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ABSTRACT 

       This thesis presents a successful application of operations research techniques in 

nonprofit distribution system to improve the distribution efficiency and increase customer 

service quality. It focuses on truck routing problems faced by St. Mary’s Food Bank 

Distribution Center. This problem is modeled as a capacitated vehicle routing problem to 

improve the distribution efficiency and is extended to capacitated vehicle routing problem 

with time windows to increase customer service quality. Several heuristics are applied to solve 

these vehicle routing problems and tested in well-known benchmark problems. Algorithms 

are tested by comparing the results with the plan currently used by St. Mary’s Food Bank 

Distribution Center. The results suggest heuristics are quite completive: average 17% less 

trucks and 28.52% less travel time are used in heuristics’ solution. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Since the deep collapse in 2008 and 2009, the economic recovery is uncommonly slow. The 

rate of poverty in the U.S. has reached the highest rate since 1993. There were 45.3 million 

people who lived in poverty in 2013. It has remained as the largest number since the first 

statistics report that published more than 50 years ago. (Hunger in America 2014) 

The hunger problem in Arizona is even more serious: in 2014, 17.8% of Arizonans were food 

insecure, which exceeded the national average of 15.9%. At the same time, 28.2% of Arizona 

children faced hunger. With 456,760 children facing hunger on a daily basis, Arizona ranked 

the third in the country for high child food insecurity rate, only behind New Mexico and 

Mississippi. 

 

To solve this hunger problem, nonprofit organizations play an important role in providing 

essential food and service to the underserved and vulnerable members of society. Feeding 

America is such a nonprofit organization that feeds America’s hungry through a nationwide 

network. Based on the hunger study of Feeding America, 3.3 billion meals have been brought 

to more than 46 million people by Feeding America and its network. A large amount of this 

food is donated from surplus food such as grocery chains and supermarkets. As an active 

member and one of the largest distribution centers in Feeding America, St. Mary’s Food Bank 

collects dietary products from grocery chains or supermarkets, stores goods in a warehouse, 

and distributes meals to hungry people.   

 

Founded in 1967, St. Mary’s Food Bank (SMFB) is the world’s first Food Bank. It has already 

distributed more than 700 million pounds of food to Arizona since it was set up. In addition, 

as the world has recognized its efficiency in food distribution, SMFB has been regarded as the 



2 

blueprint for Food Banks over the United States. With the rising demand yet the resources 

that are becoming more limited, the challenge that SMFB faces is even more complicated. 

Operations research methods have been applied to logistics problems and yielded many 

successful stories. Therefore, in this research we adopt the corresponding operations research 

technique to improve the efficiency of goods collection in SMFB. 

 

1.2 Problem Overview 

SMFB provides services all over the Arizona. 330 partner agencies are located in 430 different 

sites. Most of these partner agencies are dining halls, domestic violence shelters, churches, 

food pantries, schools, children’s shelter, senior centers and halfway houses. As a nonprofit 

organization, SMFB faces great challenges in its operation. Firstly, demands and donations are 

uncertain. In SMFB, dietary products are collected from hundreds of resources, such as 

donations from different supermarkets and buying products from government with low price. 

With uncertain demands and limited distribution resources, sometimes SMFB cannot receive 

donated products in time. As a result, lots of fresh foods are wasted and a number of people 

remain hungry. Secondly, the inefficiency in distribution channel also needs to be settled. The 

SMFB’s services cover over 81,000 square miles in center and Northern Arizona, including 

Coconino, Navajo, Apache, Gila, Yavapai Mohave Counties and two-thirds of Maricopa 

County. Only in the Northern Arizona communities, SMFB has distributed almost 12 million 

pounds of food in fiscal year 2011-2012, nearly 10 % increase over the previous year. Such a 

complex and large system is not easy to be managed efficiently. After collecting donated 

products, SMFB classifies food into different pallets, stores pallets in warehouses and 

distributes meals to different agencies. All of these challenging tasks requires the assistance 

from volunteers.  
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Among SMFB’s problems, distribution efficiency has a huge impact on the operational 

activities. In SMFB, every dollar could serve seven meals to hungry people, at the same time, 

transportation cost of distribution takes the majority of the budget. If the distribution center 

could improve the transportation efficiency, more hungry people could be served. In this 

thesis, our research will focus on improving the efficiency of collection between donation 

suppliers and SMFB distribution center.  

 

1.3 Problem Definition  

Figure 1- 1 

Donors That Need Be Visited on Thursday (a) and Monday (b) 

                (a)                                         (b) 

 

On each weekday, 12 trucks in SMFB are dispatched from distribution center (Depot) and 

each truck visits eight to seventeen donors (Customer) to pick up donated goods within 

capacity of 40,000lb. Every donor is visited only by one truck and takes an average of fifteen 

to thirty minutes to load goods. To reduce the transportation cost, the objective of this 

research is to minimize the number of trucks and total travel time. Figure 1 shows donors 

that need to be picked up on Thursday (a) and Monday (b). Take Thursday as an example. 
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On Thursday, 54 donors need to be visited and total 151,200 lb. goods need to be picked up. 

The donors are located in Maricopa County. At SMFB’s distribution center, 12 trucks with a 

capacity of 40,000 lb. are available to pick up foods from 5 a.m. to 16 p.m. on Thursday. Our 

objective is minimizing the number of trucks and total travel time while picking up all 

products from 54 donors. Currently, in SMFB distribution center, all routes are designed by 

commercial software, which is widely used in routing problem. In the commercial route 

design software, it only considers the travel distance, several other important factors, such as 

truck capacity, traffic situation, weights of pickup and time windows are not considered in 

the solution, which makes solution relatively limited. 

 

1.4 Resource 

We obtain the following information from SMFB: a depot (SMFB distribution center), 12 

trucks that pick up food from donors, the capacity of each truck, addresses of donors and 

depot and weight of products that need to be picked up. To be more practical, all the travel 

time between donors and distribution center are calculated through Google map. Moreover, 

to compare performance of algorithms used in this thesis with other well-known algorithms, 

Christofides’ benchmark (Christofides, 1969) and Taillard’s benchmark (Taillard, 1993) are 

used to test algorithms in Capacitated Vehicle Routing Problem (CVRP). Solomon’s instances 

are applied to test algorithms in the Vehicle Routing Problem with Time Windows (VRPTW).  

 

1.5 Thesis Structure 

This thesis is organized as follows: After investigating SMFB distribution center's problem, 

this problem is focused to belong to the class of Vehicle Routing Problem (VRP) and its 

extensions. In chapter 2, the development of the vehicle routing problem and former research 

results are introduced as the literature review. With deep understanding of VRP, we discuss 

SMFB’s distribution problem in detail in chapter 3. Based on SMFB’s present situation, a 
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model of Capacitated Vehicle Routing Problem (CVRP) is built for this problem. Meanwhile, 

Clarke and Wright algorithm and local search algorithm are adopted to generate solution for 

SMFB. Since some of donors in SMFB have time windows for picking up donated products, 

in Chapter 4, SMFB’s problem is extended to Capacitated Vehicle Routing Problem with 

Time Windows (CVRPTW) by adding time window constraints. Multiple Ant Colony System 

(MACS) algorithm is applied to solve this complicated problem and improve the efficiency 

of distribution in SMFB. Last, conclusions are drawn and recommendation of future research 

on this problem is given.  
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CHAPTER 2 

LITUREATURE REVIEW 

 

2.1 Introduction 

Improving the efficiency of transportation for distribution centers is highly related to the 

Vehicle Routing Problem (VRP). The VRP is one of the most famous combinatorial 

optimization problems. Dantzig and Ramser (1959) introduced the VRP based on a real 

gasoline delivery problem. A mathematical programming formulation and an algorithm were 

proposed for VRP. Ever since then, the VRP has given rise to a well-known and important 

field in Operation Research. Generally, the VRP deals with the transportation of goods 

between customers and depots. All vehicles need to start at and return back to depot. Every 

customer can only be visited once. The goal of the VRP is to generate a minimum set of 

routes that satisfy all customers’ demand. The VRP is easy to state and understand, while it 

is hard to solve in real world, especially combined with other practical constraints. In the 

domain of the VRP, there are numerous problems with specific constraints. For example, in 

the Heterogeneous VRP (Roberto Baldacci, 2007), more than one type of vehicles were 

assigned delivery tasks; Solomon (1995) presented the VRP with Time Windows (VRPTW), 

customers must be served in a given period; in the Periodic vehicle routing problem (PVRP) 

(Russell and Igo, 1979), the delivery plan involves several days at a time. In this research, we 

focus on VRPTW mainly.  

 

In 1981, Lenstra and Rinnooy Kan (1981) studied the complexity of the VRP and concluded 

all VRP are NP-hard. In 1988, Solomon and Desrosiers (1988) also proved the VRPTW to 

be an NP-hard problem. As a result, only a small number of instances of VRPTW can be 

solved and proved optimality. The following is the brief history of VRP. 
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Table 2- 1 

Brief History of Vehicle Routing Problem 

Decade Events 

1950s Dantzig and Ramser (1959) introduced Vehicle Routing Problem; 

Some small instances (10 to 20 costumers) were solved. 

1960s  Clarke and Wright algorithm (1964) was proposed to build routes; 

2-opt and 3-opt were applied to improve the solution (Christofides, Eilon, 

1969) ; 

Some instances with 30 to 100 customers were solved. 

1970s 2-phase heuristic were developed (Gillett and Miller, 1974); 

Some small instances (25 to 20 customers) have been solved with optimal 

solution. 

1980s  Interactive heuristic were developed (Cullen and Jarvis, 1981); 

Some instances with 50 customers have been solved with optimal solution. 

1990s Metaheuristics were proposed for VRP; 

Some instances with 50 to 100 customers have been solved with optimal 

solutions. 

 

There are many realistic assumptions in VRP, such as one route per vehicle, a homogeneous 

fleet of vehicles and single depot. If some additional constraints are introduced, these 

assumptions could be eliminated and the basic VRP could be extended to new VRP variants. 

Table 2-2 shows major VRP variants and their characteristics. Several researchers have 

studied this problem extensively. 
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Table 2- 2 

VRP Variants and Its Characteristics 

Problem Objective Focus Comments 

Traditional VRP 
Minimize 

distance 
Fleet 

Toth (1981) proposed an overview 

of the traditional VRP, Cordeau 

(1997) provided an overview of 

the heuristic to solve this problem. 

VRP with balance 
Balance daily 

work 
Driver 

Levy and Bodin [1988] developed 

constraints to obtain good 

solutions with balanced daily work 

and Sniezek et al. (2006) extended 

this problem. 

Period Vehicle 

Routing Problem 

(PVRP) 

Account for time 

period 

constraints 

Demand 

Francis (2007) defined operational 

complexity as the difficulty in the 

PVRP 

Inventory Routing 

Problem (IRP) 

Ensure customer 

will not out of 

product 

Demand 

Demands in the IRP are stochastic 

based on monitoring and 

forecasts. 

Consistent Vehicle 

Routing Problem 

(Con VRP) 

Ensure 

customers are 

served with the 

same driver 

Customer 

Each driver has the same routes to 

visit every day. Wong (2008) 

proposed some practical issues. 

Vehicle Routing 

Problem with 

Time Windows 

Minimize travel 

cost within time 

windows 

Customer 
Specific time window constraints 

are considered in this problem. 
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2.2 Capacitated Vehicle Routing Problem 

Capacitated Vehicle Routing Problem (CVRP) is an extension of VRP. In CVRP, the vehicle 

capacity constraint is now included. With capacity constraint, each vehicle has a given capacity 

and cannot load more goods than its capacity. The objective is to find the optimum road with 

minimum transportation cost and maximum satisfaction of customer with given constraints.  

 

In the past three decades, numerous studies have been focused on solving this problem. 

Several approaches have been extended from direct tree search with Branch-and-Bound 

(Christofides and Eilon, 1969) to column generation, Branch-and-Cut algorithms and 

metaheuristics. All of these methods have provided a good quality solution under the scope 

of this type of problems. 

