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ABSTRACT 

This dissertation examines a planned missing data design in the context of 

mediational analysis. The study considered a scenario in which the high cost of an 

expensive mediator limited sample size, but in which less expensive mediators could be 

gathered on a larger sample size. Simulated multivariate normal data were generated 

from a latent variable mediation model with three observed indicator variables, M1, M2, 

and M3. Planned missingness was implemented on M1 under the missing completely at 

random mechanism. Five analysis methods were employed: latent variable mediation 

model with all three mediators as indicators of a latent construct (Method 1), auxiliary 

variable model with M1 as the mediator and M2 and M3 as auxiliary variables (Method 2), 

auxiliary variable model with M1 as the mediator and M2 as a single auxiliary variable 

(Method 3), maximum likelihood estimation including all available data but 

incorporating only mediator M1 (Method 4), and listwise deletion (Method 5).  

The main outcome of interest was empirical power to detect the mediated effect. 

The main effects of mediation effect size, sample size, and missing data rate performed as 

expected with power increasing for increasing mediation effect sizes, increasing sample 

sizes, and decreasing missing data rates. Consistent with expectations, power was the 

greatest for analysis methods that included all three mediators, and power decreased with 

analysis methods that included less information. Across all design cells relative to the 

complete data condition, Method 1 with 20% missingness on M1 produced only 2.06% 

loss in power for the mediated effect; with 50% missingness, 6.02% loss; and 80% 

missingess, only 11.86% loss. Method 2 exhibited 20.72% power loss at 80% 

missingness, even though the total amount of data utilized was the same as Method 1. 



 

ii 

Methods 3 – 5 exhibited greater power loss. Compared to an average power loss of 

11.55% across all levels of missingness for Method 1, average power losses for Methods 

3, 4, and 5 were 23.87%, 29.35%, and 32.40%, respectively.  In conclusion, planned 

missingness in a multiple mediator design may permit higher quality characterization of 

the mediator construct at feasible cost. 
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CHAPTER 1 

INTRODUCTION 

Research methodology is a continually growing and expanding field with new 

analytical methods paving the way for variations from traditional research design. Two 

areas of particular importance to research pertaining to human participants are mediation 

analyses and statistical methods for accommodating missing data with unbiased results. 

Many areas of psychology and prevention research study mediated effects (also called 

indirect effects) to understand the causal chain of relations between three or more 

variables (e.g., XMY). With mediation analysis, researchers can identify the causal 

mechanism by which one variable transmits an effect to another. Another important area 

of research, missing data methodology (e.g., MAR-based methods such as maximum 

likelihood and multiple imputation procedures), provides researchers with tools to 

provide estimates of the population parameters being studied when there are missing 

values.  

The advent of modern missing data analyses such as maximum likelihood 

estimation and multiple imputation provides the opportunity to leverage purposeful 

missing data. Graham, Taylor and Cumsille (2001) state that researchers often ask, “Why 

would anyone ever want to plan to have missing data? Is it not always better to limit the 

amount of missing data one has?” Enders (2010) expresses a similar sentiment by stating 

that “researchers tend to view the idea of planned missing data with some skepticism and 

are often reluctant to implement this strategy.” Although the idea of planned missingness 

may feel counterintuitive, there are many advantages to carefully planned designs 

incorporating intentional missing data. These advantages include reduction in resources 
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expended (e.g., time and money) and decreased respondent burden, while simultaneously 

maintaining the desired full scope of research. These designs also directly address 

practical limitations. For instance, researchers may be interested in a large scope of 

questionnaire items that is greater than the number of items that might be expected for 

participants to answer.  

One assumption of mediation analysis is that the variables are reliable and valid 

(MacKinnon, 2008). Furthermore, the literature suggests that reliable and valid measures 

are important factors in having sufficient power to detect the mediated effect. 

Unfortunately, the necessity of valid and reliable measures can pose problems in the 

planning of research designs. In many cases, there are multiple measures of the same 

construct that researchers might incorporate into their studies. Because resources 

typically limit the choice of measures and number of participants in a given study, 

researchers often choose between collecting a large sample of data with an inexpensive 

measure or collecting a smaller sample of data with a more costly measure. For example, 

researchers interested in smoking behavior as a mediator may choose between using a 

less expensive self-report of smoking behavior (which may be underreported due to the 

undesirability of the behavior) or a more expensive measure of cotinine in saliva. In 

another example, body composition may be measured inexpensively as Body Mass Index 

(BMI) computed from self-reported height and weight versus a more accurate and 

expensive measure of body fat percentage using hydrostatic weighing.  

To date, planned missing designs have not been applied to mediation analyses, but 

they are potentially useful in this context. To address issues of limited resources in a 

study that hypothesizes mediation when multiple measures of the same mediation 



   

3 

construct are available, a researcher may utilize a two-method measurement design as 

proposed by Graham and colleagues (2006). The two-method measurement design is an 

innovative way to leverage the statistical benefits of collecting relatively inexpensive and 

less valid measures on a complete sample of participants and a more expensive, but more 

accurate, measures on a subsample of participants. In essence, this use of purposeful 

missing data may maximize both power and accuracy by “borrowing” information from a 

large sample of the inexpensive mediator(s) and a small subsample of the more expensive 

measure. Modern missing data analysis methods can be used to analyze this design. This 

research study evaluates a simplified variation of the Graham two-method measurement 

design extended to mediation analysis and evaluates other viable methods for 

incorporating planned missingness in mediation. Specifically, I evaluate the use of 

intentional missing data in a mediation design incorporating multiple measures of a 

mediation construct and compare five potential ways to analyze such data.  

To delve into the potential for planned missing data in a mediation analysis, there 

are two distinct pieces of methodology that must be understood: mediation analysis and 

modern missing data analysis. The first chapter provides the foundational information 

required to understand the literature in the fields of mediation and missing data analysis. 

First, I provide a brief summary of mediation analysis. Next, I introduce modern missing 

data methods. To discuss these methods, I introduce the three missing data mechanisms – 

these mechanisms can be thought of as underlying assumptions that dictate the 

performance of a given missing data analysis method. Understanding of these 

mechanisms is crucial to a planned missing data design. With intentional missing data, 

the researcher has full control of the missing data mechanism. Next, I provide an 
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overview of both maximum likelihood estimation and multiple imputation for use in 

missing data analyses. Finally, I provide a short introduction to planned missing data 

designs.  

After laying the foundation of missing data and mediation designs in Chapter 1, 

Chapter 2 reviews the relevant literature on mediation analysis and planned missing data 

designs that inform my research. Finally, after reviewing the literature that informs my 

research, Chapter 3 describes a research study that evaluates the potential for the use of a 

planned missing data design with mediation analysis, Chapter 4 describes the results of 

the study, and Chapter 5 discusses the implications of the results.  

Mediation Analysis 

A mediator is an example of a so-called “third variable” that attempts to clarify or 

elaborate the relation between an independent variable (IV) and a dependent variable 

(DV). A mediating variable represents the intermediate member of a causal chain of 

relations, such that some independent variable, X, causes the mediator variable, M, and M 

causes the dependent variable, Y (MacKinnon, 2008). In prevention or treatment research, 

M may be used to understand the mechanism by which an intervention or treatment, X, 

produces the outcome, Y. Consider a variable, X, representing a dietary intervention, and 

the outcome variable, Y, measuring body mass index (BMI). A third mediating variable, 

M, representing dietary habits, may explain how the intervention alters BMI. The 

mediating variable is said to be the mechanism by which X causes Y (in this example 

dietary habits is the mechanism by which the intervention changes BMI). As another 

example, a smoking intervention program (X) may be theorized to increase knowledge of 

the health consequences of smoking cigarettes (M) which, in turn, may decrease cigarette 
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consumption. The scope of mediation analysis goes well beyond prevention or treatment 

research and mediation has application in many fields such as psychology, business, and 

education (see Mackinnon, 2008 for examples).  

In the OLS regression framework, the equation that quantifies the direct 

relationship between X and Y is below and is represented by path diagram on the left-side 

of Figure 1.  

 𝑌 = 𝜏𝑋 + 𝑖1 + 𝑒1 (1.1) 

Here, 𝜏 quantifies the relationship between X and Y without accounting for the mediator. 

The coefficient, 𝜏, is also referred to as the “total effect.” The term 𝑖1 represents the 

intercept and the term 𝑒1 is the residual error. 

The basic mediation model (single intermediate variable) consists of two causal 

paths (the path diagram on the right side of Figure 1). These causal paths are represented 

by two equations in the OLS regression framework. The first is the path from the 

manipulation, X, to the theoretical mediator, M (α in Figure 1). This path, α, quantifies 

how the independent variable, X, changes the mediator. This relationship can be 

expressed as follows below.  

 𝑀 = 𝛼𝑋 + 𝑖2 + 𝑒2 (1.2) 

In this equation, 𝛼 quantifies the relationship of M on X. The term 𝑖2 represents the 

intercept and the term 𝑒2 is the residual error. In the dietary intervention example, 𝛼 

represents the effect of the dietary intervention on dietary habits.  

The second path of interest is the path from the mediator, M, to the outcome, Y (β 

in Figure 1). This path quantifies and represents the theory of how the mediator, M, is 

related to the outcome variable, Y, as represented by the following equation.  
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 𝑌 = 𝜏′𝑋 + 𝛽𝑀 + 𝑖3 + 𝑒3 (1.3) 

In this equation, 𝛽 represent the relationship of Y on M partialling for the variable, X. In 

the dietary habit example, 𝛽 would represent the effect of dietary changes on BMI, 

accounting for the intervention. The other two terms, 𝑖3 and 𝑒3, represent the intercept 

and residual terms, respectively. This set of relationships enables researchers to test if the 

relationship between X and Y is transmitted via the mediator, M. In a study where X is an 

experimental manipulation (such as a treatment or intervention versus a control), the 

mediation model measures whether the experimental manipulation changes the outcome 

through the mediating variable. The other regression coefficient in Equation 1.3, 𝜏′, 

represents the remaining relationship between X and Y after controlling for M. The 

coefficient, 𝜏′, is also known as the “direct effect” and, in the case of complete mediation, 

𝜏′ = 0. The current study focuses only on complete mediation.  

