards 

ERY-
13

C
2
  

(736.4) 

159.9 81 43 8 6.31 150 

83.1 79 14 20 

NP-
AOZ-d

4 

(240.1) 

134 41 19 6 6.33 150 

104 33 4 20 

SUL-
13

C
6 

(285.1) 

70.2 71 77 12 6.38 150 

124.1 37 6 20 
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