 

2.3 Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) 

The Capacitated Vehicle Routing Problem with Time Windows is the CVRP with additional 

time window constraints. In real world, some customers can only be served in a given time 

period, we refer this time period as the time windows. Consequently, time window constraints 

should be taken into consideration. In CVRPTW, customers could begin to be served within 

a time window [Ei, Li]. If vehicles arrive at customer i before Ei, vehicles could wait until Ei, 

since there is no additional cost to wait. If the vehicles arrive at customer i after Li, as the 

customer is not available, the vehicle cannot pick up anything and additional penalty costs 

should be taken into consideration. Solomon (1987) proposed the sequential insertion 

heuristic to solve CVRPTW. Meanwhile, a problem set with different percentages of time 

windows, positioning and tightness were generated to test performance of algorithms used in 

CVRPTW.  
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2.4 Algorithms 

Since the VRP is an NP-Hard problem, it is typically difficult to solve, especially in real world. 

Various studies have been investigated regarding to this problem for a long time. Generally, 

the algorithms can be broadly classified into three methods: exact algorithms, classic heuristic 

algorithms and metaheuristics algorithms. The common exact algorithms for solving VRPs 

focus on branch-and-bound algorithm and dynamic programming. However, even with the 

most modern computing technique, the best exact algorithm can only solve some instances 

with less than 100 vehicles (Fukasawa, 2006, Baldacci et. al, 2008). In practice, over thousands 

of customer locations and additional constraints could be involved in the distribution 

problems. As many assumptions are considered, the problem itself is only more challenging. 

Adopting heuristic methods to obtain a nearly good solution within a short time limit is 

necessary. 

 

2.4.1 Exact Algorithms 

Over the past 40 years, branch-and-bound algorithm and mathematical programming 

approaches are quite popular in the category of exact algorithm. Christofides (1969) proposed 

and compared branch-and-bound algorithm with ‘saving’ approach, 3-optimal tour method 

in solving VRPTW. To improve the performance of branch-and-bound algorithms, 

considerable effort has been spent on this problem. Christofides et. al (1981) generated two 

sharp lower bounds based on K-degree center tree(k-DCT) and q-routes. An instance with 

10<n<25 has been solved with this two sharp lower bounds. Also with the same lower bound, 

Hadjiconstantinou (1995) solved the instance with n<50 with improved branch-and-bound 

algorithm. Fisher (1994) has solved several instances with even up to 134 nodes. 

Eilon and Watson-Gandy (1971) first developed a dynamic programming to solve the VRP. 

Christofides et. al (1981) applied a state-space relaxation to solve the instance with up to 25 

vehicles. 
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For exact algorithms, attention has also been focused on vehicle flow formulations and 

algorithms (Laporte and Nobert 1983), commodity flow formulations and algorithms (Gavish 

and Grave 1979, Hadjiconstantinou 2004), set partitioning formulations and algorithms 

(Balinski 1964, Baldacci 2008).  Most successful instances are given by Hadjiconstantinou 

(2004) and Baldacci (2008). Hadjiconstantinou solved some instances with up to 135 by 

applying branch-and-cut. Baldacci used Set Partitioning formulation to build the model and 

several instances with up to 121 were solved by an integer linear programming method. With 

exact algorithms, only the instance with a small number of customers can be solved with an 

optimal solution. For problems with large number of customers or tight constraints, it’s quite 

hard to obtain a feasible solution in a short time. 

 

2.4.2. Classical Heuristic: 

From the 1960s to 1990s, various researches were focused on the classical heuristic, which 

includes saving algorithm and cluster-first, route-second heuristic. 

 

2.4.2.1 Saving Algorithm 

Clarke and Wright (1964) developed a saving algorithm that could generate an optimal or 

near-optimal route rapidly for VRP. Saving Algorithm works equally well for the directed and 

undirected problems that the number of vehicles is not fixed and becomes a popular heuristic 

method for VRP. In Saving Algorithm, distance and travel timesaving would be calculated 

when two routes merge together. Based on the saving order, routes are merged together 

sequentially and a better feasible solution will be generated. Several improvements also have 

been proposed for Saving Algorithm. Golden (1977) added a positive weight to Cij to avoid 

circumferential routes.  Altinkemer and Gavish (1991) and Wark and Holt (1994) merged 

route with a matching algorithm to get a global optimal or near optimal solution. Otherwise, 
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Paessens (1988) accelerated the saving computation and Nelson (1985) chose efficient data 

structures to reduce the time in the consuming matching problem. 

 

2.4.2.2 Cluster-First, Route-Second Heuristic 

Fisher and Jaikumar algorithm (1981) is also a well-known cluster-first, route-second 

algorithm. In this algorithm, seeds are generated first and a cluster is built to minimize the 

distance within the cluster by generalized assignment problem (GAP). In each cluster, a new 

route will be generated by solving the Traveling Salesman Problem (TSP). Some instances 

solved by this method do have road length constraints. However, the detail information on 

how to handle the length constraint was not quite clear. 

 

Sweep algorithm (Wren, 1971) is another popular cluster-first, route-second method. Two 

parts are consisted in this algorithm: Split and TSP. A feasible initial cluster would be 

generated in Split phase and then a route would be obtained in this each cluster by solving a 

Travel Salesman Problem (TSP). It is first mentioned by Wren (1971) but was popularized by 

Gillett and Miller (1974). 

 

2.4.3 Metaheuristics 

Most metaheuristics are adopted for improvement phase. A good metaheuristics algorithm 

could generate an equally good solution even with a low-quality initial solution. In recent 

years, metaheuristics are broadly applied in solving VRP problems with large size in a short 

time. When it comes to VRP, metaheuristics are widely classified into three methods: 

population search, learning mechanisms and local search. 
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2.4.3.1 Population Search 

Genetic Algorithms (GA) are the most famous method of this paradigm (Holland 1975). Just 

like genetic mutation, new offspring will be generated by recombining some extracted parts 

with current parent solution. If there is any improvement in objective function, the worst 

element will be replaced by the new offspring. To apply these methods to VRP, local search 

method is a necessary part to improve the offspring (Prins 2004, 2009, Mester and Braeysy 

2005, 2007, Nagata 2007). 

 

2.4.3.2 Local Search 

Local search has been proven to be an effective method to generate a good solution to 

VRPTW. Generally, local search defines a search neighborhood that contains feasible 

solutions generated by inter-routes moves. Tabu search (Gendreau, 1994) is a well-known 

search method that explores the solution space by forwarding to the best solution in a subset 

of its neighborhood. In tabu search, solutions that process a given attribute of the current 

solution are not considered for a number of iterations (Cordeau and Gendreau 1997, Derigs 

and Kaiser 2007). 

 

Mladenovic (1997) proposed variable neighborhood search to build a heuristic by a systematic 

change of the neighborhood. To avoid the local optimum, neighborhoods will exchange with 

each other once a new better solution is identified. Savelsbergh (1991) has applied the local 

search algorithms to solve the VRPTW based on k-interchange concept. 

Chris Groer (2008) has developed an open source C++ package named VRPH to solve the 

VRP. In VRPH, a well-documented and modular library was developed. Many well-known 

local search heuristic (Clarke-Wright, Two-OPT, Three-OPT, OR-OPT, Cross exchange etc.) 

were applied to generate the solution to the VRP. In well-studied VRP benchmark instance, 

the solution given by VRPH is typically within a percent or two of the best-known solution. 



14 

2.4.3.3 Learning Mechanisms 

Ant colony optimization (ACO) is a well-known form of learning mechanism. In real word, 

ants deposit pheromone (chemical traces) on their path when they are searching for food. 

Shorter routes will attract more ants by stronger pheromone with time. In the ACO 

mechanism, it mimics the behavior of real ants. The edge generating more good solutions 

will be given more weight. This mechanism was firstly introduced by Dorigo (1992) in his 

PhD thesis. To improve the quality of the solution and computation time, Luca Maria 

Gambardella (1999) coordinated the action of different ant colonies, each colony operates a 

specific objective by using different pheromone trails. This mechanism is competitive with 

the existing methods in solving VRPTW.  

 

2.5 Researches on Distribution and Collection of Nonprofit Organization 

Establishing efficient network to collect and distribute necessities from donators to needed 

people is one of the tightest bottlenecks for nonprofit organization. Lien et al. (2013) have 

researched distribution operations of Greater Chicago Food Depository. He proposed a multi-

vehicle sequential allocation problem that considers providing equitable service and 

minimizing wasted donations for nonprofit operations. After studying the behavior of the 

model in clustering donors and agencies, the impacts of demand variability and supply 

availability on route composition and solution performance, they introduced an efficient 

decomposition-based heuristic method in this problem. However, it has not taken real traffic 

situation at different time and time window constraints of donors into consideration while all 

of these constraints are the key factors affecting the result in practice.  
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CHAPTER 3 

CAPACITATED VEHICLE ROUTING PROBLEM 

 

Currently, in SMFB distribution center, all routes are designed by commercial software, which 

only considers the travel distance. Several other important factors, such as truck capacity, 

traffic situations, weight of pickup and time windows are not considered in the solution. Also 

the traditional route design software cannot fulfil the expectations of dairy products pickup 

and may be quite inefficient for distribution. In this thesis, we begin to apply operations 

research methods in SMFB distribution center. In SMFB Distribution center, all trucks have 

a given capacity, which is 40,000 lb. On every weekday, trucks will depart from distribution 

center, visit donors one by one and return back to depot finally. This is a typical Capacitated 

Vehicle Routing Problem (CVRP). Currently SMFB distribution center uses the commercial 

logistic design software called Road Designer to design the road sequence. As the software 

only considers location of donors and total travel distance, it generates limited solutions for 

SMFB’s distribution center. In this chapter, we build a model of CVRP for this problem and 

adopt saving algorithm and local search to improve the solution.  

 

Figure 3- 1 

Capacitated Vehicle Routing Problem 
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3.1 Problem Description and Characteristics 

CVRP is a classical VRP with additional capacity constraint that each vehicle should have a 

uniform capacity. It is a fundamental problem in combinatorial optimization with wide 

application in practice and also within the core of logistics planning.  As Figure 3-1 shows, 

in CVRP, all nodes will be visited exactly one time by a single truck. Each truck has a fixed 

capacity and starts from and returns back to the same depot. All donors have known weight 

of donated goods to be picked up. In addition, all donors should be serviced and the travel 

time should be minimized. All trucks are capable of picking up any donation supplier and have 

the same capacity. Regarded as a well-known VRP variant, CVRP has the following 

characteristics. 

 

3.1.1 Transportation Requests 

The way transportation requests become available is an important characteristic of routing 

problems. There are two ways to know requests, dynamic way and statistic way. In a dynamic 

situation, some demands are known during the accomplishment of the route. In a static 

situation, all the requests are known before constructing the routes. In CVRP, we typically 

assume all the transportation requests are static and known before constructing the routes. 

 

3.1.2 Objective Functions 

A number of objective functions have been applied in VRP. The most well-known ones are 

discussed as follows. 

 

Minimize the number of trucks: The number of trucks refers to total trucks that pick up 

donated products from donation nodes every business day. In distribution center, trucks and 

drivers cost the most in the transportation cost. Accordingly, minimizing the number of 

vehicles is usually the main objective of route optimization. 
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Minimize route length: The route length is the total distance that trucks have traveled from 

the depot to different donation nodes to pick up donated goods and return back to the depot. 

It seems the route length could reflect the travel cost immediately. However, in route length, 

the traffic situation, which is the key factor that affects the efficiency and cost of the 

transportation, has not been taken into consideration.  

 

Minimize duration: The route duration takes all the time into consideration. It includes travel 

time, break time, waiting time, loading and unloading time. If the start time of the truck leaving 

the distribution center is set to zero, the completion time should be the arrival time when the 

truck returns back to the distribution center.  

 

Minimize travel time: The route travel time refers to the total time spent on the 

transportation between different donation nodes. In Food Bank, all drivers’ salaries are fixed 

and their working time is at most 11 hours every weekday. All donated goods have been packed 

in pallets before picking up and it is quite quick to load goods on the track. We typically assume 

the loading time is fixed. With these specific situations, minimizing travel time is more 

reasonable than minimizing road duration, since there is no other cost for distribution center 

in the waiting times, break times, loading and unloading times. In this research, we obtain the 

real travel time matrix though Google Map. Traffic and road situations have already been 

considered in the travel time matrix through Google Map. This will make our results more 

practical. 

