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ABSTRACT  
   

An understanding of the formation of spatial heterogeneity is important because 

spatial heterogeneity leads to functional consequences at the ecosystem scale; however, 

such an understanding is still limited. Particularly, research simultaneously considering 

both external variables and internal feedbacks (self-organization) is rare, partly because 

these two drivers are addressed under different methodological frameworks. In this 

dissertation, I show the prevalence of internal feedbacks and their interaction with 

heterogeneity in the preexisting template to form spatial pattern. I use a variety of 

techniques to account for both the top-down template effect and bottom-up self-

organization. Spatial patterns of nutrients in stream surface water are influenced by the 

self-organized patch configuration originating from the internal feedbacks between 

nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-

stream macrophyte are shaped by the spatial gradient of water permanence and local self-

organization. Additionally, significant biological interactions among plant species also 

influence macrophyte distribution. The relative contributions of these drivers change in 

time, responding to the larger external environments or internal processes of ecosystem 

development. Hydrologic regime alters the effect of geomorphic template and self-

organization on in-stream macrophyte distribution. The relative importance of niche vs. 

neutral processes in shaping biodiversity pattern is a function of hydrology: neutral 

processes are more important in either very high or very low discharge periods. For the 

spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen 

becomes more limiting, the effect of self-organization intensifies. Changes in relative 

importance of different drivers directly affect ecosystem macroscopic properties, such as 
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ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to 

increase ecosystem resistance to elevated external stress, and make the backward shifts 

(vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis 

effect. Finally, I address the question whether functional consequences of spatial 

heterogeneity feed back to influence the processes from which spatial heterogeneity 

emerged through a conceptual review. Such feedbacks are not likely. Self-organized 

spatial patterning is a result of regular biological processes of organisms. Individual 

organisms do not benefit from such order. It is order for free, and for nothing. 
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OVERVIEW 

Landscapes, including both the biological components and the physical template, 

are heterogeneous. The cause of such spatial heterogeneity is one of the fundamental 

questions of landscape ecology (Turner 1989). Spatial heterogeneity has been mostly 

attributed to ecological responses to environmental gradients and/or geomorphic 

variation. For example, the spatial heterogeneity of shrubs at the forest-tundra ecotone 

was related to local topography (Ropars and Boudreau 2012), and spatial heterogeneity of 

nutrients in stream surface water was found to be dominated by the surface water-

groundwater exchange (Dent and Grimm 1999). At the watershed scale, geomorphology, 

through its effect on the deposition of materials, flowpaths, and residence times, could 

influence the spatial distribution of macrophytes in rivers (Curie et al. 2007). Other 

factors, such as socio-economic, demographic, and cultural factors also influence the 

formation of biological patchiness (Black, Morgan, and Hessburg 2003).  

In absence of such top-down influences, spatial heterogeneity can also emerge 

from a homogeneous template, via the mechanism of spatial self-organization. Spatial 

self-organization is a process where regular spatial patterns emerge from homogeneous 

initial conditions through internal local interactions. Self-organized patterns such as 

vegetation stripes (‘tiger bush’), labyrinths, spots (‘leopard bush’) and gaps on arid and 

semiarid ecosystems have been observed around the world (Rietkerk et al. 2002; 

Deblauwe et al. 2008). The causal mechanism for such ordered patterns involves scale-

dependent feedbacks, which emerge from short-ranged facilitation and long-ranged 

competition for resources (Rietkerk and van de Koppel 2008).   
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Natural landscapes are typically heterogeneous. Spatial biological patchiness is 

usually a result of both external template heterogeneity and internal interactions and 

feedbacks (Sheffer et al. 2013). In addition, some ecosystems such as desert streams are 

characterized by high environmental temporal variability. The drivers (and their relative 

importance) of this biological patchiness might change depending on the interannual 

variation in environmental conditions. There are few research results on these topics.   

Understanding the processes that generate the spatial heterogeneity is important 

for at least two reasons. First, spatial heterogeneity is intimately related to ecosystem 

functioning. Landscape heterogeneity has myriad influences on population dynamics 

(Newton, Woolnough, and Strayer 2008) and community structure (Dormann et al. 

2007). It also influences ecosystem processes, such as nutrient loading to surface water 

(Strayer et al. 2003), nutrient retention in terrestrial ecosystems (Bennett, Carpenter, and 

Clayton 2005), and sediment loss (Ludwig et al. 2007). Strong relationships between 

landscape heterogeneity and ecosystem functioning suggest that spatial heterogeneity will 

affect the sustainability of ecosystem services.  

Second, patterns do not equal processes. Individual processes do not affect 

patterns in a unique way; that is, different mechanisms may give rise to similar or same 

patterns. However, ecosystem response to disturbance may depend on specific 

formulations of the underlying mechanisms. Liu et al. (2012) compared two mechanically 

different models of regular spatial pattern formation in mussel beds. The two models 

produce very similar spatial patterns, but they have distinctively different responses to 

disturbance and to post-disturbance recovery. Because of this non-unique relation 

between pattern and underlying processes, it is imperative to know whether and how the 
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focal ecosystem property depends on specific formulations of the underlying process 

from which the large-scale spatial heterogeneity emerges.  

In this dissertation I studied the causes of spatial heterogeneity, considering the 

template effect and internal feedbacks, as well as their changes over time. My primary 

research question was: what explains the spatial heterogeneity in ecosystems? I examined 

different types of ecological components and explicitly took into consideration the 

temporal changes in drivers. Research was conducted primarily at Sycamore Creek, a 

stream in the Sonoran Desert in Arizona, where extensive work on ecosystem spatial 

heterogeneity in the past three decades laid the foundation for my work. The question 

was addressed through six chapters.   

 

RESEARCH CHAPTERS 

In Chapter 1, I studied the spatial distribution of macrophytes along a 12-km 

stretch of Sycamore Creek between 2009 and 2013. Sycamore Creek experienced 

ecosystem state change in around 2000, when cattle-grazing was terminated by the US 

Forest Service (Heffernan 2008). After that, the system shifted from gravel/algae 

dominated state to a state with abundant in-stream macrophytes. I used 5-year annual 

survey data on wetland abundance and spatial distribution combined with Bayesian 

hierarchical models to answer the question: whether and how does hydrological regime 

alter the effect of geomorphic template on wetland distribution? The results showed a 

stronger geomorphic template effect in drier years than that in wetter years.  

Without a preexisting template effect, internal feedbacks alone can also give rise 

to plant spatial distribution (Kéfi et al. 2007). Positive feedback between wetland plants 
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and sediments would increase the water holding capacity of wetland sediments, which 

improves the habitat condition for plant growth. The understanding on the interaction 

between physical template and internal feedbacks in giving rise to biological patchiness is 

very limited. In Chapter 2, I used 6-yr wetland survey data (2009 to 2014) from 12-km 

of Sycamore Creek, combined with a lattice simulation model to investigate the 

following questions: (1) how do template heterogeneity and internal local feedbacks 

(self-organization) interact to influence wetland spatial distribution? And (a) how do 

template heterogeneity and local facilitation interact to influence ecosystem robustness 

(including resistance to stress and capacity to recover)? The drivers of template 

heterogeneity and self-organization were both important and their relative importance 

varied linearly with the consequence of winter floods (quantified by the combined effect 

of the timing of a flood event and its magnitude: more frequent, later-occurring, and 

larger floods are associated with greater consequences). Local facilitation increased 

system’s resistance to stress, but increased hysteresis (back shift from an undesirable 

state). Template heterogeneity, however, interacted with local facilitation to reduce 

hysteresis effect.  

Wetlands are considered biogeochemical hotspots because their anoxic, organic-

rich sediments are conductive to denitrification (McClain et al. 2003). Studied of in-

stream macrophytes have often found significant nutrient retention (Schulz et al. 2003; 

Desmet et al. 2011). These studies generally integrate the effects of in-stream 

macrophytes over larger downstream distance (or areas). As a result, the effect of 

macrophytes on the spatial heterogeneity of nutrients remains uncertain. In Chapter 3, I 

explored the drivers of spatial pattern of nutrients in stream surface water and assessed 
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the effect of wetland distribution. This study took advantage of existing data collected in 

1990s by Dent and Grimm (1999), who took water samples every 25 m along the 12-km 

main stem of Sycamore Creek at three stages of post-flood successional time. When these 

surveys were done in-stream macrophytes were rare. By 2013 after cattle removal, about 

40% of the stream (in length) was covered by wetland plants. I repeated their experiment 

in May 2013 along the same 12-km stretch of the stream. I asked (1) what explained the 

spatial heterogeneity of nutrients, in particular, I considered the effect of three categories 

of drivers, i.e., geomorphic template, biological processes, and self-organization, (2) did 

wetland cover influence spatial patterns of nutrients? And (3) how did the underlying 

drivers change over successional time. I used time-series methods, i.e., Multivariate 

Autoregressive State Space models and wavelet spectrum analysis to address these 

questions. Results showed that the geomorphic template played a dominant role in 

shaping spatial patterns of nutrients, whose effect size was an order of magnitude higher 

than that of in-stream biological processes. The effect of self-organization intensified 

over ecosystem successional time, as NO3
--N became more limiting towards late 

succession. Wetland patches did not directly affect patterns of nutrient. However, I found 

evidence of an indirect effect of wetland plants via alteration of vertical hydrological 

gradient, which dampened the effects of upwelling zones on surface water chemistry.  

In community ecology, there are two distinct families of theoretical models to 

explain species distribution in space. Models of niche differentiation are the basis for the 

vast majority of coexistence theories and have been used to explain the distribution and 

abundance of a wide range of taxa in both terrestrial and aquatic environments 

(Silvertown 2004). The second type of model invokes species that are ecologically 



   

   6 

equivalent and a dynamics governed by stochastic processes of extinction, immigration 

and speciation, i.e., the neutral theory of biodiversity (Hubbell 2001). In Chapter 4, I 

used aquatic invertebrate data collected from Huachuca Mountains located in Southern 

Arizona to test the validity of the neutrality assumption in environmentally dynamic 

systems. The river network in Huachuca Mountains is characterized by strong spatial and 

temporal heterogeneity. Spatially, it is a characterized with a configuration of 

intermittent, ephemeral, and perennial streams. Temporally, the precipitation varies both 

intra- and inter-annually. Application of neutral theory has been rare in environmentally 

dynamic systems (Rosindell et al. 2012). The data were collected between 2009 and 

2012, representative of the hydrological regime in the area. I modified an existing 

spatially explicit neutral model developed by Muneepeerakul et al. (2008) to include the 

temporal variability at inter- and intra-annual scales, and tested the contribution of 

stochastic neutral processes under different hydrological conditions. The model fitting 

suggested that the contribution of neutral processes in shaping the biodiversity pattern 

varied in time, with higher explanatory power in either very dry or very wet periods.   

In doing this project, I noticed problems with an important measure of species 

diversity pattern, i.e., β diversity. The species spatial turnover is expected to linearly 

decay when the distance between a pair community increases, if the metacommunity is 

controlled solely by dispersal (i.e., no environmental filtering effect). This is known as 

the distance decay relationship (DDR) (Morlon et al. 2008), and has been used widely in 

community ecology as a benchmark to infer whether the dominant process is niche or 

neutral in shaping species distribution in space (Condit et al. 2002). However, I found 

DDR is not always valid – sometimes species composition in a pair of communities 
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farther away could be measured as more similar than a pair of closer communities. In 

Chapter 5, I systematically examined the effect of spatial configuration of habitat 

capacity on different measures of β diversity, including β diversity as turnover and as 

variation (Anderson et al. 2011). I created five different spatial configurations of habitat 

capacities, and used a spatially explicit neutral metacommunity model. I confirmed that 

spatial configurations of habitat capacities alone could cause non-monotonicity in DDR 

caused by variation in α diversity. This means that inferences of underlying processes 

shaping biodiversity patterns based on DDR may be erroneous in many existing studies. 

After accounting for variation in α diversity, spatial configuration of habitat capacities 

could introduce variation in landscape connectivity, which influences β diversity via 

spatial processes like dispersal. 

An intriguing question related to spatial heterogeneity, but not addressed in 

landscape ecology, is: is it possible to have feedbacks from the outcomes of spatial 

heterogeneity to the process from which the spatial heterogeneity emerges? If yes, can 

these feedbacks reinforce ecological functioning (Fisher et al. 2007)? In Chapter 6, I 

addressed this topic with a conceptual review. I first contextualized the mechanism of 

spatial self-organization under a framework of propagation of ecological influence over 

heterogeneous landscapes, to bridge the conceptual gap between formation of ordered 

patterning and energy and material flow, the focus of ecosystem ecology. It is well 

accepted that ecosystem structure can emerge from local interactions among individuals, 

and that these structures carry certain functional consequences. However, the 

mechanisms of feedbacks, from the outcome of spatial pattern to individuals from which 

the pattern emerge, are seldom examined. I examined such feedbacks, and concluded that 
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it is unlikely that the outcomes of the ordered patterning (i.e., altered ecosystem 

properties) would feed back to affect the local processes at the individual level from 

which the ordered patterning arises. The ordered pattern is formed as a result of regular 

biological activities, not because individuals did anything special. The pattern is “order 

for free.”  

 

SIGNIFICANCE 

The six chapters represent a significant contribution to ecosystem ecology, 

especially in providing a spatially explicit perspective. While my primary focus was on 

the causes, I also investigated the consequences (Chapters 2 and 5) and feedbacks of 

ecosystem spatial heterogeneity (Chapter 6). (1) To understand the causes, I considered 

both template heterogeneity and internal feedbacks in forming spatial heterogeneity. 

Research in this area has been a challenge and has been rare so far, because these two 

categories of drivers are usually investigated from different methodological frameworks 

(statistical models vs. pattern formation mathematical models). (2) Because most patterns 

were surveyed repeatedly over time (Chapters 1, 2, 3, and 4), I was able to investigate 

explicitly how the relative importance of different drivers changed over time, either 

responding to changes in the external environment (e.g., hydrological regime in Chapters 

1, 2, and 4) or to internal development of ecosystems (e.g., post-flood succession in 

Chapter 3). To my best knowledge, research on the temporal changes in underlying 

drivers is very rare. Such results directly challenge the temporal transferability of the 

understanding of pattern formation. (3) Changing drivers over time also directly influence 

ecosystem macroscopic properties. In chapter 2, I showed how the changing contribution 
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of internal feedbacks and preexisting template effect could affect ecosystem regime shift 

and hysteresis. (4) I studied distinctive ecological components (nutrients, macrophytes, 

and aquatic invertebrates), falling within the fields of ecosystem ecology and community 

ecology. I demonstrated that spatial heterogeneity leads to consequences in both 

ecosystem properties (Chapter 2) and community properties (Chapter 5). (5) Lastly, I 

examined whether it is possible to have feedbacks from the consequences of spatial 

heterogeneity (i.e., ecosystem functioning) to the processes that generated the spatial 

heterogeneity to reinforce the consequences (Chapter 6). This is the first time the 

plausible mechanisms of such feedbacks were closely examined.  

 
(First person “I” was used in the above Overview to ease writing. In truth, many 
collaborators contributed substantially to various chapters. The names of the coauthors, 
as well as the status of each chapter are listed below.) 
 
 

PRODUCTS OF DISSERTATION CHAPTERS 
 

CHAPTER 1 
Dong, X., N.B. Grimm, J. Franklin, and K. Ogle. 2015. Temporal variability in hydrology 

modifies the influence of geomorphology on wetland distribution along a desert 
stream. Journal of Ecology. DOI: 10.111/1365-2745.12450. 

 
CHAPTER 2 

Dong, X., R. Muneepeerakul, and N.B. Grimm. Self-organization of macrophytes in 
heterogeneous fluvial landscapes. (in preparation) 

 
CHAPTER 3 

Dong, X., N.B. Grimm, and A. Ruhí. Disentangling influences of geomorphology, 
biology, and self-organization on stream nutrient patterns. Ecological 
Monographs (in review; Submitted on July 7th, 2015). 

 
CHAPTER 4 

Dong, X., R. Muneepeerakul, J.D. Olden, and D.A. Lytle. 2015. The effect of spatial 
configuration of habitat capacity on β diversity. Ecosphere. (in press) 
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CHAPTER 5 
Dong, X. & R. Muneepeerakul. Neutral theory applied to desert stream network featured 

with variable hydrological regime. (in preparation) 
 

CHAPTER 6 
Dong, X. & S.G. Fisher. Order for nothing: ecosystem self-organization in space and 

time. (in preparation) 
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CHAPTER 1 

TEMPORAL VARIABILITY IN HYDROLOGY MODIFIES THE INFLUENCE OF 

GEOMORPHOLOGY ON WETLAND DISTRIBUTION ALONG A DESERT 

STREAM 

 

ABSTRACT 

1. Both geomorphic setting and dynamic environmental variables influence riverine 

wetland vegetation distributions. Most studies of species distributions in riverine 

systems emphasize either hydrological variability or geomorphic controls, but 

rarely consider the interaction between the two. It is unknown whether and to 

what extent the relationship between the geomorphic template and species 

distribution is modified by fluctuating environmental conditions.   

2. This study examines how spatial patterns of riverine wetlands in a desert stream 

change in response to environmental shifts brought about by interannual 

variability in the hydrologic regime. We surveyed wetland spatial distribution and 

measured its abundance every June over five years (2009-2013) by recording 

patch size and presence/absence of five wetland plant species along the 12-km 

main stem of Sycamore Creek, Arizona, U.S.A. The study period encompassed a 

very large flood in January 2010, a wet year (2010), two average years (2009 and 

2013), and two extremely dry years (2011 and 2012). We used a Bayesian 

statistical approach to analyze the relationship between geomorphic variables and 

wetland distribution under different hydrological conditions.  
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3. The geomorphic variables provided much greater explanatory power in dry years 

than in average to wet years. Hydrological conditions modified the interactions 

between geomorphic template and species distribution. Annual hydrological 

conditions affected the direction (i.e., positive or negative effect) and magnitude 

(i.e., the size and significance level of an effect) of these interactions, both of 

which gave rise to spatial patterns of wetlands. Ecosystem temporal variability, 

such as inter-annual and multi-year hydrological variability and longer-term 

ecosystem state changes, triggered complex species responses.   

4. Synthesis: The effect of geomorphic setting on stream wetland plant distribution 

in this desert system is conditioned on the temporal variability in hydrology 

among years. Temporal transferability of the relationship between 

geomorphology and species distributions is therefore questionable.  

 

Keywords: aquatic plant ecology; Bayesian modeling; environmental gradient; 

hierarchical; hydrological variability; plant–climate interactions; plant community 

structure; spatial heterogeneity; species distribution; vegetation.
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INTRODUCTION 

The distribution of plant species along stream-riparian ecosystems is influenced 

by both geomorphology and hydrological variability (Johnson 1994; Bendix & Hupp 

2000). Geomorphology influences plant species distribution at multiple scales (Dixon, 

Turner & Jin 2002). At a local scale (i.e., vegetation patch level), feedbacks between 

sediment deposition and accretion and plant establishment directly influence species 

zonation patterns (Morris 2006), a process that occurs on relatively short time scales. On 

the other hand, broad-scale geomorphic setting, determined by the geometry of the 

drainage basin and landforms—including channel shape, elevation, drainage area, 

channel network structure, and valley floor width—influences species distribution 

indirectly. Geomorphic setting shapes spatial heterogeneity of environmental gradients 

(e.g., water depth, temperature, and light conditions), which act on plant distributions 

(Gregory et al. 1991; Porter 2000). In fluvial landscapes, hydrological variability⎯e.g., 

hydrological regimes, including the timing, intensity, and scale of hydrological 

events⎯also plays a major role in shaping species distributions. In contrast to the 

relatively static broad-scale geomorphic setting, hydrology is highly variable at multiple 

time scales (Sabo & Post 2008). At a long time scale (e.g., over a century), hydrological 

regime and geomorphology are intimately related, and hydrology shapes fluvial 

landforms (Poole 2002). At much shorter time scales (e.g., months, years, decades), 

hydrological impacts include mechanical damage to plants (Madsen et al. 2001), water 

saturation of soil (Bagstad, Stromberg & Lite 2005), and transport of sediments and 

propagules (Cellot, Mouillot & Henry 1998). Many studies have contributed to our 

understanding of the relative importance of the complex fluvial geomorphology and the 
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highly dynamic hydrologic regime on species distributions in riverine ecosystems 

(Johnson 1994; Mertes, Daniel & Melack 1995; Muotka & Virtanen 1995; Hupp & 

Osterkamp 1996; Bendix & Hupp 2000; Hupp 2000; Górski & Buijse 2013).  

Most studies of species distributions in riverine ecosystems emphasize either 

dynamic hydrological factors (e.g., Johnson 1994; Casanova & Brock 2000; Riis & Biggs 

2003; Martinez & Le Toan 2007) or more static geomorphic controls (e.g., Zinko et al. 

2005; Chen et al. 2006; Curie et al. 2007; Engelbrecht et al. 2007); rarely do they 

consider the interaction between the two. Broad-scale geomorphic template shapes 

environmental gradients. On the other hand, if we consider that a set of environmental 

variables (e.g., water depth, temperature, light) defines a multi-dimensional 

environmental space, it is reasonable to suppose that temporal variability modifies the 

ecosystem’s position in that environmental space. For example, a transition between El 

Niño and La Niña years can relocate an ecosystem from a warm and wet region to a 

cooler and drier region in the environmental space. Such a shift in the environmental 

gradient, introduced by temporal variability, may alter the relationship between species 

distribution and the broad-scale geomorphic setting. To our knowledge, no studies have 

examined whether and to what extent the relationship between the geomorphic template 

and species distribution is modified by fluctuating environmental conditions. Testing the 

prediction that hydrological variability alters the degree to which the geomorphic setting 

controls species distributions is a central goal of this study. 

If the relationship between geomorphology and species distribution can be 

modified by hydrological variability, the temporal transferability of the effect of 

geomorphology on species distribution becomes questionable. Such temporal 
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transferability requires two assumptions: (1) constant environment and (2) pseudo-

equilibrium between species distribution and the environment (referring to short-term 

equilibrium between species or communities and their environment (e.g., climate) within 

a specified and limited time frame (Guisan & Theurillat 2000). However, recent studies 

of ecosystem temporal variability have challenged these assumptions (Elith & Leathwick 

2009; Zimmermann et al. 2009; Zurell et al. 2009). Most ecosystems are exposed to 

environmental temporal variability occurring at multiple temporal scales. Desert streams, 

in particular, are subject to high inter-annual variability in hydrology, with floods 

resetting community succession (Fisher et al. 1982) and drying disrupting community 

persistence (Stanley, Fisher & Grimm 1997). At a multi-year scale, these streams 

experience alternating dry and wet phases (Sabo & Post 2008; Sponseller et al. 2010). 

Major disturbances, like bed-moving floods (Stromberg, Fry & Pattern 1997), could push 

an aquatic ecosystem onto a new trajectory of change with long-lasting consequences for 

its structure. Such a system is unlikely to exhibit any sort of equilibrium between species 

and the geomorphic template. Additionally, recent theoretical treatments of ecosystem 

pattern formation suggest the importance of internal interactions and feedbacks in 

understanding the spatial structure of organism distributions (Rietkerk et al. 2002; van de 

Koppel et al. 2005). An observed species distribution is likely a manifestation of the 

combined effects of external physical constraints and internal feedbacks (Sheffer et al. 

2013), which also govern the portfolio of alternative stable states (Carpenter et al. 2001; 

Scheffer & Carpenter 2003). For example, Heffernan (2008) provided evidence that 

wetlands and gravel-bed streams are alternative stable states in desert streams as a 

consequence of the positive feedback between macrophyte biomass and sediment 
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stabilization. This implies that the same physical environment may yield different 

vegetation distribution patterns. Critical empirical investigations of the role of these 

various aspects of ecosystem temporal variability on the spatial distribution of wetland 

plants in stream ecosystems have not been done. The present study addresses this 

deficiency. 

The organization of riverine wetlands along streams is strongly related to fluvial 

geomorphology, which determines the distribution of saturated areas and hydrological 

functioning in a catchment (Curie et al. 2007). The longitudinal pattern of stream flow is 

determined largely by catchment topography. On this relatively stable geomorphic 

template, the annual precipitation regime modifies the spatial heterogeneity of hydrology 

(e.g., spatial gradient of surface water depth, spatial distribution of dry sections) and 

sediment dynamics. In arid and semi-arid regions, high inter- and intra-annual 

precipitation variability results in very different hydrologic flows across years (Grimm 

1994; Sabo & Post 2008; Sponseller et al. 2010). In this study, we focused on the spatial 

distribution of wetland vegetation along a desert stream, Sycamore Creek, Arizona, 

U.S.A. The system underwent an ecosystem state change from a gravel-dominated 

system to one covered by abundant in-stream wetlands around 2000, after cattle grazing 

ceased as a result of a change in U.S. Forest Service policy (Heffernan 2008). Using 

Sycamore Creek as a model system, we asked (1) how shifts of the system in 

environmental space influence the relationship between wetland spatial heterogeneity and 

the geomorphic template, (2) how different aspects of environmental temporal variability 

influence wetland distribution and its relation to the geomorphic template, and (3) 

whether internal biological feedbacks (e.g., species interactions, legacy effect) remain 
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constant over time or change in response to fluctuations in the environmental setting. To 

address these questions, we conducted a five-year (2009-2013) survey of the dominant 

wetland species to quantify presence/absence and abundance along a 12-km section of the 

stream. The five years covered a range of hydrological conditions, including a wet year 

with a very large flood, two dry years, and two average years (Fig. 1.1). For each 

question, we made two predictions: one prediction tested the null hypothesis that 

environmental (hydrologic variability) has no influence on the relationship between the 

geomorphic template and wetland distribution, spatial heterogeneity, or internal 

feedbacks; and the other prediction was that these relationships change over time, 

tempered by changes in the environmental space occupied by the system in any given 

year. We conducted a Bayesian analysis of these data to evaluate the interactive roles of 

geomorphology, hydrological variability, and biotic feedbacks on wetland vegetation 

structure at different spatial scales. 

 

MATERIALS AND METHODS 

SITE DESCRIPTION 

Our surveys were conducted along a 12-km segment of the main stem of 

Sycamore Creek, Maricopa County, Arizona, U.S.A. Sycamore Creek is a tributary of the 

Verde River that drains a watershed area of ~505 km2 in the Tonto National Forest 

northeast of the greater Phoenix metropolitan area. The watershed receives 39-51 cm of 

annual precipitation (long-term means for lowland and headwater portions, respectively), 

in two distinct rainy seasons associated with winter frontal and summer monsoon storms. 

Due to high evapotranspiration, stream flow is intermittent in space and time (Stanley, 
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Fisher & Grimm 1997), and perennial sections are shallow (10-50 cm), narrow (1-5 m), 

and support summer baseflow <0.05 m3 s-1. Sycamore Creek has a flashy hydrograph 

(i.e., characterized by sudden, dramatic increases in flow and rapid flood recession) 

typical of most arid catchments (Fig. 1.1a), and floods greater than 1 m3 s-1 are often 

sufficient to scour the channel and mobilize bed materials (Grimm & Fisher 1989).  

Historically, riverine wetlands, characterized by slow flow rates, were a common 

feature of the arid drainages of Arizona (Hendrickson & Minckley 1984). However, 

because of increases in grazing pressure, climate variation, or interactions between the 

two, most of the wetlands disappeared in the late 19th and early 20th centuries. Since 

2000, after the U.S. Forest Service eliminated grazing from much of the Sycamore Creek 

watershed, the system experienced a dramatic state change, from a gravel-dominated 

stream to one with ample in-stream vegetation (Heffernan 2008). The five most abundant 

wetland plant species are Paspalum distichum L. (knotgrass), Schoenoplectus americanus 

(Pers.) Volkart ex Schinz & R. Keller (chairmaker’s bulrush), Equisetum laevigatum A. 

Braun (smooth horsetail), Juncus torreyi Coville (Torrey’s rush), and Typha domingensis 

Pers. (southern cattail). Because of their dominance in this system, these five species 

were used as indicator wetland species in our study: i.e., we recorded the abundance and 

distribution of these five indicator species to quantify wetland distributions. All five 

species are perennial plants, and while all of them can reproduce by seed, some also 

reproduce vegetatively. P. distichum reproduces mostly from rhizomes and stolons, E. 

laevigatum and J. torreyi also reproduce via rhizomes, and T. domingensis can reproduce 

by expansion of existing colonies. 
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The five years (2009 to 2013) during which this study was conducted were 

characterized by distinct hydrological conditions. Using the long-term hydrological data 

(1960-2013) available from the USGS gauging station on Sycamore Creek (“Sycamore 

Creek near Fort McDowell,” ID: 09510200), we calculated the cumulative discharge of 

each year starting from the second the day of the survey in the previous year through the 

first survey date of the following year. This interval encompassed both summer floods 

and winter floods. Even though both winter and summer floods could influence wetland 

distribution and abundance, the effect of winter floods is likely to be much greater; winter 

floods lasted longer and their magnitudes were much greater (Fig. 1.1). However, 

although summer floods tend to occur at the time of year when wetland plants are past 

their peak biomass and beginning to senesce, they could influence root stock or seed 

banks. The median cumulative discharge for this twelve-month period was 9.9 million 

m3. The year 2009 (21.2 million m3) and 2013 (20.4 million m3) were two average years, 

at the 68th percentile within the 53-yr record (calculated for the same 12-month interval 

across the entire record). These two years had similar amounts of total discharge and 

flood frequency and magnitude, except for the timing of the floods: the arrival of floods 

occurred about one month later in 2013 compared to 2009 (Fig. 1.1c). Conversely, we 

defined 2011 (3.7 million m3) and 2012 (0.7 million m3) as two dry years, at the 36th and 

15th percentile of the 53-yr record. The largest peak discharge during June 2011 and June 

2012 was only 2.4 m3/s in December 2011 (Fig. 1.1d). The year 2010 was a wet year, 

with a cumulative discharge of 42.2 million m3 (81st percentile in the hydrologic record). 

A large flood, the largest since the 100-year event of 1978, occurred in January 2010, 

with peak discharge of 439 m3 s-1. Sampling years characterized by different hydrological 
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conditions provided the opportunity to assess how the shift of an ecosystem’s position in 

environment space may influence the relationship between the physical template and 

wetland distribution.  

 

FIELD METHODS 

We conducted surveys at the same time of year for each year from 2009 to 2013 

(2009 June 15th, 2010 June 14th, 2011 June 13-14th, 2012 June 16th, and 2013 June 14th), 

roughly coinciding with the timing of near peak biomass. In addition to these annual 

surveys, we also conducted three additional “seasonal” surveys in a subset of years 

(January 2011, April 2011, and January 2012) using methods identical to those employed 

in the annual surveys. Surveys were conducted along the aforementioned 12-km stream 

channel and involved recording both presence/absence point data and patch attributes.  

During each survey campaign, we recorded the presence/absence of indicator 

wetland species every 25 m within a band transect of ~1 m width (visually estimated) 

across the stream. These presence/absence point data provide information on the extent of 

vegetation dispersal and/or establishment along the stream channel.  

Patch data provide information on the cover of wetland plants. We defined a 

wetland patch as a contiguous stand (<2 m separation between plants) greater than 4 m2 

and containing at least one of the five indicator wetland plants described above. In 2009, 

Juncus torreyi was not included due to low abundance. For each patch, we used a Garmin 

handheld Global Positioning System (GPS)  (resolution is 5 m) to record the location of 

the upstream point of the patch and patch length. We recorded the species identities of the 

dominant and sub-dominant (<10% cover) plant species within each patch. For the 
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dominant species, we measured patch length (longitudinal along the stream), width 

(lateral to the stream channel), and average plant height of the indicator species in the 

patch. In 2012 and 2013, we also measured the water depth within each patch and 

estimated the percentage of the patch area covered by water. Other patch geomorphic 

attributes that are assumed constant over our study period (i.e., elevation, channel slope, 

and valley floor width [valley floors are composed of the active and secondary channels, 

floodplains, terrace, and alluvial fans (Grant & Swanson 1995)]) were extracted from a 

digital elevation model (DEM) and USGS topographic maps in ArcGIS 10.1 (ESRI 

2012).   

Water permanence (i.e., percent of time in a year when surface water is present at 

each location along the stream) was calculated from data collected by E. Stanley (Univ. 

of Wisconsin, personal communication) from the same 12-km segment of Sycamore 

Creek, which overlapped with our measurements of wetland distribution. From May 1988 

to February 1990 (22 consecutive months), the extent of surface water was surveyed and 

recorded. We calculated the percentage of time over the 22 months when surface water 

was present, and used that value as a measure of the water permanence gradient along the 

stream. We argue that water permanence is a relatively unvarying feature of the 

geomorphic template, as it is controlled by drainage area and proximity of bedrock to the 

sediment surface. Similarly, we used known locations of upwelling zones (places where 

groundwater upwells into surface water, which usually support perennial flow) that were 

identified in the field across the 12-km survey area in the late 1990’s (Dent, Grimm & 

Fisher 2001). 
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STATISTICAL ANALYSIS 

 We developed two different sets of models, one for the presence-absence point 

data, and the other for the patch distribution data. Each model was constructed to evaluate 

the role of geomorphic, environmental, and biotic variables on these wetland vegetation 

attributes. 

 

Models for presence-absence point data  

For the analysis of the presence-absence data for the indicator wetland species, let 

yi,k,t denote the occurrence (1 = present, 0 = absent) of indicator species k (k = 1, 2, …, 5) 

at sampling point i (i = 1, 2, …, 440) in year t (t = 1, 2, …, 5 for 2009, 2010, …, 2013). 

The likelihood for yi,k,t is defined by Bernoulli distribution:  

𝑦!,!,!~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝!,!,!) 

