
Protecting Identity and Location Privacy in Online Environment

by

Xinxin Zhao

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2015 by the
Graduate Supervisory Committee:

Guoliang Xue, Chair
Gail-Joon Ahn
Dijiang Huang
Yanchao Zhang

ARIZONA STATE UNIVERSITY

August 2015

ABSTRACT

The recent years have witnessed a rapid development of mobile devices and smart devices.

As more and more people are getting involved in the online environment, privacy issues

are becoming increasingly important. People’s privacy in the digital world is much easier

to leak than in the real world, because every action people take online would leave a trail of

information which could be recorded, collected and used by malicious attackers. Besides,

service providers might collect users’ information and analyze them, which also leads to

a privacy breach. Therefore, preserving people’s privacy is very important in the online

environment.

In this dissertation, I study the problems of preserving people’s identity privacy and loca-

tion privacy in the online environment. Specifically, I study four topics: identity privacy

in online social networks (OSNs), identity privacy in anonymous message submission, lo-

cation privacy in location based social networks (LBSNs), and location privacy in location

based reminders. In the first topic, I propose a system which can hide users’ identity and

data from untrusted storage site where the OSN provider puts users’ data. I also design a

fine grained access control mechanism which prevents unauthorized users from accessing

the data. Based on the secret sharing scheme, I construct a shuffle protocol that disconnects

the relationship between members’ identities and their submitted messages in the topic of

identity privacy in anonymous message submission. The message is encrypted on the mem-

ber side and decrypted on the message collector side. The collector eventually gets all of

the messages but does not know who submitted which message. In the third topic, I pro-

pose a framework that hides users’ check-in information from the LBSN. Considering the

limited computation resources on smart devices, I propose a delegatable pseudo random

function to outsource computations to the much more powerful server while preserving

privacy. I also implement efficient revocations. In the topic of location privacy in location

i

based reminders, I propose a system to hide users’ reminder locations from an untrusted

cloud server. I propose a cross based approach and an improved bar based approach, re-

spectively, to represent a reminder area. The reminder location and reminder message are

encrypted before uploading to the cloud server, which then can determine whether the dis-

tance between the user’s current location and the reminder location is within the reminder

distance without knowing anything about the user’s location information and the content of

the reminder message.

ii

Dedicated to my husband Lingjun and my family

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Guoliang Xue for

his continuous support and guidance of my study and research at Arizona State University,

and for his patience, motivation, enthusiasm, and immense knowledge. The guidance,

encouragement, and academic freedom that he has given me help me all the time of research

and writing of this dissertation. I could not have imagined having a better advisor and

mentor for my Ph. D. study.

I would like to thank my dissertation committee members, Dr. Gail-Joon Ahn, Dr. Dijiang

Huang, and Dr. Yanchao Zhang for their insightful advise and comments. I have been

honored to co-author with, Lingjun Li, Dr. Gail-Joon Ahn, Dr. Huan Liu, Huiji Gao,

and Gabriel Silva, Their unselfish help, insights, and feedbacks helped me improve my

knowledge in the area. I am also grateful to my colleagues and friends: Dejun Yang, Xi

Fang, Xinhui Hu, Xiang Zhang, Vishnu Kilari, Ruozhou Yu, Ziming Zhao, Lei Liu, Yan

Wu, Yiming Jing, Qiang Zhang, and Yashu Liu for their friendship and care, which helped

me survive through these years.

Finally and most importantly, none of my achievement would have been possible without

the love and patience of my huaband and my family. My most sincere thanks go to my

huaband Lingjun Li for his endless support and love during the past six years. I am very

thankful to my parents, Xia Chen and Xuewu Zhao, for their dedication and unconditional

support throughout my life.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

1.1 Overview and Contributions . 3

1.1.1 Identity Privacy in Online Social Networks 3

1.1.2 Identity Privacy in Anonymous Message Submission 4

1.1.3 Location Privacy in Location Based Social Networks 6

1.1.4 Location Privacy in Location Based Reminders 7

I Identity Privacy . 9

2 Identity Privacy in Online Social Networks . 10

2.1 Related Work . 12

2.2 Problem Formulation . 13

2.2.1 System Model . 13

2.2.2 Threat Model . 14

2.2.3 Security Objectives . 14

2.3 System Overview . 16

2.4 Technical Preliminaries . 17

2.4.1 Bilinear Map . 17

2.4.2 Complexity Assumptions . 17

2.4.3 Broadcast Encryption . 19

2.4.4 Signature Scheme . 19

2.4.4.1 AL Signatures Scheme 20

2.4.4.2 Credential Signature Scheme 20

v

CHAPTER Page

2.4.5 Zero-Knowledge Proof . 20

2.5 Construction of System . 22

2.6 Security Analysis . 26

2.7 Performance Evaluation . 35

2.8 Conclusions . 36

3 Identity Privacy in Anonymous Message Submission 38

3.1 Related Work . 41

3.2 Problem Formulation . 43

3.2.1 Network Model . 43

3.2.2 Threat Model . 44

3.2.3 Security Objectives . 45

3.3 Secret Sharing Schemes . 47

3.4 Preludes to Protocol Construction . 49

3.4.1 Protocol Overview . 49

3.4.2 Anonymous Data Aggregation . 51

3.5 Anonymous Message Submission Protocol 52

3.6 Analysis of AMS Protocol . 59

3.6.1 Security . 59

3.6.1.1 Anonymity . 59

3.6.1.2 Integrity . 63

3.6.1.3 Confidentiality . 63

3.6.1.4 Accountability . 64

3.6.2 Efficiency . 65

3.6.2.1 The Success Probability in Phase 1 65

3.6.2.2 Communication Rounds 67

vi

CHAPTER Page

3.7 Bulk Protocol . 67

3.8 Performance Evaluation . 70

3.9 Conclusions . 76

II Location Privacy . 78

4 Location Privacy in Location Based Social Networks 79

4.1 Related Work . 81

4.1.1 Location Privacy . 81

4.1.2 Searchable Encryption . 83

4.2 Problem Formulation . 84

4.2.1 System Model and Threat Model 84

4.2.2 Design Goals . 85

4.3 Technical Preliminaries . 85

4.3.1 Pseudo Random Functions . 85

4.3.2 Session Key Management Scheme 86

4.4 Construction of Our Framework . 87

4.4.1 Overview of Our Framework . 87

4.4.2 Delegatable Pseudo Random Function 89

4.4.3 Index Structure . 89

4.4.4 Hash Chain based Session Key Generation Scheme 92

4.4.5 The Construction of Our Framework 93

4.5 Analysis of Our Framework . 99

4.5.1 Location Privacy . 99

4.5.2 Other Attacks . 102

4.6 Evaluation . 103

4.7 Conclusions . 107

vii

CHAPTER Page

5 Location Privacy in Location Based Reminders 108

5.1 Related Work . 112

5.1.1 Location Privacy . 112

5.1.2 Searchable Encryption . 114

5.2 Problem Formulation . 115

5.2.1 System Model and Threat Model 115

5.2.2 Design Goals . 116

5.3 Technical Preliminaries . 117

5.3.1 Pseudo Random Function . 117

5.3.2 Hashing onto A Group . 118

5.3.3 Searchable Symmetric Encryption 119

5.4 Tessellation on the Surface of the Earth . 120

5.5 Toward Private Location Search . 120

5.6 Cross based Approach . 123

5.6.1 Cross Based Area Representation 123

5.6.2 Constructions . 126

5.6.3 Late Reminding . 129

5.6.4 Discussions . 130

5.7 Security Analysis . 132

5.8 Bar based Approach . 135

5.8.1 Bar Based Area Representation . 136

5.8.2 Bloom Filter For Private Location Search 138

5.8.3 Constructions . 139

5.9 Analysis . 142

5.10 Simulation . 144

viii

CHAPTER Page

5.11 Conclusions . 152

6 Conclusions and Future Work . 153

6.1 Conclusions . 153

6.2 Future Work . 154

REFERENCES . 157

ix

LIST OF TABLES

Table Page

4.1 Main notations . 87

5.1 Overhead Comparison . 143

x

LIST OF FIGURES

Figure Page

2.1 Initialization Protocol . 23

2.2 Joining in A Group Protocol . 23

2.3 Uploading Data Protocol . 24

2.4 Retrieving Data Protocol . 26

2.5 Running Time . 37

3.1 Data Aggregation . 52

3.2 Application Phase . 54

3.3 Encryption Phase . 55

3.4 Anonymization Phase . 56

3.5 Verification phase . 56

3.6 Decryption phase . 57

3.7 Blame phase . 58

3.8 Message extractor generation phase . 68

3.9 Message extractor distribution phase . 68

3.10 Data transmission phase . 69

3.11 Message reconstruction phase . 69

3.12 Blame phase . 69

3.13 The distribution of needed rounds in Application 71

3.14 Protocol computational overhead . 72

3.15 Protocol execution time . 74

3.16 Bulk performance using AMS . 75

4.1 Index structure . 90

4.2 Check-in protocol . 94

4.3 Search protocol . 95

xi

Figure Page

4.4 Constructing an online search . 96

4.5 Revocation protocol . 97

4.6 Join protocol . 98

4.7 Performance of the hash chain . 104

4.8 Delegatable PRF . 105

4.9 Performance of the framework . 105

5.1 Cloud Assisted Location Based Reminder System 110

5.2 Using Grid to Represent the Reminder Area 121

5.3 Using Small Squares to Approximate the Reminder Area 122

5.4 Using Cross to Represent An Area . 124

5.5 Four Cases of Cross Intersection . 125

5.6 User Enrollment . 126

5.7 Location Marking . 127

5.8 Location Search . 128

5.9 Distance Calculation Between Current Location Square and Reminder Loca-

tion Square . 130

5.10 Using Bar to Represent An Area . 136

5.11 Three Cases of Cross Intersection . 138

5.12 Location Marking Protocol . 140

5.13 Location Search Protocol . 141

5.14 Removing Reminder Protocol . 142

5.15 Simulation Result on the System Constructed Based on the Cross Based Area

Representation Approach . 146

5.16 Comparison Between SE System and BF System 148

5.17 Comparison Between SE System and BF System: Searching Time 149

xii

Figure Page

5.18 False Alarm of Bloom Filter . 150

5.19 Early Matching . 151

xiii

CHAPTER 1

Introduction

Privacy has always been a very important societal issue. As more and more people involve

in the digital world, this issue is becoming increasingly important. In the online environ-

ment, people are increasingly concerned about their privacy, since every action people take

could leave a trail of information that could be recorded and used in the future. For ex-

ample, people like to keep their opinions and daily thinkings on Blogs or online social

networks; also, people are getting used to location based services on smart phones, while

these services can obtain and accumulate people’s location information. These informa-

tion could be collected, accumulated, and analyzed by service providers. Trusting these

providers are risky and they may abuse these sensitive information for profits, which could

bring unwanted troubles to people. However, the existing digital world is built on top of

these services and cannot live without them. Thus, preserving people’s privacy is important

and challenging in current online environment.

In this dissertation, we study the problems of protecting people’s identity privacy and loca-

tion privacy in the online environment. We focus on four topics: identity privacy in online

social networks (OSNs), identity privacy in anonymous message submission, location pri-

vacy in location based social networks (LBSNs), and location privacy in location based

reminders. Current OSNs give people a chance to share personal information (e.g. their

thoughts, photos) with their family and friends. Most people don’t know to properly protect

their privacy, although they are not willing to share their private information to strangers

who can view or use their information. Most OSN providers would thus provide some

1

sort of access control mechanism to restrict access from unwanted users. However, this

protection only defends against the third party attacker but fails on first or second party at-

tack. For example, many OSN providers will store user’s data on a partnering storage site,

which may access users’ data. Also, the OSN provider itself can always access to user’s

data within this mechanism. When these first and second parties are not trusted, we need

a new and strong mechanism to protect users’ data. Another useful application of protect-

ing identity privacy is anonymous online message submission. The participants might be

willing to provide useful information but do not want anyone link their identity to the sub-

mitted information, since the information they provide might be their health information,

their feedbacks about their supervisors, etc. Again, we should not rely on the information

collector to provide the anonymity since the collector itself may be the one you want to

defend against. An example is a company’s performance evaluation, where the evaluation

collection system may be eventually accessible to the boss of the company. Based on the

secret sharing scheme, we construct a shuffle protocol. All members’ messages are shuf-

fled to bury their submitting order. After all messages have been collected, the message

collector does not know who submitted which message.

The smart phone market has grown very fast in recent years. In addition to traditional

functionalities (e.g., text messaging and making phone call), current smart phones are

equipped with various sensors. According to [87], most smart phones are equipped with

high-precision localization sensors, usually based on GPS receivers, access points or tri-

angulation with nearby base stations. These localization sensors enable smart phones to

locate themselves at any time. Thus, many location based applications emerge to the mar-

ket, including location based social networks, location based reminders, etc. While people

are enjoying the convenience these applications have brought, most of them are worried

about the breach of location privacy. The leakage of people’s location might lead to illegal

2

stalking, or even physical criminals. These worries may also impede the development of

the location based services. Thus, the protection of location privacy is essential for both

users and location based services.

1.1 Overview and Contributions

This dissertation focuses on the privacy issues in the online environment. Particularly, this

dissertation studies two essential parts of privacy – identity privacy and location privacy.

In the digital world, users grant a server or service provider to use their information to

provide a certain service. Although we may assume that the service provider will protect

user’s information due to reputation pressure, this assumption is not always true, especially

to small business providers. Also, malicious attackers are always interested in people’s

identity and location privacy. They will try every possibility to obtain the information, like

hacking into the system or promising high benefits for private information. Throughout

this dissertation, we assume the server is NOT fully trusted, and under this assumption, we

construct secure mechanisms to protect users’ identity privacy and location privacy.

1.1.1 Identity Privacy in Online Social Networks

Users of OSNs form new relationships and share their information in the networks. How-

ever, for some private information, the user might only be willing to share them with their

family and friends rather than strangers. Therefore, access control is a basic feature in

OSNs. A user assigns her online friends to one of several groups (e.g. family, colleagues,

roommates) and grants different authorizations to her personal data. If a user accepts a

friend request from another user, she grants this user with corresponding credentials to ac-

cess her personal information. All users’ data are stored on a storage site provided by the

OSN provider. The storage site is untrusted. In our design, all of the uploaded data are en-
3

crypted to prevent the storage site from unauthorized access while the storage site can still

retrieve the correct information when a user gets access to it. In addition, we hide users’

identity when they access the storage site.

In summary, our contributions are as follows.

• Only the authorized user can access the encrypted data stored in the storage site.

Users’ identity is hidden from the storage site when she accesses the data. We use

zero knowledge proof of knowledge to construct oblivious transfer which enables the

storage site to verify the identity and credentials of the user.

• We design a fine-grained access control mechanism to prevent users from unautho-

rized access. Only users with valid credentials can access the data.

1.1.2 Identity Privacy in Anonymous Message Submission

In the real world, anonymous message submission is easy to realize. People just cast their

ballots into a locked and opaque box. The box is then shaken to destroy the casting order.

After that, all the ballot papers are collected and submitted to a collector. If we assume that

the collector cannot tell the hand writings of each participant, the collector will not be able

to infer the relationship between the ballots and the identities of the participants. However,

in the digital world, we cannot realize anonymous message submission in a similar way as

in the real world, because a secure ballot box trusted by all of the participants does not exist

in the digital world. Besides, the shaking process has to be done under the supervision of

all the participants and it is difficult to reproduce in a distributed network.

In this dissertation, we propose a protocol to enable participants to anonymously submit

their messages online. We propose a technique which can secretly aggregate users’ mes-

4

sages into a message vector. In the final vector, each participant does not know the position

of the other members’ message and the message collector cannot connect each participant’s

identity to their message. We use secret sharing scheme to construct the protocol. Com-

pared to the work of [21], the use of the secret sharing scheme makes the protocol efficient

towards to a practical size group.

In summary, our contributions are as follows.

• We propose an efficient anonymous message submission protocol named AMS for

groups of practical size. Our protocol executes in time bounded by a polynomial in

the group size, and has a constant communication rounds.

• We theoretically prove the anonymity of our AMS protocol. It is collusion resistant

under malicious attacks. The execution of the AMS protocol does not rely on a

trusted third party.

• We propose a technique to let each member acquire a position in the submitted mes-

sage sequence such that every member does not know other members’ positions.

Specifically, we use a vector to represent the sequence. A position in the sequence is

mapped to an index in the vector. This technique is implemented using a probability

algorithm and has a high success probability.

• We analyze our protocol from the aspects of security and efficiency. We conduct

comprehensive simulations to show that our protocol is efficient compared to previ-

ous works.

5

1.1.3 Location Privacy in Location Based Social Networks

Location based social network (LBSN) applications are now enjoying a great deal of at-

tention because of its rapid development on smart phones. Many companies are rushing to

have LBSN included in their services. In LBSNs, users ”check in” at a venue and leave

“tips” which serves as their personal suggestions for this venue. In this dissertation, we

call all the information a user shares at a venue as her ”check-in”, which includes her tips

about this venue, the check-in time, etc. Another feature of LBSNs is that users can search

a venue and see their friends’ check-ins when they gets to a new place.

As more and more people involve in the LBSN applications on smart phones, the privacy

issues are becoming urgent. Currently, users need to transmit their location information,

e.g., GPS location, to the LBSN server when they check in at a venue, share their informa-

tion with friends, or search within the LBSN for information. The breach of users’ location

privacy might lead to unexpected troubles.

In this dissertation, we propose a framework that can hide users’ location from untrusted

LBSN server while the functionalities in the LBSN can still be performed. Technically,

in this framework, the user encrypts the data and generates a check-in trapdoor before

uploading the check-in records to the LBSN server. The LBSN server converts the check-

in trapdoor to a search trapdoor, which is available to the user’s friends. If any of the user’s

friends wants to search her check-in records, this friend generates corresponding search

trapdoor and sends it to the LBSN server. Using the search trapdoor, the server searches

corresponding encrypted record and sends the results back to the user’s friend.

In summary, our contributions are as follows.

• We propose a framework that can hides users’ location from the LBSN server. We

6

also propose a method which can reduce the processing time of the same check-ins

frequently.

• We propose a delegatable pseudo random function which outsources the user side

computation to the server side to save the limited computation resources of users’

smart devices.

• Since revocation happens more frequently in LBSNs, the re-encryption of every

record causes a large computation overhead for users after each revocation happens.

To solve this issue, we propose a hash chain based session key generation scheme

so that users do not need to re-encrypt all of the records after each revocation takes

place.

1.1.4 Location Privacy in Location Based Reminders

Reminder applications are essential applications in mobile devices. In traditional reminder

applications, users set up a future time to remind her things to do at that time. The mobile

device will alert the user at the reminder time. However, in this dissertation, our focus is

location based reminder applications rather than time based reminder applications. Loca-

tion based reminder applications are developed with the development of the high precision

localization sensor equipped in smart devices. In the location based reminder application,

the user marks a reminder location and sets up a reminder distance in the reminder applica-

tion. The smart device will alert the user when her current location is within the reminder

distance of the reminder location. Recently, the development of cloud service has attracted

many attentions, many companies now use the cloud to synchronize personal data, includ-

ing reminders. In other words, users’ reminder locations are stored in the cloud. Therefore,

we propose the topic of preserving users’ location privacy from untrusted cloud server.

7

In this dissertation, we construct a secure cloud-assisted location based reminder system.

The system hides a user’s reminder message, reminder location, and her current location

from the cloud server, while the cloud server is still able to determine whether the distance

between the user’s current location and the reminder location is smaller than the reminder

distance. We propose a novel method to represent location points. Technically speaking,

we divide the earth surface into small squares. We use each square to represent the infinite

location points contained in this square. We use a set of squares to represent a reminder

area. Using searchable symmetric encryption (SSE), the square information and the re-

minder message is encrypted and uploaded to the cloud server. The use of SSE enables the

server to search the encrypted data without knowing the content of the data.

In summary, our contributions are as follows.

• We propose a secure cloud-assisted location based reminder system. The system

hides users’ location information and reminder message from the untrusted cloud

server. We prove the security of our system and did extensively simulations to show

its efficiency on Motorola Droid phone.

• We propose a cross based area representation approach and an improved bar based

area representation approach, respectively, to represent a reminder area. They are

easy to construct and efficient in space overhead. The implementation of these ap-

proaches also saves a lot of search time in the cloud server.

8

Part I

IDENTITY PRIVACY

9

CHAPTER 2

Identity Privacy in Online Social Networks

In today’s society, people spend more and more time in online social networks (OSNs),

getting news, sharing photos and discovering new relationships. It is reported that face-

book, which is the most popular OSN, has more than 500 million active users. 700 million

minutes are spent each month on facebook [48]. An OSN operator usually rents storage

facilities from untrusted storage sites to meet the increasing need of storing users’ personal

data. Therefore, the protection of personal data from unauthorized access is becoming a

critical concern in OSNs.

Until now, most of the existing works about privacy preservation focus on protecting data

privacy. However, identity privacy is of the same importance as data privacy. For example,

if the ciphertext of some personal data is stored in a third party storage site, even though

adversaries cannot decrypt the data, since they do not have private keys, they know who

has accessed it. Gradually, they could obtain most of the relation graph of the OSN. From

this graph they can identify other nodes as long as several nodes’ identities are leaked.

Unfortunately, to the best of our knowledge, few works deal with the identity privacy issue

in the OSN.

Camenisch presented a protocol [24] for anonymous access to the records stored in an

untrusted database and each record has an access control list. They used zero-knowledge

proofs of knowledge to construct oblivious transfer. Oblivious transfer, first introduced

by Rabin[84], and later extended by Even and Goldreich [47][20], is described as follows

[26]: There is a sender with N records (R1, · · · ,RN) and a receiver with a secret choice

10

σ ∈ (1, · · · ,N), the receiver requests the record Rσ from the sender in such a way that the

sender learns nothing about σ and the receiver learns nothing about the records except Rσ .

However, their work on access control is static. Once people obtain the credentials, they can

always access all records associated with these credentials and will not be revoked. While

this is suitable in a database environment, it cannot be applied to an OSN environment.

In this dissertation, we propose a system which can hide users’ identities from adversaries

when they visit the data stored in an untrusted storage site. We also design a fine-grained

access control mechanism to prevent authorized access. It contains two lists: an access

list (AL) and a revocation list (RL). AL allows a user to define which group of friends can

access her information, while RL allows a user to revoke individuals from future accessing.

In the OSN, usually users in the same group have the same authorization to access the

data owner’s information. However, sometimes the data owner may want to hide certain

information from some users in the group. For example, Alice is a friend of Bob, and she

belongs to his “college” group. Bob wants to plan a birthday party for Alice and hide this

information from Alice until the party is carried out. To do so, Bob adds Alice to the RL. In

this way, all the “colleague” group members except Alice could access the data associated

with the group.

We make the following contributions:

• The authorized users can anonymously access the data in the storage site such that

the storage site is oblivious to either the visitor’s identity or the index of the accessed

data stored in the storage site. Users do not need to show their identities in access

processes and zero-knowledge proofs based oblivious transfer are used to conceal the

users’ identities as well as the index of the data.

• We design a fine-grained access control mechanism which allows users to prevent
11

unauthorized access. It allows the data owner to set group-based access control pol-

icy, i.e., the data owner can set which group of friends can access the data, and revoke

individuals from future accessing.

• We prove the security of our system within the universal composability (UC) frame-

work [27]. This framework allows our system executing composably with other UC

secure systems without sacrificing any security guarantee. More importantly, UC

security guarantees that our system can be concurrently executed, in which an ad-

versary cannot get advantages by running several instances of our system in paral-

lel. This property is especially useful for the Internet circumstance because different

users probably execute instances of our protocols at the same time.

2.1 Related Work

As far as we know, current study on OSN security mainly focuses on anonymizing and de-

anonymizing social structure [60] [99], defense on sibyl attack [44] [95] [104], and privacy-

preserving computing [72] [80]. Although privacy issues in OSNs, especially anonymity

issues, are significant to their development, to the best of our knowledge, there are few

works discussing these issues. Sun et al. [93] proposed a privacy-preserving scheme for

OSNs. In their work, the authors presented a scheme to protect data privacy with regard

to the data stored in third party storage site. Public key encryption with key word search

scheme and identity-based encryption are used to enable a user with proper role to effi-

ciently retrieve the data stored in the storage site. However, their work did not provide

an identity concealing mechanism. Baden et al. designed a scheme called Persona which

allows a user to define fine-grained privacy policy and authorize her friends to access the

users’ records depends on which group the friend belongs to [6]. They used attribute based

encryption to achieve the access control. However, they did not deal with the identity con-

12

cealing and revocation issues. Domingo-Ferrer et al. [45] utilized homomorphic encryption

algorithms to enable resource access without a trusted mediating party. This scheme pre-

vented the resource owner from learning the relationship and trust level of the parties who

collaborated to access the resource. In [91], Squicciarini et al. leveraged game theory to

achieve cooperative privacy management on shared data. In [24], Camenisch introduced a

protocol which could hide users’ identity from database. As we said in the previous part,

their access control policy is static, which is not suitable for the OSN circumstance.

2.2 Problem Formulation

In this section, we present the system model, the threat model, and define the security

objectives in the context of OSNs.

2.2.1 System Model

There are three roles in our system: data owners, visitors and the storage site.

Data owners (denoted as DO) are the ones who manage their homepages and friend list.

They classify their friends into several groups (e.g., classmates, family and colleagues) and

issue corresponding credentials to each group. When some data is uploaded, the data owner

generates AL and RL for the data.

Visitors (denoted as V) are the ones who visit other users’ homepages in OSNs. They

belong to a certain group when they become friends with the data owner. When they visit

other user’s homepage, they may not want any third party to know the relationship between

them. In fact, both data owners and visitors are the users of the OSN. The difference lies

into their different actions. When the visitor manages her data and friend list, she is the

data owner. When she visits other user’s homepage, she becomes the visitor.

13

The storage site (denoted as DB) is an untrustworthy third storage provider. It signs a

contract with the OSN operator and provides storage service for all OSN users.

2.2.2 Threat Model

The adversary considered in this dissertation is fully malicious and can arbitrarily deviate

from the protocol specification. Furthermore, the adversary controls all the channels in the

system such that they can eavesdrop, block or tamper any message transmitted between

two honest participants. The adversary can also replay or deliver out-of-order messages

to an honest participant. In addition, the adversary is able to control any participant in

our system. However, we do not consider the trivial scenario that the adversary controls

all the participants in the system. We assume the adversary is computationally bounded,

i.e., it could be any probabilistic polynomial time algorithm. It is reasonable because it is

infeasible for an adversary to obtain an unbounded computation resource.

2.2.3 Security Objectives

Our system is designed to achieve the following security objectives.

• Access Control: Visitors who do not have credentials or are revoked cannot access

the data.

• Identity Hiding: The storage site can verify a visitor’s credentials without knowing

the identity of the visitor and the index of the data when the visitor accesses the

storage site.

• Collusion Resistance: If the database and the visitor or the data owner and the visitor

collude, they cannot benefit from the collusion, i.e., they cannot get more from the
14

collusion than what they already have.

The security of our system is proved by indistinguishability of a real world and an ideal

world in the UC framework. In the real world, all honest parties follow the protocol ex-

ecution. The parties who are corrupted by the adversary can arbitrarily deviate from the

protocol specification. In the ideal world there is an incorruptible trusted party T to imple-

ment all the functionalities of our protocols. All parties communicate through T . There are

ideal data owners DO′, ideal storage site DB′, and ideal visitors V ′ in the ideal world. Upon

receiving each party’s message, T responses properly. In both of the ideal world and the

real world, there exists an environment ξ who observes all honest parties’ inputs, outputs,

and the view of corrupted parties. The security of a system is defined as follows [27]:

Definition 1. A system is said to be securely implement a functionality if for an environment

ξ and any adversary A , we can construct a simulator Sim in the ideal world, such that

ξ cannot distinguish whether it is communicating with Sim in the ideal world, or it is

communicating with the adversary A in the real world.

The trusted party T holds the tuple (D,AL,RL) which represents the data, its corresponding

AL and RL, and maintains a group list GID for each visitor V who selects an identity number

ID.

• Initially, T sets its internal database DBT ←⊥.

• Upon receiving (U pload,D,AL,RL) from DO′, T adds (AL,RL) and (AL,RL,D) to

DB′ and DBT , respectively.

• Upon receiving (Join, ID,Gi,DO′) from V ′, T sends (Join, ID,Gi) to DO′. If DO′

sends back b = 1 then T adds Gi to GID, otherwise T just returns b to V ′.

15

• Upon receiving (Retrieve,σ) from V ′, where σ is the index of the data, T processes

as follows. If DBT 6= ⊥, T sends Retrieve to DB′, then DB′ sends back a bit b. If

b = 1 ∧ ALσ ⊆ GID ∧ ID /∈ RLσ , T sends Dσ to V ′, otherwise it just returns ⊥ to V ′.

2.3 System Overview

Our system consists of four protocols: (1) the storage site and data owner initialization

protocol, (2) joining in a group protocol, (3) uploading data protocol, and (4) retrieving

data protocol. We briefly review the construction of our system.

Initialization: In the initialization protocol, the whole system is initialized. The storage

site and the data owner generate their public/private key pairs.

Joining in a group: In this protocol, a visitor sends a friend request to a data owner. If

the data owner approves the visitor’s request, she then decides which group she wants the

visitor belongs to by issuing a corresponding credential and private keys. The credential

is a kind of the data owner’s signature on the group the visitor joins. We assume that the

communications between the data owner and the visitor are authenticated.

Uploading Data: Each time of executing the uploading data protocol, the data owner

uploads one piece of data D. Then the data owner generates AL and RL for data D and

sends (AL,RL) to the storage site. The storage site signs the AL, and returns the signature

to the data owner. On the data owner side, she encrypts the data and uploads the ciphertext

to the storage site. The storage site then publishes the ciphertext, its AL and RL, i.e., by

posting them on the website.

Retrieving Data: If a visitor wants to retrieve some data in the storage site, she should

prove to the storage site that she has credentials. Zero-knowledge proofs guarantee that the

storage site can verify whether the visitor has valid credentials or not without knowing the

16

identity of the visitor or the index of the data. After confirming that the visitor has valid

credentials, the storage site returns a random number R for decrypting the data. Only if the

visitor’s identity number ID /∈ RL, she can get the plaintext using R and her private keys

issued by the data owner.

2.4 Technical Preliminaries

In this section, we introduce the technical preliminaries of our system.

2.4.1 Bilinear Map

Let G1, G2, and GT be cyclic multiplicative groups with prime order p. A bilinear map

from G1×G2 to GT is a function e : G1×G2→GT, such that for all u ∈G1,v ∈G2,a,b ∈

Zp, e(ua,vb) = e(u,v)ab.

Bilinear map has the following properties.

Bilinear: e(ua,vb) = e(u,v)ab;

Non-degenerate: e(g1,g2) 6= 1, where g1,g2 are respective generators of groups G1,G2;

Computable: It can be efficiently computed.

Usually we regard G1 and G2 as the same group, which is denoted as G.

