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ABSTRACT

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains.

To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving

obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static

obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft

or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity

for Unmanned Aerial Vehicles.

Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the

following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to

avoid a fast approaching obstacle. Furthermore, A Dubin’s curve based geometry method is developed as

a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is

unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate

these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random

Tree are developed as global path planners to generate collision avoidance paths in real time. The

algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations

using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the

algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.
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Chapter 1

INTRODUCTION

An unmanned aerial vehicle (UAV) is defined as an aircraft with no onboard human pilot. It has been

almost a century since the first use of UAVs in history–the Hewitt-Sperry Automatic Airplane in Word

War I. UAVs have evolved from a radio remote controlled airplanes to fully autonomous platforms. They

have also expanded their applications from aerial targets and reconnaissance for military purpose to many

different civilian areas. To list a few, they are used in:

• Aerial photography: Using an UAV significantly reduced the cost of aerial photography. Besides

shooting images of a large building, UAVs are recently more and more used in taking pictures of

human or individual behavior due to the reduced size, increased easiness of operation, and lower

costs. For example, DJI Phantom is almost ubiquitous for aerial photography in different events

all around the world.

• Infrastructure monitoring: UAVs provide a new and unique perspective to inspect infrastructures

that is difficult to access for human-being. Using UAV in infrastructure inspection is much less risky

than traditional inspection in which human needs to closely access the infrastructures. UAVs have

been used in bridge (Metni and Hamel (2007)) and powerline (Sampedro et al. (2014)) inspections.

• Search and Rescue: Search and rescue missions are time-consuming, expensive, and often dan-

gerous for the people involved. The use of well-equipped drones is increasing for search and rescue

and could soon become a standard way to cover large areas of inaccessible terrain, even at night.

For example, a Dragan Flyer X4-ES drone with heat-sensing equipment, launched by the Cana-

dian Mount Police, found a disoriented driver from a late-night rollover in a remote location of

Saskatchewan, Canada, in May 2013.

• Wildlife protection: UAVs are already widely used in wildlife protection. In Colorado, the U.S.

Geological Survey has mounted a thermal imaging camera on an AeroVironment Raven to count

sandhill cranes. Drones have been used in Indonesia to monitor wildlife in forests. In Namibia,

UAVs have been purchased to monitor game parks and to track poachers.
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• Agriculture: UAVs can be used in checking and spraying crops, finding lost cattle. Yamaha RMAX

has been flown in Japan for 20 years to treat the farmlands on steep hillsides.

• Cargo transport: Logistics related companies such as Amazon, DHL, UPS, and FedEx are looking

into transportation or delivery using UAVs. Amazon has demonstrated its concept of Amazon

Prime Air, a light UAV platform for short distance delivery. DHL has used a quadrotor to carry

medicine from the harbor town of Norddeich, Germany, to the small island of Juist.

Given the wide applications mentioned above, there is a strong wish to integrate UAVs into the National

Airspace. In the recently released Unmanned Aerial System Integration Roadmap (FAA (2013)), the

Federal Aviation Association (FAA) raised two technological challenges for the integration: 1.Control

and Communications (C2) system performance requirements, 2. “Sense and Avoid” (SAA) capability.

This thesis aims to provide a solution to the “Sense and Avoid” challenge. So, what are the challenges

for the sense-and-avoid problem for UAVs?

1.1 Challenges

• Moving obstacle detection: A sensor used in moving obstacle detection should be able to con-

tinuously provide the 3D position of a moving obstacle. It is difficult to find an appropriate sensor

for UAVs to detect moving obstacles onboard. Airborne Radar can detect the relative location of

other aircraft, and has been in military use since World War II. While larger civil aircraft carry

weather radar, sensitive anti-collision radar is rare in non-military aircraft. For small UAVs, radar is

expensive, power-hungry, and adds more pay-load. Commercial RGB-D sensors such as Kinect and

Xtion are able to provide depth information but their sensing range is insufficient for long range

obstacle detection. Heavy lidars such as Velodyne are able to detect the distance to the obstacle,

but to carry them in an UAV will significantly add the the payload. A monocular camera has been

used to detect and tracking moving obstacles, but it relies heavily on the image processing and

computer vision algorithms in detection and tracking. To develop a reliable algorithm for the pur-

pose is still a research problem till today. As well as active sensing, cooperative communication has

also been proposed for collision avoidance. Examples of the technologies are the Traffic alert and

Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B).

In fact, ADS-B is an element of the US Next Generation Air Transportation System (NextGen)

( FAA (2010)) and is a requirement for all commercial aircraft by 2020. ADS-B receiver is light to

carry. Therefore, ADS-B can be an ideal technique to detect other aircraft in the national airspace.
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However, the downside is that vehicles except for aircraft such as airship may not be equipped with

an ADS-B transmitter.

• Motion prediction for moving obstacles: In moving obstacle avoidance, the motion of moving

obstacles needs to be predicted to estimate the possibility of its collision with the UAV. In Shim

and Sastry (2007); Lin and Saripalli (2014), obstacles motion is predicted by linear extrapolation

based on the obstacle’s current position and velocity. It is highly approximated prediction because

the obstacle may change its moving direction and velocity at any time. Gaussian process and

its extensions are used in Fulgenzi et al. (2008a); Luders et al. (2011); Aoude et al. (2013) to

predict the motion of dynamic obstacles with uncertain motion patterns. However, learning is

needed to create the Gaussian model of the moving obstacles. Such learning is feasible in a known

environment with small area, but is difficult in the whole national airspace due to the large variety

of many different aircraft.

• Generation of avoidance paths: Moving obstacle avoidance can be formulated as a path planning

problem. A solution to the problem should satisfy the following requirements: 1) a path satisfying

obstacle avoidance constraints should be fast generated. 2) the generated path must be dynamically

feasible for the UAV to execute. 3) the path must be optimal in terms of some target function

such as path length. Geometry methods (Yang et al. (2013); Mejias and Campoy (2011); Melega

et al. (2011)) are fast but optimality is not guaranteed. In Patel et al. (2009); Lai et al. (2011);

Liu and Hwang (2014); Richards and How (2002), aircraft collision avoidance is formulated as pure

optimization problems. Such solution does make sure optimality but they are not fast and only uses

simplified UAV and aircraft models. Therefore, the generated path may not be dynamically feasible

for real UAVs. Many kinds of path planning methods are developed for static obstacle avoidance

(Scherer et al. (2008); Kobilarov (2012); Hrabar (2011)), but it is unclear if the methods are

applicable for moving obstacle avoidance.

1.2 Contributions

While there are continuous advancement in research on Sense and Avoid for UAVs, we put our focus

on the development of a path planning method that satisfy all the three requirements in the section 1.1.

We also develop a strategy that helps the UAV to compensate the inaccurate motion prediction of the

moving obstacles.
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• Development of real time path planner for UAV moving obstacle avoidance: This planner

is able to generate in real time a path that satisfies obstacle avoidance constraints, accommodate

the UAV’s dynamics, and is optimal in path length.

• Design of a execution loop for the UAV to compensate the inaccurate prediction of ob-

stacles’ motion: In the execution loop, collision prediction is always being performed, even when

the UAV is following the generated path for avoidance. If the path is predicted to induce collision

when the obstacle changes its motion, a new path will be generated.

• Experimental Validation of path planners: To validate the path planning algorithm and the

execution loop, the following experiments are performed:

– A quadrotor flying in partially open area (a parking structure) to avoid one or multiple moving

obstacles. The moving obstacles includes actual and virtual flying quadrotors. Cooperative com-

munication was used in the experiments.

– A fixed wing UAV to avoid other aircraft in Software-In-the-Loop Simulation. More than one

obstacle aircraft were involved. The UAV encountered them either simultaneously or in sequence.

The obstacle aircraft approached the UAV in different directions. Logged ADS-B data of commercial

aircraft are used in the experiments.

– A fixed wing UAV to avoid other aircraft in Hardware-In-the-Loop Simulation. The system setup

is closer to actual flight experiments.

– A quadrotor flying in outdoor environment. Another quadrotor is used as the actual moving

obstacle. GPS is used as the positioning system.

1.3 Outline of the Thesis

The thesis is organized as follows:

• Chapter 2 describes prior work in moving obstacle detection by UAVs, motion prediction of moving

obstacles, and path planning for moving obstacle avoidance.

• Chapter 3 describes the system setup for all experiments used in the following chapters.

• Chapter 4 describes an image based reactive motion planner for moving obstacle avoidance. This

is our first trial to solve the problem.
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• In chapter 5, we explore the possibility to achieve moving obstacle avoidance using a simple geom-

etry based avoidance algorithm using Dubins curve.

• The application of Closed-Loop Rapidly Exploratory Random Tree is introduced and extended in

chapter 6 as the path planner for the UAV to avoid moving obstacles. The loop of execution is

also presented in this chapter.

• Chapter 7 extends the method in chapter 6. The path planner is improved to create more candidate

paths in the same amount of time and to deal with motion uncertainty of moving obstacles.

• The four types of experiment validations are described in chapter 8. We detail experiment setups

and results.

• Chapter 9 summarizes the contributions and suggest the future work.
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Chapter 2

RELATED WORK

Unmanned Aerial Vehicles have been an active area of research for several years. This chapter reviews

existing sense and avoid techniques for UAVs. The literature review aims to evaluate their applicability to

moving obstacle avoidance for UAVs. Sensing-detection of obstacles will first be discussed and avoiding-

motion planning will follow.

2.1 Obstacle Detection

Obstacle detection methods can be categorized based on the sensors that are used.

2.1.1 Cameras

As a passive sensor, a camera needs to be combined with image processing algorithms to detect

obstacles. The morphological filter is used in Wainwright and Ford (2012); Gandhi et al. (2003); Carnie

et al. (2006) to detect aircraft under different backgrounds. However, a big number of false positives

are generated. Dey et al. (2010) utilizes shape descriptor and SVM-based classifier to achieve aircraft

detection of low false positives. The classifier should be trained offline with hand-labeled sample image

data. McCandless (1999) proposes moving object detection with thresholding on optic flow of feature

points of each image frame of a video. Multiple-Instance learning approach, Multiple-Classifier voting

mechanism, and Multiple-Resolution representation are used in Fu et al. (2014) to achieve precision

aircraft tracking but offline training is required for initial detection. The distance to the aircraft can be

estimated using the aircraft’s size in the image and the pinhole camera model. An initial guess of the

distance to the obstacle and Extended Kalman Filter is used in Watanabe et al. (2007) to estimate the

distance to the obstacle but it is only applicable to static obstacles.

Stereo cameras acquire depth information using triangulation and are used widely in mapping and

navigation for UAVs (Shen et al. (2012); Hrabar (2008); Heng et al. (2011); Andert et al. (2011)). These

works do not require long range of detection. However, the depth accuracy from triangulation drops

significantly for longer range. Therefore, image processing is needed for stereo cameras if the obstacle is

far away.
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2.1.2 Optic Flow

Optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused

by the relative motion between an observer (an eye or a camera) and the scene. Range detection using

optic flow captures the idea that when you move closer to an object its size in your eye expands. Such fact

is quantitatively described in Green and Oh (2008). Optics flow sensors are used in Green et al. (2003,

2004) to perform autonomous take off, obstacle avoidance, and landing of a fixed-wing indoor aircraft.

Optic flow and stereo vision are combined in Hrabar and Sukhatme (2009) for obstacle avoidance through

urban canyons. The approach is tested on an autonomous helicopter and tractor. To apply optic flow to

estimation of the distance to a moving obstacle, we must be able to accurately measure the velocity of

the obstacle.

2.1.3 Lidar

LIDAR-Light Detection And Ranging detects objects by scanning a laser beam in the environment

and measuring distance through time of flight or interference. Off the shelf LIDAR systems primarily use

a single-line scan that produces 2-dimensional information. Such LIDAR is used in indoor mapping and

navigation of small UAVs (Shen et al. (2012); Bachrach et al. (2009)) and UGVs Thrun et al. (2002). In

all of them, an occupancy grid map is built based on the range data. It is also used in Merz and Kendoul

(2011) for obstacle avoidance of a slowly flying UAV and in Hrabar (2012) combined with stereo camera

to construct a 3D occupancy map for reactive obstacle avoidance. 2D lidar is light and suitable as the

payload of small UAVs. But it only provides 2D laser scanning that is unable to track a moving obstacle

whose motion is not restricted to a 2D plane. A pannable LIDAR in Scherer et al. (2008); Geyer and

Johnson (2006); Tsenkov et al. (2008) is able to map the 3D environment but the weight and size of

such machinery are formidable to small UAVs. HELLAS-A 1 is an awareness system in real service that

uses in conjunction with other systems to give early warning of obstacles in the flight path. But it is

manufactured for real helicopters to carry.

2.1.4 Other Sensors

Other sensors used in obstacle avoidance includes ultrasonic sensors (Borenstein and Koren (1989,

1991)) and RGB- D sensor (Henry et al. (2010); Biswas and Veloso (2012)). These two types of sensors

1http://www.fairchildcontrols.com/products/electronics-and-avionics/hellas-awareness/
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have short detection range therefore cannot be applied to detection of moving objects approaching from

far away. Radar is a reliable sensor to detect and track other aircraft. Larger UAVs like the Navy Tier III

MQ-8B Fire Scout do have high performance Radar systems that could potentially be used for collision

avoidance. For avoidance of collision in air traffic, radar technology provides a legitimate solution.

However, it is relatively expensive, heavy, power hungry, and not accessible for civilian domains. This

limits its application in UAVs with small payloads and short power endurance.

Some cooperative sensing system for aircraft collision avoidance are presented in Contarino and

Scire Consultants (2009). Examples of them are The Traffic alert and Collision Avoidance System (TCAS)

and Automatic Dependent Surveillance - Broadcast (ADS-B). TCAS monitors the airspace around an

aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic

control, and warns pilots of the presence of other transponder-equipped aircraft which may present a

threat of mid-air collision. ADS-B relies on the Global Positioning System (GPS) and onboard systems

to determine the aircraft’s position in space. It is automatic because it periodically transmits information

without pilot, operator or external interrogation input. It is dependent because its position is obtained

from GPS. It is surveillance because it is a method of determining position of aircraft, vehicles or other

assets. Finally, broadcast is the ability of anyone with appropriate receiving equipment to utilize the

transmitted information. These sensing systems are designed for large aircraft for commercial flight and

they are the potential sensor for sensing and avoiding other aircraft in air traffic.

2.2 Obstacle Avoidance

Existing works in obstacle avoidance can be categorized into global path planning methods and

reactive avoidance methods.

2.2.1 Global Path Planning methods

Robotic path planning seeks to find a solution to the problem “Go from the start to goal while

respecting all of the robot’s constraints.”

Graph Search Method

One way of path planning is to discrete the obstacle-free portion of the workspace into cells and model

the cells as a graph or roadmap. Utilizing this graph, the problem of robot path planning becomes a

graph search problem. A∗ is used online to search a path to the goal from a roadmap constructed by
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OBB-Tree (Pettersson and Doherty (2006)). A dynamic version of A∗ called D∗ is proposed in Stentz

(1994) for optimal and efficient re-planning in partially known environments. In stead of re-calculating

the optimal path of the entire map when new obstacle is detected, D∗ only checks a reduced set of

cell and incrementally update the robot’s optimal pose. Focused D∗ (Stentz (1994)) improved on D∗

with the addition of a heuristic focusing function so that the total time for re-planning is reduced. D∗

Lite (Koenig and Likhachev (2002)), built on Lifelong Planning A∗ (LPA∗) (Koenig and Likhachev

(2001)), implements the same navigation strategy as Focused D∗ but is algorithmically different. The

authors showed that D∗ Lite can be rigorously analyzed and experimentally appears to be even slightly

more efficient than D∗ . These incremental planners substantially speed up the planning cycles by making

use of the results of the previous plans to generate a new plan. However, finding an optimal plan within

the available time is difficult. Anytime algorithms (Zilberstein and Russell (1995)), in contrast, try to

find the best plan within the given available time. Likhachev et al. (2008) presents an A∗-based anytime

search algorithm, which is able to incrementally search the most optimal plan within available time.

Graph-based method has its disadvantage in: 1) It is not clear how to move the robot from one cell to

an adjacent cell when it has complex non-linear dynamics. 2) Partitioning a high-dimensional state space

of a robot into cells is difficult and impractical.

Sampling-based Methods

Sampling-based planning algorithms are proposed to deal with high dimensional configuration space.

