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ABSTRACT 

The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian 

Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman 

to Yemen, the cloud forest is an important center of endemism and provides valuable 

ecosystem services to those living in the region. There have been various claims made 

about the health of the cloud forest and its surrounding region, the most prominent of 

which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation 

health, and 2) human encroachment is causing deforestation and land degradation. This 

dissertation uses three independent studies to test these claims and bring new insight 

about the biodiversity of the cloud forest. 

Evidence is presented that shows that the vegetation dynamics of the cloud forest 

are resilient to most of the variability in the monsoon. Much of the biodiversity in the 

cloud forest is dominated by a few species with high abundance and a moderate number 

of species at low abundance. The characteristic tree species include Anogeissus dhofarica 

and Commiphora spp. These species tend to dominate the forested regions of the study 

area. Grasslands are dominated by species associated with overgrazing (Calotropis 

procera and Solanum incanum). Analysis from a land cover study conducted between 

1988 and 2013 shows that deforestation has occurred to approximately 8% of the study 

area and decreased vegetation fractions are found throughout the region. Areas around 

the city of Salalah, located close to the cloud forest, show widespread degradation in the 

21st century based on an NDVI time series analysis. It is concluded that humans are the 

primary driver of environmental change. Much of this change is tied to national policies 

and development priorities implemented after the Dhofar War in the 1970’s. 
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CHAPTER 1 

DRYLANDS, ENVIRONMENTAL CHANGE, AND LAND CHANGE SCIENCE: 

INTRODUCTION AND BACKGROUND TO THE CASE OF DHOFAR, OMAN 

 

1.1 Introduction 

Sensitive dryland environments comprise 41% of the Earth’s surface and 38% of 

the world's population (Reynolds et al. 2007). Human activity and climate variability are 

fundamental influences in these environments.  Human activity has and is expected to 

amplify land changes in drylands, especially as the global population climbs to almost 10 

billion by 2050 (PRB 2012) and is increasingly situated in urban areas, raising 

expectations in the material standards of living (Seto et al. 2010) and placing more 

demand on hinterlands (Defries and Pandey 2010, Seto et al. 2012). In addition to these 

direct changes on the land, human activity indirectly shapes terrestrial environments 

through its impacts on climate, regional to global in kind (Pielke 2005). These changes 

are and will affect dryland climate variability and the boundary conditions in social-

environmental systems (Zhang et al 2007).  

Climate and land changes are underway in the sensitive drylands of Dhofar, 

Oman. This region has a recent oral history of deforestation and intensified grazing, both 

of which appear to be amplified by the economic development and population growth in 

Salalah. This change takes places in the context of a climate regime dominated by the 

Indian Summer Monsoon (ISM), which provides valuable precipitation and cooling 

winds during the summer months, allowing a diverse ecosystem to thrive that contrasts to 

the drier desert environments that dominate the remainder of Oman.  It is not yet clear 
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how climate warming is affecting this precipitation, but there has been a noted increase to 

temperature in the region (AlSarmi and Washington 2011) and speculation that 

variability in the monsoon is increasing. 

The dual forces of human activity and climate variability are both identified as 

causes of a decline in a highly important ecosystem, the Dhofar cloud forest, which is 

part of a larger South Arabian Cloud Forest that spans Yemen and Oman.  This open 

woodland has witnessed significant changes in land cover and is believed to be 

susceptible to climate changes through the variability of the monsoon. This dissertation 

investigates three aspects of the cloud forest in Oman: 1) its biodiversity and relationship 

to the environment, 2) monsoonal variability and its relationship to cloud forest 

phenology and vegetation dynamics, and 3) the role of human activities in changing land 

cover. 

 

1.2 Research Background to the Problem 

This research topically addresses dryland environmental change, a subset of the 

broader theme of land change science. These themes and approaches are treated in turn in 

the following sections. 

 

1.2.1 Environmental Change in Dryland Environments 

A major concern in climate change is how alteration of dominant climate regimes 

will affect global weather patterns.  For example, the El Nino Southern Oscillation 

(ENSO) and the North Atlantic Oscillation (NAO) have been shown to alter weather 

patterns globally (Hurrel 1995, Cook et al. 1999, Anyamba et al. 2001, Sun et al. 2008), 
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primarily through teleconnections.   The ENSO can affect ecosystems throughout Africa, 

North America, and the Indian Ocean (Cook et al. 1999, Anyamba et al. 2001, Kumar et 

al. 2006).  In the deep past, monsoonal winds, as measured from Arabian Sea cores, have 

been shown to correlate with ice-rafted debris in the North Atlantic, as affected by the 

NAO (Anderson et al. 2002).  In either case, the ENSO and NAO are measured by 

indices, and these indices can be compared to local climate data to predict how climate 

anomalies associated with these regimes will affect temperature and precipitation in local 

regions (e.g. Pozo-Vazquez et al. 2001).  

Aridification or desertification is not only a product of climate oscillations, but of 

inappropriate human use of drylands (Reynolds and Stafford-Smith 2002).  

Understanding their relative roles is often a vexing issue. Several examples, illustrate this 

problem.  The 1930s Dust Bowl in the southern Great Plains of the United States has long 

been identified as climatic drought affecting inadequate farming practices. Recent 

modeling work, however, indicates that such a large magnitude drought in the center of 

the U.S. involved feedbacks between large-scale land clearing and poor farming practices 

(Cook et al 2009). Decades (1960s-80s) of drought in the Sahel of Africa were attributed 

to land degradation from cropping and grazing (Fairhead and Leach 1986, Reynolds and 

Stafford-Smith 2002). Human-induced land degradation was called into question when a 

recovery of the Sahel was instigated by a change in sea surface temperature in the 

Atlantic Ocean during the 1990's (Hulme 2001). Local human-induced environmental 

impacts notwithstanding, the large aridification of the Sahel was largely climatic in origin 

(Nicholson 1993, Nicholson 2009) with localized impacts related to land uses. Finally, 

comparisons of human and environmental responses to drought cycles, stocking, land 
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management decisions, and institutional action in Australia demonstrates how land 

management decisions to continue high stocking rates, despite decreasing biomass, 

amplified land degradation in the outback in the face of drought (Stafford-Smith et al. 

2007).  These examples highlight the critical role of an integrated analysis of the coupled 

human environment system, but it also highlights how human actions and institutional 

policies can be just as formidable for land change as the climate. 

 

1.2.2 Land Change Science 

Land change or land system science (LCS) examines human-environment 

interactions on ecosystem and human wellbeing (Turner, Lambin, and Reenberg 2007).  

It does so through monitoring and observation, coupled human-environment analysis, 

modeling, and synthesis.  Observations and monitoring of the human environment often 

use remote sensing to measure change.  A variety of platforms and technologies have 

enabled multi-decadal monitoring of the Earth system.  In general, there are three scales 

used for Earth observation: high, medium, and low resolution.  High-resolution imagery 

can provide fine scale monitoring, between 1 and 15 m, and is often used for cross-

sectional snapshots of the environment (e.g. Walsh and et al. 2008a,b).  Perhaps the most 

common sensors employed for large-area studies of land change, however, are medium 

resolution imagery, such as Landsat, which has a 30 m resolution (e.g., Gutman et al. 

2004).  MODIS, another important platform, is a low resolution sensor (compared to 

Landsat) capable of capturing Earth observations between 250 m and 1 km in resolution, 

but it has the capability of generating snapshots of vegetation, surface temperature, and 

albedo every eight to sixteen days, making its temporal resolution nearly unmatched by 
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other sensors (Justice et al. 1998).  It is increasingly common to combine data from 

multiple sensors to understand land change.   

Regardless of the sensor, land-use/cover maps can be generated from classified 

images.  Biophysical variables can also be quantified directly, for example: NDVI, 

temperature, albedo, emissivity, and evapotranspiration.  Finally, the form of the land can 

be discerned as well, usually from configuration metrics derived from classified images 

(Turner 1989). Human and environmental subsystems are inherently complex, elevating 

the usefulness of modeling as a tool to combine observations from remote sensing with 

biophysical impacts/feedbacks and land-use change drivers (NRC 2014). Common 

modeling methods in LCS include, among many others, agent based models (ABM) and 

economic models.  ABM’s simulate a process using various software agents to mimic 

real world behavior.  They can incorporate socioeconomic data, environmental data from 

remote sensing, and lab data (Manson and Evans 2007). Economic models of land change 

attempt to capture key characteristics of behavior that lead to certain land change 

outcomes.  Regression models are common (e.g. Southgate et al. 2009) where conceptual 

models of a dependent land change outcome variable are tested for correlation with a 

variety of possible drivers (the independent variables).  No matter the type of model used, 

the process of modeling in LCS is useful for linking the socioeconomic drivers with 

biophysical outcomes and feedbacks. 

An ongoing problem has been to link the land change observed in remote sensing 

with the socioeconomic drivers of change, in part because these drivers are arrayed along 

a proximate to distal axis. The direct or immediate drivers are easy to identify and 

associate quantitatively to land change. Typically the more distal the driver, the more 
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difficult it is to demonstrate such associations.  To this end, synthesis in LCS has focused 

on uncovering the socioeconomic drivers that may be complex and masked from direct 

observation (Lambin et al. 2001; Seto and Reenberg 2014).  In Vietnam, for example, 

reforestation is prevalent despite a large internal demand for wood. In this case, wood is 

imported to serve demand, while regenerating local forests (Meyfroidt and Lambin 

2009).  Whether direct or indirect, globalization is a persistent force affecting land cover 

change around the world (Liu et al. 2013, Meyfroidt and Lambin 2009, Seto and 

Reenberg forthcoming).  Access to markets creates complexity and price vulnerabilities, 

and along with economic fluctuations from globalization causes uncertainty (Defries et 

al. 2010). LCS and global change studies show that environmental change is a complex 

process.  Distal influences can be attributed to changes in population, technology, 

urbanization, institutions, and globalization (Turner and Robbins 2008, Brannstrom and 

Vadjunec 2014, Seto and Reenberg 2014).  These four aspects place pressure on human 

environment systems, which affects ecosystem services through the supply and demand 

of industrial goods and services.  Globalization seems to be the common distal factor at 

the heart of land change (Lambin et al 2001), but population, technology, institutions, and 

urbanization play an important role as conduits for the demand of resources and 

ecosystem services, and seem to be at the heart of wider changes taking place in the 

global environment, including anthropogenic climate change (Liu et al. 2013). 

 

1.2.3 Quantifying Environmental Change 

Two common methods for analysis of remotely sensed images, and the methods 

that are used here, are the subpixel method and time series analysis.  The subpixel 
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approach offers an understanding of how land covers fractionally occupy a pixel. Time 

series analysis is suitable for understanding the role that climate plays on environmental 

features, such as phenology and teleconnections.   

 

1.2.4 Subpixel Approach 

Ground covers that occupy varying proportions of the landscape can be extracted 

from the pixel by assuming that each pixel comprises a combination of all possible 

ground covers in the scene (Settle and Drake 1993).  Generally, the classic approach to 

finding endmember combinations is known as the linear mixture model or as spectral 

mixture analysis (SMA; Settle and Drake 1993). To achieve understanding of what 

ground covers occupy a pixel each pixel is considered to be a linear combination of 

differing endmembers, which is denoted mathematically as, 

𝓍 = ∑ 𝑓𝑖𝑃𝑖𝜆  +  𝜖

𝑛

𝑖=1

                   (1)  

where 𝓍 is the scene pixel, 𝑛 is the number of endmembers, 𝑓𝑖 is the fraction of the pixel 

occupied by that endmember,  𝑃𝑖𝜆 represents the reflectance values of the endmember at 

each band λ, and 𝜖 is an error term.  One constraint is usually imposed on the model, 

∑ 𝑓𝑖  = 1

𝑛

𝑖=1

                                  (2)   

This constraint ensures that no combination of endmembers occupies more than 100% of 

the pixel.  Modeling of the pixels requires training data taken within the image scene or 

some measured reflectance for each endmember 𝑛.  Measured reflectance values can 

come from spectrometer readings or one of many published spectral libraries, and usually 
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are taken without atmospheric conditions or disturbance.  Training data are usually 

preferred because even when an image is converted to reflectance, the atmospherically 

corrected scenes are usually not absolutely correct, which can obscure the results.  

Training data are therefore preferable because the pixel's reflectance values are 

adequately drawn from within the image along with any noise inherent within the image.   

There are some limitations to using SMA.  First, the number of endmembers 

cannot exceed the number of bands plus one (Settle and Drake 1993).  In a Landsat 5 TM 

image with six visible and near infrared bands only seven endmembers can be modeled.  

This restriction of endmembers in the scene may not represent reality, especially for a 

heterogeneous image with a great number of different land covers.  Second, endmembers 

and their training data must be chosen to be as close as possible to the reflectance values 

of the land cover or class being modeled, therefore the selection of training data is critical 

(e.g. Dawelbait and Morari 2012).   

One improvement to the SMA that addresses some of the limitations with the 

classic approach is multiple endmember spectral mixture analysis (MESMA).  MESMA 

was developed as a way to address the limitation in SMA that requires that all 

endmembers of interest be modeled at every pixel (Roberts et al. 1998).  This approach 

allows the number and type of endmembers to vary from one pixel to the next.  

Endmembers can be selected from spectra measured in the field or laboratory, or selected 

from within the image.  Models are selected by using the model with the minimum root 

mean square error (RMSE).  RMSE is defined as, 

𝑅𝑀𝑆𝐸 =  √
∑ (𝜖𝑖)2𝜆

𝑖=1

𝑁
                               (3) 
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N is the number of reference endmembers.  The RMSE measures the residual error of a 

subpixel estimator.  Fractions are also allowed to vary between -0.01 and 1.01.  The 

benefits of using this approach are that endmembers can be modeled as two or more 

endmember models.  For example, MESMA has been used to model vegetation, soil, 

shade, and senesced grass in the Santa Ynez Mountains of California and other 

environments, and has been effective in mapping subpixel fractions (Dennison and 

Roberts 2003). 

 

1.2.5 Time Series Analysis 

Whether using a subpixel approach or a pixel based approach, imagery can be 

coupled with time series analysis to measure environmental change.  Researchers have 

noted that high temporal resolution studies are most likely best for uncovering the effects 

of climate variability and anthropogenic changes.  Lambin and Linderman (2006) point 

out that the most common data for studying land change are generally higher spatial, 

lower temporal resolution satellites.  Land-cover conversions, like deforestation, can be 

ideally studied with these types of data because changes to the tree cover fluctuate less 

than the temporal coverage of the satellite.  However, land-cover alterations, such as 

degradation of pastures on grasslands, might not be as easily detectable because they 

differ from one year to the next, and sometimes within the same year.  Land-cover 

alteration is the absence of a conversion of one land-cover type to another.  Alteration 

through degradation might result in a lower overall net primary production, but the land 

cover will still remain grass.   
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A variety of methods have been used to circumvent the problem in land-cover 

alteration.   One way to measure these alterations (in this case, overgrazing) is to use a 

linear correction of NDVI values over a study period to compensate for rainfall 

variability (Archer 2004).  Another important technique is time series analysis of 

remotely sensed images, particularly for phenology analysis, which is the study of the 

greening period of vegetation. Phenology analysis is associated with a peak in the 

growing season and then the senescence of the vegetation to an annual minimum during a 

yearly cycle (de Beurs and Henebry 2010).  While phenology can be estimated with a 

number of different techniques, satellites can make the task of estimating phenology 

parameters easy by compiling a time series of NDVI rasters, preferably of high temporal 

resolution (such as monthly or every 16 days).  Once a high temporal resolution of NDVI 

images is compiled, a trend can be estimated. Calculating trends can include a linear 

regression of the time series or some non-parametric calculation of the trend line.  Non-

parametric trends are often considered to be advantageous because they are not reliant on 

certain statistical assumptions.  Panday and Ghamire (2012) used a seasonal trend 

analysis to assess NDVI time series over the Hindu-Kush region of the Himalayas 

between 1982 and 2006.  The NDVI data were first processed using a harmonic 

regression, which fits a curve to the data (Eastman et al. 2009).  Once the harmonic 

regression was applied, they analyzed three aspects of the data for trends: Amplitude 0, 

Amplitude 1, and Phase 1 (Eastman et al. 2009; 2013).  Amplitude 0 is the average 

annual NDVI value.  Amplitude 1 is the magnitude of the peak NDVI value over a year 

while considering the minimum as well.  Phase 1 represents the timing of the maximum 

NDVI value at a pixel; an assessment of the Phase 1 signal gives the timing of the 
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greening cycle.  A trend assessment algorithm can then be used to determine the slope of 

a trend and its significance for these three parameters (Eastman et al. 2009; Neeti and 

Eastman 2012).  A common way to derive a trend slope is by using a Theil-Sen median 

slope, which is a non-parametric technique that performs a pair-wise comparison of time 

series observations in the NDVI images (Theil 1950; Sen 1968).  Finally, the significance 

of the Theil-Sen median slope is assessed using a Man Kendall test to detect whether the 

trend is significantly increasing or decreasing monotonically (Mann 1945).   

 

1.3. Research Problems and Questions 

1.3.1 Study Area & Problem Specification 

The study area for this dissertation is the Dhofar portion of the South Arabian 

Cloud Forest, also known as the Dhofar cloud forest (Figure 1.1). The South Arabian 

Cloud Forest is a deciduous, seasonal forest (Hildebrandt 2005) that exists in fragments 

along the southern coast of Oman and Yemen. Two mountains are the primary focus 

throughout this dissertation, Jabal Qara and Jabal Qamar, both of which are in Dhofar, 

Oman, and house the largest potions of the cloud forest. The cloud forest, thought to be 

the native home of frankincense (Boswellia sacra), is comprised mainly of broadleaf tree 

species (Kurschner et al 2004) and grasslands.  The Indian Summer Monsoon (ISM) 

provides the essential precipitation that supports the ecosystem and gives the region its 

unique, oasis-like landscape. 

The start and end of the ISM (known locally in Arabic as khareef) as well as the 

intensity of the winds varies by year (Anderson et al. 2002, Goswami and Mohan 2001, 

Gupta et al. 2003, Kumar et al. 2006, Scholte et al. 2010).  Khareef is generated when a 
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summer upwelling of cold water in the Indian Ocean creates cloud fog that pushes against 

the Dhofar Mountain range for about three months, from approximately the end of June 

to the beginning of September.  Horizontal precipitation from the summer clouds 

provides light drizzle and substantial cloud moisture (Hildebrandt 2005, Hildebrandt and 

Eltahir 2006, Hildebrandt and Eltahir 2007).  Dense vegetation grows in direct contrast to 

the more arid lands located to the north of the cloud forest.  From what is known about 

the timing and intensity of the ISM in other parts of the Indian Ocean, the beginning and 

ending, as well as the intensity of the ISM can vary from one season to the next.  

The cloud forest provides ecosystem services that are essential to local 

livelihoods, including ecotourism, biomass production for rangelands, amongst others 

(e.g. frankincense extraction, wood harvesting, water provisioning).  Numerous factors 

have raised concerns regarding land-use and land-cover change in the forest.  First, camel 

and bovine grazing on the cloud forest's rangelands are thought to have caused 

degradation of the grasslands as well as a reduction in tree density (Hildebrandt and 

Eltahir 2006).  Second, modernization, supported by global demand for Oman's modest 

oil reserves have encouraged infrastructure development, such as roads and buildings for 

new settlements, as well as the growth of Salalah, the nearby city, that may indirectly 

affect the cloud forest.   
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Figure 1.1: Landsat image of the study area in Dhofar, Oman. The cloud forest consists of 

grasslands and forests. Two primary mountains (Jabal Qara and Jabal Qamar), along with 

the coastal region around the city of Salalah are the boundaries of the study area. A 

climate station used in this dissertation is located at the town of Qairoon Hairiti. 

 

1.3.2 Research questions 

The land changes underway in the cloud forest of the Dhofar area remain 

undocumented and lack systematic assessments of their magnitude and cause. Climate 

variability may obscure the attribution of anthropogenic and other sources of land 

change, while inadequate understanding of climate dynamics impedes our understanding 

of the role of temperature and precipitation variability. This dissertation provides a 

systematic assessment of land changes in the Dhofar cloud forest, and synthesis links to 

causes.  In addition, it seeks to demonstrate the role of climatic drivers in this forest, 
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focusing on the delineation of their relative roles and the consequences to phenology.  

These general queries are addressed through a specific set of questions asked about the 

study site.   

1. What is the annual variability in monsoon conditions in the Dhofar cloud forest, 

and how can this variability be quantified using climate and remote sensing data? 

2. How sensitive is the phenology of the Dhofar cloud forest to variability of the 

monsoon and oscillations in climate teleconnections? 

3. What is the distribution of trees and shrubs across the Dhofar cloud forest?   

4. What is the trend in NDVI over the last 13 years?  How does this trend relate to 

deforestation, overgrazing, and the built environment? 