Testing the Mediated Effect 

The equations above provide the estimates necessary for determining the presence 

of a mediated effect. There exist a variety of methods for quantifying and testing the 

mediating effect. Historically, the Baron and Kenny (1986) causal steps test of mediation 

has been the most widely used approach to test for a mediated effect (Fritz & 

MacKinnon, 2007). The methodological literature suggests that this approach is 

underpowered relative to other tests of mediation (Fritz & MacKinnon, 2007; 

MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). The low power in the causal 

steps approach is generally attributed to the requirement of a significant X to Y relation, 

especially in the case of complete mediation (MacKinnon, Fairchild, & Fritz, 2007). 

Many methodologists have suggested that the requirement that X and Y be related is not 
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necessary; it is possible for mediation to exist even when the relationship between X and 

Y is not statistically significant (Hayes, 2009; MacKinnon, Krull, & Lockwood, 2000; 

Rucker, Preacher, Tormala, & Petty, 2011; Shrout & Bolger, 2002; Zhao, Lynch Jr., & 

Chen, 2010). Besides the causal steps test, other mediation procedures have been 

proposed including the MacArthur model (Kraemer, Kiernan, Essex, & Kupfer, 2008) 

and various modifications of the Baron and Kenny causal steps test of mediation 

(Mackinnon, 2008). One variation, the joint significance test, only requires that the 𝛼 and 

𝛽 paths are statistically significant to provide support for mediation (MacKinnon, 2008).  

The most recent methodological literature generally supports the use of the 

“product of coefficients” to estimate and assess the mediated effect. In the product of 

coefficients approach, the mediated effect is based on the product of coefficients α and β, 

from Equations 1.2 and 1.3 above. The statistical significance of the mediated effect, αβ, 

is based on this product and corresponding standard error/confidence intervals. Some 

researchers estimate mediation based on the total effect, 𝜏, minus the direct effect, 𝜏′ 

(from Equations 1.1 and 1.3 above). For linear models without missing data, these two 

estimates of mediation, αβ and τ – τ’, are numerically equivalent (Mackinnon & Dwyer, 

1993). However, these two estimates of the mediated effect are not necessarily equivalent 

for non-linear models or models with missing data. Because the product of coefficients 

method is the most general method to estimate mediation applicable to a wide range of 

models, the methodological research focuses on this method. Accordingly, the current 

study relies on the distribution of the product. Furthermore, there is literature suggesting 

that in certain situations (including when not all variables are reliable), relying on the 

relationship between X and Y (either before controlling for the mediator as in the 
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coefficient τ, or after controlling for the mediator as in the coefficient, τ’) can lead to 

misleading or false conclusions in theory testing (Rucker et al., 2011). This is particularly 

true if there is a highly reliable M, but moderately reliable X and Y. This limitation of the 

τ – τ’ estimate of mediation provides further support for my focus on the product of 

coefficients approach.  

With the product of coefficients approach, the mediated effect for a single 

intermediate mediating variable is estimated based on the product of the coefficients, αβ. 

By virtue of the fact that two coefficients go into creating the estimate of the mediated 

effect, additional complexities are added to the computation of the standard error as the 

standard error must incorporate the coefficients α and β, their corresponding standard 

errors, and the correlation between α and β (if non-zero). There are a variety of formulas 

available to esttimate the standard error of the mediated effect. The multivariate delta 

standard error (Sobel, 1982) is one of the most commonly used standard errors 

(MacKinnon, 2008; MacKinnon, Fairchild, et al., 2007). However, when α and β are 

correlated (as typically occurs with missing data), a more accurate standard error is based 

on the variance of the product of the α and β coefficients derived using a second-order 

Taylor series (Baron & Kenny, 1986; Mackinnon & Dwyer, 1993; MacKinnon, Fritz, 

Williams, & Lockwood, 2007). The resulting formula for the standard error of the 

mediated effect is below.  

 𝑠𝛼𝛽 = 𝛼2𝑠𝛽
2 + 𝛽2𝑠𝛼

2 + 𝑠𝛼
2𝑠𝛽

2 (1.4) 

In this formula, 𝑠𝛼
2 and 𝑠𝛽

2 are the squared standard error of α and β, respectively.  

 One method to test the statistical significance of a mediated effect is to evaluate 

the ratio of the mediated effect to its standard error as compared to a standard normal 
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distribution as is used for many test statistics that assume a normal distribution. Similarly, 

a method to create confidence limits for the mediated effect is to calculate them off of the 

following equations for the Lower Confidence Limit (LCL) and the Upper Confidence 

Limit (UCL).  

 𝐿𝐶𝐿 = 𝛼𝛽 − (𝑧𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟𝑠𝛼𝛽) (1.5) 

 𝑈𝐶𝐿 = 𝛼𝛽 + (𝑧𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟𝑠𝛼𝛽) (1.6) 

The term, 𝑧𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟, is the value of the z-statistic required for the confidence limit 

calculations. Under the assumption of a normal distribution, for a 95% confidence limit, 

𝑧𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟 = ±1.96.  

Distribution of the Product. A major issue with the test of significance and 

confidence interval computation described in the preceding paragraph is that these tests 

assume the product of 𝛼 and 𝛽 is normally distributed. The distribution of the product of 

two random variables is not typically normal distributed and is most often asymmetric 

and highly kurtotic (Aroian, 1947; Craig, 1936). Consequently, power based on an 

assumption of normality (and corresponding symmetric confidence limits) typically 

results in underpowered tests of mediation (Fritz & MacKinnon, 2007; MacKinnon et al., 

2002) . Methods that accommodate the distribution of the product provide more accurate 

significance tests and greater statistical power (MacKinnon et al., 2002; MacKinnon, 

Lockwood, & Williams, 2004). Broadly, there are two general ways to accommodate the 

distribution of the product: (1) using resampling methods such as bootstrapping or (2) 

relying on the critical values of the distribution of the product (which is typically non-

normal). This research project focuses on significance testing relying on the distribution 
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of the product. For more information on resampling methods see Mackinnon (2008), 

Preacher & Hayes (2008), Shrout and Bolger (2002).  

A researcher can test the mediated effect and accommodate the potential non-

normal distribution of the distribution of the product with the computation of asymmetric 

confidence limits. Calculation of confidence limits under normal distribution 

assumptions, as in Equations 1.6 and 1.7, uses the same z-value for both the upper and 

lower confidence limits. Because the mediated effect typically has a non-normal 

distribution, more accurate confidence limits for the mediated effect would require 

different critical values for the upper and lower confidence limits (i.e., different values of 

𝒛𝑻𝒚𝒑𝒆𝟏 𝑬𝒓𝒓𝒐𝒓) to appropriately adjust for non-normality. Thus, Equations 1.6 and 1.7 are 

restated below to account for varying critical values for the upper and lower confidence 

limits.  

 𝐿𝐶𝐿 = 𝛼𝛽 − (𝑃𝑟𝑜𝑑𝐿𝑜𝑤𝑒𝑟𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟𝑠𝛼𝛽) (1.7) 

 𝑈𝐶𝐿 = 𝛼𝛽 + (𝑃𝑟𝑜𝑑𝑈𝑝𝑝𝑒𝑟𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟𝑠𝛼𝛽) (1.8) 

Here, 𝑧𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟 in Equations 1.5 and 1.6 is replaced with 𝑃𝑟𝑜𝑑𝐿𝑜𝑤𝑒𝑟𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟 and 

𝑃𝑟𝑜𝑑𝑈𝑝𝑝𝑒𝑟𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟 to explicitly denote different critical values for the lower and 

upper confidence limits. One way to obtain the critical values based on the distribution of 

the product is through the use of a program called PRODCLIN (MacKinnon, Fritz, et al., 

2007); this program was updated more recently (Tofighi & MacKinnon, 2011) to resolve 

some of the initial limitations of computing confidence intervals for the case when the 

coefficients are correlated (as would be expected in missing data analyses). These 

updates were implemented in both a new R Package and in the original PRODCLIN 

program; this study uses the updated PRODCLIN program. In PRODCLIN, the user 
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inputs the estimates of 𝛼, 𝑠𝛼, 𝛽, 𝑠𝛽, the correlation between 𝛼 and 𝛽 (if non-zero as is 

typical with missing data), and the Type 1 error rate for the desired confidence interval. 

Based on this user input, the PRODCLIN program provide the critical values that rely on 

the non-normal distribution of the product and calculates the resulting asymmetric 

confidence interval. In sum, the current literature generally suggests estimating the 

mediated effect using product of coefficients approach and assessing the statistical 

significance with a method that relies on the (potentially) asymmetric and kurtotic 

distribution of the product.  

Mediation in the Structural Equation Modeling Framework  

Mediation analysis may also be evaluated in the structural equation modeling 

(SEM) framework. The SEM framework is more flexible than the regression framework 

and can accommodate more complex models including models that have more than one 

independent, mediating, and/or dependent variables. The SEM framework can also 

incorporate latent variables for X, M and/or Y; latent variables are unobserved but inferred 

from observed variables. In a latent variable model, these observed variables have a 

variety of names and are commonly referred to as indicator or manifest variables. 

Importantly, latent variables are free of random or systematic measurement error (Bollen, 

1989, p. 11), although this rule is not without exception (e.g., single indicator latent 

variables). The current study considers a scenario where multiple measures of a 

mediation construct are available. These mediation variables can be modeled as 

indicators of a latent mediation variable. Figure 2 illustrates a mediation model with a 

latent mediator informed by three measures of the mediation construct, M1, M2, and M3. 

In this model, X and Y are manifest variables. The model in Figure 2 corresponds with 
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one of the analysis models in the current research study. I also use a variation of this 

model to generate simulated data.  

Using this SEM approach, the model is defined by both a measurement model and 

a structural model. The measurement model defines the relationship of the observed 

variables to their latent variable constructs and the structural model summarizes the 

relationships between the latent variables. In Figure 2, instead of an observed mediation 

variable, a measurement model quantifies a latent mediation variable. Notice that the 

structural portion of the model is virtually the same as the manifest variable path model 

on the right side of Figure 1. Consistent with Figure 1 and Equations 1.2 and 1.3, the path 

quantifying the relationship between X and the mediator is 𝛼 and the path quantifying the 

relationship between the mediator and Y, controlling for X is 𝛽. In SEM, the structural 

portion is often expressed using matrix equations, and the matrix equation that represents 

Figure 2 is:  

 [
LM
Y

] = [
0 0
𝛽 0

] [
LM
Y

] + [
𝛼
𝜏′

] [𝑋] + [
𝜁𝑀

𝜁𝑌
]. (1.9) 

In non-matrix form, this equation can be written as two equations that are virtually 

identical to Equations 1.2 and 1.3 with the exception that the latent variable, LM, replaces 

the manifest variable M. Replacing the manifest variable, M, with a measurement model 

with multiple indicators of a latent construct, LM, addresses issues of measurement error 

in the mediator.  