Probabilistic Roadmap (PRM) (Kavraki et al. (1996)) divides planning into two phases: the learning

phase, during which a roadmap in free configuration space is built; and the query phase, during which

a path is constructed with the precomputed roadmap. Pettersson and Doherty (2006) applies PRM in

path planning for an unmanned helicopter. In the paper, PRM is used to construct the roadmap offline

with OBB-tree (Gottschalk et al. (1996)) as the collision checker. Sekhavat et al. (1998) deals with

non-holonomic constraints in the probabilistic roadmap. The approach can be applied in path planning

of a robot car. Missiuro and Roy (2006) extends PRM to compute motion plans that are robust to

environment uncertainty. They modify randomized sampling methods in order to minimize the number

of samples required to express good plans and then evaluate PRM actions efficiently in the context of

uncertainty and generate motion plans with minimal expected cost. Time is added as an extra workspace

dimension in Hsu et al. (2002); Van Den Berg et al. (2006) to the probabilistic roadmap to deal with

moving obstacles. The computation load is also increased.
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Rapidly-exploring Random Trees (RRT) (LaValle and Kuffner (2001)) handles systems with differential

constraints effectively. RRT selects a random state xrand and then find the nearest node to the xrand

in terms of distance metric on the state space. Next select the control input unew that minimizes the

distance from xnear to xrand and finally check for collision. If there is no collision, xnew , unew are

added as a new vertex in the tree. Redding et al. (2007) applies dual RRT to generate waypoints to

the goal. They can be pruned using one or more iterations of Dijkstra’s algorithm, resulting in shorter

paths that approach the optimal. Kuwata et al. (2009) extended the RRT to Closed-loop RRT (CL-RRT)

algorithm by making use of a low-level controller and planning over the closed-loop dynamics. It was used

in MIT’s vehicle as the entry to DARPA Urban Challenge in 2006. To perform navigation in dynamic

environment, Fulgenzi et al. (2008b) extends RRTs by taking into account the likelihood of the obstacles

trajectory and the probability of collision. Moving obstacles in the work are supposed to move on typical

patterns which are pre-learned and represented by Gaussian processes. Karaman et al. (2011) proposes

RRT∗ as a modification of RRT to achieve a path that surely converges to an optimal solution by using

a new nearest node searching method. Examples of other tree-based algorithms are Expansive-Spaces

Tree (EST) (Hsu et al. (1997)) and Sampling- Based Roadmap of Trees (Bekris et al. (2003)).

Other Planning Methods

Pivtoraiko et al. (2009) proposes a state lattice motion planning method. It is based on deterministic

search in a specially discretized state space. A set of elementary motions are computed for discrete

state connection. In Weiss et al. (2006), the kinematic of the UAV is reduced to a set of feasible trim

trajectories and maneuvers. The local operating Iterative Step Method (ISM) sequentially determines

the next best trim trajectory, which minimizes a local cost-function. In Kobilarov (2012), path planning

is performed in trajectory space. A probability distribution over the set of feasible path is constructed

and the search for an optimal trajectory is performed through importance sampling. In Templeton et al.

(2007), Model predictive control (MPC) is used to generates a safe vehicle path from an online map built

by a laser scanner. A cost function that penalizes the proximity to the nearest obstacle is adopted.

2.2.2 Reactive Methods

In contrast to planning algorithms, reactive methods (local approach) use a simple formula to react to

obstacles as they appear, which have low demanding of computing resources, making them very suitable

to real-time robot navigation. In these methods, only the nearest portion of the environment is used and
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the world model is updated according to the current sensor observation. Only the next input control

instead of a whole path to the goal are generated.

Velocity-based Methods

The dynamic window approach (Fox et al. (1997)) deals with the constraints imposed by limited velocities

and accelerations of the robot. It consists of generating a valid search space and selecting an optimal

solution in the search space. Simmons (1996) proposed Curvature-Velocity Method (CVM), where local

obstacle avoidance is treated as constrained optimization problem in the velocity space of the robot.

Constraints that stem from physical limitations (velocities and accelerations) and the environment (the

config- uration of obstacles) are placed on the translational and rotational velocities of the robot. Ko

and Simmons (1998) combines CVM with the Lane Method, which divides the environment into lanes

and then chooses the best lane to follow to optimize travel along a de- sired heading. These methods

do not take into account the dynamic information of the environment, considering all the obstacles as

static ones.

On the other side, the Velocity Obstacles approach (Fiorini and Shiller (1998)), the Inevitable Collision

States concept (Fraichard and Asama (2003)) use a deterministic knowledge about the velocity of the

obstacles to compute collision-free controls. A velocity obstacle (VO) is the set of a robot’s velocities

that will result in a collision with other moving objects at some moment if both of them maintain current

velocities. A velocity inside VO will result in collision with the objects while one outside VO will avoid

a collision. The extension to nonlinear VO is proposed in Shiller et al. (2001). Inevitable collision states

for a given robotic system are states for which, no matter what the future trajectory followed by the

system is, a collision eventually occurs with an obstacle of the environment. Owen and Montano (2006)

maps the dynamic environment into a velocity space, using the concept of estimated arriving time to

compute the times to potential collision and potential escape. Damas and Santos-Victor (2009) presents

a computationally fast algorithm that allows a robot to avoid col lision with multiple moving obstacles.

Instead of performing an exhaustive search on the robot velocity space, the proposed method computes

the Forbidden Velocity Map, a union of polygonal zones corresponding to the non admissible velocities.

Potential Field Methods

In potential field methods, an obstacle exerts a repulsive force pushing the robot away from the obsta-

cle, while an attracting force pulls the robot toward the target. Virtual Force Field (VFF) is proposed
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in Borenstein and Koren (1989) and Vector Field Histogram (VFH) in Borenstein and Koren (1991).

Hydrodynamic potentials are applied in Sugiyama et al. (2010) for mobile robots to avoid moving ob-

stacles, where static and moving obstacles are represented with different hydrodynamic potentials. One

disadvantage of potential field methods is the risk to get stuck in a local minima.

Other Reactive Methods

Minguez and Montano (2004) develops Nearness Diagram (ND) navigation algorithm for driving a robot in

obstacle-dense space. The proximity of obstacles and areas of free spaces are constructed from the depth

map sensor information with a nearness diagram, and the best collision free path is chosen. In Watanabe

et al. (2007), A collision cone approach is used as a collision criteria to detect any obstacle that is critical

to the vehicle. The Minimum-effort guidance is used as the collision avoidance strategy, in which the

helicopter lateral accelerations are minimized. Collision cone approach is also used in Chakravarthy and

Ghose (1998) for detection and avoidance of collision with moving obstacles. Saunders et al. (2005)

proposes generating avoidance triangles around the obstacles and using the sides of the triangles as

possible waypoint paths. This is used as the local path planner of a fixed wing UAV. In Hrabar (2011),

an expanding elliptical search is performed to find an Escape Point - a waypoint which offers a collision

free route past obstacles and towards a goal waypoint. The reactive planner of the UAV in Scherer

et al. (2008) is based on a control law for obstacle avoidance in people avoiding point obstacles studied

in Warren et al. (2001), in which the UAV tries to avoid obstacles and reach a goal by turning in the

direction where the obstacle repulsion and goal attraction are at an equilibrium.
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Chapter 3

HARDWARE AND SYSTEM DESCRIPTION

3.1 Overview

In this chapter, I describe all the hardware and system that are used in next few chapters. Software

architectures are also included. Readers can skip this chapter and use it as the reference when reading

the next few chapters. In the rest part of this chapter, each section corresponds to the system used in

each chapter that follows.

3.2 Systems in Chapter 4

In chapter 4, an image based reactive avoidance method was developed. In the experiments, videos of

the moving obstacle were collected using an forward facing camera attached to the bottom of a quadrotor.

The videos were used to generate avoidance action for the quadrotor in ROS simulation. The action was

executed by the quadrotor in ROS simulation environment.

3.2.1 Video Capture

Our experiment setup is in Figure 3.1. A ball was delivered from a pitching machine towards a

quadrotor, which was manually held to emulate hovering. The forward facing camera at the bottom of

the quadrotor captured images of the moving ball. Ptgrey CMLN-13S2C-CS was used as the camera. It

captured images at 18 FPS. The pitch machine delivered a color ball with speeds up to 45mph (20m/s).

The diameter of the ball is approximately 70 mm. Figure 3.2 shows two captured images with the ball

in it. The quadrotor was separated from the pitching machine by about 18m. We chose such distance

so that the ball may reach the dangerous ambience of the quadrotor after traveling over the distance.

3.2.2 ROS Simulation

Velocity command for the quadrotor to avoid the incoming moving obstacle were generated by a

method that will be described in chapter4. The block diagram of the system for validating the algorithm

is in Figure 3.3. The algorithm calculates the avoidance action for the quadrotor from obstacle images.

The actions are converted to velocity command and sent to the quadrotor simulation node in ROS to
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(a) the quadrotor and the camera (b) the pitching machine

(c) the arrangement of the quadrotor and the pitching machine

Figure 3.1: The Experiment Setup for Capturing Images of a Moving Obstacle.

(a) (b)

Figure 3.2: Images of the Ball Launched by the Pitch Machine.
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execute. hector quadrotor 1 ROS package are used for the simulation. The Gazebo environment for

Figure 3.3: The block diagram of the system for validating the potential field based avoidance method. Avoidance motions are generated

from images of the moving obstacle and converted to velocity command for the quadrotor. The ROS node of the quadrotor simulator will

receive and execute the command in simulation.

visualizing the simulation is shown in Figure 3.4. The environment includes a quadrotor, a simplified

pitch machine and a ball, and a background object.

Figure 3.4: The ROS Gazebo simulation environment to validate the potential based method. It includes the quadrotor, the pitching machine

and the ball, and a background object.

3.3 Systems in Chapter 5

This section describes ADS-B data collection used in chapter 5. ADS-B data collection is also needed

in chapter 8. Chapter 5 uses a low cost ADS-B receiver that is able to receive only 1090 MHZ ADS-B

transmission. Chapter 8 uses an aviation level ADS-B receiver that works for both 978 MHZ and 1090

MHZ. The receiver is much more expensive and is supposed to mount on a real aircraft. In chapter 5,

1http://wiki.ros.org/hector_quadrotor
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(a) (b)

Figure 3.5: GNS 5890 ADS-B Receiver USB-Stick and Its Antenna.

a GNS 5890 ADS-B Receiver USB-Stick 2 is used to receive ADS-B data transmitted from flying-by

aircraft around PHX Sky Harbor international airport. The USB device and its antenna are shown in

Figure 3.5. The ADS-B data are decoded and logged using modified open-source code 3 . The data of

a single aircraft includes:

1 the GPS position, latitude and longitude: y, x.

2 the speed over ground ( the speed in x− y plane ): vg.

3 the course over ground ( the heading in x − y plane ): θ, defined in respect to positive y axis

(north).

4 the altitude: z.

5 the vertical speed: vh.

The logged GPS trajectory of aircraft with Flight Number UAL1479 on Dec 10, 2012 is plotted overlapped

on Google Map, as shown in Figure 3.6. The trajectory is not continuous due to data transmission

dropouts caused by blocking of buildings, absorption by dust or molecules in the air, etc. The length

of the trajectory is limited by the receiving range of the device but sufficient for algorithm validation in

chapter 5. In the experiments the ADS-B data are read from a previously logged file to emulate ADS-B

data flow. In figure 3.6, the gap of the aircraft trajectory due to data dropouts is observed. Extrapolation

2http://www.amazon.com/GNS-5890-ADS-B-Receiver-USB-Stick/dp/B006VI3WAK

3http://code.google.com/p/adsb-pgr/
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Figure 3.6: The logged trajectory of Flight UAL1479 on Google Map. The star indicates the device’s location (33.4190018,-111.9082609).

The leftmost (33.4408, -111.963) and rightmost (33.4747,-111.753) of the trajectory spans by 19.547km East-to-West (horizontal) and

3.498km South-to-East (vertical).

is used to fill in the data dropouts gap. Details will be covered in chapter 5. The extrapolated trajectory

is shown in Figure 3.7.

3.4 Systems in Chapter 8

3.4.1 Systems Used in Indoor Experiments

In the indoor flight experiments to validate the Closed-Loop RRT based algorithm, an off-the-shelf

Parrot AR.Drone was used as the UAV platform. The Parrot AR.Drone has the following specifications:

1 Powered with brushless engines with three phases current controlled by a micro-controller. Using a

LiPo battery to fly.

2 Sensors: IMU for automatic stabilization. An ultrasound telemeter providing with altitude measures.

A 3-axis magnetometer and a pressure sensor to allow altitude measurements at any height.

3 A camera aiming downwards: a field of view of 47.5◦ × 36.5◦ and resolution of 176× 144. The other

camera is aimed forward: a field of view of 73.5◦ × 58.5◦ and a resolution of 320× 240. Only images

from either of the camera can be transmitted to the laptop.

4 Open source ROS driver 4 for controlling.

Pictures of an AR.Drone are shown in Figure 3.12 An AR.Drone’s downward-facing camera is able to

4https://github.com/AutonomyLab/ardrone_autonomy
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Figure 3.7: The trajectory of UAL479 after extrapolation. The green line shows the extrapolated data and the red cross shows the raw data.

(a) (b)

Figure 3.8: An AR.Drone from the Front and Bottom View.

provide the optical flow. Optical flow combined with the sonar provides the velocity measurement for

the AR.Drone. In indoor environment, we do not have GPS or motion capturing system like vicon

to provide positioning system. Instead, we use odometry,i.e.,integration of the velocity for navigation.

More technical details of the AR.Drone can be found at Bristeau et al. (2011). An AR.Drone receives

commands from a laptop and sends its onboard sensor readings to it. Wifi is used as the communication.

Computation for path planning is performed offboard by the laptop.

The block diagram for the software architecture used in the experiment is shown in Figure 3.9. The

path planning node generates the path and sends it to the path executing node. The latter creates
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Figure 3.9: The Software Architecture for Indoor Flight Experiments of UAV Moving Obstacle Avoidance.

the velocity command based on the UAV’s position relative to the path using the vector field method

in Beard and McLain (2013). The velocity command is converted to roll-pitch-yaw command by the

ardrone autonomy ROS package and sent to the AR.Drone. The path planning node also receives the

AR.Drone’s state for path planning. It holds an obstacle monitor to acquire updated obstacles’ states.

Both actual and virtual moving obstacles are used in the experiments. As demonstrated in Figure 3.10

another AR.Drone is used as the actual obstacle. It sends its velocity and position in real time to another

laptop (laptop B) that controls it. Laptop B then sends the information to the laptop that controls the

main AR.Drone. This way the path planning node obtains the states of the moving obstacle. Virtual

Figure 3.10: The System Setup for Indoor Flight Experiments.

moving obstacles are logged data for quadrotors flying in hector quadrotor ROS simulator. The same

simulator is used in section 3.2.2. The path planner reads the data from the logged file to obtain the

states of virtual moving obstacles.

3.4.2 Systems in Software-in-the-Loop Experiments

In the experiments, a commercial ADS-B receiver is used to receive ADS-B data of aircraft flying by

Phoenix Sky Harbor international airport. Software In the Loop (SITL) simulation is used to validate the

algorithm.
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(a) Sagetech Clarity ADS-B receiver

(b) ADS-B simulator interface

Figure 3.11: The Sagetech Clarity ADS-B Receiver and ADS-B Data Simulator.

Receiving ADS-B Data

Section 3.3 also describes ADS-B data acquisition but a low cost receiver is used. This section uses

the same ADS-B receiver as is adopted in civil aviation. Figure 3.11a shows the ADS-B receiver. It is

supposed to mount on a real aircraft like Cessna 172 to receive ADS-B data sent from other aircraft.

The ADS-B receiver receives ADS-B bytes stream and sends the stream to a computer through UDP via

Ad Hoc Wireless. The computer runs the software to decode the bytes stream and translate it to human

readable data format. We created our own software to decode the bytes stream based on the interface

control document provided by the vendor. For SITL experiments, we use the ADS-B receiver to log data

and play them back in the simulation to emulate actual aircraft. Figure 3.12a shows the received aircraft

ADS-B data in the neighborhood of Sky Harbor airport in a certain time instance. The receiver was
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(a) ADS-B aircraft trajectories received by the Clarity receiver.

(b) ADS-B aircraft trajectories from the simulator.

Figure 3.12: Trajectories (yellow dots) of received ADS-B aircraft data. Figure 3.12a shows actual ADS-B from the receiver and Figure 3.12b

shows ADS-B data from the simulator software. Only a few aircraft in Figure 3.12a generate yellow dots trajectories. That means they are

not being tracked due to poor communication. In 3.12b, all three aircraft from the simulator are being well tracked.
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placed at the roof of a building at Arizona State University. The tracked trajectory of each aircraft is

shown in yellow dots. We observe that most aircraft were not being tracked and there was data dropout

for the ones being tracked. According to Sagetech, such phenomenon was caused by block of buildings

around and the data communication worked well when the device was mounted in an aircraft flying in the

air. We are currently not doing real flight experiments and therefore we selected only aircraft that were

tracked by the ADS-B receiver and filled in the data dropout gap by extrapolation based on the heading

and velocity. We obtained three aircraft trajectories. Apart from real ADS-B data, we also used the

ADS-B simulator software (Figure 3.11b) that came along with Sagetech Clarity receiver to obtain three

more aircraft. They are shown in Figure 3.12b. The receiver runs in a separate laptop and sends data

bytes stream in the same way as the Clarity ADS-B receiver. ADS-B data contain latitude, longitude,

altitude, heading, and horizontal and vertical velocities of the aircraft.

Software-in-the-Loop Setup

Software In the Loop (SITL) simulation was used as the first step test before real flight tests. In SITL,

the key low level hardware drivers (such as gyros, accelerometers and GPS) run in the same way that

they would run in a real flight. The architecture of SITL setup is shown in Fig 3.13. The SITL setup

Figure 3.13: Architecture of Software In the Loop simulation. The architecture consists of an autopilot executable, a ground station, a flight

simulator and the path planner. The path planner receives the UAV’s states from the autopilot and sends a generated waypoint for collision

avoidance to the autopilot. The ground station receives the UAV’s states from the autopilot to visualize the UAV’s states in real time. The

flight simulator receives roll-pitch-yaw and throttle command from the autopilot and flies the UAV in simulation.

consists of an autopilot executable, a ground station, a flight simulator, and the path planner. The

autopilot executable is the equivalent of onboard autopilot in real flight. It is able to receive high level
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commands such as waypoints and converted it low level command such as roll-pitch-yaw and throttle

commands. The executable sends the commands to the physics flight simulator. The simulator will fly

the UAV according to the commands. The path planner receives the UAV’s states from the autopilot and

sends the generated waypoint for avoidance to it. The communication is facilitated by Mavproxy 5 . It is

a Mavlink 6 based communication proxy. It also has a ground station interface. The autopilot sends its

states to the ground station in real time for visualization. In the experiment, APM::Plane is used as the

autopilot and JSBSim is used as the physics simulator. Figure 3.14 shows the simulation environment.