 

Based on the discussion above, both of the travel time and the number of trucks should be 

involved in the objective function. As the trucks and drivers account for most of the costs, 
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the number of trucks should weight more than travel time. Thus a solution with fewer trucks 

is always better than others.  

 

3.2 Formulation  

The CVRP is formulated as a mixed integer program with the minimization of the number of 

trucks and total travel time. Since drivers and trucks contribute most of the costs in 

transportation, the number of tracks is more important than total travel time in the evaluation. 

In the objective function of this formulation, to enforce the number of trucks to be more 

important, a large constant B multiplies with the number of routes. Accordingly, in the 

objective function, the first term, which is also the most important term, is the number of 

trucks, and the second term, which minimizes the travel time, is the total time spent on all 

transportation.   

 

In CVRP, we assume there are NV identical vehicles, each with capacity C, NN number of 

donation nodes and a directed network that connects the distribution center and donation 

nodes. Donation nodes are denoted by 1, 2 ... NN. The distribution center (depot) is denoted 

with 0. All trucks start at and return back to depot 0. The connections between nodes are 

donated as the corresponding arc of the network. A travel time tij is assigned for each arc (i, j). 

To be more practical, the travel time tij is calculated by Google Map and a real travel time 

matrix is obtained by this calculation. Each truck has a given capacity C and each donation 

node has a pick up demand Qj.. 

 

 

 

 

 



19 

Parameters: 

NN: Number of donation nodes 

NV: Number of vehicles 

C:  Capacity of vehicles 

Qj:  Demand at node j (Q1=0) 

si:   Loading and unloading time at node i(t1=0) 

tij:   Travel time from node i to j( tij=∞) 

Dkj:  Departure time of truck k at node i 

Ei:   Earliest time available at node i 

Li:   Latest time available at node i 

M, B: Big constant number 

 

Set of nodes:	   

N (k): Set of nodes visited by truck k  

 

Variables: 

𝒍𝒊𝒋𝒌&
𝟏	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐚𝐫𝐜	  𝐢, 𝐣	  𝐢𝐬	  𝐭𝐫𝐚𝐯𝐞𝐫𝐬𝐞𝐝	  𝐛𝐲	  𝐯𝐞𝐡𝐢𝐜𝐥𝐞	  𝐤	  
𝟎	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐎𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

 

𝑽𝒌 =
𝟏	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝒊𝒇	  𝒗𝒆𝒉𝒊𝒄𝒍𝒓	  𝒌	  𝒖𝒔𝒆𝒅
𝟎	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

Formulation:  

Min   Z= B* 𝑽𝒌𝑵𝑽
𝟏   + 𝒍𝒊𝒋𝒌𝑵𝑽

𝒌&𝟏
𝑵𝑵
𝒋&𝟎

𝑵𝑵
𝒊&𝟎 ∗ 𝒕𝒊𝒋 (3-0)  

Subject to:  

𝒍𝒊𝒋𝒌𝑵𝑽
𝒌&𝟏

𝑵𝑵
𝒊&𝟎 = 𝒍𝒋𝒊𝒌𝑵𝑽

𝒌&𝟏
𝑵𝑵
𝒊&𝟎       for all j (3-1) 
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𝒍𝒊𝒋𝒌𝑵𝑽
𝒌&𝟏

𝑵𝑵
𝒊&𝟎 = 𝟏                for all j (3-2) 

C – {𝑵𝑵
𝒋&𝟏 𝑸𝒋 𝒍𝒊𝒋𝒌𝑵𝑵

𝒊&𝟎 } ≥ 𝟎         for all k (3-3) 

𝒍𝟎𝒋𝒌𝑵𝑵
𝒋&𝟎 ≤ 𝟏                     for all k (3-4) 

𝒍𝒊𝟎𝒌𝑵𝑵
𝒊&𝟎 ≤ 𝟏                     for all k (3-5) 

𝒍𝒊𝒋𝒌 ≤ 𝑴 ∗ 𝑽𝒌𝑵𝑵
𝒋&𝟎

𝑵𝑵
𝒊&𝟎             for all k (3-6) 

𝒍𝟎𝒋𝒌𝑵𝑵
𝒋&𝟏 -Vk = 0                   for all k (3-7) 

𝒍𝒊𝟎𝒌𝑵𝑵
𝒊&𝟏 -Vk = 0                   for all k (3-8) 

uik - ujk +C*lijk ≤ C-Qj              for all i, j, k (3-9) 

Qi	  ≤ 𝒖𝒊𝒌 ≤C                      for all i, k  (3-10) 

𝒍𝒊𝒋𝒌 ∗ 𝒕𝒊𝒋𝑵𝑵
𝒋&𝟎

𝑵𝑵
𝒊&𝟎  ≤  11 h          for all k  (3-11) 

                                                                                                           

In the objective function (3-0), the first term is the number tracks used. To set the hierarchical 

nature of objective, it is multiplied by a big constant B. The second term in the objective 

function is the total travel time of all routes. Constraints (3-1) forces the number of trucks 

flow into and out of node j to be the same. Constraints (3-2) states that the demand at every 

donation node can be completely satisfied by exact one truck. Since each truck has a given 

capacity, constraints (3-3) enforces no truck can visit more donation nodes than its capacity 

enable it to. Constraints (3-4), (3-5) state that the truck k could only be used at most once 

every day and a constraint (3-6) makes sure Vk is 1 if vehicle k is used. Otherwise, Vk is zero. 

Constraints (3-7) (3-8) ensure the truck k should start from and return to the depot. 

Constraints (3-9) are sub-tour elimination constraint and capacity constraint. If vehicle k 

doesn’t visit from i to j, constraints (3-9) is always true; if it does, lijk is 1. To make sure no 

other sub-tour starts from node j, the load of j cannot be more than the sum of load of i and 

the pickup weight at j. Constraints (3-10) enforces vehicle’s load will not exceed vehicle’s 

capacity after visit customer i. Constraints (3-11) makes sure the work time for every driver 

cannot exceed 11 hours.  
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However, as the feasible region for this formulation is nonconvex, the formulation itself could 

only provide us the understanding in mathematical perspective. However, the computational 

complexity is still very challenging. Even with most modern computing technique, the best 

exact algorithm can only solve some instances with less than 100 vehicles.  

 

3.3 Solution Algorithm 

In SMFB, trucks visit hundreds of donors to pick up donated products. Solving this problem 

with exact algorithm within reasonable time limit is very difficult. Meanwhile, several 

complicated conditions are added to this problem, such as truck capacity, time windows and 

route length constraints. These additional constraints make this problem more difficult. 

Numerous heuristics algorithms have been applied to this problem successfully. Heuristic 

methods based on tabu search have received significant attention in operations research 

(Chiang W.C. and Russell R.A., 1997). Lee at al. (2003) has compared tabu search and other 

competing heuristics and found that tabu search method has been shown to offer better 

feasible solutions. Accordingly, our research focuses on applying local search methods 

enhanced by tabu structure to solve CVRP. 

 

The solution process is separated into two steps, initialization and improvement. In 

initialization step, Clarke and Wright (Saving) algorithm is adopted to generate an initial 

feasible solution in a short time. In improvement phase, several local search operators are 

applied in Record-to-Record algorithm to improve the solution. 

 

3.3.1 Clarke and Wright Algorithm (Saving Algorithm): 

In 1964, Clarke and Wright proposed a saving algorithm to solve the VRP when the number 

of vehicles is not fixed. This saving algorithm has become a well-known heuristic for solving 

VRP since that time. As a heuristic algorithm, Clarke and Wright algorithm cannot promise to 
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get the optimal solution but can guarantee a feasible solution. As Figure 3-2 shows, the basic 

idea of this algorithm is to combine routes together based on the saving matrix.  

Figure 3- 2 

Flowchart of Saving Algorithm 
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Table 3- 1 

Saving Algorithm 

Step 0: Initialization.  

 Every customer node is connected with depot as Figure 3-3 (a) shows.  

There are NN routes (Depot-Supplier i- Depot) in the initial solution. 

Step 1: Saving Matrix computation 

 The saving Sij = tio + t0j - tij  for i, j =1,…, NN  

Create list L (i, j) and sorted (i, j) in descending order by merging savings.  

Step 2: Routes mergence 

 Based on list L, begin to merge routes from the beginning of list L: 

  Test the feasibility of the mergence: 

If the mergence is feasible, then two routes are merged together as 

Figure 3-3 (b) shows and a new route is generated; 

Test the next two routes (i, j) in list L until all routes combination in 

saving matrix are tested.  

  

  

Step 3 After all route combinations in list L are considered, termination conditions are 

tested, if it satisfies termination conditions, stop the calculation; else, update saving matrix 

with new merged routes and repeat routes mergence 

In the initial step, all nodes are connected to the depot and NN (number of nodes) routes are 

generated as an initial solution. Secondly, the saving matrix is generated by calculating the 

saving travel time for merging any two possible routes (i, j) together. Based on the saving 

matrix, a list L (i, j) is created and sorted in descending order by merging savings. With list L 

(i, j), road i and road j are selected to be tested with the feasibility of mergence. If the mergence 

is feasible, these two roads are merged together and a new merged route is created. After all 

the routes combination in list L (i, j) are considered, it need test the termination conditions. If 

no feasible mergence is found in last iteration or it exceeds given calculation time, the process 



24 

is terminated. Otherwise, the saving matrix is updated with new routes. The detail of the 

procedure is described in table 3-1. 

Figure 3- 3 

Saving Algorithm 

 

 

 

 

     

Figure 3- 4 

Procedure of Mergence 

 

 

 

 

 

 

In the saving algorithm, the key process is the routes mergence, where possible routes are 

combined together. In the mergence step, all the nodes are classified into four status: 

UNUSED, ADDED, INTERIOR and DEPOT. After the initialization, all the customer 

nodes are only connected with DEPOT and haven’t been merged yet. They belong to 

UNUSED Status. After saving matrix computation, some routes are merged together. In 

merged routes, the first and the last customer node belong to ADDED status, since other 

routes can be added into these routes though connecting with these two nodes. For the other 

nodes in the merged route, they belong to INTERIOR and cannot be connected with other 

routes. If two routes are merged by connecting two nodes together, the status of these two 

            (a)                                                               (b)                                                                     (c)              
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nodes is changed from ADDED to INTERIOR. For instance, in Figure 3-4, route (1) and (2) 

are merged together by connecting node 8 and node 1. The status of node 8 and node 1 is 

changed from ADDED to INTERIOR and these two nodes cannot be connected with other 

routes anymore. Since we only need to consider the possibility of connecting ADDED nodes 

together, the number of mergence is reduced fast when more and more ADDED nodes are 

changed to INTERIOR. The detail of mergence is given in Table 3-2.   

Table 3- 2 

Procedure of Merge for the Saving Algorithm 

For each combination (i, j) 

1. if both i and j are UNUSED  

 If the mergence is feasible,  

    Merge two routes; 

    status[i]= ADDED; status[j]= ADDED;            

2. if i is ADDED but j is UNUSED 

 If the mergence is feasible,  

    Merge two routes 

    status[i]= INTERIOR; status[j]= ADDED;            

3. if j is ADDED but i is UNUSED 

 If the mergence is feasible,  

    Merge two routes 

    status[j]= INTERIOR; status[i]= ADDED;            

4. if i and j both are ADDED 

 If the mergence is feasible,  

    Merge two routes 

    status[j]= INTERIOR; status[i]= INTERIOR;            

5. if i and j both are INTERIOR 

 Skip 
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3.3.2 Local Search 

In the second phase, local search procedure is used to improve the initial solution. Local search 

is a widely-used technique to solve the combinatorial optimization. In a given minimization 

problem, Min f(x), Subject to x ∈ S, where f(x) is the objective function and S is a solution 

space. Given a couple of constraints, we generate a feasible solution and its neighborhood 

N(x), which are also feasible for all constraints. Then we will search for new solutions within 

the neighborhood. If we find a new x’ and f (x’) <f (x), then it’s an improving movement for 

the result. The key in this process is to generate a good solution within the constraints. Local 

search is an effective way to generate a good solution to classical VRP as well as VRPs with 

additional constraints such as multiple depots and vehicle with given capacity. From an 

existing solution, a new search neighborhood could be obtained though some well-defined 

movements such as swapping the visit sequence of some donation nodes or removing edges 

from routes and replacing them with new other edges.  