2.4.2 Complexity Assumptions

q-Decisional Multi-Exponent Bilinear Diffie-Hellman Assumption (q-MEBDH) [70]: Given

a bilinear group pair (G,GT) with a prime order p> 2k, we say that the q-MEBDH problem

17

holds if for all polynomial-time adversaries A , the advantage Advq-MEBDH
G,GT

given by

Pr[A (J,T = (e(g,g)αz) = 1)]−Pr[A (J,T = num) = 1]

is a negligible function in k, where num $←GT , J is a tuple of(
g,gz,e(g,g)α ,

∀1≤ i, j ≤ q, (gai,gaiz,gaia j ,gα/a2
i)

∀1≤ i, j,k ≤ q, i 6= j, (gaia jz,gαa j/a2
i ,gαaia j/a2

k ,gαa2
i /a2

j)
)
,

and z,α,a1, · · · ,aq
$← G. Here, α

$← G denotes α is randomly chosen from G. In other

words, given J, the adversary cannot distinguish a random number num∈GT from e(g,g)αz.

q-Strong Diffie-Hellman Assumption (q-SDH) [14]: Given a bilinear group pair (G,GT)

with a prime order p > 2k, g is a generator of group G. q-SDH problem can be stated as

follows. The advantage for adversary A

Advq-SDH
G,GT

= Pr[A (g,gx, · · · ,gxq
) = (c,g1/(x+c))]

is a negligible function in k, where x,c $← Zp.

q-Bilinear Diffie-Hellman Exponent Assumption (q-BDHE) [16]: Given a bilinear group

(G,GT) of prime order p > 2k, g,gT are their generators respectively. q-BDHE problem

can be stated as follows. The advantage for adversary A to solve q-BDHE problem in

polynomial time

Advq-BDHE
G,GT

=

Pr[A (g,gT ,ga, · · · ,gaq−1
,gaq+1

, · · · ,ga2q
,e(g,gT)

aq
) = 1]

−Pr[A (g,gT ,ga, · · · ,gaq−1
,gaq+1

, · · · ,ga2q
,S) = 1]

is a negligible function in k, where S $← GT and a $← Zp. That is to say, given g, gT , ga,

· · · , gaq−1
, gaq+1

, · · · , ga2q
, the probability that A can distinguish e(g,gT)

aq
with a random

number S ∈ GT is negligible.
18

2.4.3 Broadcast Encryption

Broadcast encryption was first proposed by Fiat [49]. It can encrypt broadcasting content

in such a way that only intended users can decrypt the content. Users who are not au-

thorized to assess the content cannot get it even if they have the private key. Broadcast

encryption has several applications, including file systems, group communication, satellite

TV subscription services, and DVD content protection [16] [70]. In all of the applications,

the concept of revocation is very important. For example, in a group communication, if one

user’s private key has been comprised, we should revoke him from future broadcast.

In our system, we integrate the protocol by Lewko and Sahai [70] into our system to revoke

a visitor from future accessing. In summary, the broadcast encryption algorithm consists

of four steps.

Setup: A public key pk and a master private key sk are generated by the algorithm;

Key Generation: The algorithm takes sk and the user’s ID as input to generate each user’s

private keys (P0,P1,P2);

Encryption: Using RL, pk and D as input, the data D is encrypted into a broadcast cipher-

text.

Decryption: For a user whose identity number ID /∈ RL can use her private keys to decrypt

the ciphertext.

2.4.4 Signature Scheme

In our protocol, we use two signature schemes, one for AL signature and one for credential

signature.

19

2.4.4.1 AL Signatures Scheme

We use the modification of Boneh’s signature scheme [14] for our AL signature. Given

a bilinear group pair (G,GT) with a prime order p ≥ 2k. g is a generator of group G.

We choose xe,x1, · · · ,xl
$← Zp, and compute ye = gxe ,y1 = gx1 , · · · ,yl = gxl . The private

keys are (xe,x1, · · · ,xl), the public keys are (g,ye,y1, · · · ,yl). Suppose the messages are

(rm,G1, · · · ,Gi), where i≤ l. The signature on the message tuple is E ← g
1

xe+rm+∑
i
j=1 x jG j . It

can be verified by checking whether the equation e(E,yegrm ∏
i
j=1 yG j

j) = e(g,g) holds. This

signature scheme is said to be secure against weak chosen-message attack [24].

2.4.4.2 Credential Signature Scheme

We utilize the signature scheme proposed by Au et al. [5] for our credential signature.

Given a bilinear group pair (G,GT) with a prime order p ≥ 2k. g,h0,h1,h2 are random

generators of G. We choose x $← Zp, and compute y = gx. The secret key is x. The

public keys are (y,g,h0,h1,h2). Suppose the messages to be signed are (c1,c2). We choose

s,r $← Zp. The signature is A← (ghc1
0 hc2

1 hr
2)

1
x+s . The signature can be verified by checking

whether e(A,gsy) = e(ghc1
0 hc2

1 hr
2,g) holds.

2.4.5 Zero-Knowledge Proof

A zero-knowledge proof is to let others verify the proof of knowledge in a zero-knowledge

way, i.e., the proof leaks nothing about the knowledge itself. Using zero-knowledge proofs,

we are able to prove 1) a discrete logarithm modulo a prime [85], 2) the equality of some

discrete logarithms [32] and 3) the conjunction of the previous two [40]. Given a bilin-

ear group pair (G,GT) with prime order p, we follow the notation introduced in [24] for

constructing a zero-knowledge proof. For example, PK{(α,β) : Y = gαhβ} denotes a zero-
20

knowledge proof of α,β , where Y = gαhβ . Here, Y ∈ G, α,β ∈ Zp and G = 〈g〉 = 〈h〉.

α and β are secrets for the prover to prove, g,h and Y are public parameters. Given this

notation, one can easily derive an efficient protocol [23] [25] to realize the proof.

Now we construct a zero-knowledge proof of the credential signature. Assume we are given

a signature (A,s,r) on (c1,c2). We prove that we indeed possess such a signature without

leaking the signer’s information. For this purpose, we need to randomize the public keys

by choosing values w1, w2, w3, w4, w5, w6, w7
$← G such that logg w1, logg w2, logg w3,

logg w4, logg w5, logg w6, logg w7 are not known. This can be done by choosing random

values t1, t2, t3, t4, t5, t6,γ,δ ,η ,ρ,φ ,ψ
$← Zp, computing Ã← Auγ , g̃← guδ , ỹ← yuη , h̃0 =

h0uρ , h̃1 = h1uφ , h̃2 = h2uψ ,B = wδ
2 wt1

1 ,C = wγ

3wt2
1 ,S = wψ

4 wt3
1 ,T = wz1

5 wt4
1 ,W = wz7

6 wt5
1 ,

Z = wz5
7 wt6

1 , and executing the following proofs of knowledge:

PK{(c1,c2,s,r, t1, t2, t3, t4, t5, t6,γ,δ ,η ,ρ,φ ,ψ) : Proo f (c1,c2,s,r,A,g,y,h0,h1,h2)}.

Here, Proo f (c1,c2,s,r,A,g,y,h0,h1,h2) represents

B = wδ
2 wt1

1 ∧1 = B−swz1
2 wz2

1 ∧1 = B−c1wz3
2 wz4

1 ∧

1 = B−c2wz5
2 wz6

1 ∧1 = B−rwz7
2 wz8

1 ∧1 = B−δ wz9
2 wz10

1 ∧

1 = B−ρwz11
2 wz12

1 ∧C = wγ

3wt2
1 ∧1 =C−swz13

3 wz14
1 ∧

1 =C−ηwz15
3 wz16

1 ∧S = wψ

4 wt3
1 ∧1 = S−rwz17

4 wz18
1 ∧

T = wz1
5 wt4

1 ∧1 = T−γwz19
5 wz20

1 ∧W = wz7
6 wt5

1∧

21

1 = T−ψwz21
5 wz22

1 ∧Z = wz5
7 wt6

1 ∧1 = Z−φ wz23
7 wz24

1 ∧
e(Ã, ỹ)
e(g̃, g̃)

= e(Ã,w1)
ηe(Ã,w1)

z1e(Ã, g̃)−se(ỹ,w1)
γ

e(h̃0, g̃)c1e(h̃0,w1)
−z3e(h̃1, g̃)c2e(h̃1,w1)

−z5e(h̃2, g̃)r

e(h̃,w1)
−z7e(g̃,w1)

z13e(g̃,w1)
−z17e(g̃,w1)

−ρe(g̃,w1)
−φ

e(g̃,w1)
−δ e(g̃,w1)

−δ e(w1,w1)
z9e(w1,w1)

−z15

e(w1,w1)
−z19e(w1,w1)

z21e(w1,w1)
z11e(w1,w1)

z23,

where z1 = sδ ,z2 = st1,z3 = δc1,z4 = t1c1,z5 = δc2,z6 = t1c2,z7 = rδ ,z8 = t1r,z9 = δδ ,z10 =

t1δ ,z11 = δρ,z12 = t1ρ,z13 = sγ,z14 = st2,z15 = ηγ,z16 = ηt2,z17 = ψr,z18 = t3r,z19 =

z1γ = sδγ,z20 = t4γ,z21 = z7ψ = rδψ,z22 = t5ψ,z23 = z5φ = δc2φ and z24 = t6φ .

2.5 Construction of System

In this section, we describe the details of our system.

The initialization protocol consists of two parts: the storage site initialization and the data

owner initialization. The protocol initializes the whole system and enables the storage site

and the data owner to generate their public/private key pairs.

Figure 2.1 shows the details of the initialization protocol. In Figure 2.1a, the storage site

utilizes a security parameter k to generate a bilinear group pair (G,GT) with a prime or-

der p > 2k. Then it generates its public/private key pair (pkDB,skDB). g, h, gB and hB are

random generators of G. In Figure 2.1b, using p as input, the data owner generates her bi-

linear group pair (G̃, ˜GT) with the prime order p. The public/private key pair (pkDO,skDO)

is generated from the bilinear group. g1,g2,h0,h1 and h2 are random generators of G̃.

Figure 2.2 shows the joining in a group protocol. In the protocol, if a visitor’s friend request

is approved by a data owner, this visitor gets a credential on the group she joins and private
22

Function: Storage site initialization.

(G,GT , p) $← Pg(1k); g,h,gB,hB
$←G; M← e(g,h); xe

$← Zp; ye← gxe

For i = 1, · · · , l do xi
$← Zp;yi← gxi

skDB← (xe,h,(xi)
l
i=1); pkDB← (g,ye,M,(yi)

l
i=1,gB,hB, p)

Return (skDB, pkDB)

(a) Storage Site Initialization

Function: Data owner initialization.
(G̃,G̃T)

$← Pg(p); g1,g2,h0,h1,h2
$← G̃; xDO,α,β

$← Zp; yDO← gxDO
1

skDO← (xDO,α,β); pkDO← (yDO,g1,h0,h1,h2,gα
2 ,g

β

2)
Return (skDO, pkDO)

(b) Data Owner Initialization

Figure 2.1: Initialization Protocol

Function: A visitor V sends a request to join a group. The data owner DO sends V corre-
sponding credentials.

1. If it is the first time the visitor V joins the OSN, she picks zV
$←Zp, computes ID← hzV

0 ,
and parses her state as stV ← (zV , ID,0, /0, /0, /0); otherwise the visitor parses her state as
(zV , ID,count,G ,Cred,P).

2. The visitor V sends ID to the data owner DO, and does a zero knowledge proof of
PK{(zV) : ID = hzV

0 } to DO.

3. If ID already exists or is not accepted, DO returns ⊥; otherwise DO computes X ← gα
2

and Y ← gβ

2 , and does a zero zero knowledge proof of PK{(α,β) :X =gα
2 ∧Y =gβ

2 } to
V .

4. The data owner DO chooses sGi ,rGi , t
$← Zp, computes A← (g1IDhGi

1 h
rGi
2)

1
xDO+sGi , P0 =

gα
B gβ 2t

B , P1 = (gβ ID
B hB)

t ;, and P2 = g−t
B , and sends (rGi ,sGi ,AGi)||(P0,P1,P2) to V .

5. The visitor V verifies whether e(A,g
sGi
1 yDO) = e(g1IDhGi

1 h
rGi
2 ,g1) holds. If it is, V makes

records G ← G ∪Gi, P← P∪ (P0,P1,P2), Cred←Cred∪ (AGi ,sGi ,rGi)

Figure 2.2: Joining in A Group Protocol

keys for decrypting the data associated with this group.

The visitor’s inputs are (Gi,stV , pkDO), where stV = (zV , ID,count,G ,Cred,P) is the visi-

tor’s state which consists of the visitor’s secret, her ID, a bit count showing whether she

has visited the storage site or not, all groups she has joined, the credentials and the private
23

Function: A data owner DO uploads data to the storage site DB.

1. The data owner DO generates AL and RL for the data D and sends (AL,RL) to DB.

2. If it is the first time DB receives D, it sets index← 1. DB parses AL as (G1, · · · ,Gl′),

computes Eindex← g
1

xe+index+∑
l′
j=1 x jG j and Findex← e(h,Eindex), and sends (Eindex,Findex) to

DO.

3. The data owner DO chooses s $←Zp. For i= 1, · · · ,r, DO randomly chooses s1, · · · ,sr−1,
such that sr = s− s1− ·· ·− sr−1. DO computes F1 = Findexe(gB,gB)

αsD and F2 = gs
B.

For each j = 1,2, · · · ,r, DO computes C j,1 = gβ s j
B and C j,2 = (gβ 2ID j

B hβ

B)
s j , and sends

{F1,F2,(C j,1,C j,2)
r
j=1} to DB.

4. The storage site DB sets index ← index + 1, and publishes Lindex =
(Eindex,F1,F2,(C j,1,C j,2)

r
j=1,AL,RL).

Figure 2.3: Uploading Data Protocol

keys she has acquired. If it is the first time the visitor joins the OSN, her state is set to

be stV = ⊥. The visitor chooses her secret zV randomly from Zp, computes ID← hzV
0 ,

sends ID to the data owner, and proves to the data owner that she indeed has zV in a zero-

knowledge way. After that, the visitor’s state is set to be (zV , ID,0, /0, /0, /0). If ID is not

accepted, the data owner returns ⊥ to the visitor. Otherwise, the data owner proves to the

visitor that she has private keys α and β in a zero-knowledge way; The data owner chooses

random sGi,rGi, t
$← Zp, computes the signature A← (g1IDhGi

1 h
rGi
2)

1
xDO+sGi and the private

keys P0,P1 and P2, and then sends them to the visitor. The resulting signature is the creden-

tial for the visitor to access the data associated with group Gi. (P0,P1,P2) are private keys

for the visitor to decrypt the data. Each time of executing this protocol, the visitor acquires

one credential. If he needs more than one credentials to access the data, the protocol needs

to be executed several times.

Figure 2.3 presents the uploading data protocol. In this protocol, the data owner uploads

the ciphertexts of the data D with its AL and RL to the storage site. The input of the data

owner is (D, pkDO,skDO). The input of the storage site is (AL, pkDB,skDB). Upon each

24

executing of the protocol, one piece of data D is uploaded.

First the data owner generates the AL and RL for D, sends (AL,RL) to the storage site.

The AL is a list of ({Gi}l′
i=1), and the RL takes the form of ({IDi}r

i=1), where {IDi}r
i=1 ⊆

{Gi}l′
i=1. {Gti}l′

i=1 is a l′-subset of the total l groups (G1, · · · ,Gl), {IDi}r
i=1 is a r-subset

of the total N visitors (ID1, · · · , IDN) on the data owner’s friend list. r is the number of

revoked visitors. l′ is the number of groups the visitor needs to join to access D. On the

storage site side, if it was the first time the storage site receives a piece of data, the global

index is set to 1. The storage site generates the signature Eindex on AL using the signature

scheme introduced in section 2.4.4.1, sends the pair (Eindex,Findex) to the data owner. Note

that the AL contains l′ groups, where l′ ≤ l. The storage site only need to use the first l′

private keys (xi)
l′
i=1 to sign the AL. On the data owner side, he chooses a random number

s ∈ Zp, and divides it into r random shares s1,s2, · · · ,sr such that s1 + s2 + · · · ,+sr = s.

The data D is encrypted as F1 = Findexe(gB,gB)
αsD. Note that before the encryption, we

should first map D from 0, 1 bits to an element in group GT using collision resistant hash

functions. After receiving the encryption of D, the storage site increases index by 1 and

publishes Lindex = (Eindex,F1,F2,(C j,1,C j,2)
r
j=1,AL,RL).

Figure 2.4 shows the retrieving data protocol. This protocol enables the visitor to anony-

mously get the data while the storage site is oblivious to the identity of the visitor and the

index of the data.

First the visitor parses her state stV as (zV ,P,count,G , Cred,P). Then the visitor checks

whether she has credentials to access the data. If AL * G or ID ∈ RL, then she aborts

the protocol. Otherwise, the visitor chooses the index of the data that he wants to ac-

cess, index = σ , picks up a random number k′ ∈ Zp, computes K← (Eindex)
k′ , and sends

(K,count) to the storage site. Note that K is the randomization of Eσ . The purpose of

this randomization is to let the storage site not know which data the visitor has chosen.
25

Function: A visitor V retrieves data from the storage site DB.

1. The visitor V parses stV as (zV ,P,count,G ,Cred,P). If AL * G or ID ∈ RL, V aborts

the protocol; otherwise V chooses k′ $← Zp, computes K = (Eσ)
k′ , and sends (K,count)

to DB.

2. If count = 0 holds, DB does a zero knowledge proof of PK{(h) : M = e(g,h)} to V .

3. The visitor V sets count ← 1, parses AL as {G1, · · · ,Gl′}, and chooses u $← G̃. For

i= 1, · · · , l′, V chooses t1i , t2i , t3i , t4i , t5i , t6i

$←Zp, γi,δi,ηi,ρi,φi,ψi
$←Zp, computes Ãi←

AGiu
γi , g̃1i ← g1uδi , ỹi ← yDOuηi ; h̃0i = h0uρi , h̃1i = h1uφi , and h̃2i = h2uψi , and sends

(Ãi, g̃1i , ỹi, h̃0i , h̃1i , h̃2i)i=1,··· ,l′ with a zero knowledge proof ZKP to DB.

4. The storage site DB computes R = e(h,K), and sends R together with a zero knowledge
proof of PK{(h) : M = e(g,h)

∧
R = e(h,K)} to V .

5. The visitor V computes D =
F1,σ e(P1,∏

r
i=1 C

1
ID−IDi

i,1)e(P2,∏
r
i=1 C

1
ID−IDi

i,2)

R
1
k′ e(F2,σ ,P0)

Figure 2.4: Retrieving Data Protocol

If it’s the first time the visitor accesses the storage site, the storage site should prove to

the visitor that it has the secret key h. This is realized by a zero-knowledge proof of

PK{(h) : M = e(g,h)}. Then the visitor updates count ← 1, executes a zero-knowledge

proof to prove that K is indeed the randomization of Eσ , that he has the secret key zV

as he claimed and has valid credentials to access the data. ZKP in Figure 2.4 denotes

PK{(σ ,k′,zV ,(Gi,sGi,rGi,γi,δi,ηi,ρi,φi,ψi)i=1,··· ,l′) : e(K,yDB)e(K,g)σ
∏

l
i=1 e(K,yi)

Gi

= e(g,g)k′∧l′
i=1 Proo f (zV ,Gi,sGi,rGi, Ãi, g̃1i, ỹi, h̃0i, h̃1i, h̃2i)}. After the proof is verified, the

storage site computes R← e(h,K) and returns it to the visitor. Using R and the private keys

(P0,P1,P2), the visitor can decrypt the ciphertext.

2.6 Security Analysis

In this section, we prove the security of our system using UC framework introduced in sec-

tion 2.2.3. The indistinguishability of the real world and ideal world is proved by defining

26

a sequence of hybrid games Game-0, · · · , Game-n. In each proof, for an adversary A in

the real world, we construct a corresponding simulator Sim in the ideal world. A runs as a

subroutine in Sim, which emulates the honest parties interacting with A and provides the

entire view of A to ξ . We denote Game-0 equivalent to the environment of the real world,

and Game-n equivalent to the environment of the ideal world. We define that Realξ ,A (k) is

the probability that ξ output 1 given the view of the adversary and outputs of the honest par-

ties in the real world, Idealξ ,Sim(k) is the probability that ξ output 1 given the view of Sim

and outputs of the honest parties in the ideal world, and Hybridξ ,Simi(k) is the probability

that ξ outputs 1 given the view of Simi and outputs of the honest parties in Game-i.

We start from Game-0, then change some parameter in each game, and bound the difference

between two adjacent games. Summing up all the differences, we can get an upper bound

of differences between the real world and the ideal world according to union bound. We

prove that this upper bound is a negligible function in k. Finally, we come to the conclusion

that it is indistinguishable between the real world and the ideal world.

Theorem 1. Provided that the assumptions q-MEBDH, q-SDH, and q-BDHE hold, our

proposed system securely realizes the functionalities in Section 2.2.3. In other words, for

an environment ξ and any adversary A , there exists an ideal world simulator Sim such

that

Realξ ,A(k)− Idealξ ,Sim(k)≤ ε(k),

where ε(k) is a negligible function in k.

We prove Theorem 1 by proving the following lemmas.

Lemma 2.6.1. For environment ξ and any real world adversary A controlling part of the

data owners and the storage site, there exists an ideal world simulator Sim such that

27

Realξ ,A(k)− Idealξ ,Sim(k)≤ 2−k

Proof. In this proof, we assume there are multiple of data owners and visitors, one storage

site.

Game-1: Simulator Sim1, in the joining in a group protocol, runs the extractor for the

proof of knowledge PK{(α,β) : X = gα
2 ∧Y = gβ

2 } to extract the secret α and β such that

gα
2 = X and gβ

2 = Y . If the extractor fails, it just outputs ⊥ to ξ ; otherwise, it continues to

run interacting with the adversary on behalf of the honest visitor. The difference between

Game-0 and Game-1 is the knowledge error of the proof of knowledge, which is

Realξ ,A(k)−Hybridξ ,Sim1
(k)≤ 2−k

Game-2: Simulator Sim2 runs exactly like that in Game-1, except that in the retrieving data

protocol, runs the extractor for the proof of knowledge PK{(h) : PK{(h) : M = e(g,h)}}

to extract the secrete h such that e(g,h) = M. If the extractor fails, it just output ⊥ to

ξ ; otherwise, it continues to run interacting with the adversary on behalf of the honest

visitor. The difference between Game-1 and Game-2 is the knowledge error of the proof of

knowledge, or,

Hybridξ ,Sim1
(k)−Hybridξ ,Sim2

(k)≤ 2−k

Game-3: Simulator Sim3 runs exactly like the above game, except that during the retrieving

data protocol, instead for querying Dσ , where σ is the index of D, it uses randomly chosen

28

data D j which it has necessary credentials and runs a simulated proof for PK{σ ,k′,zV , · · ·}.

We state that

Hybridξ ,Sim2
(k) = Hybridξ ,Sim3

(k)

The statement follows a perfect zero knowledge proof of PK{(σ ,k′,zV , · · ·)}. Now we

construct based on the real world adversary A , a simulator Sim in the ideal world, and

combines all the steps from the above games. Sim runs A to get the public key of the

data owner and the storage site, pkDO and pkDB, as well as the encrypted data item Lindex.

Upon receiving (Join, ID,Gi,DO) from T , Sim runs the knowledge extractor to exact α , β

from A and computes X = gα
B , Y = gβ

B . From X = gα
B , Sim can compute K = e(gα

B ,g
s
B) =

e(gB,gB)
αs. After that, Sim executes the visitor side algorithm and maintains necessary

state. If the resulting credential is valid, Sim returns b = 1 to T , otherwise it returns⊥. The

first time Sim receives (Retrieve,σ) from T , it runs knowledge extractor to extract h from

A and computes Findex = e(h,Eindex). Sim then uses K and Findex to decrypt the records.

It then uses D j chosen among those she has necessary credentials to query the storage site.

If the transfer succeeds, Sim sends b = 1 to T , otherwise it sends ⊥ to T . The following

execution of protocols are just like the above, except the removing of knowledge extractor

in retrieving data protocol.

We can see that Sim provides exactly the same environment to A as Sim3 does. We have

Idealξ ,Sim(k) = Hybridξ ,Sim3
(k)

Summing up all the statements above, we obtain lemma 2.6.1.

Lemma 2.6.2. For the environment ξ and any real world adversary A controlling the

storage site, there exists an ideal world simulator Sim such that
29

Realξ ,A(k)− Idealξ ,S(k)≤ AdvqV−MEBDH
G,GT

(k)

where qV is the maximum number of revoked visitors.

Proof. For proof simplicity, we assume there is one data owner, one storage site and one

visitor.

Game-1: Upon receiving (U pload,D,ACL,RL) from T , simulator Sim1 executes the data

owner side algorithm. Instead of computing e(gB,gB)
αsD, the simulator uses numbers D′

chosen randomly from GT as a substitution. The adversary can not distinguish e(gB,gB)
αsD

from D′. Unless he has an algorithm to solve instances of qV -MEBDH problem in polyno-

mial time with non-negligible probability. We state

Realξ ,A(k)−Hybridξ ,Sim1
(k)≤ AdvqV -MEBDH

G,GT

Game-2: Simulator Sim2 runs exactly like Sim1, except that during the retrieving data

protocol, Sim2 executes the visitor side algorithm. It lets the visitor algorithm query the

random number D′ encrypted during Game-1 instead of querying the real data D. Then it

uses the simulated proof for a zero-knowledge proof of PK{(σ ,k′,zV , · · ·)}. Therefore,

Hybridξ ,Sim1
(k) = Hybridξ ,Sim2

(k)

Now based on the real world adversary A , we construct a simulator Sim in the ideal world.

A runs as a subroutine in Sim. Sim plays the role of the storage site, and combines all the

steps from the above games. Sim runs A to get the storage site public key pkDB. Upon

receiving (U pload,D,ACL,RL) from T , Sim executes the data owner side algorithm with

A , it chooses numbers D′ randomly from GT and encrypts it using Findex returned by A ,

30

then uploads the encrypted data, ACL and RL to A . Upon receiving (Retrieve,σ) from T ,

Sim executes the visitor side algorithm and queries the random number D′. Then it runs a

simulated proof for a zero-knowledge proof PK{(σ ,k,zV , · · ·)}.

We can see that Sim provides exactly the same environment to A as Sim2 does. We have

Idealξ ,Sim(k) = Hybridξ ,Sim2
(k)

Summing up all the above statements, we get lemma 2.6.2.

Lemma 2.6.3. For the environment ξ and any real world adversary A controlling part of

the visitors, there exists an ideal world simulator Sim such that

Realξ ,A(k)− Idealξ ,Sim(k)≤ 2−kqtri +Advqcred-SDH
G,GT

(k)

+Adv(N+1)SDH
G,GT

(k)+(N +1)Adv(N+2)BDHE
G,GT

(k)

where qtri is the total number of retrieve queries, qV is the number of credential queries, N

is the total number of data items in the storage site.

Proof. In this proof, we assume there are multiple of visitors, one data owner and one

storage site.

Game-1: In uploading data protocol, simulator Sim1 executes the storage site side algo-

rithm and instead of publishing encrypted data Fi, it publishes F ′i chosen randomly from

GT . A can not distinguish these two numbers. Unless it has a polynomial time algo-

rithm to solve instances of BDHE problem. The difference between Game-0 and Game-1

is bounded by Adv(N+2)BDHE
G,GT

(k) [24]. We have

Realξ ,A(k)−Hybridξ ,Sim1
(k)≤ (N +1)Adv(N+2)BDHE

G,GT
(k)

31

Game-2: Simulator Sim2 runs exactly like Sim1, except that during retrieving data protocol,

Sim3 uses the knowledge extractor to exact (σ ,k′,zV , · · ·) from the zero knowledge proof of

knowledge. If the extractor fails, it output ⊥ to ξ . If it succeed, it continues to run honest

storage site algorithm with visitors. The difference between Game-1 and Game-2 is the

knowledge error of knowledge proof. We have that

Hybridξ ,Sim2
(k)−Hybridξ ,Sim1

(k)≤ qtri2−k

where qtri is the number of zero-knowledge proofs.

Game-3: Simulator Sim3 runs exactly like Sim2, except that during retrieving data protocol,

when at least one of the extracted Ai was not issued by the data owner to the visitor with the

secret key zV , Sim4 output ⊥ to ξ . This means the visitor was trying to forge a credential

signature. Note that this case also include corrupted visitors pooling their credentials. The

difference between Game-3 and Game-2 is given by the security of the signature scheme,

which is

Hybridξ ,Sim3
(k)−Hybridξ ,Sim2

(k)≤ Advqcred-SDH
G,GT

(k)

where qcred is the number of credential queries the adversary made.

Game-4: Simulator Sim4 runs exactly like Sim3, except that during the retrieving data

protocol, when the extracted σ /∈ (1, · · · ,N) or Gi does not match ACLσ during any retrieve,

then Sim4 output ⊥ to ξ . In this case, we can say that K1/k′ is a forged signature on Dσ .

The difference between Game-4 and Game-3 is bounded by Adv(N+1)−SDH
G,GT

(k) [24]. We

have

Hybridξ ,Sim4
(k)−Hybridξ ,Sim3

(k)≤ Adv(N+1)SDH
G,GT

(k)

32

Game-5: Simulator Sim5 runs exactly like Sim4, except that during the retrieving data

protocol, the value R is computed as R←{F1,σ e(P1,∏
r
i=1 C

1
ID−IDi
i,1)e(P2,∏

r
i=1 C

1
ID−IDi
i,2)

Re(F2,σ ,P0)
}k′ . And then

the simulator runs a simulated proof of h. We have

Hybridξ ,Sim5
(k) = Hybridξ ,Sim4

(k)

We now construct based on the real world adversary A , simulator Sim in ideal world.

A runs as a subroutine in Sim. Sim plays the role of corrupted visitors, and executes

all the steps in the above games. In the Retrieve stage, after Sim exacts σ from A , it

request record Rσ from T . If A does not has the authorization to access Rσ , T will return

⊥ to Sim and Sim simply returns it to ξ , otherwise T returns Rσ to Sim, Sim computes

R = {F1,σ e(P1,∏
r
i=1 C

1
ID−IDi
i,1)e(P2,∏

r
i=1 C

1
ID−IDi
i,2)

Re(F2,σ ,P0)
}k′ and runs a simulated proof of h. We can see

that Sim provides an environment exactly the same as Sim5 does. Summing up all the

above statements, we can prove Lemma 2.6.3.

Lemma 2.6.4. For the environment ξ and any real world adversary A controlling part of

the visitors and the data owners, there exists an ideal world simulator Sim such that

Realξ ,A(k)− Idealξ ,Sim(k)≤ 2−kqtri

+Adv(N+1)SDH
G,GT

(k)+(N +1)Adv(N+2)BDHE
G,GT

(k)

Proof. In the proof, we assume there are multiple of visitors and data owners, and one

storage site.

33

Game-1: In uploading data protocol, simulator Sim1 executes the storage site side algo-

rithm and instead of publishing encrypted data Fi, it publishes F ′i chosen randomly from

GT . A can not distinguish these two numbers. Unless it has a polynomial time algo-

rithm to solve instances of BDHE problem. The difference between Game-0 and Game-1

is bounded by Adv(N+2)BDHE
G,GT

(k) [24]. We have

Realξ ,A(k)−Hybridξ ,Sim1
(k)≤ (N +1)Adv(N+2)BDHE

G,GT
(k)

Game-2: Simulator Sim2 runs exactly like Sim1, except that during retrieving data protocol,

Sim2 uses the knowledge extractor to extract (σ ,k′,zV , · · ·) from the zero knowledge proof

of knowledge. If the extractor fails, it output⊥ to ξ . If it succeed, it continues to run honest

storage site algorithm with the visitors. The difference between Game-1 and Game-2 is the

knowledge error of knowledge proof. We have that

Hybridξ ,Sim2
(k)−Hybridξ ,Sim1

(k)≤ qtri2−k

where qtri is the number of zero-knowledge proofs.

Game-3: Simulator Sim3 runs exactly like Sim2, except that during the retrieving data

protocol, when the extracted σ /∈ (1, · · · ,N) or Gi does not match ACLσ during any retrieve,

then Sim3 output⊥ to ξ . In this case, we can say that K1/k′ is a forged signature on Rσ . The

difference between Game-3 and Game-2 is bounded by Adv(N+1)-SDH
G,GT

(k) [24]. We have

Hybridξ ,Sim4
(k)−Hybridξ ,Sim3

(k)≤ Adv(N+1)SDH
G,GT

(k)

Game-4: Simulator Sim4 runs exactly like Sim3, except that during the retrieving data

protocol, the value D is computed as D← {F1,σ e(P1,∏
r
i=1 C

1
ID−IDi
i,1)e(P2,∏

r
i=1 C

1
ID−IDi
i,2)

Re(F2,σ ,P0)
}k′ . And

then the simulator runs a simulated proof of h. We state
34

Hybridξ ,Sim5
(k) = Hybridξ ,Sim4

(k)

Summing up all the statement, we can prove lemma 2.6.4.

2.7 Performance Evaluation

We implemented our protocols on a laptop with dual 2.40GHz CPUs and 2G memory. In

order to generate pairing groups and bilinear map, our implementation used a C++ wrap-

per [66] of Pairing-Based Cryptography (PBC) library, developed by Lynn [77]. PBC is

a well-known C library, efficiently implementing elliptic curve generation, elliptic curve

arithmetic and pairing computation. Our evaluation exactly followed the description of the

protocols.