Figure 3.14: The UAV (green icon) in Software In the Loop Simulation.

3.4.3 Systems in Hardware-in-the-Loop Experiments

The HIL setup used in the experiment is shown in Figure 3.15. It consists of a flight simulator, an

autopolit board, a computer that runs the HIL software and bridges the simulator and the autopilot, and

a computer that generates the avoidance waypoint. The simulator provides the simulated sensor data.

The data are fed to the autopilot via the HIL computer. It provides the path planning computer the

UAV’s states. The path planning computer sends an avoidance waypoint to the autopilot. The autopilot

converts the waypoint command into control output and send them to the simulator through the HIL

computer. In the experiment, X-plane 10 is used as the flight simulator, qgroundcontrol the HIL software,

5http://tridge.github.io/MAVProxy/

6http://qgroundcontrol.org/mavlink/start
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Figure 3.15: The system setup for the Hardware-In-the-Loop experiment. The autopilot board received simulated sensor data from the flight

simulator and sends its control output to it. They are bridged by the computer that runs the HIL software. The computer running the path

planning programme receives the vehicle’s states from the autopilot and send waypoint command for collision avoidance to it.

and pixhawk the autopilot board. Compared to Software-In-the-Loop simulation, the system setup of

Hardware-In-the-Loop is closer to the system setup used in real flight.

3.4.4 Systems in Outdoor Flight Tests

(a) AR.Drone with GPS receiver: (b) The GPS receiver:

Figure 3.16: The AR.Drone used in the real flight experiments 3.16a and the GPS receiver attached to it 3.16b.

Two Parrot AR.Drones with GPS receivers (the orange device in Figure 3.16b) connected to them

via USB are used in the experiment. One of them plays the role as the obstacle aircraft and the other

acts as the host UAV to avoid it.
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Figure 3.17 explains the setup of the real flight experiments. The host UAV and the obstacle UAV

are controlled by two laptops respectively. The laptops also receives the states such as position, velocity,

and heading from the UAVs. A laptop communicates with an AR.Drone through wifi. The two laptops

are connected by Ethernet. This way the laptop running the path planning algorithm is able to receive

the obstacle UAV’s states.

Figure 3.17: The experiment setup for the outdoor real flight tests. AR.Drones are used as the UAV platform. They are attached with a

GPS receiver. One AR.Drone is used as the obstacle aircraft and the other one acts as the host UAV to avoid it. They are controlled by

respective computers through wifi. Two computers communicate through Ethernet. This is how the path planner receive the states of the

obstacle UAV.
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Chapter 4

IMAGE BASED REACTIVE AVOIDANCE

4.1 Overview

In this chapter, an image-based reactive method for moving obstacle avoidance is developed. It can

be used as the local planner to compensate the global planner in case of its failure.

4.2 Algorithm Description

4.2.1 Moving Obstacle Detection

Jung and Sukhatme (2004); Lieb et al. (2004) propose two methods of detecting moving objects

using a single camera. The basic idea is that pixels or local features indicating possible moving objects

are returned from difference images and a particle filter is applied over sequence of difference images to

finally detect the moving objects. A number of frames are needed for the convergence of the particle

filter so that a moving object can be confirmed. If we use their methods based on our experiment setup,

the obstacle may already be quite close to the quadrotor when detected from images. In this case, there

will not be sufficient time for the quadrotor to react. Therefore we simplify the detection by assuming

known color of the obstacle. Such approach is also used in Lippiello and Ruggiero (2012), where the

detection of the moving object was not the main focus of the paper neither. In detail, we go through the

following steps:

• Transforming each image into the Hue, Saturation and Value Color Space (HSV) to reduce the

affect caused by the variations of the environmental lightness.

• Binarization:

for any pixel (x, y) with color value (H,S, V ), if

Hlower 6 H 6 Hupper and Slower 6 S 6 Supper

and Vlower 6 V 6 Vupper,

(x, y) is assigned 1, otherwise 0

• Performing blob detection Chang et al. (2004) on the binarized images
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(a) The original image (b) The image in HSV space

(c) image binarization (d) blob detection and thresholding

(e) obstacle detected

Figure 4.1: Moving obstacle detection from an image. The obstacle is marked with a circle in image (e).
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• A threshold for the blobs’ area is applied and the centroid of the blob with the largest area in the

remaining ones is is evaluated as an ideal approximation of the obstacle’s center.

where Hlower:Hupper, Slower:Supper and Vlower:Vupper are pre-determined based on the ball’s color in

HSV color space. The threshold in the last step is necessary because if we pick the blob with the largest

area without thresholding, there will be false positives in images without the obstacle. Figure 4.1 shows

the output after each step in the algorithm. Firuge 4.1b is the image in HSV color space. Figure 4.1c

gives us a large white spot (which is the obstacle) with some noise blobs. Figure 4.1d marks the blobs

detected in green. Figure 4.1e shows the obstacle that has been detected. Moving obstacles in 97

frames are detected out of total 142 frames with the obstacle. The obstacle was missed in images where

the obstacle was too much far away from the UAV and therefore too small in the image or the strong

illumination from the sun made the ball lose its original color in the image. There is no false detection

since we deliberately chose the background with different color from the ball.

Figure 4.2: Demonstration of UAV’s reacting plane ( the y-z plane ). The xyz coordinate system is fixed w.r.t the world but coincident

with the quadrotor’s center at the moment.

4.2.2 Potential Field Based Avoidance

Generation of the trajectory to avoid the moving obstacle A monocular camera is unable to provide

the actual distance between the obstacle and the quadrotor. All it can provide is the 2D projection of
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the obstacle’s motion onto the camera’s image plane. We restrict the UAV’s motion in a plane parallel

parallel to the image plane to make use of such projection. Referring to Figure 4.2, if the camera faces

along +x direction, the quadrotor will react in y-z plane. Next we discuss how to generate the avoiding

trajectory in the plane.

Transforming the obstacles image position to an global reference frame We use the image frame

where the ball was initially detected as the reference frame where the trajectory will be generated and

denote it as frame 0. Image positions of obstacles detected in later frames need to be evaluated in

frame 0 by transformation. Supposing that the obstacle in frame i(where the obstacle was detected for

the ith time, i > 0) is xib, it can be transformed into frame 0 via xib
′
= Hxib where H is the homography

from frame i to frame 0, calculated as follows:

• Applying Shi & Tomasi’s corner detector Shi and Tomasi (1994) to frame i, returning corner

feature points Xf = [x1,x2...xn]

• Xf are tracked in frame 0 as X′
f = [x′

1,x
′
2...x

′
n], with a pyramidal implementation of the Lucas-

Kanade optical flow method Lucas et al. (1981).

• H is calculated by H = argmin
H

∥∥∥X′
f −HXf

∥∥∥
F
, where F means Frobenius matrix norm.

With xib
′
(i = 1, 2, 3...), we next generate the avoiding trajectory.

Trajectory Generation The image center Oc(from camera calibration) of frame 0 indicates the cam-

era’s position in that image. We can approximate it as the image position of the UAV in that image

since the camera is close to the mass center of the UAV. Imagining that we initially place a mass point

P (which represents the UAV) at Oc, x
0
P = Oc is the position of P . P will be driven to a new point xiP

incrementally when the obstacle is detected for the ith time. We design that xiP (i > 0) is updated to

xi+1
P as follows:

dxa = attr(xiP , Oc) (4.1)

dxr = rep(xiP ,x
i
b

′
) (4.2)

dxg = gnd(xiP ) (4.3)

dx = dxa + dxr + dxg (4.4)

xi+1
P = xiP + dx (4.5)
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Where attr(v,vo) represents the attractive potential field on v by source vo; rep(v,vo) is the

repulsive potential field exerted on v by the source vo; gnd(v) is the repulsive potential field from the

ground. We have equation (1) because the UAV has the trends to return to its original location. (2)

means that UAV needs to avoid the obstacle. (3) is introduced to prevent the UAV from crashing the

ground.

Assuming v = (x, y), vo = (xo, yo), the mathematical expression (modified from Goodrich (2002))

of the 3 types of potentials are:

(1) attractive potential:

attr(v,vo) = (attr 1d(x, xo), attr 1d(y, yo)),

where attr 1d(x, xo) =





0, |x− xo| < d

−α ∗ (|x− xo| − d) ∗ sign(x− xo),

|x− xo| > d and |x− xo| 6 d+ t

−α ∗ t ∗ sign(x− xo), |x− xo| > d+ t

(4.6)

(2) repulsive potential:

rep(v,vo) = (rep 1d(x, xo), rep 1d(y, yo)),

where rep 1d(x, xo) =





sign(x− xo) ∗ 100, |x− xo| < r

β ∗ (s+ r − |x− xo|) ∗ sign(x− x0),

|x− xo| > r and |x− xo| 6 r + s

0, |x− xo| > r + s

(4.7)

(3) ground effect potential:

gnd(x, y) = (0, dy), where

dy =





dy = −κ(y − h), y 6 h

0, y > h

(4.8)

Attractive and repulsive force are sketched in Figure 4.3, where d = r = 100, s = t = 900, α =

0.1, β = 0.1.
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(a) the attractive force field (b) the repulsive force field

Figure 4.3: The Attractive and the Repulsive Force Fields.

The process of updating xiP is demonstrated in Figure 4.4. When

|xiP −Oc| > L (4.9)

( where L is a preset threshold ), the vector
−−−−−→
xiP −Oc (the yellow line in Figure 4.4l is the trajectory

for the quadrotor. A velocity command Vel = k
−−−−−−→
(xiq − x0

q) is sent to the quadrotor followed by a stop

command after a time interval. The command is executed in ROS simulation using the hector quadrotor

package, which is in charge of lower level dynamic control of the quadrotor.

4.3 Experiments

The ROS simulation environment is shown in Figure 3.4. The quadrotor, the pitching machine

(simplified for drawing) with the ball and a background object are shown. We place the quadrotor at

(0, 0, 1.5) in gazebo, around which it hovers. The quadrotor is not static due to dynamics. The ball is

designed to launched from (xs, ys, zs) to (xf , yf , zf ) (using the coordinate system in Figure 3.4). They

are specified as follows: supposing m frames are cost in total to track the ball from its appearance till

it disappears and the kth(k > 0) frame is the one where the ball is detected for the first time , we have

xs =
m−k
m S where S is the measured actual distance along the ground from the pitching machine to the

quadrotor. If xs, the depth according to our coordinate system, is known, ys and zs can be calculated

with the ball’s image coordinate in kth frame and the calibration of the camera. By specifying like this,

we actually imagine that the ball is launched from the moment and the location it is detected for the

first time. xf = f D
dimg

, where f is the camera’s focal length and D and dimg are the ball’s actual

and image diameter. Knowing xf , yf and zf can be calculated with the ball’s image coordinate in mth

frame and the calibration of the camera. The magnitude of the velocity of the ball is 20.1168m/s (

the maximal speed that the pitching machine provides ). The quadrotor and its control is provided by
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Obstacle avoiding trajectory generation for the qudrotor. The left column shows the original images where the detected obstacle

is circled with blue. The right shows how x
i
P (i = 1, 2, ...) ( the center of the largest white circle) is updated. The black dot is the

image center Oc. The red circles indicate the obstacles’ position in frame 0 after homography transform. The yellow line is the generated

trajectory (starting from the image center).
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(g) (h)

(i) (j)

(k) (l)

Figure 4.4: Obs-avoiding trajectory generation for the qudrotor. The left column shows the original images where the detected obstacle is

circled with blue. The right shows how x
i
P (i = 1, 2, ...) ( the center of the largest white circle) is updated. The black dot is the image center

Oc. The red circles indicate the obstacles’ position in frame 0 after homography transform. The yellow line is the generated trajectory

(starting from the image center).
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Throw detect dis dis0 dis1

1 11.87 0.476 0.531

2 14.03 0.305 0.983

3 12.95 0.386 1.162

4 15.11 0.373 0.923

5 12.95 0.493 0.943

6 11.87 0.293 0.759

7 7.82 0.395 0.410

8 10.80 0.401 1.063

9 7.82 0.32 0.5006

Table 4.1: The closest distance between the quadrotor and the ball with (dis1) and without (dis0) avoiding reaction. The detect dis means

is the distance between the quadrotor and the ball when the ball is detected from the images for the first time.

hector quadrotor ROS package. The maximal extension of the quadrotor from its mass center is 0.38(x),

0.38(y) and 0.35(z) meter. When define the safety volume for the quadrotor as a sphere of radius 0.5m.

Table 4.1 summarizes the closest distance (dis1) between the quadrotor and the approaching ball during

the procedure the quadrotor tries to avoid the ball when L in equation 4.9 is set as 150. detect dis

means the detection distance, which is defined as the distance between the quadrotor and the ball when

the ball is detected from the images for the first time. We have detect dist = xs according to last

paragraph. The closest distance when the avoiding commands are not sent are also listed for comparison

(dis0). We see only in the 7th throw the ball goes into the safety volume. It is because the detection

distance is relatively small and the ball is closer than other throws when the quadrotor starts the avoiding

maneuver. In the 9th throw where the detection distance is the same as that of 7th, the closest distance

is just 0.0006 meter larger than the safety volume. The closest distance in 1st throw is not much larger

than 5m. In that throw, the ball is detected relatively far away initially but it is not detected in next 3

frames due to strong illumination of sunlight. Therefore, the condition |xiP − Oc| > L will be satisfied

relatively late and the command is sent late too.

Based on Ebdon and Regan (2004), the required range for detection of moving obstacle can be

formulated as

Rdetect = |Vuav −Vobstacle| ∗ (treact + tmaneuver) (4.10)

Where |Vuav −Vobstacle| means the magnitude of relative velocity between the UAV and the obsta-

cle. treact represents the time consumed from initial detection of the obstacle to sending the reaction

command. tmaneuver is the time for execution of the command. We examine the efficacy of our obstacle

detection method by calculating the required detection range using equation 4.10. The results are in

table 4.2. In our case, Vuav ≈ 0 since it is hovering. We only examine the obstacle (the ball)’s velocity

in x-y plane since its z-velocity is not constant. |Vuav − Vobstacle| equals to the magnitude of the
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Throw detect dis treact tmaneuver V bxy Rdetect

1 11.87 0.197 0.307 19.8199 9.9892296

2 14.03 0.163 0.326 19.7241 9.6450849

3 12.95 0.145 0.268 19.7239 8.1459707

4 15.11 0.170 0.351 19.697 10.262137

5 12.95 0.122 0.217 19.8224 6.7197936

6 11.87 0.084 0.357 19.8293 8.7447213

7 7.82 0.036 0.352 19.8715 7.710142

8 10.80 0.035 0.220 19.7811 5.0441805

9 7.82 0.030 0.315 19.8717 6.8557365

Table 4.2: Table for Evaluating the Efficacy of Moving Obstacle Detection.

projection of the obstacle’s velocity in x-y plane (V bxy). tmaneuver is specified as the time needed to

achieve the half of the quadrotor’s maximal velocity during the whole avoiding maneuver. We observe

that detect dis > Rdetect for all 9 throws but in 7th throw the two are quite close which results in the

incursion of the ball into the quadrotor’s safety volume.
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Chapter 5

GEOMETRY METHOD BASED ON DUBINS CURVE

5.1 Problem Formulation

To avoid moving obstacles, we must ensure that the obstacles do not enter the UAV’s safety volume.

In this chapter, a sphere is used as the safety volume as the same as in Hrabar (2011). As well as

maintaining a safe separation to the obstacle, the global planner aims at minimizing the path’s length

and control efforts. The path length reflects the deviation from the original route. Based on the discussion

above, the formulation of the global path planning problem is:

v∗(t) = argmin
v,tf

∫ tf

0

(
‖v‖+ ‖

dv

dt
‖
2)

dt,

subject to kinematic constraints of v,

∀t ∈ [0, tf ], ‖x(t)− xo(t)‖ > L,

x(0),x(tf ) ∈ Xori.

(5.1)

In the problem, we calculate optimal velocity v∗(t) instead of direct control input u∗(t), assuming that

the UAV’s low level controller is able to execute the velocity. This approach has the advantage of being

universal to different types of UAVs while calculation of control input is more specific to an UAV’s dynamic

model, therefore more restrictive. We restrict the initial and final position of the UAV to the original

route Xori so that the UAV commences the avoidance from the original route and return to it when

completion. We also add the restriction that the UAV’s position x(t) should at least separate from the

obstacle’s position xo(t) by distance L, the radius of the UAV’s safety separation zone. It is determined

by the position estimation accuracy of both UAVs and obstacles. In this work, we assume that the UAV’s

state information is accurate and only deal with uncertainty in the position of the obstacle. The kinematic

constraints are specific to different types of vehicles. For example, the kinematic constraint of a fixed

wing UAV in 2D is

vx = ‖v‖cosψ

vy = ‖v‖sinψ

−c 6 ψ̇ 6 c, vmin 6 ‖v‖ 6 vmax

(5.2)
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in which vx and vy are velocities in x and y direction respectively. ‖v‖ is the magnitude of velocity and ψ

is the heading. c is maximal yaw rate and vmin/vmax is the maximal/minimal velocity. The cost function

‖v‖+λ‖dvdt ‖
2
multiplied by dt represents the path length plus the curve smoothness at time t in interval

dt, where λ > 0 is a chosen weight. We also seek an optimal finish time tf to finish the avoidance

procedure as soon as possible so that total deviation and curve smoothness can be minimized. The whole

avoidance procedure is composed of collision detection , collision avoidance and return to route. In this

work, collision is detected based on ADS-B data from the moving obstacle (aircraft). Details of ADS-B

data collection are covered in section 3.3.