 

A general local search operator was formally described in Tabu search algorithm (E. 

Hadjiconstantinou et. al. 1995). In this general local search, the position of u customer will be 

changed with π customers in another route. To control the computation complexity, u and π 

are usually less than three. The One-point move, Two-point move, Three-point move, Two-

opt move, Three-opt move are special cases of the general local search operator. E. Taillard 

(1993) applied such operators to improve the solution and got a number of the best solutions 

for many benchmark instances. In this thesis, seven operators are used to generate new 

solutions in local search, they are One-point move, Two-point move, Two-opt move, Three-

point move, Three-opt move, cross change, Or-opt. These local search operators are typically 

Tabu search operators. In n-point move, n nodes will be replaced with n nodes in another 

route. Similarly, in n-opt move, n edges will also be replaced with new other edges. The detail 

descriptions of these seven operators are summarized in table 3-3. 
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Table 3- 3 

Local Search Operators 

Operator Description Example 

One-point 

move 

Replace an existing node to 

a new position; 

0-1-2-0 à 0-1-3-0 

à  

Two-point 

move 

Swap the position of two 

nodes:  

0-1-2-3-4-0 à 0-1-3-2-4-0 
à  

Two-opt move Remove two edges from 

the original solution and 

replace them with two new 

edges: 

0-1-3-4-2-0 à0-1-3-4-5-0 

à  

Or-opt move Remove a string of two, 

three, or four nodes and 

insert the string into a new 

position : 

0-1-3-5-2-0à0-1-3-5-0 

à  
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Three-opt move Remove three edges from 

the original solution and 

replace them with three 

new edges: 

0-1-3-4-5-0à0-1-3-2-6-0 

à  

Three-point 

move: 

Swap the position of a pair 

of adjacent nodes with the 

position of a third node :  

0-1-2-3-4-0à0-1-3-4-2-0 à  

Cross-exchange 

move 

Remove four edges from 

two different routes and 

replace them with four new 

edges : 

0-1-3-4-0 à 0-2-4-5-0 

à  

3.3.3 Record-to-Record Algorithm 

When using local search to find a new solution, we use Record-to-Record (RTR) algorithm to 

record the best solution. RTR was introduced by Golden et al. (1998) and applied by Li et al. 

(2005) to solve large-scale VRPs. In RTR algorithm, Clarke and Wright algorithm would be 

used to generate the initial solution. Second, a local search operator, for example, One-point 

move, Two-point move and so on would be applied by using RTR algorithm. With satisfying 

all the constraints, nodes are exchanged between different routes. In this step, after a series of 

local operation exchanges, routes are allowed to improve and search in a local search process. 

Every time when a local optimum solution is obtained, a global re-initialization will perturb 
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the local optimum solution, exchange nodes with local search operators, improve and re-

sequence routes. This process is repeated until the termination constraint is satisfied.  

Figure 3- 5 

Flowchart of RTR Algorithm  

 

To reduce the computing complexity, we also consider only a given number of neighbors for 

each node when we use local search operators to improve the solution. The fixed number of 
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the running time and accuracy will be expected to be increased. The detail of the algorithm is 

described in Figure 3-5 and Table 3-4.  

Table 3- 4 

RTR Algorithm 

Step 0: Initialization. 

 Parameters are I, K, and λ. Set I=30, K=5, and λ∈{0.6,1.4,1.6}. 

Step 1: Starting solution. 

 Generate an initial feasible solution using the modified Clarke and Wright 

algorithm with parameter λ.  

Set Record = objective function value of the current solution. Set 

Deviation=0.01×Record. 

 

 

Step 2: Improve the current solution. 

 For i=1 to I (I loop) 

  Do local search operator and check feasibility  

 If no feasible move is made, go to Step 3. 

 If a new record is produced, update Record and Deviation. 

 End I loop 

Step 3: Repeat for K consecutive iterations. 

 If no new record is produced, go to Step 4.  

Otherwise, go to Step 2.  

Step 4: Perturb the solution. 

 Compare the solution generated after perturbation to the best solution 

generated so far and keep the better solution.  

Step 5: Keep the best solution generated so far. 

Go to Step 1 and select a new value for λ. 
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Figure 3- 6 

Effect of Parameters on Computation Time 

                 (a)                             (b) 

Figure 3- 7 

Effect of Parameters on Results 

                  (a)                               (b) 

    

In this algorithm, parameter I controls the maximum number of consecutive iterations allowed 

when the global record has not been updated and parameter K controls the maximum number 

of consecutive iterations allowed when the local record has not been updated. Increasing the 

values of I and K will lead to more iterations and more different solutions. Here, two 

Christofides’ problems (Christofides, 1979) are chosen to test the effect of these two 

parameters on the computation time and the quality of the results. In Figure 3-6, we test the 
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effect on computation time. In Figure 3-6 (a) and (b), Parameter I and K are set to different 

values to obtain the computation time for the best result separately. From these two figures, 

we find that the computation time will increase as the parameter I increase while parameter K 

has little effect on the computation time. In Figure 3-7 (a) and (b), we test the effect of 

parameters on the quality of results. With given computation time, the distance to the best-

known result is calculated as the quality of result based on different parameter I and K. From 

Figure 3-7, we find that, as parameter I increases, the result will be closer to best result, while 

parameter K has little impact on results. Based on the above observation, we choose I=30 as 

there is no significant decrease on distance to the best result after I=30 and K=5 while K has 

little effect on the results and computation time. 

  

3.4 Numerical Result 

Several benchmark problems are widely used to test performance of algorithms in the CVRP. 

Among those benchmarks, Christofides’ problem (Christofides, 1979) and Taillard’s problem 

(Taillard, 1993) are most famous. In this chapter, Clarke and Wright algorithm and local search 

operators are coded in C++ in Linux system to solve this problem. These two problem sets 

were executed on Intel(R) Core™ i7-4770S CPU@3.10GHz. Our results are solving through 

the heuristics described in section 3.4.  

 

The numerical results of Christofides’ problem and Taillard’s problem are presented in Table 

3-5 and Table 3-6 separately. In Table 3-5 and Table 3-5, the first and the second column 

describe the name and the number of customer nodes in the test problems. The third and the 

fourth column are the number of vehicles and total travel distance in the solution. 
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Table 3- 5 

Results for Christofides’ Problem (Christofides et al., 1979) 

generated by our local search operators. The fifth column gives the total distance of best-

known solution of the test problem. The last column compares our solution with the best 

known results and gives the difference between our solution and the best known solution. The 

difference is calculated by the equation (3-12), where DL represents the total travel distance 

in our solution, while DB is the total travel distance in best-known result. 

 

Difference= (DL-DB)/DB *100% (3-12) 

a Rochat and Taillard, 1995’ 

b Mester and Braysy, 2007 

 

Problem Number 

of Nodes 

Number 

of 

Vehicles 

Total Distance 

by Local 

Search 

Best-known 

solution 

Difference 

above best 

known 

1 50 5 524.61 524.61a 0.00% 

2 75 10 845.18 835.26a 1.19% 

3 100 8 830.17 826.41a 0.45% 

4 150 12 1038.94 1028.42 a 1.02% 

5 199 16 1316.74 1293.24 b 1.78% 

6 50 6 555.43 555.43 a 0.00% 

7 75 11 923.52 909.68 a 1.52% 

8 100 9 865.94 865.94 a 0.00% 

9 150 14 1169.83 1162.55 a 0.75% 

10 199 18 1412.92 1395.85 a 1.22% 

Average     0.80% 
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Table 3- 6 

Results for Taillard’s Problem (Taillard, 1993) 

Problem Number of 

Nodes 

Number 

of 

Vehicles 

Total Distance 

by Local 

Search 

Best-known 

solution 

Difference 

above best 

known 

100A 100 11 2077.58 2041.34a 1.78% 

100B 100 11 1948.26 1939.9a 0.43% 

100C 100 11 1408.73 1406.2a 0.18% 

100D 100 11 1598.25 1580.46b 1.13% 

150A 150 15 3148.72 3055.23a 3.06% 

150B 150 14 2810.34 2727.2b 3.05% 

150C 150 15 2403.58 2341.84c 2.64% 

150D 150 14 2662.51 2645.4c 0.65% 

Average     1.61% 

a Mester and Braysy, 2007. 

b Nagata-Braysy, 2008l. 

c Taillard, 1993. 

Based on the results given in Table 3-5 and 3-6, local search algorithms are able to generate 

high-quality solutions for CVRP. For Christofides’ Problem, local search operators can 

generate solutions that are within 1.9% of best-known results and with an average of 1.21 CPU 

seconds. For Taillard’s Problem, local search operators can produce solutions that are average 

1.61% above best-known results with average of 1.48 CPU seconds. With success in CVRP, 

local search operators are believed to generate a good solution for problem of St. Mary’s Food 

Bank Distribution Center. 
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3.5 Case Study - Problem of St. Mary’s Food Bank’s Distribution Center (Without Time 

Windows)                                             

In this section, local search operators are applied to optimize the routing of SMFB’s 

Distribution Center. Thursday is taken as an example to compare our solution with SMFB's 

current solution. Solutions of other weekdays are displayed in the appendix. On each weekday, 

12 trucks in SMFB are available to pick up donated goods within capacity of 40,000lb. Every 

donor is visited only by one truck and takes an average of fifteen to thirty minutes to load 

goods. To reduce the transportation cost, the objective of my research is to minimize the 

number of trucks and total travel time. Figure 1 shows donors that need to be picked up on 

Thursday (a) and Monday (b). Take Thursday as an example. On Thursday, there are 54 donors 

need to be visited and total 151,200lb goods need to be picked up. Most of these donors are 

located in Maricopa County. At SMFB’s distribution center, 12 trucks with a capacity of 40,000 

lb are available to pick up goods from 5 a.m. to 4 p.m. on Thursday. Our objective is to 

minimize the number of trucks and total travel time while picking up all goods from 54 donors. 

 

3.5.1 Input Data 

In VRP, several practical considerations are usually not considered in theoretical studies. For 

example, most researches on VRP are based on Euclidean distance yet Euclidean distance 

cannot reflect real travel cost in practice. In practice, traffic situation, weather, road quality 

and other factors will have a large impact on travel cost. In this thesis, as more practical 

feasures in real world can be reflected on travel time, travel time will be adopted to generate 

the routing sequence for SMFB distribution center. To calculate the real travel time between 

donors and distribution center, Google Map is applied to generate the travel time matrix. In 

the SMFB distribution center, there are 436 donors to be visited in every week, which means 

thousands distances need to be calculated. With the large amount of address combinations, a 

VBA macro was coded to automatically connect Google Map and calculate the travel time 

matrix for each weekday. The detail travel time matrix and VBA code is included in appendix. 
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In addition, based on the present routing sequence of SMFB, every donor is represented by a 

sequence number. The SMFB distribution center (Depot) is represented by 0. The demands, 

donors’ addresses and their relative sequence numbers are also included in appendix.  

 

3.5.2 Results 

This section generates a routing sequence for SMFB distribution center. Clarke and Wright 

algorithm and local search operators are coded in C++ in Linux system to solve this problem. 

It was executed on Intel(R) Core™ i7-4770S CPU@3.10GHz. The average computation time 

is 0.92 CPU seconds for generating a route sequence of each weekday.  