Since our protocols mainly consist of broadcast encryption, ACL signature, credential sig-

nature and zero-knowledge proofs, the purpose of our experiments was to test the perfor-

mance of these four primitives. The underlying elliptical curve used in our implementa-

tion is y = x3 + x with an embedding degree of 2. We chose the group size k, equalling

to 32,64,128,256 and 512 bits respectively, and tested the running time needed for each

primitive. Figure 2.5 shows the running time of the four primitives. In each figure, the lines

with different marker styles represent the running time under different group sizes.

Figure 2.5a is the running time of broadcast encryption algorithm in uploading data pro-

tocol. The X-coordinate corresponds to r in our protocols, representing the number of

revoked visitors. In our implementation, this number is from 16 to 256 with increment of

16. From the figure, we can see that if the number of the revoked visitors is 50 (x = 50), the

running time of the algorithm with variant group size is bellow 5 seconds. This is fast for

such a large number, since in real life the data owner usually does not add so many people

35

in a revocation list.

Figure 2.5b shows the running time of zero-knowledge proofs for proving the knowledge of

credentials in data retrieving protocol. The X-coordinate corresponds to l′ in our protocol,

representing the number of credentials a visitor needs to prove in order to access the data.

The range is from 4 to 64 with increment of 4. From the figure we can see that when

k = 512, it takes about 15 seconds to prove 40 credentials.

Figure 2.5c shows the running time of ACL signature in uploading data protocol. From the

figure we can see that when the value k keeps constant, the running time does not change

so much under different group size. When the number of groups increases by 1 in ACL,

extra computation is cost on computing a large Eindex with more groups. However, the

computation time of multiplication is much less than those of the pairing operations and

the computation of discrete logarithm module a prime. This extra computation does not

give a remarkable increment in the running time.

Figure 2.5d shows the running time of credential signatures. The X-coordinate represents

the number of credentials the data owner needs to sign one time for accessing the data. In

our implementation, the range is from 4 to 64 with increment of 4. From this figure, we

can see that when k = 512, it takes less than 3.5 seconds to sign 64 credentials at one time.

Since one credential corresponds to a group in our scenario, 64 groups is more than a user’s

common use in the OSN.

2.8 Conclusions

In this dissertation, we have proposed a system which can hide visitors’ identities and

the index of the data when they visit the storage site. Using zero-knowledge proof based

oblivious transfer, the storage site can verify visitors’ credentials without leaking the private

36

(a) Broadcast Encryption Algorithm (b) Zero-knowledge Proofs

(c) ACL Signature (d) Credential Signature

Figure 2.5: Running Time

information of the signer. We have designed a group-based ACL for the data owner to freely

determine which group of friends can access the data. In addition, we have designed an RL

which enables the data owner to revoke individuals from future accessing. In this way,

our access control policy can be generalized to individual visitors. We have proved the

security of our system by indistinguishability of the real world and the ideal world in UC

framework. Our evaluation results have shown the efficiency of our system.

37

CHAPTER 3

Identity Privacy in Anonymous Message Submission

In the real world, anonymity has always been an important societal issue. As more and more

people discover the digital world and find the need for anonymous participation, this issue

is becoming increasingly important. In addition, the new wave of online social networks

has created an unprecedented demand for anonymity in the digital world.

Consider a health care product company that wants to do an online survey about its products

in an online social network, such as Facebook. The company wants to receive accurate

feedback from its users and avoid redundant responses from the same person. Hence, the

company would like the participants to log in their social network accounts. This can be

easily achieved by having, for example, a “Login with Facebook” button on the survey web

page. In this way, the company could get the participants’ demographic data and reject

repeated submissions. However, the participants may not feel good about this approach,

which links the answers to their social identities. Particularly, people would rather not

participate in the survey when the answers contain any private information, such as their

health conditions. Another example is that some online career social networks, such as

LinkedIn, often conduct surveys like “how do you like your current company”. The result

of this kind of survey is very helpful to other people’s career development. However, people

would not like to answer or may not give their truthful thinking if they are worried about

that their negative answers may link to their real identities and backfire on themselves.

To release the worries mentioned in the above, it is necessary to construct an anonymous

message submission mechanism that hides the connection between a submitted message

38

and its provider’s identity. Before we get to the details of our work, it is helpful to study

how people do anonymous message submissions in real life. Consider secret ballot which

is an example of “anonymous message submission system”. Participants cast their ballots

into a locked and non-transparent ballot box. The box is then shaken to randomize the

order in which people cast their ballots. At last, the ballot papers are taken out and handed

to the collector. Aside from hand writing differences, all ballot papers are similar, or in-

distinguishable, to one another. Assuming the collector cannot tell people’s hand writing

differences, he would not know the connections between people’s identities and their bal-

lots. The submission order connects a ballot to its participant but has been broken by the

shaking process. However, it is challenging to migrate this simple real-life system to a

public and untrusted network, because a secure ballot box trusted by all participants is dif-

ficult to find in the digital world. Besides, the shaking process is supervised simultaneously

by all participants and difficult to reproduce when participants are connected by separate

connections (e.g., TCP).

One may suggest to use existing anonymous networks, such as Onion routing [30, 94],

to deliver a participant’s message to the collector. This solution does not fit our scenario,

which needs to verify participants’ identities before message submission happens. The

only thing to be protected in our scenario is the connection between a message and the

participant’s identity. However, anonymous networks also hide participants’ identities. In

other words, the collector does not know who participates in the message submission.

Anonymous message submission has attracted wide attentions [21, 38, 101]. In [101], Yang

et al. proposed the first construction for online anonymous message submission. Bickell

and Shmatikov revisited this problem and proposed a collusion resistant anonymous data

collection protocol in [21]. Recently, Corrigan-Gibbs and Ford improved the protocol in

[21] to make it accountable and added the functionality of sending variable length messages

39

[38]. Anonymity in the above protocols is guaranteed by a “shuffle” process, which is

collaboratively done by all group members. The existing solutions [21] [38] are based on

two rounds of IND-CCA2 secure encryption that are done by group members one by one.

This makes the protocol’s communication rounds linear in the group size. Their solutions

can only handle groups of small sizes. For example, the system in [38] can handle up to 44

members.

The motivation of this work is to construct an efficient and collusion resistant anonymous

message submission protocol for a group of a practical scale (e.g., hundreds of group mem-

bers). We propose a novel technique which secretly aggregates the group members’ mes-

sages into a message vector with each message being a component in the vector. Each mem-

ber only knows his selected component index and is unaware of other members’ choices.

Our work aims to promote the practical application of message submission with strong

anonymity guarantees, which will increase privacy protections and anonymity in the digital

world.

Our main contributions are as follows:

1. We propose a novel anonymous position application technique, which enables each

group member to obtain a position in the final message submission sequence in a

manner that each member is oblivious to other members’ positions. Technically, we

use a vector to represent a sequence, and a position in the sequence is mapped to

the corresponding component index in the vector. This process can be done in a few

communication rounds with a high success probability (2 rounds with 95% success

probability).

2. We propose an efficient anonymous message submission protocol, AMS, for groups

of practical scales. Our protocol runs in time bounded by a polynomial in the group

40

size, and has constant communication rounds.

3. We prove that the AMS protocol is anonymous and collusion resistant under ma-

licious attacks. The AMS protocol does not rely on any trusted third party. The

security of our protocol is based on the security of the secret sharing scheme and the

symmetric key cryptosystem.

4. We analyze the performance of our protocol from the aspects of security and effi-

ciency. We conduct comprehensive simulations showing that our protocol is more

efficient than existing ones , especially when the group size is large.

To achieve accountability and handle variable length messages, we adopt the signature

based audit protocol and the DC-net based message transmission protocol proposed in [38].

3.1 Related Work

In this section, we review the closely related work on anonymous message submission and

secure multi-party computation (SMC).

The anonymous message submission problem was first introduced by Yang et al. [101],

who proposed a shuffle technique to solve it. In their protocol, t leaders are chosen out

of the N group members. Each member’s message is encrypted with all leaders’ public

keys. Each leader randomly shuffles the messages and proves that the shuffle is correct

using zero-knowledge proof. However, if the last leader colludes with the collector, the

anonymity will be violated. In [21], Brickell and Shmatikov proposed a collusion resistant

anonymous data collection protocol. In their protocol, each member generates his primary

and secondary public/private key pairs. The users first encrypt their messages using the col-

lector’s public key, then encrypt the resulting ciphertexts using each member’s secondary

public key, and finally encrypt the resulting ciphertexts using each member’s primary pub-
41

lic key. Next, the ciphertexts are randomly shuffled by each member who also strips off

one layer of the encryption during the shuffle. Finally, the ciphertexts are sent to the col-

lector in a random order. The collector decrypts the ciphertexts using the secondary private

keys sent by the members and his own private key. In [38], Corrigan-Gibbs and Ford ex-

tended the shuffle protocol and proposed an accountable anonymous message submission

protocol, called Dissent. Dissent consists of two protocols: shuffle and bulk. They still

use the shuffle technique in [21] in their shuffle protocol. In addition, each member in the

protocol of [38] creates a log file and updates its state during the protocol execution. If

at some point the protocol terminates abnormally, all members execute the protocol again

according to their log files so that they can expose the member who is responsible for the

abnormality. The bulk protocol enables the members to send variable length messages. It

requires 2N +7 communication rounds and O(N2) total computations.

Other anonymous data submission schemes, such as Mix-networks [30] [94] and DC-nets

[31] [57] [88] [96], also achieve strong anonymity. However, they seem to be a poor match

for our scenario, since the collector may need to know who the group members are. In

this case, complicated techniques are needed to enable a well-defined group to submit their

messages to the collector, and one or more nodes in the network may be compromised,

which breaks the anonymity. Our protocol can provide strong anonymity even when k

(k ≤ N−2) out of the N group members are compromised.

SMC was first proposed by Yao [102] and focused on a limited set of problems [46], such

as privacy-preserving database query [100] [28], privacy-preserving geometric computa-

tion [80] and privacy-preserving data mining [3] [73]. While these problems are interest-

ing, they are different from what we focus on in this dissertation. In SMC, there are several

parties, and each of them has an input. They collaborate to compute the function on their

inputs without revealing their inputs to the other parties. While in our problem, the group

42

members do want the collector to learn their inputs. While secret sharing scheme is ex-

tensively used in SMC [81] [46] [72], to our best knowledge, we are the first to use secret

sharing scheme in anonymous message submission.

To make strong anonymous communications scalable, Corrigan-Gibbs et al. recently pro-

posed a client/server architecture in [98] and then developed it in [39]. In their architecture,

clients are divided into several groups and each group is assigned to a server, which is called

the group’s “upstream” server. Every client only communicates with its upstream server

during the entire communication session. An upstream server collects message ciphertexts

from clients and communicates with other servers as its downstream clients’ agent. Servers

then collaboratively put messages together and hand down to their downstream clients. The

system’s anonymity relies on DC-nets and the assumption that at least one upstream server

is trusted. Different from their approaches, the AMS protocol proposed in this dissertation

is a peer-to-peer protocol and does not assume the existence of a trusted third party.

3.2 Problem Formulation

In this section, we present the network model, the threat model, and the security objectives

of our work.

3.2.1 Network Model

Our network consists of N + 1 parties: a set M consisting of N group members, and a

collector C who collects all group members’ messages. Each group member has a unique

group ID. Without loss of generality, we assume that an ID is a number from {1,2, · · · ,N}.

The group members want to submit their messages to the collector without exposing their

identities. The initiator of the protocol could be either the collector or any group member.

43

We assume that there are at least two honest group members, since it is impossible to ensure

anonymity if there is only one honest member.

We do not assume the existence of a trusted third party during our protocol execution.

Our protocol runs in a completely distributed manner. All the communications are carried

out on authenticated and credential channels, i.e., secure channels. We assume that each

member has a public/private key pair and the public key is public. The secure channels

can be set up by using a public key cryptosystem. We also assume that all members keep

connecting to the network during the protocol execution.

3.2.2 Threat Model

There are two types of adversaries: semi-honest adversaries and malicious adversaries [51]

[56]. Semi-honest adversaries honestly follow the protocol execution but are curious about

people’s private information. They will do their best to collect all messages that they can

obtain, analyze them, and infer private information. Malicious adversaries do not necessar-

ily follow the protocol and may eavesdrop the communications, modify, replay, or inject

messages. Adversaries could be multiple parties or a single party (e.g., the collector). If

multiple parties collude, we consider they are controlled by one adversary so that we only

need to consider a single adversary hereafter.

In this dissertation, we consider the security of our protocol in the presence of a malicious

adversary. Since a party can always abort from a protocol execution, we do not claim that

our protocol can successfully deliver messages under any circumstance, which is the same

as in [21] and [38]. Instead, we prove that the security properties are always preserved

when the protocol terminates.

44

3.2.3 Security Objectives

The security objectives of our work are stated as follows.

• Anonymity: If k (k ≤ N − 2) out of the N (N ≥ 3) group members collude with

the collector, they cannot infer the provider’s identity for a given message. Note

that anonymity cannot be guaranteed when there is only one honest group member.

Having all N−1 messages and identities, the adversary can easily link the remaining

message to the honest member.

• Integrity: When the protocol terminates, the collector should either receive the hon-

est members’ messages or be notified that the messages are modified. In the latter

case, the culprit should be exposed.

• Confidentiality: If the collector is honest, k (k ≤ N−1) dishonest members cannot

learn the content of the honest members’ messages, even by colluding.

• Accountability: At least one malicious member should finally be exposed by the

group members if the protocol execution is broken.

We use an anonymization game [21] to formalize our notion of anonymity for the anony-

mous message submission protocol. The anonymization game is played between an ad-

versary and an oracle with a security parameter 1λ , where λ is an integer. Suppose that

k out of the N group members and the collector are dishonest. The adversary plays the

roles of the collector and the k dishonest members, while the oracle plays the roles of the

honest members. A protocol is said to be anonymous if the adversary can win the game

with only a negligible probability. Prior to the game, the adversary chooses N−k messages

and gives them to the oracle, who then participates in the anonymous message submission

45

protocol and submits these messages to the collector on behalf of the honest members.

The adversary may repeat this process for a polynomial number of times. Formally, the

anonymization game is defined as follows.

1. The adversary chooses two honest members α and β , and two messages d0 and d1

in plaintext. He also assigns a message di, in plaintext, to each remaining honest

member i. The adversary gives these messages to the oracle.

2. The oracle selects a bit b∈ {0,1} uniformly at random, and sets dα = db and dβ = db̄,

where b̄ denotes the negation of b.

3. The oracle participates in the anonymous message submission protocol. When a

message is needed for an honest member i, the oracle responds with the message di.

4. After observing the protocol execution, the adversary outputs his guess about b.

Let D be a probabilistic polynomial time adversary. Then

Pr[D(1λ ,α,β ,d0,d1,0) = 1]

is the probability that D outputs 1 when b = 0, and

Pr[D(1λ ,α,β ,d0,d1,1) = 1]

is the probability that D outputs 1 when b = 1. The adversary’s advantage is

AdvD = Pr[D(1λ ,α,β ,d0,d1,1) = 1]

−Pr[D(1λ ,α,β ,d0,d1,0) = 1].

46

Definition 2. A message submission protocol is anonymous if, for any probabilistic poly-

nomial time adversary D , its advantage in the anonymization game is a negligible function

in λ .

Again, we remark that this definition is valid only when there are at least two honest group

members, i.e. k ≤ N−2.

3.3 Secret Sharing Schemes

A (t,N)-secret sharing ((t,N)-SS) scheme is an efficient scheme that shares a secret among

N parties. As stated in [86], the scheme divides the secret into N shares and gives the i-th

share [s](t,N)
i to the i-th party. At least t parties are required to reconstruct s. The notation

[s](t,N)
i denotes the share specifically for the i-th party.

When t = N, there is a simplified (N,N)-SS scheme which can achieve linear time com-

plexity [92]. Suppose there is a secret s∈Zm that is to be shared among N parties. First, we

secretly choose (independently at random) N−1 elements s1,s2, · · · ,sN−1 from Zm, com-

pute sN = s− s1−·· ·− sN−1 mod m, and give si to the i-th party. In order to reconstruct

s, N parties expose their shares, and compute s = s1 + s2 + · · ·+ sN . In this dissertation, we

use (N,N)-SS in our protocol construction. Hence, we use the notation [s]i to denote the

share for the i-th party.

The aforementioned (N,N)-SS is additive homomorphic [12]. Particularly, given two se-

crets a0 and a1, we have [a0 + a1]i = [a0]i +[a1]i, where [a0 + a1]i, [a0]i, and [a1]i are the

i-th shares of a0 +a1, a0, and a1, respectively.

We say that an (N,N)-SS is indistinguishable if it is impossible to learn any information

about a secret from any of its N − 1 shares. The indistinguishability of an (N,N)-SS is

defined by the following distinguishing game, which is played between an adversary and
47

an oracle.

1. The adversary splits the secret using the (N,N)-SS, and performs any operation on

the shares.

2. The adversary submits two distinct secrets a0 and a1 to the oracle.

3. The oracle selects a bit b∈ {0,1} uniformly at random, splits ab,ab̄ using the (N,N)-

SS, and returns N− 1 shares of ab followed by N− 1 shares of ab̄. The indices of

returned shares are specified by the adversary. Without loss of generality, we assume

that the returned shares are [ab]1, · · · , [ab]N−1 and [ab̄]1, · · · , [ab̄]N−1, respectively.

4. The adversary is free to perform any operation on the returned shares, and, finally,

outputs a guess for the value of b.

Let A be an adversary algorithm. Then

Pr[A (a0,a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1,0) = 1]

is the probability that A outputs 1 when b = 0, and

Pr[A (a0,a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1,1) = 1]

is the probability that A outputs 1 when b = 1. The adversary’s advantage is

AdvA =

Pr[A (a0,a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1,1) = 1]−

Pr[A (a0,a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1,0) = 1].

48

Definition 3. An (N,N)-secret sharing scheme is said to be unconditionally indistinguish-

able if for any two secrets, a0 and a1, the advantage of any algorithm A in the distinguish-

ing game is 0.

Theorem 2. The simplified (N,N)-secret sharing scheme is unconditionally indistinguish-

able.

Proof. Suppose A gets N− 1 shares [a0]1, · · · , [a0]N−1 generated by the aforementioned

simplified (N,N)-SS, where a0 ∈ Zm. Then for any a′0 ∈ Zm, there is a unique [a′0]N ∈ Zm

such that [a0]1 + · · ·+[a0]N−1 +[a′0]N = a′0. Since a′0 is distributed uniformly over Zm, the

construction of [a′0]N is equally likely. Therefore, [a0]1, · · · , [a0]N−1 could be N−1 shares

of any number a′0 ∈ Zm with equal probability. It is true for any N− 1 shares of a secret

in Zm. We conclude that the distribution of the N − 1 shares of a0 and a1 is identical.

Observing the N−1 shares, the adversary gets no information about the secret. Therefore,

AdvA = 0.

3.4 Preludes to Protocol Construction

3.4.1 Protocol Overview

Our protocol consists of two sub-protocols: an anonymous message submission (AMS)

protocol and a bulk protocol. The bulk protocol is used to send variable length messages

and is proposed by Corrigan-Gibbs and Ford in [38]. We adopt it as a building block for

our protocol. Our contribution is an efficient peer-to-peer anonymous message submission

protocol for scalable size of groups. It is comparable to the anonymous shuffle protocol

[21]. The purpose of AMS is to submit a sequence of messages to a designated collector

without disclosing the message senders’ identities.

49

AMS consists of six phases: application, encryption, anonymization, verification, decryp-

tion, and blame. Compared with existing shuffle protocol, AMS saves the computation

time in the following aspects: 1) The core of AMS relies on two light-weight operations –

a simplified (N,N)-SS and a symmetric key encryption (i.e., AES); and 2) A member’s op-

erations in each phase are independent of that of other members. However, AMS requires

the messages to be of the same length, which is a common weakness of existing shuffle

protocols. We briefly introduce the six phases of the AMS protocol in the following.

- Application: All the messages will be eventually submitted in a sequence. The

application phase is to make every member chooses a position in the final sequence

but be oblivious to other members’ choices. When the application phase ends, every

member i obtains a unique position πi (1 ≤ πi ≤ N). Here, [π1, · · · ,πN] is a random

permutation of [1, · · · ,N].

- Encryption: Each member i encrypts his data di using his symmetric key ki and gets

the ciphertext ei = Encki(di) with equal length of r bits.

- Anonymization: Each member i constructs a data vector~e such that the πi-th com-

ponent is ei and the rest components are 0. All members split the data vector using

the (N,N)-SS, keep their own shares confidential, and send out the remaining shares.

- Verification: Each member i reconstructs ~e and checks whether his ei is the πi-th

component of ~e. If any member’s message has been altered, an alert message is

broadcasted and all members go to the blame phase; otherwise, all members encrypt

their symmetric key using a distributed ElGamal encryption [71] and anonymously

broadcast the ciphertext via the same technique as in the anonymization phase. Fi-

nally, all members obtain a key ciphertext vector ~k′ with πi-th component being El-

Gamal encryption key k′i (1≤ i≤ N).
50

- Decryption: After checking the integrity of key ciphertexts, every member retrieves

the key ciphertexts from ~k′, decrypts them, and uses the keys to decrypt the corre-

sponding messages.

- Blame: All members publishes their secret choices of their positions, the message

ciphertexts, the key ciphertexts, the messages received from and sent to other mem-

bers, and their message logs. All members then replay the protocol execution and

every member’s behaviors to expose at least one culprit.

We use the bulk protocol [38] to send variable length messages. To execute the bulk pro-

tocol, each member generates a ciphertext of his data by XORing the data pseudo random

numbers generated by himself. Next, the member constructs a message extractor that helps

other members to reproduce the corresponding pseudo random numbers. All members’

message extractors are of equal length. Hence, we transform variable length messages into

equal length ones. All members then execute the AMS protocol to anonymously broad-

cast the message extractors. Using the message extractors, the collector can reconstruct the

messages by XORing necessary pseudo random numbers.

3.4.2 Anonymous Data Aggregation

A technique used in our protocol is to aggregate data held by group members into a data

vector ~v = [vσ−1(1),vσ−1(2), · · · ,vσ−1(N)] in a way that a member’s position is only known

to himself. Here, vi is the data held by a member i and σ is the permutation

σ =

 1 2 · · · N

π1 π2 · · · πN

 .

Each member i obtains the position πi in the application phase. To achieve this, each

member i constructs an individual vector ~vi such that the πi-th component is vi and the
51

remaining components are 0. Each member i generates N shares for ~vi by splitting each

component of~vi using (N,N)-SS. The t-th share of the vector is a vector of all components’

t-th shares. Next, all members send their j-th share to member j and keep their own share of

the secret. Hence, each member receives N−1 shares from other members. Each member

i sums up the received N−1 shares and his own share to form one share of vector~v, since

(N,N)-SS is additive homomorphic. The group members together can reconstruct~vi .

0 0 0 0 0 02v 3v1v

1v 2v3v

3v2v1v

Figure 3.1: Data Aggregation

Fig. 3.1 illustrates the process of the data aggregation. There are three members 1, 2, and

3. In this example, N = 3. The positions they obtained are π1 = 1, π2 = 3, and π3 = 2.

Members 1, 2, and 3 construct individual vectors ~v1, ~v2, and ~v3 as shown in Fig. 3.1.

Using a (3,3)-SS, members 1,2 and 3 share ~v1, ~v2, and ~v3 with the other two members,

respectively. In this way, each member gets two shares from the other members. Due to the

homomorphic property of (N,N)-SS, each member sums up the two received shares and

the share kept by himself, and gets a share of~v.

3.5 Anonymous Message Submission Protocol

In this section, we present the details of each phase in our AMS protocol. Before the proto-

col execution, each member i generates a signature key pair (ui,vi), where ui is the signing

key and vi is the verifying key. The signature of a message m is denoted as Sigui(m). For

the purpose of accountability, every group member keeps a log file during each protocol

execution. Given a step in a protocol phase, a member’s log file is all his previous incom-
52

ing and outgoing messages along with the member’s generated secrets (e.g., secret shares,

random numbers used in encryption) during the execution up to the current step. For each

protocol step, the hash value of a member’s log file is sent out for the commitment purpose.

We use hφ .k
i to denote the hash value of member i’s k-th log file in the phase φ . All mem-

bers agree on a nonce nR to uniquely identify one protocol execution and a cryptographic

hash function, denoted as h(·). They also agree on a symmetric key encryption system and

generate their individual encryption key ki (1≤ i≤ N). In addition, they agree on a cyclic

multiplicative group G of prime order p and one of its generators g.

Fig. 3.2 shows the application phase. The idea of the application phase is that each member

randomly selects a component in the position vector ~p, adds 1 to the component, and keeps

the component index secret. Eventually, all members exam ~p to see if every member obtains

a unique position. A component bigger than 1 indicates a collision. Since each member

operates independently, collision is most likely to happen when ~p is N-dimensional. In

order to solve this problem, we extend the dimension of ~p to a larger value M. The intuition

is that selecting N out of M candidates will have fewer collisions if M is large enough.

We will prove in Section 4.5 that if M = max(361+N,2N2− 2N), one execution of the

application phase achieves no collision with a probability no less than 95%. At the end

of the application phase, the members remove all 0 components and shrink the selected

position indices to the range between 1 and N.

Initially, every member i (1≤ i≤ N) constructs an M-dimensional individual vector ~pi and

initializes every component to 0. Member i randomly picks a component pia in ~pi and sets

it to 1. Next, every member splits the individual vector into N shares using the (N,N)-SS

and sends the j-th share to member j. At the same time, member i also receives shares

from other members. Utilizing the additive homomorphic property of the (N,N)-SS, i gets

one share of ~p: [~p]i = (∑N
a=1[pa1]i · · ·∑N

a=1[paM]i). With the shares, the group members

53

Phase 1: Application
Round 1:
Each member i(1≤ i≤ N) executes the following:

1. Initially, i initializes an individual position vector ~pi = [pi1, · · · , piM], where M =
max{361+N,2N2− 2N}. He randomly chooses a component, say piα , and sets piα

to 1 and the rest components to 0, indicating that he wants to occupy index α .

2. Member i splits vector ~pi by dividing each component into N shares. For another mem-
ber l(l 6= i), i constructs a message ml = ([pi1]l||[pi2]l|| · · · ||[piM]l||h1.1

i ||nR), and sends
ml||Sigui(ml) to member l.

3. Upon receiving mi||Sigu j(mi) from all other members j(1 ≤ j ≤ N, j 6= i), i com-
putes [~p′]i = [∑N

a=1[pa1]i,∑
N
a=1[pa2]i, · · · ,∑N

a=1[paM]i], constructs the message mi→∗ =
[~p′]i||h1.2

i ||nR and broadcasts mi→∗||Sigui(mi→∗) to all other N−1 members.

4. Upon receiving other members’ shares m j→∗||Sigu j(m j→∗)(j 6= i), member i now has all
N shares {[~p′] j}N

j=1 and reconstructs ~p′ = [∑N
b=1 ∑

N
a=1[pa1]b, · · · ,∑N

b=1 ∑
N
a=1[paM]b].

5. Every member i counts the collision headcount in ~p′, i.e. c = ∑p′a>1 p′a. If c > 6, this
round fails and they repeat Round 1 again. After two failures of running Round 1, all
members directly go to Phase 6. If 0 < c≤ 6, they go to Round 2, otherwise, they go to
Step 10.

Round 2:
Each member i(1≤ i≤ N) executes the following:

6. Since every member has ~p′, they know which components are occupied and which ones
have collisions. In vector ~p′, if the value at index πi is 1, then i does not change his
individual vector ~pi; otherwise i resets all vector components to 0, randomly chooses
another index except the occupied ones, and sets it to 1.

7. Member i divides each component pia(1≤ a≤M) into N shares, constructs the message
ml = ([pi1]l|| · · · ||[piM]l||h1.3

i ||nR)(l 6= i), and sends ml||Sigui(ml) to member l.

8. Repeating Step 3 to Step 4 in Round 1, i can reconstruct another final vector ~p′′.

9. i checks the number if there is any collision in ~p′′. If there is, all members repeat Phase
1. After the second failure of running Phase 1, all members go to Phase 6. Otherwise
they go to the next step.

10. Assuming member i selects the α-th (1≤ α ≤M) index of ~p′ (or ~p′′), member i’s final
component index in the position vector is πi = ∑

α
t=1, p′′t . In this way, every member

obtains a unique component index which is between 1 and N.

Figure 3.2: Application Phase

54

together reconstruct a vector ~p′ and check if there is any collision. There are three cases:

• If ∑p′i>1 p′i = 0, all members directly go to Step 10.

• If ∑p′i>1 p′i > 6, all members repeat Round 1 again.

• If ∑p′i>1 p′i ≤ 6, all members go to Round 2.

In Round 2, the members who do not collide with others do not change their positions.

Other members randomly pick their positions again except those that have been occupied.

All the members execute Step 7 and Step 8, and reconstruct a vector ~p′′. If no collision

exists, all components in ~p′′ should be either 1 or 0. In the end, member i computes the

selected component index which is the α-th index using the formula: πi = ∑
α
t=1 p′′t . Note

that in Phase 1-Round 1, each component is of dlogNe bits in case that all members select

the same component. However, each component can be shrunk to 3 bits in Phase 1-Round

2 so as to save spaces.

Now, one might think of a jamming attack, in which an adversary always fills every compo-

nent of ~p such that the application phase cannot be ended with a non-collision vector. This

is the reason why we need a blame phase, which is to expose at least one faulty member.

The success probability of finding a non-collision vector is greater than 99.75% after two

runs of Phase 1. Therefore, if the members still cannot find a non-collision vector, it is

quite possible that some members deviate from the protocol specification. In this case, all

members go to the blame phase to find out the culprit.

Phase 2: Encryption
Each member i(1≤ i≤ N) executes the following:

1. i encrypts di using the symmetric key encryption scheme, and gets ei = Encki(di).

Figure 3.3: Encryption Phase

55

Phase 3: Anonymization
Each member i(1≤ i≤ N) executes the following:

1. i constructs an individual vector~ei by putting ei at index πi and 0 at others.

2. Member i divides each component of~ei into N shares. For each member l, i constructs
the message ml = [ei1]l|| · · · ||[eiN]l||h3.1

i ||nR, and sends ml||Sigui(ml) to member l.

3. Upon receiving mi||Sigu j(mi)(1 ≤ j ≤ N, j 6= i) from all other members, i locally
computes [~e]i = (∑N

a=1[ea1]i,∑
N
a=1[ea2]i, · · · ,∑N

a=1[eaN]i), generates message mi→∗ =
[~e]i||h3.2

i ||nR and sends mi→∗||Sigui(mi→∗) to all other N−1 members.

Figure 3.4: Anonymization Phase

Phase 4: Verification
Each member i(1≤ i≤ N) executes the following:

1. Upon receiving m j→∗||Sigu j(m j→∗)(1≤ j ≤ N, j 6= i) from the other members, member
i locally reconstructs~e = (∑N

b=1 ∑
N
a=1[ea1]b, · · · , ∑

N
b=1 ∑

N
a=1[eaN]b).

2. i checks if πi-th component of~e is his ciphertext ei. If not, i broadcasts a message b =⊥
and all members directly go to Phase 6; otherwise, the members go to next step.

3. Each member i picks a random integer xi ←R Z∗p and keeps it secret, where p is the
order of group G. Member i calculates yi = gxi and broadcasts yi. The group members
calculate a common public key y = ∏

N
i=1 yi.

4. Each member i computes an ElGamal encryption of his symmetric key k′i: k′i = gγ ||kiyγ ,
where γ ←R Z∗p.

5. Member i constructs an N dimensional vector ~k′i with πi-th component being k′i and
the rests being 0. Member i divides each component of ~k′i into N shares, constructs
the message ml = [k′i1]l||[k′i2]l|| · · · ||[k′iN]l||h4.1

i ||nR, for each other member l, and sends
ml||Sigui(ml) to member l.

6. Upon receiving mi||Sigu j(mi)(i 6= j,1≤ j ≤ N) from all other group members, i locally
computes [~k′]i = (∑N

a=1[k
′
a1]i,∑

N
a=1[k

′
a2]i, · · · ,∑N

a=1[k
′
aN]i), generates the message mi→∗ =

[~k′]i||h4.2
i ||nR, and sends mi→∗||Sigui(mi→∗) to the other N−1 group members.