5.2 Algorithm Description

5.2.1 Collision Detection

Moving Obstacle State Estimation

To detect collision of the obstacles with the UAV, we need to estimate the position and velocity of the

obstacles at every moment. W use an Extended Kalman Filter:

x̂i+1 = xi + vgi ∗ sin(θi) ∗ dt (5.3)

ŷi+1 = yi + vgi ∗ cos(θi) ∗ dt (5.4)

θ̂i+1 = θi + (θ̃i+1 − θ̃i) (5.5)

v̂g(i+1) = vgi + (ṽg(i+1) − ṽgi) (5.6)

ẑi+1 = zi + vhi ∗ dt (5.7)

v̂h(i+1) = vhi + (ṽh(i+1) − ṽhi) (5.8)

P̂i+1 = Fi ∗ Pi ∗ F
T
i +Qi (5.9)

Si+1 = Hi+1 ∗ P̂i+1 ∗H
T
i+1 +Ri+1 (5.10)

Ki+1 = P̂i+1 ∗H
T
i+1 ∗ S

−1
i+1 (5.11)

Xi+1 = X̂i+1 +Ki+1 ∗ (Zi+1 − X̂i+1) (5.12)

Pi+1 = (I −Ki+1 ∗Hi+1) ∗ P̂i+1 (5.13)

where Xi = (xi, yi, θi, vgi, zi, vhi)
T is the obstacle (in this case the aircraft) estimated state including

the position, heading, horizontal and vertical velocities. X̂i is the predicted state with the obstacle’s

kinematic model in equations 5.3-5.8 and Zi = (x̃i, ỹi, θ̃i, ṽgi, z̃i, ṽhi) is the measurement of the state
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Figure 5.1: Aircraft in the air during a short time interval of data logging, in 2D overhead look (a) and 3D (b).
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from ADS-B. Matrix Pi, Fi, Qi, Si, Hi, Ri,Ki are the same as defined in standard EKF (Kalman et al.

(1960)). dt is the time step and in this work we use 1 second, the same as ADS-B updating cycle. When

ADS-B dropout happens, we modified the equations above to:

xi+1 = xi + vgi ∗ sin(θi) ∗ dt (5.14)

yi+1 = yi + vgi ∗ cos(θi) ∗ dt (5.15)

θi+1 = θi (5.16)

vg(i+1) = vgi (5.17)

zi+1 = zi + vhi ∗ dt (5.18)

vh(i+1) = vhi (5.19)

Pi+1 = Fi ∗ Pi ∗ F
T
i +Qi (5.20)

Figure 5.1 plots the estimated trajectories of aircraft appearing in the air during a short time interval

of data logging, both in 2D and 3D. Latitude and longitude are converted into easting and northing,

the geographic Cartesian coordinates for the same point, so that spherical coordinate is not needed for

calculation.

collision Estimation

Based on the estimated state of an aircraft, we can calculate its collision point with the UAV. We assume

that at a time point t0 the aircraft is at xair with velocity vair and the UAV is at xuav with velocity

vuav. The distance between the two after time interval ∆t is dis = |xair − xuav + (vair − vuav) ∗∆t|.

The closest distance can be calculated as the following:

∆t∗ = argmin
∆t

|xair − xuav + (vair − vuav) ∗∆t|

= −
(xair − xuav) ∗ (vair − vuav)

|vair − vuav|2
(5.21)

dismin = |xair − xuav + (vair − vuav) ∗∆t
∗| (5.22)

x∗
uav = xuav + vuav∆t

∗ (5.23)

If dismin < L, where L is the safe separation threshold between the aircraft and the UAV as defined

in equations (5.1), the aircraft will enter the UAV’s safety volume. This is defined as a collision. However,

at this stage we cannot predict that a collision will necessarily happen since xair,xuav,vair,vuav will

still change with time.
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We assume that a collision will happen only when both of the following conditions are satisfied:

dismin < L

dis(xuav,x
∗
uav) < D

(5.24)

In this case, we define x∗
uav in equation (5.23) as the collision point. dis(xuav,x

∗
uav) stands for the

distance between the UAV’s current position and collision position. The two conditions ensure that the

UAV must be sufficiently close to the collision point, otherwise a collision cannot be confirmed. The

threshold D is set in reference to the length needed for the UAV to execute the optimal avoiding path

based on its kinematic constraints. Uncertainty of x∗
uav is determined by that of ∆t∗, which can be

expressed as:

δ(∆t∗) =

√√√√
6∑

l=1

(
∂∆t∗

∂ql
)2 ∗ (δql)2 (5.25)

where ql is the lth component of the aircraft’s state vector Xair = (xair, yair, θair, vg(air), zair, vh(air)).

Therefore,

δ(x∗
uav) = (δx∗uav, δy

∗
uav, δz

∗
uav)

= (vx(uav), vy(uav), vz(uav)) ∗ δ(∆t
∗) (5.26)

5.2.2 The Path for Collision Avoidance

We start by solving the velocity v(t) in (5.1). We initially assume a fixed tf , therefore it becomes an

Euler-Lagrange Problem Goldstein (1980). It is equivalent to solve the equations

∂L

∂vi
−
d

dt

∂L

∂v̇i
= 0, i = 1, 2, 3 (5.27)

where L(vi, v̇i, t) =

(
‖v‖+ λ‖

dv

dt
‖
2)

v = (v1, v2, v3)

substitute L into equation 5.27, and combining all three equations, we have

v

‖v‖
+ 2λv̈ = 0 (5.28)

therefore,

d

dt
(v × v̇) = v̇ × v̇ + v ×

d

dt
v̇

= v ×
d

dt
v̇

= −v ×
1

2λ

v

‖v‖

= 0 (5.29)
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It indicates that v × v̇ = const, that is, the velocity of the UAV always lies on a plane. Therefore,

the UAV’s motion is restricted on a plane when performing collision avoidance. We can use (5.31) as

the UAV’s kinematic model on this plane. For simplicity, we further assume a constant ‖v‖. Using such

model and following Dubins (1957), if we prescribe the initial and terminal position and heading of the

UAV in avoidance procedure, the shortest path of the UAV would be a Dubins curve (Dubins (1957)).

It is a curve composed of different combination of left turning circle, right turning circle and straight

line. The turning rate adopted is either maximum value or zero. The Dubins curve ensure the minimum

length Dubins (1957) and we need to observe the experiment results to see if it gives minimum curve

smoothness (the ‖dvdt ‖
2 term).

dis1 0.5ρ 1.0ρ 1.5ρ 2.0ρ

dis2(km) 0.52 1.13 1.43 1.44

Table 5.1: The Closest Distance Between the UAV and the Aircraft for the Four Avoiding Curves.

Figure 5.2 shows Dubins curves generated with the same initial heading, terminal position and heading

but with different initial position 1 . Both initial and terminal headings are the same as the UAV’s original

heading in route. The terminal position is determined so that the Dubins curve will not pass through

the uncertainty circle surrounding the collision point at any time. The radius of the uncertainty circle

is determined by the safe separation threshold L in equations 5.1 and the collision point’s uncertainty

calculated in equation 5.26 as:

runcertain =





δmax + L if δmax 6 ru

ru + L if δmax > ru

(5.30)

where δmax = max(δx∗uav, δy
∗
uav, δz

∗
uav). ru is a preset threshold to prevent exceedingly large aircraft

position uncertainty accumulated during ADS-B dropouts. The Dubins curve is concatenated to a line

segment tangent to the uncertainty circle. By combining both of them we get the path the UAV should

follow to avoid the obstacle. Figure 5.2 compares Dubins curves with four different start positions. We

observe that if it starts sufficiently close to collision point, the UAV will overshoot the terminal point and

has to make almost a complete circle to return to it (curve 1ρ,0.5ρ). The UAV does not need to complete

the avoiding curve and it can stop when it pass the obstacle. Figure 5.2b shows the avoiding path until

1The speed and the turning rate of the UAV are half scaled from Global Hawk’s specification in
http://www.nasa.gov/centers/dryden/aircraft/GlobalHawk/
performance.html. Dubins curves are calculated based on Shkel and Lumelsky (2001), using the implementation from
https://github.com/AndrewWalker/Dubins-curves
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Figure 5.2: Dubins curves for collision avoidance. The curves start at different distance to the collision point, represented by the black star.

The blue dashed circle indicates the uncertainty of the collision point. The start points for the curves are 0.5ρ, 1.0ρ, 1.5ρ, 2.0ρ to the

collision point, where ρ is the UAV’s turning radius.
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the UAV passes the moving obstacle. The metric to evaluate the avoiding efficacy is the closest distance

between the UAV and the aircraft. We list the closest distance between the two for the four curves in

Table 5.1. We use 0.5km as the safe separation threshold. The table indicates that the UAV and the

aircraft are separated more than the threshold in the avoiding procedure for all four curves. For safety,

we choose 1ρ to the collision point as the avoidance start position for further testing.
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Figure 5.3: The Dubins curves for return with different terminal positions along the route. The terminal points for the curves are 0, 0.1ρ,

0.5ρ, 1.0ρ to a common fixed point, where ρ is the UAV’s turning radius.

The Path for Return to Route

Once the UAV finishes the avoidance procedure ( flying by the obstacle ) it needs to return to the original

route to resume its mission. The return path also needs to be the shortest length. That inspires us to

use another Dubins curve to achieve this. The initial position and heading are determined at the moment

the UAV flies by the aircraft. The terminal heading is the same as that of original route and the terminal

position should lie in the route. We plot Dubins curves with four different terminal positions along the

route in Figure 5.3. We observe that when the terminal point is close to collision point, the UAV has

to follow a complete circle to reach the terminal point due to kinematic constraints (curve 0, 0.1ρ). But

when terminal point is sufficiently far away, the Dubins curve becomes “unfolded” and the curve’s length

decreases and if the terminal point moves further away, the length will increase. We choose the terminal
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point achieving the minimal curve length as the desired terminal point via an incremental search. The

Dubins curve calculated using that terminal point is the return path (curve d∗ in Figure 5.3). The black

curve in Figure 5.3 demonstrates the calculated optimal path of the UAV from collision avoidance to

return-to-route. The total avoidance path is the combination of avoiding and return curve. Since both

of the curves achieve the shortest length, we automatically have an shortest tf in equations (5.1) due to

constant speed.

5.3 Experiments

To validate the global planner for moving obstacle avoidance, a collision is simulated between the

UAV’s flight path and an aircraft’s path estimated from ADS-B data. We selected six aircraft with less

ADS-B dropouts for avoidance tests. ADS-B data of aircraft appearing in the air at the same time as the

test aircraft were kept but we did not set the UAV to collide with them. However, the UAV still needs to

determine if a collision will happen with each of them. From the results, the UAV did not try to avoid

any of them and thus proved that our collision estimation approach did not produce false alarm.

The kinematic model of the UAV is:

vx = V0cos(θ)cos(γ)

vy = V0sin(θ)cos(γ)

vz = V0sin(γ)

V̇0 = 0

−c1 6 θ̇ 6 c1

−c2 6 vz 6 c2

−c3 6 v̇z 6 c3

(5.31)

where (vx, vy, vz) are velocity components of the UAV. θ is heading angle and γ denotes the climb-

ing angle. Specifically, we set V0 = 150knot = 0.077km/s, c1 = 1.1deg/s, c2 = 10000ft/min =

0.0508km/s, c3 = 0.2g

We tested collision avoidance in two flight modes of the UAV: constant altitude flight (γ = 0) and

climbing (γ = const && 0 < γ 6 arcsin(c3/V0)). specified In constant altitude flight, we can ignore

the z dimension and visualize the Dubins curve in a 2D. In this case, kinematic models in equations 5.31

and 5.31 are the same. Figure 5.4 demonstrates the Dubins curve for collision avoidance with flight

UAL1200. The UAV approaches from 12 directions. We choose the directions incrementally with 30◦
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Figure 5.4: Dubins curve (black) for the UAV to avoid collision with flight UAL1200 (red). The black dot on the red line indicates the

collision point. In the figures, the UAV and aircraft path intersects because they both travel through the same point in space but in different

time. That does not mean the two meet at that point. The sub-captions mean the angles between the UAV’s original route and the west

(minus x axle). The arrows show their traveling directions. The horizontal axle is easting(km) and vertical is northing(km).
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Figure 5.4: Dubins curve (black) for the UAV to avoid collision with flight UAL1200 (red). The black dot on the red line indicates the

collision point. In the figures, the UAV and aircraft path intersects because they both travel through the same point in space but in different

time. That does not mean the two meet at that point. The sub-captions mean the angles between the UAV’s original route and the west

(minus x axle). The arrows show their traveling directions. The horizontal axle is easting(km) and vertical is northing(km).
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as the step. We measure the efficacy of avoidance with the closest distance between the UAV and the

aircraft in the whole meet-and-separate procedure, as listed in Table 5.2.

direction 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

close d (km) 1.130 0.882 0.424 0.279 1.990 1.95686

direction 180◦ −30◦ −60◦ −90◦ −120◦ −150◦

close d (km) 1.410 1.290 1.028 0.653 0.39812 0.504415

Table 5.2: The Closest Distance Between the UAV and the Aircraft for the Twelve Approaching Directions.

The closest distances below L = 0.5 are highlighted with red in the table. They corresponds to

Figure 5.4c,5.4d,5.4k, where the directions in which the UAV deviates from its original route are almost

parallel to the aircraft’s traveling direction. In another word, the aircraft is “chasing” the UAV when

the UAV tries to avoid it. Such drawback can be compensated by considering velocity of the aircraft

when estimating the uncertainty radius of the collision point in equation (5.30). It would be part of

future work. It can also be compensated with a local path planner which is able to perform a second

level avoidance. We next investigate the optimality of the generated path in terms of path length and

smoothness, the two terms of cost function in equations (5.1). We investigate by comparing the Dubins

curve with another simple avoidance strategy, where the UAV is always commanded to head tangent

to the uncertainty circle of collision point, which is updated at ADS-B transmission frequency. Both

methods use Dubins curve to return to route. We presented the path length and total smoothness of the

path from deviation start to return to the route for both methods in Table 5.3. We only listed directions

in which the tangent method also achieves successful separation (the closest distance > L). We observe

that in most cases the Dubins curves do cost shorter path length and less smoothness.

We also tested the global path planner in collision with other obstacles (other aircraft). We presented

results when the UAV approaches the aircraft from an identical direction (0◦). Figure 5.5 demonstrates

the Dubins curve avoidance path to avoid different aircraft. Table 5.4 shows the the closest distance

between the UAV and the aircraft. They are all above L, thus prove the efficacy of Dubins avoidance

curve.

In the climbing mode, the pitch angle γ is determined by the preset collision point on the aircraft’s

estimated path. The generated Dubins curve lies on the plane expanded by the roll and pitch axis

of the UAV just the moment the UAV starts the avoidance path. A transformation is made between

kinematic models in equations 5.31 and 5.31. We tested collision avoidance when climbing, varying

θ in equation (5.31) of the original route. The generated Dubins curves to avoid flight UAL1200 are
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Figure 5.5: Dubins curve (black) for the UAV to avoid collision with different flights (red). The black dot on the red line indicates the

collision point. The UAV approaches from the west. The arrows show their traveling directions.
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Dubins Tangent

direct length smoothness length smoothness

0◦ 10.659 0.100 12.676 0.157

30◦ 10.823 0.102 14.462 0.150

60◦ 10.889 0.103 13.310 0.159

150◦ 16.191 0.221 14.0587 0.181

180◦ 15.384 0.195 12.330 0.139

−30◦ 11.293 0.097 12.445 0.144

−60◦ 10.371 0.096 13.828 0.167

−90◦ 10.256 0.094 14.289 0.178

−120◦ 12.215 0.114 15.787 0.208

−150◦ 15.038 0.185 15.614 0.186

Table 5.3: Comparison of Length and Smoothness of the Avoidance Path Between Dubins Curve and Tangent

Avoiding Approach.

flight 1055 301 721 AAL1706 VRD336

close d (km) 0.565 1.195 1.579 1.755 1.399

Table 5.4: The Closest Distance Between the UAV and the Aircraft for the Other Five Aircraft During Collision Avoidance with a Constant

Altitude.

demonstrated in Figure 5.6. Table 5.5 shows the minimal distance between the UAV and the aircraft

during the avoidance procedure. Similar to Table 5.2, the UAV fails to make a separation above L = 0.5

when the UAV’s deviation from the route has a projected component parallel to the aircraft’s approaching

direction.

direction 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

close d (km) 1.250 0.912 0.360 0.327 1.842 1.925

direction 180◦ −30◦ −60◦ −90◦ −120◦ −150◦

close d (km) 1.365 1.187 1.089 0.806 0.508 0.454

Table 5.5: The Closest Distance Between the UAV and the Flight UAL1200 for the Twelve Approaching Directions.