5. What land changes have occurred between 1970 and today?  What are the causes?   

 

1.4 Organization of Dissertation 

This dissertation incorporates three types of analyses organized in three studies 

(research papers) to investigate the relative roles of climate and anthropogenic influences 

in shaping the environment in Dhofar, Oman.  Each paper, the data (see also Table 1.1), 

and analyses are noted below. 
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Table 1.1: Datasets used in this dissertation 
Data Category Data Set Description Time Frame 

Climate Temperature Daily and monthly averages.  Time 

series.  Stations: Qairoon Hairiti  

2001-2013 

(QH) 

Precipitation Daily and monthly averages.  Time 

series.  Stations: Qairoon Hairiti 

2001-2013 

(QH) 

Reanalysis II Forecasted climate variables used to 

understand the timing of the monsoon 

1979-2013 

Environment NDVI 16 day MODIS time series 2001-2013 

Slope Derived from elevation 1999 

Aspect Derived from elevation 1999 

Hydrology Derived from elevation 1999 

Elevation Meters above sea level; from Shuttle 

Radar Topography Mission 

1999 

Tree and shrub survey 

data 

Primary data collected during survey.  

Includes the density, frequency, and 

cover of dominant species 

2013 

Land cover/use Built environment Derived from Landsat 5-8 1988 and 2013 

Forest (trees) Derived from Landsat 5-8 1988 and 2013 

Grassland Derived from Landsat 5-8 1988 and 2013 

Shrubs Derived from Landsat 5-8 1988 and 2013 

Agriculture Derived from Landsat 5-8 1988 and 2013 

Coastal alluvium Derived from Landsat 5-8 1988 and 2013 

Desert gravel plains Derived from Landsat 5-8 1988 and 2013 

Water Derived from Landsat 5-8 1988 and 2013 

Impervious surfaces 

(roads) 

Derived from Landsat 5-8 1988 and 2013 

 

1.4.1 Indian Ocean Monsoon Dynamics in Southern Arabia and Effects on the 

Vegetation Phenology of a Seasonal Cloud Forest 

Chapter 2 identifies correlations between the climate dynamics of the southern 

Arabian Peninsula and the Dhofar cloud forest.  Comparisons are drawn between yearly 

monsoonal precipitation, monsoon timing, and temperature with seasonal parameters of 

cloud forest vegetation.   

Precipitation data were collected at Qairoon Hairiti (in the Dhofar cloud forest, 

see Figure 1.1), while temperature data came from Reanalysis II (NOAA; Kanamitsu et 

al. 2002).  Time series of climate regimes were constructed from data addressing three 
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climate phenomena: the Indian Ocean Dipole (IOD), ENSO, and sea surface temperatures 

(SST).  These three phenomena have been shown to influence weather and climate near 

the Arabian Peninsula. To measure the impact of these three climate phenomena, 

correlations are drawn between their index series and seasonal parameters for the cloud 

forest.  Mean annual NDVI (Amplitude 0), magnitude of the peak NDVI signal 

(Amplitude 1), and timing of peak greenness (Phase 1) were extracted for the Dhofar 

Cloud forest using the Earth Trends Modeler in Idrisi. 

Correlation between time series and the relationship between phenology and 

climate are derived using linear models from the Earth Trends Modeler in Idrisi.  Linear 

models in time series analysis are analogous to those from linear regression.  Common 

metrics for evaluating the model, such as the slope, intercept, coefficients, R2, and 

residuals, are used to assess the correlation between climate indices (SST, IOD and 

ENSO).  The purpose of this analysis is to measure how much influence the various 

climate regimes have on local Dhofar climate and cloud forest phenology, which is 

important for understanding the vulnerability from global climate change and tipping 

elements in the Earth system (Lenton et al. 2008). 

The start and end of the Indian Ocean Monsoon is developed in two models. The 

first model is based on maximum daily temperature data from Reanalysis II (Kanamitsu 

et al. 2002) for the period 1979 to 2013. The second model constructs the start and end of 

the monsoon using cloud cover data from 2001 to 2013 using MODIS daily images.  

Average values of the MODIS band-4 reflectance are used to measure cloud cover over 

the study area.  The timing and length of the monsoon are compared with MODIS NDVI 
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time series and sum NDVI values for October to December (Wessels and colleagues 

2012). 

A Theil-Sen median trend was used to estimate changes in NDVI between 2001 

and 2013 (Theil 1950, Sen 1968).  The identification of trends provides insight into 

conditions for increased or decreased biomass production.  These climate trends are 

compared to cloud forest NDVI trends at 12 random sites.   

 

1.4.2 Drivers of Plant Diversity in the South Arabian Cloud Forest 

The primary goal of Chapter 3 is to understand mechanisms that drive 

biodiversity in the Dhofar cloud forest.  A floral survey is conducted to measure 

biodiversity and to understand the mechanisms of biodiversity patterns. 

Three measurements—density, cover, and frequency (Mitchell 2007)—were 

taken for 102 randomly selected surveyed plots.  The importance value of a species was 

calculated and mapped for all plots, providing a geographic distribution of the principal 

species and to help define the various ecological communities.  

In addition to importance value, biodiversity indices were calculated from the 

vegetation data.  The diversity measurements were used to determine biodiversity 

patterns. 

Finally, assessment of the distribution of species and biodiversity hotspots of the 

tree and shrub species surveyed constitute two distinct sub-analyses: those within the 

cloud forest proper and those within the plateau grasslands.  Chapter 2 tests several 

hypotheses about biodiversity patterns and uses a cluster analysis to define the vegetation 

communities.  The floral analysis includes many environmental variables (e.g., slope, 
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elevation, hydrology, aspect), climate variables (precipitation and temperature), as well as 

anthropogenic variables (e.g., distance to roads, and distance to buildings). 

 

1.4.3 Land Changes and their Drivers in the Dhofar, Oman Cloud Forest and 

Coastal Zone between 1988 and 2013 

Chapter 2 and 3 improve understanding of how the climate has affected the 

overall ecosystem of the cloud forest, biogeography of the cloud forest, and crucial areas 

of biodiversity that are susceptible to human impacts and variable climate. Chapter 4 

quantifies the changes in land covers and uses in Dhofar's cloud forest and the adjacent 

coastal zone and associates these changes to various drivers of change.  

Land change is quantified between 1988 and 2013.  The first year captures the 

beginning of major socioeconomic changes in Oman, registered by the growth of Salalah.  

The land-cover categories addressed are trees, grasses, shrubs, agriculture, coastal 

alluvium, desert gravel plains, water, roads, and built environment.  These categories 

included the major land-covers observed in the cloud forest zone and the lands 

surrounding the forest.  Special attention is given to the identification of overgrazing and 

deforestation (i.e., forest thinning).  Change analysis is conducted with Idrisi Land 

Change Modeler (LCM).  LCM analyzes land-cover images to determine areas of change 

and provide transition areas and prediction of change.  Additionally, a sub-pixel analysis 

measures the shifts in forest fractions (i.e., thinning) between 1988 and 2013.     
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CHAPTER 2 

AN ASSESSMENT OF MONSOON TIMING, CLIMATE REGIMES, AND 

MONSOON VARIABILITY ON VEGETATION DYNAMICS IN SOUTHERN 

ARABIA 

 

2.1 Abstract 

The Indian Summer Monsoon (ISM) is critical for vegetation in southern Arabia, 

particularly for the drought deciduous cloud forest in the Dhofar region of Oman. This 

paper investigates two potential influences of variance or changes in the ISM on the 

vegetation dynamics in the cloud forest. The first involves the relationship between 

monsoon variability and timing, and seasonal vegetation. The second addresses the 

correlation between normalized difference vegetation index (NDVI) time series, acquired 

from MODIS satellite imagery, and climate systems, such as El Niño Southern 

Oscillation (ENSO), Indian Ocean Dipole (IOD), and sea surface temperatures (SST) in 

the Arabian Sea. Additionally, timing of the monsoon was modeled using Reanalysis II 

data and daily satellite images from MODIS. 

The findings reveal that the seasonal vegetation parameters are resistant to 

variability in measureable precipitation, monsoon length, and temperature. The strongest 

correlations were found with June precipitation and temperature, but these were generally 

weak to moderate explanations of the variance. Even broader climate regimes, such as 

ENSO and IOD, show weak to no correlation with NDVI time series. Cloud forest 

phenology shows a stronger correlation to SST in the Arabian Sea, with SST about six to 
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nine months out of phase with NDVI time series (SST leading). The evidence, therefore, 

suggests that the cloud forest is resilient in the face of climate change. 

 

2.2 Introduction 

The Indian Summer Monsoon (ISM; henceforth, monsoon) is foundational for the 

vegetation of the Southern Arabian Peninsula. Known locally as khareef, the monsoon is 

responsible for most of the precipitation in the southern region of Oman, or Dhofar, as 

well as parts of Yemen. Monsoon precipitation supports the ecosystem of the Dhofar 

Mountains, where a drought deciduous cloud forest thrives in those parts of the 

mountains near the coast (Hildebrandt and Eltahir 2006). This cloud forest, part of the 

South Arabian Cloud Forest, is one of the most diverse ecosystems in the peninsula 

(Miller and Morris 1988; Ghazanfar and Fisher 1998).  

The ISM reliably develops over the Arabian Sea in late May and early June of 

each year (Fieux and Stommel 1977; Joseph et al. 1994; Fasullo and Webster 2003; 

Joseph et al. 2006). In general, warmer terrestrial air masses meet cooler ocean air masses 

caused by upwelling off the coast of the Arabian Peninsula. As these two air masses 

meet, clouds form along southern part of the peninsula. The clouds arrive several weeks 

after the ISM winds develop out of the southwest and are responsible for the highest 

period of precipitation. 

Several studies demonstrate that the monsoon delivered more rainfall in past 

pluvial periods over the southern Arabian Peninsula (Fleitmann et al. 2003; Fleitmann et 

al. 2004; Blechschmidt et al. 2009; Cremaschi and Negrino 2005; Fleitmann and Matter 

2009; Fleitmann et al. 2011). These studies link increased rainfall to warming during 
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peak interglacial periods, such as the Early Holocene and the Last Interglacial, and were 

driven by changes in the Intertropical Convergence Zone (ITCZ) and minimal Arctic sea 

ice extent (Overpeck et al. 1996; Fleitmann and Matter 2009). The effects of current 

anthropogenic climate change on monsoon rainfall are largely unknown. There is some 

indication that monsoon rainfall in India changed in the latter part of the 20th century, 

leading to a significant reduction in moderate and heavy rainfall days owing to a 

weakening monsoon circulation pattern (Krishnan et al., 2013). Climate model 

simulations suggest that global warming has the potential to destabilize the monsoon 

even further (Krishnan et al. 2013). Recent warming across the Arabian Peninsula 

(AlSarmi and Washington 2011), perhaps linked to anthropogenic climate change (IPCC 

2014), has sparked interest in the study of the monsoon, with attention to vulnerabilities 

to its stability and impacts on vegetation. Some evidence points to a decreasing trend in 

rainfall, but results are not necessarily significant statistically (Kwarteng et al. 2009; 

AlSarmi and Washington 2011).  At least one study did find significant results indicating 

decreasing July and August precipitation trends over Salalah in Dhofar, Oman (AlSarmi 

and Washington 2011). The consequences of this decrease for the cloud forest vegetation 

are not well understood, mainly because time series analyses of vegetation dynamics and 

climate variability have not been worked out.  

Broader climate factors and their effects on the cloud forest are another area of 

emerging interest. The Indian Ocean Dipole (IOD), an oscillation of sea surface 

temperatures in the eastern and western parts of the Indian Ocean, is one such factor (Saji 

et al. 1999). Positive and negative modes of the IOD have been correlated to droughts 

and floods in Africa, Australia, and Indonesia, and they may affect the ISM (Ashok et al. 
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2001, 2004). The El Niño Southern Oscillation (ENSO) may also affect the ISM, though 

the relationship is thought to be indirect (Charabi 2009). 

This paper provides new evidence and analysis directed to the question of ISM 

variability and vegetation consequences for the Dhofar cloud forest of Oman. It explores 

the timing of the monsoon using satellite imagery and climate data from ground stations 

and Reanalysis 2. In addition, it explores how monsoon variability and other climate 

factors may influence vegetation dynamics in the cloud forest using a time series of 

satellite images. In the process, this study  

 models the timing of the monsoon in southeast Arabia;  

 describes the characteristics of the cloud forest’s phenology; 

 determines the sensitivity of vegetation dynamics to climate variability; and,  

 determines the relationship between broader climate factors and cloud forest 

dynamics. 

 

2.3 Study Area 

The study area includes the southern portions of the Arabian Peninsula and the 

South Arabian Cloud Forest in Dhofar, Oman. Also addressed are the broader climate 

patterns for the monsoon across southeastern Arabia and the Arabian Sea. Vegetation 

patterns and phenology are restricted to the cloud forest in Dhofar, Oman. 

The cloud forest occupies the mountain range in Dhofar (Figure 1.1). Three 

primary mountains comprise the range: Jabal Qara, Jabal Qamar, and Jabal Samhan. The 

cloud forest is primarily situated in Jabal Qara and Jabal Qamar, but a small section runs 

along the cliffs of Jabal Samhan. 
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Figure 2.1: 30 Reanalysis 2 grids were used to study the start and end of the monsoon 

season. The grids were selected for their coverage of southeastern Arabia and adjoining 

portions of the Arabian Sea. Each grid has a spatial resolution of approximately 210 km. 

 

The landscape of the cloud forest is comprised of grasslands, shrublands, and 

forest (Miller and Morris 1988; Pickering and Patzelt 2008; Patzelt 2011). There is also a 

large coastal plain just south of Jabal Qara that benefits from the monsoon. The 

mountains and coastal plain are partitioned by foothills covered with vegetation similar to 
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that found in the cloud forest. Approximately 29% of the cloud forest and coastal plain 

has tree cover, the rest is a mix of grasslands and shrublands. Because this region is one 

of the few areas on the Arabian Peninsula to have dense vegetation, grazing is heavy and 

animal husbandry is widespread. Cattle, camels, and goats are the primary livestock and 

are important sources of subsistence for the people living in the Dhofar Mountains 

(Janzen 1986; 2000).  

The vegetation reaches peak biomass during the monsoon and senesces several 

months after the monsoon fog subsides (Hildebrandt and Eltahir 2006). Forested areas are 

descended from an ancient forest that once stretched from India to Africa during the 

Tertiary period (Kürschner et al. 2004). Current vegetation is associated with the Saharo-

Sindian and Saharo-Arabian phytogeographic zones (Ghazanfar and Fisher 1998; Parker 

and Rose 2008). 

The yearly temperature range for the cloud forest can vary from mean minimum 

temperatures of 19° C in January to mean maximum temperatures around 32.5° C in June 

(Galletti forthcoming). Daily average temperatures are less than 25° C during monsoon 

months. Mean annual precipitation normally measures around 200 mm. Monsoon 

precipitation on average accounts for more than 100 mm a year. The driest months are 

usually November, December, and January, when precipitation is less than 10 mm on 

average.  
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Table 2.1: Variables and parameters used in this study 

Description Name Data Source Time Frame 

Normalized Difference Vegetation 

Index 

NDVI MODIS 16-day  

(250 m) 

2001-2013 

Cloud cover Cloud cover MODIS daily 2001-2013 

Maximum daily temperature at 2 m Tmax_daily Reanalysis II (NOAA) 1979-2013 

Mean yearly NDVI Amplitude 0 MODIS 16-day NDVI 2001-2013 

Difference between peak and 

minimum NDVI 

Amplitude 1 MODIS 16-day NDVI 2001-2013 

Timing of growth season Phase 1 MODIS 16-day NDVI 2001-2013 

Sum of October to December NDVI ΣOND MODIS 16-day NDVI 2001-2013 

Day of year of peak temperature First apex Tmax_daily (Reanalysis 

II) 

1979-2013 

Day of year of second thermal peak Second apex Tmax (Reanalysis II) 1979-2013 

Height of monsoon intensity-day of 

year 

Tmin Tmax (Reanalysis II) 1979-2013 

Area under the curve between first 

apex and second apex 

AUC Tmax (Reanalysis II) 1979-2013 

Total yearly precipitation Total Prc. Climate Station Data  2001-2013 

June precipitation June Climate Station Data  2001-2013 

July precipitation July Climate Station Data  2001-2013 

August precipitation Aug Climate Station Data  2001-2013 

September precipitation Sept Climate Station Data  2001-2013 

Total precipitation for June, July, 

August, September 

JJAS Climate Station Data  2001-2013 

Total precipitation for July and 

August 

JA Climate Station Data  2001-2013 

Length of monsoon based on cloud 

cover 

Length Cloud cover 2001-2013 

Length of monsoon season based on 

Tmax_daily 

Apex to apex Tmax_daily 1979-2013 

Sea surface temps in Arabian Sea SST NOAA (via Clark Labs) 2001-2009 

Intensity of the Indian Ocean dipole 

– Dipole Mode Index 

DMI JAMSTEC 2001-2009 

El Niño Cycle, Niño 3.4 Index Nino34 NOAA 2001-2009 

El Niño Cycle, Southern Oscillation 

Index 

SOI NOAA 2001-2009 
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2.4 Data and Methods 

2.4.1 Climate, Monsoon Timing, and Analysis 

Table 2.1 lists the variables used in this study, a combination of observed and 

modeled data, as well as measures derived from them. Two separate models were 

developed to study the onset and withdrawal of the monsoon. The first model is based on 

temperature data, and the second, on observations of cloud cover. 

The first model of the monsoon was developed using Reanalysis 2 data 

(Kanamitsu et al. 2002) for the period 1979-2013 over 30 grids covering southeast Arabia 

and the Arabian Sea (Figure 2.1). Two meter maximum daily temperature was used to 

define the monsoon season by fitting a curve to the daily temperature observations using 

a polynomial regression (based on a 15th order polynomial). The polynomial curve was 

fitted to each year between 1979 and 2013. Temperature maxima and minima were 

extracted for each year and provide the monsoon seasonal parameters used to estimate the 

timing of the monsoon.  

Moderate Resolution Imaging Spectroradiometer (MODIS; Justice et al. 1998) 

imagery was used to observe daily cloud cover and estimate the temporal dynamics of the 

monsoon. MODIS daily images from 2001 to 2013 were visually analyzed to measure the 

timing of consistent cloud cover over the study area. Three days of continuous cloud 

cover observed in June or July with no breaks in cloud cover for more than two days was 

used to establish the onset of the monsoon as experienced on the ground. The end of the 

monsoon was registered by three consecutive cloud-free days after the end of August. 

In addition to the monsoon models, several climate variables were estimated using 

climate station data from Qairoon Hairiti, located within the cloud forest. Table 1 lists 
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these variables, which are mostly combinations of precipitation accumulation for the 

monsoon months or precipitation for an individual month.  

 

2.4.2 Vegetation Data and Analysis 

MODIS was used to obtain time series data of NDVI for the study area. MODIS 

creates a composite NDVI image every 16-days based on the highest NDVI value 

observed for a pixel at resolution is 250 m (Justice et al. 1998), which results in 23 

composite images per year. MODIS images were collected for the period 2001-2013.  

Analysis of vegetation data includes the creation of bivariate linear models to 

explore relationships between vegetation patterns and broader climate regimes. These 

models use the MODIS NDVI data as a dependent variable; climate indices and SST 

monthly data are used as explanatory variables. Sixteen-day MODIS data were 

transformed to monthly averages (to fit the data measurements of the climate indices). 

The four climate indices were: Niño 3.4 index (an index of the El Niño Southern 

Oscillation [ENSO] based on SST models [Rayner et al. 2003]); the Southern Oscillation 

Index (SOI; another index of ENSO [Trenberth 1984]); the Dipole Mode Index (DMI; an 

index of the IOD based on SST differentials between the east and west Indian Ocean 

[Saji et al. 1999]); and SST in the Arabian Sea. The Niño 3.4 and SOI datasets were 

obtained from NOAA NCDC. The SST data were obtained for the years of 1982 to 2009 

from Clark Labs, which was based on a NOAA AVHRR dataset (Reynolds et al. 2002). 

These bivariate analyses are based on the period 2001-2009 when all climate, SST, and 

NDVI observations are aligned.  
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2.4.3 Seasonal Parameters of Vegetation 

Seasonal vegetation variables were estimated using methods from Eastman and 

associates (2009; 2013). Mean annual NDVI (Amplitude 0), NDVI annual cycle 

(Amplitude 1), timing of the peak annual NDVI cycle (Phase 1), and sum of the NDVI 

for October to December (ΣOND) were derived from MODIS 16-day NDVI composite 

images. Amplitude 1 is calculated by taking the difference between the maximum and 

minimum values of a modeled NDVI curve (Eastman et al. 2013). Amplitude 0 is the 

mean annual NDVI. Phase 1 is the timing of the peak of the annual cycle. ΣOND is 

derived by summing all 16-day composite images for October to December of each year. 

ΣOND is a useful parameter because it measures the sum NDVI of the study area right 

before senescence and during months that have very low cloud cover. Phase 1, Amplitude 

0, and Amplitude 1 are derived from curves that are fitted to the yearly NDVI 

observations using a harmonic regression model (Eastman 2009).  

A trend analysis of the seasonal parameters measures systematic changes in 

phenology between 2001 and 2013 (Eastman et al. 2009; 2013). A Theil-Sen median 

slope is used to estimate the trend slope, reliably estimating the trend despite noise and 

outliers (Theil 1950, Sen 1968). Z-values are used to determine statistical significance. 

Additionally, a trend analysis was also conducted on the monsoon seasonal parameters 

modeled by the Reanalysis II data, as well as SST over the Arabian Sea. 