Figure 3.5: Verification phase

Fig. 3.3 shows the encryption phase. In the encryption phase, each member i encrypts his

data di using the symmetric key encryption scheme. The ciphertext is ei = Encki(di).

Fig. 3.4 shows the anonymization phase. In this phase, each member i first constructs

56

Phase 5: Decryption
Each member i executes the following:

1. Upon receiving m j→∗||Sigu j(m j→∗)(1≤ j≤ N, j 6= i) from other group members, mem-
ber i locally reconstructs ~k′ = (∑N

b=1 ∑
N
a=1[k

′
a1]b, · · · , ∑

N
b=1 ∑

N
a=1[k

′
aN]b).

2. Member i checks if the πi-th component of~k′ is k′i. If not, he will send an alarm message
and all members go to Phase 6, otherwise, he broadcasts xi.

3. Upon receiving x j(1≤ j ≤ N, j 6= i) , member i checks its validity by checking whether
the equation gx j = y j holds. If any x j is invalid, member i reports member j as a faulty
member. Having all valid x j’s, the distributed ElGamal decryption key is x = ∑

N
j=1 x j

mod p. Member i retrieves a secret key k′j = gγ ||k jyγ from ~k′, decrypts it, and obtains
k j = k jyγ/(gγ)x. Having k j, member i decrypts the corresponding ciphertext dσ−1(j)
from~e.

4. Member i sends a copy of (dσ−1(1), · · · ,dσ−1(N)) to the collector.

5. The collector checks the validity of the sequence (dσ−1(1), · · · ,dσ−1(N)). If one or more
sequences are different from the others, all members go to Phase 6.

Figure 3.6: Decryption phase

an N-dimensional message vector ~e with the πi-th component being the ciphertext of ei

and the rest being 0. All members split their message vectors and send shares to other

corresponding members. Therefore, each member i receives N−1 shares. Every member

i sums up those N−1 shares together with his own share and obtains one share of~e.

Fig. 3.5 shows the verification phase. After the reconstruction of~e, each member i checks

whether the πi-th component is equal to his ciphertext ei or not. If not, the member i

broadcasts an alarm message b = ⊥. If there is a b = ⊥ message, all members go to

the blame phase, otherwise all members encrypt their individual symmetric key using a

distributed ElGamal encryption system [71]. With the distributed ElGamal encryption, the

message is encrypted by a common public key and the decryption requires all members’

secret keys. This encryption is necessary because the members will not expose their key

in the blame phase if the key transmission is broken by a malicious adversary. We do not

57

Phase 6: Blame
The members may enter the blame phase from the application, verification, or decryption
phase. There should be a corresponding blame for each different entrance. However, the
descriptions are similar and we put them together to save space. We use entrance phase to
denote the phase from which the members enter the blame phase. When they enter this phase,
members publish as much secret information as they could and replay the protocol execution
as far as they could go.
Each member executes the following:

1. If the entrance phase is Decryption, every member destroys his own secret key xi and
symmetric key ki.

2. Each member i reveals his own secret shares when he splits vectors before entrance
phase, i.e., [~pi]i, [~ei]i, and [~k′i]i. These secret shares are never sent out during the pre-
vious phases. Members also reveal all incoming and outgoing messages along with the
signatures up to the entrance phase. If the entrance phase is after the encryption phase,
members also need to reveal the randomness used in the encryption phase, e.g. initial-
ization vector for AES-CTR. With these information, member i can replay any other
member’s behaviors and reconstruct their individual vectors.

3. Member i exposes j as faulty if

• The hash value of any replayed message does not match the corresponding hash
value in the log file;

• Any of the replayed messages does not match the corresponding messages re-
ceived in the previous phase;

• In the application phase, the vector ~p j is ill-formed, i.e., not in the form of one
component being 1 and the rests being 0;

• In the anonymization phase, the ciphertext vector ~e j is ill-formed, i.e., ∃n ∈
{1, · · · ,N} s.t. n 6= j∧ en 6= 0;

• In the decryption phase, member j’s key vector ~k′ j is ill-formed;

• If the entrance phase is Anonymization or Decryption, everything is verified to be
correct, but j claims that his ciphertext or key is corrupted.

Figure 3.7: Blame phase

require the ElGamal encryption to be IND secure. An encryption scheme that can maintain

confidentiality is sufficiently suitable for our protocol. The reason is that the plaintext, i.e.,

the secret key, is a random number and the resulting ciphertext is thus indistinguishable

from a random number. The members secretly construct an N-dimensional key vector ~k′

58

such that the πi-th component is k′i. To achieve this, they use the same data aggregation

technique that is introduced in Section 3.4.2.

Fig. 3.6 shows the decryption phase. After the key vector is reconstructed, all members

retrieve each key ciphertext k′i from ~k′. If any ciphertext is not corrupted, all members

publish their secret xi so that the distributed ElGamal decryption key can be constructed

to decrypt the ciphertexts of the secret keys. Finally, the obtained secret keys are used to

decrypt the ciphertexts of the messages.

Fig. 3.7 presents the blame phase. Group members publish all secret information, including

the secret choice of component index, all messages received from and sent to other mem-

bers, their secret shares, message ciphertexts, and key ciphertexts, and replay the protocol

execution again to find the culprit.

3.6 Analysis of AMS Protocol

This section analyzes the security and efficiency of AMS protocol.

3.6.1 Security

In this section, we prove that the security properties defined in Section 3.2.3 can be pre-

served under malicious attacks.

3.6.1.1 Anonymity

We prove the anonymity (Definition 2) of our protocol in two aspects. First, we prove

that if the collector and some members behave dishonestly and learn some associations

between the identities and the ciphertexts, they cannot pass the verification phase and thus

they cannot learn the plaintexts. Second, we prove that if the collector and the dishonest

59

members behave honestly, they pass the verification phase and learn the final decrypted

plaintexts, but they will not learn the associations between the identities and the plaintexts.

Theorem 3. In the AMS protocol, if the collector colludes with no more than N−2 group

members and the symmetric encryption is IND-CPA secure, the collector has only a neg-

ligible probability to get the associations between the messages and the identities of the

honest group members.

Proof. Our proof is done in two parts. First, we show that in the verification phase, either

there is exactly one copy of the ciphertext for each honest member, or the deviation from

the protocol could be detected by the members before the collector gets the secret keys.

Second, we show that an adversary who can win the anonymization game while maintain-

ing the security properties can also win the distinguishing game, which is a contradiction

because the (N,N)-SS is unconditionally indistinguishable and the underlying encryption

scheme is IND-CPA secure.

Part 1: The honest members’ messages cannot appear more than once due to the indis-

tinguishable property of (N,N)-SS. If the adversary can reproduce the honest members’

messages, then the adversary can break the (N,N)-SS scheme from less than N shares,

which is a contradiction to the property of the (N,N)-SS.

Now we show that if the adversary modifies the honest members’ messages, this modifica-

tion will be detected in the verification phase, since the honest members do not find their

ciphertexts in the message vector. Hence, the protocol is abort and the adversary cannot get

the secret keys of the ciphertexts. In this case it is infeasible for the adversary to learn the

plaintexts without the secret keys since the underlying encryption scheme is semantically

secure.

Part 2: Now suppose that the adversary honestly handles all ciphertexts belonging to the
60

honest members. If there is a probabilistic polynomial time algorithm D that allows this

adversary to win the anonymization game with a non-negligible probability, we show how

to use D as a subroutine to the algorithm A that wins the distinguishing game with a

non-negligible probability. Because the underlying (N,N)-SS is unconditionally indistin-

guishable, this is a contradiction, and we conclude that no such D exists.

Let the set of N−k honest group members in the anonymization game be K = {1, · · · ,N−

k}. Let D be an algorithm that allows the adversary to win the anonymization game with a

non-negligible probability. Then there exist honest group members α and β such that for a

negligible function in λ , ε(λ), the advantage

AdvD > ε(λ).

To apply D , A must simulate the oracle in the anonymization game to reproduce the view

of the adversary. We show how A is able to achieve this.

Algorithm A begins by applying D to learn its choices in Step 1 of the anonymization

game. A therefore learns the following:

• two honest participants α and β , and two plaintext messages d0 and d1; and

• a message di for each honest member i.

Then, for each honest member i, A chooses a secret key, ki. A selects plaintext messages

d0 and d1 for α and β , respectively.

A is now ready to play the role of the oracle in the anonymization game by simulating the

messages of the honest members in the protocol execution. For each phase of the protocol,

we explain how A is able to reproduce the messages sent in that phase.

Phase 1: A has all the necessary information to exactly reproduce this phase.
61

Phase 2: For all honest members other than α and β , A encrypts di using ki, which results

in the ciphertext ei. A then encrypts d0 and d1 using the keys k0 and k1, respectively,

getting e0 = Ek0(d0) and e1 = Ek1(d1).

Phase 3: A gives e0 and e1 to the distinguishing game oracle, getting back [eb]1, · · · ,

[eb]N−1 and [eb̄]1, · · · , [eb̄]N−1.

Suppose that in the application phase, α and β obtain positions πα and πβ , respectively. A

now constructs N−1 shares of ~eα as follows. The components at positions other than πα

are set to 0 and their shares can be easily constructed. The πα -th component of N−1 share

vectors are respectively filled by N−1 shares of eb obtained from the distinguishing game

oracle. N−1 shares of~eβ are constructed in the same way except that eb̄ is used instead of

eb.

At the end of Phase 3, A needs to compute a share of the message vector ~e. A does not

have the N-th share of eb or eb̄. But he has the original ciphertexts e0 and e1. With any

N − 1 shares and e0 (resp. e1), A could compute the last share such that all shares are

reconstructed as e0 (resp. e1). At this moment, A randomly picks a ciphertext from e0 and

e1, computes the last share, and puts it on the πα -th component for a member α . The other

ciphertext is used for a member β . We argue that this does not change D’s view when it

does the reconstruction. Because all honest group members’ positions are chosen randomly

and the position sequence is a random permutation on the set {1, · · · ,N}, the probability

that e0 appears in πα and e1 appears in πβ is equal to the probability that e1 appears in

πα and e0 appears in πβ . Therefore, randomly allocating e0 and e1 on πα and πβ does not

change D’s view.

Phase 4 and Phase 5: A has all the necessary information to complete the phases.

Now A simulates the view of the adversary and applies D to the view. If D outputs 1, then

62

A outputs 1; if D outputs 0, A outputs 0.

We now analyze the probabilities of A outputting 1 when the distinguishing oracle chose

b = 0 and when the distinguishing oracle chose b = 1. If b = 0, then the view of the

adversary is (α,β ,d0,d1,0). If b = 1, then the view of the adversary is (α,β ,d0,d1,1).

Based on our assumption that D wins the anonymization game, we have that AdvD > ε(λ).

Now we make a simple substitution,

AdvA = AdvD > ε(λ).

We conclude that A can win the distinguishing game with a non-negligible probability,

which contradicts with the unconditionally indistinguishable property of the (N,N)-SS.

3.6.1.2 Integrity

In the verification phase, the honest members verify whether their ciphertexts appear in the

message vector~e. If the verification fails, i.e., the ciphertext of at least one honest member

has been altered, the protocol aborts. So the adversary cannot get the secret keys. If the

verification succeeds, the honest members send their secret keys to the collector who can

then decrypt the ciphertexts. We conclude that the authentication defined in Section 3.2.3

is preserved.

3.6.1.3 Confidentiality

In Phase 3, all members send out N− 1 shares of the individual vector to the other mem-

bers except for one share. Because the (N,N)-SS is unconditionally indistinguishable, even

if N− 1 group members collude, they will not get any useful information about the hon-

est messages. Therefore, we conclude that the confidentiality defined in Section 3.2.3 is

preserved.
63

3.6.1.4 Accountability

Accountability of an anonymous messaging system is first proposed and studied in [38].

The proof of our system’s accountability follows the similar philosophy.

A member i cannot expose another honest member j unless i obtains evidence of j’s mis-

behaviors that are verifiable to a third member. Accountability is maintained if

Condition I: no member can accuse an honest member;

Condition II: at the end of a protocol execution, either (a) the protocol completes suc-

cessfully; (b) the protocol fails in application phase, which is not caused by malicious

attacks; or (c) at least one faulty member is exposed.

Condition I is shown as follows. An evidence of member j’s misbehavior consists of some

“incorrect” data content d j signed by j at the step st p of some phase, together with all his

log messages and all members’ generated secret shares up to a particular step st p. Mem-

ber j will be exposed as faulty only if he signed some incorrect messages or his behavior

deviates from the protocol. For example, a member j has two non-zero elements in his indi-

vidual encryption vector~e j to block another member’s message. However, this contradicts

the assumption that the member j is honest. A member i may collude with another member

k to accuse an honest member j by forging a message signed by the member k prior to

the step st p and the message is different from the one received and used in generating j’s

message m j. The message received by j must be valid because j will check against k’s

signature. However, since every message is signed and contains a unique nonce, two valid

messages at the same step will also expose k as faulty, which weaken i’s accusation against

j.

64

Since the application phase cannot guarantee to always find each member a unique position,

our AMS protocol may fail even when all members are honest. However, as shown in the

following section, the failure probability of two application executions is no more than

0.25%, which is small enough to omit in practice. When the application fails, members

still enter the blame phase to check if it is a failure caused by malicious attacks or not. If it

is, a faulty member will be exposed.

We now show that our AMS protocol satisfies condition II(c), i.e., a faulty member is

exposed in the blame phase. A member enters the blame phase if a) the application phase

fails twice; b) some members report that his ciphertext is manipulated in the verification

phase; or c) some members report that his encryption key is manipulated in the decryption

phase. In case a), the blame phase requires members to recover their secret shares and

log messages in the previous two attempts. This enables a member to reconstruct every

member’s position vector and a faulty member will be immediately exposed. In cases b)

and c), all members recover their secret shares and log messages up to the current step.

Also it will expose a faulty member or a member i himself if he untruthfully reports that

his information is manipulated.

3.6.2 Efficiency

In this section, we analyze the success probability of finding a non-collision vector in Phase

1, and the communication rounds.

3.6.2.1 The Success Probability in Phase 1

Theorem 4. In the application phase, at the end of round 2, the success probability of

finding a non-collision vector ~p is greater than 95%.

65

Proof. Let ηi j denote the event that members i and j choose the same position, leading to a

collision. Let φ w
i denote the event that a member i chooses position w(1≤w≤M). Because

all members choose their positions independently at random, the probability p(φ w
i) = 1/M.

Using Bayes’ theorem, we have

p[ηi j] =
M

∑
w=1

p[φ w
i |φ w

j]p[φ
w
j] =

M

∑
w=1

1
M

p[φ w
j] =

1
M
.

We define an indicator random variable Xi j such that Xi j = 1 if the event ηi j happens and

Xi j = 0 if ηi j does not happen. Since Xi j only takes the value 0 or 1, it is a Bernoulli variable.

We define X to be the number of collisions, i.e. X = ∑i< j Xi j. Then we compute

E[X] = E[∑
i< j

Xi j] = ∑
i< j

E[Xi j]

= ∑
i< j

p[Xi j = 1] = ∑
i< j

1
M

=
1
M

(
N
2

)
.

Assume that E[X] = µ , from the above equation, we get µ = N(N−1)/2M. If we choose

M = 2N2−2N, then µ = 1/4. Utilizing the Chernoff bound [33], we have

p[X ≥ (1+δ)µ]≤ (
eδ

(1+δ)1+δ
)µ

for any δ > 0. Let δ = 11, we get (1+δ)µ = 3 and p[X ≥ 3]≤ (e11

(1+11)1+11)
0.25 ≈ 0.009.

Hence, at the end of Phase 1-Round 1, the probability that there exist no less than 6 col-

lisions is not greater than 0.9%. In Phase 1-Round 2, since there are at most 6 members

who collide with each other, we need to have enough positions for the colliding mem-

bers to choose from. Suppose the positions left at the end of round 1 is Ml , the prob-

ability that 6 members’ positions do not collide is p = Ml(Ml−1)(Ml−2)···(Ml−5)
M6

l
. We let

p > 0.96, and get the smallest integer which is 361. So the lower bound of M is 361+N.

We define ρ to be the event that the members find a non-collision vector in Phase 1.

p[ρ] ≥ p[succeed in round 1∧ succeed in round 2] ≥ (1− 0.009)× 0.96 = 0.95136. The

theorem is proved.
66

We define the total number of execution times of Phase 1 to T . The expectation E[T] =
∞

∑
i=1

i(1− p[ρ])i−1 p[ρ] = 1/p[ρ]. Since p[ρ] > 95%, the average number of executions

needed to find a non-collision vector is d1/0.95e= 2. In fact, the failure probability is less

than 5%×5% = 0.25% after two executions of the application phase.

3.6.2.2 Communication Rounds

All phases are parallelizable. In Phase 1, the number of communication rounds is 4. There

is no communication in Phase 2. Phase 3 needs 2 communication rounds. Phase 4 needs

4 communication rounds. Finally, there are 2 communication rounds in Phase 5. The

expected total number of communication rounds is 4/p[ρ]+8, which is approximately 12

and independent of the group size. In contrast, in Brickell and Shmatikov’s [21] protocol,

the total communication rounds is 2N+7. Note that our protocol is probabilistic, while the

protocol in [21] is deterministic.

3.7 Bulk Protocol

The bulk protocol is to handle variable length messages, which was first proposed in [38].

The anonymity property of the bulk protocol is guaranteed by the shuffle protocol, which

is replaced by AMS protocol in this dissertation. We use bulk as a built-in block and give

its description here. More analysis of the bulk protocol can be found in [38].

All members 1, 2, · · · , N hold messages msgi(1 ≤ i ≤ N) of variable lengths L1, L2, · · · ,

LN , respectively. Each member i has a key pair (ui,vi) for signature and another key pair

(xi,yi) for encryption. All members know other members’ public keys, and have agreed

upon session nonce nR and an order of the members.

There are five phases in the bulk protocol: message extractor generation phase, message

extractor distribution phase, data transmission phase, message reconstruction phase, and
67

blame phase.

Phase 1: Message extractor generation
Each member i executes the following:

1. Member i chooses a random number generator seed si j for each other member j and
generates an Li-bit random number Ci j = RAND(Li,si j) (i 6= j).

2. Member i XORs his message with all Ci j’s and obtains Cii, Cii = Ci1⊕ ·· · ⊕Ci(i−1)⊕
msgi⊕Ci(i+1)⊕·· ·⊕CiN .

3. Member i computes Hi j = h(Ci j), encrypts each seed si j, Si j = Encyi(si j,ri j), using
member j’s public key and a secret random number ri j. Member i sets Sii to a random
number.

4. Member i collects all hash values and seed ciphertexts to form two vectors
~Hi = {Hi1, · · · ,HiN}, ~Si = {Si1, · · · ,SiN}, and gets the message extractor di, di =
{Li,h(msgi), ~Hi,~Si}.

Figure 3.8: Message extractor generation phase

In the message extractor generation phase (Fig. 3.8), each member i generates a message

extractor di = (Li,h(msgi), ~Hi,~Si) which is used to recover the message. Here, ~Hi is the

vector of hash values generated from h(Ci j)(1 ≤ j ≤ N, j 6= i), where Ci j is the pseudo

random number used to XOR member i’s message. ~Si is a vector of the ciphertexts of

the pseudo random generator seeds. The message extractor consists of all the information

needed to recover the original message.

Phase 2: Message extractor distribution
The group of members run AMS protocol introduced in Section 3.5:

1. Each member i submits the message extractor di to AMS protocol.

2. All members collaboratively run the AMS protocol.

3. Each member i gets a sequence of message extractors with di appearing at πi-th position.

Figure 3.9: Message extractor distribution phase

In the message extractor distribution phase (Fig. 3.9), all members submit their message

extractors to the AMS protocol, the output of which is a randomly permuted sequence of
68

message extractors. The anonymity property of the AMS protocol ensures that the message

extractors cannot be traced to their providers.

Phase 3: Data transmission

1. Each member j now holds a message extractor sequence D = (dσ−1(1), · · · ,dσ−1(N)),
where (dσ−1(1), · · · ,dσ−1(N)) is a permutation of (d1, · · · ,dN).

2. Member j recognizes his own message extractor d j in D, and sets C′
σ(j) j =C j j. For each

di ∈ D (i 6= σ(j)), member j extracts j-th component Si j from ~Si and decrypts Si j using
his private key x j obtaining the seed si j.

Member j computes the pseudo random number Ci j = RAND(Li,si j) and checks h(Ci j)
against Hi j. If the check has passed, member j sets C′i j =Ci j; member j sets C′i j =NULL
otherwise.

3. Member j assembles all C′i j’s in the received order, i.e. putting C′i j at the i-th position,
forms the message m j =C′1 j|| · · · ||C′N j||nR||h3.1

j , and sends m j||Sigu j(m j) to the collector.

Figure 3.10: Data transmission phase

Phase 4: Message reconstruction

1. The collector checks the hash value of each C′i j from member j against Hi j from di ∈D.
If C′i j is NULL or h(C′i j) 6=Hi j, the message on the i-th position is corrupted and ignored.

2. For each uncorrupted slot, the collector reconstructs the data by computing di = C′i1⊕
·· ·⊕C′iN .

Figure 3.11: Message reconstruction phase

Phase 5: Blame

1. If C′i j is corrupted in Phase 4, all members run AMS protocol again, during which mem-
ber i sends an audit message Ai = { j,Si j,si j,ri j}. All members check the validity of the
audit message: Si j = Ency j(si j,ri j) and Hi j = h(RAND(Li,si j)). If the audit message is
valid, member j is exposed as faulty.

Figure 3.12: Blame phase

In the data transmission phase (Fig. 3.10), all members have N message extractors. A

member j extracts the pseudorandom number generator seeds prepared for him by extract-

ing the j-th components from each extractor’s seed vector and decrypting it. Each member
69

j generates the pseudo random numbers C′i j(1 ≤ i ≤ N), assembles them to form the j-th

row in the message submission matrix, and sends the row to the collector. The collector

receives all the C′i j’s (1≤ i, j ≤ N), forms a matrix by putting C′i j(1≤ i≤ N) in a row, and

recovers a message by XORing one column of the matrix (Fig. 3.11).

If any restored message is meaningless, all members go to the blame phase to find the

culprit (Fig. 3.12).

3.8 Performance Evaluation

We made a proof-of-concept implementation of our protocol, and compared it with the

protocols in [21] and [38]. All the experiments were carried out on an Intel® Core™2

Duo CPU P8600 @ 2.40GHz computer. We used Crypto++ [41] as our underlying crypto-

graphic library.

Dissent [38] uses the same technique as the one in [21] in its shuffle protocol, which re-

quires an IND-CCA2 secure cryptosystem. Since Crypto++ does not have any IND-CCA2

secure algorithm in the standard model, we implemented the Cramer-Shoup cryptosystem

by using SHA-1 and a 3,072-bit integer group, MODP-15 [69]. To compare with the im-

plementation in [38], we also implemented a shuffle based on RSA-OAEP [10], which is

CCA-2 secure only in the random oracle model. The modulus for RSA is of 3,072 bits.

The symmetric key cryptosystem in AMS protocol was implemented by using AES-128

in counter (CTR) mode, which is CPA secure in the standard model [9]. The distributed

ElGamal encryption used in AMS protocol is also built on top of MODP-15 group. All the

modules were implemented in C++ and compiled by g++ 4.4.3 with -O3 level optimization.

First we tested the number of rounds needed in Phase 1. We increased N from 100 to

70

100 200 300 400 500 600 700 800 900 1000 0

20

40

60

80

100

Number of group members

Pe
rc

en
ta

ge
 (%

)

1
2
3
4
> 4

Figure 3.13: The distribution of needed rounds in Application

1,000 using an increment of 100. For each value of N, we ran Phase 1 for 1,000 times and

recorded the number of rounds needed to find a non-collision vector ~p. We remark that one

Application execution contains two rounds. Fig. 3.13 shows the result. We observe that at

least 77% of the tests were completed in 1 round no matter what N is. Furthermore, 97%

of them were completed within 2 rounds, finding a non-collision vector ~p.

Next, we compared the computational overhead of our protocol to that of the shuffle pro-

tocol in [21]. We used “C-shuffle” and “R-shuffle” to denote the Cramer-Shoup based and

the RSA based shuffle implementations, respectively. To obtain a point in a plot, we ran the

corresponding simulation for 10 times and calculated the average over the 10 runs. Also,

we used box plot to visualize the distribution of the 10 results. The top and bottom bars

of a box plot represent the max and min values in the collection. A squeezed box denotes

that the data points are close to the average value. Fig. 3.14a-3.14d show the computational

overheads for the collector and the members under different group sizes N and message

sizes l. Note that the little bar on each line is a squeezed box plot. First we fixed N = 40,

changed l from 1KB to 16MB, and compared the computation time needed for each mem-

ber and the collector in different anonymous message systems. Note that in Fig. 3.14b, the

computation time of the collector in our protocol is much shorter than that in C-shuffle and

71

0
10

20
30

40

Message size (log scale)

Th
e

co
lle

ct
or

's
co

m
pu

ta
tio

na
l o

ve
rh

ea
d

(s
ec

.)

1K 4K 16K 64K 256K 1M 4M 16M

C−shuffle
R−shuffle
AMS

(a) A member’s computational overhead vs. mss-
sage size

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Message size (log scale)

Th
e

co
lle

ct
or

's
co

m
pu

ta
tio

na
l o

ve
rh

ea
d

(s
ec

.)

1K 4K 16K 64K 256K 1M 4M 16M

C−shuffle
R−shuffle
AMS

(b) Collector’s computational overhead vs. mes-
sage size

10 20 30 40 50 60 70 80

0
20

40
60

80

Group size

A
 m

em
be

r's
 c

om
pu

ta
tio

na
l o

ve
rh

ea
d

(s
ec

.) C−shuffle
R−shuffle
AMS

(c) A member’s computational overhead vs. group
size

10 20 30 40 50 60 70 80

0
50

0
10

00
15

00
20

00

Group size

Th
e

co
lle

ct
or

's
co

m
pu

ta
tio

na
l o

ve
rh

ea
d

(s
ec

.)
C−shuffle
R−shuffle
AMS

(d) Collector’s computational overhead vs. group
size

Figure 3.14: Protocol computational overhead

R-shuffle. This is because the decryption time of an IND-CCA2 secure cryptosystem is

much longer than that of a symmetric key decryption algorithm. In addition, the shuffle

protocol needs N2+N decryptions on the collector, while the collector in our protocol only

needs to decrypt N ciphertexts. From Fig. 3.14a and 3.14b, we observe that AMS performs

better than the two shuffle implementations, especially when the message size goes big. In

Fig. 3.14c and 3.14d, we fixed l to 1KB, and changed N from 10 to 80 at an increment of

72

10. Since the number of communication rounds depends on N in the shuffle protocol, the

execution time of each member increases with N, while the execution time of each member

in our protocol increases slowly. In both sub-figures, for the shuffle implementations, the

execution time increases polynomially in N. However, the execution time of the collec-

tor in our protocol is almost constant, which shows that the addition and symmetric key

decryption is so fast that we cannot tell the time difference when the group size is small.

We remark that a party’s computational overhead sometimes is different from the proto-

col’s execution time. In the AMS system, a member’s computation is in parallel with other

members, and the protocol is finished within constant rounds while the shuffle protocol

needs O(N) communication rounds.

From Fig. 3.15a and Fig. 3.15b, we observe that the execution time of AMS is much shorter

than that of the shuffle implementations. We also ran the simulation of AMS under larger

group sizes, from 100 to 400. The results are plotted in Fig. 3.15c. The blue and green lines

in the plot denote the execution time of C-shuffle under a 15-member group and R-shuffle

under a 30-member group, respectively. We observe that the execution time of AMS was

much faster even when the group size was increased to 400. The longest time cost by AMS

in the tests when the group size was 400 is still better than the average time of R-shuffle

when the group size was 35.

When dealing with variable length messages, we adopted Bulk protocol [38] by using

AMS, instead of the shuffle protocol, to send message extractors. We implemented Bulk

protocol on top of AMS, C-shuffle, and R-shuffle, respectively, and compared their ex-

ecution times. The comparison result is shown in Fig. 3.15d. To do the comparison,

we fixed the group size as 40 and let each member randomly pick a message size from

[l−1K, l+1K], where l = 1K,2K,4K, · · ·,8M,16M. The message size is in terms of bytes.

After all members obtained their message size, they executed bulk protocol to submit the

73

Message size(log scale)

O
ve

ra
ll

Ex
ec

ut
io

n
tim

e
(s

ec
.,

lo
g

sc
al

e)
10

−1
10

10
2

10
3

1K 4K 16K 64K 256K 1M 4M 16M

C−shuffle
R−shuffle
AMS

(a) System execution time vs. message size

10 20 30 40 50 60 70 80
Group size

O
ve

ra
ll

Ex
ec

ut
io

n
tim

e
(s

ec
.,

lo
g−

sc
al

e)
10

−3
10

−1
10

10
3

10
4

C−shuffle
R−shuffle
AMS

(b) System execution time vs. group size

100 150 200 250 300 350 400

0
50

10
0

15
0

20
0

25
0

30
0

Group size

O
ve

ra
ll

Ex
ec

ut
io

n
tim

e
(s

ec
.)

C−shuffle N= 15

R−shuffle N= 30

(c) AMS Execution time for scalable groups

0
10

00
20

00
30

00
40

00

Total message size (log scale)

Bu
lk

 e
xe

cu
tio

n
tim

e
(s

ec
.)

36
.8K

81
.9K

16
3.2

K
31

6.6
K
63

9.9
K
1.3

M
2.5

M 5M 10
M

20
M

40
M

80
M

16
0M

32
0M

64
0M

CShuffle−bulk
RShuffle−bulk
AMS−bulk

(d) Bulk execution time vs. message size.

Figure 3.15: Protocol execution time

messages and repeated the protocol execution for 10 times. In Fig. 3.15d, the x-axis repre-

sents the total message size and the y-axis represents the bulk execution time. We observe

that AMS performs significantly better than the shuffle protocols. For example, to handle

a total message size of 640MB, the average running time is 3003.97471 seconds for C-

shuffle, 1040.87252 seconds for R-shuffle, and 23.89172 seconds for AMS. We also note

that the difference between AMS and R-shuffle is not remarkably big when the transmitted

message is of small size. This is because the data transmission in bulk will cost more time

74

than shuffling message extractors when the transmitting data size is small. Hence, we are

curious about the time cost on sending message extractors and data transmission by using

AMS as a sub-protocol. Again, we fixed group size as 40 and let each member randomly

pick their message size in the same way as in the previous test. We separately recorded the

Bulk
AMS

Total message size

Ex
ec

ut
io

n
tim

e
(s

ec
.,

lo
g

sc
al

e)
10

−2
10

−1
1

10
25

45
.1K

81
.7K

15
0.9

K
32

3.8
K
64

6.2
K
1.2

M
2.5

M 5M 10
M

20
M

40
M

80
M

16
0M

32
0M

64
0M

(a) Time cost on AMS and Data Transmission

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

20
.0

50
.0

Message size (log scale)

Ex
ec

ut
io

n
tim

e
(s

ec
.,

lo
g

sc
al

e)

32K 128K 512K 2M 8M

●

●

●

●

●

●

●

●

●

●

●

bulk−1Max
bulk−same
bulk−random
AMS

(b) Comparison between AMS and Bulk

Figure 3.16: Bulk performance using AMS

time cost on AMS and bulk data transmission and show the result in Fig. 3.16a. The y-axis

represents the time cost and is in log-scale. First, we observe that the time cost on AMS is

almost the same, indicating that transmitted message extractors size is independent of the

transmitted total message size. Besides, we note that the time cost on AMS is nearly 0.1

seconds while that on bulk data transmission increases to over 500 seconds.

We introduced the bulk protocol because AMS itself cannot handle variable length mes-

sage transmissions. If we want to use AMS as a stand-alone system to transmit variable

length messages, we have to pad the messages to a fixed maximum length over all to-be-

sent messages. Since AMS is so fast, we are curious about its performance against the

bulk protocol. To this end, we set up another experiment in the following way. First, we

fixed the group size as 40 and set l = 32K,64K,128K, · · · ,8M,16M. For each l, we ran

75

bulk protocol, using AMS as a sub-protocol, under 3 different settings: 1Max, same-length,

and random-length. In the 1Max setting, one member set the message length as l and the

remaining members set their message length as l/1024; in the same-length setting, each

member set his message length as l; in the random-length, each member set his message

length as a random number rand such that 0 < rand ≤ l. Each member set the message

size as l when we ran AMS as a stand-alone system. The result is shown in Fig. 3.16b.