Collision avoidance with other five aircraft are shown in Figure 5.7, where the UAV heads towards

the east while climbing. Table 5.6 represents the UAV’s minimal distance to the aircraft through the

avoidance procedure. None of them falls below L, which proves the efficacy of Dubins avoidance curve

when the UAV is climbing.
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Figure 5.6: Dubins curve (black) for the UAV to avoid collision with flight UAL1200 (red curve) when it is climbing. The black dot on the

red curve indicates the collision point. The sub-captions mean the angles between the UAV’s original route’s heading and the west (minus x

axle). The arrows show their traveling directions. The horizontal axles are northing(km) and easting (km). The vertical axle is altitude(ft).

flight 1055 301 721 AAL1706 VRD336

close d (km) 0.508 1.211 1.521 1.762 1.397

Table 5.6: The Closest Distance Between the UAV and the Aircraft for the Other Five Aircraft During Collision Avoidance in Climb.
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Figure 5.6: Dubins curve (black) for the UAV to avoid collision with flight UAL1200 (red curve) when it is climbing. The black dot on the

red curve indicates the collision point. The sub-captions mean the angles between the UAV’s original route’s heading and the west (minus x

axle). The arrows show their traveling directions. The horizontal axles are northing(km) and easting (km). The vertical axle is altitude(ft).
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Figure 5.7: Dubins curve (black) for the UAV to avoid collision with different flights (red) when they are climbing. The black dot on the red

line indicates the collision point. The UAV heads towards the east while climbing. The arrows show their traveling directions.
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Chapter 6

CLOSED-LOOP RRT FOR MOVING OBSTACLE AVOIDANCE

6.1 Overview

Motion planning involves getting a robot to automatically move while avoiding collisions with obsta-

cles. It seeks to find a solution to the problem of “Go from the start to the goal while respecting all of

the robot’s constraints.” The classical motion planning problem known as the piano mover’s problem is

found to be PSPACE-hard (Reif (1979)).

Two main schools of thought have been developed for motion planning (LaValle (2006)): 1) com-

binatorial planning, which constructs structures in the configuration space (C-space) that discretely and

completely capture all information needed to perform planning. It is also named the exact method. 2)

sampling-based planning, which uses collision detection algorithms to probe and incrementally search the

C-space for a solution. It does not completely characterize all of the obstacle-free C-space’s structure. In a

number of practical problems, characterizing obstacle free C-space is difficult. Therefore, Sampling-based

methods are preferred in such cases.

There are two main types of sampling-based methods: graph based and tree based planners. Graph

based methods utilize random sampling in the state space to build a roadmap of the free state space.

Graph search methods can be used to create paths from the roadmap. It is a multi-query approach

because it is able to find connections between multiple initial-goal query pairs. Instead of building a

roadmap up front, tree based methods incrementally construct the graph. Each type of tree based

methods has a vertex selection method, which determines where to expand next from among vertices

in the graph. After that, a local planning method constructs an edge from the selected vertex, thereby

extending the tree. Tree-based methods are suitable for single-query planning. They are also able to deal

with differential constraints by encoding control information for each edge of the tree. In our application,

the UAV has differential constraints and therefore a tree-based planner is adopted.

Specifically, Closed-Loop Rapidly Exploring Random Tree (CL-RRT) (Kuwata et al. (2008)) is selected

from tree-based planners. Compared to traditional RRT than samples in the robot’s configuration space,

CL-RRT samples in the space of inputs to the UAV’s closed-loop system. In section 6.2.2, the advantages

of CL-RRT over traditional RRT will be discussed.
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6.2 Algorithm Description

In the last chapter, the Dubins curve based path planner is developed. However, only simplified model

of the UAV is used. Instead, CL-RRT is able to accommodate the actual UAV’s model.

6.2.1 Problem Formulation

This section presents a generalized formulation of the path planning problem for UAV moving obstacle

avoidance. It extends the problem defined in equation 5.1. The path is represented by a function

f(x, y, z) = 0 (6.1)

It must go through the given start and goal. Therefore f(xs, ys, zs) = 0 and f(xg, yg, zg) = 0, where

(xs, ys, zs) is the start and (xg, yg, zg) the goal.

The obstacle should not enter the UAV’s safety zone:

for i = 1, 2, ..No, ∀t ∈ [0, tf ], xOi
(t) /∈ O(x(t)) (6.2)

where O(x(t)) stands for the safety region of the UAV at t. It can be a sphere or a cylinder. xOi
(t) is

the estimated position of aircraft Oi at t. It is extrapolated from Oi’s current position and velocity:

xOi
(t) = xOi

(t0) + vOi
(t0) ∗ (t− t0) (6.3)

It is noted that the prediction can be done in more elaborated way using a Kalman filter (Watanabe

et al. (2006)) but it is required that the dynamic characteristics is known at least partially in advance.

The UAV must also satisfy other space constraints such as the height limit and geo-fences:

S(x(t))<0 (6.4)

The UAV’s model is given by

˙y(t) = f(y(t),u(t)), u(t) ∈ U . (6.5)

where y ∈ R
ny is the state of the system. u ∈ R

nu is the control input to it. U is the limit of control.

The minimum path length requirement is fulfilled as

f∗ = argmin
f

∫
f

ds (6.6)

In summary, the problem can be defined as: Given the initial state y(0) = y0 and the control limit U ,

generate an optimal path f∗(x, y, z) = 0 defined by (6.6) while satisfying (??) to (6.5).
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6.2.2 Motion Prediction Using the Closed-Loop System

CL-RRT extends the RRT by making use of a low-level controller. It samples an input to the closed-

loop system consisting of the vehicle model and the controller Kuwata et al. (2008).

Fig. 6.1 (from Kuwata et al. (2009)) shows the closed-loop system for motion prediction. The low-

level controller takes a reference command r ∈ R
nr . The reference command typically has a much

lower dimension than vehicle states (i.e.,nr ≪ nx). For example, in our application, the reference

command is a 3D waypoint to guide the UAV (three parameters). The UAV’s model included six states

Figure 6.1: Closed-loop motion prediction. Given an input command r, the controller generates vehicle commands u. An updated prediction

of the vehicle’s state x is obtained with u and the vehicle model.

(nine parameters), which are the 3D coordinates, speed, yaw, and pitch. Given a waypoint command

and current vehicle state x(ti), CL-RRT runs a forward simulation using the controller and the vehicle

model to predict the vehicle state x(ti+1). Each predicted state is checked against the constraints. The

prediction repeats until the waypoint is reached by the simulated trajectory. Thus we obtain a predicted

trajectory X (t).

The close-loop approach has several advantages over the basic version of RRT (LaValle and Kuffner

(2001)). First, the closed-loop prediction results in smaller prediction errors. This property is desirable

for checking predicted trajectory’s collision with moving obstacles, where we need to estimate the dis-

tance between predicted position of the UAV and obstacles at each time instance. Second, the forward

simulation is able to handle any nonlinear controller and vehicle model, and the predicted trajectory X (t)

satisfies the vehicle model (6.5) by construction. Finally, a single input to the closed-loop system can

create a full trajectory. This requires fewer samples to build a tree and therefore improves the efficiency

of sampling-based planning.

6.2.3 Tree Expansion

The tree expansion for CL-RRT is summarized in algorithm 1. In each loop of adding a new node,

a sample is first obtained (line 2. Sample strategies in different applications are described in chapter 8.
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Algorithm 1 TreeExpand()

1: for ∆t do

2: Generate a sample zs.

3: Sort the nodes in the tree by heuristics in ascending order .

4: for each node q in the tree,in the sorted order do

5: Simulate a trajectory X (t), t ∈ [t1, t2] from q to zs using the closed-loop system and check the

trajectory against constraints in section 6.2.1.

6: if Satisfy the constraints then

7: Add the end of X (t) to the tree with q as their parent. Break.

8: end if

9: end for

10: for each newly added node qn do

11: Calculate the cost of qn by adding length of the trajectory from its parent and to the cost of its

parent.
12: Simulate a trajectory from qn to the goal using the closed-loop system and check it against

constraints.
13: if Satisfy the constraints then

14: Mark qn as goal reachable.

15: Calculate cost-to-go of qn as the length of the trajectory to the goal.

16: end if

17: end for

18: end for

The nodes in the tree are sorted ascendingly by heuristics (line 3). Heuristics are approximate cost from

each node to the sample node. For example, the length of a dubins curve can be used as the heuristics

for fixed-wing vehicles. Starting from the node q with the smallest heuristics, a trajectory is simulated

using the closed-loop system in section 6.2.2 from q to the sample node zs. The trajectory is checked

against the constraints stated in section 6.2.1. If the constraints are satisfied, the node q is added to the

tree (line 7). For a newly added node qn, its cost is calculated as the sum of the trajectory length from

its parent q to qn and the cost of q. Then an attempt is made to reach from qn to the goal: a trajectory

from qn to the goal is simulated using the closed-loop system and checked against constraints (line 12).

If it satisfies the constraints, qn will be marked as reachable to the goal and its cost-to-go is the length

of the simulated trajectory. The tree expansion process is illustrated in Figure 6.2. To generate a path,

the goal- reachable node q∗ with smallest sum of cost and cost-to-go is selected. The node sequence

connecting the start to the goal via q∗ is the generated path.
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6.2.4 Execution Loop

In the complete loop of algorithm execution, a repetitive path replanning strategy is adopted to

compensate the inaccuracy of the UAV’s closed-loop system and the prediction of obstacles’ motion. It is

summarized in algorithm 2. In each loop, the algorithm first predicts a collision by simulating the UAV’s

trajectory up the the time horizon ∆tm. ∆tm is determined by the time needed for the UAV to make

a turning maneuver to avoid collision. If the collision location is close to the start, a reactive avoidance

action such as climbing up will be taken. The closeness is determined by using equation (16) in Lin and

Saripalli (2014). Otherwise, algorithm 1 is used to generate a collision avoidance path. After a path

is generated, it is not immediately sent to the UAV. Instead, it is checked against the constraints with

updated UAV and obstacles’ states. If the constraints are still satisfied, the path is sent to the UAV to

execute. Otherwise, TreeExpand() is repeated to obtain a new path. The loop repeats until the goal is

reached.

Figure 6.2: Illustration of tree expansion for CL-RRT. UAV trajectories are generated using the closed-loop system. The trajectories are

checked against constraints. The black trajectories are feasible. The red ones are infeasible because they will either induce collision with the

moving obstacle or reach out of the geo-fence. The blue dashed are the trajectories connecting each node to the goal.
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Algorithm 2 Execution Loop()
1: repeat

2: Predict the collision up to a time horizon ∆tm

3: if A collision is predicted then

4: if Collision location is close to the start location then

5: take reactive avoidance action.

6: else

7: TreeExpand()

8: if No path is feasible then

9: Go to line 7

10: end if

11: Update the UAV and the obstacles’ states and simulate a new UAV trajectory starting from the updated

position to the goal and check against the constraints.
12: if Constraints violated then

13: Go to line 7

14: else

15: Send the path to UAV.

16: end if

17: end if

18: end if

19: until Finish the waypoint sequence
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Chapter 7

MODIFICATION AND EXTENSION TO CLOSED-LOOP RRT

7.1 Overview

In this chapter we try to improve the Closed-Loop RRT based method in the previous chapter. First,

methods to speed up the planning are proposed. Following them, an approach to avoid obstacles not

moving along a straight line is developed.

7.2 Generating More Candidate Paths

7.2.1 A Greedy Version of Closed-Loop RRT

From the experiment results of Closed-Loop RRT based methods (Figure 8.6 and 8.10), it is observed

that a generated path contains only one node between the start and the goal. That inspires us to modify

the tree expansion algorithm to the version in algorithm 3: The algorithm repeats a cycle of adding a

Algorithm 3 TreeExpand for the Greedy Version of Closed-loop RRT
1: for ∆t do

2: Generate a sample waypoint wps = (xs, ys, zs) that satisfies constraints.

3: Predict a trajectory from the start to wps using the closed-loop system and check against the constraints in each simulation

step

.

4: if Satisfy the constraints then

5: Predict a trajectory from wps to the goal using closed-loop system and check against the constraints .

6: if Satisfy the constraints then

7: Add wps to the tree as a child of the start node.

8: end if

9: end if

10: end for

11: Select the sample waypoint that results in the shortest total trajectory from the tree.

node to the tree in a given amount of time. In a single cycle, a sample waypoint wps is generated. A

trajectory connecting the start and wps is simulated by prediction with the closed-loop system. It is

checked against the constraints including obstacle avoidance and geo-fence. If it satisfies the constraints,

a second trajectory is simulated between wps and the goal and is checked against the constraints. If the

constraints are satisfied, the sample waypoint wps is added to the tree with the start node as its parent.

Such cycles are repeated for the preset time interval ∆t. After that, the sample waypoint that provides

the shortest trajectory from the start to the goal is selected as the final generated waypoint from the tree.
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The start of the tree, the generated waypoint, and the goal together compose the collision avoidance

path.

Compared to algorithm 1, the modified algorithm generates a sample and immediately check the

possibility of building a collision-free trajectory that connects the start and the goal through the sample

waypoint. It is a greedy approach and avoid the labor to build a complete tree. This will work because

we consider avoiding a small number of aircraft. That means obstacles are sparse. According to Choset

(2005), such tree expansion approach suffers the risk of getting stuck in a local minima. From our

observations in the experiments, the generated path did not get stuck in a local minima. This is also

because of the sparsity of obstacles in the environment.

Figure 7.1: Illustration of tree expansion for a greedy version of Closed-Loop RRT. UAV trajectories are generated using the closed-loop

prediction. The generated trajectories are then evaluated for feasibility. The black trajectories are feasible. The red trajectories are infeasible

because they will either induce collision with moving obstacles or reach out of the geo-fence.

Fig 7.1 shows an example of a tree built by algorithm 3. The red (grey) dots represent sample

waypoints. They are used as the reference inputs to the controller to simulate the UAV’s trajectories.

The black (dark) curves are the feasible predicted trajectories. They start from the start node, go through

a sample waypoint, and arrive at the goal. The red trajectories are infeasible. They will induce collision

with moving obstacles or reach out of the geo-fence.
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Algorithm 4 Path Generation Using Intermediate Points
1: for ∆t do

2: Generate a sample waypoint wps = (xs, ys, zs) that satisfies constraints.

3: Predict a trajectory from the start to wps using the closed-loop system and check against the constraints in each simulation

step

.

4: if Satisfy the constraints then

5: Obtain N points along the trajectory from the start to wps evenly.

6: for i = N to 1 do

7: Predict a trajectory from the ith point to the goal using closed-loop system and check stepwise against the constraints.

8: if Satisfy the constraints then

9: Add the ith point to candidate avoidance waypoints.

10: else

11: Break

12: end if

13: end for

14: end if

15: end for

16: Select the waypoint that results in the shortest total trajectory.

7.2.2 Generating Trajectories from Intermediate Points

To obtain a further larger number of candidate trajectories, we made a next level improve to the

algorithm in last sub-section. If the trajectory from the start to a sample waypoint satisfy all the

constraints, N points will be obtained evenly along the trajectory. Starting from the point closest to

wps (the N th point), another trajectory is simulated using the closed-loop system to connect the point

to the goal while checking against constraints stepwise. The point will be added to candidate waypoints

for avoidance if the trajectory results in no collision. The for loop breaks when a such trajectory leads

to a collision. The updated algorithm is summarized in algorithm 4. Here, the concept of a tree data

structure is abandoned in the algorithm because only a vector is needed to store candidate waypoints for

collision avoidance.

Figure 7.2 illustrates the path generation procedure. Simulated trajectories going through intermediate

points (dark blue dots) are marked by dashed blue curves. Considering trajectories from intermediate

points is a major improvement to the algorithm in the last sub-section. This way the space between a

sampled waypoint and the straight line connecting the start and the goal will be explored. As a result,

a larger number of candidate paths for collision avoidance can be generated with the same amount of

waypoint samples. To compare the number of candidate path generated in the same amount of time by

closed-loop RRT, greedy closed-loop RRT, and the intermediate points method, we run them with the

same start, goal, and obstacle for the same amount of time. The closed-loop system in 8.2.2 is used in

all three planners. The start is (33.4409,−111.996, 1436.7) and goal is (33.441,−112.029, 1436.7). The
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Figure 7.2: Illustration of the path generation using intermediate points. UAV trajectories are generated using closed-loop prediction and

waypoint sampling. The generated trajectories are then evaluated for feasibility. The black trajectories are feasible. The red trajectories are

infeasible because they will induce collision with obstacle aircraft or reach out of the geo-fence. The blue dashed line are feasible trajectories

connecting intermediate waypoints and the goal.

obstacle starts from (33.441,−112.01, 1439.7) and moves towards the start at 15.43 m/s. The initial

speed of the UAV is 14.75 m/s.

time(s) 0.1 0.5 1.0

CL-RRT 16 82 161

greedy CL-RRT 33 165 330

intermediate 72 396 759

Table 7.1: The number of candidate paths generated by the Closed-Loop RRT based methods(CL-RRT), the greedy version of Closed-Loop

RRT methods (CL-RRT), and the intermediate points method (intermediate) for the same start, goal, obstacle, initial state of the UAV, and

the closed-loop system.

Table 7.1 lists the number of candidate paths generated by the the Closed-Loop RRT, the greedy

version of Closed-Loop RRT, and the method using intermediate waypoints. It is observed that the

number of candidate trajectories from the Closed-Loop RRT based method is increased by two times by

the greedy Closed-Loop RRT. It is increased by four times by including trajectories from intermediate

points.
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7.3 Planning Using the Reachable Set

In chapter 6 and previous sections, linear motion assumption is used to predict the position of a

moving obstacle. However, a moving obstacle may not always move along a straight line. Therefore in

this section, reachable sets are used to represent the motion uncertainty of moving obstacles. Collision

check for the UAV is performed against reachable sets induced by moving obstacles.