Missing Data  

Missing Data Mechanisms  

Before delving into the idea of planned missing data in mediation analysis, it is 

necessarily to explore general analysis methods used when data are missing. A discussion 
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on missing data methods must first begin with terminology that describes the so-called 

missing data mechanisms. I use a classification system of missing data mechanisms to 

describe the relationship between observed variables and the propensity for missingness 

(Enders, 2010; Rubin, 1976; Rubin & Little, 2002). Missing data analysis techniques are 

typically dictated by an assumption of a particular mechanism. The most stringent 

missing data mechanism is missing completely at random (MCAR). Data are MCAR if 

the propensity for missing data on some variable, Y, is completely unrelated to other 

variables in the data set and analysis and to the unobserved values of Y itself (i.e., every 

participant has the same probability of missing data). As an example, consider a scenario 

where a random set of questionnaires are lost due to an administrative mistake or a 

scenario where scheduling difficulties unrelated to a study (or any of the variables in the 

study) preclude follow-up. MCAR missingness is completely unsystematic and the 

resulting data represent a random subsample of the hypothetical complete-data. This is 

the missing data mechanism that is assumed for classic missing data techniques such as 

pairwise and listwise deletion; if the MCAR assumption is not met, deletion methods 

provide biased parameters estimate. Many methodologists argue that the MCAR 

mechanism is rarely met in practice (B. Muthén, Kaplan, & Hollis, 1987; Raghunathan, 

2004). However, it is important to note that the planned missingness design used in this 

study produces an MCAR mechanism.  

The second missing data mechanism, missing at random (MAR), describes data 

where the propensity for missing data on some variable, Y, is related to other observed 

variables but not the hypothetical value of Y if it had been observed. This potentially 

confusing name includes the word “random,” but, in fact, MAR describes a type of 
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systematic missingness. In the MAR-mechanism, missingness is contingent on another 

observed variable or variables in the analysis, but is unrelated to the values of the 

incomplete variable(s). For example, consider a study interested in the relationship 

between stress and consumption of unhealthy snack food. Participants with high Body 

Mass Index (BMI) scores might feel embarrassed about their snack consumption and 

participants with higher BMI may be more likely to skip items about snack food 

consumption. Importantly, after controlling for BMI, no other variables predict 

missingness (i.e., two people with the same BMI score have the same probability of 

missing data on snack food question). The MAR mechanism is the assumption 

underlying the modern missing data techniques that will be focused on in this document.  

Lastly, data are considered Missing Not at Random (NMAR), if missing values on 

Y are related to the value of Y that would have been obtained had Y been observed if they 

were not missing. In other words, missingness is systematically related to the 

hypothetical underlying values of the missing data. Consider a study evaluating sexual 

behavior in high school students. Students with high levels of sexual activity may be 

more likely to skip questions regarding sexual activity for fear of the repercussions that 

may occur if parents or teachers saw their answers. Although the NMAR mechanism is 

easily satisfied in terms of assumptions of missingness, it tends to be the most 

challenging mechanism from an analytical standpoint.  

Formal definitions of the missing data mechanisms. Now that we have a broad 

conceptual understanding of the missing data mechanisms, I will go into more detail 

about the precise mathematical underpinnings of these mechanisms. The missing data 

mechanisms technically describe probability distributions for a missing data indicator, R. 
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This missing data indicator is a binary variable that denotes whether a score is observed 

(R = 1) or missing (R = 0) for some variable, Y. This variable, Y, is contained in a data set 

where some values are observed, 𝑌𝑜𝑏𝑠, and some values are missing, 𝑌𝑚𝑖𝑠. The general 

distribution to define a missing data mechanism is:  

 𝑝(𝑅|𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠 , 𝜙). (1.10) 

Here, 𝜙 is a parameter or set of parameters that describes the relationship between 

the missing data indicator, R, and the data (both observed and unobserved). The symbol 

“|” can be interpreted as “conditional on”. Thus this expression demonstrates that the 

probability of missing data indicator R is conditional on the observed data, the missing 

unobserved data, and some set of parameters. Rubin’s definitions of missing data 

mechanisms can be differentiated based on the quantities to the right of the “conditional 

on” symbol.  

Let’s now consider the MCAR mechanism. Data are MCAR if missingness is 

unrelated to any of the observed or missing values in the data. Thus, when the MCAR 

mechanism is satisfied, the probability distribution in Equation 1.10 can be reduced as 

follows.  

 𝑝(𝑅|𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠 , 𝜙) =  𝑝(𝑅| 𝜙) (1.11) 

Here, because missingness is not related to any of the observed or missing data, 𝑌𝑜𝑏𝑠 and 

𝑌𝑚𝑖𝑠 have no bearing on the probability of R and can be removed from the conditional 

statement. Said differently, each case has the same probability of missing data on Y. 

MCAR is the mechanism that has historically been assumed for many of the traditional 

missing data approaches (Enders, 2010). As a result, researchers often find the MCAR 

assumption the most convenient of the missing data mechanisms because traditional 
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approaches tend to be easier to implement and many are unbiased under MCAR (e.g. 

deletion methods).  

Next, consider the conceptual definition of the MAR mechanism. Data are 

considered MAR if the probability of missingness on some variable is related to other 

variables in the analysis but not related to the would-be values of the missing data had the 

variable been observed. Said differently, after partialling out all other variables, there is 

no relationship between R and 𝑌𝑚𝑖𝑠. For the MAR mechanism, our general probability 

distribution reduces to: 

 𝑝(𝑅|𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠 , 𝜙) =  𝑝(𝑅| 𝑌𝑜𝑏𝑠, 𝜙). (1.12) 

Equation 1.12 demonstrates that, given the observed values in the data set, the probability 

of R does not depend on the missing values. As such, we remove 𝑌𝑚𝑖𝑠 from the 

conditional portion of the expression.  

Finally, there is the NMAR mechanism; this mechanism is the most difficult to 

model. Recall that data are NMAR when missingness on some variable is dependent on 

the hypothetically complete variable. In other words, NMAR assumes all possible 

associations between the missing data indicator and the observed and missing data 

values. Consequently, the expression in Equation 1.10 does not reduce any further when 

representing the NMAR mechanism. From this probability distribution, we can see that 

the probability of missing data on some variable can depend on both the observed and 

missing values.  

As noted, when discussing these mechanisms I have referred to both data and 

analysis. Technically missing data mechanisms are not characteristics of an entire data set 

(although you will often mistakenly see the mechanisms described in this fashion). 
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Instead, the mechanisms are assumptions that are specific to the variables included in a 

particular analysis or imputation model. In fact, depending on which variables are 

included in the analysis, the same data set may produce analyses that satisfy all three of 

the mechanisms.  

Generally, the missing data mechanisms are untestable assumptions. Fortunately, 

in a planned missing data design, missingness is intentionally planned and the researcher 

has full control over the missingness mechanism (typically MCAR). Modern missing data 

methods, maximum likelihood estimation and multiple imputation, typically rely on the 

assumption of the MAR mechanism; I focus on maximum likelihood in this document. 

Note that because the MAR mechanism is a less stringent assumption than the MCAR 

mechanism (see Equations 1.11 and 1.12), MAR-based methods also provide unbiased 

estimates under the MCAR mechanism. Although traditional deletion methods (i.e., 

listwise and pairwise deletion) are unbiased when the MCAR mechanism is satisfied, the 

use of these MAR-based methods for when the MCAR assumption is satisfied is 

generally recommended because eliminating data is wasteful and can significantly reduce 

power (Enders, 2010). As a note, for planned missing data scenarios that will be 

discussed later, the researcher knows the exact mechanism underlying the planned 

missingess. Although the planned missing scenario I introduce later will satisfy the 

MCAR assumption, MAR-based analyses are still superior due to their potential for 

improving power. 

Maximum Likelihood Estimation 

In the 1970’s, two “state of the art” missing data methods for MAR-based 

analyses (Schafer & Graham, 2002) were introduced in the methodological literature: 
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maximum likelihood estimation and multiple imputation (Beale & Little, 1975; Dempster 

& Laird, 1977; Rubin, 1978b). These missing data methods provide researchers with 

tools to estimate unbiased population parameters (under certain assumptions) when there 

are missing values. Furthermore, these methods enable researchers to include all 

available data in the analysis (unlike the traditional deletion methods of listwise and 

pairwise deletion) resulting in greater power than the traditional methods. As an 

important note, maximum likelihood estimation and multiple imputation are 

asymptotically equivalent and there is no reason to expect differences among the two 

approaches. This document and the research study presented focus only on maximum 

likelihood estimation in planned missing data designs, because maximum likelihood 

estimation requires reduced computing resources compared to multiple imputation.  

At the broad level, maximum likelihood estimation identifies the population 

parameter values that most likely produced the sample data. Importantly, maximum 

likelihood estimation is a common complete-data analysis approach that readily extends 

to missing data. Before introducing the method in the context of missing data, I start by 

providing an overview of the basic estimation procedures in the context of a study with 

complete-data. I later expand the use of maximum likelihood estimation to missing data. 

In maximum likelihood analysis, the researcher is required to identify the type of 

distribution that the population data came from. Although maximum likelihood 

estimation is flexible enough to handle a wide variety of distributions (e.g. binomial 

distribution for binary outcomes), I focus on the most commonly assumed distribution in 

the social sciences: multivariate normal.  
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To begin, let’s consider the probability density function for a multivariate normal 

distribution.  