From the figure, we observe that AMS alone took shorter time than that of the bulk pro-

tocol under the same-length setting. We also note that AMS (represented by the red dash

line) cost almost the same time as that of the bulk protocol under the random-length setting

(represented by the blue doted line). At last, it is obvious that AMS cost more time than

that of the bulk protocol under the 1Max setting. This is reasonable and expected because

under the 1Max setting, it is actually a special circumstance favoring the bulk protocol. In

this case, the AMS system has to do N− 1 paddings and transmitting more unnecessary

contents. Therefore, we suggest to use AMS directly when the sizes of submitted mes-

sages are close to one another. This situation is common in the real world life. Online

surveys introduced in our introduction section is one of such examples. Answers to a set of

questionnaires usually have similar lengths because a set of questionnaires consist of either

multiple-choice questions or short comments.

3.9 Conclusions

In this dissertation, we have proposed an efficient online anonymous message submission

protocol. Utilizing the simplified secret sharing scheme, we have designed a novel position

application technique, in which all members secretly select their positions in a position

vector, such that a member knows nothing about the other members’ message positions.

We have introduced a data aggregation technique, in which all members aggregate their

76

messages into a message vector and submit it to the collector without exposing their identi-

ties. We have theoretically proved that our protocol is anonymous under malicious attacks.

We have also demonstrated the efficiency of our protocol through rigorous evaluations and

experiments.

77

Part II

LOCATION PRIVACY

78

CHAPTER 4

Location Privacy in Location Based Social Networks

Location based social networks (LBSNs) are now enjoying a great deal of attentions. Many

companies, such as Foursquare, Google Latitude, Facebook, etc., are rushing to have LB-

SNs included in their services or products. In LBSNs, users “check in” at a venue and

leave “tips” which serve as their personal suggestions for what to do, see or eat at a loca-

tion. Users share the tips with their friends. In this dissertation, we call all the information

a user wants to share on a specific venue as her “check-in”, which includes the tips, the

check-in time, etc. Besides, users can search a place and see their friends’ check-ins when

they adventure into a new place.

The gap between the reality and the virtual world is being narrowed by the LBSN, which

naturally gives rise to people’s more concerns on its privacy issues. Currently, users have

to provide their location information, such as GPS coordinates, to the LBSN server when

they check in at a venue, search places, and store the check-in records on the server, which

may be against people’s willing and leads to a privacy breach. For example, a user may

check in at a hospital and share the doctor reviews with her family and very close friends.

She does not want anyone else to know her location and access the information, which

expose her health condition. In addition, by obtaining the location information, the server

may spam users with unwanted advertisements or learn about users’ unpopular political or

religious views, which can be inferred from checking in at entertainment clubs or political

events. Besides, an attacker may break in the server and obtain those information, making

users suffer from more losses. Foursquare has admitted an unauthorized crawling of users’

79

private check-in records, although they claimed the problem has been solved in a short time

[50]. Without any solid privacy guarantee, some people would rather not check in at some

venues, if they are worried about their location information being abused. These worries

definitely become obstacles to the progress of current LBSNs.

The purpose of this work is to design a framework for current LBSNs to safeguard users’

private locations and check-in records. Towards this goal, we face the following chal-

lenges. The first one is how to hide a user’s check-in location from the server, while mak-

ing it searchable for her friends. Besides the searchability, an efficient online search is

also important in LBSNs. Second, social networks are dynamic in the sense that a user

often accepts new friends or revokes old ones. Therefore, the revoked users should not be

allowed to access new check-ins and the new friends should be able to retrieve the user’s

check-in history. Finally, current LBSN client applications are usually running on mobile

devices, mostly smartphones with limited computational resources. Therefore, the frame-

work should not put heavy computational tasks on the client side.

Overcoming the above challenges, we propose a privacy preserving framework for LBSNs.

On a high level, our framework works as follows. When a user checks in at a venue, she

encrypts the check-in record and generates a check-in trapdoor using a pseudo random

function. The server converts the trapdoor to all her friends’ search trapdoors and pushes

the necessary information to her friends. If the user’s friends want to search, they generate

the search trapdoor and send a search query to the server. The server then returns the search

result without any knowledge of which place has been searched. In addition, our framework

enables a user to efficiently revoke a friend and add a new friend.

The contributions of this work are as follows.

1. We propose the privacy preserving problem in LBSNs and present the goals that a

80

privacy preserving LBSN framework should achieve.

2. We propose a framework that hides users’ check-in and search locations from the

LBSN server. We also design a novel approach which reduces the processing time

when users check in at the same venue frequently.

3. Considering the limited computational resources of the mobile devices, we propose

a delegatable pseudo random function so that a user can outsource the generation of

search trapdoors to the server.

4. In order to revoke a friend, a user needs to update the session key and re-encrypts

all the ciphertexts. Since the revocation happens more often in social networks, we

propose a hash chain based session key generation scheme so that a user does not

need to re-encrypt all the ciphertexts every time the revocation takes place.

4.1 Related Work

In this section, we discuss two areas that are related to our work: location privacy and

searchable encryption.

4.1.1 Location Privacy

Prior studies on location privacy mainly focused on traditional location based service,

which is not combined with social networks. A large body of works in location privacy

are based on the idea of K-anonymity or location cloaking [7, 58, 79]. In this approach,

a trusted third party blurs a user’s location request by combining several nearby users’

location requests together in an area and sending the area to the untrusted server. In the

process, users have to fully trust the third party which may become a security weakness of

the system. Kalnis et al. found there were certain scenarios in which the private location
81

information of users was leaked to malicious entities [64]. In addition, these approaches

employ complex server query processing techniques and entail the transmission of large

quantities of intermediate results between users and the trusted third party.

To avoid some shortcomings of cloaking-based techniques, a new class of transformation

based approaches were proposed. More recently, Yin et al. proposed a framework called

SpaceTwist [103] to blind an untrusted location server by incrementally retrieving nearest

neighbour based on their ascending distance from a fake point which is different from the

user’s actual location. In [67], Khoshgozaran and Shahabi proposed an approach to encode

the query and the object space using a one-way transformation and evaluating the query in

the transformed space to preserve users’ location privacy. Their approaches do not rely on

a trusted party, which makes the proposed system more practical, but could not be applied

in scenarios which require exact results.

Other works proposed to use private information retrieval (PIR) to preserve the location pri-

vacy. Ghinita et al. used computational PIR to enable private evaluation of the first nearest

neighbour queries [53]. The heavy computational overhead of the underlying PIR scheme

makes the approach unsuitable for a mobile LBSN. Hengartner proposed an architecture

which utilizes PIR and trusted computing to protect user locations from the untrusted server

[61]. However, the proposed architecture is not implemented yet. Recently, Khoshgozaran

et al. proposed a fast PIR based location privacy scheme [68]. The efficiency of their

scheme depends on a tamper-resistant trusted hardware, required to be installed close to

the server.

82

4.1.2 Searchable Encryption

In order to make protected check-in venue IDs searchable, we propose to use the idea

of searchable encryption. Searchable encryption [8] is widely studied since it was first

proposed by Song et al. [90]. Since then, progress has been made on its efficiency and

security definition formalization. Goh [55], and Chang and Mitzenmacher [29] proposed

searchable index schemes, which reduce the search cost proportional to the number of

files. In [42], Curtmola et al. summarized previous studies and gave a new formal security

definition on searchable symmetric encryption. Recently, Wang et al. [97] proposed a

conjunctive similarity keyword search achieving non-adaptive semantic security defined

in [42]. In the public key setting, Boneh et al. gave the first construction on searchable

encryption, where anyone with the public key can write to the data stored in the server

but only the ones with the private key can search on the data [15]. Conjunctive key word

search, subset query, and range query over encrypted data [18] were also proposed in the

public key setting.

In the studies of searchable encryption, all data files are usually ready when the user uploads

them to the server and the search request was usually compared against one user’s file

collection. However, the LBSN is dynamic in the sense that the check-in record is uploaded

one by one, without any fixed time intervals. The search request is compared against all

the data items of users followed by the request sender. On top of the searchable encryption,

the establishment and revocation of a social relationship are also considered and handled by

our framework. These features special to LBSNs differentiate our work from the traditional

searchable encryption.

83

4.2 Problem Formulation

In this section, we present our system model, threat model, and design goals.

4.2.1 System Model and Threat Model

Our framework consists of a LBSN server S, and a set of M users, U = {U1, · · · ,UM}.

In our framework, the relation graph between users is uni-directional, i.e., a user Ui has

to follow another user U j in order to see U j’s check-ins. Meanwhile, Ui is followed by

Ni users, denoted by { f i
1, · · · , f i

Ni
} ⊆ U . When a user Ub requests to join Ui’s follower

group, it is Ui’s responsibility to authenticate Ub and grant her secret information. Hence,

we assume that f i
a is fully trusted by Ui. We also assume the communications between

users and the server are secure. Each user Ui has a public/private key pair (pkUi,skUi). The

authentication between users and the server is out of the scope of this work.

Each venue has a unique venue ID vid assigned by the server. Ui checks in at a venue vid,

and leaves tips which are stored on the server. When her followers search vid, they are

able to pull out all of Ui’s check-ins at vid. During the whole process, the server has no

knowledge of vid or the contents of the tips.

Throughout the work, we consider an honest but curious (HBC) server, which is used by

many privacy preserving schemes [42, 52, 97]. To protect its reputation, the server would

honestly follow the protocol specification, but is curious about users’ private information.

It may keep all messages which it sends to or receives from users, analyze them, and try

to get additional information. The server may be broken in by malicious attackers. But we

assume a malicious attacker cannot stay in the server for a long period, e.g., a few hours,

without being detected. Our framework does not rely on a trusted third party.

84

4.2.2 Design Goals

In general, a privacy preserving LBSN framework should satisfy the following require-

ments.

• Location Privacy: The server does not know the location of the user when she checks

in at a venue. Also, the server cannot infer the location of the user when she searches

a place and tries to pull out the check-in records.

• Check-in Confidentiality: Only the authorized user can access the check-ins belong-

ing to users who are followed by her.

• Forward Security: If a follower is revoked from Ui’s follower group, she will no

longer be able to access Ui’s new check-ins.

• History Retrievability: When Ui accepts Ub as her follower, the new follower should

be able to retrieve Ui’s check-in history uploaded before and after Ub joins.

• User Side Efficiency: The computation should be efficient on the user side, since the

mobile devices used by users are resource limited.

4.3 Technical Preliminaries

In this section, we review the main techniques used in this dissertation.

4.3.1 Pseudo Random Functions

A pseudo random function (PRF) is an efficiently computable function F : K × X → Y

where K is the key space, X is called the domain, and Y is called the range [17]. Generally

speaking, given a key k, a function F would map an input x ∈ X to an element y ∈ Y ,
85

such that y looks like being randomly chosen from Y . Formally, we have the following

definition.

Definition 4. A PRF F : K×X→Y is secure if for all efficient adversaries A the advantage

Advpr f
F (A) = Pr[RealAF ⇒ 1]−Pr[RandA

R ⇒ 1]

is a negligible function.

Here, RealAF (resp. RandA
R) denotes a game, in which the adversary interacts with a PRF

(resp. real random function) [11]. RealAF ⇒ 1 and RandA
R ⇒ 1 denote that the adversary

thinks she is interacting with a real random function. In other words, this definition means

that no adversary with polynomial time computational resources can distinguish the output

of a PRF from the output of a real random function [11].

In this dissertation, we use two PRFs defined as F : Zq × {0,1}∗ → G and F ′ : Zq′ ×

{0,1}∗ → G′, where G and G′ are two multiplicative groups of prime orders q and q′,

respectively. F is used to generate search trapdoors and F ′ is used to generate symmetric

encryption keys (Sec. 4.4.3). A construction of F is given in [62]: F(k,x)=H1(x)k which is

secure under the decisional Diffie-Hellman (DDH) assumption in the random oracle model

(ROM). Here, H1(·) is a cryptographic hash function hashing a string to an element in G:

H1 : {0,1}∗→ G. F ′ can be constructed in a similar way by using a hash function H ′1(·)

hashing {0,1}∗ to an element in the group G′.

4.3.2 Session Key Management Scheme

In our framework, we define a session to be a time period between two continuous revo-

cations. A session key, which is denoted by sek, is a symmetric key for encryption and

decryption during a communication session. We assign a session ID sid to each session.
86

The initial session is assigned the session ID sid = 1. Each time a member is revoked,

Ui updates sid to a new session ID sid′ = sid + 1 and generates a new session key seksid′ .

Since a new follower should be able to access Ui’s previous check-ins, there is no need to

update the session key when a new member joins the follower group. Instead, Ui just sends

the current session key to the new follower via a secure communication channel.

We use modified key tree based session key management scheme [35], which uses proxy

re-encryption, for our session key management. We use it as a building block in our frame-

work. One advantage of using this scheme is that it can efficiently handle off-line users. An-

other advantage is that the public bulletin only needs to store the latest public re-encryption

keys.

4.4 Construction of Our Framework

In this section, we describe our framework construction. First we give our framework

overview, followed by novel designs specially for LBSNs, and then show the details of our

framework construction.

4.4.1 Overview of Our Framework

Table 4.1: Main notations

U = {U1, · · · ,UM}; S user set; the LBSN server
{ f i

1, f i
2, · · · , f i

Ni
} Ui’s follower group

vid; seksid,sid venue ID; session key, session ID
k′; k; || check-in key; search key; concatenation

HI; headerK header table index; header table symmetric key
headerC; NI header table ciphertext; node index

nodeK; nodeC node symmetric encryption key; node ciphertext
chk symmetric encryption key for check-ins

PRN′; PRN check-in trapdoor; search trapdoor

87

Our framework consists of four protocols: check-in, search, revocation, and join. Table 4.1

shows the main notations.

Check-in: Before uploading the check-in record on vid, Ui first encrypts it. Then Ui and

S collaboratively generate the search trapdoor for each Ui’s follower when necessary. S

pushes the index of the check-in ciphertext to every follower, so that the follower can

search the check-in record.

Search: Ui picks a venue ID vid she is interested in, generates a search trapdoor, and sends

it to S. S returns all the check-in ciphertexts uploaded on vid by users who are followed by

Ui. Using the corresponding decryption keys, Ui decrypts all check-in ciphertexts.

Revocation: Ui revokes members from her follower group and updates the session key.

Join: f i
a′ is approved to join Ui’s follower group. Ui sends the session key seksid and sid to

f i
a′ . f i

a′ sends her search key k f i
a′

to Ui, who then computes the public delegation key. Using

the delegation key, S pushes the index of Ui’s previous check-ins to f i
a′ .

In our framework, every user Ui is assigned a searchable data structure by the server for

searching check-ins. While one can use any data structure that supports search operations

in our framework, we choose AVL tree [2] for efficient insertion and search. The AVL

tree is constructed by inserting each node using the user’s search trapdoor as keyword,

and storing the check-in index information on the nodes. Ui’s check-in trapdoor PRN′Ui

and search trapdoor PRNUi are computed from F(k′Ui
,vid) and F(kUi,vid), respectively. To

save a follower’s search time, our framework prepares, in check-in protocol, every Ui’s

follower’s search trapdoor and insert the index of Ui’s check-in into her follower’s AVL

tree according to the search trapdoor. Using the following delegatable PRF technique, we

let the server do the preparation task and save the user’s computation time.

88

4.4.2 Delegatable Pseudo Random Function

When Ui checks in at vid, she computes PRN′Ui
= F(k′Ui

,vid) which is then converted to

PRN f i
a
= F(k f i

a
,vid) for all f i

a’s (1≤ a≤ Ni). We propose an approach which delegates the

conversion task to S. We call the key for conversion as delegation key Dkey. Formally, we

design the following probabilistic polynomial time algorithms:

1. GrpGen(1λ): Given a security parameter λ , the algorithm outputs a multiplicative

group G of a prime order q;

2. KeyGen(G,q): On inputs G and q, the algorithm outputs a key k randomly chosen

from Zq;

3. ComFunc(k,x): On inputs k and x, the algorithm outputs F(k,x) = H1(x)k;

4. DelKeyGen(ki,k j): On inputs ki and k j, the algorithm outputs the delegation key

Dkeyi→ j = k j/ki mod q;

5. ReComFunc(F(ki,x),Dkeyi→ j): On inputs F(ki,x) and Dkeyi→ j, the algorithm out-

puts F(k j,x) = (F(ki,x))Dkeyi→ j . The correctness can be verified by: F(k j,x) =

(H1(x)ki)k j/ki = (F(ki,x))Dkeyi→ j .

After receiving a user Ui’s check-in trapdoor PRN′Ui
, S can compute PRN f i

a
for each f i

a

(1≤ a≤ Ni), using the public delegation key DkeyUi→ f i
a
. We prove in section 4.5.1 that the

conversion result is still secure in the ROM.

4.4.3 Index Structure

Most previous studies on searchable encryption assumed that all data items were ready.

However, in the LBSN framework, the data items are dynamically uploaded. Therefore,
89

traditional searchable encryption approaches do not fit in our scenario. If Ui checks in at the

same vid frequently, S should frequently update the followers’ AVL trees using traditional

approaches, which causes a heavy computational overhead.

11 1
(NULL||NULL|| (check-in))chn kodekEnc Enc

2 21
(NULL||NULL|| (check-in))chn kodekEnc Enc

Check-‐in Lists

2 22(1) 2(1) che(|| ck-|| ())in
jnodeK chkj jEnc nodeK NI Enc

1

2

s

Header Table

21(,) 2 2' 2(|| ||)sek vi jF d jEnc NI nodeK chk
13 ,) 1 1(1' (|| ||)F sek vid i iEnc NI nodek chk

(,') (|| ||)
srF ssek vid w s swEnc NI nodek chk

Contentsid

3

1

r

1 11(1) 1(1) che(|| ck-|| ())in
inodeK chki iEnc nodeK NI Enc

HI

Figure 4.1: Index structure

We propose a novel index structure (Fig. 4.1) for efficiently processing Ui’s check-ins.

The index structure consists of a header table and check-in lists. The check-in lists are a

set of linked lists. For each vid that Ui has checked in, there is a unique corresponding

list in the check-in lists. Each time Ui checks in at a vid, a new node is added to the

list corresponding to vid. Each node is a ciphertext (denoted as nodeC) under a random

symmetric key. The node contains, in its plaintext, the encryption key and the index of the

next node, and the encryption of the check-in record. Therefore, given the encryption key

and the index of the header node, one can decrypt the whole list sequentially. The check-in

records in the same list are encrypted using the same symmetric key, so that a user can

90

decrypt all check-in ciphertexts at one time. We use a header table to associate each vid

with its check-in list. Each line of the header table stores the header table index HI, the

session ID sid, and a ciphertext (denoted as headerC) of the header node index, the header

node encryption key, and the encryption key for the check-in records. The encryption key

of headerC is F ′(seksid,vid), where seksid is the current session key, and vid is the venue

ID corresponding to the list.

Fig. 4.1 shows an example of the index structure. The nodes linked by blue lines and red

lines store the check-in records on two different venues vid1 and vid2. From the header

node index and encryption key stored in the header table, one can locate and decrypt the

corresponding header node (see the dashed blue line in Fig. 4.1). The header node stores

the newest check-in and the last node stores the oldest check-in. We note that the value of

sid in the header table is not sequentially increased. This is because a line i is only updated

when the user checks in at vidi. For example, if vid1 has never been checked in since session

3, the symmetric key for line 1 is still F ′(sek3,vid1), even if the current session key is sekr

other than sek3. We do not store the venue ID in the header table.

Ui locally stores a list mapping the vid’s she has checked in to the corresponding header

table index. When Ui checks in at a vid, she first looks up in her local list to see if it has

been checked in before. If it has, she finds the header table index s, retrieves the session ID

and the ciphertext headerCs from her header table, decrypts headerCs, and gets the header

node index NIsw and decryption key nodeKsw. Then Ui generates a new node, stores NIsw

and nodeKsw in it, encrypts it using a new key nodeKs(w+1), asks S to add it in the check-in

lists, and gets the node index NIs(w+1) returned by S. Finally, Ui substitutes nodeKsw and

NIsw in the header table with nodeKs(w+1) and NIs(w+1), respectively. If vid has never been

checked in before, Ui increases the header table size by 1 (denote the increased one as s′),

and creates a new node EncnodeKs′1(NULL||NULL ||Encchks′ (check-in)), where nodeKs′1

91

and chks′ are two random keys for encrypting the new node and the check-in record. S adds

a new node in Ui’s check-in lists, and returns the index NIs′1. Ui computes headerCs′=

EncF ′(seksid ,vid)(NIs′1||nodeKs′1||chks′) and sends s′||sid||headerCs′ to S, which adds them

to a new line s′ in Ui’s header table. Here, seksid is the current session key. Finally, Ui adds

vid and the index s′ in her local list.

The advantage of the index structure is that S does not need to update N followers’ AVL

trees upon Ui checking in at an old venue. Another advantage is that if a member f i
a has

been revoked, she cannot access Ui’s new check-ins any more. Because each list in the

check-in lists is linked from the newest check-in to the oldest check-in, even if f i
a has the

decryption keys for the check-in ciphertexts, she cannot get the decryption keys for new

nodes, which store the ciphertexts of new check-in records.

4.4.4 Hash Chain based Session Key Generation Scheme

A LBSN framework should enable the new followers to access all Ui’s check-ins and dis-

able the revoked ones to continue accessing her new check-ins. A traditional approach is to

re-encrypt the whole header table using a new session key every time a user updates the ses-

sion key, which brings heavy computational overhead to the user. We propose a hash chain

based session key generation scheme, in which the new followers can efficiently compute

previous session keys from the current session key, while the revoked ones cannot infer new

session keys from old ones. In this scheme, the header table need not to be re-encrypted

frequently. We define a re-encryption window of length L. Within the window, a user does

not need to re-encrypt the whole header table every time. Given an initial value val and a

cryptographic hash function H2 : {0,1}∗→ Zq, a user can generate L session keys by com-

puting H2(val), H2(H2(val)), · · · , HL
2 (val), where we use HL

2 (·) to denote L compositions

of H2. We use the t-th output Ht
2(val) as the (L− t +1)-th session key sekL−t+1 and set the

92

session ID sid = L− t +1. If all L session keys have been used, the user needs to generate

a new hash chain and re-encrypts the whole header table using the first new session key.

For a new follower f i
a′ , she can calculate all the previous session keys only if she gets the

current session key and the session ID sid. For example, if f i
a′ joins Ui’s follower group in

session t, the session key she acquires is sekt . For each previous session l (1≤ l≤ t−1), she

can compute the session key sekl =Ht−l
2 (sekt). If she needs to decrypt line s which contains

sid = r and corresponds to vids in Ui’s header table, she computes sekr = Ht−r
2 (sekt) and

the encryption key headerKs = F ′(sekr,vids).

4.4.5 The Construction of Our Framework

In this section, we present the details of our framework.

In the initialization of the framework, we let S generate multiplicative groups G and G′ of

prime orders q and q′, respectively, and publish G and G′. Each user Ui runs the algorithm

KeyGen(G,q) twice to generate her check-in key k′Ui
and search key kUi .

Fig. 4.2 shows the check-in protocol. The user Ui checks in at a venue vid. First, she looks

up in her local list to see whether it is the first time to check in at vid. If not, this means that

there already exists a check-in list corresponding to vid. Ui only needs to add a new node in

the list, and updates the corresponding line in her header table. In order to do this, Ui gets

the header table index s from her local list, retrieves sid′||headerCs from her header table,

where sid′ is the session ID in which Ui checked in at vid last time. Ui computes headerKs,

uses headerKs to decrypt headerCs, and gets the header node index NIsw, header node key

nodeKsw, and chKs. In step 2, Ui computes the node ciphertext nodeCs(w+1) and sends it to

S. S returns the new node index NIs(w+1). Upon receiving NIs(w+1), Ui computes the current

header table key for line s, headerKs = F ′(seksid,vid), where sid is the current session ID,

93

When Ui checks in at a venue vid, she looks up in her local list:
if it is not the first time to check in at vid:

1. Ui gets the header table index s corresponding to vid from her local list, retrieves
sid′||headerCs from her header table, computes headerKs = F ′(seksid′ ,vid), decrypts
headerCs using headerKs, and gets NIsw||nodeKsw||chks;

2. Ui generates a random key nodeKs(w+1), computes cs(w+1) = EncchKs(check-in) and
nodeCs(w+1)=EncnodeKs(w+1) (NIsw||nodeKsw||cs(w+1)), and sends nodeCs(w+1) to S;

3. Upon receiving nodeCs(w+1), S adds a new node in Ui’s check-in lists and sends the node
index NIs(w+1) to Ui;

4. Upon receiving NIs(w+1), Ui computes headerKs = F ′(seksid , vid) and headerCs=
EncheaderKs(NIs(w+1) ||nodeKs(w+1)||chks), and sends s||sid||headerCs to S;

5. S Updates the content of line s upon receiving s||sid||headerCs;

Otherwise:

6. Ui increases the size of her header table index by 1. The increased size is denoted as s′.

7. Ui generates two random symmetric keys nodeKs′1 and chKs′ , computes cs′1 =
EncchKs′(check-in) and nodeCs′1=EncnodeKs′1(NULL||NULL||cs′1), and sends nodeCs′1
to S;

8. Upon receiving nodeCs′1, S adds a new node in Ui’s check-in lists and sends the node
index NIs′1 to Ui;

9. Ui computes headerKs′ = F ′(seksid ,vid), PRN′Ui
= F(k′Ui

,vid), and headerCs′=
EncheaderKs′(NIs′1||nodeKs′1 ||chKs′), sends PRN′Ui

and s′||sid||headerCs′ to S;

10. S adds a new line s′||sid||headerCs′ in Ui’s header table, computes PRN f i
a
=F(k f i

a
,vid)=

ReComFunc(F(k′Ui
,vid), DkeyUi→ f i

a
) (1 ≤ a ≤ Ni), and inserts Encpk f i

a
(Ui||s′) into f i

a’s
AVL trees using PRN f i

a
;

11. Ui adds vid||s′ into her local list;

Figure 4.2: Check-in protocol

uses headerKs to generate the ciphertext headerCs, and sends s||sid||headerCs to S, which

updates the content of line s.

If it is the first time that Ui checks in at vid, Ui increases the header table size by 1. We

denote the increased size as s′. Ui generates two random keys nodeKs′1 and chKs′ to encrypt

94

a new node and the check-in record, computes the ciphertext nodeCs′1, and sends nodeCs′1

to S. Upon receiving nodeCs′1, S adds a new node in Ui’s check-in lists, and sends back

the node index NIs′1. Ui computes the header table symmetric key, headerKs′ and the

ciphertext headerCs′ . Then she computes the check-in trapdoor FNR′Ui
, sends FNR′Ui

and

s′||sid ||headerCs′ to S which adds s′||sid||headerCs′ to a new line in Ui’s header table.

Using FNR′Ui
and the public delegation key DkeyUi→ f i

a
, S computes the search trapdoor

PRN f i
a

for each follower f i
a, and inserts Encpk f i

a
(Ui||s′) into f i

a’s AVL tree using PRN f i
a
. In

the end, Ui adds vid||s′ into her local list.

For a vid of Ui’s interest:

1. Ui computes PRNUi = F(kUi ,vid), and sends PRNUi to S;

2. Upon receiving PRNUi , S searches Ui’s AVL tree, and returns ⊥ if nothing is found;

If any value has been returned, say EncpkUi
(U j||s):

3. Ui decrypts EncpkUi
(U j||s), and sends U j||s to S;

4. S retrieves s||sid||headerCs from U j’s header table, and sends it to Ui;

5. Ui computes headerKs = F ′(seksid ,vid), decrypts headerCs, gets NIsw||nodeKsw||chKs,
and sends NIsw||nodeKsw to S;

6. S sequentially decrypt the whole list after decrypting the header node NIsw from U j’s
check-in lists, and sends the ciphertexts {EncchKs(check-in)}v (1≤ v≤ w) to Ui;

7. Ui decrypts {EncchKs(check-in)}v (1≤ v≤ w) and gets the check-in records on vid.

Figure 4.3: Search protocol

Figure 4.3 shows the search protocol. The functionality of the protocol is that Ui picks a

vid of interest, and generates a search trapdoor PRNUi on vid. S uses the search trapdoor to

search the index of check-in records, without revealing the location of Ui. The challenge is

that how to let Ui know the venue ID vid, since when Ui gets to a new place, she may be

unfamiliar with the neighbourhood, let alone all vid’s in the neighbourhood.

We provide an offline approach and an online approach for Ui to acquire all vid’s that she
95

m 'm
'n

n

iUL

Squ Rec1P

2P

d

N

Figure 4.4: Constructing an online search

is interested in. In the offline approach, the user first downloads the map of the intended

area into her mobile device. After arriving at the area, she locally finds the venue ID vid

, computes the search trapdoor, and sends it to the server S which searches Ui’s AVL tree.

Therefore, S would have no idea about the location of Ui or the vid she searches. However,

some users may be unwilling or forget to download the map before they go to some place.

We propose an alternative online approach. Let LUi be the location of Ui, let d be the search

distance defined by Ui, let Cir be the circle centered in LUi with a radius of d, and let Squ

be a square circumscribed about Cir, as shown in Fig. 4.4. Ui randomly selects m, m′, n,

and n′ from the range [0,R′], where R′ is defined by the user. The larger R′ is, the better

protection it provides, but the more bandwidth it consumes. Then Ui extends Squ to the east

by m, to the west by m′, to the north by n, and to the south by n′, and sends the locations of

the northwest point P1 and the southeast point P2 to S. Using the locations of LP1 and LP2 , S

can reconstruct a rectangle Rec. It retrieves all vid’s within the area of Rec, and sends vid’s

back to Ui.

After acquiring all vid’s within the area, Ui chooses a vid of her interest (see Fig. 4.3),

computes the search trapdoor PRNUi , and sends PRNUi to S. Upon receiving PRNUi , S

96

searches Ui’s AVL tree. If nothing is found, S returns⊥ to Ui. Otherwise, S sends the search

result to Ui. Note that a node of a user’s AVL tree may store multiple items. For example,

if U j and U j′ both have checked in at the same vid and are followed by Ui, the items

U j||HI and U j′||HI′ will both be stored in the same node of Ui’s AVL tree, the search will

return the ciphertexts of EncpkUi
(U j||HI) and EncpkUi

(U j′||HI′). In our protocol, for ease

of description, we assume one value EncpkUi
(U j||s) is returned. Ui decrypts the returned

value and sends U j||s to S. S retrieves s||sid||headerCs from U j’s header table, and sends

it back to Ui. Here, sid is the session ID in which U j checked in at vid last time. Ui

decrypts headerCs using headerKs, gets NIsw||nodeKsw||chKs, and sends NIsw||nodeKsw to

S. Using NIsw and nodeKsw, S decrypts the list corresponding to vid in U j’s check-in lists

sequentially, and sends back all check-in ciphertexts {EncchKs(check-in)}v (1 ≤ v ≤w) to

Ui. Using chKs, Ui can decrypt all of the ciphertexts.

Ui wants to revoke f i
a, she checks the current session ID sid:

if sid = L:

1. Ui randomly chooses a number val, computes a new hash chain, sets the session ID
sid = 1 and the session key sek1 = HL

2 (val), re-encrypts her header table using sek1, and
distributes sek1 using the scheme introduced in Section 4.3.2;

Otherwise, if sid = t < L, and the current hash chain initial value is val′:

2. Ui sets the session ID sid′ = t +1, computes the new session key, seksid′ = HL−t
2 (val′),

and distributes seksid′ using the scheme introduced in Section 4.3.2.