Twelve random sites were selected to estimate the relationship between Phase 1, 

Amplitude 0, Amplitude 1, ΣOND, and climate variables. Of these 12 sites, three are 

dominated by shrub cover, three by grass covers, and five by forest covers. A linear 

model is used to measure the strength of the relationship between precipitation variables 
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(total yearly precipitation, June/July/August/September precipitation, JJAS precipitation, 

and JA precipitation), the monsoon season (AUC and Apex to Apex), and the length of 

the monsoon period as estimated from cloud cover. The fitted curves also provide 

estimates of green-up and green-down for 2001 and 2013. For each of the 12 sites, the 

green-up and green-down was measured to estimate the timing of the growing season. 

The green-up period is the approximate day of year (DOY) when seasonal growth has 

reached 40% of the maximum. The green-down period is the approximate DOY when 

senescence is estimated to begin, which is indicated by 40% of the maximum but on the 

declining side of the curve rather than the inclining side. 

 

2.5 Results 

2.5.1 Monsoon Timing 

Figure 2.2 shows the maximum daily temperature progression for 2013 along with 

a fitted curved derived from a 15th order polynomial regression. Two apices and a local 

minimum distinctly occur during the late spring, summer, and fall season (Figure 2.2). 

These three model parameters are part of a U-shaped curve that defines the progression of 

the monsoon season. These model parameters are labeled: first apex (season start or 

onset), Tmin (peak intensity or the bottom of the U-shaped curve), and second apex 

(season end or withdrawal).  
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Figure 2.2: Daily maximum temperatures from Reanalysis 2 data for 2013. The monsoon 

season starts around the first apex and ends around the second apex. The height of the 

monsoon season occurs around Tmin. The area under the curve (AUC) helps measure the 

thermal intensity of the monsoon season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Table 2.2: The start (onset) and end (withdrawal) of the monsoon estimated from 

Reanalysis II temperature data, and daily MODIS images of cloud cover. Values indicate 

day of year (DOY), or number of days for ‘Length’ 
 Reanalysis II Temperature Model MODIS Cloud Cover Observations 

Year Onset Height Withdrawal Length Onset Withdrawal Length 

1979 153 230 328 175    

1980 141 234 303 163    

1981 146 227 298 152    

1982 155 232 296 142    

1983 150 249 294 143    

1984 147 257 327 180    

1985 141 229 341 200    

1986 143 228 324 181    

1987 150 230 316 166    

1988 145 238 327 182    

1989 145 221 304 159    

1990 141 237 298 157    

1991 145 241 303 159    

1992 156 240 303 147    

1993 155 248 302 147    

1994 145 253 300 155    

1995 152 247 337 185    

1996 154 242 356 202    

1997 154 233 338 184    

1998 149 250 320 171    

1999 136 238 324 189    

2000 143 241 301 158    

2001 146 227 316 170 176 252 76 

2002 140 236 332 192 179 259 80 

2003 152 239 304 152 167 256 89 

2004 141 239 313 171 186 256 70 

2005 154 243 307 153 174 269 95 

2006 150 237 311 161 182 256 74 

2007 154 243 298 144 168 256 88 

2008 150 236 290 140 182 247 65 

2009 149 251 332 183 171 252 81 

2010 141 237 331 190 169 258 89 

2011 149 259 312 163 186 255 69 

2012 149 249 326 177 164 248 84 

2013 144 221 317 172 174 247 73 

Mean 148 239 315 167.56 175 255 79.46 

S.D. 5.18 9.35 15.73 16.98 7.04 5.7 8.82 

 

 

Based on Reanalysis data from 1979 to 2013, maximum air temperatures reach 

the first apex on average around the 144th day of the year over the Arabian Sea (standard 

deviation = 6.1 days; Table 2.2), and on average around the 155th day of the year (DOY) 
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over land (S.D. = 7.7 days). After temperatures reach their peak, a steady decline follows 

until they reach a minimum (Tmin), on average around the 240th DOY over the Arabian 

Sea (S.D. = 13.2 days) and around the 233rd DOY over land (S.D. = 15.3 days). Once the 

minimum is obtained, temperatures steadily incline until they reach a second maximum 

temperature apex, which occurs on average around the 317th DOY over the Arabian Sea 

(S.D. = 24.1 days) and around the 307th DOY over land (S.D. = 36.5 days). These three 

temperature parameters and the U-shaped curve were also present in climate station data 

from both Salalah and Qairoon Hairiti. 

In Dhofar, the monsoon is generally defined by the presence of clouds and light 

drizzle, not the temperature apices or Tmin as defined above. Estimates for the start and 

end of the monsoon, as defined by cloud cover, were reconstructed for the period 

between 2001 and 2013 using MODIS daily images of cloud cover over the Dhofar 

Mountains (Table 2). According to these data, the mean start of the monsoon is the 175th 

DOY (S.D. 7.04), which is about 20 days after the first temperature apex. The mean end 

of the monsoon is approximately the 255th DOY (S.D. 5.7), or approximately 52 days 

before the second apex. The mean length of the monsoon is about 80 days (S.D. 8.82 

days). 

The trend analysis of the timing of the monsoon season shows few significant 

trends for each of the 30 grids where the Reanalysis II data were collected (Figure 2). The 

parameter with the most significant trends was the second apex. Six of thirty grids 

showed a significant increase in the DOY of the second apex. On average the second 

apex increased by about 16.7 seven days between 1979 and 2013 for these six grids. 

Other parameters had three or fewer grids with a significant trend. 
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Figure 2.3: The green-up and green-down periods for 12 sites across the study area based 

on MODIS NDVI data for 2001 and 2013.  

 

2.5.2 Cloud Forest Phenology 

A comparison of green-up and green-down based on MODIS NDVI images at 12 

sites (chosen because they are representative of various areas of the cloud forest) showed 

that growing seasons are fairly consistent between the two years examined, 2001 and 

2013 (Figure 2.3). For 2001, the mean DOY the cloud forest reached 40% green-up is 

about the 205th DOY (S.D. 29.18 days), while green-down occurred around 336th DOY 

(S.D. = 24.43 days). For 2013, the results were similar with 40% green-up occurring on 

average around the 214th DOY (S.D. 18.01 days), and the 40% green-down occurring 

around the 333rd DOY (S.D. = 23.23 days). The mean length of the prime growing season 
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was about 130 days (S.D. = 9.71 days) in 2001, and 118 days (S.D. = 9.98 days) in 2013. 

With regards to land cover, grass covers generally began their prime growing season 

earlier than tree covers (mean = 199th DOY, S.D. 18.66 days) and ended earlier (mean = 

323rd DOY, S.D. 17.88 days) than tree covers (green-up: mean = 217th DOY, S.D. 24.04 

days; mean green-down = 344th DOY, S.D. 21.42 days). For shrub covers, the start and 

end of prime growing was between the grass and forest covers (mean green-up = 206th 

DOY, S.D. 26.25 days; the mean green-down = 327th DOY, S.D. 26.08 days). 

The results of the seasonal trend analyses are shown in Figures 2.4, 2.5, 2.6, and 

2.7. Amplitude 0 and Amplitude 1 trends (Figures 2.5 and 2.6) are negative mainly 

around the city of Salalah (see details in Galletti et al. forthcoming). The ΣOND (Figure 

2.7) trends also show significant negative trends along the coast near the city of Salalah, 

which may indicate declining vegetation due to human activity near the city. The timing 

of the peak growing season (Phase 1; Figure 2.4) appears to be significant at only two 

primary clusters: one around the western edge of the cloud forest, and another on the 

eastern edge. Both of these clusters show significant negative trends, indicating that the 

growing season starts earlier (approximately 3-4 days earlier in the west and 2-14 days 

earlier in the east). The rest of the image, with the exception of small pockets here and 

there, shows mainly no significant Phase 1 trends. 

Correlations between the key seasonal parameters (Amplitude 0, Amplitude 1, 

Phase 1, and ΣOND) and climate variables showed mainly weak to moderate correlation 

and no systematic correlation across the 12 sites (Tables 2.3, 2.4, 2.5, and 2.6). Phase 1 

revealed weak to moderate correlation with June precipitation, but there were 

inconsistencies between negative and positive correlations. Amplitude 0 showed weak to 
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moderate positive correlation to AUC, while Amplitude 1 showed weak to moderate 

negative correlation with June and July precipitation across several sites. ΣOND showed 

mainly weak correlation to all climate variables. 

 

 
Figure 2.4: Trend analysis of Phase 1 (timing of the peak of the cycle). Top map shows 

the slope of the trend (change in NDVI/year). Bottom map shows z-values, which are 

used to measure significance. 
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Figure 2.5: Trend analysis of Amplitude 0 (mean yearly NDVI). Top map shows the 

slope of the trend. Bottom map shows z-values, which are used to measure significance. 
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Figure 2.6: Trend analysis of Amplitude 1 (difference between peak and minimum 

NDVI). Top map shows the slope of the trend. Bottom map shows z-values, which are 

used to measure significance. 
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Figure 2.7: Trend analysis of ΣOND (Sum of NDVI for October, November, and 

December). Top map shows the slope of the trend. Bottom map shows z-values, which 

are used to measure significance. 
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Table 2.3: R2 values for the relationship between yearly Phase 1 values (2001-2013) and 

10 monsoon parameters at 12 cloud forest sites. Values in bold are R2 > 0.1. (+) = 

positive correlation, (-) is negative. * = p < 0.05 
Site AUC Total 

Prc. 

June July Aug Sept JJAS JA Length Apex 

to 
Apex 

P1 

Mean 

P1 Std. 

1 0.035 0.060 0.086 0.002 0.002 0.004 0.000 0.000 0.091 0.064 132.5 13.0 

2 0.007 0.069 0.392 

(+)* 

0.001 0.009 0.008 0.018 0.003 0.171 

(+) 

0.007 173.3 14.0 

3 0.090 0.038 0.388 

(-)* 

0.001 0.091 0.003 0.043 0.021 0.088 0.026 140.6 15.4 

4 0.179 

(+) 

0.017 0.006 0.007 0.000 0.016 0.001 0.003 0.016 0.001 178.7 41.0 

5 0.021 0.069 0.327 

(-)* 

0.001 0.084 0.057 0.047 0.020 0.046 0.055 139.6 19.0 

6 0.019 0.039 0.210 

(+) 

0.012 0.006 0.044 0.002 0.001 0.101 

(+) 

0.002 174.9 14.5 

7 0.014 0.031 0.189 

(+) 

0.012 0.002 0.041 0.001 0.002 0.046 0.004 174.9 28.9 

8 0.138 

(+) 

0.093 0.160 

(+) 

0.002 0.007 0.013 0.013 0.004 0.007 0.000 194.9 27.1 

9 0.071 0.125 

(+) 

0.194 

(+) 

0.006 0.040 0.145 

(+) 

0.044 0.017 0.064 0.011 172.3 23.6 

10 0.144 

(+) 

0.061 0.072 0.003 0.005 0.030 0.012 0.004 0.008 0.001 193.2 36.5 

11 0.033 0.148 

(+) 

0.123 

(-) 

0.011 0.053 0.030 0.041 0.026 0.058 0.093 149.7 13.1 

12 0.417 

(+)* 

0.098 0.072 0.134 

(-) 

0.375 

(-)* 

0.181 

(-) 

0.260 

(-) 

0.231 

(-) 

0.004 0.171 

(+) 

142.3 15.6 

 

 

Table 2.4: R2 values for the relationship between yearly Amplitude 0 values (2001-2013) 

and 10 monsoon parameters at 12 cloud forest sites. Values in bold are R2 > 0.1. (+) = 

positive correlation, (-) is negative. * = p < 0.05 
Site AUC Total 

Prc 

June July Aug Sept JJAS JA Length Apex to 

Apex 

A0 

Mean 

A0 

Std. 

1 0.190 

(+) 

0.127 

(-) 0.012 
0.404 

(+)* 

0.369 

(-)* 

0.164 

(-) 

0.375 

(-)* 

0.416 

(-)* 

0.105 

(+) 0.050 4284.1 275.8 

2 

0.044 0.007 
0.238 

(+) 0.005 0.021 0.081 0.005 0.011 0.052 0.020 2708.6 170.6 

3 

0.021 0.059 0.077 
0.194 

(-) 

0.138 

(-) 0.098 
0.149 

(-)  

0.182 

(-) 0.056 0.000 3806.2 305.8 

4 
0.017 0.002 0.084 0.038 0.001 0.014 0.009 0.017 0.000 0.031 2409.4 252.0 

5 

0.000 0.069 0.062 
0.179 

(-) 

0.115 

(-) 0.082 
0.133 

(-) 

0.162 

(-) 0.035 0.027 3601.4 211.9 

6 0.116 

(+) 0.093 0.077 0.009 0.013 0.026 0.021 0.011 0.067 0.015 2776.4 147.2 

7 0.157 

(+) 0.020 0.097 0.028 0.017 0.000 0.011 0.025 0.019 0.000 3992.3 342.5 

8 0.203 

(+) 0.020 0.083 0.005 0.003 0.009 0.002 0.005 0.004 0.000 2804.5 261.4 

9 0.161 

(+) 0.026 0.016 0.010 0.004 0.020 0.002 0.008 0.005 0.020 4336.1 266.1 

10 0.333 

(+)* 0.006 0.005 0.004 0.033 0.019 0.012 0.013 0.002 0.009 2810.3 301.2 

11 

0.000 0.026 0.066 0.016 0.078 
0.207 

(-) 0.038 0.038 0.055 0.028 2568.4 132.0 

12 0.215 

(+) 0.033 0.014 
0.173 

(-) 

0.189 

(-) 

0.130 

(-) 

0.176 

(-) 

0.191 

(-) 0.025 0.031 2849.1 226.4 
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Table 2.5: R2 values for the relationship between yearly Amplitude 1 values (2001-2013) 

and 10 monsoon parameters at 12 cloud forest sites. Values in bold are R2 > 0.1. (+) = 

positive correlation, (-) is negative. * = p < 0.05 
Site AUC Total 

Prc. 

June July Aug Sept JJAS JA Length Apex to 

Apex 

A1 Mean A1 Std. 

1 0.122 

(-) 

0.017 0.240 

(-) 

0.066 0.028 0.020 0.027 0.052 0.017 0.000 2022.2 417.4 

2 0.014 0.070 0.041 0.255 

(-) 

0.124 

(+) 

0.048 0.211 

(+) 

0.210 

(+) 

0.086 0.000 1026.3 182.5 

3 0.031 0.014 0.140 

(-) 

0.061 0.001 0.006 0.009 0.027 0.002 0.003 1685.2 519.9 

4 0.021 0.011 0.004 0.004 0.000 0.014 0.001 0.002 0.031 0.076 470.3 257.0 

5 0.155 

(-) 

0.042 0.128 

(-) 

0.047 0.002 0.005 0.008 0.024 0.004 0.002 1525.8 544.4 

6 0.001 0.104 0.000 0.232 

(-) 

0.211 

(+) 

0.158 

(+) 

0.232 

(+) 

0.239 

(+) 

0.099 0.116 

(+) 

1005.2 225.7 

7 0.095 0.000 0.110 

(-) 

0.130 

(-) 

0.074 0.008 0.075 0.113 

(+) 

0.029 0.000 1580.1 493.7 

8 0.057 0.001 0.002 0.011 0.003 0.020 0.005 0.008 0.000 0.021 916.5 325.9 

9 0.093 0.005 0.038 0.065 0.020 0.016 0.025 0.047 0.005 0.000 1670.9 496.3 

10 0.110 

(+) 

0.025 0.026 0.003 0.029 0.066 0.020 0.011 0.011 0.031 850.1 349.9 

11 0.000 0.007 0.064 0.136 

(-) 

0.024 0.000 0.054 0.085 0.000 0.000 1085.0 204.1 

12 0.002 0.023 0.006 0.191 

(-) 

0.039 0.000 0.094 0.123 

(+) 

0.033 0.024 924.6 272.4 

 

 

Table 2.6: R2 values for the relationship between yearly ΣOND values (2001-2013) and 

10 monsoon parameters at 12 cloud forest sites. Values in bold are R2 > 0.1. (+) = 

positive correlation, (-) is negative. * = p < 0.05 
Site AUC Total 

Prc. 
June July Aug Sept JJAS JA Length Apex 

to 

Apex 

ΣOND 
Mean 

ΣOND 
Std. 

1 0.085 0.010 0.035 0.002 0.000 0.000 0.000 0.001 0.000 0.019 37469.6 1881.6 

2 0.002 0.000 0.029 0.000 0.001 0.019 0.000 0.000 0.020 0.057 17913.2 1203.4 

3 0.000 0.002 0.205 

(+) 

0.002 0.001 0.027 0.005 0.002 0.284 

(+) 

0.000 32345.9 2762.3 

4 0.024 0.027 0.217 

(+) 

0.011 0.010 0.025 0.017 0.011 0.001 0.252 

(-) 

14876.2 1569.9 

5 0.079 0.009 0.091 0.000 0.003 0.001 0.002 0.000 0.142 

(+) 

0.040 30286.7 1889.9 

6 0.071 0.005 0.015 0.011 0.013 0.011 0.010 0.013 0.023 0.076 18067.0 899.3 

7 0.034 0.017 0.045 0.001 0.024 0.153 

(-) 

0.019 0.006 0.012 0.011 30001.3 3192.9 

8 0.001 0.023 0.017 0.007 0.013 0.088 0.019 0.010 0.013 0.009 17033.3 1565.1 

9 0.014 0.059 0.031 0.021 0.094 0.366 

(-)* 

0.079 0.047 0.008 0.007 32573.8 3461.2 

10 0.018 0.038 0.072 0.011 0.051 0.189 

(-) 

0.048 0.025 0.067 0.000 17167.1 1773.8 

11 0.021 0.095 0.154 

(+) 

0.040 0.046 0.000 0.056 0.045 0.003 0.096 19710.1 2265.4 

12 0.016 0.054 0.376 

(+)* 

0.011 0.022 0.001 0.032 0.015 0.233 

(+) 

0.001 20552.8 1552.2 
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2.5.3 Climate Regimes and Vegetation Dynamics 

In the analysis of the relationship between monthly NDVI and broader climate 

factors, two indices showed moderate correlation to monthly NDVI time series: DMI and 

SST (Figures 2.8 and 2.9). Generally, only weak correlations (R2 < 0.1) were found 

between monthly NDVI and SOI/Nino34 indices for the time period of 2001 to 2009. 

The relationship between monthly NDVI values and the Indian Ocean Dipole is 

strongest when the two times series are concurrent (Figure 2.8B) and when the DMI is 

shifted one month earlier (Figure 2.8C). This relationship, though, is not widespread 

throughout the cloud forest. The highest correlations are concentrated in the northern and 

eastern portions of Jabal Qara and some parts of Jabal Qamar.  

 
Figure 2.8: R2 of the linear relationship between monthly NDVI and DMI for 2001 to 

2009. The individual maps show the relationship at different monthly lags: A) lag 1, B) 

lag 0, C) lag -1, D) lag -2. Positive lags shift the index to a later time period, negative 

lags shift the DMI to an earlier time (e.g. lag of -2 shifts the DMI to two months earlier 

than the corresponding NDVI monthly value). 
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Figure 2.9: R2 of the linear relationship between monthly NDVI and SST in Arabian Sea 

for 2001 to 2009. The individual maps show the relationship when SST are shifted to 

earlier time lags: A) lag -6, B) lag -7, C) lag -8, D) lag -9. (e.g. -6 shifts the SST to 6 

months earlier than the corresponding NDVI values). 

 

 
Figure 2.10: Trend analysis of the mean yearly sea surface temperatures in the Arabian 

Sea. The left image shows the slope of the trend (in degrees C) per year between 1982 

and 2009. The right image shows the z-values for each grid. 
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It should come as no surprise that the strongest relationship is between monthly 

NDVI and SST in the Arabian Sea. The strongest correlation occurs when SST is shifted 

six to nine months earlier (Figure 2.9), suggesting that the processes that affect biomass 

growth and senescence are out of phase by about six to nine months with the 

development of SST in the Arabian Sea. Further analysis reveals that the average yearly 

surface temperature is significantly increasing in a large part of the Arabian Sea, but not 

significantly increasing along the coast of Oman (Figure 2.10). A trend analysis of 

average SST during the months of June, July, August, and September show no significant 

trends except in one or two pixels. 

 

2.6 Discussion 

2.6.1 Monsoon Timing 

The monsoon season was defined using two different datasets: maximum daily 

temperatures from Reanalysis 2 data, and cloud cover data from MODIS daily imagery. 

These datasets gave two different pictures of the timing of the monsoon. 

The seasonal parameters as described by the Reanalysis 2 temperature data 

(Tmax_daily) show that the onset of the monsoon season typically begins right after 

temperatures reach a peak (the first apex). After these temperatures reach their peak, a 

gradual decline begins until a local minimum (Tmin) is reached. Tmin is characterized by 

a significant drop in air temperature compared to the first apex, and most likely signals 

the height of the monsoon season (Figure 2.2). The monsoon begins to dissipate after 

Tmin is reached and daily temperatures start to incline until they reach the second apex. 



44 
 

Once temperatures have reached this second apex, it is likely that the influence of 

monsoon winds and colder SSTs off the coast of Arabia has completely subsided.  