 𝐿𝑖 =
1

(2𝜋)𝑘/2|𝚺|1/2 
 𝑒−.5(𝐘𝑖− 𝛍)𝑇𝚺−1(𝐘𝑖−𝛍) (1.13) 

In Equation 1.13, 𝐿𝑖 is the likelihood value; this value quantifies the likelihood (similar to 

a probability) that a set of scores from a particular study participant come from a 

normally distributed population with mean vector, 𝛍, and covariance matrix, 𝚺. The term, 

𝐘𝑖, denotes a set of k observed scores. Euler’s number is denoted as e; this value is a 

mathematical constant approximately equal to 2.718. The set of terms in fractional form 

to the left of e constitutes a scaling factor that makes the integral of the multivariate 

normal distribution equal to one. The critical portion of Equation 1.13 is in the exponent 

of e. The expression,  

 (𝐘𝑖 −  𝛍)𝑇𝜮−1(𝐘𝑖 − 𝛍) (1.14) 

is the matrix form of Mahalanobis distance, which can be interpreted as a squared z-

score. To ease interpretation, let’s consider this value in terms of its univariate form. A 

univariate expression for Mahalabonis distance is a squared z-score, 

 (
𝑌𝑖 − 𝜇

𝜎
)
2

 (1.15) 

where 𝑌𝑖 is an observed observation, 𝜇 is the arithmetic mean of all observations, and 𝜎 is 

the standard deviation of the observations. Equation 1.15 demonstrates that, in the 

univariate form, Mahalanaobis distance is a value that quantifies the standardized 

distance between an observed score and population mean. The interpretation from the 

multivariate standpoint remains largely the same. We interpret the multivariate 

Mahalanaobis distance (as in Equation 1.15) as a value that quantifies the distance of a 
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given vector of observations, 𝐘𝑖, from the center (mean vector, 𝛍) of the multivariate 

normal distribution. In practical terms, this implies that small deviations from a 

multivariate normal distribution with a particular mean vector and covariance matrix will 

minimize Mahalonobis distance. Because this distance is multiplied by –0.5 and is in 

exponential form, minimizing distances results in larger likelihood values.  

As previously stated, the goal of maximum likelihood estimation is to determine 

the population parameter values (i.e., the mean vector and covariance matrix) that have 

the highest probability of producing the observed sample of data. In other words, we are 

looking for parameter values that maximize the likelihood values across the sample of 

participants. To determine the parameters that best maximize likelihoods in the entire 

sample (i.e., minimizes the sum of the squared z-scores), we need a value that 

summarizes the fit for all participants. To compute the sample likelihood, we would take 

the product of all the participants’ likelihood values. It is the product of each individual 

likelihood value, rather than the sum of likelihood values, because likelihood values share 

the mathematical properties of probabilities. In probability theory, the joint probability 

for a set of independent events is the product of all the individual probabilities. Thus, a 

measure that summarizes fit for all participants would be the product of all the individual 

likelihood values. Taking a product of so many small likelihood values is not practical; 

the resulting total likelihood value tends to be an extremely small value. In fact, the value 

is often so small that it is difficult to work with and can be problematic due to rounding 

error inherent in computational devices.  

To facilitate computation, it is conventional to convert the likelihood values to the 

log-likelihoods by taking the natural logarithm (i.e., a logarithm base e) of the 
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likelihoods. The use of logarithms simplifies the computation of the sample likelihood 

because logarithms have the distinctive property that the log of a product is equal to the 

sum of the log of the individual terms. Consequently, the sample log-likelihood can be 

computed using summation rather than multiplication. The sample log-likelihood is 

expressed below.  

 𝑙𝑜𝑔𝐿 = ∑𝑙𝑜𝑔

𝑁

𝑖=1

[
1

(2𝜋)𝑘/2|𝚺|1/2 
 𝑒−.5(𝐘𝑖− 𝛍)𝑇𝚺−1(𝐘𝑖−𝛍)] (1.16) 

In this notation, the large sigma is an operator that denotes summation of each of the log-

likelihood values from participants in the sample (for participants 1 ≤ i ≤ N where N is 

sample size and i denotes individual participants). Notice the expression in brackets is the 

likelihood expression from Equation 1.13.  

The sample log-likelihood from Equation 1.16 can be further simplified by 

distributing the natural logarithm throughout the expression.  

 𝐿𝑜𝑔𝐿 = ∑−
𝑘

2
log(2𝜋) −

1

2
log|𝚺| −

1

2
(𝐘𝑖 − 𝛍)𝑇𝚺−1(𝐘𝑖 − 𝛍)

𝑁

𝑖=1

 (1.17) 

Here, LogL quantifies the likelihood that the sample data came from a multivariate 

normal distribution with particular mean and variance/covariance values. Relying on this 

relationship, the maximum likelihood estimation routine determines which parameters of 

𝛍 and 𝚺 produce the highest log-likelihood values. The parameters of 𝛍 and 𝚺 that yield 

the highest sample log-likelihood, are the estimated parameters that are most likely to 

have produced the sample data. For complete-data, software packages typically rely on 

properties of calculus to determine the parameters that maximize the sample log-

likelihood. Specifically, the process determines the values of 𝛍 and 𝚺 that yield a partial 
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derivative (slope of the function) equal to zero. As we will see, with complicated models 

and missing data models, we are not able to analytically determine the maximum log-

likelihood value and instead must rely on iterative algorithms with different parameters of 

𝛍 and 𝚺 to determine the values that maximize the function.  

Until now, I have discussed maximum likelihood in terms of a simple mean 

vector and covariance matrix. In actuality, maximum likelihood is far more flexible. 

Consider a typical regression equation regression Y on X and Z. In the estimated model, 

the predicted value of Y is the conditional mean given particular values of X and Z. Now, 

we can express the mean vector and the covariance matrix as a function of regression 

coefficients of X and Z as well as the residual covariance matrix. As the maximum 

likelihood model gets more complicated, the calculus required to determine an analytical 

solution that maximizes the log-likelihood expression is not as straightforward, and in 

most cases, unfeasible to compute analytically. As mentioned, software packages use 

iterative algorithms to determine a solution. Conceptually, the software is just auditioning 

different parameter values until it finds the parameters that are most likely to have 

produced that particular data set.  

Maximum likelihood with missing data. Now that we have established the 

fundamentals of maximum likelihood analyses with no missing data, let’s turn to using 

maximum likelihood estimation when there are missing data. Importantly, not much 

changes and the estimation procedure remains largely the same. Data do not need to be 

complete in order to use maximum likelihood estimation; instead all the available 

information can be used. In Equation 1.17, I demonstrated the sample log-likelihood for a 
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complete-data analysis. The sample log-likelihood for incomplete multivariate normal 

data is largely the same. 

 𝐿𝑜𝑔𝐿 = ∑−
𝑘𝑖

2
log(2𝜋) −

1

2
log|𝚺𝑖| −

1

2
(𝐘𝑖 − 𝛍𝑖)

𝑇𝚺𝑖
−1(𝐘𝑖 − 𝛍𝑖)

𝑁

𝑖=1

 (1.18) 

The distinctive difference between Equations 1.17 and 1.18 is the subscript i 

attributed to the number of scores, 𝑘𝑖, mean vector, 𝛍𝑖, and covariance matrix, 𝚺𝑖. This 

subscript i denotes a particular individual (or case) in the sample. The addition of this 

subscript adds additional flexibility so that the size and contents of the matrices for a 

person i depend on the variables with observed data for person i. Each participant may 

have a different number of k complete observations, and the number of items in the mean 

vector and covariance matrix varies depending on the available data. With missing data, 

the log-likelihood functions differ for individuals depending on the observed data, 

effectively using all available information to estimate the parameters.  

To illustrate how the sample log-likelihood is computed using maximum 

likelihood estimation with missing data, let’s consider a data set measuring variables A, B 

and C. In this data set, some participants are missing information on B, some on C, and 

some on both B and C. There are four missing data patterns: (1) complete A, B and C, (2) 

complete A and B, missing C, (3) complete A and C, missing B, and (4) complete A, 

missing B and C. For each of the missing data patterns, there is a log-likelihood function; 

here we have four log-likelihood functions. The individual log-likelihood values for 

participants with complete-data (Pattern 1) would be:  
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𝑙𝑜𝑔𝐿𝑃𝑎𝑡𝑡𝑒𝑟𝑛1𝑖
= −

𝑘𝑖

2
log(2𝜋) −

1

2
log [

𝜎𝐴
2 𝜎𝐴,𝐵 𝜎𝐴,𝐶

𝜎𝐴,𝐵 𝜎𝐵
2 𝜎𝐵,𝐶

𝜎𝐴,𝐶 𝜎𝐵,𝐶 𝜎𝐶
2

]

−
1

2
([

𝐴𝑖

𝐵𝑖

𝐶𝑖

] − [

μ𝐴

μ𝐵

μ𝐶

])

𝑇

[

𝜎𝐴
2 𝜎𝐴,𝐵 𝜎𝐴,𝐶

𝜎𝐴,𝐵 𝜎𝐵
2 𝜎𝐵,𝐶

𝜎𝐴,𝐶 𝜎𝐵,𝐶 𝜎𝐶
2

]

−1

([

𝐴𝑖

𝐵𝑖

C𝑖

] − [

μ𝐴

μ𝐵

μ𝐶

]). 

(1.19) 

The individual log-likelihood values for the subset of participants with complete-

data for variables A and C, but missing data for variable B (Pattern 2) would be:  

 

𝑙𝑜𝑔𝐿𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑃𝑎𝑡𝑡𝑒𝑟𝑛2𝑖

= −
𝑘𝑖

2
log(2𝜋) −

1

2
log [

𝜎𝐴
2 𝜎𝐴,𝐶

𝜎𝐴,𝐶 𝜎𝐶
2 ]

−
1

2
([

𝐴𝑖

𝐶𝑖
] − [

μ𝐴

μ𝐶
])

𝑇

[
𝜎𝐴

2 𝜎𝐴,𝐶

𝜎𝐴,𝐶 𝜎𝐶
2 ]

−1

([
A𝑖

𝐶𝑖
] − [

μ𝐴

μ𝐶
]) 

(1.20) 

The individual log-likelihood values for the subset of participants with complete-

data for variables A and B, but with missing data on variable C (Pattern 3), would largely 

be the same as Equation 1.20 above, but would replace the C’s with B’s. Finally, the 

individual log-likelihood values for the participants with complete-data for variable A and 

missing data for variables B and C (Pattern 4), is expressed below.  