Figure 4.5: Revocation protocol

Fig. 4.5 shows the revocation protocol. If Ui wants to revoke a follower f i
a, she checks

the current session ID sid. If sid = L, it means that all keys computed from the hash

chain have been used. Ui randomly chooses a number val, computes a new hash chain,

sets the session ID sid = 1 and the session key sek1 = HL
2 (val). Then Ui re-encrypts her

whole header table using sek1, distributes sek1 to her followers except f i
a using the scheme

introduced in Section 4.3.2. If the current session ID sid = t < L and the current hash chain
97

initial value is val′, Ui set the new session ID sid′ = t + 1, computes the new session key

seksid′ = HL−t
2 (val′), and distributes seksid′ to her followers except f i

a as in the previous

case.

We note that there would be some idle items in the revoked follower’s AVL tree. Although

it somewhat affects the usability of our framework, it does not affect the security, because

the revoked follower is not able to decrypt Ui’s new check-ins. In order to improve this,

we let each user select a nonce for each vid she has checked in and the server insert the

ciphertext of Ui||HI along with the nonce into the follower’s AVL trees. Now, when Ui

revokes a follower, she sends the nonces to the server. The server can delete the idle items

from the revoked follower’s AVL tree using the nonce and a copy of the search trapdoor it

has computed. Due to space limitation, we leave the technique details to our future work.

f i
a′ is approved to join Ui’s follower group in session t:

1. Ui sends sid = t and seksid to f i
a′ ;

2. f i
a′ sends her search key k f i

a′
to Ui;

3. Ui computes the public delegation key DkeyUi→ f i
a′
= k f i

a′
/k′Ui

, and sends DkeyUi→ f i
a′

to S.

4. Using DkeyUi→ f i
a′

and PRN′Ui
, S computes the search trapdoors for all vid’s Ui has

checked in, and inserts the corresponding ciphertext of Ui||HI into f i
a′’s AVL tree.

Figure 4.6: Join protocol

Fig. 4.6 shows the join protocol. If a user f i
a′ is approved to join Ui’s follower group, Ui

sends the current session ID sid and session key seksid to f i
a′ . Using sid and seksid , f i

a′ can

compute all previous session keys which is introduced in section 4.4.4. At the same time,

Ui receives f i
a′’s search key, which is used to compute the delegation key Dkey. In step 4,

S computes the search trapdoor and inserts Ui’s previous check-in indexes into f i
a′’s AVL

tree. We note that each time after Ui computes the check-in trapdoor PRN′Ui
, she sends it to

S, which then convert PRN′Ui
to Ui’s followers’ search trapdoors. Therefore, we let S keep

98

a copy of PRN′Ui
and the corresponding header table index HI.

4.5 Analysis of Our Framework

4.5.1 Location Privacy

We first need to guarantee that the server cannot learn any location information from the

computation of the delegatable PRF. We have the following theorem.

Theorem 5. Our delegatable PRF is semantic secure under the DDH assumption in the

ROM.

The idea of the proof is as follows. We only give the division k j/ki to the server, which

cannot recover either ki or k j. It has been proven in [62] that, in the ROM, the output of

H1(x)ki cannot be distinguished with a real random number as long as ki is kept secret.

Therefore, the calculated number H1(x)k j still seems random to the server.

For our framework, some patterns, such as check-in record size or the check-in lists length,

are unavoidably to be released. Our framework guarantees that an HBC server cannot learn

anything beyond these patterns. The security definition of our framework is the same as

the non-adaptive semantic security of a searchable encryption scheme in [42]. We first

introduce some auxiliary notions which are used in the security proof.

History H: History is a request sequence {(type,U, content)p}P
p=1 starting from the begin-

ning of the protocols, where U is the request user’s ID, P is the number of requests in the

sequence. The type is check-in, search, join, or revocation. The corresponding content is:

1), the venue ID and check-in record for the check-in type, 2), the venue ID for the search

type, 3), the revoked user ID for the revocation type, or 4), the user ID for the join type.

History determines the interactions between users and the server.

99

View V (H): The server can only see an encrypted version of history. Specifically, it in-

cludes: the check-in trapdoors of the venue IDs, the encryption of the check-in records, the

encrypted head table, the encrypted check-in nodes, the search trapdoors of the requested

venue IDs.

Trace Tr(H): Given a history H, trace is the information that our framework releases to the

server, including the check-in pattern, search pattern, revocation pattern, and join pattern.

For each request in H, the type, the request user ID, and the request order in the sequence

are known to the server. The revocation pattern and the join pattern contain the user ID that

is to be revoked or followed, respectively. Therefore, the server knows the whole relation

graph. The check-in pattern contains the size of the check-in record, the length of a user

U’s every check-in list, and the size of the header table. For each check-in request, the

check-in pattern also contains the index of updated or added line of the header table and

the set of the user’s followers whose AVL trees need to be updated, {(td, fU)a}NU
a=1, where

tda denotes the new inserted or updated node in fU
a ’s AVL tree. The set could be empty if

the user checks in at an old venue. The search pattern includes the nodes found on the AVL

tree.

Theorem 6. Our framework is semantic secure under the DDH assumption in the ROM,

given the condition that the symmetric encryption algorithm is semantic secure.

Proof. We give the sketch of the proof as follows. Our task is to construct a simulator S

such that given only Tr(H), it can simulate a view V ′ indistinguishable from the server’s

view in the real protocol execution with a probability 1−ε(λ), where λ is a system security

parameter and ε(λ) is a negligible function in λ .

Setup: Given a multiplicative group G with a prime order q, for each user U , S randomly

selects two numbers k̂′, k̂ from Zq as the user’s check-in key and search key. S also gener-

100

ates a random value as the user’s hash chain initial value. Having all the check-in requests,

S constructs a graph G as follows. Suppose there are h check-in requests, S constructs

h nodes with the label (i,Ui) on the i-th node. Ui is the user ID in i-th check-in request.

For the i-th check-in request, S is given the updated information Fi = {(td, f)a}
NUi
a=1. S

connects every two nodes (i,Ui) and (j,U j) if Fi∩F j 6= /0. Then for each connected com-

ponent, S selects a number r′ randomly from G and assigns it to the component. This

construction can be done in polynomial time by using depth-first search to find the con-

nected components.

Now we construct the simulator for each request.

Join and Revocation: The simulator S interacts with the server as in the real Join/Revocation

protocol by using the corresponding initial value, check-in key, and search key. We note

that the delegation key now is calculated as DkeyUi→U j = k̂U j/k̂′Ui
in the join protocol. The

server will not distinguish the simulated join and revocation protocols because the hash

chain initial value, the check-in key, and the search key are also randomly selected by each

user.

Check-in: S first finds the connected component containing this check-in request in G,

gets the assigned random number r′, and calculates (r′)k̂′U as the check-in trapdoor. Here,

k̂′U is the request user’s check-in key simulated by S . Then S chooses ĉ←R {0,1}s′ as

the check-in ciphertext, where s′ is the size of the check-in record in the request obtained

from Tr(H). Using the simulated check-in trapdoor and ciphertext, S interacts with the

server as in the real check-in protocol. We remark that, if two users, Ui, U j, check in at the

same venue in two requests and they share at least one follower, then the two requests are

in the same connected component and the server will generate the same search trapdoor

for each shared follower f ′a due to the equation ((r′)k̂′Ui)
k̂ f ′a/k̂′Ui=((r′)k̂′Uj)

k̂ f ′a/k̂′U j . We claim

that the server cannot distinguish the simulated check-in instance and the real one with
101

a non-negligible probability. It is because that the semantic security of the PRF and the

symmetric encryption algorithm guarantee that the server cannot distinguish real random

strings with the generated trapdoor and the ciphertext with a non-negligible probability.

Search a venue vid: S knows the request user U and the searched node td, if (td,U)

is not empty. the simulator locates a connected component in G which has (td,U) in one

node’s updated follower set. Then the simulator uses rkU as the search trapdoor, where r is

the number assigned to the component. If no node is found in the trace, r will be a random

number other than the assigned ones. Using this trapdoor, S interacts with the server as

in the real search protocol. Due to the semantic security of the PRF, the server cannot

distinguish the views with a non-negligible probability. And the correctness of the search

is guaranteed by the simulator set up and the simulated check-in protocol.

4.5.2 Other Attacks

In our framework, the header table and the nodes on the AVL tree are encrypted. The check-

in list nodes and the link structure are also encrypted. If an attacker breaks in the server, she

cannot decrypt any of the items due to the semantic security of the encryption algorithms

and the PRF used in our framework. If an attacker stays in the server for a long period, she

will be able to see the increasing of users’ check-in lists. However, hacking into a system

and staying for a long period is usually impossible in the real world. We remark that even

in this worst case, the user’s exact location information cannot be obtained because it is

randomized before it has been uploaded to the server.

A revoked user can only access the check-in records that were uploaded before she was

revoked. Because the check-in list is linked from the newest check-in to oldest check-in,

even if the revoked user has the key for the check-in records, she cannot decrypt the nodes

102

storing new check-ins. Note that the new added lines in the header table are encrypted with

new session keys. Hence, the revoked user cannot decrypt them to get the head nodes of

the check-in lists.

The items stored on Ui’s AVL tree are all encrypted under her public key. Hence, attackers

cannot get the user’s friend IDs stored on the tree even if they obtain the whole tree. In

addition, if U j is followed by Ui and gets Ui’s AVL tree, she cannot infer other user IDs

stored on Ui’s tree even if U j can generate Ui’s search trapdoors. Therefore, the location

privacy of Ui’s friends is preserved against unauthorized users and malicious attackers.

4.6 Evaluation

We made a proof-of-concept implementation of our framework to evaluate its performance.

The server side simulation was carried out on a laptop with Intel Core 2 Duo 2.53GHz, 4GB

memory, and 250GHz hard driver. The client side simulation was carried out on a Motorola

Droid 1, which has a 550MHz ARM A8 processor, 256MB memory, a 16GB SD card, and

the Android 2.2 OS. In order to speed up the execution, we coded our client application in

Android native code and cross compiled it using ndk-r7c tool chain. Since Android does

not provide any cryptographic library in native library, we ported Crypo++ library [41]

to Android and embedded it in our implementation. The underlying group G was a 160

bits elliptic curve group, which achieves 80 bits security level and is enough for common

security demands. For all hash functions used in the scheme, we used SHA1 with 160 bits

output. We used AES with 128 bits key size for the symmetric key encryption and elliptic

curve ElGamal as the public key encryption algorithm. In our implementation, we used the

same PRF for F ′ and F . We truncated the 128 least significant bits of the output of F ′ to

match with the key size used in AES.

Fig. 4.7a shows the running time of the hash chain based session key generation scheme
103

1 50 100 150 2000

0.005

0.01

0.015

Number of Revocations

R
un

ni
ng

 T
im

e
(s

)

re-enc
L=50
L=100
L=150

(a) Hash chain vs. re-encryption

L Time (s)
1000 0.046
2000 0.089
3000 0.126
4000 0.171
4500 0.192
5000 0.21

(b) Compuation time

Figure 4.7: Performance of the hash chain

compared with traditional re-encryption approach. In this experiment, the user checked

in at a new venue every two time units and revoked a follower at a random time. The

revocation time interval obeys Poisson distribution with a mean value 10.

In Fig. 4.7a, when the window size L = 50, after about 30 revocations, our scheme out-

performed the traditional re-encryption one, except that when all keys of a hash chain were

used, a new hash chain needed to be generated and the header table should be re-encrypted.

In Fig. 4.7a, when L was smaller, it took less time to compute the keys on the chain.

However, the re-encryption frequency was higher than that with a larger L. Hence, a real

implementation should consider the trade off between the re-encryption frequency and the

larger computation time. In fact, the time for computing a hash chain was very fast in our

experiments. We listed the computation time of hash chains with different lengths in Fig.

4.7b and could see that the computation of a hash chain with 1000 session keys only took

0.046s.

One of our contributions is to use delegatable PRF to save computation time on the client

device. In Fig. 4.8, we show the computation time of the server and the client when they

used delegatable PRF, compared with the time when delegatable PRF was not used. We

104

50100 200 300 400 500

10-1

100

101

Number of Followers
R

un
ni

ng
 T

im
e

(s
)

U
U, S
ndU

Figure 4.8: Delegatable PRF

increased the number of followers from 50 to 500 and recorded the running time. The lines

with stars and rectangles represent the total running time of the client and the server, and the

running time of the client itself, respectively, when delegatable PRF was used. The remain-

ing line represents the running time of the client without using delegatable PRF. Without

using delegatable PRF, the client needs to compute all the follower’s search trapdoors and

sends them to the server. Therefore, there is no computational cost on the server side. In

Fig. 4.8, we can see that the client side computational overhead are dramatically reduced

using delegatable PRF.

200 400 600 8000

0.2

0.4

0.6

Ru
nn

in
g

Ti
m

e
(s

)

Number of Followers

25%S
25%U
50%S
50%U
75%S
75%U

(a) Running time of the check-in protocol

10 50 100 150 2001.9

2

2.1

2.2x 10-3

Check-in List Length

R
un

ni
ng

 T
im

e
(s

)

500 nodes
1000 nodes
1500 nodes

(b) Running time of the search protocol

Figure 4.9: Performance of the framework

105

Fig. 4.9a and Fig. 4.9b show the running time of the check-in protocol and search protocol,

respectively. In our simulation, we did not consider the communication time. Instead, we

only counted the computation time needed on the client side and the server side. In the

search protocol, the user only needs to compute a pseudo random number, decrypt one line

in each searched user’s header table, and decrypt the check-in ciphertexts. Due to the small

size of a line in the header table, the user’s execution time is dominated by decrypting the

check-in ciphertexts, which is actually independent of the framework and determined by

the encryption algorithm.

The running time on the server side is more interesting in the check-in protocol. We con-

sidered three kinds of users according to their check-in habits: 1) users often check in at

new venues; 2) users check in at new and old venues with equal probability; 3) users often

check in at old venues. In our simulation, we assumed the three type of users checking in

at an old venue with probabilities 25%, 50%, and 75%, respectively. In Fig. 4.9a, we show

the total running time of the server and user with different number of followers. We could

see that for users who frequently check in at old venues, our proposed framework could

greatly reduce both the server and user’s computation time. Also, for users who usually

check in at new venues, our framework could reduce the client’s computational overhead.

Without loss of generality, we generated AVL trees with 500, 1000, and 1500 nodes, re-

spectively. Using a search trapdoor, the server searched the AVL tree, and used the returned

value to decrypt the check-in list. We show the time the server used to search the AVL tree

and decrypt the check-in list in Fig. 4.9b. The server’s computation time increased with

the increase of the AVL tree size and the check-in list length.

106

4.7 Conclusions

In this dissertation, we have proposed an efficient location privacy preserving framework

for LBSNs. We have proposed novel designs to reduce the computational overhead of users

and the server. We have theoretically proved that the location privacy of users has been

preserved and demonstrated that our framework is secure against several attacks. Extensive

simulations have been carried out to demonstrated the efficiency of our framework.

107

CHAPTER 5

Location Privacy in Location Based Reminders

Reminder applications are becoming a crucial applications in mobile devices. The reminder

applications help users to memorize something important to do in the future and remind

user at specific occasion. Traditional reminder applications are time based reminders, i.e.,

the user enters the reminder message and set up the reminder time, which could be one time

or periodically repeated times, the application displays the reminder message on the screen

at the setting time and alert the user. Recent years have witnessed a rapid development of

mobile devices. Most mobile devices are now equipped with accurate localization capabil-

ities, based for example on GPS receivers, access points, or triangulation with nearby base

stations [87].

Thanks to the localization sensors, more and more reminder applications on smart devices

now have an additional functionality, which allows users to mark a location during the

setting of a reminder. We call this location a reminder location. The smart device will

alert a user when the user’s current location is close to the reminder location. The extent of

closeness is pre-set by the user and is called the reminder distance. For example, a user can

add a location based reminder such that the smart device can remind her to buy groceries

when she is near Walmart, or to refill medicines when she passes by CVS or Walgreens.

One approach to implement the location base reminder system is based on a single smart

device. All the reminder messages and the associated reminder locations are stored locally

on a single device. The smart device periodically queries the localization sensor to detect

the user’s current location. If the user is near the reminder location, the smart device

108

will alert her. This approach is simple and secure in the sense that it does not leave the

user’s location information out of the smart device. However, using this method, it is hard

to synchronize reminders on one device with other smart devices. Since more and more

users tend to have more than one smart device, synchronization is an important issue. For

example, a user may want to add a reminder using her tablet while she is browsing Internet

at home, but she may want this reminder to automatically appear on her smartphone when

she is out.

Due to the development of cloud service, many companies now use the cloud to synchro-

nize personal data, including reminders, among a user’s multiple smart devices. A typical

example is iCloud, which can synchronize multiple smart devices with the same account

[89]. A user can add a reminder on her iPhone, which then uploads an encrypted copy

to iCloud automatically. iCloud pushes the reminder to the user’s other iOS devices, such

as iPad or iTouch. In this way, the user can get the reminder from whichever device she

brings with her. The disadvantage of this approach is that multiple copies exist among a

user’s different smart devices, which causes efficiency issues during synchronization if the

size of a reminder message is large, since current reminder messages may contain not only

texts but also multimedia, such as audios [78] or images [1]. If a user has many multimedia

reminders and goes out with a device that has not been synchronized for a period of time,

the synchronization latency may be large and the user may even miss some reminders. At

the same time, copying reminders to every device unnecessarily cost a user’s cellular data

usage and local storage of the smart devices.

It is desirable to keep only one copy of reminders on the cloud server, which pushes the

reminder to a user when she is near the reminder location. We call this kind of system

cloud-assisted location based reminder system, which is illustrated in Figure 5.1. As shown

in Figure 5.1, the reminder area with respect to a reminder location is a disc centered at the

109

reminder
location

reminder
distance

reminder
message

add a
reminder

cloud server

current
location

reminder area

Figure 5.1: Cloud Assisted Location Based Reminder System

reminder location with a radius of the reminder distance. A user can add a reminder using

one of her smart devices. The reminder is then uploaded to the cloud server, which syn-

chronizes the user’s multiple smart devices, including her smartphone. When she is away

from home with her smartphone, the smartphone periodically sends the current location

to the cloud server. If the user appears in any reminder area, the corresponding reminder

message is pushed to the user. In addition to saving local storage space, responsiveness

is another advantage of the cloud-assisted location based reminder system. A user can

access her reminders on any of her smart devices if they share the same account without

synchronization and only the triggered reminders are pushed from the cloud server. If the

smart device is not privately owned, the user would not need to worry about extra reminder

messages besides necessary ones pushing to the device.

A big challenge of such a system that we need to overcome is to protect users’ location

privacy and message confidentiality. If there is no privacy and confidentiality guarantee,

110

users may not want to use the system, worrying about their privacy being exposed. For

example, a user may not want to expose the reminder message and the reminder location

if she wants to remind herself to refill medicines when she passes by a pharmacy, which

might expose her health condition. Users may also not want to expose their current location,

which leads to illegal tracking.

The goal of this work is to construct a secure cloud-assisted location based reminder sys-

tem, which protects users’ location privacy and the confidentiality of reminder messages.

The system hides a user’s reminder messages, reminder locations, and current location

from the cloud server. However, the system still enables the cloud server to decide whether

a user’s current location is within any reminder area. Specifically, the system divides the

surface of earth into small squares (forming a grid), represents a reminder area by a set of

squares, and associates them with the encrypted reminder message using searchable sym-

metric encryption. The smart device represents the current area in the same way and lets

the cloud server search nearby reminder locations without exposing any location informa-

tion and reminder message. We propose a cross based area representation approach and a

bar based area representation approach, respectively, to implement the system. The cross

based area representation approach enables us to reduce an inequality testing, i.e. distance

comparison, to an equality testing, i.e. finding set intersections. The implemention of the

bar based area representation approach enables the user to accurately compute the current

distance. It also greatly reduces the storage overhead on the cloud server side.

The contributions of this work are as follows.

• We propose a secure cloud-assisted location based reminder system. which is based

on cross based area representation. We use two different approaches, cross based

approach and improved bar based approach, to implement the systme. We prove

111

the security of the system constructed based cross based approach under the deci-

sional Diffie-Hellman (DDH) assumption [92] in the random oracle model (ROM)

and demonstrate its efficiency through simulations on a Motorola Droid phone. The

implemention of the bar based approach saves a large storage space for the cloud

server.

• We propose a novel method to represent the reminder area, which reduces the time

complexity for checking whether a user is in a particular reminder area. The repre-

sentation is easy to construct and lightweight in space overhead.

• Based on our novel representation approach, we propose to use searchable symmet-

ric encryption to construct a secure cloud-assisted location based reminder system.

Considering the computational limitations, we propose to use a lightweight pseudo

random function [63], which is proved to be secure in the random oracle model.

5.1 Related Work

In this section, we review two security areas that are related to our work: location privacy

and searchable encryption. We also differentiate our work with prior works.

5.1.1 Location Privacy

Prior studies on location privacy mainly focused on privacy issues in the traditional location

based service (LBS), in which a user sends the LBS server a location query and the server

returns the local information around the query location. An extensive literature on location

privacy utilizes the idea of K-anonymity or location cloaking [7, 58, 79]. In this approach,

a user’s query is relayed by a trusted third party to the LBS server. The trusted third

party does not send queries to the LBS server until K different user queries from the same

112

area are collected. In this way, the LBS server cannot tell which user queries a specific

location. The assumption that the third party is fully trusted by users became a security

weakness of this approach. Kalnis et al. [64] pointed out that there exists certain scenarios

in which K-anonymity approach leaks private location information to malicious entities. In

addition, these approaches employ complex server query processing techniques and entail

the transmission of large quantities of intermediate results between users and the trusted

third party.

To overcome the disadvantages of cloaking-based techniques, a new class of location pri-

vacy protection approaches were proposed, which are known as transformation based ap-

proaches. More recently, Yin et al. proposed a framework called SpaceTwist [103] to

deceive an untrusted location server by incrementally querying nearest neighbor based on

their ascending distance from a fake point which is different from the user’s actual location.

In [67], Khoshgozaran and Shahabi proposed to use an one-way transformation to encode

the location query and the object space. The query is evaluated in the transformed space

such that the users’ location privacy is preserved. Their approaches do not rely on a trusted

party, but may have errors in scenarios that require exact result.

Some other works were proposed to preserve the location privacy by using private infor-

mation retrieval (PIR) [36]. Hengartner proposed an architecture which utilizes PIR and

trusted computing to protect user location privacy [61]. However, the proposed architecture

is not implemented yet. Ghinita et al. used computational PIR to enable private evalua-

tion of the nearest neighbour queries [53]. However, the heavy computational overhead of

the underlying PIR scheme makes the approach unsuitable for a smart device. A fast PIR

based location privacy scheme was proposed by Khoshgozaran et al. [68]. Their scheme

requires a tamper-resistant trusted hardware installed close to the server, which makes the

scheme less practical. Recently, Albanese et al. [4] proposed a novel approach to detect

113

an attacker’s location by using information of detected malicious nodes when the attacker

tries to locate a victim in the Mobile Ad Hoc Networks.

Different from the above works, we study the location privacy issue in a cloud-assisted

location based reminder system, in which a user not only provides a location query, i.e., the

current location, but also sets a reminder location and both locations are oblivious to the

cloud server. In addition, the server is able to test whether the current location appears in a

reminder area even if it does not know the current locations and the reminder locations.

5.1.2 Searchable Encryption

In order to enable the square IDs to be searchable, we propose to use the idea of searchable

symmetric encryption. To the best of our knowledge, searchable encryption was first pro-

posed by Song et al. [90] and has received extensive attentions [8] . The earlier progress

has been made on its efficiency and security definition formalization. The searchable index

schemes proposed by Goh [55], and Chang and Mitzenmacher [29] reduce the search cost

to one proportional to the number of files. In [42], Curtmola et al. summarized previous

studies and gave a new formal security definition on searchable symmetric encryption. Re-

cently, a conjunctive similarity keyword search over encrypted data is proposed by Wang

et al. [97]. Their scheme is proved to be non-adaptive semantic secure defined in [42].

Regarding the public key setting, Boneh et al. gave the first construction on searchable

asymmetric encryption, where anyone with the public key can write to the data stored in

the server but only the ones with the private key can search on the data [15]. Conjunctive

keyword search, subset query, and range query over encrypted data [18] were also proposed

in the public key setting.

114

5.2 Problem Formulation

In this section, we present the system model, threat model, and design goals.

5.2.1 System Model and Threat Model

Our system consists of a cloud server s and multiple users. Since all the interactions are

between a user and the cloud server, we use u to denote the user intersecting with s. The

user u may have multiple smart devices (e.g., tablet, smartphone, etc.) with the same

account. Since our system does not need data synchronization, the system interactions are

independent of devices and only specific to a user account. Therefore, we use a smart device

to denote any one being used by the user. When user u adds a reminder to her smart device,

u enters a reminder time or mark a reminder location, and enters a reminder message,

which could be text, audio, or image. We focus on protecting users’ location privacy in this

dissertation and will omit reminder time setting in the system construction. Extending our

work to include a reminder time can be simply achieved by storing the reminder time in

ciphertext on the cloud server.

When a user u enrolls in the system for the first time, she sets a reminder distance du and

a parameter au. The reminder area is a disc centered around the reminder location with the

radius du. According to the reminder setting, if a user u enters or leaves the reminder area,

the smart phone should be able to retrieve the reminder message from the cloud server and

alert the user. The user may have multiple smart devices and multiple reminders on the

cloud server . She may take any of her devices when she is out. Therefore, the cloud server

should be able to synchronize reminders between different devices and test whether any

smart device is in the reminder area or not, and send corresponding reminder to the smart

device when it is in the reminder area.

115

We consider an honest but curious cloud server, which is consistent with most privacy

preserving systems [42, 65, 97]. This adversary model is also acceptable in our application

scenario. A cloud server will follow the protocol specification and not intentionally destroy

users’ reminder service in order to maintain its business reputation. However, the server

may be curious to learn users’ reminder contents and location privacy. To this end, the

server may collect any information beyond the protocol specification and perform arbitrary

computation on the information. It may keep records of all messages transmitted between

the user and the cloud server, analyze them, and try to infer the user’s location privacy.

Our system does not rely on a trusted third party so as to simplify the system architecture

and enhance the system performance. We assume that the user’s smart device is clean

with regard to malicious and vulnerable applications [83]. In this dissertation, we focus

on protecting a user’s location privacy against an untrusted server. Privacy breach via

malicious applications is a topic studied by malicious application detection [74–76, 83]

and is out of the scope of this work.

5.2.2 Design Goals

In the following, we summarize the goals that a secure cloud-assisted location based re-

minder system should achieve.

• Location privacy: The cloud server should not know a user’s reminder locations and

her current location;

• Confidentiality: The server should not be able to learn about a user’s reminder mes-

sage.

• Workability: The cloud server should be able to check whether a user’s current loca-

tion is in a reminder area and send the associated reminder message to the user.
116

• Efficiency: The system should be efficient in computation, data usage, and server

space consumption.

• Responsiveness: A user’s device should not need to synchronize to catch up re-

minders from the cloud server, even when the device has been offline for a long

time.

5.3 Technical Preliminaries

In this section, we review the main technical preliminaries used in this dissertation.

5.3.1 Pseudo Random Function

Informally speaking, a pseudo random function (PRF) is a cryptographic primitive whose

output looks like a random number. A PRF is an efficient computable function F : K×X→

Y , where K is the key space, X is the domain, and Y is the range [17]. Given a key k, a

function F maps an input x ∈ X to an element y ∈ Y . Formally, we have the following

definition.

Definition 1. A PRF F : K×X → Y is secure if for all probabilistic polynomial-time ad-

versaries A , the adversary’s advantage

Advpr f
F (A) = Pr[RealAF ⇒ 1]−Pr[RandA

R ⇒ 1]

is a negligible function.

Here, RealAF (resp. RandA
R) denotes a game, in which the adversary interacts with a PRF

(resp. real random function) [11]. The symbol ⇒ 1 denotes that the adversary thinks

she is interacting with a real random function. In other words, this definition states that

117

no probabilistic polynomial time adversary can distinguish the output of a PRF from the

output of a real random function with a non-negligible probability [11].

Considering the limited computational resources on smart devices, we use a construction of

PRF given in [63], which is based on the cryptographic hash function. In this dissertation,

we use two PRFs defined as F : Zq×{0,1}∗→G and F ′ : Zq′×{0,1}∗→G′, where G and

G′ are two multiplicative groups of prime orders q and q′, respectively. F is used to generate

search trapdoors and F ′ is used to generate symmetric encryption keys. The construction

of F is : F(k,x) = H1(x)k, where H1(·) is a cryptographic hash function hashing an input to

an element in G: H1 : {0,1}∗→G. This pseudo random function is secure under the DDH

assumption in the ROM. F ′ can be constructed in a similar way by using a hash function

H ′1(·) which hashes {0,1}∗ to an element in group G′.

5.3.2 Hashing onto A Group

A hash function usually hashes an input to a fixed length of binary string, such as SHA-1.

In the construction of PRFs, we utilize a special type of hash functions, H1 and H ′1, which

hash the input to an element in groups G and G′, respectively. Here, we only introduce the

construction of H1. H ′1 is constructed in a similar way. H1 is constructed from a common

cryptographic hash function H : {0,1}∗→ {0,1}l1 , where l1 = logq and q is the order of

G. For an input x, if the output of H is an element t in Zq, the desired hash value can be

obtained by calculating gt , where g is a generator of G. The challenge is that the output of

H may exceed the range of Zq. A standard and simple solution is to re-hash H(x||1) and

verify whether the new hash value is in Zq or not, where x||1 denotes the concatenation of

x with 1. The re-hash is repeated k times ((H(x||k) for k-th re-hash) until the output is in

Zq. Since the probability that the output exceeds Zq is less than 1/2, the failure probability

decreases exponentially with repeat times. In the simulation, we select k = 9 and obtain an
118

overall failure probability less than 0.1%.

5.3.3 Searchable Symmetric Encryption

Searchable symmetric encryption (SSE) allows a user to encrypt her data in such a way

that the data can still be searched by the cloud server using predefined keywords while the

cloud server cannot learn about the keywords [65].

SSE was initially proposed to search over encrypted documents on an untrusted database.

A construction of SSE can be found in [97] and we summarize its basic scheme here. Given

a document D, a set of keywords id1, id2, · · · idN associated with it, and two pseudo random

functions f and g, we can build an SSE scheme as follows.

• SetUp: The user generates two keys k1 and k2 for the pseudo random functions, f

and g, respectively, and a symmetric encryption key k for D.

• TrapdoorGen: For each given keyword idi (1≤ i≤ N), the user generates a trapdoor

Ti = f (k1, idi).

• BuildIndex: For each keyword idi, the user generates an index as follows. She takes

the key k2, idi and the trapdoor Ti as inputs, and constructs the index (Ti,Encg(k2,idi)(k)).

The user uploads Enck(D) associated with {(Ti,Encg(k2,idi)(k))}N
i=1 to the server.

• Search: For a given keyword id, the user generates (f (k1, id), g(k2, id)) and sends it

to the server. The server looks up f (k1, id) against trapdoors in the database. If any

match is found, the associated Enck(D) is decrypted. Here, the key k is obtained by

decrypting Encg(k2,id)(k). The server decrypts Enck(D) and returns D to the user.

If there are multiple documents, each one is processed as above and uploaded to the server.

119

We implement SSE in the system constructed based on the cross based approach . The

user encrypts her reminder messages and uploads the encrypted messages along with a

reminder location to the cloud server. The keyword in our case is the reminder location or

its representations. Different from traditional SSE, we do not want the server to learn the

message content. Therefore, the user does not upload g(k2, id) to the server. The server

returns Enck(D) and Encg(k2,idi)(k) to the user. The reminder message decryption is then

performed locally on the smart device. The details of our construction can be found in

Section 5.6.2.

5.4 Tessellation on the Surface of the Earth

To represent a proximity area, Narayanan et al. [80] proposed to tessellate the earth surface

by hexagons. To deal with the curved earth surface, they divided the earth surface into strips

by latitude, one strip per degree of latitude, and tessellated each strip separately. Since the

curvature of the earth surface within a single strip can be ignored, the small cells can thus

be viewed as approximately the same everywhere. Following the same idea, we tessellate

the earth surface by squares, instead of hexagons. The tessellation forms a grid on the

surface of earth. We note that the reminder area is usually small and the curvature of the

earth surface passing through the area is too small to ignore. Let Gu denote the tessellation

on the plane, which is defined by user u and consists of squares with the side length au.

Each square has a unique identifier and we use id(x,y) to denote the square identifier that the

location point (x,y) locates.