A logistic regression was used to relate the probability of being present to geomorphic 

variables (i.e., E, S, V, and W) such that logit(p) = log(p/(1-p)) was defined by the 

following linear mixed effects model:
 

𝑙𝑜𝑔𝑖𝑡 𝑝!,!,! = 𝛽!!,! + 𝛽!!,!𝐸! +�!!,!𝑆! + 𝛽!!,!𝑉! + 𝛽!!,!𝑊! + 𝜆!𝑈!

+ 𝑦!,!,! 𝛼!",! + 𝜀! ! ,! + 𝛾! ! ! ,!

!

!!!,!!!

 

The coefficients, b, vary by species (k) and year (t), and b1-b4 describe the fixed effects of 

four continuous-valued geomorphic variables: elevation (E, m; centralized to zero: E – 

mean (E)), channel slope (S, unitless or m/m), valley floor width (V, m), and water 

permanence (W, %), and λ is the effect of being in an upwelling zone (i.e., U = 1 if 

upwelling zone, 0 otherwise). Biotic feedbacks were incorporated by allowing the 
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presence-absence of each indicator species to potentially influence the presence-absence 

of other indicator species at point i (e.g., via competition or facilitation). That is, akj,t 

describes the effect of the presence-absence (yi,j,t) of wetland species j (j ≠ k) on the 

occurrence probability of species k at time t. We also incorporated spatial random effects 

at two scales to account for unobservable (or latent) processes occurring at the band scale 

(via ε, see below) and the segment scale (via γ) (Fig. 1.2).  

For the spatial effects, we determined the spatial scale based on two criteria. First, 

for the finer scale, we divided the stream into 22 bands (b), with each band capturing a 

relatively straight, 500-600 m portion of the stream channel between two curves (Fig. 

1.2a). Second, the coarser segment (s) scale captures the alteration of constrained and 

unconstrained channels (Fig. 1.2b). In desert streams, valley-floor morphology varies 

from extremely narrow canyons, to expansive, unconstrained channels that spread over 

low-gradient landscapes. These two regions show differential susceptibility to and 

patterns of drying (Stanley, Fisher & Grimm 1997). We divided the whole 12-km 

mainstem of the stream into 5 segments that vary in length from ~2000-3000 m: s =1 is 

relatively narrow, s = 2 is the region where the valley floor width increases, s = 3 is the 

region where the valley floor narrows, and the last two segments (s = 4 and 5) capture a 

relatively narrow section of the stream and a section with variable valley floor width (Fig. 

1.2b). 

 

Models for patch-scale vegetation cover 

To estimate vegetation cover, we first divided the 12 km stream into 120 units, 

with each unit being 100 m in length. We used wetland patch data to calculate the per 
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cent cover (c) of wetland patches in every 100-m unit along the stream channel. Given 

that c is constrained between 0 and 1, we logit-transformed c, and for observational unit i 

(i = 1, 2, …, 120) and time t (t = 1, 2, …, 5 years for 2009, 2010, …, 2013), we assumed 

logit(c) followed a normal distribution: 

𝑙𝑜𝑔𝑖𝑡 𝑐!,! ~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇!,! ,𝜎!!) 

We defined the logit-scale mean (m) as a linear mixed-effects model with time-varying 

coefficients (b′s and λ′) and spatial random effects similar to the model for logit(p):  

𝜇!,! = 𝑏!,! + 𝑏!,!𝐸! + 𝑏!,!𝑆! + 𝑏!,!𝑉! + 𝑏!,!𝑊! + 𝜆′!𝑈! + 𝜀′! ! ,! + 𝛾′! ! ! ,! 

E, S, V, W, U, and all other subscripts are defined following the model for logit (p). 

To analyze legacy effects, we used the same cover data (i.e., per cent cover of 

wetland patches supporting vegetation in every 100 m unit along the stream channel), and 

assumed logit(c) followed a normal distribution as described above. We used the wetland 

cover in 2009 as the baseline, and for each year after that, we constructed a linear mixed-

effects model for the logit-scale mean (m):  

𝜇!,! = 𝑏!,! + 𝐿!𝑐!,!!! + 𝜀"! ! ,! + 𝛾"! ! ! ,! 

ci,t-1 is the wetland cover in the previous year (t = 2, …, 5 for 2010, 2011, …, 2013). And 

Lt is the legacy effect of the previous year’s cover at stream unit i (i = 1, 2, …, 120). ε″ 

and γ ″ are spatial random effects at band scale and segment scale similar to the 

presence/absence model and cover model described above.  

Bayesian implementation 

We implemented the generalized linear mixed-effects model (for presence-

absence data) and linear mixed-effects model (for logit-scale cover) in a Bayesian 
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framework. Crucial to this approach is the notion of transparency and flexibility, which 

allows explicit modeling of parameters at different hierarchies (Latimer et al. 2006). In 

the absence of relevant information to suggest otherwise, we specified standard, vague 

priors for model parameters (Gelman et al. 2013), and thus, the posterior distributions for 

all parameters were largely driven by the observed data. Three different types of priors 

were used in our models. First, for the parameters describing the effects of the 

geomorphic and biotic factors (e.g., the b, b, a, λ, λ′, and L terms), we specified vague 

priors via normal distributions with large variances. Second, for the spatial random 

effects (i.e., the ε, ε′,  ε″, γ, γ ′, and γ ″ terms), we assumed zero-centered normal priors 

with unknown variances such as Normal(0, σ2), where each of the four groups of random 

effects was associated with its own variance term. The variance term for each group 

varied by year (i.e., σε,t, σε′,t, σε″,t, σγ,t, σγ ′,t, σγ ″,t). Third, for the variances associated with 

the logit(c) likelihood and the spatial random effects, we specified relatively non-

informative inverse gamma priors. 

We implemented the above models in OpenBUGS 3.2.1. (Spiegelhalter et al. 

2003), an open-access software package for conducting Bayesian statistical analyses. 

OpenBUGS employs Markov chain Monte Carlo (MCMC) methods to sample parameter 

values from their joint posterior distribution. Three parallel MCMC chains were assigned 

relatively dispersed starting values, and run sufficiently long to achieve convergence and 

to obtain a posterior sample size effectively equivalent to >3,000 independent samples 

(for details on MCMC procedures, see Gamerman and Lopes 2006, Gelman et al. 2013). 

For each parameter, we computed the posterior mean and estimates of uncertainty via the 

95% credible interval (CI), which is defined by the 2.5th and 97.5th percentiles.  
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Model diagnostics and comparison  

We conducted an informal model goodness-of-fit assessment (following Ogle et 

al. 2006). For the presence/absence point model, a goodness-of-fit plot was derived 

according to the following steps: (1) we obtained the predicted probability of occurrence 

(p) for each point along the channel; (2) for each species and year, points were grouped 

according to their predicted probability of occurrence, with a fixed bin width of 0.01; (3) 

within each p bin, the fraction of points classified as “present” and the average value of 

the predicted p was calculated, yielding a plot of the observed fraction of points versus 

the average predicted probability of occurrence for each species. For the patch data, we 

compared the predicted versus observed percent cover for each year to evaluate the 

amount of variability in cover explained by the model. 

We also assessed model sensitivity and the ability of the model to correctly 

predict the points with the presence of wetland plants (i.e., positive points). We used 

prevalence of positive points in the empirical data as thresholds (Liu et al. 2005). 

Specifically, the point is defined as “predicted positive” if the posterior mean of the 

predicted occurrence probability is higher than the threshold, whereas the point is defined 

as “predicted negative” if lower. Sensitivity is calculated as the number of positive points 

correctly predicted by the model divided by the total number of positive points in sample 

(Fielding & Bell 1997). Receiver operating characteristics (ROC) analysis provides a 

threshold-independent assessment of the fit of model predictions (Hanley & McNeil 

1982). ROC plots summarize the performance of a model as a tradeoff between 

sensitivity and specificity (the probability of correctly predicting a true absence). ROC 

plots display sensitivity (i.e., true positive rate) on the y-axis and false-positive rate (i.e., 
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the probability of predicted presence where the species is observed to be absent) on the x-

axis. The area under the ROC curve (AUC) then provides an integrated measure of the 

performance of the model. AUC ranges between 0.5 and 1.0. If the value is 0.5, the 

scores for two groups (i.e., true-positive rate vs. false-positive rate) do not differ, while a 

score of 1.0 indicates sensitivity increases without losing any specificity (the proportion 

of negatives correctly predicted as such). Therefore, high values of AUC reflect better 

model performance. These indices were calculated in R (R Core Team 2015), with the 

‘ROCR’ package (Sing. 2015).  

 

RESULTS 

TEMPORAL AND SPATIAL PATTERNS IN STREAM WETLAND ABUNDANCE 

Wetland distribution in Sycamore Creek was heterogeneous in space over the 

five-year study period. The stream channel between 3000 and 5000 m had almost no 

wetland establishment (Figs 1.3 and 1.4). The mean valley floor width across that stretch 

of the stream is about 260 m, much wider than the rest of the 12-km stream (average 

valley floor width ~ 90 m). However, the stream channel between 5000 and 7000 m had 

similar valley floor width, but supported abundant wetland cover (Fig. 1.4). Despite the 

high variability in wetland spatial distribution both in space and time, locations of some 

wetland patches have been stable (Fig. 1.3). We examined the legacy effect: the 

relationship between wetland cover and its distribution in the current and prior year. The 

legacy effect was significant for all years (the 95% CI of the coefficient did not contain 

zero), meaning that the location of wetlands and their cover in the previous year were a 

significant predictor of wetland cover in the current year. In the years without major 
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floods, the previous year’s wetland distribution explained a large amount of variance in 

the wetland distribution in the current year (R2 = 0.53 and 0.50 for 2012 and 2013, 

respectively). For 2010 and 2011, values of R2 were low (0.03 and 0.07), though the 

previous year’s cover was still a significant factor. We also analyzed wetland fidelity, 

measured by the coefficient of variation (CV) of wetland cover for each 100 m stream 

unit over the 5-year period. The quadratic relationship between CV and mean of wetland 

cover (Fig. 1.3f) suggested that locations with high abundance of wetland cover stayed 

high over time, and those with low abundance stayed low. 

Overall wetland abundance changed considerably among years (Fig. 1.3). After 

the large flood in January 2010, wetland cover decreased dramatically (Fig. 1.3d), 

reaching the lowest of the five years (~13%). In fact, a visual (qualitative) survey in 

March 2010 of several locations of high wetland fidelity showed very little evidence of 

surviving plants; however, regrowth from root stock occurred, so that cover reached 13% 

by June 2010. The highest cover was observed in the two dry years: 40% in 2011 and 

45% in 2012 (Fig. 1.3d). There were only two small flood events in 2011 and no floods in 

2012 between January and June (Fig. 1.1d). During the seasonal survey in January 2011, 

wetland plant cover was only 5% (living plants). Three months later, in April 2011, total 

wetland cover reached 18%, after which it increased to 40% in June. The only species 

with new, actively growing tips in January was T. domingensis.  

Timing of floods directly influenced the abundance of T. domingensis. T. 

domingensis regenerated as early as January (this species occupied ~ 5% of the 12-km 

survey extent in January 2011 & 2012). Therefore, large floods (discharge > 1 m3 s-1) 

occurring in February and March could directly affect its abundance (Chen, Zamorano & 
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Ivanoff  2010). Comparing 2009 and 2013, which had similar hydrological conditions 

(Fig. 1.1c) except that floods in 2013 were one month later than those in 2009, the patch 

cover of T. domingensis in 2013 was only 70% of that in 2009 (Fig. 1.3c). In 2011 and 

2012, there were no large floods after December, and these years had the highest 

observed abundance of T. domingensis (both absolute abundance and abundance relative 

to the other five species) (Fig. 1.3a,c). Dry years and the wet year also directly influenced 

J. torreyi. This species grows adjacent to the active stream channel, but not directly in 

water (i.e., parafluvial habitat). Therefore, an extensive dry area is favorable for the 

development of J. torreyi. Its abundance in the wet and average years was less than half 

of that in the dry years (Fig. 1.3a,c).  

 

WETLAND SPECIES PRESENCE/ABSENCE: GEOMORPHOLOGY, BIOTIC 

INTERACTIONS, AND HYDROLOGICAL VARIABILITY 

The Bayesian presence/absence point model sufficiently predicted the 

presence/absence of wetland plants (AUC values ranged between 0.8 and 0.9) (Table 

1.1). However, AUC assessed the predictive power of the model at the point level, a very 

fine resolution (i.e., 25 m). As an informal evaluation of model fit, we used the 

coefficient of determination (R2) from a regression of the observed fraction versus the 

predicted probability of occurrence at the 100-m scale. The R2 values for this relationship 

ranged from 0.46 to 0.94 (Table 1.1), with observed versus predicted values falling 

around the 1:1 line (Fig. 1.5a). When various model diagnostic indices were assessed for 

individual years, the model performed better in the dry years (2011, 2012) than in the wet 

(2010) or average years (2009, 2013) (Table 1.1). 
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Both the direction and magnitude of the geomorphic effects varied among species 

and changed over time (years) (Table 1.2 and Fig. 1.6). The overall effect of channel 

slope (S) on the occurrence of the five indicator wetland species was significantly 

positive in 2009, and its effect on the occurrence of E. laevigatum was significantly 

positive when averaged over five years (Table 1.2). Elevation (E) was not a significant 

predictor of the presence of wetland plants overall, although the presence of P. distichum 

and S. americanus were significantly correlated (negatively and positively, respectively) 

with elevation. Water permanence (W) had a significant positive effect on species 

occurrence in all five years (averaging over all species), and exerted a significant positive 

effect on four out of five species (J. torreyi was the exception) across all years (Table 

1.2). The magnitude of the effect of water permanence (W) varied significantly among 

the five wetland species (Fig. 1.6b). Upwelling zones (U) were a significant predictor of 

species presence only for T. domingensis in the dry year of 2012.  

Species associations also changed from year to year (Fig. 1.7). Significant species 

associations can be attributed to two factors: the shared or opposite requirement for a 

particular physical environment (i.e., co-existence) and/or direct biological interactions 

(e.g., competition or facilitation) among species (Ovaskainen, Hottola & Siitonen 2010). 

Our model was not able to distinguish between these two causes, but even after 

accounting for geomorphic and spatial random effects, significant species associations 

remained. For example, species association patterns before the 2010 winter flood were 

quite different from the patterns after the flood. In particular, T. domingensis and J. 

torreyi were positively associated most years, and strongly so in the two dry years. The 
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only significant negative association was found between E. laevigatum and T. 

domingensis in 2012 (Fig. 1.7).  

The spatial random effects indicated significant unexplained spatial variability at 

multiple spatial scales that varied among years (Table 1.1; Fig. 1.8). After accounting for 

the effects of the geomorphic and biotic predictors, several significant band-scale spatial 

random effects emerged in all years, except for 2010 (only one band was significant) 

(Fig. 1.8). Significant segment-level spatial random effects still emerged after accounting 

for the geomorphic, biotic, and fine-scale band effects (Fig. 1.8), with least variation 

among segments (σs) occurring in 2010 and greatest occurring in the two dry years (2011 

and 2012) (Table 1.1). Segment 2, which was the part of the stream where the valley 

floor widened in a downstream direction (Fig. 1.2b), had significantly lower probability 

of wetland occurrence across all five years. Conversely, segments 3 and 4, which are 

located in the part of the stream where the valley is narrowing downstream (Fig. 1.2b), 

had significantly higher probability of occurrence.   

 

WETLAND PATCH ABUNDANCE: GEOMORPHOLOGY AND HYDROLOGICAL 

VARIABILITY 

Similar to the presence/absence point model, the patch cover model predicted the 

distribution of wetland patches well for the two dry years, with R2 values of 0.58 (2011) 

and 0.68 (2012). Models for the two average years explained less variance (R2 = 0.48 and 

0.51 for 2009 and 2013, respectively). The performance of the model was poor for the 

year of the large flood, 2010 (R2 = 0.27; Table 1.1).  
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Elevation (E), channel slope (S), and valley floor width (V) had no significant 

effect on the distribution of wetland cover (Table 1.2). Water permanence (W) explained 

most of the variance in wetland cover across all years except for 2010 (Table 1.2), 

although effect size varied among years, with the largest effect occurring in the driest 

year (2012) (Fig. 1.6a). In general, places with greater water permanence were associated 

with higher cover of wetland patches. Finally, upwelling zones (U) exerted significant 

positive effects in 2012 and 2013, but only for T. domingensis.  

Significant spatial random effects occurred in dry years, but they disappeared in 

average years or the wet year (Fig. 1.8). Greater values for σb and σs in dry years also 

indicated more evident spatial random effects (Table 1.1). In dry years, segment 3, where 

the valley floor narrowed sharply (Fig. 1.2b), had higher wetland abundance than 

expected (i.e., given the effects of the covariates included in the model) compared to the 

other segments (Fig. 1.8). The spatial effect at band scale was also most significant in the 

driest year, 2012 (Fig. 1.8). These results mirrored those of the presence/absence point 

model. 

 

DISCUSSION 

This study demonstrated a change in the relationship between species 

distributions and the geomorphic template due to changes in the environmental setting; 

specifically, in this case, the hydrological variability. That is, we found that the 

explanatory power provided by geomorphic variables (i.e., E, S, V, W, U) varied among 

years characterized by different hydrological conditions (Table 1.1). Geomorphic 

variables influence species establishment indirectly through their effects on the spatial 
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distribution of temperature, light, saturation zones, groundwater upwelling, and nutrient 

availability (Dent, Grimm & Fisher 2001). These environmental gradients then directly 

influence the biological community. However, hydrological variability could alter the 

environmental gradients created by the geomorphic setting. For example, in dry years 

(e.g., 2011 and 2012), the geomorphic predictors, including water permanence, provided 

much greater explanatory power for wetland abundance and distribution (Table 1.1; Fig. 

1.6). During such dry years, the effect of distribution of the saturation zones determined 

by the large-scale geomorphic characteristics was most evident. Wetland plants 

accumulated in these saturation zones, whereas the mortality of plants was high in the dry 

sections of the stream (hence low abundance). In the wet year, however, continuous 

surface water homogenized the flow patterns along the stream, weakening the 

relationship between the saturation gradient and wetland plant distributions.  

Many studies have investigated the relative importance of hydrological and 

geomorphic impacts on species distributions in fluvial landscapes (e.g., Bendix & Hupp 

2000; Hupp 2000; Górski & Buijse 2013; Stewart-Koster et al. 2013; Valente, Latrubesse 

& Ferreira 2013). In those studies, hydrologic variability over time was reduced to an 

integrated value for each sampling site (e.g., frequency of floods over 10 years, 

maximum floods within 5 years). Geomorphology and hydrologic variability were treated 

as two sets of variables independent of each other. This assumes that the 

geomorphology–species relationship is transferable in environmental space. In systems 

with high hydrological variability, such as desert streams, where the positions of the 

system in environmental space change drastically over time, the assumption of a stable 

relationship between geomorphology and species distribution is inappropriate. We 
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therefore find support for our hypothesis that the relationship between the geomorphic 

template and species abundance and distribution can be modified by environmental 

temporal variability (in this case, hydrological variability). 

Another reason for variable explanatory power of the geomorphic variables is that 

the degree to which the system approached a pseudo-equilibrium state likely varied 

among years. The magnitude of the spatial random effects at both scales was greater in 

dry years compared to the average years or the single wet year (Table 1.1; Fig. 1.8). This 

suggests a more homogenous wetland spatial distribution in average to wet years, which 

could have been caused by two inter-related processes: (1) as noted above, relatively 

abundant surface water in the wet and average years homogenized the spatial 

heterogeneity created by the saturation zones along the stream; and (2) severe flood 

disturbance and the timing of floods resulted in low wetland cover along the entire stream 

in wet year of 2010. Winter flood disturbances mobilize sediments and dislodge buried 

propagules, directly reducing vegetative reproduction in spring (Cellot, Mouillot & Henry 

1998). Meanwhile, high flows in the wet year and even in the average years may reduce 

sites where wetland seeds could survive, while in drier years more streambed is exposed 

for seed establishment and germination. The low abundance of wetlands suggests that the 

system was likely farther away from species–environment pseudo-equilibrium in wet and 

average years than in dry years (Fig. 1.3b,d). The band-scale spatial effects capture the 

interactions between morphodynamics and hydrology in meandering rivers (Fig. 1.2). 

Interactions among flow movements, sedimentation processes, and vegetation create the 

spatial pattern of vegetation as well as shaping river channel morphology (Johnson 1994; 

Perucca, Camporeale & Ridolfi 2006). At the coarser segment scale (103 m), constrained 
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and unconstrained sections alternate along the stream (Stanley, Fisher & Grimm 1997), 

and this determines the nature of sediment deposition and thus saturation area and 

residence time (Zinko et al. 2005; Chen et al. 2006; Curie et al. 2007), all of which could 

influence the spatial distribution of wetlands. However, the effects of processes at either 

spatial scale can only be fully manifested when wetland distribution is closer to species-

environment pseudo-equilibrium.  

Our study system experienced various aspects of hydrological variability, which 

gave rise to complex species responses. Some studies have suggested that the influence of 

timing and duration of flooding on riverine plant abundance depends on the fraction of 

the growing season flooded (Toner & Keddy 1997; Chen, Zamorano & Ivanoff  2010). 

This idea is relevant to our study in that abundance of T. domingensis was sensitive to the 

timing of the previous winter’s floods. In 2011 and 2012, there were no large floods after 

December, and the highest abundance of T. domingensis was observed (Fig. 1.3b,d). In 

2013, when the last winter flood was as late as March 9, T. domingensis cover was 

reduced to less than half that of its 2011 or 2012 cover (Fig. 1.3c). At a multi-year time 

scale, alternating wet and dry years may affect plant establishment from the seed bank by 

stimulating or inhibiting germination (Leck & Brock 2000), by modifying oxygen 

availability in the soil, or by desiccating aquatic plants or inundating terrestrial plants 

(Casanova & Brock 2000). However, a much longer-term dataset is needed to assess the 

impact of wet–dry cycles as well as disturbance timing on species abundance and 

distribution.  

 Flood magnitude is another aspect of the hydrologic regime that may influence 

vegetation (Vervuren, Blom & de Kroon 2003). While small floods result in fluctuations 
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in wetland abundance from year to year, bed-moving floods, such as the one in January 

2010 in Sycamore Creek, have longer-term consequences for vegetation composition and 

distribution. In the years after the 2010 100-year flood, we observed a major increase in 

the abundance of T. domingensis, yet the cover of other indicator wetland species did not 

recover (P. distichum and S. americanus) or only slightly recovered (E. laevigatum) 

towards their pre-2010 cover, even after four years. Similar long-term consequences of 

large disturbances have been observed in other studies. For example, Stromberg, Fry & 

Pattern (1997) found that in the three years following a 25-year flood in the Hassayamapa 

River, northwest of Sycamore Creek, riparian species composition shifted  to increased 

abundance of wetland plants. This was because this single flood event lowered the 

floodplain surface relative to the water table, a factor critical to riparian plant 

composition in arid-land river systems.  

Various aspects of the hydrological regime exert external constraints on species 

assembly, accompanied by stabilizing feedbacks between the biotic community and the 

local environment, including internal species interactions. Even though our model was 

not able to distinguish whether the detected species associations were caused by shared or 

opposite requirements for a particular physical environment or caused by direct 

biological interactions among species, the species association changed from year to year 

depending on hydrological conditions (Fig. 1.7). This could have resulted from the 

changed relative abundance of different species in different years (Fig. 1.3), which is 

likely to result in variations in the magnitude of biological interactions (e.g., competition, 

facilitation, etc.). Internal interactions involve not only interactions among species, but 

also feedbacks between abiotic environment and species. The theory of ecosystem 
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alternative stable states (Carpenter 2001; Scheffer & Carpenter 2003) informs our 

understanding of ecosystem temporal variability as a result of internal feedbacks, 

including interactions among individual organisms and feedbacks between the 

environment and the organisms. Such a stabilizing mechanism is predicted to generate a 

negative relationship between wetland biomass and variability in biomass caused by 

flood disturbance (Heffernan 2008). The negative relationship between the mean and CV 

of wetland cover above a threshold amount (~15% cover in 100-m intervals; Fig. 1.3f) is 

consistent with this theoretical prediction. Below the threshold biomass (or cover) 

amount, places with low wetland cover stayed low (therefore, also low CV) in all five 

years; these are places constrained by geomorphic setting. Above the threshold, places 

with high wetland cover stayed high, as a result of density dependent self-stabilizing 

mechanism (Heffernan 2008). This mechanism is also consistent with the results from the 

legacy effect analysis: the previous year’s distribution and abundance was significant for 

all the years, even after the big flood in the January of 2010. The quadratic relationship is 

evidence of a joint effect of the physical template and internal self-organization by 

vegetation patches (Sheffer et al. 2013). Additionally, ecosystem state-change theory 

suggests that an ecosystem could have more than one stable state, and the switch between 

states may involve a hysteresis effect (Sternberg 2001). In this case, flood magnitude 

would have to drop much lower than the threshold value for the system to return to the 

wetland state. Thus, either ecosystem state is resilient, and the same set of environmental 

conditions may correspond to totally different ecosystem states. 
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DATA ACCESSIBILITY 

This study is a contribution to the long-term ecological research in environmental biology 

(LTREB) at Sycamore Creek, Arizona, USA, and the data are available online at 

https://caplter.asu.edu/data/data-catalog/?id=596. 
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TABLE 1.1. Assessment of model performance for the presence/absence point model and 
the wetland patch cover model, as well as comparison of the model predictive 
power among years. Predicted mean and observed average in the 
presence/absence model refer to predicted probability and observed average 
proportion of occurrence, and in the patch cover model, they refer to predicted 
and observed average cover in each 100-m unit. The standard deviations, σb and 
σs, describe the residual spatial variability in each logit-scale variable (probability 
of occurrence and proportion cover) at the band (i.e., σε,t and σε ′,t, fine spatial 
resolution) and segment (i.e., σγ,t and σγ ′,t, coarse resolution) scale for each year. 
The coefficient of determination (R2), model sensitivity, and AUC describe model 
goodness-of-fit, the ability of the (point) model to correctly predict points with 
presence of wetland plants (i.e., positive points), and area under curve, 
respectively 

 Predicted 
Mean 

Observed 
Average 

σb σs R2 Sensitivity AUC 

Presence/absence Point Model   
Overall 0.20 0.20 - - 0.94 0.83 0.84 
2009 0.20 0.20 0.47 3.14 0.56 0.81 0.80 
2010 0.10 0.10 0.54 1.07 0.46 0.79 0.81 
2011 0.25 0.25 0.51 3.79 0.85 0.83 0.83 
2012 0.27 0.27 0.73 4.29 0.83 0.82 0.88 
2013 0.18 0.18 0.63 3.41 0.64 0.86 0.84 
Patch Cover Model 
Overall 0.25 0.25 - - 0.55 NA NA 
2009 0.22 0.22 0.13 0.16 0.48 NA NA 
2010 0.09 0.09 0.08 0.24 0.27 NA NA 
2011 0.36 0.35 0.16 0.33 0.58 NA NA 
2012 0.34 0.34 0.20 0.29 0.68 NA NA 
2013 0.26 0.26 0.13 0.18 0.51 NA NA 
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TABLE 1.2. Summary of covariate effects in the presence/absence point model and the 
patch cover model.  If significant (p < 0.05), the sign of the effect is indicated by 
–/+ for negative and positive effects; non-significant effects are indicated by ns. 
For the presence/absence model, the coefficients were indexed by both species 
and year; when listed under particular species, the effect was averaged over the 5 
years; when listed under a particular year, the effect was averaged across the 5 
species. Species codes are: EQLA = Equisetum laevigatum, PADI = Paspalum 
distichum, SCAM = Schoenoplectus americanus, JUTO = Juncus torreyi, and 
TYDO = Typha domingensis 

Presence/absence point model 
Covariate* EQLA PADI SCAM TYDO JUTO 
E ns − + ns ns 
S + ns ns ns ns 
V ns ns ns + − 
W + + + + ns 
 2009 2010 2011 2012 2013 
E ns ns ns ns ns 
S + ns ns ns ns 
V ns − ns ns ns 
W + + + + + 
U ns ns ns + ns 
Patch cover model 

Covariate 
2009 2010 2011 2012 2013 

E ns ns ns ns ns 
S ns ns ns ns ns 
V ns ns ns ns ns 
W + ns + + + 
U ns ns ns + + 

*Covariates: E = elevation; S = channel slope; V = valley floor width; W = water 
permanence; U = upwelling zone. 
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FIGURE 1.1. Hydrological conditions at Sycamore Creek, Arizona during the study 
period, including (a) daily discharge (the study period is indicated with a 
horizontal bar on the x-axis), (b) annual discharge (the study period is denoted by 
black bars), and cumulative daily discharge during (c) the survey years (2009-
2013) with the summer flooding period and winter flooding period denoted by 
horizontal arrows, and (d) the two dry years (2011 and 2012). Data are from the 
USGS gauging station “Sycamore Creek near Fort McDowell” (ID: 09510200). 
Cumulative daily discharge is the sum of daily discharge from June 16th of the 
prior year until the survey date. A steep increase in cumulative discharge indicates 
a flood or series of floods. 
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FIGURE 1.2. Schematic for the two spatial scales in the models: (a) fine-resolution band 
scale and (b) coarse-resolution segment scale. 
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FIGURE 1.3. Changes in wetland cover and spatial distribution between 2009 and 2013 
along the 12-km mainstem of Sycamore Creek in Arizona. (a) Changes in wetland 
occurrence by species. (b) Changes of wetland occurrence by year: percentage of 
surveyed points with at least one wetland species present. (c) Cover (%) by 
species between 2009 and 2013. (d) Changes of wetland cover: percentage of 
stream channel covered by at least one type of wetland patch. Note that Juncus 
torreyi was not surveyed in 2009. (e) The spatial distribution of wetland cover 
averaged over 5 years along the 12 km of the stream. Each point was the average 
wetland cover in a 100-m unit between 2009 and 2013. Symbol fill indicates 
coefficient of variation (CV). (f) The quadratic relationship between average CV 
and wetland cover. See Table 1.2 for species codes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

















         

         
 








































































































 

 

 



   

   53 

FIGURE 1.4. Spatial distribution of wetland patches along the channel in relation to valley 
floor width. The channel is divided evenly into 100-m units. The size of each 
point is proportional to the percentage of channel length covered by wetlands 
within each unit. The small gray points represent segments without wetland cover. 
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FIGURE 1.5. Observed versus predicted response variables for (a) the presence/absence 
point model and (b) the patch cover model. For the wetland cover model, the 
model fit was better in dry years (2011 and 2012) than in average years (2009 and 
2013). The model goodness-of-fit was poorest for wetland cover in 2010. Dashed 
diagonal line is the 1:1 line. 
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FIGURE 1.6. Posterior distributions for the effect of water permanence (a) in different 
years (results from patch cover model) and (b) for different species (results from 
presence/absence point model). See Table 2 for species codes. The vertical line at 
zero indicates the lack of an effect of water permanence. 
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FIGURE 1.7. Species interaction effects changed among years. Dashed arrows indicate 
that the corresponding species-species effect was not significant, and solid arrows 
denote significant species associations. The black arrows represent a significant 
positive effect and the gray arrows represent a significant negative effect; arrow 
width is proportional to the effect size (i.e., the strength of the species 
associations). Species codes are: P = Paspalum distichum, S = Schoenoplectus 
americanus, E = Equisetum laevigatum, J = Juncus torreyi, and T = Typha 
domingensis. 
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FIGURE 1.8. The posterior mean and 95% credible interval (CI) for the spatial random 
effects at fine-resolution band scale and coarse-resolution segment scale in 
presence/absence point model (upper two rows) and patch cover model (lower 
two rows) in different years. Significant random effects (95% credible interval 
does not contain 0) are marked as black, and non-significant effects are in gray. 
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CHAPTER 2 

SELF-ORGANIZATION OF MACROPHYTES IN HETEROGENEOUS FLUVIAL 

LANDSCAPES 

 

ABSTRACT 

 Both local interactions (self-organization) and the spatial heterogeneity of the 

physical template can influence biological patchiness in ecosystems. While there are 

abundant studies on the patterns formed by self-organization on landscapes where 

template heterogeneity is negligible, research on spatial self-organization in 

heterogeneous landscapes is rare, despite the fact that landscapes in nature are mostly 

heterogeneous. The relative importance of the two drivers might change in time, in 

response to changes in the external environment. This is especially relevant for systems 

experiencing high environmental temporal variability. We investigated the interaction 

between self-organization and template heterogeneity with 6-yr macrophyte patch 

distribution data collected from Sycamore Creek, a desert stream in Arizona, USA, a 

system that is highly variable both in space and in time. We used a lattice simulation 

model that includes both the spatial heterogeneity of the geomorphic template (template 

effect) and of the self-organization of plants (local facilitation effect). We showed that the 

strength of local facilitation and template effect first increased with the effective flood 

consequence (a metric we created to account for both the timing and magnitude of winter 

floods), and then leveled off. The system exhibited alternative states, catastrophic 

transitions, and hysteresis effects when the stress level exerted on the system changed. 

Self-organization reduced the tendency for the system to shift from vegetated to gravel 
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state, by raising the threshold stress level and making the transition to gravel state more 

gradual; however, local facilitation increased ecosystem hysteresis. Template 

heterogeneity, in contrast, weakened hysteresis. Under different hydrological conditions, 

the role played by local facilitation and template heterogeneity varied. This directly 

influenced the robustness of the system, including its resistance to stress and recovery 

from an “undesirable” state. To our knowledge, this is the first study to show the relative 

influence of self-organization and template heterogeneity varying with external 

conditions.   