7.3.1 Calculation of the Reachable Set

The reachable set defines the region that a moving obstacle can reach at each time instance. All

motions of the obstacle permitted by kinematic constraints are considered when the reachable set is

calculated. The x − y and z components of the reachable set are calculated separately. The x − y

component RSxy is a bounded area and the z component is a 1D interval [hlower, hupper]. A point

(x, y, z) falls in the obstacle’s reachable set if and only if

(x, y) ∈ RSxy (7.1)

and hlower 6 z 6 hhigh (7.2)

Constraints 7.1 and 7.2 are used for collision prediction and checking in path planning. The path planning

algorithm is described in the next section.

To calculate the boundary of RSxy, we assume that a moving obstacle moves according to the Dubin’s

car model:

v = const (7.3)

φ̇ 6 ωmax (7.4)

Where v is the obstacle’s horizontal speed and φ is its heading. ωmax is the obstacle’s maximal turning

rate. It corresponds to the minimal turning radius ρ = v
ωmax

. We further assume that there exists an

upper limit φmax for the obstacle’s turning angle w.r.t its initial heading.

The boundary of RSxy is calculated by initially setting the heading of the moving obstacle to 0

and the position to (0, 0) then apply the rotation and translate transform. The boundary consists of

S1,2,3,4(θ, t) and S5,as in Fig.7.3.

θ is the direction of a normal unit vector at each point. For normal unit vector n̂ = (nx, ny) at

(x, y), θ = atan2(ny, nx). Given the minimal turning radius ρ, speed v, required safety radius r, and

a time instance t, the equations of S1,2,3,4(θ, t) are derived from Wu and How (2012). S1,2(θ, t) are
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Figure 7.3: The boundary of x-y component of the reachable set (RSxy) defined by Equations 7.5, 7.6, 7.9, 7.10. Here ρ = 2291.83m,

t = 30s, v = 30m/s, r = 300m

.

parametrically represented as

S1(θ, t) =


 −ρ(1− cosθ) + (vt+ ρθ + r)sinθ

−ρsinθ + (vt+ ρθ + r)cosθ


 (7.5)

S2(θ, t) =


 ρ(1− cosθ) + (vt− ρθ + r)sinθ

ρsinθ + (vt− ρθ + r)cosθ


 (7.6)

with respective domains

S1 : max(−φmax,−π) 6 θ 6 0 (7.7)

S2 : 0 6 θ 6 min(φmax, π) (7.8)

S3,4(θ, t) are represented as

S3(θ, t) = S1(−φmax, t) +


 rsinθ

rcosθ


 (7.9)

S4(θ, t) = S2(φmax, t) +


 rsinθ

rcosθ


 (7.10)
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Figure 7.4: The polygon (black) of 10 vertex to approximate the boundary (blue). The same boundary as in Fig. 7.3 is used.

with respective domains

S3 : −π 6 θ 6 −φmax (7.11)

S4 : φmax 6 θ 6 π (7.12)

If φmax > π, S3,4 are no longer part of RSxy’s boundary. S5(t) is the horizontal line segment

connecting the two lowest ends of S1,2,3,4. They are either S3(−π, t) and S4(π, t),or S1(−π, t) and

S2(π, t), depending on which pair of curves is defined for θ = ±π at time t.

Transcendental equations need to be solved if equations 7.5,7.6,7.9,7.10 are used to check if a 2D

point falls in RSxy. Therefore, we attempt to approximate the boundary with a polygon. Then the

point-in-polygon (PIP) problem Sutherland et al. (1974) can be used to check if a point is inside RSxy.

The vertex of the polygon are S1,2,3,4(θi, t), where θi = i 2πN , i = 0, 1, ..., N − 1. Fig. 7.4 shows the

polygon for N = 10. The ratios between the area of the polygon and the full RSxy for different N values

are compared in Fig. 7.5. It is observed the ratio is above 0.95 when N = 35. Therefore, a polygon of

35 vertex is used to approximate the boundary when checking if a point falls in RSxy. The vertex need

to be rotated and translated based on the obstacle’s heading and position for an actual moving obstacle.
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Figure 7.5: The ratios between the polygon and RSxy ’s areas for different polygon vertex number.

In the z direction, the lower and upper height limits are:

hlower = z0 + (vh −∆vh)t− hr (7.13)

hhigh = z0 + (vh +∆vh)t+ hr (7.14)

where vh is the obstacle’s vertical speed and ∆vh is its possible change. hr is the vertical safety threshold.

7.3.2 Path Generation

The path generation is similar to algorithm 3. The only difference is that the constraint in equation 6.2

is replaced by equations 7.1 and 7.2. That means the UAV cannot enter the obstacle’s reachable set.

Fig.7.6 illustrates the procedure to create intermediate waypoints. Infeasible trajectories (red) either fall

into the reachable sets or reach out of the geo-fence. Feasible trajectories (black) connect the start and

the goal through an intermediate waypoint. The comparison of path planning with and without reachable

sets will be performed in section 8.3.
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Figure 7.6: Illustration of creating candidate intermediate waypoints including reachable sets. UAV trajectories are generated using closed-

loop prediction. The generated trajectories are then evaluated for feasibility. The black trajectories are feasible. The red trajectories are

infeasible because they will enter the obstacle’s reachable set or reach out of the geo-fence
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Chapter 8

EXPERIMENTAL VALIDATION OF CLOSED-LOOP RRT AND ITS EXTENSIONS

8.1 Experimental Validation of Closed-Loop RRT

The system setup of this section is described in 3.4.1. This section describe the sampling strategy,

the closed-loop dynamic system of the vehicle, the experiments, and the results.

8.1.1 Sampling Strategy

An UAV’s state is defined as:

y = (t, x, y, z, ψ, vx, vy, vz) (8.1)

It includes the UAV’s position, velocity, yaw (ψ). A node in the CL-RRT tree contains a UAV state.

A sample contains the position and the yaw. It is the input to the closed-loop system for generating a

whole trajectory. To obtain a sample (xs, ys, zs, ψs), (xs, ys) is first sampled by






xs

ys






=







x0

y0






+ r







cosθ

sinθ






(8.2)

with















r = σrnr + r0

θ ∼ U(θ0 − π/2, θ0 + π/2)

(8.3)

where nr is a random variable with standard Gaussian distribution, r0 is the x-y distance between

the root and the goal, and σr = 0.5r0 is the standard deviation. θ0 is the yaw of the root node, θ is

sampled uniformly in an angle of π spanned at root and centered in θ0. zs is calculated from (xs, ys).

Referring to figure 8.1, ez is the unit vector along z, O is the root and B is the goal.
−→
OA =

−−→
OB×ez.

The normal vector of plane AOB is

np =
−→
OA×

−−→
OB/‖

−→
OA×

−−→
OB‖ (8.4)

We prescribe the sample point Ps = (xs, ys, zs) to lie in plane AOB. Therefore,
−−→
OPs ·np = 0. From it,

we have

zs = z0 − [(xs − x0)n
x
p + (ys − y0)n

y
p]/n

z
p (8.5)
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Figure 8.1: Demonstration of How Z Coordinate of a Sample is Calculated.

nzp = 0 corresponds to the trivial case when the root and the goal only differ in z. This case does not

have practical significance. Therefore nzp = 0 will never happen. We set

ψs = ψ0. (8.6)

Equations 8.9,8.5 and 8.6 combined generate the sample.

8.1.2 The Closed-Loop System for Trajectory Prediction

This section describe how to generate a trajectory connecting two configurations of the UAV: (x1, y1, z1, ψ1)

and (x2, y2, z2, ψ2)
1 . The trajectory generation includes two steps:

• Generate a 3D Dubins curve between two configurations.

• Follow the dubins curve to generate the trajectory.

3D Dubins Curve Generation

1 Generate a 2D Dubins curve C from (xn, yn, ψn) to (xs, ys, ψs) as in Shkel and Lumelsky (2001).

A Dubins curve consists of a combination of three segment, each of which is ether a straight line

or a circle arc.

1The full quadrotor model includes pitch and roll in addition. But position and yaw are sufficient for trajectory generation
purpose.
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2 Extend the Dubins curve to 3D: for each point (x, y) in C, z = zn + l(x, y) ∗ tan(α), where l(x, y) is

the length from (xn, yn) to (x, y) along C and tan(α) = zs−zn
l(xs,ys)

. After the extension, a 3D Dubins

curve C ′ consisting of a straight line and helices is obtained.

Following the Dubins Curve

The procedure to follow the Dubins curve is described in algorithm 5. The input to the algorithm is the

Algorithm 5 Following the Dubins Curve

1: function DubinsFollow(x,C′)

2: Estimate the closet segment to x. Say it is jth segment of C′, denoted as C′

j

3: for i = j to 3 do

4: while the end of C′

j is not reached do

5:

u′(t) = g(x(t), C′) (8.7)

˙y(t) = f(y(t),u′(t)) (8.8)

6: end while

7: end for

8: end function

UAV’s position x and a Dubins curve C ′. First, the algorithm estimates the closest segment of C ′ to x.

Since the UAV is initially at the starting location of the Dubins curve, the first segment is the closest

one. Based on the UAV’s position and the segment’s mathematics equation (for example, the equation

of a straight line or a helix), velocity command can be calculated using the vector-field path following

method (Owen et al. (2013)). This is represented by equation 8.7. It corresponds to the controller of

the closed-loop dynamics system as in Figure 6.1. Equation 8.8 corresponds to the vehicle’s kinematic

model in Figure 6.1. The model is illustrated in Figure 8.2.

Figure 8.2a describes the model for x and the same for y and z. As in the figure, velocity vx and

velocity command ux are transformed into the body reference frame (TB). The error between them

is used as the input to a P-controller. The output of the controller is thresholded by the AR.Drone’s

acceleration of saturation amax to obtain the desired acceleration v̇x. The velocity output of the model

ẋ is calculated by integrating v̇x and transforming back to the world reference frame (Inv(TB)). As in

figure 8.2b, the desired yaw speed vψ is obtained with another P-controller. The input is the error

between atan(uy, ux) and the current yaw ψ. vψ thresholded by the saturation value ψ̇max gives the
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(a)

(b)

Figure 8.2: Approximated kinematic model of the AR.Drone. (a) describes the model for x and the same for y and z. As in the figure,

velocity vx and velocity command ux are transformed into the body reference frame (TB). The error between them is used as the input

to a P-controller. The output of the controller is thresholded by the AR.Drone’s acceleration of saturation amax to obtain the desired

acceleration v̇x. The velocity output of the model ẋ is calculated by integrating v̇x and transforming back to the world reference frame

(Inv(TB)). As in (b), the desired yaw speed vΨ is obtained with another P-controller. The input is the error between atan(uy, ux) and the

current yaw Ψ. vΨ thresholded by the saturation value Ψ̇max gives the yaw rate Ψ̇.

yaw rate ψ̇. In the model, the yaw of the UAV is controlled to align with that of the velocity command.

The AR.Drone was controlled in the same way in flight experiments. This way the AR.Drone always

align its heading with the direction of its velocity. It flew like a fixed-wing aircraft and therefore can be

considered as a proxy of a fixed-wing UAV. To compare the model with AR.Drone’s actual behavior, both

a real AR.Drone and the model were commanded to fly under the command u = (1, 0, 0) for 3.5 seconds

and their states v.s. time are plotted in Figure 8.3. It is observed in Figure 8.3a that the velocity vx of

the model and a real UAV has accordance in evolving trend and the maximal error is around 0.2m/s. A

similar pattern is observed for x position in figure 8.3c. Yaw of the model and a real UAV almost overlap

in figure 8.3b.

Figure 8.4 shows the simulated trajectory (black dots) using algorithm 5 along the Dubins curve

(blue) connecting zn = (0, 0, 0.5, 0) and zs = (4, 2, 2, 0).

8.1.3 The Flying Experiments

Three situations were designed for experiments: 1) avoid static obstacles in office condition; 2)

avoid virtual moving obstacles; 3) avoid actual moving obstacles. 2) and 3) were carried out in a parking

structure. The software architecture is detailed in 3.4.1. In all three situations, the origin of the coordinate

system was set to the position of take-off location. The direction of x was set to the UAV’s yaw direction
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Figure 8.3: Comparison of the behavior of the kinematic model and a real AR.Drone. (a) compares the velocity, (b) compares the yaw,

and (c) compares the position. Variables with the subscript “c” mean data from the model. Variables without subscripts come from a real

AR.Drone.
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Figure 8.5: Two experiment situations: (a) avoid a static obstacle in an office; (b) avoid another AR.Drone in a parking structure.
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the moment it finished take-off. This defined the global reference frame. Meter was used as the length

unit. ∆t in algorithm 2 was set to 1s. In all experiments, instead of a full waypoint sequence, only a

single start and goal pair was considered. It was used as the first step flight experiments to validate the

path planning algorithm.

Flight Experiments in Office

The office had a pillar in the center as the obstacle and table cubes around as the geofence. The UAV

need avoid all of them. The size and locations of the pillar and cubes were known to the path planner.

The start was (0, 0, 0.8) and the goal was (10, 0.6, 0.5). The pillar located at (7.31, 0.2) and its safety

radius was set to 0.6 meter according to the pillar’s size. The four corners of the geofence were set to

(−1.5, 0), (1.2, 0), (−1.5, 11.58) and (1.2, 11.58) based on the office’s area.

flight# 1 2 3 4 5 6 avg

min dis(m) 0.83 0.74 0.94 0.92 0.95 0.83 0.87

Table 8.1: The Closest Distance Between the UAV and the Pillar in Six Flights in the Office.
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Figure 8.6: The logged trajectory of one flight in the office. The red is the planned path and the black is the executed trajectory. (a) is from

a 3D perspective and (b) from a top view. The green cylinder represents the pillar and its radius is 0.6m.

6 successful flights and 5 failing ones were performed. Failure was caused by the inaccuracy of

position system. The logged data showed that the UAV’s trajectory were clear from the pillar and cubes

but actually the UAV collided with them. The magnetometer for yaw measurement was noisy and made

the odometry drift from the real position. We didn’t make efforts to improve the position system because

localization was not the focus of this paper and a less accurate position system suffice to demonstrate the

planning algorithm’s efficacy. The minimum distance between the UAV and the pillar in the 6 successful

flights are displayed in table 8.1. They are all above the 0.6m safety threshold, showing successful
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avoidance. Logged trajectory of one flight of them is plotted in figure 8.6. It is observed in the figure

that the UAV followed the path even though there were drifts. The difference of the UAV’s start from

the path’s start was due to the drift when taking off.
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Figure 8.7: The logged trajectory of the AR.Drone (red) at different time instants to avoid two virtual obstacles. The green obstacle flew

perpendicular to the original route of the AR.Drone and the blue obstacle flew opposite to the original route. Both obstacles have a safety

radius of 1.5m.
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Avoiding Virtual Moving Obstacles

Virtual Obstacles were logged trajectories of a quadrotor flying in simulation. hector quadrotor 2 ROS

package was used to create them. For example, a virtual obstacle flying towards the UAV can be created

by flying the quadrotor in simulation from (0, 0, 0.75) to (10, 0, 0.75) by velocity command v = (−1, 0, 0).

The command was constant but the velocity of the obstacle was not. In all experiments, the UAV took

off from (0, 0, 0) and tried to fly to (15, 0, 0.8). The length unit is meter.

Figure 8.7 shows the trajectory of the AR.Drone (red) avoiding two virtual obstacles (blue and

green) at different time instants. Their radii stand for safety radii. The blue obstacle flew towards the

AR.Drone from (10, 0, 0.75) to (0, 0, 0.75) under the command v = (−1, 0, 0) and the green one from

(5,−5, 0.75) to (5, 1, 0.75) under v = (0, 1, 0). In the whole procedure, the UAV stayed outside the two

spheres, indicating successful avoidance. More flight experiments were carried out with different virtual

obstacles and combinations of them. The speed of the UAV was set to 1m/s. The closest distances

between the AR.Drone and the obstacles were showed in table 8.2. In the table, vkx10 means that the

obstacle was created to move from (10, 0, 0.75) to (0, 0, 0.75) under command v = (−k, 0, 0). It flew

to the AR.Drone head-to-head. v1y-k means that the obstacle started from (k,−k, 0.75) and stopped

at (k, 1, 0.75), representing an obstacle approaching from the lateral direction. In row 1 to 4, the UAV

avoided obstacles flying towards the UAV at different speeds. It is observed that the UAV was able

to avoid obstacles of speeds up to 3m/s under the given take-off and goal position. Row 5 shows the

results to avoid only a perpendicularly moving obstacle. The UAV was able to stay well clear of it during

the whole trajectory in all 3 flights. In the next 3 rows, the UAV tried to avoid two obstacles. One

moved head-to-head and another perpendicularly. The latter started from different locations. For each

combination, the first row shows the smallest distance between the UAV and the first obstacle. The

second row shows that between the UAV and the second. For all 3 combinations, the UAV maintained

separations to two obstacles larger than safety threshold 1.5m in every flight. Therefore, the algorithm

was validated in two-obstacle situations.