5.5 Toward Private Location Search

In the desired secure cloud-assisted location based reminder system, a user u stores re-

minder locations on the untrusted server and wants to retrieve the reminder content when

120

she appears within the reminder area. We note that the problem studied in this dissertation

is different from the private proximity testing problem [80], in which two parties know their

own locations and try to hide them from each other. In our problem, one party, the cloud

server, only provides storage and search services and cannot access the information that

belongs to the user. For such a blind search service, one possible construction is to use ho-

momorphic cryptographic primitives [19] to construct a protocol such that a user provides

fully homomorphic encryptions of the reminder location, the reminder distance, and the

current location, respectively; the cloud server blindly calculates the distance between the

two locations and compares with the reminder distance using a secure comparison protocol

[43]. This approach is not suitable for mobile devices because homomorphic encryption

schemes are usually computationally expensive.

We propose to use searchable symmetric encryption [90] to construct a secure cloud-

assisted location based reminder system. As introduced previously, the searchable sym-

metric encryption allows a user to associate an encrypted content with a set of keywords.

Since a reminder area is a disc which is composed of uncountable number of points, the

biggest challenge here is to find an efficient approach to represent the disc using a finite

number of location points.

d

outlier

reminder
location

Figure 5.2: Using Grid to Represent the Reminder Area

121

Inspired by the work of Narayanan et al. [80], a straightforward idea of the area repre-

sentation is to use a square in the tessellation that is introduced previously to represent a

reminder area, as shown in Figure 5.2. When a user wants to mark a reminder location,

such as the blue point (x,y) in Figure 5.2, she uses the square identifier id(x,y) as a keyword

associated with an encrypted reminder message and stores them in the cloud server. The

user will then use the square identifier of her current location as a keyword to search on

the cloud server. If the two identifiers are identical, e.g., as shown in Figure 5.2, the blue

point and the green point have the same square identifier, the reminder message will be

retrieved, and pushed to the user’s smart device. This approach is spatially and computa-

tionally lightweight, but suffers from a large inaccuracy. When the reminder location and

the current location are close but in different squares, such as the red point and the blue

point in Figure 5.2, even if their distance is smaller than du, this approach cannot remind

the user when she is at the red point, because the current square is different from the square

where the reminder location is.

du

au

Figure 5.3: Using Small Squares to Approximate the Reminder Area

Although it fails in some cases, the previous approach shows that it is a good way for

representing the reminder area using the squares on the tessellation. This observation leads
122

to the second approach. Again, we divide the earth surface into squares, the side length

of which is smaller than du, as shown in Figure 5.3. The idea is to use small squares to

approximate the disc-shaped reminder area. On the grid, we draw a disc centered at the

point (x,y) with radius of du. Every square that is fully or partially covered by the disc is

a valid square, as shown in the green squares in Figure 5.3. When a user marks the point

(x,y), she stores all valid square identifiers and the associated reminder message in the

cloud server. Every time, the user searches the cloud server using the square identifier of

her current location. If she is at any green area (see Figure 5.3), the cloud server will find

a matching square identifier in the storage and the corresponding reminder message will

be pushed to the user’s screen. The problem of this approach is that it consumes a lot of

cloud server storage space and user’s cellular data during uploading trapdoors of the square

identifiers.

5.6 Cross based Approach

In this section, we describe the system constructed based on the cross based area represen-

tation approach.

5.6.1 Cross Based Area Representation

We try to find an area representation method that reduces the space consumption of the

second approach while still keeping the inaccuracy small. Our idea is to use an equal-

armed cross to represent a reminder area, as shown in Figure 5.4. The cross consists of

multiple small squares in the tessellation and is centered at the square where the interested

location (a reminder location or a current location) locates. Each arm of the cross contains

ddu/aue squares. Suppose there is a point (x,y), e.g., the blue point in Figure 5.4, we let

id i,∗
(x,y), i = ±1,±2, · · · ,±(ddu/aue) denote i-th square identifier to the east/west of square

123

Nddu/aue

Tessellation

au

Figure 5.4: Using Cross to Represent An Area

id(x,y) (negative numbers denote the west direction), and id ∗,i
(x,y) i =±1,±2, · · · ,±(ddu/aue)

denote the i-th square identifier to the north/south of square id(x,y) (negative numbers denote

the south direction). All the squares in the cross, i.e., shaded squares in Figure 5.4, are

called valid squares with respect to (x,y).

Procedure 1: CreateCross(x, y, du, au)
Data: location (x,y), reminder distance du, square side length au
Result: valid square identifier set I D (x,y)

1 I D (x,y)← /0;
2 I D (x,y)←I D ∪{id(x,y)};
3 for i← 1 to ddu/aue do
4 I D (x,y)←I D (x,y)∪{id ∗,i(x,y), id

∗,−i
(x,y) , id

i,∗
(x,y), id

−i,∗
(x,y) };

5 end

Given a location (x,y), a distance du, and a square side length au, Procedure 1 shows how

to construct a valid square identifier set I D (x,y). Using the valid square identifier set, we

can test whether the distance between the two points (x′,y′) and (x,y) is smaller than du

or not. We calculate two valid square identifier sets I D (x′,y′) and I D (x,y) with respect

to (x′,y′) and (x,y), respectively, and test whether they have intersections. If they do not
124

have any intersection, it indicates that their distance is longer than du, as shown in Figure

5.5a. In Figure 5.5, we use the blue point and the red point to denote (x,y) and (x′,y′),

respectively. If they have intersections, we can further estimate the distance between the

two locations using the intersected squares. If there are two interactions on two different

directions, as shown in Figure 5.5d, the user knows that the distance between the two

locations is no longer than the longest distance between any two points in the two squares.

Therefore, this distance can be used to bound the exact distance between the two locations.

If the intersected squares are on the same line, the user can also estimate the distance. An

example is shown in Figure 5.5b, there is only one intersected square and the user knows

that the distance between the two locations is no longer than 2du− au. If the number of

interacted squares is more than ddu/aue+ 1, e.g. Figure. 5.5c, the distance between the

two locations is definitely smaller than du.

(a) (b) (c) (d)

Figure 5.5: Four Cases of Cross Intersection

The original location testing is an inequality testing, in which the user needs to compute the

distance between the two locations and compare it with the reminder distance. Our novel

representation reduces this inequality testing to an equality testing, in which users test if

there are intersections between the valid square identifier sets of the two locations. This

reduction allows us to do location testing even when the reminder location and the user’s

current location is transformed by a one-way trapdoor function.

125

5.6.2 Constructions

This approach consists of three protocols: user enrollment protocol, location marking pro-

tocol, and location search protocol.

Function: A user gets enrolled in the system.

1. The user sends request to the cloud server s.

2. s sets up a new user account and assigns a user ID, e.g. u, to the user.

3. User u sets up her reminder distance du and square side length au. du and au are
securely stored on the user’s local storage. u also generates two pseudo random
function keys k1, k2, a symmetric encryption key k, and keeps them secret in the
local storage.

Figure 5.6: User Enrollment

The user enrollment protocol is shown in Figure 5.6. When a user is enrolled in the system,

she selects her reminder distance du and square side length au. A smaller square side length

gives smaller inaccuracy but consumes more server storage space and larger uploading data

volume. In Section 5.6.3 we will discuss the selection of au. We note that a user may have

multiple smart devices. If the user wants to bind one more device to her account, she needs

to have the keys k1 and k2 stored in the device either. The user can transfer the keys from

a smart device which is already bound to her account to the newly added device through a

secure out-of-band channel, such as near field communication (NFC) channel or blue tooth.

Figure 5.7 presents the location marking protocol. Our system needs a semantic secure

symmetric encryption scheme, in which Enck(·) and Deck(·) are the encryption and de-

cryption algorithm under the key k, respectively. In the protocol, a user constructs the valid

square identifier set with respect to the reminder location. The user encrypts the reminder

message with a random key and then generates an index set for the reminder location.

In each index tuple tid = < f (k1, id),Encg(k2,id)(k)>, the first element is a pseudo random
126

Function: User u marks location (x,y) as a reminder location with a reminder message m.

1. u randomly selects a symmetric encryption key k and encrypts the reminder message as
C = Enck(m).

2. u gets the valid square identifier set I D (x,y) ←CreateCross (x, y, du, au). For each
id ∈ I D (x,y), u calculates an index tuple tid = < f (k1, id),Encg(k2,id)(k)> and puts tid
into an index set T . Finally, user u shuffles the elements in T and submits <T ,C> to
the cloud server s

3. Cloud server s maintains a sorted index set I N Du for each user u. The index set is
sorted by the first trapdoor value f (k1, id) in the index tuple tid . Upon receiving <T ,C>
from u, s stores C, obtains a reference r to C, and updates I N Du as I N Du =
I N Du∪{<b,c,r>|<b,c> ∈T }

Figure 5.7: Location Marking

number generated from the square identifier id, and the second one is a ciphertext using

another pseudo random number derived from id as the encryption key. The first element in

the tuple is used for search. If a pseudo random number f (k1, id′) matches f (k1, id), it is

the case that id′ = id. The user can use the second pseudo random function to derive the

key k for decrypting Encg(k2,id)(k). The user submits the index set and the ciphertext of the

reminder message to the cloud server, which merges the submission to the user’s I N Du.

After marking locations in her reminder, a user periodically checks whether her current lo-

cation is within any reminder area. This process is specified by the location search protocol

in our system, which is presented in Figure 5.8.

Figure 5.8 shows the location search protocol. Generally speaking, in the location search

protocol, user u checks whether the cross centered at the current location intersects with

any cross stored on the cloud server and retrieves the corresponding reminder messages if

the condition in Step 3 is satisfied. Specifically, if the two crosses intersect at a square id,

the trapdoor indid = f (k1, id) calculated in the location marking protocol and the location

search protocol are identical. Therefore, if any non-empty I N T is returned by s in Step

127

Function: Check whether user u’s current location (x,y) is within any reminder area.

1. u gets the valid square identifier set I D (x,y)← CreateCross (x, y, du, au). For
each id ∈I D (x,y), u calculates trapdoor indid = f (k1, id) and puts it in set I .
u shuffles set I and submits it to the cloud server s. u also keeps all calculated
<indid, id>’s in a table T .

2. Upon receiving I from u, cloud server s searches the user’s index set I N Du
against each element in I and returns I N T = {<b,c,r>|b∈I ∧<b,c,r>∈
I N Du} to the user.

3. Upon receiving I N T , the user u constructs a request set R as follows:

• If a reference r appears for no less than ddu/aue+1 times in I N T , add
it in R;

• If a reference r appears for less than ddu/aue+1 times in I N T , find the
corresponding intersection squares. If they are on the same line, drop r and
continue to check the next available reference. Otherwise, assume the two
square identifiers are id i,∗

(x,y) and id ∗, j
(x,y). If au

2 · (|i|+1)2 +au
2 · (| j|+1)2 ≤

du
2, then u adds r in R.

u sends R to s.

4. Upon receiving a request set R from user u, s sends a ciphertext set C =
{<C,r>|r ∈R} to the user.

5. Upon receiving C from the server, the user decrypts the ciphertexts. For each
<Ci,ri> ∈ C , u finds a square identifier id from table T such that <b,c,r> j ∈
I N T , ri = r j, and indid = b j. User u decrypts Ci using the decryption key
ki = Decg(k2,id)(c j) to obtain the reminder message mi.

6. After obtaining message mi, user u may want to remove it from the cloud
server. User u sends a delete request and the corresponding reference ri to the
cloud server s. The cloud server s removes Ci and all elements containing ri in
I N Du.

Figure 5.8: Location Search

2, u knows not only that the cross centered at the current location intersects with the cross

centered at a certain reminder location but also the exact intersected squares by looking up

the trapdoors in table T . In Step 3, the user filters out the out-of-range reminder message

128

references, because it is possible that the distance between the two locations is longer than

du even if their crosses are intersected (see Figure 5.5b and Figure 5.5d). For the remaining

references, the user retrieves the encrypted reminder messages and decrypts them to obtain

the plaintexts. The key point here is that the symmetric key for encrypting the reminder

message is stored in the ciphertexts encrypted by g(k2, id), where k2 is known to the user

and id is any square identifier in the cross, including the identifier of the intersected square.

Since the user has the intersected square identifier id, she can derive the key g(k2, id) and

then obtain the symmetric key to decrypt the ciphertext of the reminder message.

5.6.3 Late Reminding

There are two types of errors in a location based reminder system, false reminding and

late reminding. A false reminding happens if a location point outside a reminder area is

recognized as an one in the reminder area. A late reminding happens if the current location

is already inside a reminder area but the system does not remind the user. We note that a

false reminding is more unacceptable than a late reminding in our application scenario.

As shown in Figure 5.9, our system calculates the longest possible distance d′ between

the current location point and the reminder location and reminds the user when d′ ≤

du. Therefore, our system does not have the false reminding error but may cause late

reminding. The latency of the late reminding is dependent on the distance inaccuracy

when we try to use the longest distance between two squares to approximate the real dis-

tance between the two locations. Assume the reminder location, the blue point in Fig-

ure 5.9, is (x,y) and the intersected square identifiers are id i,∗
(x,y) and id ∗, j

(x,y), the distance

between the reminder location and the current location could be any distance between

au
√
(Nh−2)2 +(Nv−2)2 and au

√
N2

h +N2
v , where Nh and Nv are respectively the num-

ber of horizontal squares and vertical squares to the cross center, e.g., Nh = |i|+ 1 and
129

au · (|i| + 1)

au · (|j| + 1)

reminder location
square

current location
square

d0

N

id i,⇤
(x,y)

id ⇤,j
(x,y)

Figure 5.9: Distance Calculation Between Current Location Square and Reminder Location
Square

Nv = | j|+1 in Figure 5.9. Hence, the distance inaccuracy ε is between 0 and E(Nh,Nv) =

au

√
N2

h +N2
v − au

√
(Nh−2)2 +(Nv−2)2. The function E(Nh,Nv) is maximized when

Nh = Nv and the maximum value is 2
√

2au. In other words, using our proposed area

representation method, the distance inaccuracy range is 0 ≤ ε ≤ 2
√

2au. As pointed out

previously, a smaller au results in a smaller inaccuracy but larger uploading data and stor-

age space, which is O(4ddu/aue+ 1). A user can select an appropriate au meeting her

accuracy requirement and the server may charge a user according to her storage usage.

5.6.4 Discussions

In order to reduce the inequality testing to equality testing, our system uses an approxi-

mate distance to estimate the distance between the reminder location and the user’s current

location. The difference between the real distance and the approximate distance is called

inaccuracy, which is dependent on au. A smaller au gives smaller inaccuracy but incurs

larger uploading data and occupies more space on the cloud server. We let the cloud sever

130

maintain a sorted index set for a user by the first trapdoor. This is to speed up the search

process, in which the server can use binary search to find a given trapdoor. Therefore, the

time complexity for the search performance is O(Nc log(NcNl)), where Nc is the number of

squares in a cross and Nl is the number of marked locations. NcNl is the number of entries

that are already in the user’s index set and each search looks up Nc trapdoors in the set. The

cloud server may use a balanced binary search tree or a B+ tree to maintain a user’s index

set. A straightforward improvement on the space and time complexity is to use Bloomier

filter [34] to store the index set, which can reduce the search time to O(Nc).

Our idea that represents an area by squares in the tessellation on the earth surface is inspired

by the work of Narayanan et al. [80]. We did not construct our system based on the area

representation approach proposed in [80], because there exists a distance gap between the

neighbourhood circle and the non-neighbourhood circle in their approach. If the current

location falls into the gap, the state of the current location is not determined, since it can be

recognized as either nearby or not nearby depending on which part of the gap the current

location is at.

We tessellate the surface of earth strip by strip. As discussed in [80], this type of area

representations has a small error probability at the strip boundary, because the squares on

either side of the boundary do not line up.

Users may not have the geolocation of the place when they want to add a reminder. A

solution is to download the address-to-geolocation lookup table to the local storage before

hand and transfer the address to the geolocation offline. An alternative approach is to

lookup the geolocation on demand via the public map API, such as Google map API.

However, an on-demand lookup request should contain some other nearby addresses to

hide a user’s real reminder location.

131

5.7 Security Analysis

In this section, we adapt our security definition proposed in [42] and prove the security of

our protocol in the presence of a non-adaptive adversary, i.e., the cloud server in our system.

Different from an earlier work done by Goh [54], the security definition in [42] also protects

the query keywords from being inferred by an adversary, which is important in our work.

A non-adaptive adversary is an adversary who is not allowed to form the location search

request to the simulator in the proof, based on any previous index tuple of reminder location

or trapdoor of the searching location. We note that this is acceptable in our application

scenario since the location search request is only formed by users themselves.

The interaction between a user u and the cloud server s is determined by a collection of

reminder messages and locations M = {<mi,(xi,yi)>}n
i=1 and a sequence of locations,

L= [(x′1,y
′
1), · · · ,(x′q,y′q)], that u wants to search for. An instantiation of such an interaction

is called a q-query history, H = (M ,L).

We use F(x,y) = { f (k1, id)|id ∈I D (x,y)} to denote the trapdoors of the valid squares with

respect to (x,y). Given a q-query history H, its search pattern is a symmetric matrix σ(H)

such that for 1≤ i, j ≤ q, the element σi j = F(x′i,y
′
i)
∩F(x′j,y

′
j)

if i 6= j, and /0 otherwise. The

access pattern consists of a tuple τ(H) = (M (x′1,y
′
1), · · · ,M (x′q,y

′
q)), where M (x′i,y

′
i)⊆

{1,2 · · · ,n} denotes the index of the reminder messages (in set M) whose reminder area

contains (x′i,y
′
i), and a n×q matrix ψ(H) such that for 1≤ i≤ n, 1≤ j≤ q, ψi j =F(xi,yi)∩

F(x j,y j). The marking pattern is a symmetric matrix γ(H) such that for 1 ≤ i, j ≤ n,

γi j = F(xi,yi)∩F(x j,y j) if i 6= j, and /0 otherwise.

A trace of a history captures the information that we are willing to expose to the cloud

server during a protocol execution. Given a history H, the trace is a tuple ω(H) = (|C1|, · · · ,

|Cn|, σ(H),τ(H), ψ(H),γ(H)), where |Ci| is the size of the encryption of mi. A trace also

132

contains some common information, such as the trapdoor set size |T | and key size |k|.

Matrices σ(H),ψ(H), and γ(H) leak the intersection pattern between any two locations to

the cloud sever. We argue that this is acceptable in our scenario. Although the server may

know the frequent marking or search trapdoors, the server cannot know the exact location

in any way. In addition, the square sequence is randomly shuffled before submitted to the

server. The server cannot infer any relative direction information with respect to any pair

of locations.

A view captures what the cloud server can see in the system execution. In particular, given

a history H, the view π(H) contains the index and the ciphertexts of the reminder messages,

C = {Ci}n
i=1, the corresponding index set T= {Ti}n

i=1 (see Figure 5.7), and the trapdoors

of the searching locations I = [I1, · · · ,Iq]. π(H) also contains the matched reminder

message index and the index that the user requests to retrieve.

According to [42], the non-adaptive semantic security of a SSE system is defined as:

Definition 2. A SSE system is secure in the sense of non-adaptive semantic security if

there exists a polynomial-time simulator, being provided the trace of a given history, is

able to simulate an adversary’s view such that no probabilistic polynomial-time (PPT)

distinguisher can distinguish the view in a real system execution from the simulated one

with a non-negligible probability.

In other words, the definition states that the cloud server could not extract any additional

information (of a user) beyond the one we are willing to give it, i.e., the trace of a history

in our case. The security of our system is presented in the following theorem. Our system

is secure in the random oracle model because the pseudo random functions used in our

system, i.e. f and g, are secure under DDH assumption in random oracle model [63].

The reason we use such pseudo random functions is due to its light-weight computational

133

overhead, which is significant to the mobile devices.

Theorem 1. Our location based reminder system is non-adaptively semantic secure under

the DDH assumption in the random oracle model.

Proof : We focus our proof on location marking and location search protocol and omit the

user enrollment protocol, because a user does not expose any private information in the

enrollment protocol.

Throughout the proof, the adversary A is the cloud server in our model. To prove security,

we construct a simulator S for any q-query H and any q ∈ N such that, given a trace

ω(H), it can simulate a view π∗(H) that is indistinguishable from the adversary’s real view

π(H). By “indistinguishable”, we mean that no PPT algorithm can distinguish the two

distributions with a probability larger than ε(κ), where ε(κ) is a negligible function in

κ . Here, κ is a system security parameter used in the construction of the pseudo random

function and symmetric encryption system. For example, when κ is larger, we need to use a

larger underlying group for pseudo random function and a longer key length for symmetric

encryption system.

Case 1: If q = 0, S constructs π∗(H) = {C ∗,T∗} as follows. For C∗i ∈ C ∗ 1 ≤ i ≤ n,

C∗i ←R {0,1}|Ci|, where←R denotes “randomly select from”. For each T ∗
i ∈T∗, 1≤ i≤ n,

S constructs T ∗
i = {h∗j ,e∗j}

|T |
j=1, where e∗j ←R {0,1}|k| and h∗j is generated as follows. S

computes F̄ =
⋃

1≤i, j≤n γi j and constructs a map Tab for every element h ∈ F̄ such that

Tab[h]←R {0,1}κ . To generate the h∗’s in T ∗
i , 1≤ i≤ n, S checks F̄i =

⋃
1≤ j≤n γi j and

assigns Tab[h], h ∈ F̄i, to the first |F̄i| entries of h∗’s. For each of the remaining h∗’s, S

randomly picks an element from {0,1}κ . Finally, S randomly shuffles T ∗
i .

Due to the semantic security of the selected symmetric encryption system, C∗i and e∗j are re-

spectively indistinguishable from Ci =Enck(mi) and Encg(k2,id j)(k j) by a PPT distinguisher
134

. Due to the pseudo randomness of function f , h∗j and f (k1, id j) are indistinguishable.

Case 2: If q ≥ 1, S computes a set union of all elements in three matrices, σ(H),ψ(H),

and γ(H). Let set F̄ denote the resulting union set. Similar to the construction in the previ-

ous case, S constructs a map Tab such that Tab[h]←R {0,1}κ , for all h∈ F̄ . The construc-

tion of C ∗ is the same as the one in case q = 0. For T ∗
i ∈ T∗, 1≤ i≤ n, T ∗

i = {h∗j ,e∗j}
|T |
j=1,

where e∗j ←R {0,1}|k| and h∗j is generated as follows. S checks F̄i = (
⋃

1≤ j≤n γi j)∪

(
⋃

1≤ j≤q ψi j) and assigns Tab[h], h ∈ F̄i, to the first |F̄i| entries of h∗ in T ∗
i . For each

of the rest entries, S randomly picks an element from {0,1}κ . S then randomly shuffles

T ∗
i . To construct each I ∗i in I∗, 1 ≤ i ≤ q, S checks F̄ ′

i = (
⋃

1≤ j≤q σi j)∪ (
⋃

1≤ j≤n ψ ji)

and assigns Tab[h], h ∈ F̄ ′
i , to available entries in Ii. The rest entries are random elements

from {0,1}κ . S then randomly shuffles Ii. When τ(H)i is not empty, 1 ≤ i ≤ q, S

constructs a request set R∗i (see Figure 5.8) by using τ(H)i.

Due to the semantic security of the symmetric encryption system, C∗i and e∗j are indistin-

guishable from Ci = Enck(mi) and Encg(k2,id j)(k j), respectively. Due to the pseudo ran-

domness of function f , T∗ and I∗ are indistinguishable from T and I, respectively.

Simulator S uses the simulated information to interact with A as per the protocol spec-

ifications. The correctness of the system execution can be straightforwardly verified and

omitted here. �

5.8 Bar based Approach

In this section, we first describe the bar based area representation approach. Next, we

introduce to use bloom filter for private location matching and present the details of system

constructions.

135

5.8.1 Bar Based Area Representation

Our idea is to use a horizontal bar to represent the reminder area, and use a vertical bar to

represent the user’s current location, as shown in Figure 5.10. The bar is divided into

2(ddu/aue) + 1 squares in the tessellation and is centered at the square where the in-

terested location (reminder location or current location) locates. Given a location point

(x,y), we use id i,∗
(x,y), i = ±1,±2, · · · ,±(ddu/aue) to denote i-th square identifier to the

east/west (negative numbers denote the west direction) of square id(x,y). and id ∗,i
(x,y) i =

±1,±2, · · · ,±(ddu/aue) to denote the i-th square identifier to the north/south (negative

numbers denote the south direction) of square id(x,y). All the squares in the cross, i.e.,

shaded squares in Figure 5.10, are called valid squares with respect to (x,y).

N

ddu/aue

au

reminder
location

current
location

Figure 5.10: Using Bar to Represent An Area

Procedure 2: CreateHorizontalBar(x, y)
Data: location (x,y)
Result: I D (x,y), the set of square identifiers on the west-east bar centered at (x,y)

1 I D (x,y)← /0;
2 I D (x,y)←I D ∪{id(x,y)};
3 for i← 1 to ddu/aue do
4 I D (x,y)←I D (x,y)∪{id i,∗

(x,y), id
−i,∗
(x,y) };

5 end
6 return I Dx,y

136

Procedure 3: CreateVerticalBar(x, y)
Data: location (x,y)
Result: I D (x,y), the set of square identifiers on the north-south bar

1 I D (x,y)← /0;
2 I D (x,y)←I D ∪{id(x,y)};
3 for i← 1 to ddu/aue do
4 I D (x,y)←I D (x,y)∪{id ∗,i(x,y), id

∗,−i
(x,y) };

5 end
6 return I Dx,y

We use two different procedures to create valid square identifier sets I D (x,y) regarding the

reminder location and the user’s current location. Given a location point (x,y), a distance

du, and square side length au, we use Procedure 2 if the point (x,y) is the reminder location

point, otherwise we use Procedure 3.

Using valid square identifier sets, we can test whether the distance between the two points

(x′,y′) and (x,y) is smaller than du or not. We calculate two valid square identifier sets

I D (x′,y′) and I D (x,y) with respect to (x′,y′) and (x,y), respectively, and test whether they

have intersections. If they do not have intersections, it means that the user’s current loca-

tion is not in the reminder area. If they have intersections, the user retrieves the reminder

location point from the cloud server and calculates the distance between the reminder lo-

cation and the current location. In Figure 5.11, we use the blue point and the red point to

denote the reminder point (x,y) and the user’s current location (x′,y′), respectively. There

are three cases in Figure 5.11. Figure 5.11a shows two bars do not have intersections.

Figure 5.11b and Figure 5.11c show the two bars both has one intersection. However, the

distance between the reminder location and the current location is greater than du in Figure

5.11b, and the distance between the reminder location and the current location is smaller

than du in Figure 5.11c. Therefore, the user will additionally retrieve the reminder content

from the cloud server if the case in Figure 5.11c happens.

137

d > du

du

(a)

d > du

(b)

d < du

(c)

Figure 5.11: Three Cases of Cross Intersection

5.8.2 Bloom Filter For Private Location Search

Bloom filter [13] is a space-efficient randomized data structure for representing a set in

order to support membership queries [22]. Suppose we want to use a m-bit bloom filter for

a data set with N elements {di}N
i=1. The initial bits of the bloom filter are all set to 0. We

choose k hash functions {h j(·)}k
j=1, with each output of the hash function in the range of

1−w. For each element di, we compute the hash values {h j(di)}k
j=1, and set the h j(di)-th

component of the bloom filter to bit 1. To check if an element e is in the set {di}N
i=1, we

compute k hash numbers {h j(e)}k
j=1, and check if all k bits at index {h j(e)}k

j=1 is 1. If it is,

e is in the data set with a large probability, otherwise, we can make sure that e is definitely

not in the data set.

In our proposed idea, we use bloom filter for private search in the cloud server. Suppose the

coordination of the reminder location is (x,y), for each id ∈I D (x,y), the user computes its

hash values {h j(id)}k
j=1, and sends them to the server. The server sets the corresponding

components to bit 1. After that, the user periodically uploads the hash values regarding

her current location to the server, which searches in the bloom filter to find if there is any

match, i.e. the intersection of the two bars representing the user’s reminder location and

current location, respectively.

138

5.8.3 Constructions

In this section, we give details of our system construction. We assume that the number of a

user’s active reminders is no more than N. For example, it is difficult for a person to handle

500 reminders at the same time. While using a dynamic bloom filter [59] is able to enhance

the space efficiency and dynamically respond to the user’s increasing demand, we would

like to focus on comparing the usage of bloom filters and that of searchable encryptions for

secure location based reminder system in this dissertation.

For a specific user u, given the reminder distance du and square length au, the number of

square IDs in a bar is 2ddu/aue+ 1. The capacity, in terms of reminders, of the bloom

filter is the number of reminders it can hold while the false positive probability is less

than a designated number. Since the more elements stored in the bloom filter, the greater

probability a collision happens in the bloom filter, to reduce the error probability, we need

to restrict the capacity of the bloom filter. Assume the capacity of the bloom filter is N. The

bloom filter array size is M. Each component of the bloom filter is a tuple < b,R >, where

b is a bit denoting whether the component is set and R is a set of references associated

with the component. Given a reference, the server can locate the ciphertext of a reminder

message. The number of hash functions is t. To construct t hash functions, a user generates

t hash keys k1, · · · ,kt , where each key is a random number. A hash function is constructed

as: hi(x) = h(x||ki) mod M, i = 1, · · · , t.

The system mainly consists of three protocols: location marking protocol, location search

protocol, and removing reminder protocol.

In the location marking protocol (Fig. 5.12), a user picks the reminder location and sets

up a location based reminder, forms the identifier set I D regarding the reminder location

(x,y). For each id ∈ I D , the user computes k hash values {h j(id)}k
j=1. Since there are

139

Procedure 4: CreateIndexSets(I D)
Data: a set of square identifiers I D
Result: a set of index sets I , each element of I is a set of indices

1 I ← /0;
2 foreach id ∈I D do
3 Iid = {hi(id)}ti=1; // hi(x) = h(x||ki) mod M
4 randomly permutes the elements of Iid;
5 I ←I ∪

{
Iid
}

;
6 end
7 randomly permutes the elements of I ; // each element is a set

8 return I

User u marks location (x,y) as a reminder location with a reminder message Msg. u
also secretly maintains a vector of hash function secret keys {k1,k2, · · · ,kt}. u chooses
a symmetric encryption key k and keeps it secret.

1. u creates a horizontal bar set I D (x,y)← CreateHorizontalBar(x,y). u generates
a set of index sets I ← CreateIndexSets

(
I D (x,y)

)
.

2. Using the symmetric encryption system, u encrypts the reminder location as
C1 = Enck(x||y) and the reminder message as C2 = Enck(Msg). The user as-
sembles them together to form a ciphertext tuple C =< C1,C2 >. User u sends
<C,I > to the server.

3. Upon receiving <C,I > from user u, the server stores C and obtains a reference
rC to the stored location. For each index set Ii ∈ I and each element ind j ∈
Ii, the server sets Bu[ind j].b← 1 and puts rC into the associated reference set
Bu[ind j].R←{rC}∪Bu[ind j].R.

Figure 5.12: Location Marking Protocol

2ddu/aue+1 squares in a bar, the total number of computed hash values are (2ddu/aue+

1)k. These hash values are then randomly shuffled by the user. The user uploads the hash

values, and the encryption of the the reminder message and reminder location to the cloud

server. The hash values are served as index of the bloom filter. The cloud server sets the

corresponding bits at these indices to bits 1, and sets up a one to one mapping between

these indices and the ciphertext of the reminder content and reminder location.

140

User u checks if a given location (x,y) is in any of her existing reminder area and
fetches the reminder message.

1. User u constructs a vertical bar set I D (x,y)← CreateVerticalBar(x,y) and gen-
erates a set of index sets I ← CreateIndexSets

(
I D (x,y)

)
. User u sends I to

the server.

2. Upon receiving I from user u, the server performs as follows for each Ii ∈I

• Checks if
∧

ind j∈Ii

Bu[ind j].b = 1.

• If no such Ii exists, informs user u. If it is true for some Ii, calculates
set intersection R∗ =

⋂
ind j∈Ii

Bu[ind j].R, retrieves the first part of every
referenced ciphtertext tuples C1 = {< C1,rC > |C =< C1,∗ > and rC ∈
R∗}, and sends C1 to u.