 

𝑙𝑜𝑔𝐿𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑃𝑎𝑡𝑡𝑒𝑟𝑛3𝑖

= −
𝑘𝑖

2
log(2𝜋) −

1

2
log[𝜎𝐴

2]

−
1

2
([𝐴𝑖] − [μ𝐴])𝑇[𝜎𝐴

2]−1([𝐴𝑖] − [μ𝐴]) 

(1.21) 

Combining the log-likelihoods for all the participants gives us the sample log-

likelihood. This sample log-likelihood can be thought of as the sample sum from each of 

the patterns and can be partitioned in the log-likelihood for complete cases and the log-

likelihood for missing cases. For this example, the sample log-likelihood is represented 
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below. Recall that Pattern 1 is the complete-data pattern and Patterns 2 – 4 represent three 

missing data patterns.  

 

𝑙𝑜𝑔𝐿 = ∑ 𝑙𝑜𝑔𝐿𝑃𝑎𝑡𝑡𝑒𝑟𝑛1𝑖

𝑛1

𝑖=i1

+ [∑ 𝑙𝑜𝑔𝐿𝑃𝑎𝑡𝑡𝑒𝑟𝑛2𝑖

𝑛2

𝑖=i1

+ ∑ 𝑙𝑜𝑔𝐿𝑃𝑎𝑡𝑡𝑒𝑟𝑛3𝑖

𝑛3

𝑖=i1

+ ∑ 𝑙𝑜𝑔𝐿𝑃𝑎𝑡𝑡𝑒𝑟𝑛4𝑖

𝑛4

𝑖=i1

] 

(1.22) 

Here, 𝑛𝑗  represents the number of participants making up a particular data pattern 

subgroup and 𝑖1represents the first participant belonging to that subgroup. We can also 

think of Equation 1.22 in terms of the sample log-likelihood being comprised of two 

components: a contribution from complete cases and a contribution from incomplete 

cases. The first term in Equation 1.22 is the portion of the sample log-likelihood that 

comes from complete-data; the trailing three terms in brackets are the portion of the 

sample log-likelihood that comes from incomplete-data. This partitioning illustrates an 

important aspect of maximum likelihood analysis; namely, that maximum likelihood uses 

all available information to estimate parameters. Because listwise deletion would only 

include complete cases, the last 3 terms in Equation 1.22 would be eliminated. The 

inclusion of these additional terms in the sample log-likelihood is what allows maximum 

likelihood estimation to provide unbiased estimates when the MAR mechanism is 

satisfied.  

With missing data models, maximum likelihood requires the use of iterative data 

algorithms. There are a wide variety of potential algorithms, but the general procedures 
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of the algorithms are similar (Enders, 2010). First the program takes a set of starting 

values that provide an initial guess of the parameter estimates. Then, the program 

iteratively auditions sets of parameters until it finds the set of values that maximizes the 

sample log-likelihood. Importantly, although the parameters in the description above are 

an unstructured mean vector and covariance matrix, we can substitute in the expectations 

based on a model with additional predictors or parameters.  

Planned Missing Data Designs 

An important extension of missing data methodological research is the use of 

planned missing data designs that rely on these modern missing data methods. Planned 

missing designs seek to minimize some of the prohibitive demands of large-scale 

research (e.g., respondent burden, time, money) while maintaining the desired scope of 

the research. Because researchers are often wary of including purposefully including 

missing data, I start by assuaging any discomfort researchers might have with the idea of 

intentional missing data by demonstrating that the classic randomized experiment can be 

viewed from a planned missing data perspective as explicated by Rubin’s causal model 

(R. J. Little & Rubin, 2002; Rubin, 1974, 1978a, 2005; West & Thoemmes, 2010). 

Randomized Experiment as a Planned Missing Data Design  

In the Rubin causal model for a basic randomized controlled study with one 

treatment and one control condition, some treatment, T, is given to a participant, pi, 

resulting in the observation of outcome T(pi). If the ability existed to simultaneously give 

the control condition, C, to “the same participant at the same time and in the same 

context” (West & Thoemmes, 2010), we would also observe the outcome C(pi). If we are 

able to compare these two outcomes, we could compute the causal or treatment effect for 
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a given participant as the difference between the two outcomes, and the total treatment 

effect as the differences between the group means across sample N for the two outcomes: 

 

∑
𝑇(𝑝𝑖) − 𝐶(𝑝𝑖)

𝑁

𝑁

𝑖=1

 (1.23) 

Although giving the same participant a different intervention under the exact 

same conditions provides for an elegant and straightforward estimation of the causal 

effect, in reality, research scenarios with humans preclude the ability to replicate the 

exact same conditions on the same participant. Once the first condition is administered, 

the participant is changed by virtue of having received the first treatment and by the 

passage of time. As a result, each participant in a classic randomized study is only 

assigned to one condition and researchers only observe the outcome(s) for one condition 

for each participant. The other half of the data are missing and these values are the 

unobserved responses we would have observed had the participant been able to 

simultaneously be in both conditions. With randomized designs, the unobserved missing 

responses for each participant’s unassigned condition satisfy the MCAR mechanism (i.e., 

the assignment to condition, and the resulting probability of missing value on an 

unassigned condition, is purely random and unrelated to other variables, on average). The 

true experiment provides an unbiased estimate of the average causal effect in the 

population (at least asymptotically) assuming certain assumptions are met (e.g., proper 

randomization was obtained ensuring independence of covariates at baseline, full 

treatment adherence, no attrition, and stable-unit treatment value assumption). Thus the 

classic randomized experimental design, arguably a gold-standard of research design, is 

actually a planned missing data design.  
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Historical Background of Planned Missing Data Designs 

The ability to analyze data using modern missing data methods affords new 

opportunities to implement research designs with intentional missing data to address 

issues of both researcher and participant burden. As an example, a researcher may be 

interested in a large scope of questionnaire items that are greater than the number of 

items that can be reasonably expected for participants to answer. Rather than limiting the 

number of questionnaire items, a planned missing data design that relies on the concept 

of “matrix sampling” could be used whereby each participant only answers a subset of 

the complete set of research questions. Thus the research collects data on the full set of 

questionnaire items while simultaneously reducing respondent burden. To lay the 

foundation of planned missingness, I provide some brief historical background. Planned 

missing data designs fit into a general class of efficiency-of-measurement designs (or 

simply “efficiency designs”; Graham et al., 1996) and borrow heavily from the efficiency 

design literature. Generally, the efficiency of a design is the extent to which a design can 

achieve the objective of a study while minimizing expenditure of time and/or money 

(Dodge, 2006, p. 127; Graham, 2012). One design is considered more efficient than 

another if the design uses fewer resources but can answer the same research question with 

the same precision. Typically, designs are made to be more efficient by both careful 

selection of the independent variables and determination of the best ways to allocate 

observations/participants. Broadly, many efficiency designs fall into one of three classes: 

(1) factorial designs, (2) optimal designs and (3) matrix sampling approaches. It should 

be noted that these classes are not mutually exclusive and many efficiency designs can be 

categorized into multiple classes.  
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Much of the current planned missing data work has evolved from the class of 

efficiency designs known as matrix sampling. In a type of matrix sampling known as 

“multiple matrix sampling,” items are divided into subsets and different subsets of items 

are administered to different subgroups of participants. The research on multiple matrix 

sampling mostly originated from educational testing research (Gonzalez & Eltinge, 

2007). According to Shoemaker (1973), as early as the 1950’s researchers at Educational 

Testing Services (ETS) were considering this type of testing design. One of the classic 

designs that came out of educational testing research is the Balanced Incomplete block 

(BIB; Beaton et al., 1987; Johnson, 1992; Kaplan, 1995). In the BIB spiral design, like 

other multiple matrix sampling techniques, the item pool is split amongst participants so 

that each participant only answers a subset of all possible questions. In fact, Beaton and 

colleagues (1987) note that “it is not necessary or even desirable that each individual 

student take the entire battery of exercises” but can still gain information about all pairs 

of association. Specifically, the BIB spiral design uses seven forms (although other 

educational testing designs have been proposed with differing number of forms). The 

design is “balanced” in three ways: (1) the same number of participants responds to each 

item, (2) every pair of items appears together in at least one testing booklet, and (3) 

fatigue issues are mitigated because items appear in different orders on different forms.  

In educational testing scenarios, these large designs can be quite useful and have a variety 

of benefits both methodologically (e.g., ability to estimate higher order effects) and 

administratively (e.g., decrease in concerns of cheating because students will not have the 

same test). Although the BIB spiral design has many benefits in educational testing, this 

design has practical limitations in terms of application to social sciences. Designs 
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stemming from the educational testing literature generally require complicated 

administration and very large sample sizes. In the social sciences, as compared to large 

scale educational testing, sample sizes are considerably smaller and seven or more 

questionnaire forms may pose a logistical challenge.  

 Modern Planned Missing Data Designs  

John Graham and colleagues propose a variation on multiple matrix sample 

designs known as the 3-form design (Graham et al., 1996; Graham, Hofer, & Piccinin, 

1994; Graham et al., 2001). The 3-form design is the close cousin of the BIB spiral 

design, but has features making the 3-form design more useful in social science research. 

Namely, the design is less cumbersome administratively because it only requires three 

forms. In this design, the entire set of research items (typically questionnaire items, but 

any type of item is appropriate) are divided into four blocks. The researcher then creates 

three item forms with each of these forms only including three out of the four blocks of 

items. The three forms are randomly assigned to participants. As a result, any given 

participant does not provide data on one of the blocks, but the research collects 

information from at least some of the participants on all of the items in the four blocks. 

Table 1 shows the most commonly implemented version of the 3-form design (Graham, 

2012). Notice that there are four “Blocks” named X, A, B, and C. These blocks denote a 

set of variables (e.g., items/questions). The rows in Table 1 correspond to the three forms 

in the design and each of these three forms is distributed to one of three subgroups of 

participants. As demonstrated in the table, all three forms contain the variables in Block X 

plus the variables in two of the other Blocks. Variables in Blocks A, B, and C are each 

missing one time from one of the three forms. To clarify exactly how this design is 
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implemented, let’s consider the scenario where students in a classroom respond to a 

research survey. Because of school scheduling time constraints, participants can only be 

reasonably expected to respond to 75 items. However, the researcher is interested in 

collecting a total of 100 items. Using the 3-form design, the researcher can collect data on 

these 100 items even though any given participant will only need to respond to 75 items. 

To implement the design, the researcher would decide which items should belong to 

Block X, A, B, and C and then she would create three forms as in Table 1. Although I am 

talking specifically of items, blocks may also be composed of entire questionnaires such 

as a commonly used scale for a construct of interest. The blocks are combined (as in 

Table 1) to create three forms and participants are randomly assigned to each form. 