The efficacy of replanning was demonstrated in the procedure to avoid the obstacle v1y-7 as in

figure 8.8. The obstacle’s speed was close to zero when the UAV took off. The path generated by the

planner was a straight line to the goal (figure 8.8a). Later the obstacle speeded up and the straight line

path would result in collision. Therefore, a new path was created (figure 8.8b) with the UAV’s current

2http://wiki.ros.org/hector quadrotor
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row# virtual obs 1 2 3 avg

1 v1x10 2.97 2.78 1.89 2.55

2 v2x10 2.12 1.69 1.81 1.87

3 v3x10 1.97 1.86 2.21 2.01

4 v4x10 1.34 1.39 1.44 1.39

5 v1y-7 3.71 3.74 3.52 3.66

6 v1x10&v1y-5
1.95 2.62 2.89 2.49

1.71 2.42 2.04 2.06

7 v1x10&v1y-6
2.71 1.80 2.65 2.39

1.54 1.61 1.72 1.62

8 v1x10&v1y-7
2.97 2.76 2.47 2.73

1.63 1.68 1.58 1.63

Table 8.2: The minimum distances (m) between the UAV and virtual obstacles in multiple experiments. vkx10 means that the obstacle was

created to move from (10, 0, 0.75) to (0, 0, 0.75) under command v = (−k, 0, 0). It flew to the AR.Drone head-to-head. v1y-k means

that the obstacle started from (k,−k, 0.75) and stopped at (k, 1, 0.75), representing an obstacle approaching from the side. The unit is

meter. Rows 1-5 are situations involving only one obstacle and rows 6-8 involve two obstacles. There flights were conducted for each type

of obstacles. The average minimum distances are also presented.
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Figure 8.8: A replan example: in (a) a straight path (red) would not cause collision due to the small initial speed of the obstacle (green

sphere of 1.5m radius). The obstacle however speeded up in (b) and the planner abandoned the previous straight path and created a new

path to avoid the obstacle. The black dots mean the executed trajectory when following the path.
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position as the start. The UAV was able to avoid the obstacle by following the new path until reaching

the goal (figure 8.8c and 8.8d).
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Avoiding an Actual Moving Obstacle

Another AR.Drone was used as the moving obstacle (figure 8.5b). It was controlled by a separate

laptop. Its states were transmitted to the laptop through Wifi. They were next transmitted to the laptop

controlling the host AR.Drone through Ethernet. This way the planner knew the states of the moving
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Figure 8.9: The logged trajectory of the UAV (the red dot curve) at different time instants to avoid a real moving obstacle. The sphere

represents the logged obstacle’s position at each instant. Its radius represents the obstacle’s safety radius and is 1.5m. In all the figures, we

observe that the UAV (left end of the red curve) always stays outside the sphere, indicating the success of avoidance.
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Figure 8.10: The logged trajectory (black) and planned path (red) of the flight in figure 8.9.

obstacle. The obstacle AR.Drone flew towards the host UAV’s taking-off position by following a straight

line. The host AR.Drone needed to avoid it and reach the goal. In the experiment, both AR.Drones first

took off and started to hover. When both of them were in stable hover, the obstacle AR.Drone started

to fly towards the host one and the host one started the execution loop in algorithm 2.

Figure 8.9 demonstrated a full avoidance procedure. Each figure shows a different time instant.

The red is the logged trajectory of the UAV and the sphere is the obstacle. The end of the trajectory

stands for the position of the UAV at the same moment as the obstacle. The obstacle started at

(7.753,−0.145, 0.735) and stopped at (2.43,−0.04, 0.71). The UAV started from (0.11, 0.08, 1.11) and

stopped at (14.74, 0.3, 0.85). The obstacle was commanded to fly at 0.5m/s and the UAV at 1m/s. In

the figures, the UAV never enter the sphere whose radius is the safety distance (1.5m in our case). This

proves that UAV successfully avoided the obstacle. The full trajectory for the same flight is plotted with

the planned path in figure 8.10.

flight# 1 2 3 4 5 6 7 8 9 10 avg

v:1.0 2.58 1.74 2.65 2.29 2.28 2.11 3.45 2.33 2.41 1.63 2.35

v:0.5 2.55 1.99 2.22 1.98 1.58 1.44 1.90 1.99 2.37 3.83 2.19

Table 8.3: The closest distance (in meter) between the UAV and the moving obstacle. The speed of the obstacle is 0.5m/s and that of the

UAV is 0.5m/s or 1.0m/s. We carried out 10 flights for each speed. Only the minimum distance at 6th flight of 0.5m/s is slightly below

the 1.5m safe separation threshold. All the rest flights successfully prove the efficacy of collision avoidance. The last column is the average

minimum distance.

Multiple flights were conducted with the obstacle’s speed at 0.5m/s and the UAV’s speed at 0.5m/s

or 1.0m/s. In all of them, the obstacle AR.Drone took off at (7.5, 0, 0) and fly along a straight line until

reaching (−2, 0, 0.75). Table 8.3 lists the smallest distance between the obstacle and the UAV in all

flights. From the table, the smallest distance of only one flight was slightly below the safety threshold
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(1.5m). This proves the efficacy of the algorithm to avoid a real moving obstacle. Flight videos are

available at http://www.youtube.com/watch?v=ggS5-x0rjNM. Efficacy of the algorithm in avoiding

virtual and actual moving obstacles were examined using logged position data based on optical flow. The

logged position had similar drifts as in office condition although no physical collision occurred. In the

absence of more accurate position systems such as motion capturing system, optical flow was used for

positioning both the UAV and obstacles. The experiments were made as proxy to obstacle avoidance

with positioning system of higher accuracy such as GPS.

Insights From the Experiments

It is found in the virtual obstacles experiment that the algorithm was unable to deal with obstacles faster

than a certain speed given a fixed initial distance between the UAV and the obstacle. A local planner

to generate reactive avoidance motion was needed. Implementing and integrating the local planner is

one of future works. From the experiment in the office, we observed that drifts of the odometry caused

collision with obstacles. This implied that the algorithm will fail with low accuracy of position systems.

In the next section, local avoidance will be integrated and GPS will be used as the position system.

8.2 Experiment Validation of Greedy Closed-Loop RRT

8.2.1 Sampling Strategy

A sample waypoint is obtained by
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with















r = σrnr + r0

θ ∼ U(θ0 − π/2, θ0 + π/2)

(8.10)

where (x0, y0, z0) is the start and (xg, yg, zg) is the goal. nr is a random variable with standard Gaussian

distribution, r0 is the x-y distance between the start and the goal, and σr = 0.5r0 is the standard

deviation. r0 is thresholded by rm to prevent a large deviation from the original route. θ0 is the heading

of the vehicle when it reaches the start node, θ is sampled uniformly in an angle of π spanned at the

start and centered in θ0. zs is set to zg.
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8.2.2 The Closed-Loop System

This section describes the implementation of the controller and the UAV’s model for the closed-loop

prediction in Fig 6.1. The controller used in prediction was based on the actual controller used by the

autopilot of the UAV. In our application, APM:Plane 3 was used. Its controller includes L1-controller Park

et al. (2004) for navigation and Total Energy Control System(TECS) Shevchenko (2013) for controlling

the speed and the height. The reference command for the L1-controller was the latitude and the longitude

of the target waypoint and the outputs are roll and yaw commands for the UAV. The reference commands

for TECS are target height and speed and the outputs are pitch and throttle commands for the UAV.

The UAV’s dynamic model receives roll, yaw, pitch, and throttle commands and updates the UAV’s

state. They can be described in the following equations.

ẋ = V cos(β)cos(α) (8.11)

ẏ = V cos(β)sin(α) (8.12)

ż = V sin(β) (8.13)

V̇ = K1(Tc/M − gsin(β)) (8.14)

β̇ = K2(βc − β) (8.15)

α̇ = K3(αc − α) + g
V tan(γc) (8.16)

where (γc, αc, βc, Tc) are roll, yaw, pitch and throttle commands. The UAV’s state is

X = (t, x, y, z, V, β, α) (8.17)

where (x, y, z) is the 3D position, V is the speed, β is the yaw and α is the pitch. K1,K2,K3 are control

gains. Universal Transverse Mercator coordinate system (UTM) is used as the geographical coordinate for

(x, y). NEU convention is used for (x, y, z). We compare a predicted trajectory by the closed-loop system

in Fig 6.1 with an actual flight trajectory of SITL. The UAV flew from waypoint (33.42,−111.91, 669)

to (33.42,−111.94, 615). The initial heading of the UAV is 74◦ from the north. Figure 8.23 shows

the comparison of the two trajectories. It is observed that the trajectories almost overlap in x. They

don’t overlap in y and z but show accordance in the changing trend. The differences in y and z are

are less than 30 meters. In fig 8.11d, it is seen that the distance between the two trajectories in x − y

plane is less than 50 meters and at most of the time is less than 30 meters. The differences are small

3http://plane.ardupilot.com/
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Figure 8.11: Comparison of predicted and actual flight trajectory of the UAV. (a)-(c) compare their difference in x, y and z respectively. (d)

plots their distance in the x− y plane at each time instance.

compared to the required separation from the UAV to other aircraft, in our case, 300 meters. There are no

perfect overlaps between the predicted and actual trajectories because approximation and simplification

are applied in controllers and UAV’s model in the closed-loop system for prediction. In prediction, we

are unable to simulate some sensors’ readings which are used in the actual controller and UAV model.

However, the implemented closed-loop prediction is sufficient for path planning.

8.2.3 Software-in-the-Loop Experiments

Software In the Loop (SITL) simulation was used as the first step test before real flight tests. In

SITL, the key low level hardware drivers (such as gyros, accelerometers and GPS) run in the same way

that they would run in a real flight. The architecture of SITL setup is detailed in 3.4.2.

In Software In the Loop simulation, the waypoints sequence 1→2→3→4 (as in Fig 3.14) was assigned

to the UAV. The coordinates of the waypoints were:1(33.422,-111.909,615),2(33.422,-111.934,615),

3(33.407,-111.940,615),4(33.408,-111.909,615). The UAV used in SITL was commanded to fly at 30

m/s. The average speeds for the six logged ADS-B aircraft were 62, 250, 255, 125, 75, 201 m/s re-

spectively. They didn’t fly with constant speed. In SITL, logged ADS-B data were played back at 1HZ

(the frequency of ADS-B communication) and the path planner received the data and used them in path
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planning. ADS-B data logging is described in 3.4.2. The time horizon for collision detection was 30

seconds. Different offsets were added to the logged data to induce collision with the UAV at different

time instances. The UAV was initially flown in SITL along the waypoint sequence without introduction

of obstacles. A full trajectory X ′(t) from the first to the last waypoint was obtained. To make an aircraft

encounter the UAV at time t, we add an offset to the logged data:

xoff = x′(t)− xac(t) (8.18)

where x′(t) ∈ X ′(t). xac(t) is the position of the aircraft at t according to the logged ADS-B data. In

the experiment, offsets were created by assigning t = 40, 60, 100, 120, 140, 160, 180, 200, 220, 240, 260

seconds.

Fig 8.12 shows three typical situations to avoid a single aircraft, where the UAV has head-on, lateral

and tail encounters with the aircraft. Using the first column, head-on encounter, as an example to explain

the figures: the UAV plans to fly from waypoint 1 to 2 by following the straight path between them. The

collision detection algorithm detects a collision with the coming aircraft (blue icon in the figures). The

white cross indicates the predicted collision location. The path planner generates a path to avoid the

aircraft. The path (marked with yellow) starts from waypoint 1 and ends at waypoint 2. It goes through

a generated intermediate waypoint W. In Figure 8.12g, 8.12j, 8.12m, and 8.12p , the UAV maintains

a separation to the aircraft by following the path. Columns 2 and 3 show the case of lateral and tail

encounters.

Fig 8.14 shows the situation of simultaneously avoiding two aircraft. From the figure, we observe that

the path planning algorithm is applicable to two aircraft avoidance. Collisions of the two aircraft with the

UAV happen closely in the original flight route. Otherwise, it is a problem of avoiding two single aircraft

in sequence. Some SITL tests videos can be found at http://www.public.asu.edu/~ylin122/ADSB.

mp4.

To further test the algorithm, we created different encounters of aircraft and the UAV by randomly

selecting the offsets to the logged ADS-B data. The tests include one, two, and three aircraft. The

UAV may come across multiple aircraft simultaneously or in sequence. We performed 20 tests involving

one, two and three aircraft respectively. Real and simulated ADS-B data were used. Each test may use

different aircraft. The same aircraft may encounter the UAV at different time instance in different tests.

In collision avoidance, the UAV should keep the other aircraft from its safety volume. The safety

volume used in the experiments is a cylinder centered at the UAV’s position with bottom circle radius of
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(a) head encounter:0 (b) lateral encounter:0 (c) tail encounter:0

(d) head encounter:1 (e) lateral encounter:1 (f) tail encounter:1

(g) head encounter:2 (h) lateral encounter:2 (i) tail encounter:2

(j) head encounter:3 (k) lateral encounter:3 (l) tail encounter:3

(m) head encounter:4 (n) lateral encounter:4 (o) tail encounter:4
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(p) head encounter:5 (q) lateral encounter:5 (r) tail encounter:5

Figure 8.12: Path generation to avoid a single aircraft for greedy closed-loop RRT. The green icon is the UAV and the blue is the obstacle

aircraft. The white cross indicates the predicted collision location. Three columns show the situation of head-on, lateral and tail encounters

with the aircraft. The second figure of each column shows the generated path in yellow. From the third to the last figure of each column,

the UAV follows the generated paths and avoids the aircraft.

300 meters and height 100 meters. The values are based on the rule of NASA UAS Operation challenge 4

. This means that an aircraft should maintain horizontal distance larger than 300m or vertical distance

larger than 50m. In Fig 8.15, we plot the horizontal and vertical distances between the UAV and the

aircraft when the UAV is closest to each aircraft. The rectangle marks the safety volume. It is observed

from the figure that the collision avoidance algorithm fails in only five encounters. In some of the failures,

the horizontal distance between the UAV and an aircraft is only slightly lower than 300m threshold.

8.3 Experiment Validation of Planning Using Reachable Sets

Software-In-the-Loop experiments of the same setup were used. We first show in Fig.8.16 the path

generation and collision avoidance procedure in three representative situations, namely head-on, lateral

and double-aircraft encounters. The second column is used to explain the avoidance procedure.

By default, the UAV needs to fly through waypoints sequence 1→2→3→4. A collision (the white

cross) was predicted in Fig 8.16b and the avoidance path (red path) was generated in Fig 8.16e using

Algorithm 3. After that, the UAV should fly to the intermediate waypoint W before to waypoint 3. The

UAV follows the new waypoint sequence 1→2→W→3→4 and avoids a collision with the obstacle aircraft

in Fig 8.16h, 8.16k, 8.16n, and 8.16q. In all experiments, the time interval for path generation ∆t was

set to 1 second.

We next compare the performance of the reachable set and linear motion assumption used in equa-

tion 6.3 to predict the obstacle aircraft’s motion. An offset was added to one aircraft trajectory so that

it will encounter the UAV at the point marked by a black circle in Fig.8.17. 20 SITL experiments were

performed. The linear motion assumption was used in 10 of them and the reachable set is used in the

4http://www.uasaoc.org/MEDIA/2014 UAS AOC Rules Final.pdf
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(a) case A:0 (b) case B:0 (c) case C:0

(d) case A:1 (e) case B:1 (f) case C:1

(g) case A:2 (h) case B:2 (i) case C:2

(j) case A:3 (k) case B:3 (l) case C:3

(m) case A:4 (n) case B:4 (o) case C:4
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(p) case A:5 (q) case B:5 (r) case C:5

Figure 8.14: Path generation to simultaneously avoid two aircraft for greedy closed-loop RRT. The green icon is the UAV and the blue is

the obstacle aircraft. The white cross indicates the predicted collision location. In each column, encounters happen in different sections of

the original flight plan. Each column shows a different situation. Collisions of the two aircraft with the UAV happen closely in the UAV’s

original route in each case.
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Figure 8.15: Scatter plot of horizontal and vertical distances when the UAV and aircraft were closest in all 120 encounters. Successful

collision avoidance requires that a scatter point should not fall into the rectangle with 300m as its width and 50m as its height. It is observed

only 5 encounters in total fall into the rectangle.

rest. The horizontal and vertical distances between the UAV and the aircraft when they were closest

to each other are plotted in Fig.8.18. The blue circles stand for the results using the reachable set

and red crosses the linear motion assumption. The rectangle indicates the safety zone around the UAV.

It corresponds to a cylinder whose height is 100 meters and bottom circle radius is 300 meters. It is

observed that the obstacle do not enter the safety zone in all 10 runs with the reachable set. However,

the linear motion assumption gives 6 failures. Such failures are predictable because the obstacle aircraft

is not moving along a straight line when it encounters the UAV.

To further test the algorithm, offsets were added to the same ADS-B trajectory (UA787) so that

encounters happen in different time instance after the UAV takes off. The time instances selected were

t = 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260,

280, 300s. For each offset, the experiments were run 10 times. In Fig.8.19, we plot the horizontal and
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(a) head encounter:0 (b) lateral encounter:0 (c) double aircraft:0

(d) head encounter:1 (e) lateral encounter:1 (f) double aircraft:1

(g) head encounter:2 (h) lateral encounter:2 (i) double aircraft:2

(j) head encounter:3 (k) lateral encounter:3 (l) double aircraft:3

(m) head encounter:4 (n) lateral encounter:4 (o) double aircraft:4
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(p) head encounter:5 (q) lateral encounter:5 (r) double aircraft:5

Figure 8.16: Path generation to avoid one or two obstacle aircraft using reachable sets. The circled aircraft icons are obstacle aircraft. The

white cross indicates the predicted collision location. The first two columns show the situation of head-on and lateral encounters with a

single obstacle aircraft. The third one shows the encounter with double aircraft. The second figure of each column shows the generated path

in red. From the third to the last figure of each column, the UAV follows the generated paths and avoids the obstacle aircraft. By default,

the UAV needs to fly through waypoints sequence 1→2→3→4. The path planner generates an intermediate waypoint W. The UAV follows

the new waypoint sequence (1→2→W→3→4 in the second column for example) and avoids a collision with obstacle aircraft.
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Figure 8.17: Part of a logged ADS-B trajectory of an actual aircraft (UA787). The blue dashed ellipse indicates the section that the aircraft

makes a right turn. The black circle indicates the set encounter point for the experiment.
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Figure 8.18: The horizontal and vertical distances between the UAV and the obstacle in Fig.8.17 when they were closet to one another. The

encounter is set as in Fig.8.17. The blue circles stands for collision checking using the reachable set. The red cross stands for the situation

using linear motion assumption. The rectangle is the safety zone.
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Figure 8.19: The horizontal and vertical distances between the UAV and the obstacle UA787 when they were closet to one another. Encounters

happen at different time instances after the UAV takes off. The rectangle shows the safety zone.