Table 3- 7 

Routes on Thursday Generated by SMFB 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 153 39200 14 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-0 

2 156 39200 14 0-15-16-17-18-19-20-21-22-23-24-25-26-27-28-

0 

3 157 36400 13 0-29-30-31-32-33-34-35-36-37-38-39-40-41-0 

4 148 36400 13 0-42-43-44-45-46-47-48-49-50-51-52-53-54-0 

 

Currently, in SMFB distribution center, all routes are designed by commercial software, which 

is widely used in routing problem. To test the efficiency of our algorithm, we simulate one 

week of truck routing for SMFB distribution center and compare the results with SMFB’s 

current solution, which is generated by route design software. Both the total travel time of our 

solution and SMFB’s solution are calculated though Google map. Table 3-7 and Table 3-8 

show the solutions of Thursday generated by SMFB and our algorithm separately. In these 

two tables, the first column gives the route number. The second column and the third column 

present total travel time and total weights in each route. The fourth column is the total number 

of donors visited by each route and the final column shows the routing sequence of route. In 

SMFB’s solution, 4 trucks are applied to visit 54 donors and every truck visits 13 to 14 donors 
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with picking up average 37,800 b donated products. Compared with SMFB’s solution, our 

solution has reduced 16.29% total travel time while using the same number of trucks. 

Table 3- 8 

Routes on Thursday Generated by Local Search 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 109 39200 14 0-1-5-4-8-3-10-13-12-11-9-6-7-20-28-0 

2 161 39200 14 0-2-32-33-31-34-30-35-37-36-38-39-40-44-29-

0 

3 130 36400 13 0-15-17-22-23-21-25-24-14-26-27-19-18-16-0 

4 114 36400 13 0-42-43-45-41-46-47-53-51-52-48-54-49-50-0 

 

Table 3- 9 

Comparison between SMFB’s Original Solution and Local Search’s Solution 

 SMFB Local Search 

 VEI TIME VEI TIME 

Monday 10 1377 8 20.00% 921 33.12% 

Tuesday 5 644 4 20.00% 481 25.31% 

Wednesday 8 1000 6 25.00% 692 30.80% 

Thursday 4 614 4 0.00% 514 16.29% 

Friday 10 1399 8 20.00% 880 37.10% 

Average    17.00%  28.52% 

 

In addition, between SMFB’s solution and our solution, we also compare the total number of 

vehicles and total travel time for one week in Table 3-9. Obviously, local search is very 

competitive: it has decreased average 17% in the number of trucks and 28.52% of total travel 

time. From this result, it’s clear that local search operators are able to produce relatively good 

solutions in a short amount of time. Figure 3-8 shows the solutions generated by SMFB and 

local search on the google map.  
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Figure 3- 8 

Routing Map of SMFB (a) and Local Search (b) 

(a)                                  (b) 
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CHAPTER 4 

CAPACITATED VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

(CVRPTW) 

 

In chapter 3, we have improved current routes of SMFB distribution center by using different 

local search operators. To further improve the service of distribution center, additional 

constraints need to be considered, such as time windows for customers to be served, limits on 

work hours for drivers and lengths of routes. In this chapter, SMFB’s problem is extended to 

Capacitated Vehicle Routing Problem with Time Windows (CVPRTW) and Multiple Ant 

Colony System (MACS) is applied to solve this problem. Moreover, results will be also 

compared with SMFB’s current solution in this chapter.  

 

4.1. Scenario  

Over the past years, the research focus has shifted from fleet-oriented to customer-oriented. 

As our research is customer-oriented, our goal is not only improving efficiency of results, but 

also satisfying customer’s requirements. In SMFB, several partner agencies are not available at 

regular business hours, donated products can only be picked up during a specific time period, 

i.e. within specified time windows. According to this situation, trucks should visit donors 

within their available time period. In SMFB distribution center, there are 12 trucks to pick up 

donated products from donors. The weight of donated products (“Demand”) and available 

time windows in each donor varies with donation suppliers. Time windows are set based on 

neighborhood noise considerations as well as supplier workload constraints. 

 

4.2. Time Window Constraints 

In addition to capacity constraints, time window constraints arise in many VRP. If time 

window constraints are very tight, it complicates the problem and is quite hard to find a 
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feasible solution. There are two kinds of time window constraints, one is related to donors 

(transportation requests) and the other one is related to distribution center. 

 

Time window constraints related to donors (transportation requests): Since most of 

donation nodes are business markets, they are only available at a given period. They usually 

impose a time period [Ei, Li] during which they could be served (with E0 the earliest start time 

and L0 the latest return time of each truck to the distribution center). For each donation node 

i, donated products can only be picked up between Ei (the earliest time of time windows) and 

no later than Li (the latest time of time windows). If a truck arrives donation node i before Ei, 

it is permitted to wait until the donation node is available since there is no additional cost for 

waiting. Fortunately, in SMFB, not all the donation nodes have specific time window requests, 

only half of them need to be served within a given time interval.  

 

Time window constraints related to distribution center: In SMFB distribution center, 

drivers and trucks are the most important factors that affect the distribution service. Both of 

drivers and trucks cannot be available for all the day as drivers need time to take a rest and 

trucks need time to be maintained. In SMFB distribution center, drivers and trucks are 

available from 5 am to 4 pm, on Monday to Friday, which is not as tight as time windows in 

donors. Primarily collections occur in the morning with afternoon seeing primarily deliveries 

by a different fleet. 

 

4.3 Problem Formulation  

Before giving formal mathematical formulation of CVRPTW, we should firstly define the 

following constants and variables. 

•  𝑨𝒌𝒋 : The arrival time for truck k at supplier j; 

•  𝑺𝒋:  The service time for supplier j; 
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•  𝒘𝒌𝒋 The waiting time for truck k at supplier j; 

•  N(k): Set of nodes visited by truck k  

•  T(k): Set of trucks used in solution 

 

In CVRPTW, two objectives are involved, minimizing the number of trucks and minimizing 

the total travel time (which means minimizing the fuel cost). The number of trucks takes 

precedence over total travel time. A solution adopts fewer trucks is always preferred even with 

more travel time. For solutions with the same number of trucks, they will be ranked by the 

total travel time. We use travel time as a surrogate for fuel consumption.  

 

In addition to CVRP, there are some more features in CVRPTW. In SMFB, as driver’s salary 

is fixed, there is no addition cost for waiting, if a truck arrives at donor before the beginning 

time of time windows Ei, it could wait until the donor is available. At the same time, the arrival 

time is not allowed to be later than the end time of time windows Li. Otherwise, as drivers 

and trucks are available from 5 a.m. to 4 p.m., for each truck k, the earliest start time E0 should 

be later than 5 a.m. and the latest return time L0 should be earlier than 4 p.m..  

 

Consider truck set T (k), there are NN suppliers that needed to be visited. The arriving time 

at supplier j could be defined as the arrival time at previous supplier j-1 plus the service time 

at this supplier and the travel time from supplier j-1 to j.  

𝐴UV=𝐴UVWX+𝑆UVWX+𝑡[\],[ for all j∈ N (k), k∈T(k)   

If a truck k arrives supplier j before the beginning time of time windows𝑬𝒋, it is allowed to 

wait until the donation node is available. 

𝐴UV=Max {𝐸[ , 𝐴UVWX+𝑆[\]+𝑡[\],[} for all j∈ N(k), k ∈T(k)    

Accordingly, the waiting time 

 𝑤UV= Max {0, 𝐸[- 𝐴UVWX-𝑆[\]-𝑡[\],[} for all j∈ N(k), k ∈T(k)   
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As required by supplier, the arrival time at supplier j must not be greater than Lj     

𝐴UV  ≤ Lj  for all j∈ N(k), k ∈T(k)   

As required by distribution center, the start time of truck k should later than 5 a.m. and the 

return time should be earlier than 4 p.m. (which means the total working time must be less 

than 660 minutes).                                    

𝐴Ua ≥0, for all k ∈T(k) 

 

As a result, combined with the formulation of CVRP described in Chapter 3, the problem is 

formulated as follows. Constraint sets (4-1) to (4-10) are formulated for CVRP as chapter 3 

describes. Constraint sets (4-11) to (4-16) are added to extend CVRP to CVRPTW. 

 

Parameters: 

  NN: number of donation nodes 

NV: number of vehicles 

C: capacity of vehicles 

Qj: demand at node j (Q1=0) 

si:  Loading and unloading time at node i(t0=0) 

tij: travel time from node i to i( tij=∞) 

Dkj: departure time of truck k at node i 

Ei: earliest time available at node i 

Li: latest time available at node i 

M, B: Big constant number 

𝑢cU : Load of vehicle k after visiting customer i; 

𝐴UV : The arrival time for truck k at supplier j; 

𝑆[ :  The service time for supplier j; 

𝑤UV The waiting time for truck k at supplier j; 
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Set of nodes:	   

N(k): Set of nodes visited by truck k  

T(k): Set of trucks used in solution 

Variables: 

 𝑙c[U&
1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  arc	  i, j	  is	  traversed	  by	  vehicle	  k	  
0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Otherwise

 

 𝑉U =
1	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑣𝑒ℎ𝑖𝑐𝑙𝑟	  𝑘	  𝑢𝑠𝑒𝑑
0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Formulation: 

Min   Z= B* 𝑽𝒌𝑵𝑽
𝟏   + 𝒍𝒊𝒋𝒌𝑵𝑽

𝒌&𝟏
𝑵𝑵
𝒋&𝟎

𝑵𝑵
𝒊&𝟎 ∗ 𝒕𝒊𝒋  

Subject to:  

𝑙c[U��
U&]

��
c&� = 𝑙[cU��

U&]
��
c&�                  for all j        (4-1) 

𝑙c[U��
U&]

��
c&� = 1                        for all j        (4-2) 

C – {��
[&] 𝑄[ 𝑙c[U��

c&� } ≥ 0                   for all k (4-3) 

𝑙�[U��
[&� ≤ 1                               for all k (4-4) 

𝑙c�U��
c&� ≤ 1                               for all k (4-5) 

𝑙c[U ≤ 𝑀 ∗ 𝑉U��
[&�

��
c&�                       for all k (4-6) 

𝑙�[U��
[&] -Vk = 0                            for all k (4-7) 

𝑙c�U��
c&] -Vk = 0                            for all k (4-8) 

    uik - ujk +C*lijk ≤ C-Qj                  for all i, j ∈ N(k),k (4-9) 

    Qi	  ≤ 𝑢cU ≤C                              for all i, k (4-10) 

  𝐴UV=𝐴UVWX+𝑆[\]+𝑡[\],[                for all j∈ N(k), k (4-11) 

  𝐴UV=Max {𝐸[ , 𝐴UVWX+𝑆[\]+𝑡[\],[}       for all j∈ N(k), k (4-12) 

 	  𝑤UV= Max {0, 𝐸[- 𝐴UVWX-𝑆[\]-𝑡[\],[}      for all j∈ N(k), k (4-13) 

 𝐴UV  ≤ Lj                            for all j∈ N(k), k (4-14) 

 𝐴Ua ≥0                                   for all k (4-15) 

  ∑𝑡[\],[+ 𝑤UV[ + 𝑆UV[ ≤660             for all j∈ N(k), k (4-16) 
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4.4 Multiple Ant Colony System (MACS) 

Numerous exact and heuristic methods have been used to solve VRPTW. Kohl et al. (1997) 

solved an instance with 100 customers with exact algorithm, which is one of the most efficient 

and succeeded in solving this problem. However, for some instances with tight constraints, 

it’s hard to obtain an optimal feasible solution. Accordingly, heuristic algorithms were 

proposed to solve this hard problem. Recently, a number of ant colony optimization (ACO) 

algorithms have been developed to solve combinatorial optimization problems. Particularly, 

when combined with some local search operators, ACO algorithms are quite efficient to solve 

traveling salesman problem instances. (Dorigo and Gambardella, 1997a, 1997b). Gambardella 

et al. (1999) extended ACO to Multiple Ant Colony System (MACS) to solve VRPTW and 

MACS has been shown to generate completive results as compared to best existing methods 

both in terms of solution quality and computation time. Accordingly, this thesis focuses on 

applying MACS to solve CVRPTW and SMFB’s problem. 