Typically an equal (or close to equal) number of participants responds to each form, but 

this need not be the case. To illustrate a very general 3-form design, Table 2 shows an 

example of the questions that might comprise a given form if the researcher evenly 

distributed the items across blocks. Each of the four blocks contain 25 items and each of 

the forms contain three of the 25 blocks resulting in only 75 items on any given form. For 

instance, Form 2 would include items 1 – 25 (Block X), 26-50 (Block A), items 76-100 

(Block C) totaling 75 items. Thus although the total item pool is 100 items, each 

participant is only expected to answer only the 75 that are contained in his/her version of 

the form. One aspect of particular importance in the 3-form design is that the distribution 

of versions of the form is randomized across the sample of participants. Thus, the 

resulting pattern of missingness satisfies the MCAR mechanism. Importantly, analysis 

requires “modern” MAR-based missing data methods to use all available information to 

estimate parameters of interest (Baraldi & Enders, 2010; Graham, 2012).  
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In another design proposed by Graham and colleagues (1996), referred to as the 

“two-method measurement” design, researchers use multiple measures of a construct. A 

variation of this two-method measurement design informs my research study and I 

describe this design in more detail in Chapter 2. As a brief introduction, the two-method 

measurement design involves collecting data on two types of measures – generally 

inexpensive measures and more expensive measures. Researchers collect data on 

inexpensive measures that may have less construct validity and reliability for the entire 

sample. Data is collected on more expensive, but more valid, measure of the same 

construct for a subset of the sample – this is the planned missingness of the two-method 

measurement. For example, researchers interested in smoking behavior may collect self-

report data on smoking behavior from a large sample (which may be underreported due to 

the undesirability of the behavior), in addition to the more expensive and more reliable 

measure of cotinine in saliva in a small subsample. The two-method measurement design 

provides an innovative way to maximize sample size and construct validity while 

simultaneously controlling for cost by using multiple measures of the same construct and 

only providing the more expensive measures to a subsample of the participants. 

Furthermore, because the expensive measures provide greater construct validity, these 

expensive measures can be used to model bias (i.e., lack of construct validity) in the 

inexpensive measure resulting in more valid statistical conclusions (Graham, Taylor, 

Olchowski, & Cumsille, 2006). The issue of having reliable and valid measures is 

particularly salient in mediation analysis, because the literature elucidates that reliable 

and valid measures are important factors in having sufficient power to detect the 
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mediated effect. Thus, coupling the two-method measurement design with mediation 

analyses may be an advantageous strategy in certain research scenarios.  

Study Goals  

My research study investigates the use of intentional missing data for a mediation 

analysis that incorporates multiple measures of the same mediation construct. For 

purposes of description, I consider two types mediating variables: expensive and 

inexpensive mediators. The basic premise is that expensive measures often incorporate 

high construct validity, high reliability, and high assessment cost and can be thought of as 

the measure that would be used in a scenario with unlimited resources. The inexpensive 

mediating variables are less expensive and often less reliable measures of the same 

construct. My specific design will consider a scenario where X and Y are manifest 

variables and three measures of the mediator are available: one expensive and two 

inexpensive. With complete data, the most straightforward way to analyze the data would 

be with a latent variable mediation model as depicted in Figure 2. In a planned missing 

scenario, the researcher could collect complete data on two inexpensive measures of M, 

but would collect the expensive measure for only a subset of the participants. This 

missing data design can be analyzed using maximum estimation to incorporate all 

available data. As with complete data, the analysis model may be a latent variable 

mediation model. This study evaluates the power to detect the mediated effect with a 

latent variable mediation model that accounts for missing data using maximum likelihood 

estimation. In addition, the missing data literature describes another approach that might 

be appropriate for such a data structure. Specifically, if the expensive measure is a 

variable that might have been used in a scenario with unlimited resources, it makes sense 
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to evaluate a model with this expensive variable as the mediator and the inexpensive 

mediation variables serving as “auxiliary” variables. I describe auxiliary variables in 

more detail in the next chapter, but broadly, auxiliary variables are variables that are not 

of direct research interest, but are included in a missing data model to reduce the 

uncertainty caused by missing data and increase the precision of model estimates. For 

completeness, the study also compares three other models that do not include all the 

measures of the mediator. In Chapter 2, I will review the pertinent literature that informs 

and supports my research study.  
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CHAPTER 2 

LITERATURE REVIEW 

The importance of statistical power is well known. In the social and behavioral 

sciences, statistical power plays a central role in the planning and design of research 

studies and the interpretation of results (Davey & Savla, 2009). A priori power analyses 

are often done prior to a study to determine the sample sizes needed to detect an effect. 

Not surprisingly, because missing data typically result in estimates with decreased power, 

concerns about adequate power are prevalent in the methodological literature on planned 

missing data (e.g., Graham et al., 2001, 2006; Jia et al., 2014; Mistler & Enders, 2012). In 

terms of mediation analysis, Fritz and MacKinnon (2007) note that a common question 

researchers ask is “How many subjects do I need to achieve adequate power when testing 

for mediation?” Mediation can provide crucial information about the mechanism by 

which one variable transmits effects to another. If mediation studies are underpowered, 

researchers may miss out on detecting important mechanisms relating two variables. In 

fact, power is so important to a study that hypothesizes mediation, numerous 

methodological studies have addressed this issue (e.g., Fritz & MacKinnon, 2007; Hoyle 

& Kenny, 1999; MacKinnon et al., 2002; Mallinckrodt, Todd, Wei, & Russell, 2006; 

Preacher & Hayes, 2008; Taylor, MacKinnon, & Tein, 2007). Further complicating 

concerns about power in mediation, there is evidence to suggest that measurement error 

may add bias to the mediated effect and/or reduce the power to detect a true mediated 

effect. To mitigate the impact of measurement error, researchers may choose to use 

highly reliable measures. Unfortunately, the best measures are typically associated with 

higher costs. To accommodate the higher cost, it is possible that a researcher might need 
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to compromise sample size. Because power to detect the mediated effect is influenced by 

both the quality of the measured variables and sample size, cost limitations may place 

constraints on designing a research study that maximizes power. My research attempts to 

address this issue by exploring the possibility of utilizing planned missing data design 

whereby a large sample of participants provides information on less expensive, but 

possibly less reliable, mediating variables and a smaller subsample of participants 

provide information on a more expensive, but often more reliable measure of the 

mediator. By collecting data in this way, a researcher might be able to control costs (i.e., 

not every participant is measured on the expensive variable), increase accuracy (i.e., 

highly reliable expensive measure is incorporated to provide less biased results), and 

increase power (i.e., larger sample size measured on inexpensive measure). It is hoped 

that my research will help elucidate the conditions in which a planned missing data 

design for mediation analysis with multiple measurement might be useful.  

 This chapter reviews the relevant literature that informs the current research 

study. First, I briefly review statistical power of the mediated effect. I then expand that 

discussion to consider the implication of power when the mediator is measured with 

error. Next, I discuss the literature on planned missing data designs relevant to the study. 

This includes a section on auxiliary variables and reviews the planned missing data 

literature that has properties similar to my research design. Following the discussion of 

planned missingness, I provide a brief overview of the missing data literature that reviews 

missingness specifically in the context of mediation. Although this literature does not 

explicitly refer to planned missing data designs, the results of these missing data studies 

under the assumption of a MCAR mechanism are directly applicable to a planned missing 
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data design which assumes a missingness that satisfies the MCAR mechanism. To 

conclude the chapter, I provide a summary of the justification for the current research 

study.  

Statistical Power of the Mediated Effect  

Varying methods for assessing mediation have been proposed (e.g., Baron and 

Kenny causal steps test, MacArthur model of mediation, and the joint significance test; 

MacKinnon, 2008). Consequently, much of the literature concerned with statistical power 

of the mediated effect focuses on comparing the power of the different methods to testing 

mediation (e.g., Fritz & MacKinnon, 2007; MacKinnon et al., 2002; Mallinckrodt et al., 

2006). One simulation study evaluated fourteen methods for assessing the mediated effect 

found that the commonly used causal steps approach to mediation (Baron & Kenny, 

1986) and tests of mediation based on normal distribution theory are severely 

underpowered relative to tests of mediation that rely on the distribution of the product 

(MacKinnon et al., 2002). Confirming this finding, a study by Fritz and Mackinnon 

(2007) determined that to achieve 0.8 power using the causal steps approach when there 

is complete mediation (𝜏′ = 0) and small effect sizes for the α and β paths, a research 

study would require 21,000 participants. The low power in the causal steps approach is 

generally attributed to the requirement of a significant X to Y relation, especially in the 

case of complete mediation (MacKinnon, Fairchild, et al., 2007). For this reason, the joint 

significance test, which only requires the 𝛼 and 𝛽 paths to be significant, has higher 

power than the causal steps test (MacKinnon et al., 2002). Power based on an assumption 

of normality (and corresponding symmetric confidence limits) will also typically result in 

underpowered tests of mediation (Fritz & MacKinnon, 2007; MacKinnon et al., 2002). 
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Because the distribution of the product is not normally distributed, detection of the 

mediated effect based on normal distribution theory is underpowered; the lack of power 

is due to the distribution of the product being asymmetric and highly kurtotic. 

Accordingly, power to detect the mediated effect based on the distribution of the product 

(e.g., bootstrap tests and distribution of the product asymmetric confidence intervals) has 

been shown to have more accurate Type 1 error rates and better statistical power as 

compared to other tests of mediation. Because the literature clearly supports the use 

product of coefficients approach using significance testing that relies of the distribution 

of the product (Fritz & MacKinnon, 2007; MacKinnon, Fritz, et al., 2007; MacKinnon et 

al., 2004; Mallinckrodt et al., 2006; Preacher & Hayes, 2008; Tofighi & MacKinnon, 

2011), this research study employs the asymmetric confidence interval test based on 

PRODCLIN (MacKinnon, Fritz, et al., 2007). 