 

Keywords: catastrophic shifts; desert stream; ecosystem resilience; hydrological 

variability; hysteresis; macrophytes; physical template; power-law distribution; self-

organization; spatial heterogeneity. 
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INTRODUCTION 

 A landscape is a mosaic of biotic and abiotic patches, with consequences for some 

ecological functioning (Strayer et al. 2003; Dormann et al. 2007; Ludwig et al. 2007). 

Spatial patchiness results from processes at various spatial and temporal scales with 

complex cross-scale interactions (Peters et al. 2004). Fundamentally, two drivers, 

operating from the top down or the bottom up, are envisioned for the formation of 

biological patchiness (i.e., spatial heterogeneity of biological components in ecosystems): 

(1) a preexisting physical template (top-down) and (2) self-organization induced by 

internal feedbacks (bottom-up) (Deblauwe et al. 2008; Rietkerk and van de Koppel 2008; 

Liu et al. 2014). We will refer to these as the template effect and the local facilitation 

effect (i.e., self-organization), respectively. A typical example of top-down control is 

physical constraint. For example, vegetation expansion can be influenced by local 

topography (Ropars and Boudreau 2012), through its effect on local microclimate via 

elevation, lateral redistribution of water, and slope orientation (Monger and Bestelmeyer 

2006). Template-induced vegetation patchiness can also be realized through vegetation 

biomass following resource spatial distribution (e.g., water, nutrients, organic matter) 

(Buxbaum and Vanderbilt 2007; Kohler et al. 2012; Manolaki and Papastergiadou 2012).  

The second driver is the rise of spatial patterning from internal feedbacks, i.e., 

self-organization. Self-organization has been studied extensively in the past decade 

(HilleRisLambers et al. 2001; Rietkerk et al. 2002; van de Koppel et al. 2008; van de 

Koppel et al. 2005; Weerman et al. 2010). Ordered patterns of vegetation (e.g., spots, 

bands, labyrinths, and gaps) have been found in many ecosystems around the world 

(Rietkerk et al. 2002; Deblauwe et al. 2008). The causal mechanism for spatial self-
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organization involves scale-dependent feedbacks. In patterned vegetation, resource 

concentration underneath vegetation, where infiltration rate is high and evaporation rate 

is low, improves local condition for plants, but causes resource depletion farther away, 

leading to scale-dependent feedback (Rietkerk and van de Koppel 2008). Without the 

long-range negative feedback, local facilitation solely generates a scale-free patchiness 

(instead of periodic patterning with easily recognized geometric shapes), a pattern that 

can be described by a power law distribution (Scanlon et al. 2007; Kéfi et al. 2007). 

Previous research suggests that transition from power-law distribution to truncated 

power-law distribution (power-distribution with an exponential drop) can be used as a 

signal for ecosystem state change (Kéfi et al. 2011; Kéfi et al. 2010; Kéfi et al. 2007).   

 Studies on these self-organized spatial patterns (both regular and scale-free 

patterns) have been focused on homogeneous landscapes, where the template effect is 

absent or negligible. This is rare because most real landscapes feature heterogeneous 

substrates. Very few studies have considered the interactions between environmental 

template and spatial self-organization. Sheffer et al. (2013) developed a rock-soil mosaic 

framework, wherein the plant distribution is determined by the distribution of rocks. Only 

when the open soil area between rocks is large enough, did plants form self-organized 

patterns. Another study addressed the interaction between the spatial heterogeneity 

created by the termite mounds and vegetation biomass (Bonachela et al. 2015). Termite-

mounds increase water infiltration and plant water use efficiency, and increase the 

resilience of these patterned Savannah ecosystems.    

 Self-organized systems often have altered ecosystem resilience. For example, 

mussel beds in ordered pattern are more resilient to wave disturbance and less prone to 
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catastrophic collapse (Liu et al. 2014; van de Koppel et al. 2008). Self-organized salt 

marsh ecosystems are more resilient to strong wave attack on short timescales. On long 

timescales, self-organization may even lead to destruction of salt marsh vegetation (van 

de Koppel et al. 2005). Existing studies on the relation between self-organization and 

resilience are mostly from systems solely shaped by spatial self-organization. We have 

very limited understanding of how template heterogeneity may interact with self-

organization to affect ecosystem resilience. The only study so far is by Bonachela et al. 

(2015), who found the spatial heterogeneity of termite mounds imposed on self-

organization to increase the resilience of savanna ecosystems to climate change (lower 

precipitation).  

In addition to internal feedbacks and external template effects, hydrological 

regime can also influence vegetation distribution and abundance, especially in 

environmentally dynamic systems (Riis and Biggs 2003). Hydrology directly determines 

the flow heterogeneity in fluvial landscapes. In water-limited ecosystems, at both ends of 

the hydrological spectrum (i.e., very dry or very wet), the landscape is relatively more 

homogeneous than in the intermediate condition. This suggests that the effect of the 

template may be altered by hydrology (Dong et al. 2015). Additionally, vegetation 

biomass varies over time in response to hydrology, and increased biomass is responsible 

for high sediment stability (Heffernan 2008), which improves the local habitat for plants 

as a consequence. Whether and how does hydrology alter the relative importance of self-

organization and the template effect? How does that interaction influence ecosystem 

macroscopic properties? To our best knowledge, these questions have never been 

explored.  
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In this study, we addressed two questions: (1) what are the contributions of self-

organization and template effect in shaping the spatial distribution of macrophytes along 

a desert stream in different years characterized by distinctly different hydrological 

regimes? And (2) how does template heterogeneity interact with self-organization to 

influence ecosystem robustness? To address these questions, we combined in-stream 

macrophyte data collected in a desert stream, Sycamore Creek, Arizona, USA, across 12-

km stretch with a lattice model. Desert streams are highly variable in both space and time 

(Fisher et al. 1982; Stanley, Fisher, and Grimm 1997; Dent and Grimm 1999), making 

them ideal systems to investigate these questions. The data were collected during a six-

year period (2009-2014), capturing the highly variable hydrology of the system. We will 

first present the construction of the lattice model, then we explore the behavior of the 

model over a gradient of template effect and local facilitation. We will then show how the 

combination of drivers hydrologically varying years influences ecosystem macroscopic 

properties. 

 

METHODS 

SITE DESCRIPTION 

 The study was carried out in Sycamore Creek, a tributary of the Verde River, 32-

km northeast of Phoenix, Arizona, U.S.A. The stream drains a catchment of 505 km2. 

Mean annual precipitation ranges from 39 to 51 cm yr-1 with high inter-annual variability, 

peaking bimodally in winter and summer. The stream is frequently intermittent, 

especially in summer (Stanley, Fisher, and Grimm 1997). Winter floods flush away 

almost all the biota in the system and reset ecosystem succession in the following spring 



   

   64 

(Fisher et al. 1982). The system experienced state change in year 2000 (Heffernan 2008), 

when the U.S. Forest Service removed cattle grazing from the study area. Since then, 

wetlands have developed extensively in the system and their abundance and spatial 

distribution have changed substantially with the hydrological regime (Dong et al. 2015).  

 

DATA COLLECTION  

 Data were collected from the 12-km mainstem of Sycamore Creek ranging from 

600 m to 700 m in elevation between 2009 and 2014. The hydrology of the six years can 

be divided into three categories (Fig. 2.1; Table 2.1): 2010 experienced a 100-yr flood, 

with a peak discharge of 439 m3 s-1 in the end of January and another flood as late as 

March (68 m3 s-1). All the wetlands had been removed after flooding. The years 2009 and 

2013 were average years (Fig. 2.1a), with two or three medium-sized floods (peak 

discharge at 30-110 m3 s-1). The remaining three years, 2011, 2012, and 2014, were dry 

years, according to cumulative mean daily discharge (Fig. 2.1a). However, 2014 was 

wetter than 2011 and 2012, with one flood of peak discharge at 72 m3 s-1 in early March. 

The driest year was 2012, with only one small flood (2.4 m3 s-1) in mid-December. This 

high hydrological variability is typical for Sycamore Creek.  

Each year on June 15th (±3 days, peak biomass time of the year). We walked from 

upstream to downstream and recorded the location and size of each wetland patch. We 

used the five most abundant wetland species as indictor wetland species: Equisetum 

laevigatum, Paspalum distichum, Schoenoplectus americanus, Juncus torreyi, and Typha 

domingensis. We define a wetland patch as a patch with at least one of the five indicator 

species and whose area is greater than 4 m2. If the gap between two patches is less than 
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1m, the two patches were assumed to be one continuous patch. We used hand-held GPS 

devices (with a resolution of 5m) to record the upstream location of that patch and the 

dominant species within it. We measured the average width and length of each patch.  

 Water permanence data were collected by E. Stanley (University of Wisconsin). 

She and her colleagues walked the same 12-km stretch of the stream every month for a 

consecutive 22 months between 1988 and 1989, and recorded the extent of surface water. 

We used that dataset and calculated the proportion of the time in the 22-month period 

when surface water was present for each location (resolution is 1m) along the stream. We 

assumed that the relative saturation gradient was unvarying because it is determined by 

the broad-scale geomorphic template. However, the absolute water permanence gradient 

could vary from year to year, depending on annual precipitation and temperature, which 

directly influence evaporation rate. 

 

MODEL DESCRIPTION  

 The model is based on the assumption that two forces affect the distribution of 

macrophyte patches along the stream: geophysical template and local positive feedback 

between plants and sediments. We used water permanence (wp) gradient as geophysical 

template, as it was found to be the major variable determining wetland abundance and 

distribution in this system (Dong et al. 2015).  

We used a power-law formulation to simulate the effect of preexisting template 

(TP) on the mortality rate: 

TPi,yr = wpi
βyr  
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The parameter βyr is a year-specific parameter that represents the effect of water 

permanence on plant establishment rate. When βyr = 0, it means there is no template 

effect. When βyr = 1, it means a linear relationship between water permanence and plant 

establishment rate exists. When βyr > 1 and βyr < 1, the relationship between water 

permanence and template effect is convex and concave, respectively. Water permanence 

influences the plant establishment rate, i.e., the transition probability for a cell to switch 

from empty state to vegetated state, w01: 

w01 = ε yrqdwpi
βyr

 

where qd is the percent of vegetated cells neighboring an empty cell. We assumed that all 

dispersal occurred locally (we tried including global dispersal term, but it did not improve 

model performance, and it was almost constant among years). Here ε is the probability 

that a propagule from a neighboring cell disperses, lands on an empty cell, and 

successfully geminates when wp = 1. The neighbor size was assumed to be 4 meters (4 

cells), with 2m upstream and 2m downstream. We tested the effect of size of the 

neighbor, and found the results of interest to be insensitive to it.  

Local facilitation reduced the chance of plant mortality through positive feedback 

between plant biomass and water holding capacity of sediments beneath plants. 

Reduction of mortality is greater when there are more cells occupied by plants in the 

neighboring cells. We took advantage of the flexibility of the shape of power-law 

formulation to explore the relationship between the effect of local facilitation (self-

organization, SO) and percent of vegetated cells in the neighborhood. 

SOi,yr = (1− qf )
fyr  
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The parameter fyr quantifies the effect of local facilitation. qf is the percent of 

vegetated cells in the neighbor of a vegetated cell. Local facilitation influences the actual 

mortality rate of the plants, i.e., the transition probability of a cell in the lattice changes 

from vegetated to empty, w10: 

w10 = myr (1− qf )
fyr  

where m is the mortality rate without any local facilitation effect for a particular year.   

The model was simulated on a one-dimensional lattice. Even though we had two-

dimensional patch data (both length along the stream and width perpendicular to 

channel), we did not use width information. The width of the patch was influenced by 

watershed morphology, i.e., the width of the terrace etc., which is beyond the scope of 

this study. We used periodic boundary conditions to avoid edge effects. The periodic 

boundary condition means that cells along an edge of the lattice will have neighbors 

along the opposite edge. The total number of cells N = 12,000, and each cell is 1 meter 

long. The lattice was updated asynchronously in order to approximate a continuous-time 

process (Durrett and Levin 1994). During each simulation, cells were randomly selected 

for update, with one time step equaling N2 individual cell updates, until a statistical 

steady state was reached. When the difference of total number of vegetated cells in two 

states that are 200 time steps apart (after updating 12,000 cells 200 times) is less than 100 

m, we assumed it had reached a statistical steady state.  

We used two metrics – patch size distribution and gap size distribution, to 

quantify model goodness-of-fit, and determine the best parameter set for each year. To 

process the observed data, for each year, we lined up the wetland patch distribution by 

their positions along the 12-km stream, which were divided evenly into 12,000 cells. 
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Each cell was labeled as positive (with plant) or negative (without plant). We calculated 

the observed patch-size and gap-size distribution to compare with model results. Each 

error was estimated by the mean square deviation between data and predicted values 

normalized by the data variance. Total error was the sum of the two errors. We explored 

the parameter space within reasonable ranges, and calculated the total error for each 

parameter combination. The combination with minimum total error was selected as the 

best-fit parameter set. Using this procedure, we determined the best-fit parameter set for 

each year. Macrophytes start to germinate in late January in Sycamore Creek, and peak at 

about survey time. The values of parameters determined by model fitting should be 

interpreted as the average over the entire growth period, integrating the effect of early 

spring floods (e.g., March).   

 

ANALYSES 

We correlated the values of parameters to two aspects of hydrological regime: (1) 

effective flood consequences and (2) total wetness. We created a metric called “Effective 

Flood Consequence (EFC; m3s-1)” as following: 𝐸𝐹𝐶 = 𝜏!𝐷𝑖𝑠!!!!
!!! . τ is the month-

specific constant of a flood, determined by the time it occurred. If a flood occurred in 

March, τ =1, and if it occurred in February, January, December, and November, τ = 0.8, 

0.6, 0.4, 0.2, respectively. Dis is the peak discharge (m3s-1) of a flood event, and n is the 

total number of winter floods before the survey date (Table 1). Later-occurring, larger, 

and more frequent floods constitute larger effective flood consequence. Index (2) total 

wetness indicates how much surface water was present in that year. The index was 

calculated as the cumulative mean daily discharge (m3) from the beginning of the water 
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year (October 1st) to the survey date (Fig. 2.1a). These two aspects of hydrology were not 

entirely independent (Fig. 2.1b). A flooding year is very likely to be a wet year; however, 

the wet-dry gradient is also influenced by evaporation, which is closely related to 

temperature. Effective flood consequence was designed to capture the differential effect 

of floods on plants occurring at different times.  

We used a numerical procedure to detect the tendency for catastrophic transition 

and hysteresis in response to a gradual increase and a subsequent decrease with a 

hypothetical stressor (such as grazing), which could change the mortality rate, m. 

Mortality rate first increased from 0.01 to 0.9 by small steps of 0.02 (45 steps in total), 

and then decreased from 0.9 to 0.01 by steps of 0.02. After each of these increments, the 

model was simulated until they reached statistical steady state. Seady-state cover was 

saved for each step. In this paper, we use the term “forward shift” to mean shift from 

gravel to vegetated state, and “backward shift” to mean from vegetated to gravel state. 

Using this numerical procedure, we explored the effect of local facilitation and 

template heterogeneity on the ecosystem’s response to external stress. To determine the 

effect of local facilitation, we created (i) models with and without local facilitation, and 

(ii) models with different degrees of local facilitation. To determine the effect of 

preexisting template heterogeneity, we constructed three different templates: (1) 

heterogeneous template: using the original water permanence gradient; (2) random 

template: created by randomizing the spatial distribution of the original water 

permanence gradient; and (3) homogeneous template: using the mean of the original 

water permanence as water permanence for all 12,000 cells. We used the model to 

analyze the system’s robustness, which considered two components: “resistance” to stress 
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and perturbation and “recovery” from an undesirable state (Levin and Lubchenco 2008). 

Lastly, we analyzed the robustness of the system under actual hydrological conditions 

between 2009 and 2014. Specifically, “resistance” was quantified by the critical stress 

level (m*), at which the system shifted from vegetated to gravel state, “recovery” was 

measured by the degree of system hysteresis, and “robustness” referred to both effects.  

 

RESULTS 

PATCH SIZE DISTRIBUTION 

Few empirical phenomena obey power laws for all values of x in practice. More 

often the power law applies only for values greater than some minimum xmin (Clauset, 

Shalizi, and Newman 2009). In such cases we say that the tail of the distribution follows 

a power law. In this study, when we say patch size distribution follows power laws, we 

mean the tail of distribution. The patch size distribution fitted power-law distribution well 

for all six years (Fig. 2.2). However, we observed evident drops in the tail of the 

distribution in the two dry years, 2011 and 2012, indicating the absence of large-sized 

patches (Fig. 2.2). This was not likely to be caused by finite-size effect, since the largest 

patch size (200 – 300 m) was two orders of magnitudes smaller than the system size.  

 

MODEL FIT AND PARAMETER INTERPRETATIONS   

For the model-goodness of fit, the mean total error of six years was 0.1 (Table 2, 

Fig. 2.2). Model fit for 2010 patch size was not as good, with total error of 0.22, 

compared to the other five years, whose total error < 0.1. The model predicted patch sizes 

larger than observed for 2010 (Fig. 2.2).  
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We examined the correlation of the parameter values with both metrics of 

hydrology, i.e., the dry-wet gradient and the effective flood consequence. Consistently 

across all four parameters (m, ε, β, f), the effective flood consequence was a better 

explanatory variable (i.e., higher R2 values).  

Parameter m was year-specific mortality rate without local facilitation. m value 

was significantly negatively corrected with the effective flood consequence of each year 

(Fig. 2.3a). Drier and less flooded years were associated with higher m. ε was the year-

specific probability that a propagule from the neighboring cells disperses, lands on an 

empty cell, and successfully geminates and establishes when wp = 1. ε was also 

negatively correlated with the effective flooding consequences, i.e., higher ε in years with 

less flooding years. For both m and ε, when the value of effective flood consequence kept 

increasing (i.e., in the year 2010), the value leveled off (Fig. 2.3a and b).  

The effect of template heterogeneity can be influenced by two factors: plant 

responsiveness to the water permanence gradient and the actual template heterogeneity in 

a given year. We assumed that plant responsiveness to water permanence stays the same, 

because it is determined by plant physiology, which is not likely to change significantly 

at the time scale of our study. Actual template heterogeneity could however change from 

year to year, influenced by the annual precipitation and average temperature of the year 

(related to evaporation rate). The water permanence data collected in 1988-1989 used in 

the model could be used as a benchmark (hereafter, “benchmark water permanence 

gradient”), but it does not necessarily represent the actual water permanence gradient for 

the years we studied. In the model, the template effect is defined as: the difference in 

potential plant establishment rate at the wettest place (wp =100%) and at the driest place 
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(wp =13.64%) in the benchmark water permanence gradient, i.e., 1β-(13.64%)β. By this 

definition, since the lowest water permanence in our system is not zero, the magnitude of 

the template effect can therefore be measured by β. The potential plant establishment rate 

at wp = 100% is 1. The actual establishment rate can be influenced by many variables and 

was modified by the year-specific parameter ε, i.e., ε(wp)β.  

When the value of 2010 was not considered, the effect size of template was 

significantly positively correlated with effective flood consequences, i.e., greater β values 

in more flooded years (“more flooded” means more frequent, larger, and later-occurring 

floods) (Fig. 2.3c). The template effect in 2010 was largest, but lower than the value 

predicted by the linear model (Fig. 2.3c). The relationship between template effect and 

water permanence varied among years (Fig. 2.4a). In dry years, the curve was concave (β 

<1), which suggested the establishment rate was most sensitive in the lower water 

permanence area. In wet years, the curve was convex (β > 1), indicating a higher 

sensitivity of plant establishment at high water permanence sections.  

Local facilitation was quantified as the percent of reduction of mortality by the 

existence of plants in the neighboring cells, and can be measured by the value of f, i.e., 

greater f value, larger reduction in the mortality rate, and greater local facilitation effect. 

The strength of local facilitation (f) was also positively correlated with effective flooding 

consequences (Fig. 2.3d), i.e., stronger local facilitation in wetter years. When the 

effective flood consequence exceeded ~200 m3 s-1 (i.e., year 2010), the value of f leveled 

off (Fig. 2.3d). All f values were much lower than 1 (mean = 0.16), indicating a strong 

threshold effect associated with the effect of local facilitation as a function of qf (percent 

of neighboring cells occupied by plants). The reduction was weak, until a threshold qf 
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was reached, above which the mortality dropped drastically (Fig. 2.4b). Such threshold 

effect was more evident in drier years (i.e., smaller f value) (Fig. 2.4b).   

 

CATASTROPHIC TRANSITIONS AND HYSTERESIS  

The model exhibited alternative stable states and hysteresis when the external 

stress exerted on the system first increased and then decreased. Below we report the 

effect of template heterogeneity and local facilitation on these macroscopic properties of 

systems.  

 Effect of local facilitation – The effect of local facilitation was demonstrated by 

(i) comparing the behavior of models with different degrees of local facilitation (Fig. 

2.5); and (ii) comparing the behavior of the models with and without local facilitation 

(Fig. 2.6). In the model without local facilitation, we first incrementally raised the level 

of stress (by increasing m) exerted on the system. The system shifted from vegetated to 

gravel state (i.e., backward shift) abruptly at mb*. After including local facilitation, the 

transition from vegetated to gravel state became gradual (Fig. 2.6f) and occurred at a 

much higher m value (Fig. 2.6c). Stronger local facilitation was associated with greater 

m* (Fig. 2.5c). We then gradually reduced the level of stress. The system shifted from 

gravel back to vegetated state (i.e., forward shift) at mf*, and mf* was much lower than 

mb*, exhibiting a hysteresis effect. Hysteresis was stronger in models with higher degree 

of local facilitation (Fig. 2.5b), and was significantly higher than models without local 

facilitation (Fig. 2.6b). Regardless of the degree of local facilitation, the shift from gravel 

to vegetated state was more abrupt than from vegetated to bare state (Fig. 2.5a, d, g).  
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Effect of template heterogeneity – The effect of template heterogeneity was 

demonstrated by comparing the behavior of models with heterogeneous, random, and 

homogeneous templates. The difference in the template did not have a noticeable 

influence in the backward shift, but it influenced the forward shift. The system with the 

homogeneous template showed strongest hysteresis effect, followed by the random 

template, and weakest hysteresis effect was found in the heterogeneous template (Fig. 

2.7c). Additionally, the sensitivity of vegetation recovery to the decreases in m varied 

with templates: highest sensitivity in heterogeneous template and lowest in homogeneous 

template (Fig. 2.7c). The effect of template was irrelevant when local facilitation was 

absent, and was weak at low f (Fig. 2.7a and b). The effect of template heterogeneity was 

intensified when local facilitation was stronger (Fig. 2.7). Lastly, regardless of the 

construct of the template, the forward shift was much more abrupt than the backward 

shift (Fig. 2.7).   

 

ROBUSTNESS OF THE SYSTEM UNDER REALISTIC HYDROLOGICAL 

CONDITIONS 

 We evaluated the system’s robustness against hydrological condition over the six 

years (Fig. 2.8a). The system in the condition of 2011 and 2012 had the highest resistance 

to stress, with highest critical m (Fig. 2.8b). The system in the 2010 condition had the 

lowest resistance and highest hysteresis, indicating lowest system robustness (Fig. 2.8b 

and c). The system under the condition of 2009 had the lowest hysteresis effects, with 

very low resistance to perturbation.   
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DISCUSSION 

EFFECT OF TEMPLATE HETEROGENEITY  

Preexisting template heterogeneity exerted an important effect on plant 

distribution, but its effect varied with hydrology (effective flood consequence). Average 

and wet years showed stronger template effect on potential plant establishment. This 

could be explained by the changes in the actual water permanence gradient in years with 

different hydrological conditions. In average and wet years, water permanence is likely 

more heterogeneous than that in dry years. Dong et al. (2015) found stronger geomorphic 

template effect on macrophyte abundance in drier years. Their definition of template 

considers ε, i.e., the difference in the actual plant establishment in the driest and wettest 

places. Here, we found high ε value in dry years and low ε in wet years, consistent with 

findings by Dong et al. (2015). The specific mechanism of this effect varied among years. 

In wet years, plant establishment was most sensitive to water permanence in more 

saturated areas. In dry years, however, it was most sensitive at less saturated zones.  

Template heterogeneity increased ecosystem robustness by decreasing the 

hysteresis and increasing the recovery rate (Fig. 2.7), making it more likely to shift back 

to the vegetated state. This is similar to the results of van Nes and Scheffer (2005), where 

they examined several ecosystem regime shift models, and suggested that spatial 

heterogeneity may weaken the tendency for large-scale catastrophic regime shifts. In 

reality, the ecosystem is much more heterogeneous than we considered in the model. 

Other than the heterogeneity of water permanence, the stream is characterized by 

alteration of constrained canyon and wide valley reaches at the broad scale, longitudinal 

arrangement of riffle-run-pool, and heterogeneity of the channel substrata. Micro-
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topography, aspect, side channels, and distribution of upwelling zones that introduce the 

heterogeneity of nutrient availability all contribute to the heterogeneity of the physical 

template. As suggested by Hastings and Wysham (2010), most of these indicators (the 

‘general leading indicators’) are unlikely to occur in a wide range of ecosystems because 

systems including nonlinearities and environmental variability might not exhibit smooth 

potentials, on which the general leading indicators depend. In our system, even after the 

100-year flood in the winter of 2010, the system still maintained a wetland-gravel 

mosaic.  

The forward shift to vegetated state was much more abrupt than the backward 

shift. This may come from differential sensitivity to mechanisms and parameters in the 

two shifts, and may have implications for the scale of the underlying mechanisms. In the 

forward shift, when cattle grazing was removed from the system, it led to large-scale 

regeneration of in-stream macrophytes in around 2000 within a very short period. This is 

similar to a large-scale pest outbreak. For instance, a rinder pest epidemic decimated 

most large herbivores in much of the South of Africa leading to large-scale regeneration 

of woodlands for a few decades (Dublin, Sinclair, and McGlade 1990). However, the 

back-shift (woodland destruction) happened only on local scales by humans and 

sometimes-high density of elephants, and has been proceeding gradually. In our system, 

as shown by the model, the spatial heterogeneity increased the tendency for the system to 

recover to the vegetated state. Spatial heterogeneity allows vegetation to sustain and 

spread locally, making the shift to gravel state very slow.  
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EFFECT OF LOCAL POSITIVE FEEDBACKS  

Local facilitation, measured by the percent reduction of mortality induced by 

neighboring plants, increased nonlinearly when patch size expanded (Fig. 2.4b). The 

effect of local facilitation was stronger in average and wet years than it was in dry years 

(Fig. 2.3d). In the two dry years when we did the survey, we observed a considerable 

amount of plants died because of severe drought. This suggests that in dry years, local 

facilitation was overwhelmed by high mortality (Fig. 2.3a) due to lack of water. For 

average years, the system was not as dry, and local feedback could still effectively reduce 

plant mortality. But increasing wetness would not continue to increase the strength of 

local facilitation (Fig. 2.3d).  

Local facilitation altered ecosystem resistance by increasing the threshold stress 

level (Fig. 2.5c). It also made the decline of vegetation much more gradual (Fig. 2.6f), 

because patches of vegetation are more easily maintained. Heffernan (2008) 

demonstrated at the patch scale, local facilitation increased the resilience of in-stream 

macrophytes to floods. Here, we showed that the internal feedbacks were also critical at 

the whole ecosystem level.  

While local facilitation made the system less vulnerable to shifts to the gravel 

state, it enhanced the hysteresis effect (Fig. 2.7f). An analysis by Rietkerk et al. (2002) 

illustrates that alternative stable states between vegetated and bare land may occur over a 

range of precipitation levels. This is because in the absence of vegetation there is no local 

concentration of water, which is essential for plant survival in water-limited ecosystems. 

Once lost, vegetation patches do not easily recover, hence, the hysteresis effect. While 

external template heterogeneity can reduce hysteresis, self-organized heterogeneity 
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generated by internal feedbacks by biota may in fact promote such phenomena (Rietkerk 

et al. 2004; van Nes and Scheffer 2005).  

In our model, facilitation can be considered as a combination of physical and 

biological processes occurring in the local environment of a plant. It does not trigger 

effects farther away. This is different from the regular patterning found in many 

ecosystems. In those cases, the pattern arises from scale-dependent feedbacks, which not 

only includes local facilitation, but also long-ranged competition for limiting resource. 

Kéfi et al. (2011) suggested that in systems totally determined by local positive 

feedbacks, patch size distribution can be used as a signal for ecosystem phase transition. 

With an increasing level of stress (e.g., increased grazing or decreased precipitation), 

patch size distribution shifts from power-law, to truncated power-law, then to exponential 

distribution. Therefore, it is argued that patch size distribution can be used to assess 

ecosystem health, or equivalently, the level of stress exerted on it. The application of this 

theory is probably limited. We found that wetland patches size distributions in the two 

driest years were characterized by evident exponential drop (Fig. 2.2). This is probably 

caused by the physical constraints imposed by the template heterogeneity – the expansion 

of patch size is interrupted in places where water permanence is too low to support plants. 

While mathematical models could show clear evidence of the association between 

changes in patch size distribution and stress level exerted on ecosystems, real ecosystems 

are commonly spatially heterogeneous, and in such ecosystem abrupt changes are 

probably much more complex.  
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TEMPORAL VARIABILITY AND ECOSYSTEM CHANGES 

Internal feedbacks and external environment together shape biological patchiness 

in an ecosystem (Sheffer et al. 2013). Both template heterogeneity and the environmental 

temporal variability constitute the external environment, and influence biological 

patchiness and ecosystem change. Template heterogeneity interacts with internal 

feedbacks to influence ecosystem resilience (Bonachela et al. 2015). Exogenous temporal 

variability (e.g., disturbances and environmental changes) could either cause a direct 

change in system state or trigger changes in the internal feedbacks that are critical to 

ecosystem resilience (Dent, Cumming, and Carpenter 2002; Turnbull et al. 2012). 

Temporal variability not only interacts with internal feedbacks, it also alters template 

heterogeneity, and consequently, template - internal feedback interactions. The dynamic 

nature of the underlying drivers and their interactions have been rarely studied, but could 

be important in predicting ecosystem responses to disturbances or stress. Changes in the 

composition and relative strength of the drivers could alter broad-scale ecosystem 

properties, such as the ability to resist external stress and its recovery capacity from an 

undesirable state (Fig. 2.8). One of the basic questions in ecology is to understand how 

spatial patterns influence ecosystem properties, such as resource retention (Ludwig et al. 

2007). For other ecosystem properties, such as ecosystem resilience, our research 

indicates that only knowing the spatial patterns is not enough. It is essential to also 

understand whether and how ecosystem resilience depends on underlying pattern-

generating processes, and how these processes vary over time.  
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TABLE 2.1. The timing and peak discharge of winter flood events in the six-year study 
period (2009 – 2014). Data were obtained from the monitoring gauge USGS 
#09510200 Sycamore Creek near Fort McDowell, AZ, located about 1 km 
downstream of the surveyed 12-km section of the stream.  

Year Peak discharge 
(m3 s-1) 

Flood 
dates 

Days to 
survey 

2009 29.2 Nov-28 199 
 33.1 Dec-18 180 
 109.3 Dec-26 171 
 87.8 Feb-10 125 

2010 438.9 Jan-21 145 
 68.2 Mar-08 99 

2011 27.6 Dec-30 168 

 0.85 Mar-02 106 
2012 2.41 Dec-14 185 
2013 9.26 Dec-16 182 

 72.5 Jan-28 139 
 36.8 Mar-09 98 

2014 72.5 Mar-02 105 
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TABLE 2.2. Year-specific model goodness-of-fit (total error) and parameter values used in 
the best-fit model for each year 

Parameters 2009 2010 2011 2012 2013 2014 
m 0.18 0.16 0.32 0.36 0.26 0.28 
ε 0.61 0.59 0.86 0.86 0.78 0.78 
β 1.52 2.00 0.50 0.30 1.00 0.90 
f 0.20 0.22 0.08 0.10 0.16 0.22 

totErr 0.098 0.222 0.063 0.088 0.067 0.065 
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FIGURE 2.1. (a) Cumulative mean daily discharge (from Oct 1st of the previous year to the 
survey date) of the six-year study period labeled with wetland cover in the 
corresponding year. Each abrupt increase in discharge represents a flood event. 
(b) The correlation between effective flood consequence and cumulative average 
daily discharge. Different years are labeled with different colors.  
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FIGURE 2.2. Model goodness-of-fit for patch size and gap size distribution between 2009 
and 2014. The observed patch size distributions were fitted with power-law 
distributions (the red dashed line), with γ being the exponent. a on the x-axis is a 
given patch size, and y axis is the number of patches greater than the patch size a 
in the system.  
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FIGURE 2.3. The relationship between the parameter values (m, f, β, ε) and the effective 
flood consequences. Linear regression model fitted well (black dashed line, 
provided with the R2 value), when the parameter values for the year 2010 (labeled 
with red cross) were not included. After the parameter value of the year 2010 was 
considered, the relationships were not linear (blue line). 
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FIGURE 2.4. (a) The effect of template on potential establishment rate as a function of 
water permanence gradient in six years. The area to the right of the black dashed 
line denotes the range of average water permanence observed and used in the 
model, i.e., 13.6% to 100%. For each year, the difference between the value on y-
axis when wp = 13.6% and when wp = 100% represents the template effect of that 
year. (b) The effect of local facilitation as a function of percent patch cover in the 
neighboring cells (upstream 2m and downstream 2m) in each year. In the model, 
the neighbor size = 4 meter. Therefore, the actual values of q were discrete, and 
equaled to [0, 0.25, 0.5, 0.75, 1], labeled by the open circles on the continuous 
function. 
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FIGURE 2.5. The effect of local facilitation on catastrophic shifts and hysteresis. Arrows 
in (a), (d) and (g) mean the progressive changes of vegetation cover when m first 
increased from 0.01 to 0.95, and then gradually decreased to 0.01. Hysteresis in 
(b) and (i) were quantified as the difference between the m value at which the 
system arrived at the gravel state when m increased, and the m value when the 
system started to recover to vegetated state when m decreased. m* in (c) and (h) is 
the value of m when the system shifts from vegetated state to gravel state as m 
increased from 0.01. “Graduality of recovery” in (e) was measured as the 
difference between the m value when the system started to recover from gravel 
state and when it reached 100% vegetation cover, as m increased. “Graduality of 
decline” in (f) was measured as the difference between the m value when the 
vegetation began to decline and when all the vegetation disappeared from the 
system, as m increased, For all the simulations, β = 0.90.  
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FIGURE 2.6. The effect of local facilitation on ecosystem regime shifts and hysteresis 
demonstrated with the result of the model with and without local facilitation (self 
organization). The results of model without local facilitation are presented in red. 
The description of panels and figure legends are the same as in Figure 2.5.  
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FIGURE 2.7. The effect of template heterogeneity (homogeneous, random, and 
heterogeneous template) on catastrophic shifts and hysteresis, when there is no 
local facilitation (a) and when local facilitation was present (f = 0.04, 0.1) (b and 
c). β = 0.9 and ε = 0.7 were fixed for all the simulations. The arrows illustrate 
hysteresis by showing that starting from m = 0.01 and progressively increasing m, 
a transition to gravel state occurred. If we then decrease m to its original value, 
the transition back to vegetated state will not take place until a much smaller m is 
reached, i.e., hysteresis. The m value at which the system recovers from gravel 
state differs among systems with different templates, and such difference among 
templates increases with f value.  
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FIGURE 2.8. The robustness of the system under different hydrological conditions 
between 2009 and 2014. (a) Model started at the initial condition with the 
vegetation cover of a given year, gradually increased stress level by increasing m, 
until it reached gravel state. Then the model decreases the stress level, until the 
system reaches the absorbing state with 100% vegetation cover; (b) m* - the 
critical m value when the system reached gravel state when external stress 
increased for each year; and (c) hysteresis effect (the difference in m value when 
the system reached gravel state and when the system started to recover) in each 
year.  
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CHAPTER 3 

DISENTANGLING INFLUENCES OF GEOMORPHOLOGY, BIOLOGY, AND SELF-

ORGANIZATION ON STREAM NUTRIENT PATTERNS 

 

ABSTRACT 

Nutrients in freshwater ecosystems are highly variable in space and time. 