The onset and withdrawal of the monsoon is difficult to time precisely.  Previous 

studies have attempted to reconstruct the onset over the Indian Subcontinent (e.g. Fieux 

and Stommel 1977; Joseph et al. 1994; Fasullo and Webster 2003; Joseph et al. 2006). 

These studies have used a wide variety of indices to recreate the onset of the monsoon, 

ranging from historical ship records (Fieux and Stommel 1977), to rain gauge data 

(Joseph et al. 1994), to hydrological indices (Fasullo and Webster 2003). The biggest 

discrepancy is that that neither of the two models developed in this study perfectly aligns 

with the timing of the monsoon in these other studies. The mean onset of the monsoon 

season, as modeled by the first apex in this paper, is very close to the dates of monsoon 

onset reported in the other studies (e.g. Fieux and Stommel 1977; Joseph et al. 1994; 

Fasullo and Webster 2003; Joseph et al. 2006).  

Only one other study known to this author attempts to date the withdrawal of the 

monsoon (Fasullo and Webster 2003), Based on the Hydrologic Onset and Withdrawal 

index (HOWI) between 1948 and 2000, it concludes that the monsoon consistently ends 

in August or September, and 48 of the 53 years reported in their study show the 

withdrawal date between August 20th and September 27th.  The model of monsoon timing 

based on Reanalysis 2 results reported here indicates an end to the monsoon season 

occurring much later in the year, but the model using the cloud cover data indicate 

monsoon withdrawal around the same time as reported by Fasullo and Webster (2003), 

between September 4th and September 26th for the period 2001 to 2013. The much later 

dates reported by the second apex are likely a temperature progression influenced by 
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post-monsoon conditions. After the monsoon season, winds become weaker and shift to 

an eastward source over the equator accompanied by warmer ocean water displacing 

upwelling (Schott and McCreary 2001). 

Addressing the monsoon season by temperature data from Reanalysis 2 provides a 

set of conditions that are easily modeled using curve fitting; measuring the timing of the 

monsoon becomes a simple task of extracting maxima, minima, and, if a general 

measurement of intensity is desired, calculating the AUC for the season. For this reason, 

it is a useful tool for understanding monsoon progression. But the model developed from 

cloud cover data is more appropriate to measuring the actual onset and withdrawal of the 

monsoon as it is experienced in southern Arabia (Hildebrandt and Eltahir 2007). This 

model is assumed to be more accurate because it captures the conditions most associated 

with the monsoon in southern Arabia: cloud fog driving an increase in ground moisture 

(Hildebrandt 2005; Hildebrandt et al. 2006; Abdul-Wahab et al. 2007; Hildebrandt and 

Eltahir 2007; Scholte and De Geest 2010). Indeed, most people living in Dhofar would 

describe the start of the monsoon by consistent cloud cover and fog moisture, as well as a 

general decrease in temperatures.  

The limitation to using cloud cover data from sources like MODIS is that the 

imagery can only capture a single snapshot at one point in time (during the morning). 

While persistence of cloud cover is a defining characteristic of the monsoon in Dhofar, 

there is a possibility that a morning snapshot could miss the formation of monsoon 

clouds; during the visual analysis it was noted that some breaks in cloud cover, where 

several images showed no cloud cover over the study area, occurred well into the 

monsoon season. Another limitation is that cloud cover data alone does not predict 
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precipitation. The amount of fog moisture is critical for tree growth (Hildebrandt et al. 

2007a,b). MODIS provides a two-dimensional snapshot of the Earth’s surface, but not 

vertical measurements of cloud height or moisture content. Despite these limitations, 

satellite imagery remains one of the best ways for determining the onset and withdrawal 

of the monsoon season in southern Arabia. 

The trend analyses show little evidence for widespread changes to the monsoon 

timing. The model developed with Reanalysis 2 data had the longest time series and was 

the primary focus for this analysis. The second apex showed some indication that it was 

occurring later in the year, but only in a handful of the 30 grids. The trend of the timing 

of the first apex and Tmin also gave little indication of significant change. 

 

2.6.2 Phenology  

The mean 40% green-up (start of the peak growing season) for 2001 and 2013 

occurred about 30 to 40 days after the onset of the monsoon in Arabia, while the mean 

40% green-down (senescence onset) occurred about 85 days after the monsoon ended. 

Trees required about 2.5 more weeks than grasses to reach the 40% green-up mark, but 

were able to stave off senescence for 3 weeks longer than grass covers. The rooting depth 

is critical for water uptake in the cloud forest trees (Hildebrandt 2005), allowing them to 

delay leaf fall until water stress reaches a critical juncture (Reich and Borchert 1984). 

Horizontal precipitation is another factor in delaying tree senescence. Additional 

moisture over tree canopy occurs because of turbulent redistribution and edge effects 

(Hildebrandt 2005; Hildebrandt and Eltahir 2006; Hildebrandt and Eltahir 2007), and has 
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been shown to be critical in maintaining tree cover in Dhofar and promoting sapling 

growth. Shrub phenology tended to be in the middle of these two covers. 

 

2.6.3 Vegetation Dynamics and Climate Variability 

The relationship between the seasonal vegetation parameters (Phase 1, Amplitude 

0, Amplitude 1, and ΣOND) and climate variables showed some weak to moderate 

correlation, but the lack of consistency suggests that the vegetation dynamics are mostly 

resistant to the inter-annual variability of the ten climate variables used in this study 

(Table 2.3, 2.4, 2.5, and 2.6). The timing of the peak NDVI (Phase 1) shows weak to 

moderate correlation with June precipitation at 8 of the 12 sites (Table 2.3). This 

correlation is likely related to the start of the monsoon. High amounts of precipitation in 

June can signal an early start to the growing season. But, the positive and negative 

correlation suggests that there is an inconsistency in the relationship between Phase 1 and 

June precipitation. Amplitude 0 showed the most consistent correlations with AUC (6 of 

12 sites with R2 > 0.1), and July and August precipitation. Amplitude 1 showed mainly 

weak, but some moderate correlation with June, July, August, and September 

precipitation. ΣOND showed little widespread correlation to any single variable.   

These results suggest that precipitation and the AUC have some influence on 

seasonal vegetation parameters, but they are not dominant in the cloud forest’s 

phenology. There are two likely reasons for this. First, the cloud cover is a critical 

climatic component in the success of the ecosystem’s ability to maintain high vegetation 

density, despite the arid conditions of southern Arabia (Hildebrandt 2005; Hildebrandt et 

al. 2007). Cloud cover reduces the effects of incoming shortwave solar radiation and 
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tempers evapotranspiration. Second, the moisture in the cloud fog is distributed through 

horizontal precipitation (Hildebrandt 2005; Hildebrandt and Eltahir 2006; Hildebrandt 

and Eltahir 2007) and wind speed (Abdul-Wahab 2007). Precipitation as measured by 

climate stations may underestimate the amount of moisture transferred to the ground 

during the monsoon because fog moisture redistributes through turbulence and edge 

effects (Hildebrandt 2005; Hildebrandt and Eltahir 2007). Ideally, the relationship 

between the seasonal vegetation parameters and climate should also include spatially and 

temporally explicit fog moisture data. Despite the limitations in measuring precipitation, 

the phenology of the cloud forest is remarkably resilient to the variability of measurable 

precipitation, as well as the length of the monsoon and the AUC, apparently because of 

the dichotomous and orographic nature of cloud cover during the monsoon season. 

The trend analyses bolster the argument that the cloud forest is resilient in the face 

of climate variability. The significant ΣOND, Amplitude 0, and Amplitude 1 trends are 

primarily associated with the coastal plain, and likely linked to human impacts (Galletti et 

al. forthcoming). The Phase 1 trends do show some changes in the seasonality of the 

NDVI peak, mainly at two prominent clusters at the east and west margins that are 

associated with a shift to earlier dates for Phase 1. A longer time series is required to 

determine if this trend is indicative of climate changes or human impacts. Since these two 

clusters sit on the margins, a climate explanation is possible if cloud cover, and thus 

moisture potential, is changing over these areas. Another possible factor could be the 

IOD. The relationship between NDVI time series and the DMI showed weak positive 

correlations at the margins of the cloud forest (Figure 2.8). While these weak DMI 

correlations are close in proximity, they did not overlap completely. 
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2.6.4 Vegetation Dynamics, Teleconnections, and Climate Regimes 

Vegetation phenology has a week relationship with the DMI and a stronger 

relationship with SST in the Arabian Sea. Correlations to ENSO were weak (R2 < 0.1), 

which is perhaps not surprising since recent observations have shown a weakening in the 

relationship between ENSO and ISM in the latter part of the 20th century (Kumar et al. 

1999). The IOD is thought to directly influence monsoon conditions (Ashok et al. 2001; 

Ashok et al. 2004).  In addition, research shows that the ENSO might have connections 

with the IOD (Allen et al. 2001), perhaps indicating that the ENSO indirectly affects 

monsoon conditions, an issue of ongoing debate (Ihara et al. 2008). The strongest 

correlation between the NDVI time series and DMI were at the margins of the cloud 

forest, which suggests that most of the forest may be shielded from IOD events. The 13 

years of NDVI observations used in this study may not be long enough to assess any low 

frequency connections between the IOD and cloud forest vegetation. Previous research 

on a connection between the IOD and rainfall in southern Arabia found no significant 

relationship (Charabi 2009).  

The connection between the SST in the Arabian Sea and vegetation dynamics in 

the cloud forest shows the strongest correlation between any two variables tested in this 

study. This correlation is positive and seems to be about six to nine months out of phase.  

Thus, the SST acts as a leading indicator of NDVI values in the cloud forest. The strength 

of this relationship is tied to the development of the monsoon. During the monsoon 

season, SST becomes cooler because of upwelling by the Somali Current. The Somali 

Current passes through the strait between the island of Socatra and the Horn of Africa in 

late spring or early summer (Schott and McCreary 2001). The cooler SST and a shift in 
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wind direction (southwest) cause clouds to form when air masses over the ocean meet the 

warmer air-flow over land.  

The findings presented above suggest that the Dhofar cloud forest is resistant to 

various climate variability, with the likely exception of shifts in SST. If this is the case, 

then the biodiversity of the cloud forest may be protected from climate changes unless the 

monsoon destabilizes over southern Arabia.  Two hypothetical ways the monsoon can 

destabilize are by 1) temperatures cooling over the Arabian land mass, and 2) the 

upwelling off the Arabian coast being undermined by warming ocean temperatures. 

Empirical observations and trend analyses of temperatures over the Arabian Peninsula 

show significant warming (AlSarmi and Washington 2011), which eliminates cooling 

land surface temperatures as a long-term threat. This leaves warming of SST off the coast 

of Arabia as the likeliest threat to cloud forest flora. In the analysis from this paper, there 

was no significant SST trend detected directly off the coast of southern Arabia; waters in 

the central and eastern portions of the Arabian Sea are significantly warming though 

(Figure 2.10). In the long term, changes to SST off the coast of Arabia require alterations 

to upwelling, which would require heating of deeper ocean layers and the Somali 

Current. Nieves and colleagues (2015) found that warming was occurring in the 100 to 

300 meter layer of the Indian Ocean, but this seems to be isolated mainly to the eastern 

Indian Ocean. If heating occurs to the subsurface waters of the Somali basin - where the 

Somali Current forms - this could potentially change upwelling off the coast of Arabia 

and thus impact cloud formation over Dhofar. As of now, a trend analysis (reported 

earlier) on SST during the monsoon (June, July, August, and September) revealed no 
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significant warming trend for any of these months, but models should explore the 

likelihood of this happening under future climate change scenarios.  

 

2.7 Conclusion 

The model of the monsoon season over the southern Arabian Peninsula based on 

cloud cover data captures the onset and withdrawal more closely to that experienced by 

those living in in the Dhofar area. While further confirmation is required, the model 

appears to offer a promising way to determine empirically the timing of the monsoon. 

The Dhofar cloud forest reaches its peak growing period about a month after the 

monsoon’s onset and continues until several months after the monsoon’s withdrawal. 

Weak to moderate correlations between certain monsoon variables and vegetation 

seasonality parameters suggests that the cloud forest vegetation is resistant to fluctuations 

in precipitation, monsoon length, and temperature. The precipitation connection is 

masked by the source of water for the cloud forest, fog moisture, which is not measured 

accurately in rain gauges. The cloud cover, which reduces evapotranspiration, is linked 

closely to upwelling off the Arabian coast. Any warming to the Somali Current that 

drives upwelling could alter monsoon conditions and cause changes to the cloud forest. 
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CHAPTER 3 

DRIVERS OF PLANT DIVERSITY IN THE SOUTH ARABIAN CLOUD FOREST1 

 

“No amount of book learning will make a man a scientific man: nothing but patient 

observation, and quiet and fair thought over what he has observed. He must go out for 

himself, see for himself, compare and judge for himself, in the field, the quarry, the 

cutting. He must study rocks, ores, fossils, in the nearest museum; and thus store in his 

head, not with words, but with facts. He must verify – as far as he can – what he reads in 

books, by his own observation; and be slow to believe anything, even on the highest 

scientific authority, till he has either seen it, or something like enough to it to make it 

seem to him probable, or at least possible.” (Charles Kingsley, 1873, x) 

 

3.1 Abstract 

The South Arabian Cloud Forest is a drought deciduous semi-arid forest on the 

southern coast of the Arabian Peninsula. We describe the vegetation diversity of the 

South Arabian Cloud Forest and test three hypotheses to explain biodiversity patterns of 

woody plant species: (H1) neutral processes, (H2) biological interactions, and (H3) 

environmental gradients. We collected plant density, cover, and frequency at 102 sample 

points and estimated relative species abundances across two biomes: grasslands and 

forests. Cluster analysis, Mantel correlograms, and canonical correspondence analysis 

(CCA) are used to test our hypotheses.  

The cluster analysis identified five vegetation groups. The two largest groups are 

dominated by a small number of species. Anogeissus dhofarica and Commiphora spp. 

account for 49% of the relative species abundance in forest plots, while Calotropis 

procera, Commiphora spp., and Solanum incanum account for 42% of the relative 

abundance in grassland plots. Based on our analyses, the (H2) biological interaction 

                                                           
1 Co-authored with Patricia L. Fall 
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hypothesis offers the best explanation for biodiversity patterns in the cloud forest.  

However, the reason for this differs between the forest and grasslands.  In forests, the 

diversity patterns are dominated by a few species of trees and shrubs (A. dhofarica and 

Commiphora spp.), most likely as a result of the region’s biogeographical history.  In 

grassland areas, however, diversity patterns are best explained as products of human 

activity. Conservation efforts should focus on rarer species, which drive diversity 

gradients across the region and are at risk of endangerment. 

 

3.2 Introduction 

 The South Arabian Cloud Forest extends from the arid, southern reaches of 

Yemen east to the Dhofar Mountains of southern Oman.  Plant surveys and 

biogeographical studies reveal a rich flora (Radcliffe Smith 1980; Miller and Morris 

1988; Pickering and Patzelt 2008; Patzelt 2011) thought to be a remnant of a xerotropical 

forest with paleo-African origins that stretched from Africa to Asia during the Tertiary 

(Kürschner et al. 2004). Expanding populations and encroaching human influences 

threaten the biodiversity of the cloud forest, making it critical to understand the 

ecological structure of this unique ecosystem (Schlect et al. 2014). 
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Table 3.1: Three hypotheses and three tests of the drivers of plant diversity in the South 

Arabian Cloud Forest.  Under each test, the expected outcome and variables used in the 

test are listed. 

 Test 

Hypothesis Cluster 

Analysis 

Canonical 

Correspondence 

Analysis 

Mantel Correlogram 

H1: Neutral 

processes 

No clear pattern 

of dominance in 

species 

abundances by a 

few species 

Variable: number 

of dominant 

species per 

cluster group 

 

CCA explains less than 30% 

of the variance in the species 

abundances 

Variable: species abundance 

as measured by importance 

value (IV).  Environmental 

variables include climatic 

and physiographic 

Significant spatial 

autocorrelation shown with 

distance decay in the 

correlation 

Variable: beta diversity 

measured using Brey-Curtis 

and based on species 

abundances using 

importance value (IV) 

H2: Biological 

interactions 

Few species with 

high abundances 

Variable: number 

of dominant 

species per 

cluster group 

CCA explains less than 30% 

of the variance in the species 

abundances 

Variable: species abundance 

as measured by importance 

value (IV). Environmental 

variables include climatic 

and physiographic 

No spatial autocorrelation, 

or varying positive and 

negative spatial correlation 

Variable: beta diversity 

measured using Brey-Curtis 

and based on species 

abundances using 

importance value (IV)) 

 

H3: 

Environmental 

gradients 

No clear pattern 

of dominance in 

species 

abundances by a 

few species 

Variable: number 

of dominant 

species per 

cluster group 

CCA explains more than 

30% of the variance in the 

species abundances 

Variable: species abundance 

as measured by importance 

value (IV). Environmental 

variables include climatic 

and physiographic 

Significant spatial 

autocorrelation shown with 

distance decay in the 

correlation 

Variable: beta diversity 

measured using Brey-Curtis 

and based on species 

abundances using 

importance value (IV) 

 

The cloud forest is a drought deciduous forest (Hildebrandt and Eltahir 2006; 

Hildebrandt and Eltahir 2007; Hildebrandt et al. 2007), supported by ample summer rain 

and cloud cover that compensate for limited precipitation through the rest of the year.  

While most of the Arabian Peninsula has low vegetation density indicative of arid 

regions, grasslands and forests flourish along the south facing slopes of the southern 

mountains of Yemen and Oman, giving the cloud forest a semi-arid, and sometimes 
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tropical, demeanor. During the summer months, temperature differentials between the 

Arabian Peninsula and the Arabian Sea cause clouds to form along the south-facing 

slopes of the mountains.  The temperature differential between the land and sea cause the 

formation of the Indian Ocean Monsoon (also known locally as khareef), which provides 

the precipitation and cloud cover that allow flora to thrive in an otherwise arid region.  

Much of the vegetation senesces by December, where weather patterns return to the more 

dryland conditions that dominate most of Arabia. Beyond the coastal mountains, the 

characteristic desert ecosystem of the Arabian Peninsula prevails, and some floral species 

that thrive deep in the desert can be found in parts of the cloud forest.   

Despite the uniqueness of the cloud forest, few studies assess its floral 

distribution, and understanding of its biodiversity remains limited.  Understanding the 

drivers of biodiversity of the cloud forest will be crucial for its conservation. Neutral 

processes, defined by the limited dispersal capabilities of many species, help explain 

patterns of biodiversity in a wide range of biogeographical studies (e.g., Rosindell et al. 

2011).  Alternatively, biodiversity patterns may be dominated by the wide distribution of 

a few key taxa (e.g., Condit et al. 2002), particularly certain endemic species (Anogeissus 

dhofarica and Maytenus dhofarensis), as well as plant species common across South 

Arabia (Calotropis procera, Commiphora spp. and Ficus spp.). Finally, environmental 

filtering could lead to certain species populating specific niche environments (Shmida 

and Wilson 1985; Dauby et al. 2014). The cloud forest ecosystem features two distinct 

vegetation types (forests and grasslands) and a high level of topographic variability over 

short distances that separate forested regions from grasslands. We test three hypotheses to 

explain the biodiversity of the South Arabian Cloud Forest (Table 3.1). 
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 Neutral Processes (H1). The neutral processes hypothesis explains biodiversity as 

the outcome of random processes and the limited dispersal capabilities of species 

(Hubbell 2006; Chisolm and Pacala 2010; Rosindell et al. 2011).  According to this 

hypothesis, plant species are competitively equivalent, and through time biotic and 

stochastic processes can lead to certain taxa becoming more prevalent than others, 

resulting in spatially autocorrelated beta diversity patterns.  Neutral processes would 

result in plant survey sites being more similar when they are closer spatially and 

progressively become less similar with distance; but no clear environmental gradient 

would explain diversity patterns.  

 Biological Interactions (H2). Studies of tropical forests, particularly in the 

Amazon, reveal that tree species diversity patterns are characterized by a small number of 

dominant species and low beta diversity (Pitman et al. 1999, 2001; Legendre et al. 2005; 

Tuomisto and Ruokolainen 2006). Biological interactions hypotheses (as part of dispersal 

theory) are thus used to explain patterns of community structure based on relatively 

homogeneous taxonomic composition and the wide distribution of a few dominant 

species.  The spatial structure of beta diversity has no clear spatial autocorrelation, nor 

does it suggest that environmental factors explain patterns of diversity.  

 Environmental Gradients (H3). Niche environments that favor certain species can 

explain variation in species diversity.  Diversity patterns that are influenced by 

environmental factors lead to various species flourishing in niches and, thus, diversity 

patterns between similar environmental contexts would match more closely than those 

that are in different environmental contexts. An analysis of the spatial patterning would 

reveal similarity amongst closely situated sites, and a strong correlation between 
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environmental factors and diversity patterns would exist.  This hypothesis would predict 

spatial autocorrelation in beta diversity, and environmental variables would largely 

account for the variance in species abundances.    

 Conservation approaches related to (H1) neutral processes and (H2) biological 

interactions could be more regional in scope (e.g. Mac Nally 2007), where landscape-

wide decisions about conservation would need to be made. Alternatively, conservation 

related to (H3) environmental gradients may entail a sampling of niches or targeting of 

certain environmental conditions (Rickbeil et al. 2014). 