Although power is enhanced by using the appropriate method for testing the 

mediated effect (and most tests of power in mediation are most concerned with 

comparing these methods), tests of the mediated effect still tend to require large sample 

sizes to have sufficient power. Fritz and MacKinnon (2007) determined that for various 

combinations of small, medium and large effect sizes of the α or β paths corresponding to 

Cohen’s (1988) criteria of percent variation accounted for by the predictors, the required 

sample sizes to achieve power equal to 0.8 range from N = 35 to N = 549. The lowest end 

of the range, N = 35, occurs only when both α and β correspond to a large effect size 

which is rare in many areas of research. For mediated effects where either the α or β 

paths correspond to a small effect size, sample size requirements range from N = 401 to N 

= 539; these are much larger sample sizes than we often see in psychology. Not 
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surprisingly, when Fritz and MacKinnon (2007) surveyed two psychology journals 

(Journal of Consulting and Clinical Psychology and the Journal of Applied Psychology 

from 2000 to 2003), they found that 75% of the studies that included a small α or β effect 

size had less than .8 power to find a mediated effect. As an aside, I would be remiss not 

to mention that power issues are not just limited to mediation analyses; many studies in 

psychology are underpowered and it would be unfair to expect mediation to be any 

different (reviewer comment referenced in a footnote in Fritz & MacKinnon, 2007). In 

fact, the power to detect a mediated effect between two variables is greater than the 

power to text the simple bivariate association in many conditions (Shrout & Bolger, 

2002). Even though mediation has this interesting property of increased power in some 

scenarios, mediation analyses still tend to be underpowered. Furthermore, if the mediator 

contains measurement error, as expected in most realistic research scenarios, power to 

detect the mediated effect may be further decreased.  

The Effect of Measurement Error on Power of the Mediated Effect  

It is clear from the literature that mediation often requires large sample sizes. 

However, the research on power in mediation has largely been focused on scenarios that 

assume an ideal situation where X, M, Y, and any additional covariates are measured 

without error. In fact, one assumption of mediation analysis in the OLS regression 

framework is that predictor variables are measured without error (Cohen, Cohen, West, & 

Aiken, 2002; MacKinnon, 2008). This begs the question, what happens to the power to 

detect the mediated effect when variables are measured with error? This is an important 

question because, in real research applications, measurement error is virtually 

unavoidable. Measurement error refers to any immaterial factors, both systematic and 
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unsystematic, that contribute to the measured scores on a variable that are not related to 

the theoretical construct of interest. Much has been written on the topic of measurement 

error (for example see the classic texts Crocker & Algina, 2006 or Lord & Novick, 1968), 

and broadly the two major aspects of measurement error are validity and reliability 

(MacKinnon, 2008). The concept of validity has evolved overtime in the psychometric 

literature (Algina & Penfield, 2009), and validity generally refers to the extent that a 

measure actually measures what it purports to measures. Reliability refers to the 

consistency a measure. In classical test theory, reliability is quantified as the proportion 

of variability in a measure directly related to the true score measured without error 

(Cohen et al., 2002).  Although both validity and reliability are important components of 

measurement error, I will rely on reliability as representative of measurement error for 

purposes of this discussion and resulting research project for two reasons: (1) reliability is 

more straightforward to quantify and model than validity, and (2) it can be reasonably 

assumed that a program of research has generated valid measures of the theoretical 

constructs of interest (MacKinnon, 2008). Semantically, I will use reliability and 

measurement error interchangeably.  

 To begin the discussion of unreliability in mediation, let’s first consider what we 

know about the impact of unreliable predictor variables in OLS regression. As stated, one 

assumption when estimating regression coefficients in OLS regression is that the 

predictor variables are measured without error (i.e., they are perfectly reliable). When one 

or more independent variables have any degree of unreliability, the estimates of the 

regression coefficients and their standard errors will be biased. In a regression equation 

with only one IV, bias in the independent variable will result in an attenuated relation 
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between the independent and dependent variables. That is, when assessing the magnitude 

of regression coefficient relating a single predictor with measurement error to a single 

outcome (as in Equations 1.1 and 1.2), on average, the regression coefficient will be 

smaller in magnitude in the sample than it is in the population if the independent variable 

is measured with some error. In terms of the mediation equations introduced in Chapter 1, 

this implies that if there is error in X in Equation 1.2, the coefficient, α, will be attenuated 

(making the rather unrealistic assumption that no other covariates are included). When 

there are multiple IVs in a regression equation, as in Equation 1.3 or in any equations that 

include additional covariates, the effects of measurement error on the estimation of the 

regression coefficients is less obvious; the absolute value of the predictors may decrease 

or increase (Cohen, et al., 2003). This means that the coefficient, 𝛽, may be biased, but it 

is not immediately obvious in which direction the bias will occur. Note that the bias 

related to measurement error only occurs when the measurement error is in one of the 

IV’s. When measurement error is in the DV, the error does not affect the value of the 

unstandardized regression coefficients (measurement error in the DV will affect the value 

of the standardized coefficients). From this, we can conclude that measurement error in 

the mediator would not affect the value of α, because the meditator is the outcome 

variable in Equation 1.2. Although measurement error in the dependent variable will not 

bias estimates, this error typically results in increased residuals and standard errors 

resulting in a decrease in the power to detect an effect (Cohen et al., 2002). 

Consequently, measurement error in M will increase the standard error of α, making it 

hard to find a statistically significant effect even if one exists. Given the research that 

demonstrates that you are most likely to find significant mediated effects when both α 
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and β are significant (MacKinnon, 2008), this is another way in which measurement error 

in the mediator could decrease power.  

The potential impact of measurement error in the mediator as described above is 

substantiated by the literature. Hoyle and Kenny (1999) demonstrated analytically that as 

the reliability of the mediator departs from 1.0, the observed effect of 𝛽 is underestimated 

and, in some cases, the observed effect of 𝜏′ is overestimated. Baraldi and MacKinnon 

(2011) demonstrated comparable results in a small simulation study. As a reminder, these 

effects hold only when there are no covariates with error in the model. Darlington (1990) 

notes that covariates with considerable measurement error can also affect regression 

coefficients in an unpredictable ways. Perhaps somewhat surprisingly, recent research 

suggests that simultaneously omitting confounders and using unreliable variables may 

offset each other, resulting in a relatively unbiased estimate of the population mediated 

effect (Fritz, Kenny, & MacKinnon, 2015). 

Other research on measurement error in mediation comes from the field of 

epidemiology. One study investigated measurement error in the mediator for logistic 

regression models assuming M is a normally distributed variable and Y is binary variable 

(le Cessie, Debeij, Rosendaal, Cannegieter, & Vandenbroucke, 2012). This particular 

study was most interested in the influence of measurement error on detecting partial 

mediation via the effect size of τ’ to emulate a scenario where researchers need to know if 

there are further mediating mechanisms that need be identified. For example, if a 

mediator only partially mediates the relationship between a DNA characteristic and a 

disease, another potential pathway relating the DNA characteristic and a disease must 

exist and further research on mechanisms of action is needed. Illustrating the importance 



   

43 

of this question, an epidemiological study on lung cancer was interested in to what extent 

certain genetic variants and lung cancer were mediated by smoking (VanderWeele, 

Asomaning, et al., 2012). The mediator, smoking, was measured by self-report which is 

known to have high measurement error. Thus, understanding how a mediator with 

measurement error would affect conclusions about partial versus complete mediation is 

important. A major contribution of the study by le Cessie and colleagues (2012) is that 

their consideration of measurement error was not just limited to classical test theory and 

instead considered a variety of different forms of measurement error. For example, 

researchers included a condition of measurement error from intraindiviual variation over 

time. The error from intraindividual variation assumes that the value of a measure is 

comprised of both permanent factors (noninvariant components) and temporary factors 

(variant components). Another interesting consideration was the effect of measurement 

error that varies in M depending on the value of X. This is a type of error that might occur 

when different measurement instruments are used to measure M depending on the value 

of X. For example, if X is a measure of blood type and M is a measure of a clotting factor, 

and the instrument to measure clotting factor is different depending on blood type, 

measurement error in M will vary depending on the value of X. Thus, rather than limiting 

evaluation of the impact of measurement error to measurement error as defined by 

classical test theory, the authors evaluated the effects of a variety of types of 

measurement error using both analytic work and a simulation study. Not surprisingly, the 

results suggest that measurement error (in all forms described by the paper) may bias the 

estimate of τ’. Specifically, the researchers found that the partialled direct effect, τ’, is 

biased positively if the direction of the relationship between X and M is the same as the 
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direction of the relationship between M and Y. For effects in opposite directions, τ’ is 

negatively biased as a result of measurement error.  

VanderWeele, Valeri and Ogburn (2012) expanded the research by le Cessie and 

colleagues (2012) to consider the influence of measurement error on the mediator to 

detect the mediated effect (as opposed to the previous focus on τ’). Under the assumption 

of measurement error in the classical test theory framework, the researchers found that in 

a logistic regression model measurement error in the mediator with a normal distribution 

results in bias of the mediated effect towards a null odds ratio of one. Like the previous 

work, they found that if the direct and indirect effects are in the same direction, the bias 

of the direct effect is away from the null odds ratio of one. Interestingly, these results do 

not necessarily hold for all types of mediators; specifically a multinomial mediator with 

measurement error will not follow the patterns found by this research.  

 Potential Corrections for Measurement Error. There are a variety of potential 

remedies to address issues of measurement error. For example, Cohen, Cohen, West and 

Aiken (2002) note that a correlation matrix corrected for unreliability can be used to 

estimate the regression coefficients instead of the raw data. The corrected correlation 

matrix relies on the known attenuation of the correlation between variables with 

measurement error. If the reliability of two variables, J and K, is denoted as 𝑟𝐽𝐽 and 𝑟𝐾𝐾, 

respectively, then the observed correlation, 𝑟𝐽𝐾, is a function of the true correlation, 𝑟𝐽𝐾𝑇
, 

and the measures of reliability, 𝑟𝐽𝐾 = 𝑟𝐽𝐾𝑇√𝑟𝐽𝐽𝑟𝐾𝐾. Using this relationship, observed 

correlations can be corrected for unreliability and the updated correlation matrix can be 

used to estimate the regression model (Cohen et al., 2002). Another solution for a single 

mediator model with only one measure of M is to replicate the manifest variable model in 
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the latent variable framework and incorporate a correction in the residual error variance 

by constraining this variance to one minus the reliability of the measure times the 

variance of the measure (MacKinnon, 2008; Stephenson & Holbert, 2003). Simulations 

suggest that this method is better than not providing any correction for measurement 

error, but that latent variable models outperform this method (Stephenson & Holbert, 

2003).  