Nevertheless, the variety of processes contributing to nutrient patchiness and the wide 

range of spatio-temporal scales at which these processes operate hinder a precise 

understanding of how this spatial heterogeneity is generated and maintained through 

time. Our goal was to quantify the spatial structure and the relative importance of three 

categories of drivers: physical template, biological processes, and self-organization. Since 

stream flow is unidirectional, time-series analyses can be applied to analyze spatial 

longitudinal data along the channel, allowing quantification of the independent roles of 

the three drivers. Here we revisited Sycamore Creek, an intermittent desert stream in 

Arizona (USA) that experienced an ecosystem shift (from a gravel/algae- to a vascular 

plant-dominated system) in 2000 as a consequence of cattle removal. We conducted high-

resolution spatial nutrient surveys in surface water along a 10-km stretch of the stream, 

over four visits spanning 18 years (1995 – 2013) that represent different successional 

stages and pre- vs. post- wetland states. Wavelet transform analyses were used to identify 

the spatial scales of the underlying drivers of variation in nutrient patterns and their 

variation over ecosystem successional time. Subsequently, Multivariate Autoregressive 

State-Space models were fitted to quantify the influences of the three drivers. Contrary to 

our expectations, we did not find a direct effect of wetland establishment on nutrient 
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spatial patterns. Wetlands, however, had a significant indirect effect on nutrient patterns 

by modifying the vertical hydrological gradient, which in turn altered surface water–

groundwater exchange. Overall, geomorphic influences were about one order of 

magnitude higher than biological influences. Self-organization, manifested through 

feedbacks between biotic patch configuration and nutrient concentration, increased in 

strength over ecosystem successional time. To our knowledge, this is the first study to 

disentangle the relative influences and interactions among these drivers and their changes 

over successional time. This study advances the notion that the mechanisms causing 

spatial heterogeneity in ecosystems are complex; hence, cross-scale interactions and 

feedbacks among system elements should be considered when attempting to infer 

underlying processes from observed patterns.  

 

Keywords: desert stream; ecosystem succession; geomorphology; multi-scaled drivers; 

nutrients; spatial heterogeneity; self-organization; spatial scales; state-space models; 

wavelets; wetland. 
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INTRODUCTION 

 The relationship between pattern and process is a long-standing topic of 

investigation in ecology (Watt 1947, Turner 1989, Turner 2005, Gaston and Blackburn 

2008). One of the fundamental questions underlying the study of pattern-process 

relationships is, to what extent are patterns determined by local conditions (e.g., soil and 

climate in terrestrial ecosystems; salinity and flow in oceans) and to what extent are they 

self-organized (Levin 1999)? A major challenge to fully understanding spatial 

heterogeneity is that multiple factors and processes, operating across a range of spatial 

scales, contribute to it, and their relative contributions may change over time. The 

multiplicity of kinds of factors and scales of influence hinders quantification of the 

unique influence of each driver (O'Neill et al. 1986, Levin 1992, Pickett and Cadenasso 

1995, Chave 2013, Nash et al. 2014). In this study, we used patterns of nutrient 

concentration in a desert stream across different successional stages as a model system to 

disentangle the influence of three basic drivers of spatial heterogeneity: physical 

template, biological processes, and self-organization (Mcintyre et al. 2011, Schoelynck et 

al. 2012, Stella et al. 2013; Stewart et al. 2014, Bonachela et al. 2015). We used novel 

quantitative approaches to examine the unique influences of these drivers, the spatial 

scales at which they operate, and their changes over ecosystem successional time. 

Rivers and streams are open ecosystems. Stream surface-water chemistry is 

highly influenced by the physical environment (Poole 2002) and by the other subsystems 

to which surface water is connected, both longitudinally, vertically, and laterally (Dent et 

al. 2001, Bencala et al. 2011, Zarnetske et al. 2011). Longitudinally, tributary junctions 

can bring water with different chemistry into a stream. Vertically, the hyporheic zone is 
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an interface zone connecting surface water to the groundwater aquifer (Stanford and 

Ward 1993, Boulton et al. 1998). Subsurface water has a distinct biogeochemical 

signature and may alter that of stream water (Jones and Holmes 1996, Hill et al., 1998, 

Dent et al. 2001). The locations of upwelling and downwelling zones are determined by 

geomorphic features at multiple spatial scales. They can be influenced by broad-scale 

catchment geomorphology and local bed surface topology, such as changes in 

background groundwater discharge rate, sediment hydraulic conductivity, channel slope, 

depth to bedrock, and depth of alluvium (Thibodeaux and Boyle 1987, Gooseff et al. 

2006, Hester and Doyle 2008). In the lateral dimension, streams are hydrologically 

connected to the riparian zone, the floodplain, and the upland portions of the catchment 

(Martí et al. 2000, Krause et al. 2007, Bencala et al. 2011). Riparian zones represent 

‘nutrient filters,’ removing various chemical constituents from water as it moves from the 

upland catchment to the stream (Lowrance et al. 1984, Daniels and Gilliam 1996, 

Dosskey et al. 2010). At smaller scales, stream sinuosity can result in exchanges between 

the stream and its floodplain or parafluvial zone. Collectively, connections among 

subsystems in the riverine landscape form the physical template that influences patterns 

of nutrients in stream surface water. 

Stream nutrients are not only influenced by the physical subsystems connecting to 

the surface water, but are also modified by in-stream biological processes (Peterson et al. 

2001, Mulholland and Webster 2010). Many studies have documented the longitudinal 

declines in nutrient concentration (Hill 1979, Peterson et al. 2001, Tank et al. 2008). 

Algal uptake rates vary with nutrient availability, light, water velocity, and temperature, 

and may represent a primary pathway of nitrogen retention (e.g., Grimm 1987, Hall and 
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Tank 2003, Johnson et al. 2013). In-stream wetland patches are more complex in their 

relation to stream nutrient concentrations. During the growing season, a substantial 

amount of nitrogen (N) and phosphorus (P) can be taken up by vascular plants from 

sediments (Schulz et al. 2003, Riis et al. 2012). However, comparisons of stream reaches 

with different macrophyte cover showed that macrophytes have limited influence on 

water column nutrient concentration (either N or P) (O’Brien et al. 2014). Macrophytes 

may affect nutrient dynamics over a longer term, by locking up nutrients in biomass and 

extending the nutrient turnover period compared to algae (Simon et al. 2007, Riis et al. 

2012). In-stream macrophytes alter the accumulation of fine sediments and reduce 

vertical hydrological exchange (Madsen et al. 2001), which in turn could dampen the 

biogeochemical signature of groundwater on surface water. Nitrogen fixation (i.e. N2 to 

organic N) is another potentially important biological process contributing to variation in 

surface-water N concentration, whose influence varies spatially and seasonally (reviewed 

by Marcarelli et al. 2008). Because biological processes are themselves controlled by 

different factors that vary spatially, they may exert significant influences on the spatial 

heterogeneity of nutrient concentrations in streams. 

A third class of driver is self-organization. Spatial heterogeneity can emerge even 

in homogeneous landscapes via self-organization (Levin 1999), when local feedbacks 

between resources and biological communities lead to biological patchiness. Self-

organized biological patterns have been studied extensively in the last decade in water-

limited systems (e.g., Valentin et al. 1999, Rietkerk et al. 2004, Schmitz 2010, Deblauwe 

et al. 2011). Mathematical models (e.g., Lefever and Lejeune 1997, Rietkerk et al. 2002, 

Borgogno et al. 2009) and field observations (e.g., Valentin et al. 1999, Becker and 
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Getzin 2000, Deblauwe et al. 2011) show that plants can form regular patterning, driven 

by the local feedbacks between biomass and the limiting resource, water. In streams, 

nutrients (nitrogen and phosphorus) also represent a limiting resource (Grimm and Fisher 

1986, Tank and Dodds 2003, Johnson et al. 2009, Hill et al. 2010). Elevated stream 

nutrient concentrations at upwelling zones induce the formation of algal patches that take 

up those nutrients (Valett et al. 1994), resulting in low nutrient concentrations 

downstream. Low stream NO3
– simulates N-fixing Cyanobacteria, which may raise NO3

– 

concentrations further downstream, inducing the development of algal patches (Henry 

and Fisher 2003). A better understanding of the processes that influence spatial patterns 

in nutrient concentrations should consider the effect of self-organized patch configuration 

(Fisher et al. 1998). However, to our knowledge, no studies have yet investigated self-

organization and its potential significance for nutrient patterns. 

On top of these three drivers, the formation of spatial heterogeneity in desert 

streams is intimately dependent on the hydrological regime, which could be regarded as 

an overriding variable. In desert streams after winter floods, surface flow declines rapidly 

as a result of high rates of evapotranspiration (Stanley et al. 1997). The reduction in flow 

accentuates the effect of both geomorphic and biological processes on the spatial 

heterogeneity of nutrients. At a multi-year time scale, desert streams experience high 

interannual hydrological variability. Hydrological regime, which determines the stream-

upland connection, affects the nutrient inputs from the catchment and thereby sets a 

nutrient limitation ‘status’ (Grimm and Fisher 1992).  

Most of the processes and variables described above have been studied relatively 

well in isolation. However, little is known about how they collectively influence spatial 
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heterogeneity, and even less is known about how their relative contributions may change 

over time, responding to the changing environment (e.g., hydrology as described above) 

and successional stages. Classical successional theory does not address changes in spatial 

heterogeneity over time (e.g., Odum 1969, Vitousek and Reiners 1975). The first real 

acknowledgement of spatial heterogeneity in the context of ecosystem succession dates 

back to Bormann and Likens (1979), the idea of “shifting-mosaic steady state”. Although 

studies on how ecosystem spatial heterogeneity changes over successional time are 

limited (but see Armesto et al. 1991, Cadenasso et al. 2006), results are intriguing. For 

instance, Cain et al. (1999) suggested that nutrient spatial heterogeneity in dunes 

decreased during succession. In contrast, Dent and Grimm (1999) observed increasing 

nutrient heterogeneity over post-flood succession in Sycamore Creek. Understanding the 

cause of such contrasting patterns likely requires understanding how the contributions of 

the underlying drivers change over successional time.  

Our study capitalizes on prior surveys of nutrient heterogeneity over successional 

time in Sycamore Creek, Arizona (Dent and Grimm 1999). Those surveys were done 

during the 1990’s, when gravel substrates and benthic algae predominated and wetland 

plants were scarce. Since 2000, when the U.S. Forest Service eliminated cattle grazing 

from the study area, the abundance of wetland plants in the active channel of Sycamore 

Creek increased dramatically (Heffernan 2008). By 2013, around 40% of the 10-km 

section surveyed was covered by patchily distributed wetland plants (mainly Equisetum 

laevigatum, Paspalum distichum, Schoenoplectus americanus, Typha domingensis, and 

Juncus torreyi). In May 2013, we repeated Dent and Grimm’s (1999) survey in the same 

10-km stream reach. Collectively, the resulting data represent both different successional 
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stages (early, mid, and late succession) and the two ecosystem states (before vs. after 

wetland establishment) that have been observed in this system in the past two decades. 

Here, we addressed the general questions of how observed nutrient patterns are linked to 

underlying processes, and how the unique influences of their drivers, hierarchies, and 

feedbacks, change over ecosystem successional time. In particular, we asked: (Q1) are 

spatial patterns of nutrients influenced by wetland establishment? (Q2) What spatial 

patterns, in terms of patch size and scales, emerge during succession? (Q3) What is the 

relative importance of physical and biological drivers, and what role does self-

organization play (if any) in influencing these nutrient patterns? Finally, (Q4) how do the 

underlying processes and the manifested patterns change over successional time?  

We examined these questions in a novel way, by applying time-series methods 

(wavelets analysis and Multivariate Autoregressive State-Space [MARSS] models) to 

evenly spaced longitudinal data. Wavelets allowed us to precisely describe the multi-

scaled variation in nutrient concentration, hence the spatial scales at which the underlying 

processes operate. In turn, MARSS models allowed us to quantify the processes that 

shape nutrient patterns, and therefore any changes in the identity, direction, and extent to 

which these drivers influence nutrient concentration, both over successional time and 

before and after wetland establishment (i.e., 1990s vs. 2013). Collectively, these methods 

allow us to integrate different types of data (nutrients, geomorphic, biological) spanning a 

range of spatial and temporal scales. Overall, they allow us to relate observed nutrient 

spatial patterns to the underlying processes causing them in an explicit, quantitative way 

(Fig. 3.1). 
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METHODS 

STUDY SITE 

 This study was carried out in Sycamore Creek, Arizona, a tributary of the Verde 

River located 32 km northeast of Phoenix, Arizona (USA). The stream drains a 

catchment of 505 km2 that ranges in elevation between 427 and 2164 m. The study site is 

a 10-km stretch of stream ranging from 600 m to 700 m in elevation. Stream substrata 

consist of coarse sand and gravel that can be up to several meters deep in runs, and 

boulders and cobble in riffles, with limited reaches of exposed bedrock. The long-term 

mean annual precipitation varies with elevation from 39 cm yr-1 to 51 cm yr-1 but varies 

greatly among years (ranging from 2 cm yr-1 to 92 cm yr-1, with a coefficient of variation 

of 35% over the past 100 years). Precipitation is bimodally distributed with rainy seasons 

in winter (December–March) and summer (July–September); thus, the stream is 

frequently intermittent, with isolated perennial sections separated by large sections that 

dry out completely, especially in summer (Stanley et al. 1997). Nitrogen limits primary 

production during baseflow; phosphorus limitation has not been demonstrated and is 

unlikely, with long-term average concentration always exceeding 20 µg L-1 (Grimm and 

Fisher 1986). 

 

SAMPLE COLLECTION AND ANALYSIS 

The nutrient data used in this study were from two sources: (1) existing data (Dent 

and Grimm 1999); and (2) new data collected on May 31st, 2013 in the same section of 

Sycamore Creek (2.5 months after a March 8th flood, with a peak discharge of 36.8 m3 s-

1) (Fig. 3.2). We replicated field techniques from Dent and Grimm (1999), collecting 
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duplicate samples of surface water in 60-ml tubes from the stream’s thalweg. Samples 

were taken at points 25 m apart, and were collected as simultaneously as possible by 14 

people arrayed along the 10-km stream segment. Each person walked upstream as they 

collected samples over ~700 m. All samples were filtered in the field within two hours, 

between 8am and 10am. Locations at each 700 m overlap point were sampled both at 

beginning and end of the collection period to check for diel variation in nutrient 

concentrations. Magnitude of diel change was <10% of the range of concentrations 

observed, so we were confident that the spatial patterns reported here were not 

confounded by temporal variation. 

 Filtered water samples were frozen until analysis. All water samples were 

analyzed within three weeks for NO3
–-N (hereafter, NO3

–, but concentration is reported as 

mass N per volume), soluble reactive phosphorus (SRP; concentration reported as mass P 

per volume), and chloride (Cl-). NO3
– and SRP were determined using a Latchat QC8000 

Flow Injection Analyzer. We measured NO3
– using the cadmium-reduction method 

(Solorzano 1969), and SRP using the molybdate blue method (Wood 1967). Cl– was also 

determined on the Lachat QC8000.   

 We then organized and re-analyzed the data collected from the same 10-km 

segment of Sycamore Creek studied by Dent and Grimm (1999) in the 1990s. They did 

surveys in three stages of post-flood succession, on May 22nd 1995, 2.5 months after a 

March 6th, 1995 flood (peak discharge was 113 m3 s-1), on December 7th 1995, 9 months 

after the same flood, and on March 17th 1997, 2 weeks after a flood on 28 February 1997 

flood (peak discharge = 83 m3 s-1) (Fig. 3.2). These dates were representative of middle, 

late, and early successional conditions in the stream, respectively. Data collected in 2013 
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corresponded to mid-succession, comparable to May 1995 data; however, the peak 

discharge of the flood in March 1995 was three times larger than that in May 2013. 

Moreover, there was a sustained relatively high flow in 1995 before the May survey (the 

mean daily discharged measured at the USGS gauge #09510200 1.5 km downstream of 

the survey section was 0.45 m3 s-1 on the survey day in 1995), while in 2013, discharge 

dropped to 0.45 m3 s-1 as early as March 28th, and declined to zero on May 21st. As a 

result, although both surveys were conducted 2.5 months after the last flood, the 2013 

survey was at a mid-to-late successional stage. While Dent and Grimm (1999) measured 

conductivity, in 2013 we analyzed Cl- instead to represent a biologically inert parameter.  

 

ANCILLARY DATA 

 Two types of supplementary data were collected. (1) Biological data: wetland, 

algal, and Cyanobacteria distribution data were collected from field surveys in 2013. The 

spatial distribution of algae and Cyanobacteria (presence-absence) was surveyed one 

week before the water chemistry survey. Spatial distribution of wetland plants was 

determined two weeks after the water chemistry survey. We surveyed the location of 

wetland patches along the 10-km study reach, and recorded species identities and patch 

sizes of wetland plants. In late succession in 1995, Dent and Grimm (1999) recorded 

presence-absence of filamentous algae and N fixers at each point where water samples 

were taken. (2) Physical condition: water permanence data were provided by E. Stanley 

(personal communication; University of Wisconsin). From May 1988 to February 1990 

(22 consecutive months) Stanley surveyed the same 10-km of stream, and recorded the 

spatial extent and average depth of water monthly. We calculated water permanence 
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(percentage of time with surface water present within the 22 month study period) along 

the stream from these survey data. Upwelling locations along the 10-km stretch of the 

stream were identified by Dent and Grimm (2001) using vertical hydrological gradient 

measurements in the field. We recorded reach types (i.e., riffle, run, and pool) in the 

survey in 2013, as did Dent and Grimm (2001).   

 

STATISTICAL METHODS  

Wavelet analysis 

To decompose the spatial scales of nutrient distribution on sampling data, we 

performed wavelet analyses. Wavelets are a time-frequency decomposition of non-

stationary, aperiodic, and noisy signals (Cazelles et al. 2008). Although primarily applied 

to time series, wavelets have also been applied to the analysis of spatial patterns (e.g., 

Rosenberg 2004, Mi et al. 2005, Keitt and Urban 2005). Our intent in using wavelet 

analyses in this study was to reveal the spectral structure of the longitudinal nutrient 

variation, which would inform us about (1) the spatial scales of the underlying processes, 

and (2) the specific locations where these processes occurred. We used this information 

to infer the possible environmental drivers underlying spatial variation. A full description 

of the wavelet technique can be found elsewhere (Torrence and Compo 1998).  

Wavelet analyses were applied on all 12 nutrient series (i.e., three nutrient types × 

four surveys). After obtaining the corresponding wavelet spectra, we compared them 

using a multivariate method that defines an orthonormal basis maximizing the mutual 

covariance for each pair of wavelet spectra (full description of the method can be found 

at Rouyer et al. (2008). Comparing the decomposition of the wavelet spectra onto this 
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orthonormal basis enabled us to quantify the dissimilarity of space and spatial scale 

patterns (i.e., both the spatial scales and the spatial positions) among different nutrient 

species and among successional stages. We then used the constructed 12×12 dissimilarity 

matrix to calculate the mean dissimilarity exhibited by the main factors (i.e., nutrient 

species [NO3
-, SRP, Cl-] and successional stages), to evaluate the relative importance of 

the main factors (similar to Rouyer et al. 2008). Wavelet analyses were carried out using 

the ‘biwavelet’ package (Gouhier and Grinsted 2013) in R (R Development Core Team 

2015). 

MARSS model 

To quantify the relationships between the putative drivers (i.e., covariates) and 

nutrient heterogeneity, and to determine the relative importance of these drivers across 

different successional stages and ecosystem states, we used multivariate autoregressive 

(MAR) models. In ecology, MAR models have been mainly employed to quantify the 

effects of environmental drivers on population growth rates and community dynamics 

(reviewed by Hampton et al. 2013). MAR models rely on theory about the patterns of 

temporal correlation that emerge from environmental drivers and species interactions 

(Ives et al. 2003), and use these patterns to estimate the effects of external drivers and 

internal interactions on community dynamics. Moreover, state-space versions of MAR 

models (i.e., MARSS models) allow inclusion of observation error. Parsing out 

observation (i.e. non-process) from process error is important in ecological applications 

because ignoring observation error can drastically change inferences about underlying 

processes (Knape and de Valpine 2012). Therefore, in our case MARSS allowed us to 

partition the variation in nutrient concentration data due to measurement error from the 
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variation due to true changes in concentration. We fitted MARSS models using the 

‘MARSS’ R-package (Holmes et al. 2014), which provides support for fitting MARSS 

models with covariates to multivariate data (here, nutrient concentration data 

downstream) via maximum likelihood, using an Expectation-Maximization algorithm. 

A MARSS model includes a process model (Eq. 1) and an observation model (Eq. 

2):  

   

 

Data enter the model as y (with yi,s being the log-transformed concentration of 

nutrient type i at sampling site s) and as ck,s (the covariates k at sampling point s; the total 

number of covariates included in MARSS models for different years varied, as detailed in 

the following paragraph. yi,s is a linear function of the “hidden” or true nutrient 

concentration xi,s. The effect of exogenous variables (i.e., the covariates), such as physical 

drivers and biological processes, on concentration changes, was included in cs. Values of 

Ci,k are coefficients that indicate the effect of covariate k on the concentration of nutrient 

i. B is a 3×3 interaction matrix that models the effect of nutrients on each other (off-

diagonal values) and on itself (diagonal values). wi,s is the process error, representing the 

effects of environmental stochasticity and being modeled with a multivariate normal 

distribution (mean of 0, variance-covariance matrix Qs). In the observation model (Eq. 2), 

v is a vector of non-process (observation) errors, with errors at sampling site s being 

multivariate normal with mean 0 and covariance matrix Rs. Z is a 6 × 3 matrix to relate 

observation points to the different state processes. 

xi,s = Bxi,s−1 + Ci,kck,s
k=1

kyr

∑ +wi,s;wi,s ~ MVN(0,Qs ) (Eq.1)

yi,s = Zxi,s + vi,s;vi,s ~ MVN(0,Rs ) (Eq.2)
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Covariates (cs) included three physical drivers, i.e., water permanence 

(continuous, unit: %), reach types (i.e., pool, run, riffle; categorical), and 

presence/absence of upwelling zones (binary), and three biological drivers, i.e., 

presence/absence of algae (binary; available for late succession in 1995 and 2013 

survey), presence/absence of cyanobacteria (binary; available for late succession in 1995 

and 2013 survey), and macrophyte abundance (i.e., per cent cover of wetland patches 100 

m upstream from each sampling site; available only in 2013; continuous, unit: %).  

 We compared several model structures using AICc (Akaike information criterion 

with a correction for finite sample sizes) (Burnham and Anderson 2002). In the B matrix 

(Eq. 1), we compared models with and without nutrient interactions (using an identity B 

matrix for the without-interactions model). In the R matrix (Eq. 2), we compared models 

considering nutrient-specific observation errors with models considering constant 

observation errors (i.e., equal across all nutrient types). For the Q matrix, we also 

compared models considering nutrient-specific process error with models considering a 

single process error across nutrients. We used AICc to select the best model structure, 

i.e., the one minimizing AICc (see similar application in Ward et al. 2010; Ruhí et al. 

2015). The state variables were all natural-log transformed first, and then z-scored to 

allow comparison of effect sizes and interaction strengths across surveys and across 

nutrient types (Holmes et al. 2014). The effects of covariates were assessed via 95% 

confidence intervals (1,000 bootstrap samples).  

Like most rivers and streams in arid and semi-arid areas, Sycamore Creek is an 

intermittent stream in space and time, and therefore, part of the stream was dry during the 

survey, hence no data were collected there. We compared the extent to which our 
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inferences would change by different approaches to deal with “missing” values. Methods 

for addressing these “missing” values in the dry sections for wavelet analysis and 

MARSS models are described in Appendix A.  

Net uptake length 

To assess the intensity of biological activity, we applied an index- net uptake 

length (Martí et al. 1997), that reflects the rate of nutrient exchange with biota. To do 

this, we analyzed downstream nutrient concentration declines. This is different from 

uptake length in the nutrient spiraling concept (Newbold 1981), which is defined as the 

average downstream distance travelled by a nutrient molecule in dissolved form before 

being removed from the water column, as it likely includes both uptake and release 

processes. We computed the first derivative of nutrient concentration (above some 

threshold value to filter out noise in the data) over a moving window size of 100 m, 150 

m, 200 m, and 250 m (i.e., 4, 6, 8, and 10 data points). We then extracted all the positive 

values (so that concentration was decreasing downstream) and took the mean of these. By 

estimating uptake lengths for N and P across the four surveys, we were able to compare 

the general pattern of uptake over successional stages and before & after wetland 

establishment. The result is an average downstream distance required to see a 

concentration decline of 1µg L-1. This is the net nutrient uptake length (unit: meter). This 

analysis excluded points between which nutrient concentration increased, as these could 

indicate either release processes or groundwater inputs, or both. Our estimate of net 

uptake length using only the positive values is conservative, as it might also include 

groundwater input (for NO3
– and SRP groundwater concentrations are usually higher than 

those of surface water). 
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RESULTS 

PATTERNS OF NUTRIENT HETEROGENEITY  

Nutrient concentrations were extremely variable in space (CV as high as 145%; 

Table 3.1 and Fig. 3.3). We monitored surface-water nutrient concentration ~biweekly in 

Sycamore Creek at a single location for 23 y (between 1976 and 1999), and CV of NO3
–

concentration over that time period was only twice that over 10 km of space in middle 

succession on a single day (CV over 23 yr = 207% for 434 samples, CV over 10 km = 

104% for 399 samples). This pattern of temporal variation was similar to that reported by 

Dent and Grimm (1999) for the shorter time period. The pattern of overall spatial 

variation in concentrations (CV) was highest for NO3
–, followed by SRP, and lowest for 

conductivity, regardless of successional stage. If we had taken water samples from 

sections of the stream that were less well mixed than the thalweg (e.g., edges, 

backwaters, etc.), spatial variation may have been even higher than this. This is contrary 

to conventional wisdom that stream water is well mixed and poses challenges to any 

stream monitoring studies that rely on a single station.  

 

EFFECT OF WETLAND ESTABLISHMENT AND SUCCESSIONAL CHANGES ON 

SPATIAL PATTERNS OF NUTRIENTS  

During the survey in 2013, 40% of stream channel in length was covered by 

wetland patches (Appendix E), affording us an opportunity to evaluate the influence of 

wetlands on nutrient spatial pattern. Little difference was found in conductivity before 

and after wetland establishment. A large sine-wave curve was observed across all four 

surveys (Fig. 3.3). In contrast, SRP patterns changed dramatically with wetland 
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establishment (Fig. 3.3). Mean SRP concentration increased by 60% after wetland 

establishment (same successional stage). In contrast, mean NO3
– concentration was 

similar before and after wetland establishment (Table 3.1). Spikes of NO3
– concentration 

were found in the same upwelling locations, regardless of the timing of the survey (Fig. 

3.3). Increased SRP and an unchanged NO3
– created a lower N to P ratio (N:P), i.e., from 

0.5 to 0.3, hence intensifying N limitation (Table 3.1).  

Net uptake lengths of both NO3
– and SRP were shorter after wetland 

establishment (Fig. 3.4), regardless of the size of the moving window used in the 

analysis. For SRP, the net uptake length of SRP with wetlands present was much shorter 

than the same mid-succession stage without wetlands, and even shorter than that in late 

succession without wetlands. This indicates a more rapid net SRP uptake in the presence 

of wetlands.  

Wavelet analysis revealed the spatial scales of the underlying processes causing 

nutrient spatial heterogeneity. The analysis revealed a strong influence of upwelling 

zones on NO3
– patterns (Fig. 3.7). A global assessment of the scale-specific properties of 

the decomposed signal independent of spatial location was achieved by summing the 

mean of the squared wavelet coefficients across all locations to produce a scalogram or 

Global Wavelet Spectrum (GWS). The GWS showed a large amount of variance at 

coarser spatial scales and little variance at finer scales (Table 3.2; Fig. 3.5). GWS of 

NO3
– signals showed two distinct peaks at spatial scales of approximately 1 km and 3 km, 

except during early succession, when the 1 km-peak was absent (Table 3.2; Fig. 3.5). For 

SRP and conductivity, only one peak was observed in GWS over successional time 

(Table 3.2; Fig. 3.5). The maximum GWS for SRP was reached at a spatial scale between 
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1.5 km and 1.8 km (Table 3.2; Fig. 3.5). Wavelet power spectrum analysis of wetland 

abundance and its GWS showed that the spectrum powers peaked at spatial scales of 

~700 m and ~2,500 m in the downstream distances of 5 – 7 km and between 7-10 km, 

respectively (Table 3.2; Figs. 3.5 and 3.7). The distinctive difference between these 

scales and those described by the GWS of nutrients indicates that different processes 

contribute to nutrient vs. wetland patterns. 

Using the 12×12 dissimilarity matrix of the wavelet spectra of 12 nutrient 

patterns, we examined the mean dissimilarities in the space-spatial scale patterns of 

nutrients. This allowed us to evaluate the impact of the two key factors of interest (i.e., 

nutrient types and successional stages) on the spatial variability of nutrients. Results 

showed that SRP patterns varied most with successional stage, followed by NO3
– and 

conductivity (Fig. 3.6a). In addition, differences in spatial patterns among nutrient 

species increased as succession proceeded (Fig. 3.6b).  

 

RELATIVE EFFECTS OF DRIVERS DURING SUCCESSION 

 The best MARSS model was the one considering nutrient-specific observation 

errors, nutrient-specific process errors, and both concentration-dependent effects and 

interactions among different nutrients in the B matrix (Appendix B). Upstream wetland 

abundance was not a significant factor in explaining the NO3
– or Cl- spatial patterns. We 

explored wetland abundance across a variety of upstream distances (scales = 25m, 50m, 

75m, 100m, 125, and 150m), but at none of these scales was a wetland effect statistically 

significant (only results at 100m-scales are shown; Fig. 3.8). Presence/absence data for 

algae and Cyanobacteria were available only for late succession in 1995 and for mid-
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succession in 2013. Algal communities showed a significant negative effect on NO3
– 

concentration in 2013 (Fig. 3.8). In late succession, presence of algae did not 

significantly affect NO3
– or SRP concentrations; however, the effect of nitrogen fixers on 

NO3
– was positive and significant (Fig. 3.8).  

 In general, upwelling influenced NO3
– concentration one order of magnitude more 

than did biological processes (the value of the covariate at 100 vs. 10-1, respectively) 

(Figs. 3.8 and 9). The upwelling effect on NO3
– concentration was significant in all four 

surveys, and its effect size increased from early to late succession (Fig. 3.9). Before 

wetland establishment, the upwelling effect was negatively correlated with the amount of 

surface water in the stream (Fig. 3.10a). However, with wetlands present this effect size 

decreased, showing significantly lower values than those predicted by the amount of 

surface water at the time the survey was conducted (Fig. 3.10b). Similarly, the effect of 

upwelling on SRP was greatest in late succession, and significantly positive in early- and 

mid-succession before wetland establishment. However, upwelling zones showed no 

significant effect on SRP patterns when wetlands were present. We also examined other 

physical drivers, including water permanence and reach types (i.e., riffle, run, and pool). 