  

3.3 Study Area 

 The South Arabian Cloud Forest is wedged between the Arabian Sea and the 

desert gravel plains of the Nejd Plateau.  Mountains run along the southern reaches of the 

Dhofar region in Oman to Al Mahra in Yemen. Research has shown that Arabia was 

more pluvial in the deep past, particularly during the last interglacial and the early 

Holocene (e.g., Fleitmann and Matter 2009).  Today, the climate is dry most of the year 

except during the summer months when monsoon clouds blanket the region in mist 

(Kwarteng et al. 2007; AlSarmi and Washington 2011). During the monsoon, 

temperatures cool and precipitation increases dramatically, which allows vegetation in 

the cloud forest to flourish, and supports broadleaf trees, which are rare on the Arabian 

Peninsula. 
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Figure 3.1: The study region in Dhofar, Oman, viewed through Google Earth. Shown are 

the two largest areas of the South Arabian Cloud Forest.  The large box surrounds Jabal 

Qara and the smaller box to the southwest is Jabal Qamar.  Jabal Samhan is just to the 

east of Jabal Qara. Salalah, the largest city in the region, is situated just to the south of 

Jabal Qara. 

Stretches of desert and coastal plain separate the cloud forest into fragments.  Our 

study looked at two of these fragments: Jabal Qamar to the west and Jabal Qara to the 

east (Figure 3.1).  Jabal Qara, the larger fragment of the cloud forest, forms a crescent 

shape around the port city of Salalah on Oman’s southernmost coastal plain.  This coastal 

plain runs from the eastern portion of Jabal Qamar, across the southern span of Jabal 

Qara, to the southern portions of the region’s largest mountain, Jabal Samhan. Jabal 

Qamar runs directly along the coast of the Arabian Sea.   

The density of vegetation ranges from that seen in tropical-like conditions to those 

seen in arid zones. The cloud forest ecosystem is partitioned into two primary biomes: 

forests and grasslands; but a secondary biome, shrublands, also exists, usually in 
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association with the parts of the cloud forest that are more arid. Foothills leading up to 

the mountains of Dhofar are vegetated with a mixture of forests, shrublands and 

grasslands, usually with decreasing plant density as one approaches the sea. The 

vegetation in the cloud forest is associated with the Saharo-Sindian and Saharo-Arabian 

phytogeographic zones (Ghazanfar and Fisher 1998; Parker and Rose 2008), and it is 

thought that the forests are a remnant of a much bigger ancient forest that once stretched 

from Africa to India and possibly beyond (Kürschner et al. 2004). 

 

3.4 Materials and Methods 

3.4.1 Fieldwork and Floral Survey 

 Data on tree and shrub distributions were collected during fieldwork conducted 

between January and April 2013.  Random points were generated using ArcGIS across 

the cloud forest, and each of these points was used to identify a survey sample point (89 

random points).  The study area was isolated for selection of these random points using a 

mask of high NDVI pixels (>.1 in an October 2000 Landsat 7 image) plus a 1000 m 

buffer. Thirteen additional non-random points were selected to provide coverage of areas 

or terrains that were underrepresented in the distribution of the random points, making a 

total of 102 sample points.  Data on trees and shrubs were measured using the point-

centered quarter method (PCQM; Mitchell 2007). Absolute plant density (no./m2), cover 

(basal area/hectare), and frequency (%/sample point) were measured for all woody 

species along a westerly transect from each sample point.  

For each sample point we determined the mean distance r, which is the sum of the 

distances to the measured trees divided by the number of quarters (j) at a subsample point 
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(i). Subsample points are points at each of our sample points where observations were 

made. For each sample point, we used about five subsample points, and each subsample 

point is divided into four quarters. 𝑅𝑖𝑗 is the total distance between the species and our 

random sample points in meters, 𝑛𝑖 is the number of subsample sample points (following 

Mitchell 2007): 

�̅� =  
∑ ∑ 𝑅𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

4𝑛𝑖
 

Absolute density may be estimated as: 

𝑑 =  
1

�̅�2
 

Absolute cover is first calculated by estimating the planar area of each species’ trunk.  

𝐴 =
𝑐2

4𝜋
 

in which c is the circumference of the species trunk, and A (the planar area) is divided by 

the number of species (𝑛𝑠) per sample point to arrive at the mean basal area (MBA): 

𝑀𝐵𝐴 =
𝐴

𝑛𝑠
 

The absolute coverage of a species (measured as total basal area per hectare) at a sample 

point is calculated as: 

𝑐 = 𝑀𝐵𝐴 ∗ 𝑑 ∗
 1 𝑚2

10,000 𝑐𝑚2
 

Finally, absolute species frequency is calculated as: 

𝑓 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100 

f is measured as a percentage. 
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Relative density, cover, and frequency were calculated by dividing each of these 

three metrics by the sum total of each metric for all species per sample point. We also 

calculated importance values (IV) (relative cover + relative density + relative frequency = 

IV) (sensu Mitchell 2007), which estimate the relative abundance of each species per 

sample point. Our cluster analysis, Mantel correlograms, and canonical correspondence 

analysis (CCA) use importance values as measures of species abundances. 

 

3.4.2 Environmental and Climate Data 

 Temperature and precipitation data were obtained from the Bioclim dataset 

(Hijmans et al. 2005).  Rasters were used to represent precipitation and temperature 

variables (see Appendix A, Table A.1). Physiographic variables (elevation, slope, aspect, 

and hydrology) were derived from the SRTM 90m digital elevation model. The 

hydrology raster shows the distance of any pixel to the nearest “stream” pixel, which 

estimates proximity to locations where precipitation aggregates, such as wadis.  Aspect is 

split into two different raster variables: northness (cosine of aspect) and eastness (sine of 

the aspect).  In total, the analyses used 18 variables (see Appendix A). 

 

3.4.3 Cluster Analysis 

 Cluster analysis was used to group the 102 sample points according to species 

similarity and dissimilarity based on relative species importance values. A Bray-Curtis 

index was used to measure ecological differences between sample points. The resulting 

dendrograms are generated using Ward linkage.  A classification tree indicates how 

clusters are separated according to environmental variables.  Misclassification rates and a 
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confusion matrix were used to assess the classification tree.  Once the clusters were 

identified, we summed the importance values for each species across the cluster groups.  

Silhouette widths were used to evaluate how well the cluster groups were partitioned 

based on the composition of species in each group (Rousseeuw 1987), and are interpreted 

similarly to a correlation coefficient (see Appendix B). 

 

3.4.4 Mantel Correlogram 

 Mantel correlograms were used to measure the spatial autocorrelation of beta 

diversity of species between sample points (Borcard and Legendre 2012).  Beta diversity 

was measured using distance matrices.  Importance values (IV) measure species 

abundance at each site.   Dissimilarity between sites was measured using the Bray-Curtis 

index.  Before the correlogram was computed, the dissimilarity matrix was spatially 

detrended.  The significance of groups in the correlograms was computed based on 999 

permutations of the data.  We used progressive correction and p-value adjustments for 

multiple testing, as suggested by Legendre and Legendre (2012) and Borcard et al. 

(2011).  

 

3.4.5 Canonical Correspondence Analysis 

 We used canonical correspondence analysis (CCA; ter Braak 1986) to analyze 

relationships between species abundances (as measured using IV) and environmental 

gradients, based on 20 environmental variables (see discussion above) and a stepwise 

variable selection function. An F test was used to determine a parsimonious number of 

explanatory variables.  Once this subset of variables was isolated using the method 
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above, a variance inflation test was run using the variance inflation factor (VIF) as a 

metric.  Any variable with a VIF score greater than 5 was removed before the model was 

retested.  In some cases – based on trial and error – a variable with a low VIF was 

removed to lower the overall probability of variance inflation if variables with high VIF 

could not reduce variance inflation when they were removed.  Three CCA model classes 

were created for forest, grassland, and combined forest and grassland (i.e., the whole 

study area).  A separate CCA model was run on latitude and longitude to measure the 

amount of variance in species abundances explained by geographical location and 

distance between sites.  

 

Table 3.2: Relative abundance of the eight most common species across the cloud forest. 

All other species are found at less than 5% of the total relative abundance. The sum total 

abundance of the eight species are shown in the third to last column. 
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Total 

Number 
of Species 

Observed 

Median 

Species 
Abund-
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All 102 

sample 
points 

          52 0.50% 

> 5% 

abundance 

16.02  7.31 19.23 5.03 5.27 6.31 7.90 5.33 72.40%   

>10% 

abundance 

16.02   19.23      35.25%   

Forest 

(n=36) 

          36 0.90% 

> 5% 

abundance 

27.15 5.42  22.16  6.40 5.17   66.29%   

>10% 

abundance 

27.15   22.16      49.31%   

Grassland 

(n=59) 

          40 0.60% 

> 5% 
abundance 

9.32  12.53 17.18 7.14  7.73 12.19 7.94 74.04%   

>10% 

abundance 

  12.53 17.18    12.19  41.90%   
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3.5 Results 

 Our survey results record 52 woody plant species at 102 sample points. Eight 

species are found in relative abundances above 5% across the entire the study area (Table 

3.2). These eight species comprise 72.4% of the overall plant abundance across the study 

area. Two species, Anogeissus dhofarica and Commiphora spp., are found in abundances 

greater than 10% and comprise 35.2% of the plant species counts in the study area. At 

forest sample points, five species have relative frequencies higher than 5% and account 

for 66.3% of the total relative abundance. Among grassland samples, seven species are 

found in relative abundances greater than 5% and account for 74.0% of grassland plant 

species abundances. Cluster analysis identified five vegetation groups in the cloud forest 

(Figure 3.2).  The first cluster includes Solanum incanum, Calotropis procera, Maytenus 

dhofarensis, and Ziziphus spina-christi (Figure 3.3). The second cluster, generally 

comprised of forest samples (Appendix B, Table B.1), is dominated by A. dhofarica and 

Commiphora spp. The third cluster, characterized by a variety of forest and shrubland 

species, includes A. dhofarica, B. hirtum, Commiphora spp., Acacia senegal, and Croton 

confertus. The fourth cluster includes a dominant taxon, Commiphora sp., in conjunction 

with the less frequent species F. vasta, S. incanum, A. senegal, E. balsamifera, and M. 

dhofarensis. The dominant species in the fifth cluster are A. nilotica, A. senegal, Boscia 

arabica, Boswellia sacra, Commiphora spp., and J. dhofarica. Cluster 5 represents a mix 

of environments, including shrublands and grasslands, as well as the foothills along the 

southern reaches of the Dhofar Mountains. The third, fourth and fifth clusters have low 

silhouette widths (see Appendix B), are more likely to include outliers, and are more 

variable in their species compositions. 
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Figure 3.2: Cluster dendrogram showing five clusters based on Ward linkage.  Species 

abundance values (importance values; IV) for each sample point were used to create the 

dendrogram. The cluster groups were selected using the Mantel statistic (see Appendix 

A).  The numbers in the figure refer to sample points. 
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Figure 3.3: Species abundances in each of the five cluster groups based on importance 

values (IV).  



73 
 

 We produced three Mantel correlograms to assess possible spatial autocorrelation 

of beta diversity (Figure 3.4) over all sample points in the entire study area (Figure 3.4A), 

in forested areas (Figure 3.4B) and in grasslands (Figure 3.4C).  For grassland areas the 

first, third, and fourth distance bins showed positive correlations, while the second, fifth 

and sixth bins were negatively correlated. The levels of autocorrelation for the first two 

distance bins were statistically significant, while the remaining distance bins did not 

reveal significant autocorrelation.  The sharp drop from positive to negative correlation 

between the first two distance bins, suggests that a level of autocorrelation exists, which 

becomes more ambiguous and switches between positive and negative correlations in the 

more distant bins. The lack of significance at the third through last distance bins most 

likely indicates a near equal division of shared and differing species between sample 

points. For forested regions, the first four distance bins were correlated negatively, the 

fifth bin was positively correlated, and the correlation shown by the last bin was 

approximately zero.  However, these distance bins show no significant correlation in beta 

diversity measurements.  In the combined grassland and forested areas the first and fourth 

bins were positively correlated, while the rest were negatively correlated.    
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Figure 3.4: Mantel correlograms showing distance bins along the x-axis and the Mantel 

correlation along the y-axis for: (A) all points in the study area, (B) forest sample points, 

and (C) grassland sample points.  Values above the line show positive correlation and 

values below show negative correlation.  Significant values are shown as solid boxes, 

insignificant values as open boxes.   
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Figure 3.5: Ordination diagrams showing the relationship between the first two axes 

(CCA1 and CCA2) along with variable scores, sites, and clusters for: (A) all samples 

points in the study area, (B) forest sample points, and (C) grassland sample points. 
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Table 3.3 shows the explained variance for three CCA models for 1) the entire 

study area (all 102 sample points; Figure 3.5A), 2) the forested areas (Figure 3.5B), and 

3) the grassland areas (Figure 3.5C).  For the entire study area, five variables were used 

to build the CCA model (see Appendix A, Table A.2). Two variables, maximum 

temperature of the warmest month and mean temperature of the wettest month, had the 

highest scores for the first and second CCA axes, respectively. Our CCA model of the 

forest sample points was based on three variables (Appendix A, Table A.3). The highest 

scores on the first and second axes of the forest CCA model pertained to maximum 

temperature of the warmest month and precipitation of the warmest quarter.   

 

Table 3.3: Variance explained and unexplained by the CCA analysis for the entire study 

area, for forests, and for grassland areas.  ***All three CCA model results were 

significant at the 0.001 level or better based on 9999 permutations of an ANOVA test.  

See Appendix B for more details. 

 Explained Unexplained Significance 

Study Area  0.165 0.835 *** 

Forest 0.1876 0.8124 *** 

Grassland 0.2194 0.7806 *** 

 

In the grassland model, five variables were used to construct the CCA model 

(Appendix A, Table A.4).  Precipitation of the driest quarter had the leading score for the 

CCA1 and CCA2 axes. The grassland model explained the highest level of variance 

(0.2194).  All three models were found significant based on 9999 permutations of an 

ANOVA test (see Table 3.3).  We also ran another three models for each of same three 

zones that used only spatial variables (latitude and longitude; Table 3.3).  While each of 

these models was statistically significant based on an ANOVA test, they all explained 
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low levels of variance (the highest = 0.1078 for forest sample plots), suggesting that 

latitude and longitude tend to be weaker than environmental variables in explaining 

species abundance in the cloud forest. 

 

3.6 Discussion and Conclusions 

 Our results reveal that the diversity and distribution of woody plants differ 

between the biomes of the cloud forest. If we consider the entire study area (all 102 

sample points), the biological interactions hypothesis (H2) is affirmed most strongly, 

based on three major results.  First, eight species account for over 70% of the relative 

species abundances, and just two species (A. dhofarica and Commiphora sp.) comprise 

over 35% of the relative species abundances - while the median among all species is less 

than 1%. The near ubiquitous distribution of A. dhofarica and Commiphora spp. defines 

the phytosociological structure of the cloud forest (Kürschner et al. 2004), which also 

lends support to our acceptance of this hypothesis. Second, our results show a lack of 

spatial autocorrelation structure in our beta diversity measurements. While the first 

distance bin (see Fig. 4A) shows significant correlation, the subsequent bins show mostly 

negative (but not significant) spatial correlation.  Both the lack of significance and only a 

single positive correlation value at the fourth bin indicates that there is no clear spatial 

correlation in the beta diversity over the entire study area. Third, the CCA model explains 

less than 17% of the variance across the entire study area according to our environmental 

variables. We would expect a higher level of explained variance if environmental 

gradients (H3) best explained our patterns of biodiversity. But one other factor to 

consider for why environmental gradients are not as strong of an explanation is that cloud 
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cover is the single most important environmental factor, to such an extent that its mere 

presence is the one factor needed to sustain the environment (see Chapter 2). The clouds 

are present at the start of the monsoon and persist throughout the monsoon season. There 

seems to be little spatial variability. Thus the benefits of the cloud cover (reduced 

evapotranspiration and fog moisture) are ubiquitous. 

 For forest sample plots, the biological interactions hypothesis (H2) again provides 

the best explanation of diversity patterns. Only two taxa, A. dhofarica and Commiphora 

spp., comprise the most prevalent species in forested areas, as seen in the cluster analysis 

and relative taxonomic abundances. Cluster 2 is defined strongly by A. dhofarica and 

Commiphora spp., and to a lesser extent by J. dhofarica. While Cluster 3 includes more 

species, only five stand out: A. dhofarica, B. hirtum, Commiphora sp., A. Senegal, and C. 

confertus. The success of A. dhofarica and Commiphora spp., both in terms of the cluster 

analysis and their common occurrence at both forest and overall sample points, is perhaps 

the strongest evidence that the biodiversity patterns in the cloud forest are rooted in the 

dispersal success of these two species. The lack of spatial autocorrelation structure and 

the low explained variance of the CCA analysis (less than 19%) are used to refute the 

environmental gradients hypothesis (H3) and the neutral processes hypothesis (H1). The 

biological interaction hypothesis (H2), which was developed from observations of 

tropical forests (Pitman et al. 1999, 2001; Condit et al. 2002), similarly explains 

biodiversity patterns best in the South Arabian Cloud Forest, which lies just outside of 

the tropical zone. The cloud forest is derived from an ancient tropical forest (Kürschner et 

al. 2004) and, accordingly, the species that populate the cloud forest today have evolved 

from these tropical sources. As a contributing factor in this evolution, interglacials 
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between the Tertiary and present have included periods of much greater precipitation 

(Burns et al. 2001; Fleitmann et al. 2004; Fleitmann and Matter 2009). This increased 

precipitation may have expanded the cloud forest in conditions closer to those found in 

modern tropical forests.  Today, despite dry conditions during most of the year, the 

modern monsoon season provides enough moisture for tropical conditions, and near 

constant cloud cover, for a substantial part of the year.  

 In grassland areas, the biological interactions hypothesis (H2) also explains 

diversity patterns most effectively, but most likely due to land-use decisions.  Grazing 

indicators (e.g., S. incanum and C. procera), as well as trees and shrubs found typically in 

rangelands (e.g., Ficus sp., Z. spina-christi, and M. dhofarensis), prevail in Cluster 1 

(Appendix A), to an extent that strongly supports the biological interactions hypothesis 

(H2).  The environmental gradients hypothesis is not supported in light of the low level of 

overall explained variance (less than 22%), despite showing stronger explained variance 

than in forested areas or the study area as a whole. The Mantel correlograms show 

stronger evidence for spatial autocorrelation structure than in forested areas. The lack of 

clear distance decay in Mantel correlograms and significance in the farthest distance bins 

refute the neutral processes hypothesis (H1). The biological interactions hypothesis (H2) 

explains diversity patterns in the grasslands based, in part, on the influences of human 

activity, especially animal husbandry. Herds of camel, cattle, and goats are common 

throughout the cloud forest. Among the plant species common to the grassland areas, S. 

incanum and C. procera are poisonous to livestock (Miller and Morris 1988; Mekonnen 

1994), giving these species a competitive advantage over other taxa that are more 
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palatable to livestock. Grassland areas also are flatter and more suitable for grazing large 

herds.  

 Because the forested areas are dominated by a limited number of species with 

wide dispersal capabilities, preservation of the cloud forest’s biodiversity will depend on 

widespread adoption of conservation measures that protect rare species. Conservation has 

been a priority in Dhofar for some time (Ghazanfar 1998) and its success will depend on 

a comprehensive approach that focuses more on tree and shrub species that occur in 

relatively low abundances. Regional conservation practices (i.e. conservation practices 

aimed at the entire cloud forest, and not just certain parts) have been deemed important in 

other cloud forests (Williams-Linera 2002) based on the heterogeneity of species 

composition across short distances. A similar strategy might be needed in Dhofar, but for 

different reasons. Pastoralism is a longstanding component of traditional society in 

Dhofar (Janzen 1986), and vegetation across the region is increasingly impacted by 

encroaching herds of camels, cattle and goats, as well as infrastructure development. 

Restoration of biodiversity in grasslands is notoriously difficult without abandonment of 

the range, or long-term relief from grazing activities (e.g. Vuorio et al. 2014), and recent 

studies have shown that grasslands are often neglected in conservation efforts (Grau et al. 

2014). Foothills areas, which are in close proximity to the city of Salalah, are vulnerable 

to rapidly increasing urban expansion and other human activity. Forested areas are still 

populated by a diverse array of floral species, but will require large intact protected 

forests to reliably safeguard biodiversity (Berhane et al. 2015). Any conservation effort 

will need to account for the variety of human activity, and, because the biodiversity 

patterns are defined by the dominance of a small subset of species, priority should be 
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given to those species found in low abundance, mainly because they will have a greater 

likelihood of becoming endangered. Conservation efforts in the grassland and shrubland 

areas will most likely prove even more difficult without a significant restoration effort 

that incorporates the range of socio-economic activities that are dependent on these 

environments. 

 

3.7 Acknowledgements 

Much of the research was supported by work conducted through a Fulbright Grant 

to Oman (awarded to Galletti) from the U.S. State Department and sponsored by The 

Office of the Advisor to His Majesty The Sultan for Economic Planning Affairs.  We 

offer special thanks to Said Al-Saqri and Annette Patzelt for support during the Fulbright 

grant period.  Finally, we would like to thank Steven Falconer and Sanda Heinz for 

assistance with data collection. 