 

4.4.1 MACS for Capacitated Vehicle Routing Problem with Time Windows 

In real world, ants deposit pheromone (chemical traces) on their paths when they are searching 

for food. The shorter route will attract more ants by stronger pheromone with time. Similar 

to the real world, a set of artificial ants coordinate to solve complex problems though low-

level communications. In the MACS, we mimic the behavior of real ants. The edge generating 

more good solutions will be given more weight. As many ants build solutions in MACS, it’s 

more efficient than classic Ant Colony algorithms.  
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Figure 4- 1 

Architecture of MACS 

 

 

Two objectives are involved in CVRPTW: minimizing the number of vehicles and total travel 

time. The number of trucks counts more than the total travel time. In MACS, two objectives 

are optimized by two separate ant colonies, ACS-VEI and ACS-TIME. The architecture of 

MACS is described as Figure 4-1. In MACS, the objective of ACS-VEI is finding a solution 

with fewer vehicles while the goal of ACS-TIME is to optimize the total travel time. Two 

independent artificial ant colonies are used to optimize these two objectives separately. Even 

though they are independent, they share the same shortest tour 𝜑gb.  

 

As Figure 4-2 shows, in MACS, 𝜑gb is initially generated by nearest neighbor heuristic. Then, 

𝜑gb is improved by two artificial ant colonies, ACS-VEI and ACS-TIME. When ACS-VEI 

works, artificial ants try to find a solution with one vehicle less than the global shortest tour 

𝜑gb. In this process, colony ACS-VEI maintains an infeasible solution with v-1 vehicles. If a 

solution with no unvisited node is obtained, colony ACS-VEI has succeed in finding a feasible 

solution with v-1 vehicles and the current global solution 𝜑gb is updated to the feasible solution 

with v-1 vehicles. Then ACS-TIME begin to find a solution with less travel time than global 

solution 𝜑gb. Every time an improved feasible solution is found by one of the colonies, 𝜑gb 

will be updated. Two new artificial ant colonies will be generated to work with new 𝜑gb. The 

process is iterated until satisfying the termination conditions. There are three termination 

MACS-VRPTW

ACS-VEI ACS-TIME

Ant  Colony Ant  Colony
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conditions, the process will terminate if one of these three termination conditions is met. 

There are three conditions described as follows: (1) A fixed CPU time has elapsed; (2) A fixed 

number of solutions have been generated; (3) No improvement has been achieved during a 

given number of iteration. Figure 4-3 shows the flowchart of ACS-VEI and ACS-TIME and 

table 4-1 shows the algorithm of MACS. 

  

Table 4- 1 

MACS Algorithm 

Step 0: Initialization. 

 Generate the initial feasible tour 𝜑 gb including v vehicles with nearest 

neighbor heuristics; 

Step 1: Improve 

      Repeat 

    Iterate ACS-VEI with v -1 vehicles: ACS-VEI (v-1); 

      If ACS-VEI(v-1) found a feasible solution with v-1 vehicles 

       Decrease the number of vehicles: v =v-1 

    Iterate ACS-Time with v vehicles: ACS-Time (v); 

      Update the global solution: 𝜑gb 

Until termination criterion is met 
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Figure 4- 2 

Flowchart of MACS 

 
 

4.4.2 ACS-VEI 

In MACS, two objectives are optimized by ACS-VEI and ACS-TIME. The goal of ACS-VEI 

is minimizing the number of trucks used in collection. Assume there are v trucks in the current 

𝜑gb, we start ACS-VEI with v-1 trucks to find a feasible solution. Firstly, nearest neighbor 

Generate the initial feasible solution 
Ψ(gb) including v vehicles with 

nearest neighbor heuristics;

v=v-1;

Stop

    

      If ACS-VEI found a 
feasible solution with   

v-1 vehicles

No

Yes

Iterate ACS-VEI with v-1 vehicles;

Iterate ACS-Time with v vehicles;

Update global solution Ψ(gb)

Terminate 
Condition 

Terminate Condition:

(1) A fixed CPU time has elapsed; 
(2) A fixed number of solutions 
has been generated; 
(3) No improvement has been 
achieved during a given number of 
iteration.

Yes

No
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heuristics is applied to generate an initial tour 𝜑ACS-VEI, which is probably infeasible as there 

are uvACS-VEI supplier nodes are not visited by this tour. Then colony ACS-VEI begins to search 

a better solution, in which fewer nodes are unvisited. If an ant generates a solution 𝜑k with 

less unvisited nodes, the solution 𝜑ACS-VEI is updated to solution 𝜑k. If a solution with no 

unvisited node is obtained, colony ACS-VEI has succeeded in finding a feasible solution 𝜑ACS-

VEI with v-1 vehicles. Then the global solution 𝜑gb is updated to solution 𝜑ACS-VEI and the 

count of vehicles in 𝜑gb is updated to v-1. Then the next iteration will start with v-2, until the 

termination condition is satisfied. The detail algorithm of ACS-VEI is described in Table 4-2. 

Table 4- 2 

The Algorithm of ACS-VEI 

Step 0: Initialization. 

 Apply nearest neighbor heuristics to generate the initial tour 𝜑 ACS-VEI 

including v-1 vehicles and uvgb unvisited nodes; (v is the number of vehicles 

used in current 𝜑gb in MACS-VRPTW); 

Initialize pheromone trail 𝜏ij and data structure; 

Step 1: Search 

 Repeat 

    For each artificial ant k: 

Generate a new solution 𝜑k with v -1 vehicles; 

If uvk (the number of unvisited nodes in solution 𝜑k ) < uvACS-VEI (the 

number of visited customers in solution 𝜑ACS-VEI ), 

Then: 

1.   	  𝜑ACS-VEI=	  𝜑k; 

 If 𝜑ACS-VEI is feasible,  then 𝜑gb =	  𝜑ACS-VEI ; 

2.   Update pheromone trail globally with 𝜏ij=(1-𝜌) ∗ 𝜏ij+ 𝜌/𝐽�
��; 

   Stop until a termination constraint is satisfied. 
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Figure 4- 3 

Flowchart of ACS-VEI and ACS-TIME 

 

4.4.3 ACS-TIME 

Different from ACS-VEI, the goal of ACS-TIME is minimizing the total travel time. In ACS-

TIME, m artificial ants are constructing solutions separately. Each ant builds a solution 𝜑k 

and the solution is improved by local search operators we introduced in chapter 3. Once a 

feasible solution with less total travel time is found, the global optimal will be replaced by this 

Apply nearest neighbor heuristics 
to generate the initial tour Ψ( ACS-

VEI ) including v-1 vehicles; 
Initialize pheromone trail Tij and 

data structure

Construct solution Ψ(k) 
with v-1 vehicles and 

update local Pheromone

 Ψ(ACS-VEI) =Ψ(k)

Update  Global  Pheromone  

K Ants in ACS-VEI 
  for each solution:

Less 
unvisited 

nodes

No

Yes

Ψ(ACS-VEI) 
is feasible

 Ψ(gb)=Ψ(ACS-VEI) 

Next Ant

No

Yes

Initialize pheromone trail Tij and 
data structure

Construct solution 
Ψ(k) with v vehicles 

and update local 
Pheromone

Update Global Pheromone 

K Ants in ACS-TIME    
  for each solution:

NoYes
Ψ(k) is feasible and 
spend less time than 

Ψ(gb) 

 Ψ(gb)=Ψ(ACS-TIME) 

Next Ant

Yes
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update solution 𝜑gb. The detail procedure of ACS-TIME is described as follows: 

Table 4- 3 

The Algorithm of ACS-TIME 

Step 0: Initialization. 

 Initialize pheromone trail 𝜏ij and data structure using v vehicles (same number 

of vehicles as current global solution 𝜑gb. 

Step 1: Improve 

 Repeat 

    For each artificial ant k: 

Generate a new solution 𝜑k; 

If 𝜑k is feasible and total travel time of 𝜑k is less than total travel time 

of 𝜑gb, 

    1. 𝜑gb=	  𝜑k; 

         2. Update pheromone trail globally  with 𝜏ij=(1-𝜌) ∗ 𝜏ij+ 𝜌/𝐽�
�� 

 Until a termination constraint is satisfied. 

 

 

4.4.4 Solution Constructive Procedure 

Both ACS-TIME and ACS-VEI use the same solution constructive procedure to build 

solution for each artificial ant. As Figure 4-4 shows, each ant will start from the depot and 

build a solution by adding nodes iteratively. When selecting the next node to visit, a feasible 

set 𝑁cU is firstly searched for current node i with following constraints: (1) Not being visited; 

(2) Satisfy the time window constraints (3) Satisfy the vehicle capacity. 
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Figure 4- 4 

Flowchart of Solution Constructive Procedure 

 

Within the feasible set 𝑁cU , the attractiveness 𝜂c[ is calculated for each node. Based on the 

attractiveness 𝜂c[ , the next node j is chosen probabilistically by using exploitation and 

exploration, where the component that maximizes the pheromone trail is chosen in 

exploitation and each component will be associated with a probability (pij) of being chosen in 

exploration. Every time ant k moves from one node to another, the current parameters, 

solution 𝜑k and pheromone 𝜏ij are updated to start the next iteration. This iteration continues 

until no feasible nodes are available. At the end of solution constructive phase, as some nodes 

might haven’t been visited, the solution is extended with further insertion, in which all non-

visited nodes are considered by decreasing delivery quantities. In addition, In ACS-TIME, 

local search operators, which include Two-opt, Or-opt and cross exchange, are applied to 

improve the solution. The detailed procedure is described in Table 4-4. 
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Table 4- 4 

Solution Constructive Procedure 

Step 0: Initialization. 

 1. Artificial Ant k start tour from depot 0; 

2. Current time tk=0 and current Load lk=0; 

Step 1: Build turns for artificial ants: 

 Repeat: For each artificial ant k: 

    1. Search the feasible set 𝑁cU for node i, all nodes in feasible set 𝑁cU 

should satisfy the time window constraints and capacity constraints. 

    2. Compute the attractiveness 𝜂c[ for each node in set 𝑁cU : 

      (1) Delivery time for node j: Dj =Max(Current time tk+tij,	  𝐸[)； 

(2) Delta time between i and j: ∆c[=Dj-ti; 

(3) Distance between i and j: Disij= ∆c[*（Lj - ti）; 

(4) Distance between i and j: Disij =Max (1, Disij - inj) 

(5) Attractiveness 𝜂c[   =1/ Disij; 

3. Choose the next node j for node i probabilistically considering both 

exploitation and exploration. 

  In Exploitation, there are probability q0 to choose a node with the 

highest 𝜏ij* cij; 

  In Exploration, there are probability (1-q0) to choose node with 

probability pij; 

4. Update parameters: 

Tour k: 𝜑k =	  𝜑k+node j; 

If j is depot, then Current time tj = 0 and Current load: lk=0; 

Else  Current time tj = Di and Current load k: lk = lk+Qj; 

Update local pheromone 𝜏ij=(1-𝜌) ∗ 𝜏ij+ 𝜌*	  𝜏0; Current Node i=j; 

   Until no feasible nodes are left: 𝑁cU ={ }; 

Step 2: Extend tour 𝜑k by inserting unvisited nodes tentatively 

Step 3: For ACS-TIME, improve the feasible tour with local search operator 
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In solution building process, selecting the next node j is the key procedure. Choosing the next 

node is based on the exploration and exploitation mechanisms. The following part gives the 

detail discussion on exploration and exploitation mechanisms in MACS and its key parameters. 

Exploration and exploitation are two ways to find next node. In exploitation, the component 

that maximizes the pheromone trail is chosen. Meanwhile, in exploration, each component 

will be associated with a probability (pij) of being chosen to construct a solution. MACS adopts 

a pseudorandom proportional mechanism in choosing next node. In the exploitation, there 

are probability q0 to choose a node with highest 𝜏ij* cij. At the same time, in the exploration, 

there is also a probability of (1- q0) to choose a node j with probability of pij of choosing node 

j as the next node to be visited, where q0 is the relative importance of exploitation versus 

exploration. As the parameter q0 closes to zero, more probability to adopt the probability rule 

pij, the search is promoted to exploration of new solutions, whereas larger value narrows the 

search towards the best solution.   