These could influence nutrient spatial patterns in some surveys, but no driver had an 

explanatory power as strong as that of upwelling (Appendix C and D). 

The B matrix in the MARSS model informed us of the interactions among 

nutrients. The diagonal values of the B matrix can be interpreted as the effects of nutrient 

concentration on rate of change of the same nutrient (analogous to “density dependence” 

in population ecology). In the pre-wetland state, these values decreased from early to late 

succession for NO3
–, indicating a stronger concentration-dependent effect towards late 
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succession (i.e., an increase in NO3
– would trigger, on average, an immediate decrease in 

NO3
– downstream) (Fig. 3.11). This effect became more apparent in late succession (i.e., 

B11 values far below 1 [Fig. 3.11]). In contrast, diagonal values of the B matrix did not 

show a successional trend in SRP or COND. However, maximum likelihood and 95% 

confidence intervals of B22 and B33 were lower than 1 (where 1 would reflect 

concentration independence), indicating some regulation of these nutrient concentrations 

in the system. The off-diagonal values of the B matrix estimated interaction strengths 

between the different nutrients. We found a positive effect (mean = 0.08, 95% CI=0.02 – 

0.15) of SRP concentration on NO3 in mid succession, both before and after wetland 

establishment (Appendix C and D).  

 

DISCUSSION 

 Implementing a multi-scaled approach to understanding of ecological patterns is 

challenging but necessary if we are to produce general predictions (Chave 2013, Nash et 

al. 2014). At each scale, patterns are results of multiple processes. Effectively 

disentangling the roles played by top-down physical template effects, internal biological 

processes, and bottom-up self-organization is essential for understanding how ecosystems 

are assembled and predicting how they may change over time (van Nes and Scheffer 

2005, Smith et al. 2010, Weerman et al. 2011, Wohl et al. 2014). In this study, we 

identified the spatial scales of the underlying drivers of nutrient spatial patterns, and 

separated the relative influences of the physical drivers, biological processes, and self-

organization over successional time. We found that the physical template is paramount in 

explaining variation in nutrient patterns in this stream, being one order of magnitude 
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higher than biological processes. We also found feedbacks between biological patchiness 

and NO3
- concentration forming patch configuration along the stream to influence NO3

- 

concentration. This is self-organization. We quantified this self-organization and found 

that its strength intensified over ecosystem successional time. Finally, by comparing two 

ecosystem states (i.e. before and after wetland establishment), we found no direct effect 

of wetland establishment. Instead, wetlands influenced nutrients indirectly by 

accumulating fine sediments that in turn affected surface water–groundwater exchange 

(upwelling) (Fig. 3.11b).   

 

EFFECTS OF WETLANDS ON SPATIAL HETEROGENEITY OF NUTRIENTS  

Wetlands are considered biogeochemical hotspots because their anoxic condition 

and organic-rich sediments are conducive to denitrification (McClain et al. 2003). Studies 

of in-stream vascular macrophyte patches have often found significant nutrient retention 

there (Schulz et al. 2003, Desmet et al. 2011). These studies generally integrate the 

effects of in-stream macrophytes over larger downstream distances (or areas) to calculate 

total uptake. Thus, the influence of these macrophytes on nutrient spatial patterns 

remains uncertain. Despite the fact that ~40% of the stream was covered by wetland 

plants in 2013, we found no evidence that wetland patches affected spatial patterns of 

NO3
– directly. In contrast, algal uptake had a significant negative effect on NO3

– (Fig. 

3.8), even though the amount of N stored in algae is much lower than that in vascular 

plants. Across the surveyed section, about 40 kg N and 3 kg P were stored in wetland 

plants (aboveground biomass only) while macro-algae stored about 12 kg N and 1 kg P 

(Appendix A). Although more nutrients are associated with vascular macrophytes, algae 
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take up nutrients directly from surface water, whereas sediments are the major source of 

nutrients for wetland plants (Nichols 1983). This dampened exchange of NO3
– between 

pore and surface water (Johnston 1991) is consistent with our finding that the local effect 

of wetlands on surface water nutrients is undetectable.  

Although we did not find any direct effect of wetlands on nutrient spatial patterns, 

we found an indirect effect of wetlands through upwelling. The effect size of upwelling 

on NO3
– in 2013 was significantly lower than predicted by the amount of surface water 

(Fig. 3.10). We suggest that this is a result of hydrogeomorphic changes that occurred 

during wetland development. While upwelling zones provide high nutrient 

concentrations, they are also places with high abundance of wetlands (Dong et al. in 

press). Dense wetland plant formations trap and accumulate fine sediments (Cotton et al. 

2006), leading to a reduced vertical hydrological gradient, and thus to a lower 

hydrological exchange than would otherwise occur (Heffernan et al. 2008). In addition, 

wetlands create an anoxic hyporheic environment, which elevates denitrification in 

hyporheic sediments, leading to low NO3
– (Heffernan et al. 2008). Reduced exchange and 

denitrification are consistent with a reduced effect of upwelling zones on NO3
–. A 

previous mechanistic study of the impact of a riparian shrub, Baccharis salicifolia, on 

NO3
–implicated plants in stimulating denitrification via organic root exudates, but did not 

show major effects on hydrologic exchange (Schade et al. 2001). Further research should 

focus on how biogeomorphic change affects hydrologic exchange on nitrogen cycling 

processes. Our study demonstrates a shift of mechanism at different spatial scales (Levin 

1992, Chave 2013). At the patch scale, wetlands alter biogeochemical patterns via 

processes such as denitrification, uptake, and decomposition. At larger scale, 
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sedimentation and subsequent modification of hydrological connectivity may shape 

biogeochemical patterns. 

As with NO3
-, we observed no direct effects of wetlands on SRP, but wetlands 

almost always affected upwelling. SRP net uptake length in 2013 was very short, similar 

to that observed in late succession (Fig. 3.4), suggesting a rapid uptake of SRP. This 

could result from adsorption of SRP by the large surface area and high concentrations of 

Fe and Al oxides of the fine sediments and organic matter accumulated in wetland 

patches (Reddy 1998). Comparing the same mid-succession stage before and after 

wetland establishment, mean SRP concentration in 2013 (44 µg L-1) was much higher 

than before wetland establishment (28 µg L-1). This is very likely related to the inter- 

and/or multi-annual hydrological regime. The long-term (1978 to 1999) average 

concentration of SRP in May in Sycamore Creek shows high interannual variability 

(Appendix G). Winter precipitation and ensuing floods import P from the upland 

catchment, but the effect of floods decreases as flood frequency increases (Martí et al. 

2000). Low mean SRP in 1995 can be explained by the four consecutive preceding wet 

years. Conversely, the two very dry years before 2013 could explain the higher SRP 

observed that year. The increased SRP in 2013 may also result from the establishment of 

wetland vegetation. O’Brien et al. (2014) measured nutrient uptake and retention in 

reaches of differing macrophyte cover and before & after experimental removal of 

macrophytes. They found that P uptake was negatively related to biomass of 

macrophytes. While our study explains spatial variation in nutrients over the short term, 

understanding long-term mean nutrient levels requires extended monitoring of hydrology 
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and biogeochemistry of the system (Lindenmayer and Likens 2009), beyond which we 

were able to do here.   

 

CHANGES IN THE SPATIAL SCALES OF UNDERLYING DRIVERS DURING 

SUCCESSION 

 The spatial scales at which geomorphic drivers operate are determined by the 

geomorphic template. For example, major upwelling zones and groundwater input peaks 

were about 3 km apart, which contributed to the spatial scale of 3 km (Figs. 3.5 and 7). 

On the other hand, the spatial scale of the influence of a biological process is determined 

by the process rate and by the propagation rate of its consequences on the pattern of 

interest (Reiners and Driese 2001). Both of these may change over successional time. 

Patches with processes characterized by distinctive spatial scales collectively influence 

patterns of nutrient concentrations (Fisher et al. 1998). Over successional time, the 

hierarchical structure of the underlying drivers may change, and this may in turn manifest 

through changes in the spatial patterns of nutrients. 

We used the spatial scales identified by wavelet transform to infer the operant 

drivers. This approach is gaining increasing attention and is an effective means to identify 

scales in ecological studies (e.g., Keitt and Urban 2005, Vargas et al. 2010). Upwelling 

and nitrogen fixation influence NO3
– concentration at two spatial scales. Peaks in the 

NO3
– concentration pattern occurred at major upwelling zones, and repeated themselves 

every ~3 km (Fig. 3.3), generating a stable peak at ~3 km spatial scale in the GWS for 

NO3
– (Fig. 3.4). The spatial scale at which nitrogen fixation occurred varied between 0.75 

and 1.5 km (Fig. 3.5). According to Grimm and Petrone (1997), nitrogen fixation in late 
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succession in Sycamore Creek is about 2 mg m-2 hr-1. This translates to approximately 1.5 

km (assuming mean flow velocity is 300 m hr-1, and average water depth is 0.2 m) for 

NO3
– to increase by 50 µg L-1 (consistent with the small peaks in late succession [Fig. 

3.3; Table 3.2]). Cyanobacteria are usually absent in early spring (Grimm and Petrone 

1997), but over seasonal and successional time, rate of nitrogen fixation, flow velocity, 

and areal coverage of nitrogen fixers tend to increase. Therefore, the spatial scales of N 

fixation changed over successional time (Fig. 3.5). Alternatively, the signal at a spatial 

scale between 0.75 and 1.5 km could be generated from bedform-driven upwelling zones, 

which occur in concave locations of the channel (channel slope decreases, becoming 

flatter, which causes subsurface water to upwell to the surface (Harvey and Bencala 

1993). This signal became stronger as surface water (dilution water) declined towards 

late succession.  

Compared to NO3
–, SRP showed higher variability as a function of successional 

time (Figs 3.3, 3.5, and 3.6a). The first maximum GWS was reached at a spatial scale 

between 1.5 km and 1.8 km in the pre-wetland state (Fig. 3.5). For the post-wetland state, 

the first maximum was reached at about a 1.2-km scale (Fig. 3.5). For SRP, adsorption-

desorption equilibrium between sediments and overlying water column often plays an 

important role in P dynamics (Diaz et al. 1994; Hoffman et al. 2008; Richardson 1985). A 

desorption rate of 1.7 – 2.5 µg L-1 day-1 would increase SRP concentration by 10 µg L-1 

within a 1.2 km to 1.8 km downstream distance (Table 3.2). This desorption rate is within 

the range observed in other streams and rivers (e.g., Philip 1988, House et al. 1995).  

The potential of wavelet transform analyses is particularly attractive given the 

nature of ecological and environmental data, and the relationship between them. In 
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ecology, wavelet transform analyses have often been used in time-series analysis. 

Cazelles et al. (2005) used wavelet analyses to demonstrate the association between El 

Niño, precipitation, and dengue epidemics in Thailand. Vargas et al. (2010) explored the 

time scale at which environmental variables (soil moisture and temperature) correlate 

with soil respiration using wavelets. Recknagel et al. (2013) applied this approach to 

analyze the population dynamics of phytoplankton in relation to physical and biological 

determinants. Here we used wavelet analysis on spatial data (instead of time series) and 

showed its effectiveness in understanding nutrient spatial patterns and their scale-specific 

drivers. 

 

RELATIVE INFLUENCES OF PHYSICAL, BIOLOGICAL AND SELF-

ORGANIZATION EFFECTS 

 Three broad categories of drivers, i.e., physical template, biological processes, 

and self-organization, are generally examined in explaining ecological spatial patterns 

(e.g., Mcintyre et al. 2011, Schoelynck et al. 2012, Stella et al. 2013, Stewart et al. 2014, 

Bonachela et al. 2015); however, no studies have so far examined them together to 

separate the relative contribution of each and their changes over ecosystem successional 

time. Rivers and streams are open ecosystems, highly influenced by their physical 

environment (Dent et al. 2002, Poole 2012). In Sycamore Creek, the effect size of 

upwelling was about one order of magnitude higher than the direct effect of biological 

processes on NO3
– concentrations (Figs. 3.8 and 3.9). This indicates a dominant role for 

the geomorphic template in shaping patterns of NO3
– in stream ecosystems.  
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The observed spatial heterogeneity of nutrients in streams is the longitudinal 

integral of the interactions between the underlying geomorphic template, internal 

biological processes, and local feedbacks between patch configuration and nutrients, i.e., 

self-organization. The consequences of physical drivers and biological processes on 

nutrients propagate downstream with flowing water. Elevated nutrient concentration at 

upwelling zones increases algal biomass, which efficiently reduces nutrients downstream. 

The resultant low concentration of stream NO3 triggers nitrogen fixation even further 

downstream. Such local feedbacks, between biological patches and nutrient 

concentrations, self-organize to form spatial configurations of biological patches along 

the stream. The B matrix from the MARSS model provides evidence of the effect of self-

organization on NO3
– patterns (Fig. 3.11). The concentration of nutrients creates 

concentration-dependent effects in space, similar to density-dependent effects in 

population dynamics over time (Ward et al. 2010). This means that a high NO3
– 

concentration is followed by a rapid decrease, and a low NO3
– concentration that then 

triggers a rapid increase of NO3
– downstream owing to nitrogen fixation (Fisher et al. 

2004). The concentration-dependent effect on NO3
– is caused by self-organization of 

patch configuration, and is realized through feedbacks between biological patch 

formation and local nutrient concentration as described above.  

From early to late succession, the concentration-dependent effect on NO3
– 

increases (Fig. 3.11), suggesting stronger self-organization towards late succession. The 

stronger self-organization towards late succession is rooted in biological responses to 

more severe global N limitation in Sycamore Creek. This is consistent with findings on 

vegetation patterns in arid terrestrial ecosystems, where water is the constraining resource 
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(e.g., Valentin et al. 1999, Rietkerk et al. 2004, Schmitz 2010, Deblauwe et al. 2011). At 

sufficiently high precipitation, vegetation patchiness follows the pattern dictated by the 

template. Only when water becomes limiting does the landscape show self-organized 

vegetation patchiness (Sheffer et al. 2013). Similarly, in Sycamore Creek, as N became 

increasingly limiting over succession, self-organization became stronger. Although 

concentration-dependent effects were also observed for SRP and conductivity, no 

successional trend was observed, likely because the extra physical/chemical control 

pathway for dissolved phosphate (Froelich 1988), which does not exist in N dynamics.  

The effect of such self-organization reduces spatial heterogeneity of nutrients; 

however, spatial heterogeneity of nutrients in Sycamore Creek was observed to increase 

towards late succession (Dent and Grimm 1999). This is because as succession proceeds, 

reduction of surface water amplifies the effect of groundwater input. Because the 

geomorphic template is the dominant driver of nutrient spatial patterns in the stream, as a 

net effect, spatial heterogeneity increases with successional time. In terrestrial 

ecosystems, where the influence of the geomorphic template is not as strong, 

heterogeneity of nutrients is driven by changes in the plant composition and structure 

during succession, hence observed heterogeneity decreases (Gross et al. 1995, Cain et al. 

1999, Yankelevich et al. 2006).  

Studies of self-organization have so far focused on homogeneous landscapes or 

landscapes where the template effect is negligible. Most landscapes in nature are 

heterogeneous however, and biological patchiness is affected by both the physical 

template and by local feedbacks (Schmitz 2010). The manner in which the physical 

template and self-organization act in concert to shape spatial pattern had never been 
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studied to our knowledge, until Sheffer et al. (2013). They developed a unifying 

framework for understanding the relative importance of self-organization and the 

physical template in terrestrial vegetation patchiness, and suggested that vegetation 

patchiness in any landscape is likely to result from a mixture of patchiness induced by the 

physical template and by self-organization. Here we provide the first example of such a 

mechanism in riverine landscapes, and demonstrate how self-organization of biological 

patch configuration affects stream nutrient concentrations. More work along this line 

from a variety of ecosystems would be lucrative.  

 

CONCLUSIONS 

 This study provides a comprehensive framework for understanding nutrient 

spatial patterns by integrating hydrological regime, physical template, biological 

processes, self-organization, and their changes over ecosystem successional time. Taking 

advantage of the characteristics of our data (i.e., one-dimensional, evenly spaced), we 

applied time-series methods (wavelets and MARSS) to spatial patterns. An accurate 

understanding of ecological spatial patterns requires a multi-scaled approach (Holmes et 

al. 2005, Dibble et al. 2006, Bisigato et al. 2009). We quantified the spatial scales of 

processes correlated to the variation in nutrient concentrations using wavelet transform 

analyses, and showed how the relevant scales for processes changed over time. Further, 

using MARSS models we quantified the relative influences of each of three drivers 

(geomorphic template, biological processes, and self-organization). Patterns of nutrient 

concentrations in the stream were predominantly controlled by the geomorphic template. 

We found wetlands, often considered biogeochemical hotspots, did not have a direct 
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effect on nutrient patterns; however, they indirectly altered spatial patterns of nutrients 

via their hydrogeomorphic effects, especially sedimentation. We reported, for the first 

time, the effect of self-organization of biological patch configuration on nutrients. Self-

organization intensified during succession as nutrients became increasingly limiting. By 

incorporating reciprocal changes between pattern and process (i.e., self-organization), 

ecologists may contribute to higher-order theory about feedbacks between ecosystem 

structure and functioning (Fisher et al 2004, Corenblit et al. 2010). Nutrient patterns, the 

relevant scales of drivers, and the internal feedbacks and self-organization all change 

over ecosystem successional time. This study thus provides an explanation of the 

components of ecological complexity in both space and time.  
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TABLE 3.1. Water chemistry characteristics over the 10-km stretch of Sycamore Creek. 
All values are calculated on the basis of n sample locations; values at each sample 
location are based on two analytical replicates. Data for1995 and 1997 are from 
Dent and Grimm (1999). 

 
Characteristics Unit n Mean SD CV (%) 

Early succession (2 week post-flood)/1997Mar 
   NO3

–-N µg/L 398 219 158 72 
   SRP µg/L 398 17 7 42 
   Conductivity  µS/cm 396 379 14 4 
   N:P - 398 28 11 - 
Middle Succession (2 months post-flood)/1995May 
   NO3

–-N µg/L 399 6 6 104 
   SRP µg/L 399 28 6 20 
   Conductivity µS/cm 399 402 19 5 
   N:P - 399 0.5 0.5 - 
Late succession (9 months post-flood)/1995Dec 
   NO3

–-N µg/L 260 35 51 145 
   SRP µg/L 260 28 13 44 
   Conductivity µS/cm 260 488 68 14 
   N:P - 260 3 4 - 
Middle Succession (x months post-flood)/2013May 
   NO3

–-N µg/L 449 7 10 144 
   SRP µg/L 449 44 19 43 
   Cl- mg/L 449 15 2 17 
   N:P - 449 0.3 0.16 - 
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TABLE 3.2. Summary of the spatial scales of nutrient signals over successional time 
detected by wavelet analysis, and the inferred underlying processes based on 

ΔC[µg / L]
R[mg / (m2 ⋅hr)]× Z[m]

×Vflow[m / hr] , where ΔC is the local concentration peak of 

the nutrient in interest, R is the process rate (e.g., nitrogen fixation rate or desorption 
rate), Z is average water depth, and Vflow is flow velocity. Two spatial scales were 
detected in the NO3

- pattern, and one spatial scale was detected in SRP pattern. 
Nutrient species NO3

- SRP 
Spatial scale 3 km 0.75-1.5 km 1.2-1.8 km 
Changes over time No Appear in mid-

succession, and 
change with time 

Yes 

Inferred 
contributing 
process  

Groundwater 
upwelling  

Nitrogen fixation Desorption 

Reasoning  The spacing 
between major 
upwelling zones 
is ~3 km 

ΔC = 50 µg L-1; 
R = 2 mg m-2 hr-1; 
Z = 0.2 m; 
Vflow = 300 m hr-1; 

 ΔC = 10 µg L-1; 
R = 1.7-2.5 mg m-2 
hr-1; 
Z = 0.2 m; 
Vflow = 300 m hr-1; 
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FIGURE 3.1. Flow chart of the design of the study, from data collection, to the 
corresponding analysis methods, results, inferences based on the results, and how 
the questions were answered. 
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FIGURE 3.2. Hydrograph of the three years (1995, 1997, and 2013) when surveys were 
done. The data were from USGS gauge #09510200 located about 1.5 km 
downstream of the surveyed section of Sycamore Creek. The y-axis is the integral 
of daily average discharge between October 1st and the survey date of that water 
year. Survey dates are marked with gray triangles.  
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FIGURE 3.3. Spatial patterns of nutrient concentration in Sycamore Creek over 10 km 
across four stages of post-flood succession (i.e., early succession in March 1997; 
mid-succession in May 1995; late succession in December 1995; and mid-
succession with wetlands present in May 2013). In the 2013 survey, we measured 
chloride (Cl–) concentration instead of conductivity.  
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FIGURE 3.4. Comparison of the net uptake length of NO3
– and SRP across four surveys. 

The moving window (MW) size used did not change the relative pattern of the 
uptake length in successional time, but changed the absolute net uptake lengths. 
Four moving window sizes were used 100m, 150m, 200m, and 250m. “E” – early 
succession; “M”- mid-succession in 1995; “L”- late succession; “M-W” – mid-
succession with wetland patches. 
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FIGURE 3.5. Global wavelet spectra (GWS) of NO3
–, SRP, and conductivity across four 

surveys (a-c) and the GWS for wetland abundance distribution (d).  
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FIGURE 3.6. Boxplots of the mean dissimilarity between the wavelet spectrum of each 
chemical variable – showing the effects of successional stage (a) and the mean 
dissimilarity between the wavelet spectrum of each successional stage – showing 
the effect of chemical types (b).  
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FIGURE 3.7. Wavelet spectrum analysis of three types of water chemistry in four surveys 
(four rows) and the wetland abundance distribution in 2013 June, two weeks after 
the water chemistry survey. Statistically significant results (based on random 
noise) inside the labeled 95% confidence interval are enclosed in white dashed 
lines. Image colors are a representation of wavelet spectrum power (WPS). The 
dashed white U-shaped line is the cone of influence (COI), below which edge 
effects limit confidence in results. The x-axis shows downstream location (m); the 
y-axis shows spatial scale (m). For the dry section, we used ARIMA model to 
estimate the “missing data” in those sections (Appendix A).  

 

 
 
 
 
 
 
 
 
 
 
 



   

   145 

FIGURE 3.8. The effect size of upstream wetland abundance, presence/absence of algal 
patches, and presence/absence of cyanobacteria on different water chemicals 
(NO3

–, SRP, and conductivity) in mid-succession in 2013 and late-succession in 
1995. Statistically significant effects (the bootstrapped 95% confident interval did 
not include 0) are labeled with *.  
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FIGURE 3.9.  The concentration-dependent effect of different water chemistry across four 
surveys, i.e., the maximum likelihood of the diagonal values of B matrix in 
MARSS models, and the corresponding 95% confidence interval (CI) obtained 
from 1000 bootstrap samples. All values were between 0 and 1: within this range, 
smaller values denote stronger effects of concentration on the rate of change of 
concentration downstream. E: early succession; M: mid-succession in 1995; L: 
late succession; M-W: mid-succession with wetland patches. 
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FIGURE 3.10. Maximum likelihood estimate of the coefficients of upwelling on surface 
water chemistry across four surveys with 95% confidence intervals. E: early 
succession; M: mid-succession in 1995; L: late succession; M-W: mid-succession 
with wetland patches.  
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FIGURE 3.11. The effect of upwelling on NO3
– was lower than predicted by amount of 

surface water. (a) Linear relationship between the extent of surface water and the 
total volume of surface water. (b) The coefficient of upwelling on NO3

– 

concentration was linearly correlated with the amount of surface water before 
wetland establishment in 1990s. However the coefficient of upwelling was 
significantly lower in 2013 than the amount predicted by surface water volume. 
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CHAPTER 4   

THE EFFECT OF SPATIAL CONFIGURATION OF HABITAT CAPACITY ON 

BETA DIVERSITY 

 

ABSTRACT 

Patterns of β diversity are commonly used to infer underlying ecological 

processes. In this study, we examined the effect of spatial configuration of habitat 

capacity on different metrics of β diversity, i.e., β diversity measured as turnover and as 

variation. For β diversity as turnover, a monotonic species spatial turnover pattern is 

typically considered as a benchmark for species distributions driven only by dispersal 

process. Deviations from a monotonic curve are attributed to local environmental filtering 

(i.e., the same environmental factors affecting different species differently). However, we 

found non-monotonicity in species spatial turnover in models without environmental 

filtering effect. This non-monotonicity was caused by variation in α diversity, introduced 

by spatial configuration of habitat capacity. After applying a recent null-model 

approach—designed to tease out the effect of variation in α diversity—species spatial 

turnover remained non-monotonic. This non-monotonicity makes it problematic to use 

species spatial turnover to infer the underlying processes for species distribution, i.e., 

whether it is driven by environmental filtering or dispersal processes. Spatial 

configuration of habitat capacity also influences landscape connectivity. Small-habitat 

capacity sites may constrain movements of organisms (i.e., dispersal) between sites 

supporting high capacity habitats. We showed that in a landscape where small-habitat 

capacity sites were located in positions important for dispersal (e.g., in the center as 
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opposed to on the edge of a landscape) has a higher spatial variation of species 

composition, hence, higher β diversity. Ecologists who use different measures of β 

diversity should be aware of these effects introduced by spatial configuration of habitat 

capacity.  

 

Keywords: β diversity; habitat capacity; landscape connectivity; monotonicity; similarity 

indices; spatial configuration; species spatial turnover. 
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INTRODUCTION 

A burgeoning challenge in ecology is to distinguish among the many dimensions 

of species diversity. Increased scientific activity has centered on the study of beta (β) 

diversity – broadly defined as the variation in species membership among locales – 

because it provides a direct link between local biodiversity (α diversity) and regional 

species pool (γ diversity) (Whittaker 1960, Whittaker 1972) and it has numerous 

implications for conservation (Olden 2006). Ecologists frequently use β diversity to infer 

processes that structure species assemblages spatially (Vellend 2010). However, 

landscape heterogeneity, one aspect of which is manifested as spatial variation in habitat 

capacity (defined as the potential number of individuals a site can hold) among sites, can 

make it difficult to infer processes from observed β diversity patterns. Variation in habitat 

capacity introduces, among other things, differences in α diversity among sites via the 

simple effect of random sampling. As a result, variation in α diversity can generate 

spurious similarities or differences between locales, i.e., β diversity (Lennon et al. 2001, 

Koleff et al. 2003, Baselga 2007, Chase et al. 2011).  

Beta diversity is expressed both in terms of species turnover and variation 

(Anderson et al. 2011). Species turnover refers to the rate of change in community 

structure along a given gradient, such as the distance decay relationship (DDR) 

describing decreasing taxonomic similarity with geographic distance (e.g., Qian and 

Ricklefs 2007, Brown and Swan 2010). Ecologists expect monotonic decay of species 

spatial turnover to occur when a system is predominantly controlled by dispersal 

limitation, whereas deviations from DDR (i.e., “peaks” and “valleys” in the species 

spatial turnover) indicate the importance of local environmental filtering on species 
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occurrence (e.g., Condit et al. 2002, Anderson et al. 2013, Bogan et al. 2013). β diversity 

as variation is captured by Whittaker’s original measures (𝛽! = 𝛾 𝛼) or the mean 

dissimilarity index (such as Bray-Curtis and Sorensen dissimilarity index) among 

communities (𝑑 = !
!

𝑑!"!,!!! , 𝑚 = 𝑁(𝑁 − 1) 2 is total sample units) (Anderson et al. 

2011). Greater values indicate higher variation in species composition across space. In 

this study, we examine how the validity of the inferences about ecological processes 

based on different measures of β diversity may be compromised by the spatial 

configuration of habitat capacity in a landscape. We define spatial configuration of 

habitat capacity (hereafter SCHC) as the spatial arrangement of sites with different 

habitat capacities in a landscape.  

Various methods exist to correct for the effects of variation in α diversity on 

estimates of β diversity. It should be noted that these effects relate to the dependence of β 

diversity on the differences of α diversity between sites within a system; and they are not 

the same as the effects arising from the differences of the mean α diversity (i.e., averaged 

across all sites within a system) between different systems. The latter issue is related to 

the comparability of β diversity measures among systems with different mean α diversity, 

and has been addressed by several authors (e.g.,  Jost 2007, Jost et al. 2010, Baselga 

2010). Our study addresses the first issue: the dependence of β diversity on the 

differences of α diversity between sites within a system (e.g., Lennon et al. 2001, Koleff 

et al. 2003, Baselga 2007). Chase et al. (2011) recently developed a null-model approach, 

originally proposed by Raup and Crick (1979), to detect whether different species 

compositions among sites result from variation in α diversity or from other ecological 

processes (e.g., deterministic environmental filtering and stochastic dispersal). However, 
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this approach was developed for a pair of local communities, and its effectiveness and 

validity when applied to all pairwise combinations of communities in a landscape have 

not yet been systematically investigated.  

Spatial configuration of habitat capacity also influences landscape connectivity. 

For example, low capacity habitats in the landscape matrix may constrain movements 

(i.e., dispersal) between locations supporting high capacity habitats. Greater connectivity 

among habitats allows immigration from others sites to offset local extinction events, 

leading to higher a diversity but lower variability in community composition across the 

landscape (i.e., lower β diversity). By contrast, lower connectivity can isolate habitats, 

leading to lower a diversity but higher species turnover (i.e., higher β diversity) (Hubbell 

2001, Economo and Keitt 2010, Carrara et al. 2014). Although the influence of landscape 

connectivity for community composition is widely appreciated (Chase and Ryberg 2004, 

Chave and Norden 2007, Minor et al. 2009), few studies have considered the sole effect 

of habitat spatial configuration on β diversity.  

In this paper, we examine how the quantification and interpretation of β diversity 

patterns are influenced by the spatial configuration of habitat capacity. Addressing this 

question through the analysis of empirical data is challenging because many known and 

unknown ecological processes are in operation. Therefore, we examined the effects of 

SCHC on β diversity patterns using simulated landscapes that are free from the effects of 

environmental filtering. A set of communities comprised a metacommunity on this 

landscape, and we assumed that the locales that supported the communities differed only 

in their habitat capacity. As a result, species distributions—and the corresponding β 
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diversity patterns—would be controlled solely by dispersal and not by differences in the 

ecological niche requirements of species. 

The SCHC gives rise to spatial variation in α diversity, which subsequently 

affects β diversity patterns (Lennon et al. 2001, Koleff et al. 2003, Baselga 2007, Chase 

et al. 2011). If the influence of α diversity can be effectively removed, β diversity 

patterns should have the following properties in the hypothetical landscape free from the 

effect of environmental filtering (Fig. 4.1). First, β diversity as turnover should conform 

to the monotonic decay relationship describing how species similarity decreases with 

spatial distance. Second, β diversity, measured as either turnover or variation, should be 

statistically indistinguishable across landscapes with different spatial configurations of 

habitat capacities. Although these two predictions may appear intuitive, it is unclear 

whether frequently used β diversity measures conform to these properties. We 

systematically investigated the effects of SCHC on the robustness of these two properties 

by implementing a neutral metacommunity model (see, e.g., Hubbell 2001 and 

Muneepeerakul et al. 2008) in the no-niche hypothetical landscapes described above.  

 

METHODS 

We systematically investigated the effects of SCHC on estimates of β diversity by 

applying a neutral metacommunity model (Muneepeerakul et al. 2008) in one-

dimensional landscapes (e.g., such as a stream) with different spatial configurations of 

habitat capacity (Fig. 4.2). In the “uniform” configuration, all sites had identical habitat 

capacity. In the “gradient” configuration, habitat capacity increased linearly along a 

hypothetical gradient. In the “random-shuffle” configuration, we randomized the spatial 
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distribution of habitat capacities along the gradient. In the “V-shaped” configuration, 

habitat capacity was set high at both ends and low in the middle of the gradient; this is 

akin to a stream system in which the headwater receives much rainfall and the 

downstream end connects to a large river, while the middle reaches are intermittent 

streams (e.g., Bogan et al. 2013).  In the “hump-shaped” configuration, habitat capacity 

was large in the middle and small at the two extremes of the gradient—akin to an edge 

effect such as the boundaries of a forest experiencing more external pressure than its 

interior. All five configurations had the same average habitat-capacity size of 514, and 

thus the same total habitat capacity. All configurations except for the uniform 

configuration were built from the same set of habitat capacities, but they were configured 

differently in space (Fig. 4.2). The biggest sample-size discrepancy (i.e., ratio of largest 

to smallest habitat capacity) in the four non-uniform configurations was about 20.  

The metacommunity consisted of 30 local communities, with a distance between 

neighboring sites of 1 arbitrary distance unit. The dispersal kernel was assumed to be a 

two-sided exponential distribution: 

𝐾!" = 𝐶𝑒!!!" ! 

where Kij is the probability that an organism produced at site j arrives at site i after 

dispersal; C is a normalization constant to ensure that for every site j , 𝐾!" = 1! , i.e., no 

organisms traveled out of the metacommunity. Lij  is the distance between two habitats, 

and a was the characteristic dispersal distance. At each time step, a randomly selected 

individual died and the resources that previously sustained that individual became 

available to sustain a new individual. With probability v, the diversification rate, the 

empty spot was taken up by a new species (the diversification rate is a per-birth rate and 
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is due to speciation or to immigration of a new species from outside the metacommunity). 

With probability 1-v, the empty spot was occupied by a species already existing in the 

system. In the latter case, the probability Pij that the empty spot in site i would be 

colonized by a species from habitat j was determined as follows: 

𝑃!" = (1− 𝑣)
𝐾!"𝐻!
𝐾!"𝐻!!

!!!
 

where Kij is the dispersal kernel, Hk is the habitat capacity of site k, and is the total 

number of sites (i.e., communities). All the organisms in site j had the same probability of 

colonizing the empty spot at site i where the death took place. Each site was assumed to 

be always saturated at its habitat capacity.  