 

3.8 References  

AlSarmi, S., and R. Washington (2011), Recent observed climate change over the 

Arabian Peninsula, J. Geophys. Res., 116(D11), D11109, 

doi:10.1029/2010JD015459. 

Berhane, A., Ø. Totland, M. Haile, and S. R. Moe (2015), Intense use of woody plants in 

a semiarid environment of Northern Ethiopia: Effects on species composition, 

richness and diversity, J. Arid Environ., 114, 14–21, 

doi:10.1016/j.jaridenv.2014.11.001. 

Borcard, D., and P. Legendre (2012), Is the Mantel correlogram powerful enough to be 

useful in ecological analysis? A simulation study, Ecology, 93(6), 1473–1481, 

doi:10.1890/11-1737.1. 



82 
 

Borcard, D., F. Gillet, and P. Legendre (2011), Numerical Ecology with R, Springer, New 

York. 

Burns, S. J., D. Fleitmann, A. Matter, U. Neff, and A. Mangini (2001), Speleothem 

evidence from Oman for continental pluvial events during interglacial periods, 

Geology, 29(7), 623, doi:10.1130/0091-7613(2001)029<0623:SEFOFC>2.0.CO;2. 

Chisholm, R. A., and S. W. Pacala (2010), Niche and neutral models predict 

asymptotically equivalent species abundance distributions in high-diversity 

ecological communities., Proc. Natl. Acad. Sci. U. S. A., 107(36), 15821–5, 

doi:10.1073/pnas.1009387107. 

Condit, R. et al. (2002), Beta-diversity in tropical forest trees, Science, 295(5555), 666–9, 

doi:10.1126/science.1066854. 

Dauby, G., O. J. Hardy, M. Leal, F. Breteler, and T. Stévart (2014), Drivers of tree 

diversity in tropical rain forests: new insights from a comparison between littoral 

and hilly landscapes of Central Africa, edited by P. Linder, J. Biogeogr., 41(3), 574–

586, doi:10.1111/jbi.12233. 

Fleitmann, D., and A. Matter (2009), The speleothem record of climate variability in 

Southern Arabia, Comptes Rendus Geosci., 341(8-9), 633–642, 

doi:10.1016/j.crte.2009.01.006. 

Fleitmann, D., S. J. Burns, U. Neff, M. Mudelsee, A. Mangini, and A. Matter (2004), 

Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived 

from annually laminated speleothems from Southern Oman, Quat. Sci. Rev., 23(7-8), 

935–945, doi:10.1016/j.quascirev.2003.06.019. 

Ghazanfar, S. (1998), Status of the flora and plant conservation in the sultanate of Oman, 

Biol. Conserv., 85(3), 287–295, doi:10.1016/S0006-3207(97)00162-6. 

Ghazanfar, S. A., and M. Fisher (eds) (1998), Vegetation of the Arabian Peninsula, edited 

by S. A. Ghazanfar and M. Fisher, Kluwer Academic Publishers, Dordrecht. 

Grau, H. R., R. Torres, N. I. Gasparri, P. G. Blendinger, S. Marinaro, and L. Macchi 

(2014), Natural grasslands in the Chaco. A neglected ecosystem under threat by 

agriculture expansion and forest-oriented conservation policies, J. Arid Environ., (in 

press), doi:10.1016/j.jaridenv.2014.12.006. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis (2005), Very high 

resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 

25(15), 1965–1978, doi:10.1002/joc.1276. 



83 
 

Hildebrandt, A., and E. A. B. Eltahir (2006), Forest on the edge: Seasonal cloud forest in 

Oman creates its own ecological niche, Geophys. Res. Lett., 33(11), 2–5, 

doi:10.1029/2006GL026022. 

Hildebrandt, A., and E. A. B. Eltahir (2007), Ecohydrology of a seasonal cloud forest in 

Dhofar: 2. Role of clouds, soil type, and rooting depth in tree-grass competition, 

Water Resour. Res., 43(11), 1–13, doi:10.1029/2006WR005262. 

Hildebrandt, A., M. Al Aufi, M. Amerjeed, M. Shammas, and E. A. B. Eltahir (2007), 

Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment, Water 

Resour. Res., 43(10), 1–13, doi:10.1029/2006WR005261. 

Hubbell, S. P. (2006), Neutral theory and the evolution of ecological equivalence, 

Ecology, 87(6), 1387–1398. 

Janzen, J. (1986), Nomads in the sultanate of Oman: tradition and development in 

Dhofar, Westview Press, Boulder. 

Kürschner, H., P. Hein, N. Kilian, and M. A. Hubaishan (2004), The Hybantho durae-

Anogeissetum dhofaricae ass. nova - phytosociology, structure and ecology of an 

endemic South Arabian forest community, Phytocoenologia, 34, 569–612. 

Kwarteng, A. Y., S. Dorvlo, and G. T. V. Kumar (2009), Analysis of a 27-year rainfall 

data (1977 – 2003) in the Sultanate of Oman, Int. J. Climatol., 617(July 2008), 605–

617, doi:10.1002/joc. 

Legendre, P., and L. Legendre (1998), Numerical ecology, Developments in evironmental 

modelling, edited by S. E. Edition, Elsevier. 

Legendre, P., D. Borcard, and P. R. Peres-Neto (2005), Analyzing beta diversity: 

Partitioning the spatial variation of community composition data, Ecol. Monogr., 

75(4), 435–450. 

Mekonnen, Y. (1994), A survey of plants (potentially) toxic to livestock in the Ethiopian 

flora, Sinet, an Ethiop. J. Sci., 17(1), 9–32. 

Miller, A. G., and M. Morris (1988), Plants of Dhofar, The Southern Region of Oman: 

Traditional, Economic, and Medicinal Uses, Office of the Adviser for Conservation 

of the Environment, Diwan of Royal Court, Sultanate of Oman. 

Mitchell, K. (2007), Quantitative analysis by the point-centered quarter method, Geneva, 

NY. 



84 
 

Mac Nally, R. (2007), Use of the abundance spectrum and relative-abundance 

distributions to analyze assemblage change in massively altered landscapes, Am. 

Nat., 170(3), 319–30, doi:10.1086/519859. 

Parker, A. G., and J. I. Rose (2008), Climate change and human origins in southern 

Arabia, Proc. Semin. Arab. Stud., 38, 25–42. 

Patzelt, A. (2011), The Themeda Quadrivalvis Tall-Grass Savannah of Oman At the 

Crossroad Between Africa and Asia, Edinburgh J. Bot., 68(02), 301–319, 

doi:10.1017/S0960428611000217. 

Pickering, H., and A. Patzelt (2008), Field Guide to the Wild Plants of Oman, Royal 

Botanical Gardens, Kew, Kew, United Kingdom. 

Pitman, N. C. A., J. Terborgh, M. R. Silman, and P. Nunez V. (1999), Tree Species 

Distributions in an Upper Amazonian Forest, Ecology, 80(8), 2651–2661. 

Pitman, N. C. A., J. W. Terborgh, M. R. Silman, P. N. V, A. David, C. E. Cerón, W. A. 

Palacios, and M. Aulestia (2001), Dominance and Distribution of Tree Species in 

Upper Amazonian Terra Firme Forests, Ecology, 82(8), 2101–2117. 

Radcliffe Smith A (1980), The vegetation of Dhofar, in The scientific results of the Oman 

Flora and Fauna Survey, 1977, (Dhofar), edited by N. Shaw-Reade, S, B. Sale, J, D. 

Gallagher, M, and H. Daly, R, pp. 59–86. 

Rickbeil, G. J. M., N. C. Coops, M. E. Andrew, D. K. Bolton, N. Mahony, and T. A. 

Nelson (2014), Assessing conservation regionalization schemes: employing a beta 

diversity metric to test the environmental surrogacy approach, edited by S. Ferrier, 

Divers. Distrib., 20(5), 503–514, doi:10.1111/ddi.12146. 

Rosindell, J., S. P. Hubbell, and R. S. Etienne (2011), The unified neutral theory of 

biodiversity and biogeography at age ten., Trends Ecol. Evol., 26(7), 340–8, 

doi:10.1016/j.tree.2011.03.024. 

Rousseeuw, P. J. (1987), Silhouettes: A graphical aid to the interpretation and validation 

of cluster analysis, J. Comput. Appl. Math., 20, 53–65, doi:10.1016/0377-

0427(87)90125-7. 

Schlecht, E., L. G. H. Zaballos, D. Quiroz, P. Scholte, and A. Buerkert (2014), 

Traditional land use and reconsideration of environmental zoning in the Hawf 

Protected Area, south-eastern Yemen, J. Arid Environ., 109, 92–102, 

doi:10.1016/j.jaridenv.2014.05.016. 

Shmida, A., and M. V. Wilson (1985), Biological determinants of species diversity, J. 

Biogeogr., 12(1), 1–20. 



85 
 

Tuomisto, H., and K. Ruokolainen (2006), Analyzing or explaining beta diversity? 

Understanding the targets of different methods of analysis, Ecology, 87(11), 2697–

2708. 

Vuorio, V., A. Muchiru, R. S. Reid, and J. O. Ogutu (2014), How pastoralism changes 

savanna vegetation : impact of old pastoral settlements on plant diversity and 

abundance in south-western Kenya, Biodivers. Conserv., 23, 3219–3240, 

doi:10.1007/s10531-014-0777-4. 

Williams-Linera, G. (2002), Tree species richness complementarity , disturbance and 

fragmentation in a Mexican tropical montane cloud forest, Biodivers. Conserv., 11, 

1825–1943. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

CHAPTER 4 

LAND CHANGES AND THEIR DRIVERS IN THE CLOUD FOREST AND 

COASTAL ZONE OF DHOFAR, OMAN, BETWEEN 1988 AND 20132 

 

4.1 Abstract  

Several analyses are used to measure environmental changes in the cloud forest 

and coastal plain in Dhofar, southern Oman, including a land change analysis, multiple 

endmember spectral mixture analysis (MESMA), cluster analysis using local indicators 

of spatial association (LISA), and trend analysis of NDVI time series. The results 

demonstrate systematic degradation and loss of vegetation types in the cloud forest, and 

loss of native land covers to impervious surfaces on the coastal plain; decreases in woody 

plant vegetation in almost half of the cloud forest in distinctive hotspots of loss; and 

significant decreases in NDVI trends around the city of Salalah, along the coastal plain, 

and in parts of the cloud forest. 

The proximate drivers of these changes in the cloud forest appear to be changes in 

grazing activities, while the growth of Salalah, especially its peri-urban area, altered the 

coastal plain.  These drivers, in turn, are linked to distal ones, foremost changes in Omani 

policies and investments in the Dhofar area, traced to government responses to the 

Dhofar War (1970-1975), which have resulted in increased livestock populations and 

urban growth.  

 

                                                           
2 Co-authored with B.L. Turner II and Soe W. Myint 
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4.2 Introduction 

Deforestation and land degradation are recognized problems in dryland 

environments that cover about 41% of the terrestrial surface of the Earth (Reynolds et al. 

2007). Worldwide net primary production of grass- and rangelands has declined due to 

intensified land uses (e.g., Bai et al. 2008; Li et al. 2012), and the loss of ecosystem 

services to dryland degradation affects some 250 million people (Reynolds et al. 2007).  

As a result, dryland deforestation and land degradation have drawn international attention 

through such programs as the U.N.’s 1992 Convention to Combat Desertification (UNEP 

1994) and the 2006 International Year of the Desert and Desertification. 

The causes of this degradation, both climatic and anthropogenic in kind, have 

drawn substantial research attention.  Anthropogenic causes have been arrayed along a 

continuum between proximate and distal causes, depending on the immediacy of human 

activities and processes to the actual land change and consequences in question (Serneels 

& Lambin 2001; Geist and Lambin 2002; Lambin et al. 2003; Turner et al. 2007).  

Proximate causes, such as agricultural expansion or land-use intensification, are relatively 

easy to correlate strongly with land changes, whereas distal causes (aka underlying or 

root causes and teleconnections), such as international policies and markets, prove to be a 

challenge, commonly linked to actual land changes conceptually or through 

interpretations of case studies (Brannstrom & Vadjunec 2014; Lambin et al. 2001; Liu et 

al. 2013; Vayda & Walters 1999).  It is also recognized that distal and proximate causes 

interact in ways that amplify or attenuate land change (Defries et al. 2010; Seto & 

Reenberg 2014). 



88 
 

Dryland degradation, linked variously to proximate and distal causes, is apparent 

in the southern Arabian Peninsula, including within the South Arabian Cloud Forest, near 

Salalah, Dhofar, Oman. Cloud forest ecosystems generally occupy only a small portion of 

the world’s forests, but are usually rich in ecosystem services and biodiversity (Higuera 

et al. 2013). Dhofar’s portion of the South Arabian Cloud Forest consists of forest, shrub, 

and grasslands that have been decreasing in biomass and tree species during the lifetime 

of satellite observations of the region.  The causes of this change—climatic, owing to 

changes in the Indian Ocean monsoon (Kumar et al. 2011) or anthropogenic—are 

contested, but the most immediate human activities altering the cloud forest ecosystem 

are not. These activities involve increasing camel, goat, and bovine grazing (Miller and 

Morris 1988; Ghazanfar 1998; Hildebrandt and Eltahir 2006; Patzelt 2011; El-Sheikh 

2013). The reasons for grazing intensification, as provided by local land managers and 

observers, may be grouped into two, possibly interlinked, causes. One hypothesis holds 

that increases in livelihood standards, owing to expanding household income portfolios 

and improved access to water wells and animal support services, has increased herd size 

(Janzen 2000). Another perspecitve focuses on broader infrastructure development, 

foremost road construction, which has spurred peri-urban development and market 

access, amplifying herd densities. 

These more proximate causes, in turn, are clearly linked to changes in the national 

policies of Oman.  Begun in the 1970’s as a response to internal revolts against the 

government, attention was given to livelihood improvements, including in the mountains 

of Dhofar where the cloud forest resides (Janzen 2000; Petersen 2004a; Petersen 2011).  

Investments were made specifically to increase water wells, subsidize cattle feed (Janzen 
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1986: 195-196), employ adult males (e.g., to fight against Omani dissidents), and 

increase commercial investments in the nearby city of Salalah (Janzen 1986: 173-175). 

Complementing this policy change was one directed toward infrastructure modernization, 

especially emerging in the 1980s (O’Reilly 1998; Allen and Rigsbee 2000; Peterson 

2004a,b), focusing on large infrastructure, such as roads, schools, and airports. 

The changes to the cloud forest land cover and land uses, foremost grazing 

practices linked to herd size, constitute common wisdom in southern Oman.  Actual 

documentation, however, has been lacking. This research seeks to rectify this lacuna.  

First, it seeks to identify systematically the land-cover changes in the cloud forest and 

coastal plain of Dhofar from 1988 to 2013 through the use of satellite data, determining 

the kind and amount land-cover changes during that period.  Second, it qualitatively 

probes the roles of two specific development paths—infrastructure development and 

livelihood improvements—in terms of generating the changes observed. Data limitations 

impeded quantitative assessments of the causes. 

 

4.3 Study Area 

The study area is the Dhofar portion of the South Arabian Cloud Forest and the 

immediate surrounding area within the Governate of Dhofar, Oman. The cloud forest is a 

drought-deciduous, seasonal cloud forest (Hildebrandt 2005) that lies along the southern 

coasts of Oman and Yemen.  Three dominant natural land covers (forest, grass, and 

shrubs) occupy two primary biomes: forest and grassland. The forests consist of 

broadleaf and evergreen species of trees and shrubs (Miller and Morris 1988), usually 

found in southerly draining wadis. The grasslands have trees and shrubs, but usually in 
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much lower density than the forest (Patzelt 2011). There is also a third subsidiary, hybrid 

biome, the foothills of the mountains, which has a mix of grasses, shrubs, and trees. The 

foothills run along the southern portion of the cloud forest and act as a partition between 

the coastal area and the Dhofar Mountains.  

Three mountains comprise the Dhofar range: Jabal Qara, Jabal Qamar, and Jabal 

Samhan. Transects running from Jabal Qara and Jabal Qamar to the coastal planes are 

used as the study area because they capture substantial portions of the cloud forest as well 

as the urban development of Salalah (Figure 1.1).  The total area examined covered 3,069 

km2, of which about 28.6% is forest. Sloping plateaus that are incised by wadis define the 

topography. Despite the usual desert conditions of southern Arabia, precipitation in the 

study area is reliable during the summer months (June to September) when the Indian 

Ocean Monsoon (IOM) forms. While the IOM can be variable from one year to the next 

(Anderson et al. 2002; Goswami and Mohan 2001; Gupta et al. 2003; Kumar et al. 2006; 

Charabi and Abdul-Wahab 2009; Scholte et al. 2010), cloud cover and fog moisture are 

abundant enough to allow dense vegetation to grow. The precipitation during the 

monsoon is usually fog moisture, rather than heavy rainfall. Trees act as a comb when the 

fog forms, allowing moisture to collect on the leaves and branches and then fall to the 

ground (Hildebrandt 2005; Hildebrandt and Eltahir 2006; Hildebrandt and Eltahir 2007). 

Because of this, direct measurements of precipitation can be inaccurate, but estimates 

range to 250 mm annually. Heavy bursts of rainfall are possible all year round, but most 

of the year is usually dry outside of monsoon season. 

The grasslands and forests are heavily grazed by goats, camels, and cattle, which 

belong to several groups of people living in the Dhofar Mountains (Janzen 1986). Herds 
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are kept in the mountains for most of the year and are usually brought down to the coastal 

regions at the start of the monsoon. While herding is still the primary occupation for 

many groups living in the mountains, the growing economy in Salalah has begun to 

attract a diverse range of activities. Salalah, which lies along the coast just south of Jabal 

Qara, has grown considerably in the last few decades. The income generated from oil 

revenues, shipping, livestock, frankincense trade, and agriculture has begun to shift 

livelihoods away from traditional lifestyles to urban professional ones, with a greater 

portion of the population attending college and working in the city. This remains a 

process in transition; many individuals still practice traditional herding, part time in some 

cases, while working in Salalah. 

 

4.4 Methods 

Landscape change is addressed in three ways. First is a land change analysis, 

which identifies key transitions from one land cover to another between 1988 and 2013. 

A total of nine land cover types were identified, but our focus is on the transition between 

six of these land covers: coastal alluvium, grass, shrubs, trees, roads, and the built 

environment. Second is a subpixel analysis that is used to measure changes in woody 

plant coverage. Finally, a trend analysis identifies changes in the vegetation index, in this 

case NDVI, signaling vegetation health. The time period for the trend analysis is 2001 to 

2013, a 13 year period that roughly coincides with renewed efforts to develop 

infrastructure across Oman and Dhofar.  
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Table 4.1: The nine land covers and their description used in the land change analysis 

Class Description 

Desert gravel plains 

(DGP) 

Desert region surrounding the northern portions of the cloud 

forest  

Water (W) Primarily ocean and inlets 

Coastal alluvium 

(CA) 

The arid land cover occupying the coastal area south of the 

foothills and around the city of Salalah 

Agriculture (Ag) Agriculture plots, mainly in and around the city of Salalah 

Grass (Gr) Grassland areas where trees are sparse 

Trees (Tr) Forested areas where trees form a coherent canopy 

Shrubs (Shr) Areas where shrubs tend to dominate, primarily around eastern 

portions of Jabal Qara, foothills, and Northern portions of Jabal 

Qamar – can include a moderate density of trees that are too 

sparse to form a coherent canopy 

Roads (Rd) This category includes asphalt tarmac and hard packed dirt 

roads. 

Built environment 

(BE) 

Generally buildings, structures, or high density urban areas, 

and may include surrounding roads or pavement 

 

4.4.1 Land Change Analysis 

Two sets of Landsat images were classified; one set each for 1988 and 2013 (4 

images total - for 1988, the scenes ID’s are LT41590481988340XXX02 and 

LT41600481988347AAA04; for 2013, LC81600482013343LGN00 and 

LC81590482013336LGN00). These images were collected in the early part of December, 

when the distinction between grass, trees, and shrubs is fairly stark. Digital numbers were 

converted to reflectance values using metadata coefficients, a dark object subtraction, and 
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climate data records (Masek et al. 2006; USGS 2015). Principle component bands were 

calculated and added to the image stack to facilitate classification. An object-based image 

analysis method (OBIA; Blaschke 2010) was employed for land cover classification. 

Nine land covers were classified (Table 1): desert gravel plains (DGP), water (W), 

coastal alluvium (CA), agriculture (Ag), grass (Gr), trees (Tr), Shrubs (Shr), Roads (Rd), 

and built environment (BE) (Table 1). The land covers were selected based on field 

observations and environmental descriptions in Miller and Morris (1988). 