3. Upon receiving C1, user u decrypts each element to get a location coordinate
tuple L = {< (x′,y′),rC > |(x′,y′) = Deck(C1)and < C1,rC >∈ C1}. The de-
cryption to a coordinate tuple is possible because each coordinate is of fixed bit
size. User checks the distance between each pair of (x,y) and (x′,y′), and obtains
the valid reminder references R ′ = {rC|< (x′,y′),rC >∈L and (x−x′)2+(y−
y′)2 ≤ d2

u}. u sends R ′ to the server.

4. Upon receiving R ′, the server retrieves the ciphertext {C|rC ∈ R ′} and sends
back to the user. The user uses her secret key k to recover the reminder message.

Figure 5.13: Location Search Protocol

In the location search protocol (see Fig. 5.13), the user periodically uploads the hash values

regarding her current location to the cloud server. The cloud server checks the bloom filter

to find a match. If any match exists, the cloud server sends the corresponding reminder

location to the user. The user computes the distance between her current location and the

reminder location. If the resulting distance is less than the reminder distance, the user

retrieves the reminder content from the cloud server.

After the user successfully retrieves the reminder from the cloud server, the cloud server

should be able to remove it from the storage, which is illustrated in the removing reminder

protocol (see Fig. 5.14).
141

Given a reminder location (x,y) and reference rC, remove the relevant reminder infor-
mation stored on the server.

1. User u constructs a horizontal bar set I D (x,y) ← CreateHorizontalBar(x,y),
generates a set of index sets I ← CreateIndexSets

(
I D (x,y)

)
, and sends <

I ,rC > to the server.

2. Upon receiving < I ,rC > from the user, the server delete the ciphtertext tuple
stored at rC. For each Ii ∈I and each ind j ∈Ii, the server removes rC from
B[ind j].R. If B[ind].R becomes empty, the server sets B[ind].b← 0.

Figure 5.14: Removing Reminder Protocol

5.9 Analysis

The hashing key is randomly selected by a user and kept secret in the user’s local storage.

The hashing result will then be converted into the residue system modulo M. Because bit

size of M is far smaller than the output size of hash function H, the server has no way to

determine the real hashing result. The user randomly permutes each Iid such that linking

the hashing output to the hashing key becomes more difficult for the server. Therefore, the

server cannot recover the square identifier from the index set Iid . The user also randomly

permutes among index sets, i.e. Iid’s in I , so that the server cannot learn the relationship

between any two squares.

All the message is encrypted by a symmetric encryption system. The server cannot learn

the content because the encryption key k is kept secret by the user. The user should use

CBC mode of symmetric key encryption such that replacing or modifying any block of

the ciphertext will fail. Furthermore, the user can employ CCA2 secure symmetric key

encryption system [Chosen Ciphertext Secure (CCS): Stateful Symmetric Key CCA En-

cryption with Minimal Ciphertext Expansion] to provide more protection to the reminder

message.

142

Table 5.1: Overhead Comparison

server storage user indexing time server matching time
Mercury M+(2Au +1)nK · lr‡ O((2Au +1)K ·mul) O(2Au +1)

[105] (4Au +1)n · (2lg + le + lr) ∗ O((4Au +1)lg ·mul) O((4Au +1) logn)

‡lr is the bit size of a reference.
∗lg and le are the ECC group size and the bit size of a key encryption, respectively.

Early matching problem: causing unnecessary decryption. all points in a (2d+a)×(2d+

a) rectangle centered at the id(x,y) will trigger a matching and the following up decryption.

However, the desired area is a plate around the reminder location. So the early matching

area is (2du +au)
2−πd2

u . The early matching probability is

1− π

2+ au
du

Given a reminder distance du, the smaller au is the less probably the early matching hap-

pens. However, the smaller au will cause more computation during the location marking

and search, as well as the server side storage.

Given the maximum reminder number N, the expected maximum of squares stored in the

bloom filter is Ns = N · (2ddu/aue+1)

To achieve a false alarm probability P, the bloom filter size is given by M = Ns lnP
(ln2)2 and the

needed hashing key number is K = M
Ns

ln2. A typical usage is to set remind distance as

1, 000 meters and the square length 20 meters. If the maximum number of reminders is

N = 500, we will have 25000 elements to be stored in the bloom filter.

If we set P = 1%, we have M = 23,963 < 3KB and K = 7. A typical configuration of

the reminder system in [105] contains a 160-bit ECC group a 80-bit symmetric key, which

gives lg = 160 and le = 80. A typical server storage overhead is (400+ rC)(4Au +1)n

The computation overhead on user side is to index a location, computing either pseudo-
143

random number as in [105] or hash function in Mercury. To index a square in [105], we

need to do a hashing, a group exponentiation, and an symmetric encryption, while we just

need to do k hashing operations in this dissertation. If we take hashing equivalent to a group

multiplication mul in term of time overhead, we have the overall user indexing time in the

following table. A fast group exponentiation takes O(lgmul) operations. Au = ddu/aue

5.10 Simulation

We evaluate the performance of our system through simulations. The simulations were

carried out on an Motorola Droid phone and a laptop, which simulates a cloud server.

The smartphone runs an Android 2.2 OS and has a 550MHz ARM A8 processor, 256MB

memory, and a 16GB SD card. The laptop has a 2.53GHz Intel Dual Core CPU and a

4GB memory. The cryptographic library used in our simulation is Crypto++5.6.1 [41] and

we ported it to the Android platform. We used SHA-1 and SHA512 as the hash functions

in our simulations and AES encryption in CFB mode as the semantic secure symmetric

encryption in the system.

Our pseudo random function uses a hash-into-group hash function, which hashes an input

into a group element and is a probabilistic algorithm. We have introduced its construction

in Section 5.3.2. We first tested the success probability of the construction of the hash

function, which took up to 10 attempts before it outputs fail. For test purpose, we hashed

1000 random numbers into four groups of different orders, 128, 160, 512, and 1024 bit

groups. The first two group orders are popular selections for the elliptic curve groups

(ECC) and the last two are for the quadratic residue groups over the Galois field mod a safe

prime number, which is called DL groups in this section. We obtained 160-bit and 512-bit

outputs using SHA-1 and SHA-512. In order to obtain a 128-bit output, we used SHA-1

and took the 128 least significant bits as the output. To obtain a 1024-bit output, the binary

144

string of the input number was divided into two halves, which are hashed into a 512-bit

string, respectively. The two resulting hash values were then concatenated to form a 1024

bit output. The number of attempts needed to hash each number into the desired group

was recorded. The hash is called fail if the attempt number is beyond 10. Figure 5.15a

shows the result. We can see that, in our experiments, to hash a number into 128-bit and

1024-bit groups, we needed to try no more than 4 times. For 160-bit and 512-bit groups,

we needed to re-hash a small portion of numbers for more than 5 times. We note that, in

our experiments, all 1000 random numbers were successfully hashed into the groups in 10

attempts.

When a user marks a location, most of the time is spent on the calculation of the trapdoors

of the cross squares, which is dependent on ddu/aue. We recorded the time needed for a

user to compute <T ,C> for a location while the square side length au is fixed at 20 meters

and the reminder distance is from 500 meters to 3500 meters, with a 200-meter increment.

Our system works on an underlying cyclic group, on which the DDH problem is hard (see

Section 5.3.1). There are two types of groups, a quadratic residue subgroup of a Galois field

mode a safe prime number (DL group) and an elliptic group (ECC group). To compare their

performances, we implemented our system over a 1024-bit DL group and a 160-bit ECC

group, which has an equivalent security level according to NIST’s guidance [82]. The

recorded computation time needed for different reminder distances over the two groups

are shown in Figure 5.15b. First, it can be seen from Figure 5.15b that the computation

time increases linearly with the increase of the reminder distance. Second, it is shown that

the implementation based on DL group costs much more time than the one based on ECC

group. This is because the DL group size is much larger than the ECC group size and a

group operation costs more time on a larger group.

Our system does not encrypt the reminder message using g(k2, id). We use a random key

145

0 1 2 3 4 5-10 fail

128
160
512
1024

P
ro
po
rti
on

0.
0

0.
2

0.
4

0.
6

0.
8

(a)

10
30

50
70

DL
ECC

1
3

5

reminder distance
500 1100 1700 2300 2900 3500

ex
ec

ut
io

n
tim

e
(s

)

(b)

1.
43
5

1.
44
5

1.
45
5

1.
46
5

message size (MB)

ex
ec

ut
io

n
tim

e(
s)

5 10 20 30 40 50

(c)

0.
17
65

0.
17
75

0.
17
85

number of marking locations

ex
ec

ut
io

n
tim

e(
s)

50 250 450 650 850 1050 1250

(d)

Figure 5.15: Simulation Result on the System Constructed Based on the Cross Based Area
Representation Approach

to encrypt the reminder message and use the second trapdoor to encrypt the random key.

This saves time when the message size goes large. We tested the computation time of a

user’s marked location for different sizes of reminder messages. We fixed au = 20 meters

and du = 1000 meters and increase the reminder message size from 5M bytes to 50M bytes

with a 5M-byte increment. The result is shown in Figure 5.15c. As shown in Figure 5.15c,

the execution time did not change much, from 1.435 seconds to 1.465 seconds, because the

146

extra time is just spent on the symmetric encryption, which is fast.

For the cloud server, our system lets the server keep a sorted set of (by trapdoor value) user

index tuples to speed up the search for a trapdoor. We used a laptop to simulate the server

and used a red-black tree [37] to maintain the sorted index set. We recorded the time for

searching a random location when different number of locations have been marked. The

number of marking locations is from 50 to 1250, with an increment of 50. We note that

marking a location or searching a location incurs 4ddu/aue+ 1 searches in the set. The

result is shown in Figure 5.15d. It can be seen from the figure that with the increase of the

number of marking locations, the search time increases but not linearly with the number,

because the red-black tree’s leaf nodes are not on the same level and the searching may end

at some internal node. It is also shown in Figure 5.15d that the time variance gap is small,

from 0.1765 second to 0.1787 second.

We compared the systems constructed based on the cross based area representation ap-

proach and the bar based area representation approach, respectively. In this section, the

previous system is denoted by SE and the new system is denote by BF.

As a smart device application, we usually pay more attention to the time overhead of client

side, because the smart device’s computation capability is limited. The client side’s compu-

tation time depends on the number of the squares to be indexed and the size of the reminder

message to be encrypted. Fixing a square length as 20 meters and message size as 1024 bit,

we collected the time that is used to mark a location, when the reminder distance increases

from 500 meters to 3500 meters, with 200-meter increment. This reflects the system’s

time overhead on indexing a location. Then, we fix the reminder distance as 1000 meters,

change message from 5M bytes to 50M bytes, and record the execution time on client side.

The results are shown in Fig. 5.16a and 5.16b, respectively. We notice that It is obvious

that the bloom filter based system, denoted by blue lines, is faster than the previous one on
147

0.
01

0.
05

0.
20

1.
00

5.
00

Reminder distance

In
de

xi
ng

 ti
m

e
fo

r a
 lo

ca
tio

n

BF
SE

500 1100 1700 2300 2900 3500

(a) Indexing time (y-axis is log scaled)

0
2

4
6

8
10

12
14

Message Size

In
de

xi
ng

 ti
m

e
fo

r a
 lo

ca
tio

n

BF
SE

5 10 20 30 40 50

(b) Marking with large message size

Figure 5.16: Comparison Between SE System and BF System

client side. It is because that the searchable encryption based system generates a pseudo

random number in indexing a square, while the bloom filter system calculates K hashing

values. Pseudo random number generation involves an exponentiation that is expensive.

The recorded indexing time of the BF system is less than 0.07 seconds while that of the SE

system is almost 5 seconds. When marking with large size message, the SE system usually

costs 12 seconds while the time cost by BF system increase with the message size. When

a message size is big, such as 50M bytes, the two execution time are close. Encrypting,

processing and transmitting messages occupy most part of execution time.

Fixing the reminder distance, as 1000 meters, square length, 20 meters, and message size,

1024 bits, we recorded the time of searching a reminder when different numbers of re-

minders has been uploaded, from 50 to 1250. The time is the average value of 50 searches.

The result is shown in Fig. 5.17. From the figure, we can see that the search time for

SE system is between 0.1765 seconds and 0.1785 seconds, while BF system finishes one

search in less than 0.0003 seconds. The difference is remarkable because SF system search

among n reminders, which cost O(logn) time. On the same time, BF system searches one
148

.1
76
5

.1
77
5

.1
78
5

BF
SE

.0
00
28

.0
00
29

.0
00
3

Number of reminders

S
ea

rc
h

tim
e

fo
r l

oc
at

io
n

50 250 450 650 850 1050 1250

Figure 5.17: Comparison Between SE System and BF System: Searching Time

square in a short time, by only comparing K value and K is usually small, e.g. K = 7 in our

experiment.

Using bloom filter to do the search is a probabilistic algorithm. In other words, it may

return a wrong result. Bloom filter does not give us the false negative, i.e. claiming an ex-

isting element as non-existing one. It only has false positive error probability. As discussed

previously, a desired error probability can be achieved by carefully choosing M, N, and

K. In our simulation, we fixed the reminder distance as 1000 meters, square length as 20

meters, and message size as 1024 bits. We set the bloom filter’s reminder capacity N as 500

and tried to see the bloom filter’s performance when the number of inserted reminders in-

creases. We search 1000 locations, whose geographic coordinates are randomly generated,

in the bloom filter while different number of reminders have been inserted in the bloom

filter. The number of inserted reminders is from 100 to 900, with 100 increment. The result

is shown in the bar plot of Fig. 5.18. Each bar corresponds to a 1000-search experiment.

The green part denotes the correct search — either found or not found.

The red part denotes the false alarm of bloom filter search — the bloom filter claims that
149

100 300 500 700 900

False Alarm
Correct Matching

Number of reminders

0
20
0

40
0

60
0

80
0

10
00

Figure 5.18: False Alarm of Bloom Filter

some square id on the location’s vertical bar has been found because BF [ind j].b = 1 for

all i ∈ Iid . Iid is the index set of id. We note that when we mark one reminder, KAu of

elements will be inserted into the bloom filters. As shown in the figure, the all searches are

correct when the number of reminders are 100 and 200. When it increases to 300, 400, and

500, there is 1 false alarm while it still gives us 999 correct searches. When more reminders

than the capacity are inserted, the more false alarms are observed. When there were 900

reminders inserted, the number of false alarm searches increase to 67 out of 1000 searches.

However, we observed that the false alarm probability is 2.1% even when 700 reminders

(20% more than the capacity) are inserted. We remark that even the false alarm of bloom

filter searching happens, it may not result in a system wide false alarming. The system will

also check if all associated reference sets share the common reference.

We discussed that a larger square length gives rise to the early matching problem, in which,

a current location got matched with some reminder location but their actual distance is

150

larger than the reminder distance. The early matching problem causes unnecessary decryp-

tion of reminder locations and the following up calculations. We fixed a rectangle area of

2500×2500m2, used the center point as the reminder location, and marked it in the server.

The reminder distance is 1000. Then we changed the square length from 20 meters to 400

meters, with 20-meter increment. For each square length, we pick 2000 locations randomly

from the area and do location search. If one search returns no reference, we call it a “Cor-

rect Non-Match”; We call one search “Early Match” if it returns some references but the

current location is actually beyond the reminder distance. When a search really find a valid

reminder location, we call it “Correct Match”. The results are shown in Fig. 5.19. Each bin

20 60 100 140 180 220 260 300 340 380

Early Match Correct Not Match Correct Match

Number of reminders

0
50
0

10
00

15
00

20
00

Figure 5.19: Early Matching

corresponds to a square length. The red bar denotes the early match. From the figure, we

can see that the number of early matches grows up with the increase of the square length.

This intend is same as what we analyzed previously. It is because a bigger square length

results in a larger early match area while the reminder area stays same. The number correct

match in all square lengths are approximately same, because the reminder area are same

in all tests. So the rate of correct match is 10002π/(2500× 2500) ≈ 0.5. In other words,
151

there are approximately 1000 correct matches out of 2000 searches, which is also reflected

by the green bars in Fig. 5.19.

5.11 Conclusions

In this dissertation, we have proposed a secure location based reminder system. This sys-

tem enables the cloud server to securely search over the reminders stored on it. In addition,

the user could receive the reminder message from the cloud server with whichever smart

device she brings as long as she is in the reminder area. We have proposed novel area rep-

resentation approaches, the cross based area representation approach and the improved bar

based area representation approach, respectively, which are easy to construct and achieves

lightweight storage overhead. We have theoretically proved the security of our system. The

evaluation of our system has shown that it is efficient to implement our system.

152

CHAPTER 6

Conclusions and Future Work

In this section, we conclude our work and envision some futurn works to do along this

research direction.

6.1 Conclusions

In this dissertation, we have studied four topics: identity privacy in OSNs, identity privacy

in anonymous message submission, location privacy in LBSNs, and location privacy in

location based reminders.

In the first topic, we have proposed a system to hide users’ identity from untrusted server

when she accesses her information on the server. We have designed a fine-grained access

control mechanism to restrict unauthorized accesses to users’ private information. In the

second topic, we have proposed a shuffle protocol to hide the relationship between users’

identities and their submitted messages. The protocol is constructed based on the secret

sharing scheme and is more efficient compared to previous works. In the third topic, we

have proposed a framework to preserve users’ location privacy from the untrusted LBSN

server. We have also taken the limited computation resources on the user side into con-

sideration and have proposed an alternative approach by outsourcing computations to the

server. In the last topic, we have proposed a system to hide users’ location information

from the untrusted cloud server in location based reminders. We have given a cross based

approach and an improved bar based approach, respectively, to represent users’ reminder

area. The proposed approaches are efficient in terms of user’s computation overhead and

153

saves a lot of search time on the server side.

6.2 Future Work

The mobile revolution happened in the past few years has posed much more privacy threats

than ever. Smart devices keep people connecting to the digital world. In other words,

people’s privacy, including identity, location, habits, etc., has been exposed to attackers 24

hours 7 days. The change of the way how people use the Internet services has posed many

new challenges on privacy issues. Therefore, I believe there are many works can be done

along this research direction.

• Identity privacy in unlocking via smart wearable devices. Smart wearable de-

vices, such as smart watches, have hit the market for years. Wearable devices are

usually viewed as private properties and less likely shared with other people than

phones. Many companies start to use smart wearable devices as an ID token and use

them to unlock other devices, like laptops, cars or hotel doors. However, how to pro-

tect identity privacy in such scenario is still an open question. For example, people

want to use their smart watch to unlock hotel doors while keeping the fact that they

have been to the door secret from the server.

• Location privacy in address search service. The most often used location service

is the conversion between a geographical address and its GPS point. Many location

based services are built on top of this basic operation. Studying a privacy preserving

and efficient way to carry out this conversion is of significant meaning to the mobile

location privacy protection.

• Identity/location privacy in Bluetooth low energy (BLE) beacon usage. A typical

BLE beacon scenario is that when a custom comes near a BLE beacon with her smart
154

phone, the beacon will push store advertisements to the user. The unwanted side of

this case is the leaking of users’ location privacy and identity privacy. The beacon

or the server will identify the same user by the smart phone mac address and trace

the user. Therefore, protecting user’s identity and location information while still

providing the same quality of service is interesting and worthy to study.

• Utilities for privacy usage. In this dissertation, I have explored many approaches to

provide strong privacy protection for online interactions. However, these protections

cannot redeem their real values unless the blocks of their adoption in practices are all

removed. One of such blocks is utility function, which seems trivial to the academic

research. For example, in the proposed privacy preserving online social network pro-

tocol (see Chapter 2), there should be a utility which lets user manage their visitor

group in addition to the main protocol functionalities. The group management allows

a user to see who can visit which data owned by the user, and to change or revoke the

permission that has been granted to the data visitors. I believe more interesting prob-

lems will be disclosed when we dive into the study of the needed utility functions. In

addition to the above mentioned utility, I have listed possible utilities needed for the

other three proposed approaches.

- anonymous messaging submission: it is useful to have a utility that lets user

track whether his or her message has been read and allows the user to delete the

message if it has not been read.

- location based social networks: group management has been designed in the

protocol but it is also great to have a utility that lets user manage their check-

ins. In other words, users need to brow all his or her check in history and be

capable to delete them.

155

- location based reminder: as many other alarm system, a reminder management

utility is needed. The function includes add or delete a reminder, change re-

minding message, change reminding location, etc. While this sounds trivial,

but how to achieve this goal efficient and securely may be an open question.

156

REFERENCES

[1] Endyanos imedia SLU. Photo reminder pro. https://itunes.apple.com/us/app/photo-
reminder-pro/id421893170?mt=8, 2012.

[2] M. AdelsonVelskii, E. Landis, and J. P. R. S. W. D. C. An algorithm for the organi-
zation of information. Defense Technical Information Center, 1963.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD, volume 29,
pages 439–450. ACM, 2000.

[4] M. Albanese, A. De Benedictis, S. Jajodia, and P. Shakarian. A probabilistic frame-
work for localization of attackers in manets. Computer Security–ESORICS 2012,
pages 145–162, 2012.

[5] M. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. Security and Cryp-
tography for Networks, pages 111–125, 2006.

[6] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin. Persona: An online
social network with user-defined privacy. ACM SIGCOMM Computer Communica-
tion Review, 39(4):135–146, 2009.

[7] B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting anonymous location queries in
mobile environments with privacygrid. In WWW, pages 237–246, 2008.

[8] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535–552, 2007.

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In focs, page 394. Published by the IEEE Computer Society,
1997.

[10] M. Bellare and P. Rogaway. Optimal asymmetric encryption-how to encrypt with
rsa. In Advances in Cryptology-Eurocrypt, volume 94, pages 92–111, 1994.

[11] M. Bellare and P. Rogaway. Introduction to modern cryptography. Lecture Notes,
2001.

[12] J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret
(extended abstract). In Advances in Cryptology?CRYPTO?86, pages 251–260.
Springer, 1987.

[13] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

157

[14] D. Boneh and X. Boyen. Short signatures without random oracles. In Advances in
Cryptology–CRYPTO 2004. Springer, 2004.

[15] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In EUROCRYPT, pages 506–522, 2004.

[16] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Advances in Cryptology–CRYPTO 2005, pages
258–275. Springer, 2005.

[17] D. Boneh, H. W. Montgomery, and A. Raghunathan. Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In ACM CCS, pages
131–140, 2010.

[18] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.
In TCC, pages 535–554, 2007.

[19] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd An-
nual Symposium on, pages 97–106. IEEE, 2011.

[20] G. Brassard, C. Crépeau, and J. Robert. All-or-nothing disclosure of secrets. In
Advances in Cryptology?CRYPTO?86, pages 234–238. Springer, 1987.

[21] J. Brickell and V. Shmatikov. Efficient anonymity-preserving data collection. In
Proceedings of the 12th ACM SIGKDD, pages 76–85. ACM, 2006.

[22] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2004.

[23] J. Camenisch. Group signature schemes and payment systems based on the discrete
logarithm problem. Citeseer, 1998.

[24] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access con-
trol. In Proceedings of the 16th ACM conference on Computer and communications
security, pages 131–140. ACM, 2009.

[25] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized schnorr
proofs. Advances in Cryptology-EUROCRYPT 2009, pages 425–442, 2009.

[26] J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer.
Advances in Cryptology-EUROCRYPT 2007, pages 573–590, 2007.

[27] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In focs, page 136. Published by the IEEE Computer Society, 2001.

158

[28] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In INFOCOM, 2011 Proceedings IEEE,
pages 829–837. IEEE, 2011.

[29] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, pages 442–455, 2005.

[30] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[31] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of cryptology, 1(1):65–75, 1988.

[32] D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in Cryp-
tology?CRYPTO?92, pages 89–105. Springer, 1993.

[33] S. Chawla. Lecture notes of randomize algorthms: Chernoff bounds.
hhttp://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf,
2004.

[34] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: an efficient
data structure for static support lookup tables. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 30–39. Society for Industrial
and Applied Mathematics, 2004.

[35] Y.-R. Chen, J. D. Tygar, and W.-G. Tzeng. Secure group key management using uni-
directional proxy re-encryption schemes. In INFOCOM, pages 1952–1960, 2011.

[36] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
Journal of the ACM (JACM), 45(6):965–981, 1998.

[37] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2001.

[38] H. Corrigan-Gibbs and B. Ford. Dissent: accountable anonymous group messaging.
In ACM CCS, pages 340–350. ACM, 2010.

[39] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford. Proactively accountable anonymous
messaging in verdict. In USENIX Security, 2013.

[40] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Advances in Cryptology?CRYPTO?94,
pages 174–187. Springer, 1994.

[41] Crypto++. http://www.cryptopp.com/, 2010.

159

[42] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In ACM CCS, pages
79–88, 2006.

[43] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic encryption and secure
comparison. International Journal of Applied Cryptography, 1(1):22–31, 2008.

[44] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social networks.
NDSS., 2009.

[45] J. Domingo-Ferrer, A. Viejo, F. Sebé, and Ú. González-Nicolás. Privacy homo-
morphisms for social networks with private relationships. Computer Networks,
52(15):3007–3016, 2008.

[46] W. Du and M. Atallah. Secure multi-party computation problems and their applica-
tions: a review and open problems. In Proceedings of the 2001 workshop on New
security paradigms, pages 13–22. ACM, 2001.

[47] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

[48] Facebook. http://www.facebook.com/press/info.php?statistics, 2010.

[49] A. Fiat and M. Naor. Broadcast Encryption, Advances in Cryptology-Crypto93.
Lecture Notes in Computer Science, 773:480–491, 1994.

[50] foursquare. http://blog.foursquare.com/2010/07/01/755614816/, 2010.

[51] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersec-
tion. In Advances in Cryptology-EUROCRYPT 2004, pages 1–19. Springer, 2004.

[52] J. Freudiger, R. Shokri, and J.-P. Hubaux. Evaluating the privacy risk of location-
based services. In Financial Cryptography, pages 31–46, 2011.

[53] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private queries
in location based services: anonymizers are not necessary. In SIGMOD Conference,
pages 121–132, 2008.

[54] E. Goh et al. Secure indexes. An early version of this paper first appeared on the
Cryptology ePrint Archive on October 7th, 2003.

[55] E.-J. Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[56] O. Goldreich. Secure multi-party computation. Working Draft, 2000.

[57] P. Golle and A. Juels. Dining cryptographers revisited. In Advances in Cryptology-
Eurocrypt 2004, pages 456–473. Springer, 2004.

160

[58] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through
spatial and temporal cloaking. In MobiSys, 2003.

[59] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng., 22(1):120–133, 2010.

[60] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural re-
identification in anonymized social networks. Proceedings of the VLDB Endowment,
1(1):102–114, 2008.

[61] U. Hengartner. Hiding location information from location-based services. In MDM,
pages 268–272, 2007.

[62] S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, pages
418–435, 2010.

[63] S. Jarecki and X. Liu. Fast secure computation of set intersection. Security and
Cryptography for Networks, pages 418–435, 2010.

[64] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving anonymity in
location based services. 2006.

[65] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric en-
cryption. In ACM Conference on Computer and Communications Security, pages
965–976, 2012.

[66] A. Kate. The pairing-based cryptography (pbc) library.
http://crysp.uwaterloo.ca/software/PBCWrapper/.

[67] A. Khoshgozaran and C. Shahabi. Blind evaluation of nearest neighbor queries using
space transformation to preserve location privacy. In SSTD, pages 239–257, 2007.

[68] A. Khoshgozaran, C. Shahabi, and H. Shirani-Mehr. Location privacy: going beyond
k-anonymity, cloaking and anonymizers. Knowl. Inf. Syst., 26(3):435–465, 2011.

[69] T. Kivinen and M. Kojo. More modular exponential (modp) diffie-hellman groups
for internet key exchange (ike), 2003.

[70] A. Lewko, A. Sahai, and B. Waters. Revocation systems with very small private
keys. In IEEE Symposium on Security and Privacy, S&P (to appear, 2010).

[71] L. Li, X. Zhao, G. Xue, and G. Silva. Privacy preserving group ranking. In Dis-
tributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference
on, pages 214–223. IEEE, 2012.

[72] M. Li, N. Cao, S. Yu, and W. Lou. Findu: Privacy-preserving personal profile match-
ing in mobile social networks. In Proc. of Infocom, 2011.

161

[73] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryptol-
ogy?CRYPTO 2000, pages 36–54. Springer, 2000.

[74] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 229–240. ACM, 2012.

[75] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on webview in the android sys-
tem. In Proceedings of the 27th Annual Computer Security Applications Conference,
pages 343–352. ACM, 2011.

[76] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du. Touchjacking attacks on web in
android, ios, and windows phone. In Proceedings of the 5th International Sympo-
sium on Foundations & Practice of Security, October 2012.

[77] B. Lynn. The pairing-based cryptography (pbc) library. http://crypto.

stanford.edu/pbc/.

[78] Manas Gajare. Voice (audio) reminder. https://play.google.com/store/

apps/details?id=com.dexter.audio_reminder\&hl=en, 2012.

[79] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: Query processing for
location services without compromising privacy. In VLDB, pages 763–774, 2006.

[80] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location
privacy via private proximity testing. In Proc. of NDSS, 2011.

[81] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and com-
parison without bit-decomposition protocol. Public Key Cryptography–PKC 2007,
pages 343–360, 2007.

[82] NIST, CSE. Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program, Mar. 2011. Available at
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf.

[83] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and I. Mol-
loy. Using probabilistic generative models for ranking risks of android apps. In
Proceedings of the 2012 ACM conference on Computer and communications secu-
rity, pages 241–252. ACM, 2012.

[84] M. Rabin. How to exchange secrets by oblivious transfer. Technical report, Techni-
cal Report TR-81, Harvard Aiken Computation Laboratory, 1981, 1981.

[85] C. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

162

[86] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[87] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P. Hubaux. Quantifying
location privacy. In IEEE Symposium on Security and Privacy, pages 247–262,
2011.

[88] E. Sirer, S. Goel, M. Robson, and D. Engin. Eluding carnivores: File sharing with
strong anonymity. In Proceedings of the 11th workshop on ACM SIGOPS European
workshop, pages 19–es. ACM, 2004.

[89] K. Smith. http://www.businessinsider.com/10-icloud-tips-and-tricks-2012-8?op=1.

[90] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

[91] A. Squicciarini, M. Shehab, and F. Paci. Collective privacy management in social
networks. In Proceedings of the 18th international conference on World wide web,
pages 521–530. ACM, 2009.

[92] D. Stinson. Cryptography: theory and practice. CRC press, 2006.

[93] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme for online social networks
with efficient revocation. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE,
2010.

[94] P. Syverson, D. Goldschlag, and M. Reed. Onion routing for anonymous and private
internet connections, 1999.

[95] B. Viswanath, A. Post, K. Gummadi, and A. Mislove. An analysis of social network-
based sybil defenses. In Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, pages 363–374. ACM, 2010.

[96] M. Waidner, B. Pfitzmann, et al. The dining cryptographers in the disco: Uncondi-
tional sender and recipient untraceability with computationally secure serviceability.
page 690. Springer-Verlag, 1989.

[97] C. Wang, K. Ren, S. Yu, and K. M. R. Urs. Achieving usable and privacy-assured
similarity search over outsourced cloud data. In INFOCOM, pages 451–459, 2012.

[98] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers:
Making strong anonymity scale. 10th OSDI, 2012.

[99] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A practical attack to de-anonymize
social network users. In 2010 IEEE Symposium on Security and Privacy, pages 223–
238. IEEE, 2010.

163

[100] W. Wong, D. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on en-
crypted databases. In SIGMOD, pages 139–152. ACM, 2009.

[101] Z. Yang, S. Zhong, and R. Wright. Anonymity-preserving data collection. In ACM
SIGKDD, pages 334–343. ACM, 2005.

[102] A. Yao. How to generate and exchange secrets. In FOCS, pages 162–167. IEEE,
1986.

[103] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing the trade-offs
among location privacy, query performance, and query accuracy in mobile services.
In ICDE, pages 366–375, 2008.

[104] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal social
network defense against sybil attacks. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 3–17. IEEE, 2008.

[105] X. Zhao, L. Li, and G. Xue. Secure cloud-assisted location based reminder. In 8th
ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’13, Hangzhou, China - May 08 - 10, 2013, pages 323–328, 2013.

164