We explored five characteristic dispersal distances (a = 1, 4, 8, 12, 16) at the 

diversification rate v = 0.0010. In the metacommunity’s initial state, the distribution of 

species composition was random. We ran the model until it reached a statistically steady 

state (when there is no directional trend in the mean α diversity or total species richness 

with simulation time steps). 

Results from the neutral metacommunity model were used to calculate different β 

diversity measures. Three commonly-used measures of β diversity were considered: 

Sorensen dissimilarity index based on species presence/absence data, Bray-Curtis 

dissimilarity index based on species abundance data, and the more recent Chao-Sorensen 

dissimilarity index based on species abundance data, which was originally created to 

address the issue of under-sampling rare species (Chao et al. 2005). For each 

configuration, we had 500 replicates (from 500 realizations of the same neutral 

N
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metacommunity model) to calculate the mean and 95% confidence interval for each 

dissimilarity index at any particular pairwise distance.  

Next, we tested the effectiveness of Chase et al.'s (2011) null-model approach, 

which was supposed to remove the effect of variation in α diversity. The calculated index 

is called pairwise βRC. The βRC metric expresses the magnitudes by which communities 

deviate from a stochastic null expectation. βRC uses a randomization approach to estimate 

the probability of which pairwise communities have less observed number of shared 

species between two communities, containing α1 and α2 species respectively, than SSexp. 

SSexp is the expected number of shared species of a pair of communities by randomly 

drawing α1 and α2 species from a known species pool. The random draw was repeated 

99,999 to create the SSexp distribution. βRC therefore calculates the probability that SSobs 

is lower than SSexp by chance (i.e., a dissimilarity index).  

We used the four pairwise dissimilarity indices described above to calculate β 

diversity as turnover and as variation (Anderson et al. 2011). For β diversity as turnover, 

we used the slope between pairwise species similarity and pairwise geographical distance 

as a direct measure of turnover (e.g., Qian and Ricklefs 2007). We also considered the 

relative strength of the relationship (r2) between species similarity and distance, as 

recommended by Anderson et al. (2011). To examine the non-monotonicity in the plot of 

species spatial turnover (x axis is pairwise distance, and y axis is dissimilarity index), we 

defined that if there exists a mean at larger pairwise distances statistically lower (Welch-

Satterthwaite t test; p < 0.01) than a mean at smaller pairwise distance (meaning that 

species composition is more similar for the communities farther apart), it is considered to 

be non-monotonic. For β diversity as variation, we considered the classic metrics of β 
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diversity, including Whittaker’s proportional β diversity (𝛽! = 𝛾 𝛼) and the additive 

model of β (𝛽!"" = 𝛾 − 𝛼) (Lande 1996, Crist and Veech 2006), as well as multivariate 

measures of β diversity (i.e., the mean of the pairwise dissimilarity indices), which are 

based on pairwise resemblance of species among habitats (Anderson et al. 2011). Since 

the classic β diversity is directly derived from α and γ diversity, we investigated the 

effects of SCHC on α and γ diversity as well. 

 

RESULTS 

SCHC INTRODUCES NON-MONOTONICITY TO SPECIES SPATIAL TURNOVER  

By design, a neutral metacommunity model is free from the effects of 

environmental filtering, and thus patterns of spatial species turnover are shaped solely by 

stochastic dispersal. Therefore, we expect monotonic decay in species similarity with 

pairwise distance (or monotonic increase in species dissimilarity with pairwise distance) 

(Fig. 4.1); however, we found little evidence for this relationship (Fig. 4.2). Species 

turnover was non-monotonic when measured by the traditional presence/absence-based 

Sorensen index and the abundance-based Bray-Curtis index (Fig. 4.2). Chao index, 

however, showed less evidence for non-monotonicity in species spatial turnover across 

different configurations (Fig. 4.2). The non-monotonicity observed was caused by the 

variation in α diversity among the communities induced by the SCHC.  
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THE NULL MODEL APPROACH IS NOT EFFECTIVE IN SEPARATING Α FROM β 

DIVERSITY 

Next, we tested the effectiveness of Chase et al.'s  (2011) method to disentangle α 

from β diversity in spatially explicit context. We tested this method in two steps. First, 

we tested it using a randomly assembled metacommunity without dispersal limitation. 

The dispersal-free metacommunities were created by randomly selecting species from a 

common pool of a given regional diversity (γ = 200). Each species had the same 

probability of being selected and was assigned to local communities until the local habitat 

capacity was reached. The random assembly of species was repeated 500 times for each 

configuration. Our results demonstrated two main findings. First, the mean pairwise 

similarity across 500 realizations was 0, indicating no difference from a random 

assemblage (Chase et al. 2011). Second, the slope of turnover curve was 0, with an 

intercept of 0 (Fig. 4.3). These results suggest that the Chase et al. (2011) method was 

effective under random species assemblages, i.e., no dispersal introduced. It is worth 

noting that the confidence intervals were of varying widths, but all were wide (Fig. 4.3).  

 In the second step, we included dispersal limitation in creating metacommunities 

at landscapes of different SCHCs, and expected that βRC would exhibit a monotonically 

increasing pattern in all configurations. Contrary to our expectation, in the hump-shaped 

and gradient configurations, we found that species turnover was non-monotonic (Fig. 

4.3). We also found that the confidence interval generally became wider with increasing 

pairwise distance. Despite the widening confidence intervals, the non-monotonicity in 

species turnover curve was still statistically significant (Fig. 4.3). 
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SCHC CAUSES DIFFERENCES IN β DIVERSITY ACROSS METACOMMUNITIES 

We assessed the effect of SCHC on β diversity across metacommunities to 

determine whether, after correcting the effect of α diversity by Chase et al.'s  (2011) 

method, β diversity is statistically indistinguishable across landscapes with different 

spatial configurations of habitat capacities. To do this, we examined both types of β 

diversity: turnover and variation (Anderson et al. 2011).  

We found that the slope between species similarity and geographical distance 

differed among varying configurations of the landscape (Figs. 4.2 and 4.3), and Chao 

index and βRC did not conform to the linear models (i.e., very low r2 values when the 

relationship was non-monotonic). We found that Whittaker’s βW and Lande’s βAdd were 

also influenced by SCHC (Table 4.1; Fig. 4.4). Mean pairwise dissimilarity indices were 

also significantly different across configurations (Table 4.1; Fig. 4.4). Higher values were 

found in the V-shaped configuration and lower values in the hump-shaped configuration 

(Fig. 4.4). We also found that SCHC caused differences among metacommunities in both 

mean α diversity and γ diversity, especially in mean α diversity (Table 4.1; Fig. 4.4). 

Mean α diversity was much higher in the hump-shaped configuration than in the V-

shaped configuration (Fig. 4.4). By contrast, mean γ diversity was slightly lower in the 

hump-shaped configuration than in the V-shaped configuration (Fig. 4.4).  

 

DISPERSAL LIMITATION CHANGES THE EFFECT OF SCHC 

We examined two effects of SCHC: (1) its effect on the shape of species turnover 

curve (i.e., whether it is monotonic), and (2) its effect on the value of β diversity, both as 

variation and turnover, across metacommunities (Fig. 4.1). Both effects varied with the 
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strength of dispersal limitation (Table 4.1; Figs. 4.2 and 4.3). Non-monotonicity was 

more evident when dispersal was more widespread according to the three traditional 

indices (Fig. 4.2). For βRC, which corrects for α diversity variation, SCHC had greater 

effects on the shape of species turnover when dispersal was more local (Fig. 4.3). When 

dispersal limitation was absent, the shape of species turnover across different 

configurations was similar (Fig. 4.3), suggesting little effect of SCHC. In terms of 

SCHC’s effect on β diversity across metacommunities, the influence of SCHC was more 

pronounced when dispersal was more local (Table 4.1), i.e., the difference in β diversity 

among metacommunities caused by SCHC is amplified when the dispersal was more 

local. We explored five levels of dispersal limitation, but only reported result for two; all 

the patterns reported here hold for the rest three dispersal levels.  

 

DISCUSSION 

The interdependence of β and variation in α diversity is well established in the 

literature (e.g., Koleff et al. 2003, Jost 2007, Chase et al. 2011). One contribution of our 

study is to examine how spatial configuration of habitat capacity may affect different 

measures of β diversity in spatially explicit context, beyond just one pair of communities, 

through its influence on the variation in α diversity. We found that traditional similarity 

indices, be they incidence- or abundance-based were highly sensitive to the SCHC (Fig. 

4.2). Even with only dispersal limitation in the model, patterns of species turnover 

measured by these indices were non-monotonic. Non-monotonicity, such as “peaks,” 

“valleys,” and “plateaus” (e.g., Condit et al. 2002, Anderson et al. 2013, Bogan et al. 

2013), in species spatial turnover has been used as evidence for local environmental 
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filtering processes shaping community composition and distribution. We did not observe 

non-monotonicity in the species spatial turnover measured by Chao index (Fig. 4.2). Our 

findings imply that, when local habitat capacities in the landscape are not uniform (a 

common occurrence), analyses of spatial turnover based on these frequently used 

similarity indices should be interpreted with care because they are at risk of inadvertently 

conflating ecological processes with confounding effect by α diversity in their 

conclusions.  

The methods available to remove the influence of α diversity variation seem 

ineffective for the β diversity patterns discussed here. For example, Chase et al.'s (2011) 

null-model approach, which was designed specifically to correct for the effect of 

variation in α diversity on β diversity, is useful for deciding whether the community 

assemblage is significantly different from a random assemblage. But it was developed for 

a single community pair; our results show that it is not readily transferable for 

comparisons among all pairs at landscape scales (Fig. 4.3). Nonetheless, βRC has already 

been applied at landscape scales in many very recent studies (e.g., Akasaka and 

Takamura 2012, Bernard-Verdier et al. 2012, Anderson et al. 2013, Siepielski and 

McPeek 2013).  

Why can’t βRC be extended to more than one pair? The calculation of βRC is based 

on comparing the value of SSobs with the probability density distribution of SSexp. The 

probability density distribution of SSexp is generated by repeated random sampling for a 

pair of communities with given α diversity levels. Inevitably, α diversity levels vary 

across different community pairs. Different α diversity combinations result in different 

shapes of the SSexp distribution (i.e., skewedness and variance) (Chase et al. 2011). 
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Variation in the shape of SSexp distribution makes comparison among different pairs 

problematic.   

We note that βRC is highly sensitive to SSobs. When SSobs falls near the peak of 

SSexp distribution, a small change in the value of SSobs results in a disproportionally large 

change in the value of βRC (see Fig. 4.5 and its caption for an example)—even a change 

in its sign. In reality, under-sampling of rare species could easily result in such small 

fluctuations in the value of SSobs collected in the field. Therefore, βRC are not reliable for 

inferring underlying ecological processes. To demonstrate this problem, we took two 

pairs of communities in the hump-shaped configuration as an example (Fig. 4.6). The 

first pair consists of the two communities at both ends (i.e., communities 1 and 30), and 

the second pair consists of communities 12 and 18, which are much closer to each other 

than the first pair. After removing the effect of variation in α diversity, we expected the 

second pair to be more similar in species composition, i.e., having a lower βRC; instead, it 

was less similar (Fig. 4.6). Accordingly, this could lead to an interpretation that 

ecological processes other than dispersal are at play where there is none. 

Another reason that SCHC causes complications in interpreting β diversity 

patterns is the spatial autocorrelation between the SCHC and dispersal.  It is useful to see 

this through a lens of the effects of variation in habitat capacity.  The variation in habitat 

capacity affects patterns of spatial turnover in two ways. First is a random sampling 

effect: if the overall species richness is fixed, two habitats with larger and more equal 

carrying capacity are likely to have a greater proportion of common species, hence a 

higher similarity value. Second is the spatial correlation between SCHC and dispersal. 

Corrective methods such as null-model shuffling (Kraft et al. 2011) effectively remove 
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the random sampling effect, but not the spatial autocorrelation effect. Therefore, the 

effectiveness of these methods depends on species’ dispersal capacity, which is difficult 

to estimate in reality, consequently, difficult to correct.  

Another contribution of our study was that we confirmed the effect of SCHC on β 

diversity via its effect on landscape conductivity. The hump-shaped landscape and V-

shaped landscape have same total habitat capacity; however, in the V-shaped landscape, 

the sites with lower habitat capacity level are located in the center of the landscape, and 

these lower-habitat-capacity sites are located on the edge of the landscape in the hump-

shaped landscape. Smaller habitat capacity in the center of the landscape greatly reduces 

landscape connectivity, similar to bottleneck effect, and increases isolation among sites. 

As a result, the local species diversity is low (low mean α diversity), but the species 

composition is more spatially variable, i.e., higher β diversity (Fig. 4.4). By fixing the 

overall landscape carrying capacity, and only changing the spatial arrangement of 

habitats of different size, we demonstrated the significant effect of SCHC on different 

measures of β diversity. This mechanism is often neglected in interpreting β diversity 

patterns.  

As the upshot of our investigation, we recommend that for ecologists who wish to 

use the shape of species spatial turnover to infer underlying ecological processes, Chao 

index is currently the best choice. According to our study, Chao index is considerably 

more robust than traditional similarity indices: it exhibits no or very weak non-

monotonicity when only dispersal limitation is present. One possible explanation for this 

robustness is that SCHC influences spatial patterns of rare species, and the Chao index 

was already designed to minimize sensitivity to rare species (Chao et al. 2005).  That 
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said, the Chao index is not completely insensitive to the SCHC effects (Fig. 4.2). Our 

findings suggest that when inferring ecological explanations from β diversity patterns, 

researchers should take into account not only the commonly considered deterministic and 

stochastic processes (e.g., species adaption to habitat quality, dispersal, extinction, and 

speciation), but also the effects of spatial configuration of habitat capacities, which alters 

patterns of β diversity by introducing variation in α diversity and influencing landscape 

connectivity, which further influences dispersal limitation and other spatial processes.  
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FIGURE 4.1. Schematic representation of the effect of spatial configuration of habitat 
capacity (SCHC) on β diversity – testing the validity of the two properties of β 
diversity when the metacommunity is controlled only by dispersal. 
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FIGURE 4.2. Effect of spatial configuration of habitat capacity (SCHC) on species spatial 
turnover at two levels of dispersal limitation (solid red line: 1 distance-unit; solid 
blue line: 8 distance-units).  
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FIGURE 4.3. Patterns of βRC at different levels of dispersal distance (no dispersal, 
dispersal distance = 1 unit and 8 units; γ diversity = ~200).  
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FIGURE 4.4. The influence of SCHC on β diversity as variation, measured by classic 
metrics of species diversity (mean α, γ, βAdd, and βw) and mean of dissimilarity 
indices (Sorensen dissimilarity index (SDI), Bray-Curtis dissimilarity index 
(BCI), Chao dissimilarity index, and βRC). The results were based on 500 
realizations of the neutral metacommunity model with a characteristic dispersal 
distance of 1 unit.  
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FIGURE 4.5. Sensitivity of βRC to small changes in observed shared species (SSobs) when 
the value of SSobs falls within or near the peak of SSexp distribution. SSexp 
distribution was created by 99,999 repeated random draws of α1 and α2 species 
from a known species pool. The γ diversity of 204 was taken from one of the 
neutral metacommunity model realizations in the V-shaped configuration with 
dispersal distance of 8 units.  
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FIGURE 4.6. Influence of the shape of SSexp distribution on βRC. The two pairs of 
communities shown are from the same neutral model realization: (A) the pair of 
communities with 29 units apart; and (B) the pair of communities with 6 units 
apart. Red bars indicate the number of observed shared species.  
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CHAPTER 5 

NEUTRAL THEORY APPLIED TO A DESERT STREAM NETWORK 

CHARACTERIZED BY VARIABLE HYDROLOGICAL REGIMES 

 

ABSTRACT 

Neutral models are dynamic, and should explain patterns in both space and time; 

however, little work has been done on the effects of neutral processes in dynamic 

environments. We constructed neutral models with different levels of temporal 

variability, and compared model results with freshwater invertebrate data collected in a 

desert river network in Arizona, USA, between 2009 and 2011 across eight sampling 

seasons in 20 sites. Model performance was improved by including temporal variability, 

especially inter-annual hydrological variability, although only marginally. Regardless of 

the parameter values used in the model, the relative fits for eight sampling seasons did 

not change. This failure can be ascribed to the particular formulation we used to model 

the temporal variability: it might be missing some important aspects of temporal 

structure, such as legacy effects of disturbance in time or cross-scale interactions. 

Alternatively, results may suggest that the relative importance of niche and neutral 

processes varied in time depending on hydrological conditions at the time of sampling. 

Model fit decreased with increasing discharge (i.e., wetter), except in the summer 2010, 

when discharge was very high. This suggested that neutrality is important when the 

stream discharge is either very high or very low. At either extreme, the spatial pattern of 

flow is relatively more homogeneous; hence, niches overlap more and the system is 

closer to neutrality. At intermediate discharge levels, spatial heterogeneity is highest, 
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niche overlap is least. Overall, freshwater invertebrate communities in desert streams, 

characterized by strong spatial heterogeneity, high temporal dynamics, and low species 

richness, are dominated by environmental selection.  

 

Keywords: biodiversity; desert stream; dispersal; hydrological variability; 

metacommunity; neutral theory; river network. 
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INTRODUCTION 

 Neutral theory in community ecology (Hubbell 2001) has progressed substantially 

during recent years and the arguments both for and against it have matured (Rosindell et 

al. 2011). Neutral theory makes a controversial “neutrality assumption”: all individuals 

within a particular trophic level have the same chances of reproduction and death 

regardless of their species identity (Hubbell 2001). Ecologists increasingly appreciate the 

merits of neutral theory (Alonso et al. 2006; Adler et al. 2007), both in a philosophical 

and technical sense. Philosophically, the assumption of ecological equivalence is 

parsimonious, only to be replaced by more complex mechanisms when data convincingly 

tell us so. Technically, neutrality functions as an approximation that may work well for 

macroscopic properties at appropriate spatial and temporal scales (Holt 2006). However, 

few ecologists believe that the world is neutral – all biologists know that species differ in 

many exquisite and complex ways. On the contrary, empirical evaluation of neutral 

theory has shown many limitations (McGill et al. 2006). However, not all limitations are 

attributable to the neutrality assumption – some may be caused by the particular model 

formulation employed. For example, a spatially explicit neutral model has been shown to 

give a much better description of species-area relationships than the original spatially 

implicit version (Rosindell and Cornell 2007).  

Neutral theory of biodiversity was originally spatially implicit. It envisioned a 

well-mixed metacommunity (“mainland” of potential immigrants) and a separate local 

community (“island”) (Hubbell 2001). Explicit consideration of spatial structure 

represented a significant advance (Rosindell and Cornell 2007). Volkov et al. (2007) 

considered several (instead of one) local communities, to provide a more realistic 
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description of metacommunity. Further developments in the form of networks of patches 

were extensions of  these ideas that provided even greater realism. This type of model 

was applied to fish communities in river networks, where it produced excellent fit to both 

species richness pattern and species spatial turnover (Muneepeerakul et al. 2008). More 

model extensions and relaxation of assumptions other than neutrality are needed to truly 

explore the domain of applicability of the neutrality assumption (Etienne 2007). 

One assumption to relax is the temporally static setting employed in many neutral 

models. Neutral theory is dynamic, which means that it should explain biodiversity 

patterns not only in space, but also in time. However, little work has been done on the 

effects of neutrality in dynamically changing environments, as pointed out in a recent 

review for the neutral theory at “age 10” (Rosindell, Hubbell & Etienne 2011). Keil et al. 

(2010) studied population dynamics in a patch-based neutral model and showed that 

neutral theory can reproduce Taylor’s power law relating the mean and variance in 

population size for a given species. Adler (2004) used 35 years of data from permanent 

plots in Kansas grasslands to test the ability of neutral models to produce observed 

species-area relationships (SARs) and species-time relationships (STRs). The model 

could generate realistic SARs or STRs, but not both simultaneously. The author attributed 

the failure of the model to “large interannual variation in resources in the system”, which 

was not included in the model.  

Environmental temporal variability is an important force driving community 

dynamics (Taylor and Warren 2001; Urban 2004; Gouhier et al. 2010). This is especially 

true for certain ecosystem types, such as stream ecosystems, whose species composition 

and abundance are heavily influenced by the hydrological regime at multiple time scales 
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(Smith et al. 2003; Boix et al. 2010; Poff et al. 2010). Temporal variability itself is a 

strong environmental filter in shaping community structure (Poff and Ward 1989). The 

effects of environmental temporal variability have received considerable attention in the 

literature on population and community processes (Rodriguez-Iturbe et al. 2009; Chesson 

2000). How useful or valid is the neutral process in such variable environments in 

capturing biodiversity patterns? To our best knowledge, this question has never been 

investigated.  

In temporally variable ecosystems, dispersal capacity and disturbance regime 

(both frequency and size) could interact to shape biodiversity patterns (Roxburgh et al. 

2004). Population size shrinks during disturbance, freeing up niches. Species with strong 

dispersal capacity could quickly colonize empty niches in post-disturbance recovery. 

Under high-frequency disturbances, better dispersers can persist, while under low-

frequency disturbance, differences between better dispersers and poorer dispersers are 

less evident. The interaction between dispersal capacity and disturbance regime could 

directly influence patterns of both species richness and abundance.  

Neutrality may be more pertinent in some environments than others (Gravel et al. 

2006; Holt 2006; Scheffer and van Nes 2006). The relative importance of competitive vs. 

stochastic exclusion creates a continuum from niche-structured communities to neutral 

structure. In heterogeneous landscapes, the species tend to have non-overlapping niches, 

and niche differentiation is likely to be the dominant process affecting species 

abundances. In contrast, the validity of neutrality assumption is thought to increase in 

more homogeneous landscapes as a result of increasing niche overlap, and hence, 

intensified competition (Gravel et al. 2006). Environmental temporal variability could 



   

   181 

induce landscape heterogeneity. For example, streams in desert river networks have 

different levels of water permanence, and flow heterogeneity is lowest under both very 

dry and very wet conditions (Dong et al. 2015). The contribution of neutral process in 

shaping biodiversity pattern is therefore likely to vary in time in such ecosystems.  

 In this study, we tested the neutral theory in an environmentally dynamic 

ecosystem. We used a dataset of aquatic invertebrates collected between 2009 and 

2011from a river network located in southern Arizona. The system is characterized by 

high heterogeneity both in space and time. Spatially, the river network is formed by a 

spatial configuration of ephemeral, intermittent, and perennial streams with different 

levels of water permanence. Temporally, precipitation changes greatly over seasons and 

across years, which consequently influences hydrological connectivity in the landscape. 

We included temporal variability at two time scales (intra- and inter-annual) in spatially 

explicit neutral models. We tested two specific hypotheses and predictions: (1) including 

temporal variability improves performance of neutral models in an environmentally 

dynamic system; and (2) performance of models is influenced by hydrological conditions 

(i.e., the wet-dry gradient), because of the combined effects of hydrology on hydrological 

connectivity, dispersal, and flow heterogeneity of the river network.  

 

METHODS 

SITE AND CLIMATE DESCRIPTION  

 The data for this study were collected in the Huachuca Mountains located in 

southeastern Arizona, U.S.A. (Fig. 5.1). Mean annual precipitation in the region is about 

35 cm, but is highly variable from year to year (Fig. 5.2a). Precipitation is strongly 
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bimodal within a year, with roughly 60% of precipitation occurring during brief, intense 

summer (July-September) monsoon storms and 40% during more prolonged, moderate-

intensity winter (November-April) storms (Fig. 5.2b). During the study period, summer 

storms produced much higher discharge peaks that rapidly declined, whereas a single 

winter storm in 2010 produced prolonged high discharge. Winter and spring runoff 

during 2009 and 2011 was low. 

The aquatic invertebrate data were collected across eight sampling seasons, from 

2009 to 2011, during the summer and winter high-flow periods and the fall low-flow 

period (Fig. 5.3a). 2010 had significantly higher discharge than the other two years; the 

lowest discharge was observed in 2009. The samples were taken from 20 sites in 

Huachuca Mountains (Fig. 5.1), covering perennial, intermittent, and ephemeral streams. 

In each sampling season, only a subset of all 20 sites was visited and sampled. Detailed 

descriptions of data and sampling methods can be found elsewhere (Bogan and Lytle 

2007).  

 

RIVER NETWORK CHARACTERISTICS AND STREAM TYPES  

We used data from the NHDPlus Version2 to delineate the boundary of the San 

Pedro watershed draining the Huachuca Mountains. It contains a total of 561 catchments 

and streams (Fig. 5.1). Catchment area and streams were also directly extracted from the 

NHDPlus Version2.  

Headwater streams in the Huachuca Mountains are spring-fed and thus perennial. 

Downstream of these perennial headwaters, streams flow across alluvial fans with a 

gravel substrata where surface water losses to evaporation and infiltration are high, and 
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streams become intermittent. Surface flow in these intermittent streams persists for weeks 

to months after precipitation. Further downstream, the water table never rises to the level 

of the stream bed and flow becomes ephemeral. Surface flow occurs for very short 

periods (< 1 day) in response to extreme precipitation events. Below the alluvial fans, 

perennial rivers flow through incised fluvial floodplains. Regardless of stream type, all 

streams are prone to flooding and drought disturbance.  

To identify the hydrological type for each stream in the river network, we 

constructed a classification tree model using field sensor data on water permanence (the 

sensor data from Jaeger and Olden (2012), with detailed description therein). We used 

three categories of flow permanence: 0 (ephemeral), 1 (intermittent), and 2 (perennial or 

near-perennial), as a function of geology, cumulative drainage area, and elevation. The 

geology data (i.e., the types of mineral) were collected from USGS (Arizona Geology 

Layer: http://mrdata.usgs.gov/geology/state/state.php?state=AZ; and North American 

Geology Layer for Mexico via ArcGIS: 

http://www.arcgis.com/home/item.html?id=2967ae2d1be14a8fbf5888b4ac75a01f). The 

Geology data layer was imposed on the catchment delineation layer so that each 

catchment in the river network was labeled with its major mineral type, which was used 

as one of the input variables for the classification tree model to determine the hydro-type 

of each stream (Fig. 5.1). The analysis was carried out in R (R Core Team 2014) with the 

package ‘tree’ (Ripley 2015). It is important to note that the sample size for the 

classification tree model was low – only 25 sensors, hence, water permanence for 25 

streams (compared to a total of 561 streams within the whole drainage area), and sensors 
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were concentrated within a relatively small area (Fig. 5.1), which did not necessarily 

capture the variability of the large drainage areas.  

 

QUANTIFYING HYDROLOGICAL TEMPORAL VARIABILITY 

 We used the discharge data within the study period (2009-2011) to determine the 

duration of high flow and low flow periods in a year (Fig. 5.2b). There are six USGS 

gauges located within the boundary of the watershed (STAID 09471400, 09471380, 

09471310, 09470800, 09470750, and 09470700; Fig. 5.1). Based on the discharge regime 

from the six gauges between 2009 and 2011, we estimated 16 weeks for the duration of 

the winter high flow period, 12 weeks for the summer high flow period, and 12 weeks 

each for spring and fall low flow periods for an average year (Fig. 5.2b). 

We obtained the spatial gradient of precipitation across the watershed from USGS 

National Atlas GIS data for annual precipitation (Fig. 5.1). This represented the 

precipitation spatial gradient in an average year. We extracted the precipitation for each 

catchment within the watershed. To simulate the inter-annual variability in precipitation, 

we obtained annual precipitation data (non-spatial) between 1922 and 2014 from NCEP 

North American Regional Reanalysis (NARR) by National Oceanic & Atmospheric 

Administration (NOAA) for this area. We used a first-order autoregressive model to fit 

this long-term dataset:  

PTyr =ϕPTyr−1 +wyr  

, where PT was annual precipitation, φ was the coefficient (i.e., lag 1 autocorrelation), 

and w was the noise term, which captured the stochasticity. We fitted wyr with different 
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distributions, and a gamma distribution was the best fit, with shape parameter k = 3.40, 

and scale parameter θ = 4.95.  

 

ESTIMATING HABITAT CAPACITY 

We used the product of precipitation and watershed area (PT×WA) as the kernel 

to explore the relationship with α diversity for each sampling with observed data. We 

found that α diversity first increased with PT×WA, then decreased, with a heavy tail (Fig. 

5.4). We used a transformed gamma distribution to fit the relationship between α 

diversity and PT×WA. This way, we can use the product of precipitation and watershed 

area for each catchment to infer its local species richness. However, we needed habitat 

capacity, not local species richness. To get that, we used the species-area relationship 

(actually the “species-habitat capacity” relationship) to infer habitat capacity of each 

catchment (HCi) based on the estimated α diversity (αi): 

𝐻𝐶! = (𝑏𝛼!)! 

where a and b parameters were to be determined by model fit.  

 

DESCRIPTION OF NEUTRAL METACOMMUNITY MODEL  

Four model variants were constructed with different levels of complexity of 

temporal variability: (1) Basic Model - model without any temporal variability; (2) 

Seasonal Model - model included seasonality; (3) Annual Model - model includes inter-

annual variability; and (4) Full Model - model included both seasonality and inter-annual 

variability. All four models explicitly included the river network structure (Fig. 5.1).  
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Basic Model was similar to the model developed by Muneepeerakul et al. (2008), 

which included stochastic dispersal, reproduction, mortality, and speciation. Using the 

river network, we determined the distance matrix for dispersal. First, we extracted two 

different types of distance: channel distance (i.e., distance along the channel) and 

Euclidean distance (i.e., shortest distance between the middle points of a pair of streams). 

To decide which to use, we plotted the relationship between species similarity and 

pairwise distance, measured with both types of distances. We expected a distance decay 

relationship (Morlon et al. 2008). We found species similarity decreases with Euclidean 

distance, but not with channel distance (Fig. 5.5). This suggested that the dominant 

dispersal mechanism for the species in this meta-community was likely areal dispersal, 

instead of in-stream drift. Using a manipulative experiment in the same system, Bogan 

and Boersma (2012) showed that about 1/3 of taxa documented from neighboring streams 

arrived at isolated experimental pools within two weeks via aerial dispersal, lending 

support to the areal dispersal mechanism.  

The metacommunity consisted of 561 local communities. The dispersal kernel 

was assumed to be bivariate Students’ t or “2Dt” kernel (Clark, Silman, and Kern 1999), 

which can be written as 

𝐾!" = 𝐶!
𝑝

𝜋𝑙!![1+
𝐿!"
𝑙!

!
]!!!

 

where Kij is the probability that an organism produced at site j arrives at site i after 

dispersal; C is a normalization constant to ensure that for every site j, , i.e., no 

organisms traveled out of the metacommunity. Lij  is the Euclidean distance between two 

habitats. l0 is the distance where, after dispersal, the ratio between its offspring and those 

Kij =1i∑
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at the origin location is 2-(1+p). This dispersal kernel is determined by two parameters, l0 

and p. It was chosen because 2Dt kernels can exhibit a wide range of different behaviors 

from the heavy-tailed Cauchy kernel when p approaches 0 to the thin-tailed Gaussian 

kernel when p approaches ∞ and others in between.  

At each time step, a randomly selected individual died (with probability m) and 

the resources that previously sustained that individual became available to sustain a new 

individual. With probability v, the diversification rate, the empty spot was taken up by a 

new species (the diversification rate is a per-birth rate and is due to speciation or to 

immigration of a new species from outside the metacommunity). With probability 1-v, 

the empty spot was occupied by a species already existing in the system. In the latter 

case, the probability Pij that the empty spot in site i would be colonized by a species from 

habitat j was determined as follows: 

 

where Kij is the dispersal kernel, Hk is the habitat capacity of site k, and is the total 

number of sites (i.e., communities). All the organisms in site j had the same probability of 

colonizing the empty spot at site i where the death took place.  

Seasonal Model was modified from the Basic Model by including the intra-annual 

variability in habitat capacity, introduced by the alteration of the high-flow period and 

low-flow period. We included seasonal variability by changing habitat capacity among 

four different flow periods, and set the mean annual precipitation constant across years. 

From one flow period to the next, habitat capacity of each catchment changes. If the 

habitat capacity increases, there will be sites available to be occupied in that catchment. 

Pij = (1− v)
KijH j

KikHk
k=1

N

∑

N
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These unoccupied sites will be recolonized with a probability of r. The recolonizing 

species can be from species already existing in the metacommunity with probability 1-v, 

or from new species with probability v. The recolonization occurs in each time step until 

all the unoccupied sites are taken. In another case, if the habitat capacity decreases from 

one flow period to the next, a randomly selected set of individuals, whose number equals 

the difference of habitat capacity in two flow periods, die. All the other processes in the 

Seasonal Model were the same as they were in the Basic Model. 

Perennial streams were assumed to have the same habitat capacity in all four 

seasons, equal to the value estimated by PT×WA (Fig. 5.4). The habitat capacity for 

intermittent and ephemeral streams varied among seasons, modified by a season-specific 

weight. The values of the weights were estimated from the observed species richness data 

for corresponding stream types.  

The Annual Model was developed from the Basic Model with incorporation of 

inter-annual variability in habitat capacity introduced by interannual variability in 

precipitation, which was simulated using the first-order autoregressive model described 

previously. From one year to the next, when the mean precipitation changes, it changes 

the habitat capacity of each catchment (as described above, HCi was estimated by the 

product of precipitation and catchment area). As with the Seasonal Model, if habitat 

capacity increases, unoccupied sites appeared in the first time step of a year, and will be 

recolonized with a probability of r. The recolonizing species can be from species already 

existing in the metacommunity with probability 1-v, or from new species, with 

probability v. Recolonization occurs in each time step until all the unoccupied sites are 
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taken. If habitat capacity decreases from one year to the next, a randomly selected set of 

individuals, whose number equals to the difference of habitat capacity in two years, die.  