Transition matrices were used to identify systematic land-cover transformation, 

which is a conversion from one land cover to another, while accounting for expected 

land-cover changes (Pontius et al. 2004). Expected land changes are due to possible 

random chance, small changes in large land-cover categories, errors in land-cover maps, 

and so on. The transition matrix was developed using the methods outlined in Pontius et 

al. (2004) and Alo and Pontius (2008). Observed versus expected land-cover transitions 

can be found by analyzing the tradeoffs between land covers as shown in rows and 

columns of a transition matrix. Rows of the transition matrix are the land covers as they 

stand in 1988 and columns represent the land covers in 2013. Diagonal values show 

persistence of land-cover types, while off-diagonal values show the transition from the 

land cover for that row (1988) to the land cover for that column (2013). At the end of 

each row, a sum shows the total land-cover loss plus persistence as well as the total loss 

for that row’s land-cover category. At the end of each column, a sum shows the total 

land-cover gain plus the persistence as well as the total gain for that column’s land-cover 

category. Expected transitions are calculated by analyzing the observed land-cover gains 

and losses and using the formulae in Alo and Pontius (2008; page 288, equations 1 and 
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2). If the observed loss minus the expected loss is positive for a matrix cell, then that 

row’s land cover is systematically losing to the land cover in the column; if it is negative, 

it is resisting systematic loss. If the observed gain minus the expected gain is positive for 

the matrix cell, then that column’s land cover is systematically gaining from the land 

cover in the row; if it is negative, it rebuffs systematic gain from the land cover for that 

row (Alo and Pontius 2008). 

 

4.4.2 Vegetation Fraction and Subpixel Analysis 

Ground covers that occupy varying proportions of a pixel in a satellite image can 

be extracted using methods collectively known as subpixel analysis. The basis of this 

method lies in the assumption that surface materials may be smaller than the resolution of 

the image’s pixel. The surface material proportions within a pixel can be estimated by 

using a linear combination of reflectance values of known ground targets, called 

endmembers.  This approach has been generally termed spectral mixture analysis (SMA; 

Settle and Drake 1993), and is often used to model three primary components: vegetation, 

impervious surfaces, and soil (V-I-S). It is used here to extract vegetation fraction, a 

useful indicator of degradation and deforestation (e.g. Dawelbait and Morari 2012). 

Our subpixel approach uses an extension of the SMA method known as multiple 

endmember spectral mixture analysis (MESMA; Roberts et al. 1998). MESMA has an 

advantage over SMA in that a subset of the total number of endmembers can be modeled 

for each pixel, rather than using a linear combination of all endmembers. Three steps are 

used to arrive at the endmember proportions (Powell and Roberts 2010). The first step 

constructs a library of endmembers. For each endmember, the reflectance values from 
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satellite images are recorded for each band. Finding representative endmembers can be 

accomplished using reflectance values from a known spectral library or gathered from 

within the image by selecting ‘pure’ pixels (i.e., pixels that are made up almost entirely of 

a single endmember). The second step is to construct possible models of endmember 

combinations that best fit the known reflectance values at each pixel. To do this, the 

endmember proportions must equal 1, each endmember fraction must be constrained 

between 0 and 1, and the root mean square error (RMSE) cannot exceed a certain value 

(Powell and Roberts 2010). The final step is model selection. 

A pixel purity index (PPI; Boardman et al. 1995) finds meaningful endmembers 

and was used to construct an endmember library for this study. Over one hundred 

possible endmembers were reduced to three primary V-I-S categories, using methods 

developed by Dennison and Roberts (2003). Vegetation endmembers were selected 

mainly from areas of tree canopy (1988 n=5, 2013 n=23). Impervious surface 

endmembers were selected from roads, hard packed dirt tracks, buildings, and desert hard 

scrabble (1988 n=7, 2013 n=16). Finally, soil was selected from exposed organic soils in 

the cloud forest and coastal alluvium (1988 n=4, 2013 n=4). To arrive at our final 

models, we used a four endmember model (V-I-S + shade) and set the RMSE to 0.25. 

Any pixels that could not meet the RMSE criteria were masked from our analysis, along 

with water pixels and shaded regions. 

Since there is no test to determine the statistical significance for the vegetation 

fraction, we identified systematic areas of increase and decrease in this fraction by 

searching for statistically significant spatial clusters. We determined significant spatial 

clusters by using local indicators of spatial association (LISA; Anselin 1995), which 



96 
 

organizes pixels of high vegetation fraction (vegetation fraction gains) and pixels of low 

vegetation fraction (vegetation fraction losses) into clusters. LISA statistics help 

breakdown the global Moran’s I test for spatial autocorrelation into local components. 

These local components can be interpreted as spatial clusters or hot spots. The clusters 

are tested for significance by using a conditional permutation framework. 

 

4.4.3 Time Series Analysis 

One advantage of regularly collected NDVI observations is that these data can be 

analyzed using the dynamics of the system over time. The dynamics can be associated 

with the mean value observed throughout the year, or the highest value observed, and so 

on. Trend analysis was used to determine if key NDVI time series were increasing or 

decreasing with time, providing a proxy of ecosystem health (Bai et al. 2008; Hilker 

2014). An increase in the trend (positive slope) indicates an NDVI value is getting 

stronger with time and implies that net primary production may be increasing. A 

decreasing trend (negative slope) indicates and implies the opposite. 

Before the trend can be estimated, the yearly observations need to be modeled so 

that key parameters can be extracted. We used the seasonal trend analysis methods 

outlined in Eastman and others (2009; 2013) to model the mean annual NDVI (referred to 

as Amplitude 0) and the NDVI annual cycle (referred to as Amplitude 1). The Amplitude 

1 signal is the difference between the minimum and maximum NDVI observations 

(Eastman et al. 2013), whereas Amplitude 0 is an average of the annual NDVI signal. 

These two observations are extracted by using a harmonic regression to model the yearly 

NDVI cycle. A Theil-Sen median slope is then calculated on the Amplitude 0 and 1 
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values for each year. This median slope calculation is robust and can reliably estimate the 

trend slope even in the presence of noise and outliers (Theil 1950, Sen 1968). Up to 29% 

of the observations can be outliers. Once the slope is calculated, a Mann-Kendal test for 

trend significance is created along with z-values, of which we used the z-values to help 

determine statistical significance. The NDVI observations were obtained from the 

MODIS 16-day NDVI product at 250 m resolution for the years 2001 to 2013 (MODIS 

tile 23 horizontal, 7 vertical). 

 

4.5 Results 

4.5.1 Transition Matrix 

Considerable change in the environment of the cloud forest is revealed (Figure 

2.1). Trees had a net loss of about 23,165 ha, and coastal alluvium about 13,469 ha. In 

contrast, roads gained about 12,535 ha, the built environment increased by about 9,157 

ha, and grass and shrub covers had a net gain of 15,147 ha and 59 ha, respectively. But, 

the net gains in shrubs and grasses mask a more complex exchange between land covers. 

Tables 4.2 and 4.3 show the transition matrix and a matrix of systematic gains and 

losses. According to these matrices, a few land covers systematically transitioned to other 

land covers. Despite the large net loss in cover, trees are systematically losing coverage 

to only one other land-cover category, shrubs. About 4% of the landscape transitioned 

this way (Table 4.2), barely above what was expected from random chance (Table 4.3). 

Forest covers resisted transition to roads or the built environment. Only about 0.45% of 

the landscape underwent a transition from trees to roads, and even less to the built 

environment (0.06%), both well within the expected ranges. 
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Figure 4.1: Land-cover change between 1988 and 2013. 

 

Two land-cover transitions offered some support that infrastructure was driving at 

least moderate change. Coastal alluvium lost cover to roads or the built environment 

(about 4.5% of the total landscape), a result well beyond expectations (Table 4.3) and a 

product of peri-urban expansion. Grass cover also transitioned to road cover above 

expectations, occurring mainly in the cloud forest. 

The structure of environmental change is registered in the transitions from trees to 

shrubs, shrubs to grass, and grass to roads (Tables 4.2 and 4.3). The transition of trees to 

shrubs and shrubs to grass hints at a gradual change in vegetation cover as opposed to the 

transition of grass to roads, a more abrupt type of change. Tree and shrub covers that 

converted to road covers between 1988 and 2013 comprised only about 1% of the 
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landscape (0.45% and 0.52%, respectively), which was below the expectations for trees 

and close to the expected transition for shrubs. 

 

Table 4.2: Transition Matrix -rows represent land covers from 1988 and columns are 

2013. Diagonal values show persistence. Off-diagonal cells show observed and expected 

transitions from row to column. The observed transitions are in bold, expected losses in 

italics, and expected gains are in normal font. Values are in terms of percent of landscape 

 2013 
DGP W CA Ag Gr Tr Shr Rd BE Total Gross 

Losses 

1
9
8
8
 

DGP 0.33 0.00 

0.00 

0.00 

0.00 

0.02 

0.01 

0.00 

0.00 

0.00 

0.09 

0.05 

0.05 

0.01 

0.05 

0.00 

0.01 

0.02 

0.03 

0.06 

0.02 

0.03 

0.00 

0.01 

0.02 

0.50 

0.50 

0.47 

0.17 

0.17 

0.14 

W 0.00 

0.00 

0.00 

0.53 0.06 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.02 

0.06 

0.00 

0.02 

0.00 

0.00 

0.01 

0.03 

0.01 

0.01 

0.04 

0.01 

0.00 

0.02 

0.61 

0.61 

0.70 

0.08 

0.08 

0.17 

CA 0.02 

0.03 

0.01 

0.11 

0.05 

0.02 

12.77 0.07 

0.06 

0.04 

0.01 

2.11 

1.87 

0.04 

1.95 

0.12 

0.84 

0.73 

0.92 

2.53 

0.62 

1.13 

1.93 

0.31 

0.69 

18.32 

18.32 

17.57 

5.56 

5.56 

4.80 

Ag 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.04 

0.01 

0.66 0.01 

0.08 

0.09 

0.00 

0.07 

0.01 

0.00 

0.03 

0.05 

0.13 

0.02 

0.06 

0.10 

0.01 

0.03 

0.92 

0.92 

0.91 

0.26 

0.26 

0.25 

Gr 0.01 

0.01 

0.02 

0.00 

0.02 

0.03 

0.00 

0.40 

0.35 

0.00 

0.03 

0.06 

23.90 0.13 

0.82 

0.16 

0.08 

0.31 

1.30 

1.57 

0.26 

1.61 

0.33 

0.13 

0.98 

26.01 

26.01 

28.41 

2.12 

2.12 

4.51 

Tr 0.02 

0.05 

0.02 

0.01 

0.08 

0.05 

0.05 

1.75 

0.49 

0.00 

0.11 

0.08 

3.93 

3.88 

3.69 

28.18 3.47 

1.35 

1.81 

0.45 

1.15 

2.24 

0.06 

0.57 

1.36 

36.17 

36.17 

37.92 

8.00 

8.00 

9.74 

Shr 0.01 

0.02 

0.01 

0.00 

0.03 

0.01 

0.77 

0.69 

0.15 

0.01 

0.04 

0.02 

2.78 

1.54 

1.10 

0.24 

1.42 

0.07 

6.34 0.52 

0.46 

0.67 

0.11 

0.23 

0.40 

10.77 

10.77 

8.77 

4.44 

4.44 

2.43 

Rd 0.00 

0.01 

0.00 

0.00 

0.01 

0.01 

0.20 

0.01 

0.07 

0.05 

0.01 

0.01 

0.16 

0.50 

0.52 

0.03 

0.46 

0.03 

0.04 

0.18 

0.25 

3.55 

 
1.05 

0.07 

0.19 

5.08 

5.08 

4.63 

1.54 

1.54 

1.09 

BE 0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.07 

0.08 

0.02 

0.08 

0.01 

0.00 

0.06 

0.19 

0.16 

0.00 

0.17 

0.16 

0.02 

0.07 

0.08 

0.36 

0.06 

0.10 

1.00 1.60 

1.60 

1.38 

0.60 

0.60 

0.38 

Total 0.40 

0.45 

0.40 

0.67 

0.73 

0.67 

13.94 

15.99 

13.88 

0.88 

0.92 

0.88 

30.95 

32.27 

30.95 

28.63 

33.15 

28.63 

10.79 

9.03 

10.79 

9.17 

6.14 

9.17 

4.58 

2.34 

4.58 

100.0 

 
22.75 

 

Gross 

gains 
0.07 

0.12 

0.07 

0.13 

0.20 

0.13 

1.17 

3.22 

1.17 

0.22 

0.26 

0.22 

7.05 

8.37 

7.55 

0.45 

4.97 

0.40 

4.46 

2.69 

4.46 

5.62 

2.59 

5.62 

3.58 

1.34 

3.70 

22.75 
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Table 4.3: Systematic gains and losses. Systematic losses are in bold, systematic gains in 

italics. Positive values indicate that the land cover for that row is prone to loss/gain to the 

land cover in the column. Negative values indicate resistance to loss or gain. Values are 

in percent of landscape. * indicates the highest systematic gains or losses 

 DGP W CA Ag Gr Tr Shr Rd BE 

DGP 0.33 0.00 

0.00 

-0.02 

0.00 

0.00 

0.00 

0.04 

0.04 

-0.04 

0.00 

-0.01 

-0.02 

0.05 

0.03 

-0.01 

-0.02 

W 0.00 

0.00 

0.53 0.05 

0.05 

0.00 

0.00 

-0.02 

-0.06 

-0.02 

0.00 

-0.01 

-0.03 

0.00 

-0.03 

0.00 

-0.02 

CA -0.01 

0.01 

0.06 

0.08 

12.77 0.01 

0.03 

-2.09 

-1.86 

-1.91 

-0.08 

0.11 

-0.07 

1.91* 

1.40* 

1.61* 

1.24* 

Ag 0.00 

0.00 

0.00 

0.00 

-0.02 

0.01 

0.66 -0.07 

-0.09 

-0.07 

-0.01 

-0.03 

-0.05 

0.11 

0.07 

0.09 

0.07 

Gr 0.00 

-0.01 

-0.02 

-0.03 

-0.40 

-0.35 

-0.02 

-0.06 

23.90 -0.69 

-0.03 

-0.23 

-1.22 

1.31* 

-0.04 

0.19 

-0.65 

Tr -0.03 

0.00 

-0.07 

-0.04 

-1.70 

-0.44 

-0.11 

-0.08 

0.06 

0.24 

28.18 2.12* 

1.66* 

-0.70 

-1.79 

-0.51 

-1.30 

Shr -0.01 

0.00 

-0.03 

-0.01 

0.07 

0.62* 

-0.03 

-0.01 

1.24* 

1.68* 

-1.18 

0.18 

6.34 0.06 

-0.15 

-0.12 

-0.29 

Rd 0.00 

0.00 

-0.01 

0.00 

-0.03 

0.13 

0.04 

0.04 

-0.34 

-0.35 

-0.44 

0.00 

-0.14 

-0.22 

3.55 0.98* 

0.86* 

BE 0.00 

0.00 

0.01 

0.01 

-0.01 

0.05 

0.08 

0.08 

-0.13 

-0.11 

-0.17 

-0.01 

-0.05 

-0.06 

0.30 

0.26 

1.00 

 

4.5.2 Subpixel (MESMA) 

Figure 4.2 shows the vegetation fraction difference between 1988 and 2013. 

Visual interpretation reveals areas of decreasing vegetation fractions around the northern 

and eastern portions of the cloud forest, as well as areas to the east of Salalah. Some areas 

show increasing fraction, mainly in the forested areas of Jabal Qamar in the west and 

parts of Jabal Qamar in the central part of the cloud forest. There is also increasing 

vegetation fractions in eastern sections of the cloud forest. 

Figure 4.3 displays the number of pixels that are increasing in vegetation fraction 

(> 10%), decreasing in fraction (< -10%), or constrained between 10% and -10% fraction. 
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More pixels are decreasing in vegetation fraction than those that are increasing or are 

constrained between -10% and 10%.  

 

  
Figure 4.2: Vegetation Fractions derived from MESMA analysis. 

 

 
Figure 4.3: Vegetation fraction bar chart showing the number of pixels that went through 

a -10% or less decrease in fraction, pixels constrained between -10% and 10%, and 

greater than 10% increase in vegetation fraction. 

 



102 
 

Figure 4.4 illustrates the results of the LISA analysis. Two types of spatial 

clusters were highlighted: high-high and low-low. The high-high clusters are areas where 

pixels of increasing woody plant vegetation (i.e., vegetation fraction) are surrounded by 

other pixels of increasing woody plant vegetation. Low-low clusters are the opposite. The 

LISA analysis has the benefit of showing only statistically significant clusters, which 

helps to isolate areas where increasing or decreasing fractions are prevalent. Jabal Qamar, 

in the western part of the study area, has witnessed spatially consistent increases in 

fractions, while areas in the eastern portions of Jabal Qara show a number of pixels of 

decreasing vegetation fractions. Just west of this area, in the interior area of Jabal Qara’s 

eastern half, the vegetation fractions appear to have increased. The western part of 

Salalah has increased vegetation fractions, while the eastern portion of the city has 

consistently decreased in this fraction.  

 

Figure 4.4: Spatial clusters of the vegetation fraction – only significant spatial clusters of 

high-high values and low-low values are presented. High-high clusters are pixels of 

increasing vegetation fraction located near other pixels of increasing vegetation fraction, 

while low-low clusters are decreasing in vegetation fraction. 
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4.5.3 Time Series Analysis 

The results of the time series analysis are shown in Figures 4.5 and 4.6. Areas 

around Salalah and to the west of the city maintain large pockets of statistically 

significant decreasing trends in the mean annual NDVI (Amplitude 0, Figure 4.5), as well 

as some areas to the east of the city. There are only a few small pockets of pixels that 

show statistically significant increasing trends in Amplitude 0.  

For Amplitude 1, that is, the difference between the minimum and maximum 

NDVI values (Figure 4.6), pockets of significantly increasing or decreasing trends were 

generally fewer than those found for Amplitude 0. The areas that showed decreasing 

Amplitude 1 trends seem to have occurred mainly around Salalah, while increasing trends 

appear to be occurring at several small areas in the cloud forest.  
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Figure 4.5: Amplitude 0 (annual mean NDVI) trend analysis results. The top map shows 

the slope of the trend as changes in average NDVI per year (MODIS NDVI = NDVI x 

10000). The bottom map shows the z-values used to measure significance (greater than 

1.96 or less than -1.96). 
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Figure 4.6: Amplitude 1 (difference between peak and minimum yearly NDVI) trend 

analysis results. The top map shows the slope of the trend as changes in peak NDVI per 

year (MODIS NDVI = NDVI x 10000). The bottom map shows the z-values used to 

measure significance (greater than 1.96 or less than -1.96). 
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4.6 Discussion 

4.6.1 Land Changes  

The analysis of vegetation fractions suggest there are complex changes occurring 

across the study area. Most of the cloud forest area examined witnessed a decrease in 

vegetation fraction or minimal change (Figure 4.3). Some areas of the cloud forest, 

however, actually increased in vegetation fractions, contradicting the local, prevalent 

notion of ubiquitous degradation or deforestation. Several explanations for this increase 

are plausible. Increased atmospheric CO2 has been shown to lead to greening in warmer, 

arid environments (Donohue et al. 2013)—a phenomenon referred to as the CO2 

fertilization effect. Dhofar is one region thought to be experiencing this effect (Figure 2 

in Donohue et al. 2013). Another possible reason is shrub encroachment, usually on 

grasslands (Asner et al. 2004) and associated with a disturbance to the ecosystem, such as 

fires or grazing (Anadón et al. 2014). In the case of Dhofar, shrub encroachment is 

generally associated with grazing, because the dominant and most abundant types of 

shrubs are those that are unpalatable to livestock (Miller and Morris 1988; Pickering and 

Patzelt 2008). Shrub encroachment can have different effects on an ecosystem - it may 

possibly lead to both increases and decreases in primary production (Eldridge et al. 

2011). Since the transition matrix does not show any systematic transitions between grass 

and shrub covers, the shrub encroachment is likely occurring at a level where grasses are 

still the dominant land cover, and where shrub encroachment could lead to an increase in 

the woody plant fraction (i.e., an increase in the vegetation fraction). 

Perhaps the most complex changes are those happening along the coast of Jabal 

Qamar. Here, there appears to be places that are increasing in vegetation fraction but 
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decreasing in the mean annual NDVI trend analysis (Amplitude 0). This counter-intuitive 

result may indicate a long-term increase in woody plant vegetation, but with decreasing 

health, which may be the result of a greening-browning process (de Jong et al. 2012; 

2013). Additional research and more time series observations will be needed to 

understand this process. 

A gross reduction in forest land covers comprising about 8% of the study area 

between 1988 and 2013, suggests that human activities, perhaps with minor climate 

changes (see below), have led to some deforestation. The widespread reductions in the 

vegetation fraction show that many parts of the cloud forest have undergone a greater 

than 10% reduction in woody plant fractions (Figure 4.2, 4.3, 4.4). The primary cause of 

deforestation and decrease in vegetation fraction is likely grazing. Grazing pressure has 

been noted in shrub distributions (Miller and Morris 1988, Pickering and Patzelt 2008), 

as we noted earlier, and previous research has shown that herd size has increased and 

grazing practices intensified since the 1970’s (Janzen 1986, 2000).  

The effects of over-grazing are known to cause desertification given the right 

climate conditions, such as decreasing or variable precipitation. Recent climate analyses 

of Dhofar have shown that temperatures are significantly increasing and precipitation is 

decreasing (not significant; Kwarteng et al. 2009; Alsarmi and Washington 2012). The 

IOM also appears to have changed, though the effects of this change are variable and 

only well understood over the Indian subcontinent (Kumar et al. 2011; Krishnan et al. 