 

4.4.4.1 Exploitation 

In the exploitation, there are probability q0 to choose a node with the highest 𝜏ij* cij. Closeness 

cij and the pheromone trail 𝜏ij are two most important measures in choosing next node. For a 

given problem, the closeness cij, defined as the inverse of distance, is fixed while the 

pheromone trail 𝜏ij is changing with time and used for both exploitation and exploration. 

Accordingly, the pheromone trail 𝜏 ij is the most important component of MACS. In real 

world, ants will follow the pheromone to find the food, the stronger the pheromone is, the 

more chance ants will follow this route. Same as in the real world, pheromone trails 𝜏ij is a 

measure of how desirable it is to choose this arc in a solution. In MACS, pheromone trail 𝜏ij 

is updated through two ways, locally in each solution construction and globally in global 

solution updating. During the tour construction, every time an ant uses an edge, the 
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pheromone trail 𝜏ij of this edge will decrease and it’s less chance to choose this edge next time. 

The following is how the pheromone trail of edge (i, j) 𝜏ij decreased after an ant using the 

edge (i, j). 

𝜏ij=(1-𝜌) ∗ 𝜏ij+ 𝜌*	  𝜏0 for all j       (4-18) 

 

Where: 

𝜏0: The initial pheromone trail value and 𝜏0=1/(NN*𝐽��) 

𝐽�� : The length of initial solution generated by the nearest neighbor heuristic (Flood, 1956) 

NN: The number of nodes 

𝜌: A parameter that between 1 and 0; 

𝜑: The shortest tour generated by ants as so far; 

In addition, at the end of tour construction, the best solution will be used to update the 

pheromone globally. With global updating, the neighborhood that is used to compute the best 

solution will be intensified. In the global updating, only the best solution is applied to modify 

the pheromone trail. As the “best solution” generated in the last iteration will be memorized 

in the pheromone trail matrix, and ants will use this pheromone trail matrix to generate new 

tour in the neighborhood of this ‘best solution’, this updating strategy is more efficiency than 

updating with all solutions. The global updating is described as follows: 

                           𝜏ij=(1-𝜌) ∗ 𝜏ij+ 𝜌/𝐽�
��                     (4-19) 

Where:	   

𝜑gb: The shortest tour generated by ants as so far; 

𝐽�
��: The length of 𝜑; 

 

4.4.4.2 Exploration 

In exploration, the probability pij is calculated based on two values, the pheromone level 𝜏ij 
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which has been discussed in exploitation and a heuristic value ηij that led closer nodes more 

attractive. The probability pij is formulated as follows: 

                                  (4-20) 

where 𝛽 is a parameter that weights the relative importance of the heuristic value ηij versus 

𝜏ij. 𝑁cU is the set of feasible neighbors of node i for route k. As the measure of attractiveness, 

the heuristic value ηij considers distance to customer, urgency to pick up and frequency to be 

selected. It is calculated as follows: 

                  ηij= Max{1,(Max{𝐴c[U , Ej}- Di)(Li-Di)-inj}-1           (4-21) 

where Di is the departure time from i and inj is the number of times that has not been chosen 

as next node. In the equation of ηij, the first factor takes the distance to the customer into 

consideration, the second considers the urgency of pickup and the last one yields nodes that 

are seldom visited more attractive. Then, pheromone trail 𝜏ij is updated with the best solution 

found in the beginning trail. 

 

4.5 Numerical Results  

This section analyzes computational results and efficiency of MACS. MACS has been tested 

on a group of 18 benchmark problems (Solomon, 1987) and been compared with best known 

results. In these 18 problems, it considers the number of customers, percentage of customers 

with time window, tightness of time windows and geographical data. The names of these 

problems have the following meaning: Problem sets R generate nodes with random location, 

problem set C generates clustered nodes whose time windows were generated with a known 

solution. Problem set RC is a combination of clustered customers and random location. In 

each kind of geographical type, we set different number of customers, 25, 50, 100. Table 4-5 
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describes the detail features of benchmark problems we use. The first and the second column 

describe the name and the geographical data of test problem set. The third and the fourth 

column are the percentage of customers with time windows and capacity of vehicles. 

Table 4- 5 

Features of Benchmark Problems 

Problem Geographical data # of customers Vehicle Capacity 

R1 Randomly generated 25,50,100 200 

R2 Randomly generated 25,50,100 200 

C1 Clustered 25,50,100 200 

C2 Clustered 25,50,100 200 

RC1 Mix of Random and clustered 25,50,100 200 

RC2 Mix of Random and clustered 25,50,100 200 

 

We compare performance of MAR-VRPTW with best known result in the number of vehicles 

and total travel distance in Table 4-6. MACS was executed on Intel(R) Core™ i7-4770S 

CPU@3.10GHz. The average computation time is 30 CPU seconds. For most problems, 

MACS algorithm performs very well and quite close to the best known result. Especially for 

R problem sets in which nodes are randomly generated, MACS generates better solutions than 

best known result in the number of vehicles. As most of donation suppliers of SMFB are 

located all over the Phoenix randomly, problem R should be the most similar with real 

problem of SMFB distribution center. Accordingly, the following section will solve this 

sequence problem for SMFB distribution center with MACS algorithm. 
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Table 4- 6 

Results for Benchmark Problems (Solomon, 1987)  

Problem  

Best Known 

(Solomon, 2005) 
MARC-VRPTW 

VEI DIST VEI DIST 

R101-25 8 617.1 8 0.00% 618.33 0.20% 

R101-50 12 1044 11 -8.33% 1100.72 5.43% 

R101-100 20 1637.7 19 -5.00% 1951.97 19.19% 

C101-25 3 191.3 3 0.00% 191.81 0.27% 

C101-50 5 362.4 5 0.00% 363.25 0.23% 

C101-100 10 827.3 10 0.00% 828.94 0.20% 

RC101-25 4 461.1 4 0.00% 462.16 0.23% 

RC101-50 8 944 8 0.00% 946.25 0.24% 

RC101-100 15 1619.8 15 0.00% 1647.57 1.71% 

 

4.6 Case Study-Problem of St. Mary’s Food Bank Distribution Center (With Time Windows) 

In SMFB distribution center, collection activities begin at 5 a.m. and take about 9 to 11 hours 

to finish picking up donated products. Moreover, loading and unloading goods will need 

cooperators from suppliers, some of which can only be available within a specific time period 

(Time Windows). If trucks arrive before the earliest time of time windows, trucks must wait 

until the supplier is available. Otherwise, if trucks arrive at the supplier store after the upper 

bound of time windows, the supplier cannot be served and nothing could be picked up. 

Usually, these time windows are two hours’ time periods between 5 a.m. and 3 p.m. In SMFB, 

half of donors have time windows and are available between 6 a.m. to 8 a.m. and 11 a.m. to 1 

p.m. With above descriptions, this pickup problem can be defined as a Capacitated Vehicle 

Routing Problem with Time Windows (CVRPTW).  
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4.6.1 Data 

Compared with CVRP, time window constraints are added to the problem in CVRPTW. 

Except data of time windows, all data is the same with chapter 3. In SMFB, half the donation 

suppliers have time windows. Most of these time windows are time periods between 6 a.m. to 

8 a.m. and 11 a.m. to 1 p.m.. Otherwise, drivers and trucks are available from 5 a.m. to 4 p.m. 

To normalize the data of time windows, we set 5 a.m. as start time 0 and other time as the 

length of time period between start time and that time in minute unit. For example, 6 a.m. can 

be represented as 60, which is (6-5)*60, and 8 a.m. is represented as 180. 

4.6.2 Results 

MACS are coded in C++ in Linux system to generate routing sequence for SMFB distribution 

center. It was executed on Intel(R) Core™ i7-4770S CPU@3.10GHz. The average 

computation time is 10 CPU seconds for generating a route sequence of each weekday. To 

test the efficiency of our algorithm, we compare our solution with SMFB’s current solution. 

Both the total travel time of our solution and SMFB original solution are calculated through 

Google Map. Currently, SMFB use commercial routing design software to design the route 

sequence for every weekday. Same as Chapter 3, we also use Thursday as an example to show 

our solution, results of other work days are included in appendix. Table 4-7 and Table 4-8 

show the solution of Thursday generated by SMFB and by our algorithm separately. In this 

two table, the first column gives the route number. The second column and the third column 

present total travel time and total weights in each route. The fourth column is the total number 

of donors visited by each route and the final column shows the routing sequence of current 

route. In SMFB’s solution, 4 trucks are applied to visit 54 donors and every truck visits 13 to 

14 donors with picking up average 37,800 b donated products. Compared with SMFB’s 

solution, MACS has reduced 7.17% total travel time. Figure 4-5 separately shows routes that 

are generated by SMFB and by MACS on Google Map.  

In addition, we also compare the total number of vehicles and total travel time for a week in 

Table 4-9. Obviously, MACS generates relatively competitive results: it has decreased average 

10% in number of trucks and 9.87% in total travel time. More importantly, time windows 
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requirements are satisfied with the solution. From this result, it’s clear that MACS is able to 

produce relatively good solutions in a short amount of time.  

 

Table 4- 7 

Routes on Thursday Generated by SMFB 

Route Travel 

time(min) 

Load(lb.) Donors Sequence 

1 153 39200 14 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-0 

2 156 39200 14 0-15-16-17-18-19-20-21-22-23-24-25-26-

27-28-0 

3 157 36400 13 0-29-30-31-32-33-34-35-36-37-38-39-40-

41-0 

4 148 36400 13 0-42-43-44-45-46-47-48-49-50-51-52-53-

54-0 

 

Table 4- 8 

Routes on Thursday Generated by MACS 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 163 39200 14 0 - 24- 23-22-21-25-26-9-3-2-10-13-12-11-

14 -0 

2 165 39200 14 0-32-33-31-34-30-35-37-36-46-48-52-51-

53-0 

3 148 36400 13 0-38-39-40-44-41-45-43-29-1-42-50-49-54-

0 

4 94 36400 13 0-15-16-17-18-19-27-20-6-7-8-4-5-28-0 
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Table 4- 9 

Comparison of SMFB’s Original Solution and MACS's Solution 

 SMFB MACS 

 VEI TIME VEI DIF VEI DIF 

Monday 10 1377 9 10.00% 1237 10.17% 

Tuesday 5 644 4 20.00% 555 13.82% 

Wednesday 8 1000 6 25.00% 931 6.90% 

Thursday 4 614 4 0.00% 570 7.17% 

Friday 10 1399 9 10.00% 1241 11.29% 

Average    10.00%  9.87% 

 

Figure 4- 5 

Routing of SMFB (a) and Routing of MACS (b) 

(a)                                     (b) 
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, we address the capacitated vehicle routing problem and extend it to a capacitated 

vehicle routing problem with time windows. We present a practical vehicle routing problem 

faced by SMFB. The problem is modeled as a capacitated vehicle routing problem to improve 

the distribution efficiency and is extended to capacitated vehicle routing problem with time 

windows to increase customer service quality separately.  As VRP is known to be NP-hard, 

metaheuristics are adopted to solve these problems. Moreover, the travel time matrix 

generated from Google map is used as an input to solve the problem. The corresponding 

solution is highly pragmatic and realistic. 

 

Research on modeling and algorithms of the VRP and its variants are reviewed 

comprehensively in chapter 2. Motivated by the truck routing problem of SMFB distribution 

center, the CVRP is studied in detail in chapter 3. The routing problem of SMFB is modeled 

as CVRP that considers two critical objectives: minimizing the number of trucks and total 

travel time. To solve this problem, Clarke and Wright algorithm is applied to generate the 

initial solution and local search operators are used to improve the results. Using different local 

search operators, we are able to improve the current routes of SMFB distribution center, with 

using average 17% less trucks and 28.52% less travel time. In addition, as SMFB requests, time 

window constraints are added to the problem and we model the problem as CVRPTW. We 

deal with this problem though MACS and generate high quality solutions, in which 10% less 

trucks and 9.87% travel time while satisfying all time windows. These results assume randomly 

generated time windows as actual values were not available for the data provided. Moreover, 

as a key input, travel time matrix is generated from Google Map, which considers most of 

unexpected traffic situations and makes solutions highly realistic and applicable in life. We also 

develop a macro to collect travel time automatically from Google Map. 