The Full Model simulated both seasonality and inter-annual hydrological 

variability. It basically is a combination of all the processes in Seasonal and Annual 

Models. What is different is that the duration of each flow period changes every year, i.e., 

the increase or decrease in the duration of the high flow periods is proportional to the 

increase or decrease of the precipitation in that year compared to precipitation in an 

average year. 

Each time step in the model represented one week, and it took about 80,000 time 

steps (about 1500 y in model time) to reach statistical steady state, i.e., when the 

biodiversity pattern became stabilized, showing no directional trend in the mean local 

species richness or the total species richness. After the model reached steady state, we ran 

another 1000 y of model time to calculate average patterns.  

 

QUANTIFYING MODEL GOODNESS-OF-FIT 

We used patterns of α and β diversity (measured by Chao similarity index (Chao 

et al. 2005)) to assess the fit between observed and modeled results from the Full Model. 

The best-fit parameter set was chosen by the following procedure. We ran several 

simulations with different sets of parameters distributed over a wide meaningful range. 

For every simulation, we computed the error between data and model for the two 

biodiversity patterns: α and β diversity. The error for pattern k, Ek (k = 1, 2), was 

estimated by the mean square deviation between data and predicated values normalized 

by the data variance; this can be expressed as follows: 
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where Nk was the number of data points used in fitting pattern k, xk,i and  were data 

point i (data points from all eight sampling events across three years) of pattern k and its 

predicted value, respectively, and < xk > the mean value of the data points of pattern k. 

We then defined the total error, TE, of each parameter set as E1 + E2. TE was used as a 

metric to decide model goodness-of-fit, and models with lower TE fit better with data. 

The parameter set with minimum TE was selected, and was the best-fit parameter set 

(Table 5.1). 

The comparison between model results from the Full Model and observed pattern 

was done at different aggregated levels: (1) among-season comparison: observed data 

were averaged over three years to be aggregated by season to compare with results from 

the Full model that were aggregated by season across different years; and (2) among-year 

comparison: observed data were aggregated by years to compare with results from the 

Full Model that were aggregated by year. To get the model results by year to match the 

three sampling years, we selected years with similar hydrological condition in the model. 

We first calculated the quantile of annual precipitation of each year (2009 to 2011) within 

the simulated precipitation series (1000 y at model steady state). For each year, we 

expanded the range of that year’s quantile until 10 simulated years fell within that range. 

We used that 10-y modeled results to calculate the average patterns and compared them 

with the patterns of the corresponding sampling year. 

We used best-fit parameters from the Full Model in the Seasonal Model, Annual 

Model, and Basic Model. This was because we assumed there was only one best 

Ek =
(xk,i − x̂k,ii=1

Nk∑ )2

(xk,i − xk )
2

i=1

Nk∑

x̂k,i
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parameter set characterizing the underlying processes of the system, regardless of the 

model construct. For example, characteristic dispersal distance should be the same value 

regardless of the way temporal variability was constructed in different model variants.  

All the simulations were carried out in MATLAB 7.10.0 (The MathWorks Inc. 

2000). Spatial maps and data were processed in ArcGIS 10.1. (ESRI 2012).  

 

ANALYZING VARIABLES INFLUENCING MODEL PERFORMANCE 

 Based on the model goodness-of-fit, we explored variables that could potentially 

influence model performance: hydrological condition, dispersal mechanism of species in 

the metacommunity, and the spatial range of the metacommunity. To test the effect of 

dispersal mechanism (approach), all the species (272 in total) were categorized into two 

groups according to their dispersal mechanisms at their adult stage: aquatic and aerial 

dispersal. We then evaluated the relationship between the proportion of species of 

different dispersal mechanisms and model performance. For hydrology, we calculated 

mean discharge for different seasons, years, and stream types, to correlate with model 

performance. The spatial range of the metacommunity was quantified by calculating the 

average pairwise distance of all sampled sites in each sampling season.  

 

RESULTS 

Overall, the predictive capacity of the neutral models – all four models – was not 

satisfactory (based on TE value described in Methods) in predicting the biodiversity 

patterns of aquatic invertebrates in the river network of Huachuca Mountains (Tables 5.2 

and 5.3; Figs 5.6 and 5.7). Nonetheless, including temporal variability, seasonality and/or 
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inter-annual variability, did improve model performance. Not surprisingly, the Full 

Model, with explicit modeling of both seasonal and inter-annual variability, provided best 

predictive capacity (Table 5.2). The model performance was slightly better after 

including inter-annual variability, compared to including seasonality (Table 5.2), 

indicating that the effect of interannual variability likely played a more important role 

than did seasonality in shaping species abundance and distribution in this system. The 

basic model, which did not include any temporal variability, has the poorest performance 

among all model variants, with its total errors greater than 1 (Table 5.2). Additionally, the 

importance of including temporal variability was also supported by the fact that errors 

between the aggregated observed data and the aggregated result from the Full Model are 

less than those from the model variant with the same variability as the data aggregation. 

For example, when the year- and season- specific results from the Full Model were 

aggregated by season across years, its fits were consistently better than the fit by 

Seasonal Model. The same is true for the comparison between the aggregated annual 

results from Full Model and the results from the Annual Model (Table 5.2). Lastly, the 

model prediction for the pattern of α diversity was generally much better than that for the 

pattern of β diversity (Table 5.2; Figs 5.6 and 5.7).  

Using the result from the Full Model, we evaluated model fit across different 

variables, i.e., season, year, and stream types, to assess how the model performance 

varied in these dimensions. The fits of α diversity pattern were still generally better than 

that of β diversity (Table 5.4). For α diversity, the driest year in all three years (2009) had 

the poorest fit. The fit was slightly better for 2011 than for 2010. The poorest fit for β 

diversity occurred in the wet year 2010. By cross-season comparison, the summer high 
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flow period had the poorest fit for both α and β diversity, and the fall low flow period had 

the best fit for both patterns. Lastly, the model performed much better in predicting 

biodiversity patterns in perennial streams than it did for non-perennial streams (Table 

5.4).  

 We then checked the year- and season- specific result from the Full Model (Table 

5.3; Fig. 5.8). For the pattern of α diversity, the best fit occurred in 2010 summer, the 

high flow period in a very wet year and poorest fit in 2009 summer and 2011 fall, whose 

total errors were greater than 1. For the pattern of β diversity, fall 2011 also had the 

poorest fit, whereas the best fits were for 2010 summer and 2011 winter (Fig. 5.8).  

 Interestingly, the relative predictability of the model for each sampling event did 

not change with the combinations of parameter values used (Fig. 5.8). The absolute 

model goodness-of-fit could be improved or worsened depending on the values of 

parameters, but the pattern of relative model goodness-of-fit did not change. This applied 

to both the fit for α diversity and for β diversity patterns (Fig. 5.8).  

 We analyzed the relationship between model goodness-of-fit and different 

observed variables, including hydrology, species dispersal capacity, and the spatial range 

of the metacommunity, to evaluate their effects on model performance and thus the 

validity of the neutrality assumption.  

Hydrology – the model performance was poorest for the intermediate range of 

discharge. When the mean daily discharge of the sampling month was below 3 m3 s-1 

(~100 cfs), the model’s ability to predict the α and β patterns decreased with the 

discharge, i.e., better fit in lower-discharge periods (Fig. 5.3b). However, when the mean 
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daily discharge reached about 7 m3 s-1 in the summer high flow period of 2010, a very 

good model fit was obtained (Fig. 5.3b).  

 Dispersal mechanisms – we extracted sites, which were sampled repeatedly in all 

three seasons within the same year, to compare how the proportion of the aerial dispersal 

species changed. Within the same year, these streams had a notable increase in the 

proportion of aerial dispersal species in the low flow period (i.e., fall) compared to that in 

the high flow period (i.e., summer or winter). For example, in 2010, data showed that the 

proportion of the aerial dispersal species decreased from 91%, to 74%, and to 69% when 

mean daily discharge increased from 0.74 m3 s-1 to 1.8 m3 s-1 to 7.4 m3 s-1 across three 

sampling seasons. Regardless of the apparent negative correlation between the discharge 

and the abundance of aerial dispersal species, there was no significant correlation 

between the proportion of aerial dispersal species in the metacommunity and the model 

goodness-of-fit (Fig. 5.9).  

 Spatial range of the sampling sites – in each sampling seasons, the subset of 

sampling sites varied. In some seasons, the sampling sites were more scattered than 

others. When the sampling sites were more scattered in space, the performance of the 

model for β diversity was better. When the sites were more spatially clustered, the total 

error increased notably (Fig. 5.10). However, the variability of the total error was large 

when the spatial range was short (Fig. 5.10b). This correlation only applied to predictions 

of β diversity patterns, not for α diversity patterns.  
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DISCUSSION 

Including temporal variability in the neutral model for aquatic invertebrate species 

in an environmentally dynamic system did improve model performance. This suggests 

that the neutrality assumption is not always to blame for unsatisfactory fit – it could be 

that the particular formulation of the model is to blame (i.e., here whether or not to 

include temporal variability). However, despite being spatially and temporally explicit, 

the Full Model’s predictive capacity was limited at best (Tables 5.1, 5.2, and 5.3). 

Regardless of the parameter values used, the model goodness-of-it for certain sampling 

periods was consistently better than others (Fig. 5.8). This implies that certain aspects of 

temporal variability may be still missing. Using a spatially implicit neutral model, 

Etienne (2007) found that a separate local community can fit species abundance in a 

single forest plot, but cannot simultaneously fit species abundances in three distinct forest 

plots with the same parameters. His result highlighted the potential importance of explicit 

spatial structure, as the model used was only spatially implicit. Our results, on the other 

hand, suggested the importance of temporal variability. We modeled seasonality and 

inter-annual variability by varying the habitat capacity with precipitation (variation in 

precipitation seasonally and annually). However, just like in explicitly defining a spatial 

structure, defining the temporal structure itself is difficult. Other more complex 

hydrological effects such as legacy effect of hydrological disturbance (Parsons et al. 

2005) and cross-scale interactions (Peters et al. 2004) could be playing a role in 

influencing habitat capacity and species neutral processes. These could be introduced to 

the model, while still retaining the neutrality assumption. Alternatively, the difference in 
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model fit for different sampling periods could be caused by the actual variation in the 

relative importance of neutral vs. niche processes in determining biodiversity.  

Gravel et al. (2006) and Scheffer and van Nes (2006) showed that community 

structure reflects both niche organization and neutrality. These studies suggest that the 

emergence of near-neutral suites of species is more likely in species-rich communities. 

The validity of the neutrality assumptions increases with species richness, as a result of 

increasing niche overlap, hence intensified competition (Gravel et al. 2006). Based on 

this, we could expect some communities to be species rich and niche dominated, because 

of a highly heterogeneous environment that enables low niche overlap; or we could 

expect some species-poor communities to be neutral because of a homogeneous 

environment that increases niche overlap. Our findings lend support to this hypothesis. 

We found that in both very low and very high discharge periods, the model fit was much 

better than hydrological condition closer to the central tendency (Fig. 5.3). When stream 

flow is very low or very high, the whole landscape is more homogeneous (uniform low 

(or zero) or high stream flow), hence, more niche overlap occurs and the system is closer 

to neutrality.  

Neutrality is more pertinent to some taxa and environmental settings than others 

(Gravel et al. 2006; Holt 2006; Scheffer and van Nes 2006). In places where the 

environment is relatively homogeneous, species richness is high, and the taxa possess 

strong capacity for long-ranged dispersal, neutrality is shown to be stronger (Gravel et al. 

2006). However, desert streams are strongly heterogeneous in space and highly dynamic 

in time, subject to frequent disturbance including both drought and floods. Additionally, 

desert streams have much lower insect species richness than streams of other? biomes 
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(Vinson and Hawkins 2012). In terms of dispersal, freshwater invertebrates can be 

categorized as active or passive, but in general the dispersal limitation is strong (Bilton et 

al. 2001; Bohonak and Jenkins 2003); long-distance dispersal is achieved through animal 

vectors, such as birds (Green and Figuerola 2005), but it is not the dominant dispersal 

approach. All these attributes suggest that aquatic invertebrate communities in desert 

streams are likely dominated by environmental selection and the contribution of neutral 

processes is minimal (Clarke et al. 2008; Grönroos et al. 2013). Our findings agree with 

these corollaries. 

Several lines of evidence in our study indicate a strong influence of niche 

processes in shaping the biodiversity patterns in dryland streams. In addition to finding 

the best parameter set for all eight sampling events simultaneously, we also extracted the 

best-fit parameter for each sampling event. This still did not significantly improve the fit 

(Table 5.3; Figs. 5.6, 5.7, and 5.8). This indicated the strong roles played by niche 

processes. The models performed better for perennial streams than for the intermittent or 

ephemeral streams (Table 5.4). This difference was likely due to the unique hydrological 

regime of non-perennial streams, which strongly selects for species that adapt to that 

particular regime. Bogan and Lytle (2011) monitored two study pools seasonally for eight 

years, and found that the stream pool communities underwent a catastrophic regime shift 

in community structure after a transition to intermittent from perennial flow, suggesting 

dominant roles of hydrology in determining community structure. In another study, 

Bogan et al. (2013) found that communities with similar hydrological conditions were 

much more similar to each other, compared to communities that were located closer by in 

distance, but with different hydrological conditions. 
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In ecosystems with high temporal environmental variability, it is very likely that 

species are not in equilibrium with the environment. Such transient periods may happen 

after a large disturbance (in our model, both drought and floods are disturbances, when 

habitat capacity shrinks drastically [Fig. 5.4]), when the number of unoccupied sites is 

too high. When the next disturbance occurs, there are still sites unoccupied. The 

frequency and magnitude of disturbance and the recolonization capacity of species 

interact to shape biodiversity patterns (Roxburgh et al. 2004). We tested this with 

different combinations of environmental stochasticity and recolonization rates. As 

stochasticity increases (i.e., high variance of annual precipitation) local species richness 

decreases, because species do not disperse fast enough to occupy the empty sites. When 

the recolonization rate increases, the metacommunity can handle higher levels of 

stochasticity and maintain a high mean α diversity (Fig. 5.11).   

Neutral models have proved useful as an approximation for some macroecological 

patterns and as a null model for others. In this study, we used neutral theory as an 

approximation to species abundance and distribution patterns. The result was not 

satisfactory in terms of model fit, but still informative. Analysis of model performance in 

different dimensions informed us of the conditions when niche processes might be 

important and when neutral models may provide a better approximation. This is the first 

study to introduce explicit temporal dynamics to a spatially explicit neutral model and to 

apply that model to a system that is spatially and temporally dynamic. Testing the results 

against aquatic invertebrate community data showed that neutrality is limited in such 

systems. Unlike introducing spatial structure, temporal structure (temporal variability) 

itself is a strong environmental filter, especially when that variability is hydrological. 
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Species usually adapt to a particular hydrological regime, and species composition is 

quite different in perennial and intermittent flow regimes.  

Neutral theory is driven by questions on how important the difference among 

species is in understanding broad-scale patterns of species distribution and abundance. It 

is not meant for exact site-by-site comparisons, which may not work well as shown in our 

study (e.g., the pairwise local species richness comparison). We did find a better fit in 

sampling events when the sampling sites were more scattered in space (Fig. 5.10), which 

suggests that there might be a certain spatial scale above which neutrality is important.  

The relative importance of niche and neutral processes varies across systems, 

taxa, spatial scales, and it also varies in time for the same system and taxa at the same 

spatial scale as a result of altered landscape heterogeneity, as we demonstrated in this 

study. While model performance varied, overall, the contribution of neutral processes in 

shaping biodiversity patterns in desert ecosystems, characterized by high spatial and 

temporal variability, is limited.  
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TABLE 5.1. List of parameters in the model, their ecological interpretations, and their 
values used in the best-fit models 

  
Parameters Meaning Value 

a Exponent in species-area relationship 1.05 
b Slope in species-area relationship 60 
p Dispersal parameter in the 2Dt kernels 0.40 
l0 Dispersal parameter in the 2Dt kernels; l0 is the 

distance where, after the dispersal, the ratio between 
its offspring and those at the origin location is 2-(1+p) 

350  

v Speciation rate 0.0002 
d Morality rate 0.10 
r Recolonization rate 0.60 
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TABLE 5.4. Model goodness of fit (Full Model) for different seasons, years, and stream 
types  

Variable Categories  α diversity β diversity 
 
Season 

Fall 0.64 0.80 
Summer 1.07 1.05 
Winter 0.86 0.98 

 
Year 

2009 0.67 0.80 
2010 0.59 1.00 
2011 0.57 0.80 

 
Stream type 

Perennial  0.68 0.78 
Non-perennial  1.21 1.36 
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FIGURE 5.1. Map of a portion of the San Pedro watershed draining the Huachuca 
Mountains, including streams labeled with hydro-types (i.e., perennial, 
intermittent, and ephemeral streams), catchments, precipitation, sampling points, 
locations of six USGS gauges within the watershed, and locations of sensors for 
recording water permanence.  
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FIGURE 5.2. Observed hydrological regime of inter- and intra-annual variability and 
hydrological regime used in the model. (a) Observed annual precipitation (1923-
2003) and predicted mean annual precipitation using first-order autoregressive 
model with a gamma residual; (b) normalized discharge from the six USGS 
gauges within the study area between 2009 and 2011 (the study period), and the 
modeled durations of the four flow periods (seasons). 
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FIGURE 5.3. The effect of hydrology on the model performance. (a) The average daily 

discharge in the seasonal sampling periods over three years; and (b) relationship 
of model fits for those seasons in which a reasonable fit was obtained, vs. 
seasonal discharge.  
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FIGURE 5.4. Transformed gamma distribution fitting the relationship between the product 
of watershed area and annual precipitation and local species richness. This 
relationship was further used to estimate habitat capacity for each site. The gray 
crosses were the observed data points, and black line was the best fit by 
minimizing total error between predicted and observed local species richness. 
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FIGURE 5.5. The observed pattern of β diversity plotted against pairwise (a) Euclidean 
distance and (b) channel distance. The gray closed dots in the plots were the 
actual observed data, and the red open dots were the average Sorensen similarity 
values for every 5km for the (a) Euclidean distance and every 10km for the (b) 
channel distance. 
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FIGURE 5.6. Model goodness-of-fit for local species richness (LSR) for each sampling 
season from the best-fit Full Model (same parameter set for all sampling seasons; 
open circles) and from the best-fit model for each sampling event (one parameter 
set for each sampling season; gray “×”). 
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FIGURE 5.7. Model goodness-of-fit (Full Model) for β diversity pattern for each sampling 
season the best-fit Full Model (same parameter set for all sampling seasons; open 
circles) and from the best-fit model for each sampling event (one parameter set 
for each sampling season; gray “×”). 
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FIGURE 5.8. The total error of the Full Model fitted with 28 different parameter sets 
(parameter list in Table 4) for (a) α diversity pattern, and (b) β diversity pattern 
across 8 sampling events in three years. 
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     FIGURE 5.9. No significant correlation existed between the proportion of aerial-dispersal 
species measured by abundance (a) and by species richness (b) in a metacommunity 
and the model goodness-of-fit for both α diversity and β diversity patterns. 
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FIGURE 5.10. The spatial scale influences the performance of the model. (a) At sampling 
site level, the error of β diversity decreased with the pairwise distance between 
two sites. The light gray dots were results for all the pairs of sampling sites across 
all eight sampling seasons, and the black dots were the averaged results. (b) At 
aggregated sites level, the total error of model predictability of β diversity 
decreases with the average pairwise distance of all sampling sites within one 
sampling event.  
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FIGURE 5.11. Rainfall stochasticity (measured by the variance of the gamma noise in the 
interannual precipitation in mm) and recolonization rate interact to influence the 
mean local species richness in the metacommunity. 
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CHAPTER 6 

ORDER FOR NOTHING: ECOSYSTEM SELF-ORGANIZATION IN SPACE AND 

TIME 

 

ABSTRACT 

Self-organization has become an increasingly important theory for understanding 

ecosystem spatial heterogeneity. Here, we contextualize the mechanism of spatial self-

organization under a framework of propagation of ecological influence over 

heterogeneous landscapes, to bridge the conceptual gap between formation of ordered 

patterning and energy and material flow, the foci of ecosystem ecology. The mechanism 

of self-organization, i.e., scale-dependent feedbacks, is essentially propagation of a 

particular type of ecological influence along flow paths (defined as the pathways along 

which causes and effects move) across a landscape. We demonstrate how to use this 

framework to systematically analyze the interplay between template heterogeneity (the 

preexisting spatial structure of landscapes) and self-organization. Template heterogeneity 

can influence all three of these aspects: information flow, flow path structure, and 

responses of the ecological target. This integration of organismal patterns with energy 

and material flow provides a platform for broad application of spatial self-organization in 

ecosystem ecology and for understanding ecosystem self-organization in a more realistic 

setting, by taking into consideration the spatial heterogeneity and temporal variation of 

the environment.  

The central element of spatial self-organization is feedback, a fundamental 

element of complex adaptive systems theory. Ecosystems are considered complex 
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adaptive systems, which means that macroscopic system properties and patterns emerge 

from interactions among components and feed back to influence the subsequent 

development of those interactions. It is well accepted that ecosystem structure can 

emerge from local interactions among individuals, and that these structures carry certain 

functional consequences. However, the mechanisms of feedback, from the outcome of 

spatial pattern to individuals from which the pattern emerge, are seldom examined. We 

present a logical framework to examine such feedbacks, and conclude that it is unlikely 

the outcomes of ordered patterning would feed back to affect local processes at the 

individual level, from which ordered patterning arises. The ordered pattern is formed as a 

result of regular biological activities. The pattern is “order for free.” It is also “order for 

nothing” — in other words, there is no evolutionary reward returned to individuals that 

“build” the structure.  

 

Keywords: complex adaptive systems theory; ecosystem functioning; feedbacks; 

flowpath; propagation of influence; resource retention; self-organization; spatial 

heterogeneity; temporal variability. 
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INTRODUCTION 

Landscapes are typically heterogeneous, and this heterogeneity confers certain 

functional consequences. The classic perspective on spatial heterogeneity of ecological 

components (e.g., animals, plants, nutrients, and microbes) emphasizes the local physical 

conditions set by the landscape as the main determining factor (Ropars and Boudreau 

2012; Buxbaum and Vanderbilt 2007; Manolaki and Papastergiadou 2012). But 

heterogeneity can also arise from a homogeneous initial condition through interactions 

among the components. This spatial self-organization has been used to explain formation 

of regular patterns by organisms via the mechanism of scale-dependent feedbacks. Much 

less research has been done to understand how self-organization may have influenced 

energy and material flows across a landscape, the core of ecosystem ecology. Here, we 

propose a conceptual framework to bridge the current gap between spatial pattern 

formation and ecosystem ecology.  

Self-organized patterns emerge from internal interactions and further influence 

ecosystem macroscopic properties, such as resource retention. But is there feedback from 

the consequences of spatial patterns to the actions of individual from which the patterns 

arise? Furthermore, if such feedbacks exist, can they reinforce ecosystem functioning, as 

suggested by Fisher et al. (2007)? While feedback is a central feature of complex 

adaptive systems (Levin 2005; Levin 1998), plausible mechanisms are seldom explored. 

Our second goal is to explicitly examine the mechanisms for feedbacks from the outcome 

of self-organized patterns to the pattern formation. 

Existing studies of spatial self-organization are mostly exclusively carried in 

ecosystems with negligible preexisting spatial heterogeneity (via an effect of variation the 
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underlying physical structure, i.e., a template effect) and without temporal variability (but 

see Bonachela et al. 2015; Sheffer et al. 2013). Real ecosystems, however, are spatially 

heterogeneous and/or temporally variable. We assert that current applications of spatial 

self-organization theory are therefore limited and have missed multiple opportunities to 

contribute to understanding the dynamics and functioning of ecosystems. We analyze the 

mechanisms of interactions between preexisting template heterogeneity and self-

organization in the framework of propagation of influences along flowpaths. 

Additionally, we discuss how temporal variability might affect spatial self-organization. 

This is the third goal of this review – to demystify self-organization and broaden the 

scope of its application in real complex ecosystems.  

 

ORIGIN OF SPATIAL HETEROGENEITY 

Ecosystems were first studied as a “black box,” wherein ecosystem ecologists 

measured inputs and outputs of material and energy without explicit reference to spatial 

heterogeneity (Odum 1957; Fisher and Likens 1972; Bormann et al. 1977). In contrast, 

ecology has a long tradition of understanding the spatial pattern of organisms at a variety 

of scales (Watt 1947; Whittaker 1956; Curtis 1959; Bormann and Likens 1967). 

Consideration of spatial dynamics received increased attention in the late 1970s and 

1980s with the ascendance of landscape ecology (Steele et al. 1978; White 1979; Paine & 

Levin 1981; Pickett and White 1985). The emergence of landscape ecology brought a 

particular focus to spatial heterogeneity with attempts to link it with its functional 

consequences. Two “black box” ecosystems of the exact same components could have 

quite different ecological functioning, if the components are arranged differently in 
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space! For example, sediment losses from a semiarid savanna landscape in Australia are 

determined by the spatial arrangement of grassy and bare soil areas (Ludwig et al. 2007). 

Spatial heterogeneity is shown to enhance species survival during climatic perturbations 

(Virah-Sawmy et al. 2009). Theoretical models suggest that spatial heterogeneity could 

alter the threshold of ecosystem state change (van Nes and Scheffer 2005).  

Landscape ecology also addresses the causes of the spatial heterogeneity (Turner 

1989; Turner 2005). How do biotic and abiotic variables (processes) produce landscape 

patterns? The focus has been to relate landscape patterns to top-down template effects 

imposed by environmental, biophysical, and socioeconomic variables. Black et al. (2003) 

assessed the role of several economic, demographic, cultural, climatic, topographic, and 

geologic factors in forest spatial pattern changes in the northwest United States. Their 

results showed that biophysical factors are important, but human social factors are 

overriding in influencing forest pattern changes. Suarez-Rubio and Thomlinson (2009) 

suggested that the bird abundance and distribution in Puerto Rico was related to 

biophysical condition characteristics of patches and urbanization matrix at the landscape 

scale. Sponseller et al. (2014) showed that organic nitrogen in streams and rivers in 

Sweden was closely related to broad-scale gradients in state factors (e.g., temperature, 

precipitation), and spatial heterogeneity of nitrate was connected to gradients of 

anthropogenic inputs (e.g., agriculture).  

Other than the commonly studied top-down template effects, spatial heterogeneity 

can arise in many ways, and always includes some stochasticity. One of the fundamental 

questions about spatial heterogeneity is how much of it is due to chance and how much is 

determined by environmental variation (Levin 1999). An extreme example is 
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encompassed in the unified neutral theory of biodiversity (Hubbell 2001), which assumes 

that one does not need to invoke environmental variation and selection to explain certain 

macroscopic patterns of biodiversity. Rather, biodiversity can arise from stochastic 

dispersal, speciation, mortality, and reproduction. Individuals are equally subject to all 

these processes regardless of their species identity (the neutrality assumption). Spatially 

explicit versions of neutral models have been applied to river networks for fish 

communities (Muneepeerakul et al. 2008) and aquatic invertebrates (Dong and 

Muneepeerakul, in prep.). 

Spatial heterogeneity can also arise from a homogeneous template by the process 

of self-organization. There is burgeoning interest in the formation of ordered patterning 

in the past two decades, as regular patterning has been observed in many different 

ecosystems around the world. For example, in many arid ecosystems, vegetation forms 

regular stripes (‘tiger bush’), labyrinths, spots (‘leopard bush’), and gaps (Rietkerk and 

van de Koppel 2008). Striking spatial patterns have also been observed at alpine tree lines 

in the Rocky Mountains. Stands of Engelmann spruce and sub-alpine fir were found to 

grow in narrow, parallel rows perpendicular to the prevailing winter wind direction 

(Billings 1969). In mussel beds on intertidal flats, patterns develop at two scales, banded 

patterns occurring at the ecosystem level, and net-shaped patterns at the scale of 

individual mussels (van de Koppel et al. 2005; Liu et al. 2014). In all of these cases, self-

organization has been implicated as a primary cause of the spatial pattern.  
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DEFINITION OF SELF-ORGANIZATION 

 The term “self-organization” was originally introduced by Immanuel Kant to 

characterize the unique properties of living organisms in 1790. No external force, no 

divine architect is responsible for the organization of nature; the internal dynamics of the 

being itself are sufficient. Only in the 20th century did self-organization begin to acquire 

the promise of a physically based understanding, with the advent of cybernetics and the 

mathematical triumphs of nonlinear dynamical systems theory (Keller 2005). The late 

1980s brought a noteworthy addition to the concept, namely, Per Bak’s notion of “self-

organized criticality” (Bak et al. 1987): a system organizes itself into a critical state by its 

intrinsic dynamics, independent of any control parameter. Since then, the term “self-

organization” rapidly spread to other fields and served both its original biological 

meaning and its later application in engineering. In the past two decades, self-

organization has been a buzzword in ecology. While the common core of self-

organization is macroscopic structure and functioning arising from interactions among 

components, the emphasis of different definitions varies.   

 In his book Fragile Dominion (Levin, 1999) and other work (e.g., Levin 1998; 

Levin 2003; Levin 2005), Simon Levin characterized “self-organization” as 

“development of a complex adaptive system” based on simple local rules that govern 

how the systems change in response to “past and present conditions.” Self-organization is 

characterized by localized interactions among components and it is an autonomous 

process that arises from those interactions, reinforcing the structural arrangements by the 

flow and interactions among the components (Levin 1998). This definition of self-

organization describes a continuum of changes in the ecosystem over time. Temporal 
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development of ecosystems is realized through cross-organizational feedbacks: 

macroscopic patterning and properties emerge from interaction among components, and 

feed back to influence the subsequent evolution of those interactions.  

More recently, in ecosystem ecology, there is a rising interest in understanding the 

ordered patterning observed in many ecosystems, via the mechanism of spatial self-

organization. Here, self-organization is defined as a process in which ordered spatial 

patterning at the global level of a system emerges solely from local interactions among 

individuals (Camazine et al., 2003). Spatial self-organization emphasizes (1) the 

formation of ordered spatial patterns featuring periodic geometric units (such as stripes, 

spots, rings) and (2) scale-dependent feedbacks as the underlying mechanism. It does not 

touch upon any temporal development of the system or cross-organizational level 

feedbacks, as did the definition by Levin. Reconciliation of these two approaches is 

overdue. 

 

MECHANISM OF SPATIAL SELF-ORGANIZATION 

 Self-organized regular spatial patterns described above arise by the mechanism of 

scale-dependent feedbacks. Scale-dependent feedbacks couple short-range positive 

feedbacks with long-range negative feedbacks (Rietkerk and van de Koppel 2008). 

Depending on the sources for “activation” and “inhibition”, there are two basic 

mechanisms for scale-dependent feedback: one is through resource concentration and the 

other is related to divergence of physical stress, as detailed below.  

Ordered patterning is often found in environments where resources are limiting. 

In resource-limited environments, the positive feedbacks result from the local interaction 
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between consumer and its limited resource (usually water or nutrients), which result in 

large-scale depletion of the limiting resource, i.e., negative feedbacks. In arid systems, for 

example, infiltration of water is locally enhanced by plant presence, which improves the 

local condition for plant growth, while at a longer distance, competition for water 

between plants is the dominant process (Couteron and Lejeune 2001; Rietkerk et al. 

2002). Self-organized patterns resulting from this mechanism disappear when the 

resource is no longer limiting. Regular patterning is also found in environments with 

physical stress, such as freshwater macrophyte patches in lowland streams and rivers 

(Schoelynck et al. 2012), which are exposed to shear stress. At short range, divergence of 

physical stress by plants enhances sediment accretion, and at long-range, it forms erosion 

troughs around the plant tussock, which restrict lateral expansion of vegetation. This 

phenomenon was demonstrated by Bouma et al. (2009) in a lab flume. Erosion decreases 

as sediment accumulates in the plant tussock, which improves local habitats. Meanwhile, 

in the area away from vegetation, erosion greatly increases. Rietkerk and van de Koppel 

(2008) suggest that in scale-dependent feedback, only the long-ranged negative feedback 

is essential for regular pattern formation. Short-ranged positive feedbacks between plants 

and their local environment give rise to scale-free patterns, which can be described by 

power-law clustering (Scanlon et al. 2007).  

 

CONSEQUENCES OF SELF-ORGANIZED PATTERNS 

Studies of self-organized spatial patterns have revealed several macroscopic 

consequences. The banded vegetation in arid and semiarid ecosystems can retain more 

runoff and sediments than non-patterned ecosystems (Ludwig et al. 1999; Ludwig et al. 
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2005). Self-organized landscapes exhibit catastrophic shifts among different ordered 

patterns responding to different levels of stress (e.g., precipitation) (Rietkerk et al. 2004). 

Patterned mussels in intertidal flats are more resilient to wave action and have higher 

productivity at landscape scales than mussels in non-patterned forms (van de Koppel et 

al. 2008). However, whether self-organization leads to increased resilience and stability 

or to increased vulnerability may vary depending on the ecosystem involved. No other 

studies have yet tested this hypothesis. Van de Koppel et al. (2005) found that self-

organization induced by local positive feedbacks between clay accumulation and plant 

growth improved the functioning of salt marsh ecosystems on short time scales. On long 

time scales, however, self-organization led to the destruction of salt marsh vegetation. 

Mathematical models predict that patterned mussel beds become more resilient to wave 

disturbance, but are more vulnerable to regime shifts at high wave disturbance rates (van 

de Koppel et al. 2005).  