2013; Krishnaswamy et al. 2014). In Dhofar, the IOM manifests primarily as fog that 

blankets the southern facing watershed divide and coastal plain, a mist not registered 

adequately in the local records. We can surmise, however, that the margins of the cloud 
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forest adjacent to the desert may be vulnerable to any variability in the monsoon cloud 

cover. Based on the LISA analysis (Figure 4.4), distinct clusters of decreased vegetation 

fraction occurred along these margins. If continued warming of the atmosphere leads to 

increased variability or decreased stability of the monsoon, then increased pressure from 

grazing could lead to further degradation in the future. The clusters of low-low vegetation 

fractions (Figure 4.4) are hotspots of potential desertification, and will thus need to be 

monitored over the long term. 

The time series analysis demonstrates that the most consistent decreases in the 

mean annual NDVI trend (Amplitude 0) occurred near Salalah, especially in the adjacent 

foothills of the Dhofar Mountains. The foothills benefit from the monsoon clouds and 

have a diverse collection of woody plants—a vital part of the cloud forest ecosystem. 

They are also home to a diverse array of trees and shrubs. One species in particular, 

Boscia Arabica, is threatened (Pickering and Patzelt 2008). The significant decreases in 

the mean annual NDVI trend (Amplitude 0) and the peak NDVI trend (Amplitude 1) 

around Salalah, apparently in its zones of expansion, suggests that pressure placed on 

foothills has resulted in significant decreases in vegetation health. This decrease in the 

NDVI trend coincides with the expansion of Salalah and neighboring suburbs and towns.  

Three phenomena might help explain why the expansion of Salalah and the 

vegetation health of the foothills and surrounding areas are so intertwined. First, demand 

for respite during the hot Arabian summer has led to tourists flooding into the region 

during the monsoon season. These tourists come from all parts of the Arabian Peninsula 

and speculation suggests that Oman will continue to grow its tourism sector with even 

more tourists expected in the future (Lefebvre 2010). The foothills, with their close 
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proximity to Salalah, are popular tourist attractions, which leaves them vulnerable to 

increasing human presence and infrastructure development. Another possible factor is the 

relocation of summer herding camps. During the summer monsoon season, camel herds 

are brought from the mountains to live on the coastal plains around Salalah until the 

heavy fog and mud brought on by the monsoon clears (Janzen 1986). As Salalah expands, 

these temporary encampments are pushed further to the margins of the city and closer to 

the foothills, which increase vehicle traffic and grazing in these areas (Janzen 2000). 

Finally, increased demand for housing in and around Salalah has led to the development 

of new urban and suburban areas that perpetuate the pressures on the environment.  

 

4.6.2 National Policies and Land Change in Dhofar 

Since various proximate human activities, foremost changes in herding practices, 

seem to be the primary mechanism changing the land covers of the cloud forest, attention 

to factors that precipitated changes in the activities is warranted.  The evidence points to 

policies generated by the Omani government as a response to the Dhofar War of 1970 to 

1975, an uprising by Yemini backed rebels against the Sultan of Oman’s armed forces 

and British Special Forces. These policies aimed to improve the livelihoods of the rural 

poor in the area, but had as an unforeseen consequence, in some cases, of increasing 

heard size and grazing intensity in Dhofar. 

A policy designed to provide easier access to water for herds was, perhaps, the 

most proximate cause to changes herding practices and land cover.  The government 

constructed 160 wells in the region, not only improving access to water but eliminating 

the need for lengthy excursions elsewhere to obtain it, thus concentrating herds for 
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intensive grazing.  Another important policy created a paid militia system, or firqat, 

providing an important supplementary income used by herders to help maintain and grow 

their herds, especially regarding the purchase of fodder required during the winter 

vegetation senesce. Fodder has been at various times subsidized, but families usually pay 

a non-trivial amount of money each year for fodder. As herd sizes increase, more fodder 

must be purchased, which can put considerable pressure on a family’s monthly budget 

(Janzen 2000). The firqat system is maintained today in part to help the local economy in 

general (Peterson 2004a), but it has also become an important part of herd maintenance.  

Finally, veterinary services were introduced during the Dhofar War and have 

subsequently been expanded. Before 1970, there were no such services available in 

Dhofar. Livestock diseases often led to fatalities or diminished animal lifespan, which 

served as an important check on livestock population. Begun by the British Special 

Forces (Hughes 2009; for a popular account see Higgins 2011) during the war and 

continued by the Omani government since, herders across the cloud forest today 

vaccinate their herds or have them medically treated when needed. By the 1980’s, the 

population of cattle, camel, and goats had tripled since the end of the war, and are 

thought to have increased even more since then (Janzen 2000). 

Changes to land tenure may also have played a role in land changes. 

Traditionally, pasture lands across Dhofar were grazed only in areas that were considered 

a part of a tribal boundary (Janzen 1986). New rules were developed for the entirety of 

the country that decreed all land under the ownership of the Omani national government 

(Janzen 2000 citing Omani Royal Decree 5/80, 3/83, and 81/84). According to Janzen 

(2000), there were two important outcomes of the nationalized land tenure decrees. First, 
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camel breeders, who formerly stayed on the fringes of the cloud forest, began to graze 

their herds on lands that traditionally belonged to cattle herders; they cited the 

nationalized land tenure policy as a rationale for this action. As part of these land tenure 

nationalization decrees, the government constructed buildings, schools, and mosques 

throughout the cloud forest. This development encouraged the formerly nomadic 

population to settle in one place in order to take advantage of the new benefits. As a 

result, grazing became more intensive and the traditional transhumance practice is 

undertaken mainly by camel herders. 

Infrastructure development was a key factor of land change in Dhofar, particularly 

around the City of Salalah.  The region received about 40% of government expenditures 

between 1988 and 2013, much of it for infrastructure development and related projects, 

despite only having about 10-25% of the population (Peterson 2004b).  More than 4% of 

the total study area was converted to urban use around Salalah and other parts of the 

coastal plain, and a deep water port was built just outside of Salalah, as well as a paved 

road from Salalah to Jabal Qamar (Calvin and Rigsbee 2000). Road development in the 

cloud forest led to transitions from grass, shrub, and forest covers to road covers. 

Beginning in the 1990’s, existing roads were improved and new roads were constructed 

between the coastal plain and the mountains. The new roads are intended to provide 

quicker access to the cloud forest or services in Salalah for those living in the mountains.  

 

4.6.3 Land Change Mitigation Factors 

While there have been notable changes to the environment of the cloud forest, 

common wisdom suggests there has been much more. Part of the reason may reside in 
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Oman’s import of key food staples and the subsequent impact on local cultivation. In the 

past, cultivation was more widespread in the cloud forest, possibly as late as the 1970’s 

(Janzen 1986). At some point after the 1970’s, cultivation was reduced primarily to small 

frankincense plots, walled areas for hay production, or reforestation plots. With Oman’s 

oil boom in the late 1960’s, there has been little need to expand cultivation for staple 

crops and may have led to a reduction in cropped land as the country imported most of 

these foods. Our results suggest little change in cropped land. Dhofar has a strong 

tradition of herding rather than farming, and, the critical staples of the Omani diet, like 

rice, are increasingly imported rather than grown locally. Imports of rice into Oman 

during 2012 totaled about $174 million (OEC 2015).  

 

4.7 Conclusion  

The Dhofar cloud forest and coastal plains have witnessed land changes over the 

25-year period of this study. These changes have been more complex than local, 

commonly expressed views of them entail. Systematic transitions have occurred between 

several types of land cover in the cloud forest, primarily tree cover to shrub cover, shrub 

cover to grass cover, and grass cover to road cover; while the coastal plains were 

systematically transitioning to road cover and the built environment. Vegetation fractions 

showed significant clusters of decreasing woody plant cover along the cloud forest 

margins and various parts of the coastal plain, and NDVI trend analysis indicates 

decreasing NDVI around the city of Salalah since 2001. These changes would appear to 

be linked primarily to changes in herding practices and road and peri-urban development, 

most of which are linked directly to changes in government policies directed to 
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developing the southern part of Oman.  Whether these policies have led to a path 

dependent outcome—land-cover trends that are difficult to reverse or alter—remains an 

open question.   
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Summary and Key Findings 

Chapters 2, 3, and 4 provide the first systematic treatment of vegetation patterns 

and changes in the Dhofar cloud forest, linking various potential drivers to the changes 

observed. The results show that an answer to the question “what drives environmental 

change in Dhofar’s cloud forest” is not easy to ascertain. It has long been thought that the 

environment in Dhofar is under stress from human and climatic influences. The studies 

presented in this dissertation attempt to unfurl the role of both influence and shed light on 

biodiversity across the cloud forest. 

Chapter 2 was a study of ISM dynamics and its effects on NDVI time series for 

the cloud forest in Dhofar. The findings of this chapter provide compelling evidence that, 

while the timing and severity of the monsoon is variable, the cloud forest vegetation is 

rather robust to these variations, showing only weak to moderate correlations with June 

precipitation, and the area under the curve (AUC) of monsoon maximum daily 

temperatures. One factor proposed to maintain a strong influence, length of the monsoon, 

did not show any meaningful relationship to vegetation dynamics. The strongest driver of 

vegetation dynamics was SST in the Arabian Sea. Based on a linear time series model, 

SST is about six to nine months out of phase with NDVI measurements in the cloud 

forest. Previous research has shown that the presence of cloud cover is a key determinant 

in lowering evapotranspiration and providing precipitation that is not accurately 

measured by rain gauges or in climate station archives (Hildebrandt 2005; Hildebrandt 
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and Eltahir 2006; Hildebrandt et al. 2007; Hildebrandt and Eltahir 2007). Chapter 2 

confirms the importance of cloud cover, both in determining the timing of the ISM and 

the importance it plays in shielding the vegetation from monsoon variation. While there is 

no evidence that climate changes have affected the cloud forest vegetation, a potential 

vulnerability exists: any destabilization of the upwelling that leads to cloud formation 

over southern Arabia could cause problems for the cloud forest.   

Chapter 3 describes the vegetation diversity of the Dhofar cloud forest, and 

reconciles three possible mechanisms of biodiversity: (H1) neutral processes, (H2) 

biological interactions, and (H3) environmental gradients. Th biological interactions 

hypothesis has the most support in terms of explaining biodiversity. A cluster analysis 

showed two dominant groups of tree and shrub species in the cloud forest. A further 

analysis of species abundances shows that A. dhofarica and Commiphora spp. make-up 

almost 50% of the overall relative abundances in forested areas, and C. procera, 

Commiphora spp., and S. incanum make-up about 42% of relative species abundances in 

grassland areas. Species abundances (especially A. dhofarica and Commiphora spp.) 

suggest that the biogeographical history has played a role in today’s biodiversity patterns 

in the forested areas. The cloud forest is a remnant of an ancient forest that developed 

during the Tertiary, and was thought to spread across the modern pan-Indian ocean 

region. Today, the endemic and non-endemic species that comprise the cloud forest show 

strong affinities with plant communities in Africa and India. The fact that these same 

species dominate the cloud forest’s biodiversity patterns suggests that the Dhofar 

Mountains are an important refuge, and will be so for a long time to come. The 

grasslands show signs of human influence; the proliferation of C. procera and S. incanum 
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are a testament to the prevalence of livestock. These two species are known to be 

poisonous to livestock and thrive in areas where grazing is common, suggesting that 

human activities play a strong role in shaping biodiversity patterns as well.  

Using a variety of methods to understand the extent of human influence on the 

environment, Chapter 4 shows that the Dhofar War has a strong legacy in transforming 

land use and thus land cover of the cloud forest and coastal region. The link between the 

Dhofar War and the environment is strongest in certain policies. Foremost among these 

are investments made in Dhofar’s infrastructure and several policies put in place to 

improve the well-being of local inhabitants. The decision to invest heavily in Dhofar was 

a necessary compromise to end the war and cement the union between Dhofar and the 

rest of Oman. These policies helped to increase herd size, which eventually led to 

overgrazing and about 23,000 ha of deforestation. The infrastructure investments led to 

an additional 124 km2 of buildings and roads added to the city of Salalah between 1988 

and 2013. The impact of these new roads and urban development has been widespread 

and signs of stress to the coastal land cover are commonplace, particularly in the 21st 

century. Dhofar is now an example of the trade-off between human well-being and 

environmental degradation. 

 

5.2 Reconciling the Role of Humans and Climate as Agents of Change 

What role does climate and human impacts have on changing the cloud forest? 

The answer to this question appears clearer based on the finding from Chapters 2, 3, and 

4. While the monsoon varies from year to year, the strongest evidence for the cause of 

environmental change points toward human activities. The evidence from a land change 
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model between 1988 and 2013, plus the MESMA and NDVI time series analyses point to 

one conclusion: humans are actively transforming the environment in Dhofar. While 

others have predicted the role of humans as an agent of change within Dhofar’s cloud 

forest (Janzen 1986), the results in this dissertation provide the first quantitative evidence 

for this to date.  

Understanding the role of humans in transforming the environment in Dhofar 

would not have been possible without a thorough examination of the climate. Global 

change research encompasses many different fields of inquiry. As researchers bring 

specialized knowledge to bear on environmental change problems, it is critical that the 

various threads of change be delineated and defined. Climate change has already 

transformed the Earth system, and will continue to do so for some time to come. Human 

activities have also transformed the Earth system through such activities as deforestation, 

land degradation, and urbanization. As this dissertation has demonstrated, claims about 

the cause of change require a thorough examination to decipher the actual role of climate 

and human modification.  

Common wisdom in Dhofar suggests that the monsoon was changing and with it 

the environment. Common wisdom also suggests that grazing and development caused 

deforestation and land degradation. Before either of these claims could be examined in 

detail, it was necessary to reconcile each with a dedicated study. While Chapters 2, 3, and 

4 show that human activity is largely responsible for the land cover changes identified.  

Perhaps over the longer-haul, global warming will affect the deep ocean layers of water 

and thus the circulation that drives the monsoon. For now, however, this change has a 

human imprint.  
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Framing questions of environmental change to incorporate the range of possible 

drivers and feedbacks requires both a global and local perspective (Harden 2012). 

Systemic changes to the Earth system can have local effects (i.e., climate changes), and 

local environmental changes (i.e., land use and covers) can accumulate and work as an 

aggregate force of change to the Earth system (Turner et al. 1990). This study sought to 

navigate between the systemic and cumulative attributes of environmental change, 

seeking which has had the most impact of the Dhofar cloud forest, within insights that 

may prove useful for other monsoon driven cloud forests in arid lands.  

 

5.3 Contributions to Scientific Knowledge 

This dissertation offers three broad contributions to research and outreach. First, it 

contributes to the efforts of land system science to monitor and understand land-cover 

changes, especially of sensitive ecosystems (Turner et al. 2007). In this case, this study 

demonstrates how to employ multiple platforms and sensors to detect and understand 

changes and the role of climate variability on vegetation dynamics.  Second, it provides 

foundational data of interest to local decision makers and environmental-sustainability 

organizations interested in the preservation of the Dhofar cloud forest and the 

environmental services it provides. Lastly, this research offers perspectives on 

biodiversity and broader forces of land-cover change. 

Most research on the ISM is studied through the lens of the Indian subcontinent. 

There have been few studies that address the ISM over southern Arabia, and fewer still 

that address the relationship between the monsoon and the cloud forest. Chapter 2 is the 

first study of its kind to attempt to develop a model of the timing of the monsoon over the 
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Arabian Peninsula. This chapter also develops a time series model of monsoon and 

vegetation dynamics. Cloud forests have been shown to be important centers of 

endemism and biodiversity. Chapter 2 contributes to knowledge about cloud forests by 

showing that they are robust to most climate fluctuations, with the exception of cloud 

cover and fog moisture. As such, the study of cloud forests and climate change should 

focus on how climate changes may affect the mechanisms of cloud formation and how 

this can be affected by future climate changes. 

The analysis of cloud forest trees and shrubs in Chapter 3 offers interesting 

findings on how biological interactions can lead to dominance by a few species in cloud 

forest biodiversity. Perhaps what is most intriguing about this study is that both forests 

and grasslands show dominance by a small group of species, but possibly for different 

reasons. The study suggests that humans drive biodiversity patterns in the grasslands, 

while biogeographical history drives diversity in the forested areas. Few, if any studies, 

have suggested such when looking at a cohesive ecosystem. 

Finally, the three models developed to study land change in Dhofar show how 

multiple methods can be combined to study how humans are altering landscapes. 

Commonly, land change is studied through the lens of a single model. But as Chapter 4 

demonstrates, a subpixel analysis (MESMA), a land change model (the transition model), 

and time series analysis can be combined to study the way various aspects of an 

environment are changing. This study also details how national policies following the 

Dhofar War in the 1970’s influence development patterns, and ultimately land change.  

Thus, it joins others in indicating how “distal” drivers operate on land use and thus land 

cover. Specifically, this study hints that there will be significant difficulties implementing 
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policies to mitigate overgrazing and deforestation in the Dhofar cloud forest because the 

very policies that increase human well-being have led to environmental degradation.  
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APPENDIX A 

DETAILS OF THE CANONICAL CORRESPONDENCE ANALYSIS CONDUCTED 

IN CHAPTER 3 
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Table A.1: Variables used in the CCA analysis to determine the relationship between 

species abundances, sample points, and environmental/climatic variables 

Variable Short Name Source 

Mean temperature of the driest 

month 

T_dry_9 Worldclim (Hijmans et al. 2006) 

Mean temperature of the 

wettest month 

T_wet_8 Worldclim 

Maximum temperature of the 

warmest month 

MaxTwar5 Worldclim 

Minimum temperature of the 

coldest month 

MinTcol6 Worldclim 

Average yearly temperature AvgT_yr1 Worldclim 

Precipitation seasonality Prc_season  

Isothermality  Worldclim 

Preciptiation of the driest 

month 

Prc_dry Worldclim 

Precipitation of the wettest 

month 

Prc_wet Worldclim 

Precipitation of the wettest 

quarter 

Prc_wetq Worldclim 

Precipitation of the driest 

quarter 

Prc_dryq Worldclim 

Precipitation of the warmest 

quarter 

Prc_warmq Worldclim 

Precipitation of the coldest 

quarter 

Prc_coldq Worldclim 

Annual precipitation Ann_prcp Worldclim 

Slope Slope SRTM DEM (90 m) 

Northness (Aspect) Northness SRTM DEM (90 m) 

Eastness (Aspect) Eastness SRTM DEM (90 m) 

Hydrology Hydro1k SRTM DEM (90 m) 

 

 

Table A.2: Study area - Variable scores and their significances used in the CCA analysis 

of all 102 sample points.  Significance is estimated using 9999 permutations of an 

ANOVA test. The leading variable for each axis is in bold 

Variable CCA1 CCA2 CCA3 CCA4 CCA5 

Slope 0.1288 0.343 -0.736 0.1184 0.55722 

T_dry_9 0.7262 0.2867 -0.3349 0.02698 -0.52703 

T_wet_8 -0.2287 0.6252 -0.343 -0.64644 -0.14578 

Prc_wetq 0.5418 0.397 0.6932 -0.24323 0.09399 

MaxTwar5 -0.8219 0.4146 -0.2195 0.32261 0.01056 

Significance 0.0001 0.0001 0.0017 0.0028 0.7627 
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Table A.3: Forest - Variable scores and their significances used in the CCA analysis of 

all forest sample points (n=36).  Significance is estimated using 9999 permutations of an 

ANOVA test. The leading variable for each axis is in bold 

Variable CCA1 CCA2 CCA3 

Prc_wetq 0.007851 -0.101 0.9949 

MaxTwar5 -0.93075 -0.2033 -0.304 

Prc_warmq -0.53835 0.5811 0.6102 

Significance 0.0001 0.0121 0.1553 

 

Table A.4: Grassland - Variable scores and their significances used in the CCA analysis 

of the all grassland sample points (n=59).  Significance is estimated using 9999 

permutations of an ANOVA test. The leading variable for each axis is in bold 

Variable CCA1 CCA2 CCA3 CCA4 CCA5 

Slope -0.1453 0.01666 -0.06292 -0.8638 -0.47847 

T_dry_9 0.5668 0.19338 0.08538 -0.3537 0.71424 

Prc_wetq 0.8328 0.16872 -0.41794 0.3079 0.0897 

MinTcol6 -0.4414 -0.06332 -0.65738 -0.4787 0.37364 

Prc_dryq 0.9186 -0.35742 0.11836 0.1199 0.01416 

Significance 0.0001 0.0001 0.0195 0.1208 0.7843 

 
 

 

  



144 
 

APPENDIX B 

DETAILS OF THE CLUSTER ANALYSIS CONDUCTED IN CHAPTER 3 
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Figure B.1: Silhouette plot showing outliers and relative strength of the clusters identified 

in the cluster analysis.  The far right column contains the number of sample points in a 

cluster (nj) and the silhouette width (si).  si is interpreted similarly to a correlation 

coefficient.  Anything to the left of 0.0 is considered an outlier. The R package ‘vegan’ 

was used to determine the clusters and produce the figure. 
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Table B.1: Breakdown of each cluster group and the number of sample points from the 

grassland, forest, and foothills that are represented in each cluster group. 

 Number of sites per cluster  

 Grassland Forest Foothills  

Cluster 1 25 1 1  

Cluster 2 11 23 0  

Cluster 3 2 7 2  

Cluster 4 18 5 0  

Cluster 5 3 0 4  

Total 59 36 7 102 

 

 

 

 

 