92



vertical distances between the UAV and the obstacle aircraft when they were closest to each other. It

is seen that the obstacle entered the UAV’s safety zone in only one encounter. This results in 99.23%

success rate.
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Figure 8.20: Scatter plot of horizontal and vertical distances between the UAV and obstacle aircraft when they were closest (using reachable

sets). The offsets and combinations of aircraft were randomly selected. 20 tests involving one, two, or three aircraft were performed. 120

encounters happen in total.

As a more extensive test, same tests involving random obstacle aircraft as in section 8.2.3 were

performed. Fig.8.20 shows the horizontal and vertical distances between the UAV and aircraft when they

were closest in all 120 encounters. We observe that only in 3 encounters the avoidance fails. This gives us

a 97.5% success rate. It improves the 95% success rate using the linear motion assumption in Fig. 8.15.

8.4 Experiment Validation of the Method Using Intermediate Points

8.4.1 Hardware-in-the-Loop Experiment

The path guiding controller and the UAV’s model in the closed-loop system were the same as in

section 8.2.2. Similar to previous Software-In-the-Loop experiments, logged ADS-B data of commercial

aircraft’s trajectories were used as the obstacle aircraft and will be played back in the simulation. The only

difference is that the speeds of the obstacle aircraft were scaled according to the speed of the fixed-wing

UAV used in HIL. Their representative speeds were 31, 125, 127.5, 62.5, 37.5, 100.5 m/s respectively.

The representative speed of the UAV was 15 m/s. The UAV needs to fly through a given waypoint se-

quence 1→2→3→4 as in Figure 8.21a. The coordinates of the waypoints were:1(33.440,-111.996,1436.7),
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(a) single aircraft:0 (b) single aircraft:1 (c) single aircraft:2

(d) double aircraft:0 (e) double aircraft:1 (f) double aircraft:2

(g) three aircraft:0 (h) three aircraft:1 (i) three aircraft:2

Figure 8.21: Path generation to avoid obstacle aircraft (using intermediate points). The red icon with yellow circle is the UAV and the black

circles mark the location of obstacle aircraft. The black arrows show their moving directions. The three rows present the procedure to avoid

one to there aircraft respectively. In each row, the UAV first generate a avoidance waypoint (waypoint 1 in the figures of the second column)

when collision is predicted. Then it flew towards the avoidance waypoint. The UAV heads towards the original goal waypoint after reaching

the avoidance waypoint (the figures of the third column).

2(33.441,-112.029,1436.7), 3(33.425,-112.029,1436.7), 4(33.425,-111.995,1436.7). The immediate next

waypoint was defined as the goal in path planning. Figure 8.21 shows the path generation procedure from

the map of HIL software to avoid single, double, and three obstacle aircraft. Taking the single aircraft

case (the first row) as an example, in Figure 8.21a the UAV flew to the goal waypoint 1 according to

the original plan and detects a collision (indicated by a red cross) with obstacle aircraft. In Figure 8.21b

the avoidance waypoint (waypoint 1) was generated and the UAV flew to the waypoint and avoid colli-

sion with the obstacle aircraft. In Figure 8.21c the UAV passes the obstacle aircraft and the avoidance

waypoint was removed from the waypoint sequence. The UAV flew to the original goal. Figures in the

second and the third rows show the situation involving more than one obstacle aircraft.

To throughly test the algorithm, we performed HIL tests involving different obstacle aircraft with

different encounter time. The aircraft and their encounter time with the UAV were randomly selected.
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Figure 8.22: Scatter plot of horizontal and vertical distances when the UAV and aircraft were closest in all 120 encounters. Successful

collision avoidance requires that a scatter point should not fall into the rectangle with 300m as its width and 50m as its height. It is observed

only 5 encounters in total fall into the rectangle.

10 tests were performed with 1 to 3 aircraft respectively. Figure 8.22 shows both the horizontal and

vertical distance between the UAV and each aircraft when they were closest to each other. The rectangle

indicates the safety zone around the UAV. It is a cylinder centered at the UAV’s position with bottom

circle radius of 300 meters and height 100 meters. From the figure, we observe that only in 5 encounters

the obstacle aircraft fall into the safety zone.

8.4.2 Outdoor Real Flight Experiment

We first describe the closed-loop system of the vehicle used in planning. Following that, we present

the outdoor flight experiment results.

The Vehicle’s Closed-Loop System

A waypoint command to the AR.Drone contains (xg, yg, zg) position and speed vc. With the position

and speed as the input, the waypoint guiding controller outputs the yaw command, acceleration in x− y
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plane and vertical speed. It is described as

φc = atan2(yg − y, xg − x) (8.19)

a = k1(vc − v) (8.20)

vz = k2(zg − z) (8.21)

Where (x, y, z) is the vehicle’s current position and v the current speed. k1 and k2 are different gains.

With the heading φc, acceleration a, and vertical speed vz as the input, the vehicle’s model is

φ̇ = k3(φc − φ) (8.22)

v̇ = a (8.23)

ẋ = vcosφ (8.24)

ẏ = vsinφ (8.25)

ż = vz (8.26)

To validate the closed-loop system model, an AR.Drone was commanded to fly from (33.409969,-

111.893976,1.54) to (33.410139,-111.893931,1.5) with the speed of 2 m/s. Figure 8.23 compares the

trajectory data acquired from the real flight and simulated by the closed-loop system. Figure 8.23a, 8.23b,

and 8.23c show the comparison in x,y,z components. Figure 8.23d plots the distance in x−y component.

It is observed from the figures that the x − y error distance does not exceed 2m and z error stays less

than 0.1 meter. Such modeling error is acceptable by the path planner and therefore the closed-loop

system model can be used in planning.

Flight Tests

In the flight tests, the host UAV takes off from (33.409960,-111.893948) and it needs fly to the goal

(33.4102431,-111.89398441). The obstacle UAV takes off from (33.410187,-111.893931) and flew to

where the host UAV takes off. They both fly at speed 1 m/s and height 1.5 m. There will be head-on

encounter between the host and obstacle UAV.

Figure 8.24 shows the trajectories of both host and obstacle UAVs in one of experiment flights. UTM

coordinate was used in the figure. UAVs’ positions were subtracted by the initial position of the host

UAV. Each triangle has the same heading as the UAV at that moment. Triangles marked with the same

number stand for the position and heading of two UAVs at the same time instance. The obstacle UAV

flew from the north to the south and the host UAV flew in the opposite direction. The host UAV flew to
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the east to avoid the collision with the obstacle UAV. After it passes the obstacle UAV, it continues to

its original goal.

(a) (b) (c)

Figure 8.25: Snapshots of one of outdoor flight experiments. East was on the right and north was in the direction going away from the

camera. Initially, the host UAV flew to the north and the obstacle UAV to the south (Figure 8.25a). Then the host UAV flew to the east to

avoid the obstacle UAV (Figure 8.25b. After passing the obstacle UAV, the host UAV returned to the original route and headed to the goal

(Figure 8.25c).

Figure 8.25 are the snapshots of the flight experiment of Figure 8.24. The camera was facing to the

north and the east was on the right. Initially, the host UAV flew to its goal to the north and the obstacle

UAV to the south (Figure 8.25a). Upon the prediction of a collision, he host flew to the generated

avoidance waypoint in the east to avoid collision with the obstacle UAV (Figure 8.25b). The host UAV

returned to its original route and headed to its goal after passing the obstacle UAV (Figure 8.25c).

Table 8.4 records the horizontal and vertical distance between the host and obstacle UAVs when they

flight 1 2 3 4 5 6 7 8 9 10

h dis 2.365 2.14 4.431 6.119 3.523 3.296 3.43 3.25 7.757 3.83

v dis 0.03 0.45 0.01 0.117 0.032 0.05 0.001 0.013 0.015 0.033

Table 8.4: The Horizontal and Vertical Distance Between the Host and Obstacle UAV When They Were Closest to Each Other from Ten

Flight Tests.

were closest in each flight experiment. 10 flights in total were performed. The safety volume is a cylinder

whose height of 1m and bottom circle radius 2 m. Therefore, the obstacle incurs the UAV’s safety volume

in none of the flight in table 8.4. They indicates successful collision avoidance.
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Chapter 9

CONCLUSIONS

9.1 Summary

In this thesis we have developed and experimentally validated algorithms that allow an Unmanned

Aerial Vehicle to autonomously avoid moving obstacles. The main contributions of this thesis are:

• An computer-vision based reactive avoidance method as the reactive motion planner to avoid a

moving obstacle close to the UAV. The method uses the potential field to create avoidance actions.

• A global path planner based on Dubins curve to generate an optimal path for a fixed-wing UAV to

avoid collisions.

• A Closed-Loop RRT based method that is able to generate collision avoidance paths in real time

for a UAV. The path satisfies the UAV’s model by construction.

• Extending the Closed-Loop RRT based method so that it can generate more candidate paths in

the same amount of time and deal with obstacles’ motion uncertainty.

The initial reactive method is a fast motion planner but it does not consider the vehicle’s model and

path optimality. The Dubins curve method creates path that is optimal in terms of length but it uses

a simplified vehicle’s model. The Closed-Loop RRT based method is able to deal with very complex

non-linear model of the vehicle and create optimal paths. It can be improved to generate more candidate

paths by using a greedy version of Closed-Loop RRT and exploiting intermediate points. By using a

reachable set to represent a moving obstacle’s motion uncertainty in collision check, the method can be

improved to avoid obstacles that moves not in a straight line.

9.2 Future Directions

In the thesis, the path planning methods are at best validated by real flights using small quadrotors

in a small area ( less than 50m×50m ). The scale of the space where collision avoidance happens will

be much larger than this. Therefore, it is still an interesting problem to investigate if the methods can

be applied to real flights in a larger space in the air by real flight experiments.
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This thesis focus on motion planning for moving obstacle avoidance. Detection and tracking moving

obstacles using a sensor onboard on an UAV is still an open problem. The state-of-the-art works (Fu

et al. (2014)) can only detect and tracking them in a camera image. To obtain 3D information of the

obstacle using onboard sensors is challenging. MacLachlan (2005) developed a method to track moving

objects using laser for ground vehicle. This could be applied to moving objects tracking for UAV as well.

The integration of moving obstacle detection and tracking techniques and motion planning algorithms

to avoid them is the final target of sense-and-avoid research. Only after achieving this, we can say that

we build a sense-and-avoid system for UAVs.
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APPENDIX A

VIDEOS OF SOME EXPERIMENTS
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In this appendix, videos link of some experiments are listed:

• Potential field based reactive avoidance methods:

https://youtu.be/ZOqQ0Qcgp0Y and

https://youtu.be/UNERMzG1NfE.

• Indoor flight experiments for Closed-Loop RRT based methods:

https://youtu.be/ggS5-x0rjNM

• Software-In-the-Loop Simulation for greedy version of Closed-Loop RRT based methods:

https://youtu.be/bBjqc573cJM

• Hardware-In-the-Loop Simulation for intermediate points based method:

https://youtu.be/y75JoHAbaqg

• Outdoor real flight experiments for intermediate points based method:

https://youtu.be/n-pacvmoPZs
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APPENDIX B

ANALYSIS OF THE MOTION PLANNERS
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In this appendix, we prove that the motion planning methods for moving obstacle avoidance in

chapter 6 and chapter 7 are probabilistically complete. That means, the probability of not being able to

find a path if one exists will approach zero when the number of samples goes asymptotically to infinity.

B.1 Expansive State×Time Space

Most of contents in this section are taken from Hsu et al. (2002) because the authors analyzed similar

problem to ours.

Given two points (s, t) and (s′, t′) in free state×time space F , (s′, t′) is defined as reachable from

(s, t) if there exists an collision-free trajectory induced by the closed-loop system as in Fig. 6.1 from (s, t)

to (s′, t′). Let R(p) denote the set of points reachable from some point p; it is called the reachable set

of p. For any subset S ⊂ F , the reachable sets of all points in S:

R(S) =
⋃

p∈S

R(p) (B.1)

The lookout of a set S ⊂ F is defined as the subset of all points in S whose reachable set overlap

Figure B.1: The Lookout of a Set S.

significantly with the reachable set of S that exclude S. The idea is illustrated as the yellow area in

Fig. B.1 (taken from Hsu et al. (2002)).

DEFINITION 1. Let β be a constant in (0,1]. The β-lookout of a set S ⊂ F is

β − LOOKOUT(S) = {p ∈ S|µ(R(p) \ S) > βµ(R(S) \ S} (B.2)

where µ(X ) stands for the volume of a set X ⊂ F
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DEFINITION 2. Let α and β be two constants in (0,1]. For any p ∈ F , the set R(p) is (α, β) −

expansive if for every connected subset S ⊂ R(p),

µ(β − LOOKOUT(S)) > αµ(S) (B.3)

Figure B.2: An Example to Explain β−Outlook and (α, β)−Expansive. The black point has a small β because it can only reach a small

portion of S2. However, a lot of points around it also have same reachable area. That gives a large α. The point on the right has a larger

reachable area in S2, but only points near the narrow passage have such a large reachable set. Therefore, the α value is small.

Fig B.2 (taken from Hsu (2000)) is used to explain the two definitions. On the left figure, the black

point can only reach a small portion of S2 due to the geometry constraint posed by the red obstacles.

Therefore, it has a small β value in definition 1. However, a lot of other points has the reachable set

of the same size. Therefore, the α value in definition 2 is large. The point on the right figure, on the

contrary, is able to reach a larger portion of S2. It corresponds to a larger β value, but only a small

number of points close to the narrow passage can have such a large reachable area. Therefore, it has a

smaller α value.

Suppose that M = (m0,m1,m2, ...) is a sequence of collision free milestones generated by sampling

strategies in section 8.2.1 or 8.1.1. A milestone is a point (s, t) ⊂ F . The state s is sampled and time

t is determined in the procedure of trajectory simulation. Let Mi be the first i milestones in M . mi is

called a lookout point if it lies in the β−lookout of R(Mi−1). It is proved in LEMMA 2 of Hsu et al.

(2002) that:

A sequence of r milestones contains k lookout points with probability at least 1−k(1−α)r/k, where

k(1 − α)r/k is probability that the whole sequence does not contain k lookout points. To facilitate the

prove in the coming section, we define the reaching set of p ∈ F as the set of all points in F that can

reach p. It is denoted by RI(p). It is defined reversely to a reachable set.
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B.2 Proof of Probabilistic Completeness

Assuming that the state×time space where the UAV operates in is (α, β) − expansive, we need to

prove that we can find one milestone sequence M = (m0,m1,m2, ..,mN ), N > 0 that starts from the

current UAV state (s0, t0) and ends in the goal (sg, tg). Here sg is given and tg is flexibale and can be

determined by trajectory simulation. We assume that

µ((sg, tg))/µ(S
′) = γ (B.4)

where γ ∈ (0, 1) and S ′ is the subset where we consider our problem.

The sequence M should satisfy three conditions to be a path:

1. m0 lies in the the reachable set of (s0, t0). This makes sure that the sequence can be connected

from the UAV’s start state.

2. The part of the sequence that starts from m1 must be lookout points. This makes sure that the

sequence is not broken by any obstacle.

3. The last milestone mN must be able to reach the goal. This makes sure that the sequence can

finally reach the goal.

The probability that condition 1 and 2 are satisfied is at least 1− (N + 2)(1− α). Here (N + 2)(1− α)

is the probability that any milestone is not a lookout point or m0 does not lie in the reachable set of

(s0, t0). The probability that condition 3 is statisfied is γ according to equation B.4. Therefore, the

probability that a milestone sequence satisfy all three conditions is:

Pr(L) > γ[1− (N + 2)(1− α)] (B.5)

That is to say, the probability that a sequence fail to be a path is

¯Pr(L) 6 1− γ[1− (N + 2)(1− α)] (B.6)

Since 1−γ[1−(N+2)(1−α)] is a variable that stands for probability, we have 1−γ[1−(N+2)(1−α)] 6 1.

It is equivalent to

(1− α) 6
1

N + 2
(B.7)

Assuming from the tree structure, we can obtain n1 sequences of 1 milestone, n2 sequences of 2 mile-

stones,... nM sequences of M milestones. Substituting N by M − 1, we have

(1− α) 6
1

M + 1
(B.8)
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The probability that all types of milestone sequence fail to qualify as paths are:

Pr(No) 6 {1− γ[1− 2(1− α)]}n1{1− γ[1− 3(1− α)]}n2 ...{1− γ[1− (M + 1)(1− α)]}nM

6 [1− γ + γ
2

M + 1
]n1 [1− γ + γ

3

M + 1
]n2 ...[1− γ + γ

M

M + 1
]nM−1

< (1− γ
1

M + 1
)Nm−1

(B.9)

where Nm is the total number of milestone sequences. It is a monotone increasing function of number

sampling milestones. Therefore, when the number of sampling increases to infinity, Nm also increases

to infinity. According to equation B.9, the probability that all milestone sequences fail to be a path

approaches to zero when Nm increases to infinity. Therefore, we prove that a path connecting the start

and goal lying in the free time×space F can be found if one does exist. This proves the probabilistic

completeness of the algorithm in chapter 6. The algorithms in chapter 7 are the special cases when

N = 3 in the proof above.
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