 

THE IMPORTANCE OF INFORMATION FLOWS AND FLOW PATHS IN 

GENERATING PATTERN 

Scale-dependent feedbacks were discovered in studies of ordered patterning, and 

the concept has been applied exclusively to those cases. Ecosystem ecologists have yet to 

fully embrace these approaches. Self-organization is studied more as a driver of 

organismal distributions, with little mention of its effect on material flows across 

landscapes. We propose that scale-dependent feedbacks fall under the broader aegis of 

propagation of ecological influences in space (Reiners and Driese 2001, 2004). Scale-

dependent feedback requires flow paths, which define the patterns of connectivity that 
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shape the information distribution underlying heterogeneity. Flow paths are ubiquitous 

and are defined as the pathways along which information transports. Information here is 

defined as any propagation of causes and effect within a system, with a consequence for 

ecological components involved in forming spatial structure. It could take the form of 

differential concentrations of a limiting resource (a non-limiting resource is not effective 

information, because its differential levels are inconsequential). For example, plants 

accumulate nutrients (in oligotrophic peatlands) or water (in arid ecosystems) and 

improve local conditions, causing a small-scale positive feedback. This local resource 

accumulation leads to depletion of resources at large scale, which causes a negative 

feedback (Rietkerk et al. 2002; Rietkerk et al. 2004; Eppinga et al. 2008). The 

information could also be in the form of differential levels of physical stress. In streams, 

clumps of vegetation obstruct water flow, which locally improves growth condition; 

however, the influence of vegetation clumps propagates downstream, leading to increased 

erosion outside the vegetation clump, which limits plant growth (Temmerman et al. 2005; 

Hiemstra et al. 2006; Larsen et al. 2007; van Wesenbeeck et al. 2008; Weerman et al. 

2010).  

Ecosystems are characterized by flows: flows of nutrients and energy, flows of 

materials, and flows of information. Flows provide the interconnections between parts 

and link a random collection of species into an integrated whole, an ecosystem in which 

biotic and abiotic components are tied together (Levin 1999; Fisher and Welter 2005). 

Consequences of ecological processes propagate across a landscape along flowpaths 

(Fisher et al. 2004). It is along these flow paths that scale-dependent feedbacks occur.  
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Explicit consideration of flow and flow path could generalize scale-dependent 

feedbacks beyond current application to the formation of ordered patterning. A 

systematic study of mechanisms for interactions between self-organization and 

preexisting spatial heterogeneity would encompass three types of mechanism: (i) self-

organization can be interrupted or enhanced by modification of the information flow 

along flowpaths in space (Fig. 6.1). For example, stream flow links subsystems 

longitudinally (e.g., tributary), laterally (e.g., riparian and floodplain), and vertically (e.g., 

groundwater exchange). If a nutrient is limiting in the stream, nutrient concentration can 

then become the signal organizing vegetation patch configuration (e.g., alteration of 

nitrate-consuming patches [e.g., algae] and nitrate-generating patches [e.g., 

Cyanobacteria]). The information content, i.e., the variation in nutrient concentration, can 

be easily modified by input from adjacent subsystems with different nutrient levels. This 

will interrupt the self-organized patch configuration along the stream. (ii) The 

information content could also be altered by changed local interaction between 

information and the ecological components themselves. For example, termite mounds 

enhance plant water use efficiency (Jouquet et al. 2011; Seymour et al. 2014) and change 

soil texture, which alters water infiltration (Jouquet et al. 2011; Bottinelli et al. 2014). 

These processes alter the local interactions between limiting resource (i.e., water) and 

plants, which indirectly modify the information. Such alterations intensify and stabilize 

the self-organized pattern of plants (Bonachela et al. 2015). (iii) The structure of the flow 

path along which influences propagate could be altered to influence spatial self-

organization. For example, Sheffer et al. (2013) found that at the landscape scale, the 

vegetation followed the preexisting physical template of rock-soil distribution and self-
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organized pattern only appear in the soil patches between rocks. In this case, the 

existence of rocks interfered with the information flow at a landscape scale and modified 

self-organization.  

Propagation of influence occurs not only within a single community, but also 

across ecosystems, contributing to the zonation of biological communities on landscapes 

at broad scales. The example of the formation of spatial configuration of algal and 

Cyanobacteria patches mentioned in the previous paragraph illustrates this. Another 

example is the interaction between coral reefs, seagrass meadows, and mangrove forests 

in tropical coastal areas (Gillis et al. 2014). Coral reefs provide physical protection from 

wave action, allowing seagrasses and mangroves to develop in the shallows behind them. 

Meanwhile, seagrasses and mangroves trap sediments and absorb nutrients from flow 

paths traversing the hinterland to the reefs. These are long-distance interactions, as 

reviewed recently by van de Koppel et al. (2015).  

   

FEEDBACKS FROM ECOSYSTEM PROPERTIES TO INDIVIDUALS 

We described above how spatial patterns could emerge from local feedbacks. The 

resultant patterning has further functional consequences, including ecosystem properties, 

such as the ratio of ecosystem production and respiration (P/R ratio), stability, resource 

retention capacity, and resilience to disturbance (Odum 1969). Ecosystems are considered 

complex adaptive systems, which means that “spatial patterns emerge from, and feed 

back to affect, the actions of adaptive individual agents” (Levin 1998; Levin 2005). Even 

though this definition of complex adaptive systems has been widely used, the central part 

of it, i.e., feedback that crosses levels of organization (between ecosystem level and 
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individual level), has seldom been examined closely. Is there feedback from the 

consequent ecosystem property to the actions of individuals that generated the pattern, to 

intensify the patterning and/or to reinforce ecosystem functioning? If so, what are the 

effective mechanisms for such feedbacks?  

We use ecosystem resource retention as an example of an ecosystem property. 

Ecosystem nutrient retention is a collective property proposed by Odum (1969) to change 

over successional time. The patterned landscape allows for greater productivity than a 

landscape with homogeneous distribution at the same rainfall rate, i.e., higher resource 

retention capacity and lower runoff (Aguiar and Sala 1999; Ludwig et al. 1999). In order 

for the macroscopic property to feed back to influence individuals or the actions of 

individuals, the ecosystem resource retention capacity must in some way exert its effect 

on the process involved in spatial self-organization at the individual level in the first 

place. Before we address this question of whether ecosystem properties affect actions of 

individuals, let us first ask, why do patterned landscapes have higher resource retention 

capacity?  

The higher resource retention capacity of a patterned landscape results from its 

spatial structure, or the spatial configuration of vegetated and open patches (Ludwig et al. 

2007). Spatial self-organization optimizes the use of the limiting resource, and the system 

is at the equilibrium between the spatial patterning and the level of resource limitation 

(“equilibrium” means that the geometric shapes match the level of stress; for example, in 

arid ecosystems, as precipitation decreases, the pattern of plants shifts from gaps, to 

stripes, to spots, with increasingly lower vegetation cover; Rietkerk et al. 2004). A 

decrease in precipitation may cause the patterned vegetation to degrade and lose biomass. 
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As a consequence, the proportion of rainfall that infiltrates into the soil decreases (van de 

Koppel et al. 1997), which results in a transition to an alternative stable state (e.g., when 

resource limitation decreases, the pattern may shift from periodic spots, to labyrinths, to 

gaps, and to stripes; Rietkerk et al. 2004). On over-grazed hillslopes in semiarid 

landscapes, both runoff and sediment yields increase as the spatial pattern of vegetation 

coarsens, and increased runoff and sediment yields make the vegetation pattern even 

coarser (Bautista et al. 2007). This kind of positive feedback could eventually lead to 

desertification. Indeed, Okin et al. (2009) use the length of connected pathways (i.e., flow 

paths) to explain ecosystem desertification. Positive feedbacks between erosion and plant 

mortality increase the length of connected pathways. When the length of a flow path is 

above a threshold value, connectivity created by flow paths has a negative effect on plant 

survival and growth, resulting in further lengthening of flow paths and increased 

desertification.  

Other than the effect of the spatial structure, do individuals in patterned 

landscapes themselves retain more resource, and thereby contribute to increased 

ecosystem retention capacity? The studies reviewed above suggest that spatially 

structured landscapes have greater retention of resources, but do not tell us about the 

effects on individuals. Do individual organisms inhabiting patterned landscapes retain 

more resource than individuals in non-patterned landscapes? Van de Koppel et al. (2008) 

reported that over three weeks, the growth rate of individual mussels that occurred in a 

patterned beds were not significantly different from isolated mussels. Bautista et al. 

(2007) monitored surface runoff and sediment yields for 45 months in nine closed plots at 

El Ventós Experiment catchment in Spain, and found an inverse relationship between 
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patch density and runoff. However, after controlling for the effect of grain size and 

connectivity of landscape, no relationship between patch density and runoff was found. 

These studies imply that individuals in ordered patterning do not take up more resources 

than individuals in non-patterned landscapes, even though the patterned landscape as a 

whole retains more resources than non-patterned ones. We conclude that the explanation 

for altered resource retention capacity in patterned landscapes does not reside at the 

individual level. Instead, it originates from the differences in landscape patterns (e.g., 

patch configuration and flow path length). 

We contend that, in fact, there is no mechanism for individuals in patterned 

landscape to retain more resource than individuals in non-patterned landscapes. The 

ordered patterning is an accidental consequence of the regular biological processes of 

plants (or other agents that form the patterning). Plants establish somewhere in the 

landscape, modify the soil texture, and improve the local habitat condition, which 

naturally leads to lower level of resource concentration away from plants. When the 

resource is limiting, local processes generate a consequent depletion of that particular 

limiting resource. This causes a negative feedback at long range via propagation of 

influence. These are regular biological processes occurring in any kind of landscape. 

Thus scale-dependent feedback is likely a more general explanation for spatial 

complexity in ecosystems than previously considered, and it also plays a role in 

structuring systems that have more complex non-regular spatial patterning (van 

Wesenbeeck et al. 2008). Ordered patterning is a result of these regular biological 

processes when other conditions are met (such as a relatively homogeneous template). 
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Individuals in patterned landscape do not invest anything to create the ordered patterning. 

Ordered patterning comes at no cost (“order for free”; Kauffman 1995).  

At the individual level, when genetic mutations occur, they are associated with 

certain phenotypes. If the individual is better off with that phenotype, the frequency of 

that gene will increase in the population. Future mutations that further improve the fitness 

of this particular trait will be selected for. As a result, that particular trait will be 

enhanced and intensified. This represents feedback from “functioning” to individuals 

(i.e., genes) from which the “pattern” (phenotype) emerged. Such feedbacks are realized 

because of differential reproduction and selection at the individual level. However, such 

selection does not exist at the ecosystem level: there is no “birth-reproduction-death” 

cycle for ecosystems. Ecosystem level selection (Dunbar 1960) or at least group selection 

(Wilson 1983; Stevens, Goodnight, and Kalisz 1995; Price 2012) is still debatable. 

Moreover, the pattern is formed not because individuals did anything special. There is no 

gene responsible for spatial self-organization. The pattern is “order for free”, but it is also 

“order for nothing” in that there is no evolutionary reward returning to individuals that 

“build” the structure. Without reward to individuals that do the organizing, self-

organization would be limited in the extent to which it can shape the structure and 

functioning of ecosystems. However, these limits are currently unknown. 

 

WHAT FEEDBACKS ARE POSSIBLE? 

 Ecosystems and the biosphere are complex adaptive systems, from which patterns 

emerge, and then feed back to affect the actions of adaptive individuals (Levin 1998). An 

important feature of such systems is the sustained diversity of components (Gell-Mann 
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1994). However, with spatial self-organization, such diversity or heterogeneity of 

composition is usually neglected – only one species is considered. Therefore, feedback 

from the outcome of the spatial structure to the actions of individuals that lead to the 

spatial structure is not likely. However, the self-organization of complex adaptive 

systems considers a community and the interactions and changes of many species over 

time. When the diversity of species composition in a real ecosystem is considered, the 

conclusion may be different (Levin 1999; Levin 2005).  

When multiple species are considered, the feedbacks from the outcome of the 

spatial structure to the spatial structure are likely to happen. In ecosystems, ecological 

activities of single species in communities can lead to great changes in the environment 

(both biotic and abiotic). This leads to further changes in the candidate species for likely 

community assembly and interactions. Such feedbacks from the outcome of the actions of 

individuals to these same individuals are rooted in adaptation and selection at the 

individual level in a system characterized by a diversity of species, which is in turn 

reflected in differential reproduction. Over time, the result is a change in species 

composition. When an ordered vegetation patterning occurs, the environment for the 

community living in this landscape is changed, e.g., the landscape retains more resource 

and has higher productivity, compared to the non-patterned landscape. This will 

necessarily change the community on this landscape, including its species composition, 

abundance, and richness. Evolution proceeds. Gene frequencies change. The altered 

community structure will then influence the organisms that formed the pattern at the first 

place. This completes the feedback loop from the outcomes of spatial structure to spatial 

structure itself. However, such feedback loop does not provide a mechanism for this 
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outcome to affect the plants in such a way as to alter the spatial pattern one way or 

another (e.g., reinforcing the functioning). As there is no gene for structure formation, it 

cannot be differentially selected. 

  

A TRADITION OF WISHFUL THINKING IN ECOSYSTEM SCIENCE 

Using ecosystem nutrient retention as an example, Fisher et al. (2007) 

hypothesized reciprocal feedbacks between function and form, and asked whether the 

process of retention of nutrients could feed back to influence the spatial structure of an 

ecosystem in a direction that enhances function. The studies on ecosystem directional 

changes can be traced back to Odum (1969), who hypothesized directional and predicable 

changes in many ecosystem properties over successional time. Some of the specific 

predictions were later rejected by empirical studies (e.g., Vitousek and Reiners 1975). 

But the general idea that ecosystems could self-organize to benefit organisms over time 

persisted. Similarly, Gaia failed as a model for understanding nature, because it treats the 

biosphere as if it were selected for its macroscopic properties (Lovelock and Margulis 

1974). These views of ecosystem change are rooted in a tradition of wishful thinking and 

rely on unspecified mechanisms such as group selection.  

While biological components are an important part of ecosystems, ecosystems are 

also complex systems in nature and include dynamic abiotic elements as well. Therefore, 

dynamics of ecosystems must be rooted in laws of evolution/natural selection, 

biophysical laws, and systems theory. Complex systems can have interesting emergent 

properties resulting from simple local interactions among a diversity of components. One 

of these emergent properties is called self-organized criticality, which was proposed by 
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physicist Per Bak (Bak et al. 1987). A system self-organizes to the edge of stability such 

that a slight perturbation will cause collapse (think about the collapse and reorganization 

of sand piles). This view simply takes ecosystems as dynamical systems, without 

considering the biological nature of the system’s components. The most recent theory of 

complex adaptive systems emphasizes feedbacks that cross levels of organization, 

wherein macroscopic structure and properties emerge from and feed back to the action of 

individuals. While there is plenty of evidence showing how actions of individuals result 

in macroscopic structure and property, feedbacks from structures and system properties to 

individuals are likely implausible, as we reasoned in the previous sections. Despite this, 

complex adaptive system theory still provides one of the most promising frameworks to 

understand the organization and dynamics of ecosystems. It considers abiotic and biotic 

components, includes variation and adaptation of organisms in an evolutionary view, and 

adopts a systems perspective.  

 

SELF-ORGANIZATION AND NATURAL SELECTION 

Both self-organization and natural selection can generate order. Stuart Kauffman 

in his book, At Home in the Universe (1995), wrote that self-organization is a different 

source of order than natural selection. It is “order for free.” A pure Darwinist might argue 

that order could arise only after evolutionary trial-and-error. However, self-organization 

is “the origin of the very ability to evolve,” because “stability can’t be imposed from 

outside by natural selection – it must arise from within as a condition of evolution itself.” 

Holland (1976) proposed that natural selection is an emergent process of self-

organization founded on birth-reproduction-death cycles.  
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The formation of ordered pattern by living organisms in ecosystems is no 

different from that by physical objects, except that the rules of local interactions among 

biological organisms are subject to both physical and biological laws (which are defined 

by natural selection at the individual level). Self-organization is the root source of order 

and exists without biology, e.g., on Mars (Bishop 2007), hence without natural selection. 

The ordered pattern is formed by the relentless operation of self-organization, without the 

need to invoke selection at any level.  

 

SPATIAL AND TEMPORAL HETEROGENEITY INFLUENCING SELF-

ORGANIZATION 

Preexisting spatial heterogeneity (i.e., the template) influences self-organized 

patterns. When template heterogeneity is absent or moderate, self-organization buffers 

the underlying heterogeneity to form ordered patterning (van de Koppel et al. 2005). 

However, what happens when template heterogeneity is pronounced? We summarized 

three basic ways in which self-organization and template heterogeneity could interact 

previously (i.e., by directly changing the information content, by altering the flow path 

structure, and by modifying local interactions; Fig. 6.1). So far, only three studies have 

attempted to address this issue (i.e., Sheffer et al. 2013; Liu et al. 2014; Bonachela et al. 

2015) with only modest success. More research is clearly needed.  

On a continuum of systems ranging from being totally self-organized to being 

entirely determined by the landscape template, how does ecosystem resilience vary? Liu 

et al. (2014) evaluated state transitions under homogeneous and heterogeneous resource 

conditions by comparing results from a model explicitly considering a gradual depletion 
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of algae (the prime food of mussels) from the seaward boundary of the mussel bed, with 

results from models not including this gradual consumption. They found that alternate 

stable states existed when the algal gradient was lacking but were absent under conditions 

of algal depletion. In contrast, Bonachela et al. (2015) reported on an interaction between 

vegetation self-organization and spatial heterogeneity of termite mounds. The extra layer 

of spatial heterogeneity imposed by termite mounds enhanced resistance of dryland 

habitats to climate change (drier climate with less precipitation). The consequences of 

interaction between self-organization and template heterogeneity were thus opposite in 

these two studies. To understand how self-organization interacts with template variation 

to affect ecosystem properties, such as resilience, it is important to know whether and 

how the focal ecosystem property depends on specific formulations of the underlying 

process through which the large-scale physical context interacts with self-organization.  

Self-organization is a process – it takes time for feedbacks to occur and for spatial 

patterns to form. The environment on which it plays out is heterogeneous in space and 

variable in time. Ecosystems are exposed to frequent environmental fluctuations, some of 

which are disturbances, such as fire, floods, or grazing. Environmental fluctuation in time 

is analogous to landscape heterogeneity in space. Here, we call it temporal heterogeneity. 

Just like in preexisting spatial heterogeneity, temporal heterogeneity can also shape the 

spatial distribution of biological patches.  

A Forest fire model provides a classic example illustrating temporal regime of 

disturbance shaping the spatial patterns of forest tree patches (Drossel and Schwabl 

1992). In the model, starting with an empty model lattice, trees gradually appear. 

Lightning strikes may chance upon a tree, and burn it and its connected cluster. The 
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cluster is localized because landscape connectivity is well below the percolation 

threshold. As time goes by, more trees grow until percolation occurs. When any tree in 

the cluster is hit by lightning the entire cluster can be burned. This eliminates the 

spanning cluster so that the system no longer percolates. Over time as more trees appear 

this process plays out repeatedly. The system oscillates around the critical point. Given 

enough time, the forest self-organizes to a state in which it has a power-law distribution 

of the sizes of clusters (and fires). Another example is flooding. As with the forest fire 

model, an empty lattice is colonized by stream macrophytes, with frequent flood 

disturbance. Unlike the forest fire model, where large tree patches are more susceptible to 

big fires, large and dense macrophyte patches are less susceptible to floods (Heffernan 

2008; Bouma et al. 2009). Above threshold patch size and plant density, the removal rate 

by floods decreases nonlinearly. At the beginning, patches formed by plants are small, 

and are easily removed by floods; however, as plants continue to develop, small patches 

connect and form larger patches. This nonlinearly increases the force required for floods 

to remove plants. Here, the temporal configuration of the flood size (flood regime) shapes 

the patch size distribution of macrophytes.  

The effect of temporal heterogeneity on spatial self-organization is more poorly 

known than the effect of preexisting spatial heterogeneity. We propose that some existing 

conceptual elements of understanding of spatial heterogeneity and self-organization can 

be borrowed to explore the effect of temporal heterogeneity on spatial patterns, and we 

illustrate here with an example. The disturbance regime in time is analogous to the size of 

soil patch between rocks in the soil-rock mosaic framework described by Sheffer et al. 

(2013). When the plant-patch size is much smaller than the size of a soil patch, plants will 
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interact and self-organize to form ordered vegetation patterns between rocks. Similarly, 

when the interval between two disturbances is long enough, ecosystems can self-organize 

over time. In the soil-rock mosaic framework, at the landscape level, vegetation follows 

the physical template by occupying the network of soil patches. In temporal self-

organization, the ecosystem assembly in the long term is determined by the disturbance 

regime. Lastly, water availability in the area open for plant growth is determined by the 

size of soil patches. Specifically, the redistribution of rainfall in a rock-soil landscape 

results in a differential increase of water content in the soil patches. Small patches have 

soil-water content significantly higher than large patches. Differential degrees of water 

limitation determine the shape of the repeated pattern (e.g., spots or bands). Similarly, the 

disturbance regime is related to distribution of resource in time. For example, Sycamore 

Creek, a desert stream in Arizona, is nitrogen limited (Grimm and Fisher 1986). Floods 

wash the nitrogen accumulated in the upland to the stream. This nitrogen is highest after 

floods. The hydrological regime, which determines the stream-upland connection, affects 

nutrient inputs from the catchment and thereby sets a nutrient limitation ‘status’ (Grimm 

and Fisher 1992). Frequent floods are related to frequent small pulses of releases of 

nutrient limitation. Infrequent large floods are related to large increases of nutrients in the 

system. In this way, the disturbance regime influences the level of resource limitation and 

the time allowed for self-organization to occur, both of which influence ecosystem self-

organization.  
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ECOSYSTEM SELF-ORGANIZATION 

Ecosystems consist of both biotic and abiotic components and self-organization 

occurs both in physical environments (e.g., branched river networks, spacing between 

mountain ridges, distribution of catchment sizes, and soil structure) and among biological 

organisms (e.g., plant, animal, and microbe). It is all of these components and the 

complex interactions and feedbacks among them that make an ecosystem. The self-

organization of different components of ecosystems occurs at different spatial and 

temporal scales, and in response to different signals (e.g., the information that organizes 

one ecological component might be just white noise to another). Different types of 

ecological components differ in their intrinsic motivation to move, in their motilityand 

navigation abilities, and in their response to external factors (Holyoak and Casagrandi 

2008; Nathan 2008). But they occur simultaneously within an ecosystem. Currently, most 

research has been focusing on the self-organization of one type of ecological component, 

which cannot really be considered as ecosystem self-organization.  

Self-organization of different ecological components could occur at similar 

temporal and spatial scales. In the example of the plant distribution in savanna 

ecosystems with preexisting termite mounds (Bonachela et al. 2015), the spatial 

distribution of termite mounds was taken as a preexisting template. However, studies on 

spatial distributions of mounds showed that the older colonies were regularly distributed 

as influenced by intraspecific competition (Korb and Linsenmair 2001). It may be that 

termite mounds simply act as a template to influence the self-organization of plants, but 

alternatively, the two mechanisms of pattern formation may interplay with each other in 

time. Do distinctively different self-organization processes occurring at similar spatial 
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and temporal scales interact with each other? How? What are the consequences of such 

interactions, structurally and functionally? Answers to these questions need further 

research.  

In other cases, self-organization of ecological components occurs at distinctively 

different spatial and temporal scales. The rock-soil mosaic framework of Sheffer et al. 

(2013) can be generalized to model whole watersheds. Watersheds consist of soil planes 

that are embedded within hard-rock mountain ridges, within which are many source-sink 

spatial relationships. On the other hand, the emergence of evenly spaced ridges and 

valleys (and therefore, the distribution of sizes of catchment areas) is one of the most 

striking examples of self-organization in landscapes at broad scales (Perron et al. 2009). 

The shape of catchments can greatly influence water chemistry, each catchment being 

characterized by a distribution of travel times, reflecting the diverse flow paths available 

by which rainfall can move to the stream (Kirchner et al. 2000; Kirchner and Neal 2013). 

The travel time of water and nutrients through a catchment influences the retention of 

both. Resources received by soil planes in the watershed further influences its self-

organized spatial structure, and further affects flow paths, resource retention, and a host 

of other processes at various spatial and temporal scales, many in the realm of ecosystem 

properties. 

 

SUMMARY 

 Ordered pattern arises from homogeneous landscape through spatial self-

organization, a phenomenon observed widely around the world in many ecosystem types. 

Such patterns have functional consequences, as we have discussed, altering ecosystem 
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productivity, resource retention capacity, and ecosystem resilience. These ecosystem 

properties emerge from the spatial structure at the landscape level, not from processes at 

the individual level. We reasoned that the outcomes of ordered patterns are not likely to 

feed back to the actions of individuals, which give rise to spatial patterning in the first 

place. Ordered patterning is a result of regular abiotic or biological behaviors of 

individual agents: individuals do not invest anything to “build” these patterns, nor do they 

(differentially) benefit from them. It is order for free, and also order for nothing for 

individuals. Order for nothing means that spatial self-organization, while an important 

mechanism for the formation of spatial heterogeneity, does not provide a mechanistic 

basis for directional (teleological, cybernetic) change in ecosystems.  

 We propose that the mechanism of spatial self-organization – scale-dependent 

feedback – falls within the broad theory of propagation of ecological influence in 

heterogeneous landscapes (Reiners and Driese 2001). The key aspects of propagation of 

influence are information flow (i.e., influence), the processes that modify the information, 

and flow path through/over which information travels (Fisher and Welter 2005). 

Contextualizing spatial self-organization in the theory of propagation of influence bridges 

the conceptual gap between current work on pattern formation (which focuses on 

organisms and their spatial structure) and ecosystem ecology, which considers the flow of 

material, energy, and organisms. This provides a general framework to systematically 

study the interaction between spatial self-organization and template heterogeneity: how 

template heterogeneity may influence information flow, the process generating the 

information, and the flow path by which information travels. Such a framework may lead 

to a much broader application of the concept of spatial self-organization in ecosystem 
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ecology and a leap in understanding of ecosystem self-organization in a more realistic 

setting, one that takes into account the spatial and temporal heterogeneity of the 

environment, beyond current studies on conspicuous two-dimensional patterning. 
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FIGURE 6.1. A conceptualization of the three approaches preexisting heterogeneity 
interplaying with spatial self-organization (1) external drivers directly alter the 
information content in the flowpath. Example of this could be stream tributary 
joining the main channel or groundwater inputs, directly altering the 
concentration of the limiting resource; (2) intensify the local positive interactions 
(the example of termite mounds in savanna ecosystems as reviewed in the text: 
termites increase plant water use efficiency in water limited ecosystems); and (3) 
alter the flowpath structure (the example soil-rock mosaic example in the text: 
rocks blocks the propagation of information flow).  
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ADDRESSING “MISSING” DATA IN THE DRY SECTIONS  
Because surface water was not continuous in late succession in 1995 and in 2013 

mid-succession, no water samples were collected in the dry section of the stream. The dry 
section occurred between 3 km and 6 km, which divided the stream into two continuous 
wet sections. Wavelet analysis does not tolerate missing data (Saunders et al. 2005). We 
used two methods to deal with the missing data to cross-validate the results from wavelet 
analysis. (1) We estimated nutrient concentrations in the dry sections (“ARIMA estimate” 
approach). For NO3

– concentration in dry sections, we first used autoregressive integrated 
moving average models (ARIMA) to fit the data. From observations of the dry section 
data in other surveys where water did not dry out, we found that the dry section barely 
had any big fluctuations in the concentration of NO3

– and the overall NO3
– concentration 

was low. So we set the average NO3
– concentration to be 2.5 µg L-1, and used the best 

ARIMA model from the data to predict the NO3
– concentration in the dry section in late 

succession of 1995 and mid-succession of 2013. For conductivity data, we used similar 
ARIMA method to estimate the autocorrelation in the data, but we also superimposed the 
big sine-wave curve, which we observed in other surveys where surface water was 
continuous, to the whole dataset for estimation. For SRP concentration, we first 
calculated the slope between the SRP concentration in the last water sample before the 
dry section and the SRP concentration in the first water sample after section. We then 
added the autoregressive noise estimated from best ARIMA model to the data predicted 
from the linear model. (2) In the second approach, we did not estimate the “missing 
data”, instead, we left out the dry sections of the stream, and only used a subset of the 
data, where the samples were continuous (“subset” approach). We ran wavelet analysis 
on the two continuous wet sections upstream and downstream of the dry section 
separately.  

For the MARSS model, since the missing values are nonrandom, the standard 
methods (reviewed by Horton and Kleinman 2007) to estimate missing data in time series 
data (in our study, spatial auto-correlated data) do not apply in our case. We also used 
two methods to cross-validate the results. (1) We took out the dry section in the datasets 
of 1995 late succession and 2013 mid-succession, and connected the two wet sections of 
the stream together; we then run MARSS on the connected whole dataset (“connected-
pseudo-complete” approach). In this method, we included a covariate to indicate before 
and after dry section, similar to the covariate of pit effect used in the early succession 
model. All the sampling points collected upstream of the big dry section were labeled 0’s, 
and all the points downstream of the dry section were labeled 1’s. (2) In the second 
approach, we took out the dry section in the dataset, and run MARSS separately on each 
continuous wet section of the stream (“subset” approach).  

For results from both MARSS and wavelet analysis, we reported the general 
results invariant of approaches used to deal with “missing data.” If the results were not 
consistent across different approaches, we pointed out the differences by reporting both 
results.  
 
ADDRESSING THE PIT EFFECT IN THE EARLY SUCCESSION IN 1997 

When the survey in early succession was done, water was being pumped from a 
gravel pit beside the stream into the stream channel at a location in the middle of the 



   

   286 

study section. The chemistry of the pumped water differed significantly from the stream 
water at that point (Dent and Grimm 1999). We included the effect of the pit by 
designating all the sampling sites upstream of the gravel pit as 0 and all the points 
downstream as 1. 
 
ESTIMATING THE N AND P IN THE ABOVEGROUND BIOMASS OF WETLANDS 
 Wetland survey was carried out two weeks after the survey of water chemistry. 
We measured the length and average width of wetland patches along the same 10 km of 
the stream. We also recorded the dominant wetland species within each patch. In the 
whole system, the dominant wetland species are Equisetum laevigatum, Paspalum 
distichum, Schoenoplectus americanus, Typha domingensis, and Juncus torreyi. The total 
wetland areas for each in 2013 were, respectively, 1761 m2, 2386 m2, 1878 m2, 2378 m2, 
and 429 m2. We used 200 g dry mass m-2 for approximation (Hudon 2006). Average N 
and P content were estimated as 15 mg N (g dry mass)-1 and 1.2 mg P (g dry mass)-1 
(Verhoeven and Schmitz 1991). We estimated a total N of 39.74 kg and total P of 3.18 kg 
fixed in the aboveground biomass of wetlands in the beginning of June 2013 across 10 
km of the stream.  
 
ESTIMATING THE N AND P IN THE FILAMENTOUS ALGAE  
 We surveyed the presence and absence of filamentous algae along with taking 
water samples every 25 meters across the 10 km section of the stream. 33% out of 400 
points had algae present. We assumed the average width of the wet stream channel to be 
2 m. While 33% of the surveyed points had algae present, this did not mean that 3.3 km 
of the stream channel was covered by algae. We assumed that half of the total area of the 
3.3 km stream was covered by algal mat, which was 3,300 m2. According to (Fisher et al. 
1982), in Sycamore Creek, 60 days after the winter flood, the biomass of algae was about 
150 g m-2. We estimated the N and P by using 5% N content and 0.5% P content in the 
algal dry mass. This resulted in 12.37 kg N and 1.24 kg P fixed in the biomass of algae in 
the 2013 survey across 10 km of the surveyed stream. This is about one third of the 
aboveground N and P in the macrophytes. 
 
CROSS-WAVELET ANALYSIS OF THE SPATIAL PATTERNS OF WETLAND 
ABUNDANCE AND NUTRIENT PATTERNS 
 We constructed Cross Wavelet Transform (XWT), which will expose the 
common wavelet spectrum power in space-spatial scale plane (i.e., spatial position on x-
axis and spatial scale on y-axis). The detailed description of the method can be found in 
(Grinsted et al. 2004). The purpose of this analysis in our study is to explore shared signal 
by wetland distribution and spatial patterns of nutrients in 2013. Also, analyzing the cross 
wavelet of nutrients and wetland distribution across four surveys sheds light on the 
changes in patterns of nutrient caused by wetland establishment in the system. We did not 
find any noticeable changes in the cross-wavelet analysis in different successional stages 
for either NO3

- or SRP (Appendix F). 
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APPENDIX E 

SUPPLEMENTARY FIGURE 1 
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FIGURE 1. Wetland abundance distribution along 10-km main stem of Sycamore Creek 
two weeks after water chemistry survey in 2013.  
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APPENDIX F 

SUPPLEMENTARY FIGURE 2 
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FIGURE 2. Cross wavelet analysis (XWT) between wetland abundance and spatial patterns 
of NO3 concentration and SRP concentration in four surveys (different rows). See 
Figure 3.6 caption for detailed description of the wavelet plots.  
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APPENDIX G 

SUPPLEMENTARY FIGURE 3 
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FIGURE 3. The long-term (1970 to 1999) SRP concentration (mean SRP concentration in 
the May of each year) variability in Sycamore Creek. For the long-term data, the 
data were collected from the same monitoring site (about 6 km downstream 
distance). For 1995 and 2013 when the May spatial survey was conducted, box 
plots are shown to represent the spatial variability in concentration over the 10-km 
surveying range. The red “+” labels the concentration of SRP at the long-term 
monitoring site.  
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