 

This thesis addressed truck routing problem based on assumption of known customer 

demands. The stochastic demand situation was not considered. In practice, demands are 
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usually unknown until the trucks arrive customers. Accordingly, future research can consider 

a problem with stochastic pickup demand, a forecasting model can be introduced to forecast 

the pickup demand with historical data. Based on the forecasting data, routes could be 

designed in advance to improve distribution efficiency. To be more convenient for distribution 

center and customers, a real distribution management system can be developed based on our 

algorithms. This system can connect distribution center and donors together, route sequences 

can be optimized based on the dynamic data from donors and be sent to donors through email 

in time.  

.  
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APPENDIX A 

RTR ALGORITHM 
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1. One-Point Move with Record-to-Record Travel 

One-point Move with record-to-record travel 

For each node i in the current solution (I loop) 

 For each edge j in the current solution whose one end is in node i's neighbor 

list (J loop) 

  Calculate the savings of inserting node i between edge j 

If such a move is feasible & If the savings is greater than or equal to 

zero, then make the move and continue with the I loop. 

Store the value of the largest savings so far. 

  

  

  

  

If the tour length − largest savings from the J loop ⩽ Record + Deviation, then 

make the move and continue with the I loop. 

 

 

 End I loop 

End J loop  
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2. Two-opt Move with Record-to-Record Travel 

Two-opt Move with record-to-record travel 

For each edge i in the current solution (I loop) 

 For each node j from the neighbor list of node i (J loop) 

  Calculate the savings of the two-opt move with i and j,  

If the move is feasible, that is, both capacity and distance constraints 

are satisfied & If the savings is greater than or equal to zero 

   Then make the move and go to the I loop. 

   Store the value of the largest savings so far. 

  

  

  

  

  

 If the tour length − largest savings from the J loop ⩽ Record + Deviation, 

 Then make the move and continue with the I loop. 

 

3. Perturb a Feasible Solution 

 

Perturb a feasible solution 

For each node i, define r(i)=d(i)/s(i), where d(i) is the demand of customer i and 

s(i)=dist (prior (i), i) + dist (i, next(i)) − dist (prior (i), next (i)), where dist (i, j) is the 

distance from node i to node j, prior (i) is the node serviced before node i, and next (i) 

is 

the node serviced after node i. 

Sort the r(i) values in ascending order and select the first M nodes where 

M=min(20,n/10), where n is the number of nodes. Try to insert these nodes, one by 

one, into a new location on a tour using least-cost insertion while maintaining 

feasibility. 
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APPENDIX B 

ROUTING SOLUTION 
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1.1 Routes on Monday generated by SMFB 

Rout

e 

Travel 

time(min) 
Load(lb.) 

Donor

s 
Sequence 

1 166 28235 12 0-1-2-3-4-5-6-7-8-9-10-11-12-0 

2 129 30588 13 0-13-14-15-16-17-18-19-20-21-22-23-24-25-0 

3 103 28235 12 0-26-27-28-29-30-31-32-33-34-35-36-37-0 

4 119 23520 10 0-38-39-40-41-42-43-44-45-46-47-0 

5 105 32941 14 
0-48-49-50-51-52-53-54-55-56-57-58-59-60-

61-0 

6 140 28235 12 
0-62-63-64-65-66-67-68-69-70-71-72-73-0 

 

7 174 28235 12 0-74-75-76-77-78-79-80-81-82-83-84-85-0 

8 132 28235 12 0-86-87-88-89-90-91-92-93-94-95-96-97-0 

9 122 28235 12 
0-98-99-100-101-102-103-104-105-106-107-

108-109-0 

10 187 40000 17 
0-110-111-112-113-114-115-116-117-118-

119-120-121-122-123-124-125-126-0 
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1.2 Routes on Monday generated by Local Search 

Rou

te 

Travel 

time(min) 
Load(b) Donors Sequence 

1 103 32928 14 
0-1-48-54-55-56-57-58-59-60-126-8-6-7-122-

103-102-0 

2 140 37632 16 
0-3-116-125-124-119-117-118-5-123-113-114-

115-112-111-4-110-0 

3 131 37632 16 
0-13-86-14-15-21-25-16-17-24-19-20-18-23-2-

22-98-0 

4 131 35280 15 
0-36-37-47-46-45-35-34-44-43-41-42-40-39-38-

82-0 

5 101 35280 15 
0-73-91-92-93-94-95-90-96-76-77-78-97-89-88-

87-0 

6 115 37632 16 
0-84-108-83-26-27-80-81-74-79-75-67-69-70-

107-106-105-0 

7 79 37632 16 
0-85-12-120-121-61-10-53-52-51-9-50-49-11-

101-100-99-0 

8 121 35280 15 
0-28-29-30-31-32-33-62-63-64-65-66-68-71-72-

104-109-0 
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1.3 Routes on Monday Generated by MACS  

Route Travel 

time(min) 

Load(lb.) Donors Sequence 

1 137 32928 14 0-4-9-51-1-48-55-54-6-7-53-52-10-8-126-0 

2 116 32928 14 0-50-49-120-61-110-103-102-100-101-11-121-

122-19-23-0 

3 139 32928 14 0-76-96-90-77-89-88-87-78-91-92-94-93-95-

97-0 

4 157 32928 14 0-108-83-26-27-74-79-107-106-105-82-84-73-

24-25-0 

5 140 32928 14 0-117-124-125-116-3-111-112-113-115-114-

123-5-118-119-0 

6 127 32928 14 0-80-81-63-65-64-62-32-33-31-30-47-46-36-

37-0 

7 145 32928 14 0-109-104-29-28-66-70-75-69-67-68-71-72-34-

44-0 

8 136 32928 14 0-99-38-39-42-41-43-40-56-57-58-59-60-35-

45-0 

9 140 32928 14 0-13-14-15-20-18-2-86-98-85-12-22-16-17-21-

0 

 

 

 

 

 

 

 

 

 



75 

2.1 Routes on Tuesday Generated by SMFB 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 137 30800 11 0-1-2-3-4-5-6-7-8-9-10-11-0 

2 115 22400 8 0-12-13-14-15-16-17-18-19-0 

3 111 30800 11 0-20-21-22-23-24-25-26-27-28-29-0 

4 149 30800 11 0-30-31-32-33-34-35-36-37-38-39-40-0 

5 132 28000 10 0-41-42-43-44-45-46-47-48-49-50-0 

 

2.2 Routes on Tuesday Generated by Local Search 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 142 39200 15 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-0 

2 83 39200 8 0-15-16-17-18-19-20-21-22-23-24-25-26-27-

28-0 

3 145 36400 14 0-29-30-31-32-33-34-35-36-37-38-39-40-41-0 

4 113 36400 13 0-42-43-44-45-46-47-48-49-50-51-52-53-54-0 

 

 

2.3 Routes on Tuesday Generated by MACS 

Route Travel 

time(min) 

Load(b) Donors Sequence 

1 114 28000 10 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-0 

2 115 33600 12 0-15-16-17-18-19-20-21-22-23-24-25-26-27-

28-0 

3 144 39200 14 0-29-30-31-32-33-34-35-36-37-38-39-40-41-0 

4 180 40000 15 0-42-43-44-45-46-47-48-49-50-51-52-53-54-0 
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3.1 Routes on Wednesday Generated by SMFB 

Rou

te 

Travel 

time(min) 

Load(lb.) Donors Sequence 

1 109 20000 8 0-1-2-3-4-5-6-7-8-0 

2 114 22500 9 0-9-10-11-12-13-14-15-16-17-0 

3 106 17500 7 0-18-19-20-21-22-23-24-0 

4 105 27500 11 0-25-26-27-28-29-30-31-32-33-34-35-0 

5 109 30000 12 0-36-37-38-39-40-41-42-43-44-45-46-47-0 

6 167 32500 13 0-48-49-50-51-52-53-54-55-56-57-58-59-60-

0 

7 135 22500 9 0-61-62-63-64-65-66-67-68-69-0 

8 161 27500 11 0-70-71-72-73-74-75-76-77-78-79-80-0 

 

3.2 Routes on Wednesday Generated by Local Search 

Rou

te 

Travel 

time(min) 

Load(b) Donors Sequence 

1 96 40000 16 0-1-2-3-47-4-5-74-46-37-38-45-43-44-36-8-24-0 

2 142 40000 16 0-6-7-75-76-78-71-70-72-73-79-80-77-40-39-42-

41-0 

3 157 40000 16 0-17-13-12-16-11-10-15-14-9-61-62-63-48-58-

69-59-0 

4 154 40000 16 0-18-19-20-28-50-51-49-57-27-21-22-23-31-32-

33-34-0 

5 130 37500 15 0-35-25-30-29-26-52-56-53-68-54-55-66-67-65-

64-60-0 
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4.1 Routes on Friday Generated by SMFB 

Route Travel 

time(min) 

Load(lb.) Donors Sequence 

1 141 27500 11 0-1-2-3-4-5-6-7-8-9-10-11-0 

2 129 32500 13 0-12-13-14-15-16-17-18-19-20-21-22-23-24-

0 

3 122 32500 13 0-25-26-27-28-29-30-31-32-33-34-35-36-37-

0 

4 117 36400 10 0-38-39-40-41-42-43-44-45-46-47-0 

5 105 35000 14 0-48-49-50-51-52-53-54-55-56-57-58-59-60-

61-0 

6 142 32500 13 0-62-63-64-65-66-67-68-69-70-71-72-73-74-

0 

7 178 32500 13 0-75-76-77-78-79-80-81-82-83-84-85-86-87-

0 

8 111 30000 12 0-88-89-90-91-92-93-94-95-96-97-98-99-0 

9 147 27500 11 0-100-101-102-103-104-105-106-107-108-

109-110-0 

10 157 40000 16 0-111-112-113-114-115-116-117-118-119-

120-121-122-123-124-125-126-0 
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4.2 Routes on Friday Generated by Local Search without Time Windows 

Rout

e 

Travel 

time(min) 

Load(lb.) Donors Sequence 

1 98 35000 14 0-12-13-14-21-1-22-17-18-19-20-16-23-15-88-0 

2 139 40000 16 0-24-123-114-116-115-3-113-112-2-124-4-117-

119-118-125-105-0 

3 106 40000 16 0-27-66-67-68-71-62-63-65-64-72-73-29-30-28-

36-38-0 

4 101 40000 16 0-37-74-93-94-95-96-97-92-98-77-78-79-99-91-

90-89-0 

5 140 40000 16 0-39-41-40-42-43-32-31-33-44-45-46-110-47-34-

35-84-0 

6 100 40000 16 0-48-54-55-58-56-57-59-60-126-7-61-121-120-

104-102-101-0 

7 111 40000 16 0-86-109-85-25-26-80-82-83-75-81-76-69-70-

108-107-106-0 

8 85 40000 16 0-87-11-111-122-6-5-9-53-51-52-8-50-49-10-

103-100-0 

 

 

 

 

 

 

 

 

 

 

 



79 

4.3 Routes on Friday Generated by MACS with Time Windows 

Rout

e 

Travel 

time(min) 

Load(lb.) Donors Sequence 

1 142 37500 15 0-83-82-81-75-80-26-25-76-92-98-93-97-79-99-0 

2 151 37500 15 0-20-15-23-16-14-13-88-55-54-44-45-84-35-36-0 

3 132 37500 15 0-46-47-38-101-103-102-111-2-125-7-5-6-61-

105-0 

4 165 37500 15 0-70-66-65-64-63-62-71-68-67-69-32-43-72-73-0 

5 93 37500 15 0-34-10-49-50-52-51-53-9-8-121-120-104-87-11-

0 

6 145 35000 14 0-31-33-42-40-41-39-48-110-56-57-58-59-60-0 

7 148 37500 15 0-30-29-27-28-12-100-21-1-17-18-19-24-74-37-0 

8 130 40000 16 0-22-122-112-113-123-114-116-115-3-4-124-

119-117-118-126-0 

9 135 37500 15 0-95-96-94-77-78-91-90-89-106-107-86-109-108-

85-0 

 

 