Le Cessie and colleagues (2012) also provide correction formulas to directly 

apply to the observed τ’ coefficient. Further research expanded these correction formulas 

for generalized linear models that can accommodate an XM interaction (VanderWeele, 

Valeri, et al., 2012). Three correction approaches from the measurement error literature 

were evaluated: measure of moments, regression calibration estimators, and a simulation-

based approach. Simulation studies suggest that regression calibration worked best across 

all scenarios considered (VanderWeele, Valeri, et al., 2012). At a basic level, the method 

of regression calibration uses a validation sample to model a correction for the biased 

estimates. Conceptually, this is not unlike what happens in a planned missing data model 

with two types of measures of the mediator.  

All of these methods provide an adjustment for the mediated effect. However, 

successful use of the correction methods that utilize correction formulas requires having a 

very good estimate of the reliability. For most measures, precise estimates of reliability 

are not available (Cohen et al., 2002). To the extent that estimates of reliability are 

incorrect, these corrections will not eliminate all bias and could even introduce new bias. 

Consequently, it has been suggested that sensitivity analyses be used when there are no 

available gold standard or validation samples available (Valeri, Lin, & VanderWeele, 
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2014). The notion of using a validation sample with a gold standard measure to correct 

estimates using variables measured with error is not that unlike a planned missing data 

design.  

Although many researchers prefer to use regression based tests (Fritz & 

MacKinnon, 2007), structural equation modeling can also be used to assess mediation 

and, if latent variables are incorporated, these models can potentially mitigate some of the 

measurement error (Cole & Maxwell, 2003; Holmbeck, 1997; Kenny, Kashy, & Bolger, 

1998). Structural equation modeling that only includes manifest variables with 

measurement error will still be biased. As stated by MacCallum (1995, p. 21), “The 

presence of such error in the measurements will contaminate estimates of model 

parameters.” Latent variables can be incorporated into structural equation models to 

attempt to disentangle measurement error from the variables. For example, consider the 

mediation model in Figure 2. In this model, three observed measures of a mediator, M1, 

M2, and M3, inform the latent mediator variable, LM. Structural equation models with 

latent variables partition unique variance and random error from variance shared by a set 

of measures of the same construct. The resulting associations between latent variables are 

free of measurement error (Hoyle, 1991). To accomplish this task, latent variable models 

require multiple measures of the mediating construct. In some cases, multiple measures 

are not available or logistic constraints might prohibit collection of multiple measures. 

Another potential drawback of using SEM with latent variables is that these models tend 

to require larger sample sizes. Hoyle and Kenny (1999) evaluated the use of latent 

variable models in a scenario with three measures of a mediation construct for three 

levels of reliability: .60, .75, and .90. The researchers found that for the lowest 
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reliabilities investigated (.60 and .75), a sample size of at least N = 200 is needed to have 

sufficient power to detect the mediated effect.  

 As the literature demonstrates, to maximize power to detect the mediated effect, 

researchers should maximize sample size and reliability of the measures and, ideally, 

collect multiple measures in order to use a latent variable model. Thus, researchers are 

left in a situation where for a single mediator model they either need a perfectly reliable 

measure of the mediator or multiple measures of the mediator so that they can model 

error in the structural equation modeling framework. Because reliable measures are often 

the most expensive, and collecting multiple measures, even if less reliable, also increases 

expense, this requirement may come at the expense of a reduced number of participants. 

My research seeks to address some of these issues using a planned missing data design 

that evaluates a latent variable model as one solution for unreliable measures.  

Planned Missing Data  

Modern missing data analyses, such as maximum likelihood estimation, provide 

researchers the opportunity to leverage purposeful missing data to their advantage. Used 

correctly, planned missing data designs can address many practical problems. These 

designs can mitigate both respondent burden and researcher expense; researcher expense 

includes any researcher resources used for the study such as time and money. My 

research study investigates the use of mediation analysis that incorporates two types of 

measures in a planned missing design. Although such a design has not yet been evaluated 

in the literature, there are aspects of the general literature on missing data and planned 

missing designs that are applicable to the multiple measures mediation design I am 

studying. This section will review the pertinent literature. First, I introduce auxiliary 
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variables; these are variables that can be used to increase power in a planned missing data 

design and are incorporated in two of my analysis models.  Next, I review the pertinent 

literature on planned missing data. Specifically, I narrow the focus to planned missing 

data designs that include latent variables as these scenarios most closely mimic my 

research design. I pay particular attention to the two-method measurement design as this 

design most closely represents one of the designs in the current research study.  

Auxiliary Variables  

A discussion on missing data is not complete without mentioning auxiliary 

variables. In modern missing data analysis, auxiliary variables are variables that are not 

part of the research question, but can be incorporated to predict the propensity for 

missing data and/or predict the incomplete analysis variables. Said differently, auxiliary 

variables are variables that would not be included in a complete data analysis, but may be 

useful in a missing data analysis and are included solely for the purpose of improving the 

missing data procedures. Including these auxiliary variables can reduce nonresponse bias 

and improve power. Consequently, researchers generally recommend an “inclusive” 

strategy of including as many auxiliary variables as possible. In a planned missing data 

design, where the underlying mechanism is known to be MCAR, non-response bias is a 

mitigated concern. Instead, auxiliary variables may be useful in increasing power in 

planned missing designs. Furthermore, if there is additional unplanned missing data, 

these auxiliary variables can help meet the requisite MAR assumption. Methodologists 

note that improvements in efficiency also may occur with the use of auxiliary variables 

(Rubin, 1996; Collins, et al., 2001). When auxiliary variables are highly correlated with 

incomplete analysis variables in the model, auxiliary variables restore some of the power 
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lost to missing data. Even when the auxiliary variables are not highly correlated, the 

worst case scenario for the inclusion of auxiliary variables is “neutral, and at best 

extremely beneficial” (Collins, et al., 2001, p. 348). Thus, in a situation where correlated 

measures of a mediation construct are available, these variables could restore some of the 

power lost in a planned missing design with missingness on the mediator. In fact, in 

terms of detecting mediation, research has explicitly demonstrated that that auxiliary 

variables can increase the power to detect the mediated effect (Zhang & Wang, 2013).  

The literature describes three ways to include auxiliary variables when using 

maximum likelihood estimation in missing data. In the saturated correlates approach, 

auxiliary variables are incorporated via a series of correlations and the analysis model 

variables and/or residual terms (Enders, 2010; Graham, 2003). Generally, the auxiliary 

variables must correlate with the manifest explanatory variables, other auxiliary 

variables, and the residual terms of the indicators of the latent outcome variables. The 

saturated correlates approach is the method I use in my research study. Besides the 

saturated correlates approach, there are two other strategies to incorporate auxiliary 

variables using maximum likelihood estimation: extra dependent variable model and the 

two stage approach. The extra dependent variable model incorporates an auxiliary 

variable as an additional dependent variable and correlates the residuals of the dependent 

variables (Graham, 2003; Graham, Hofer, Donaldson, MacKinnon, & Schafer, 1997).  

Simulations suggest that this model performs similarly to the saturated correlates model 

in terms of parameter bias, but the saturated correlates model performs better in terms of 

model fit (Graham, 2003). Savalei and Bentler (2009) proposed a two-stage approach to 

application of auxiliary variables whereby a population covariance matrix is estimated 
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from a model and this covariance matrix is used in a complete data maximum likelihood 

function to find parameter estimates. This is specifically the method that Zhang and 

Wang (2013) used to demonstrate that auxiliary variables can increase power to detect 

the mediated effect. The two-stage approach has drawbacks compared to the saturated 

correlates approach. Namely, it adds complexity in that it requires a single value of 

sample size of N and this may bias standard errors (Enders, 2010; Enders & Peugh, 

2004). There are correction formulas to address these issues, but these corrections are not 

automated by all software packages (EQS is an exception). Because the saturated 

correlated approach is automated by the software package Mplus, this is the method 

incorporated in the study 

Planned Missing Data Designs that Inform the Research Study  

Next, I will review the planned missing designs that are related to my research by 

virtue of the inclusion of a latent variable. Recall from Chapter 1 that many planned 

missing data designs rely heavily on the notion of matrix sampling. Matrix sampling is 

often in the form of random assignment of items (or waves) to participants. For example, 

the 3-form design discussed in Chapter 1 utilizes the idea of matrix sampling. Although 

this design is extremely flexible and customizable, Table 1 shows the most commonly 

implemented version of the 3-form design (Graham, 2012). In this design, the entire set 

of research items are divided into four blocks and then three item forms are created each 

including three of the four blocks of items (Block X plus the variables in two of the other 

blocks). Variables in Blocks A, B and C are each missing on time from one of the three 

forms. A recent methodological study examined the use of the 3-form design for three 

latent variable models (Jia et al., 2014). Specifically, the researchers evaluated a cross-
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sectional confirmatory factor analysis model (see Figure 3), a two-time point 

confirmatory factor analysis model, and a three time point mediation model. Note the 

similarities in Figure 3 with a cross-sectional latent variable mediation model. The main 

difference is that a confirmatory factor analysis model lacks the directional paths linking 

the variables. In this study, the researchers evaluated a planned missing data design using 

a 3-form design whereby all participants provided data at all measurement occasions 

(when applicable), but do not provide information on all measures. In the cross-sectional 

confirmatory factor analysis model, each participant provides data for only two of the 

three indicators for all three latent variables. Even though the conception of the design 

differs from mine in that it utilizes a 3-form design, aspects of this design parallel my 

design. My design has three indicators of a latent mediation variable and some 

participants do not provide information on one of the indicators. Similarly, this research 

also has three indicators, but each participant only provides information for two of the 

three indicators. Similar parallels also exist between my research design and the two-time 

point confirmatory factor analysis model and the three time point mediation model. 

Simulation studies evaluating these models found a few important results. For smaller 

sample sizes, maximum likelihood approaches perform better in terms of required sample 

sizes, parameter bias, and convergence rates than multiple imputation providing further 

support for my selection of maximum likelihood estimation in my research. This study 

also demonstrates the importance of a measure called fraction of missing information 

(FMI). This is a measure of the proportion of information lost due to missing data. When 

using a 3-form design with a latent variable model, it is important to conduct a power 

analysis to learn the FMI on the model design to determine the sample size needed for the 



   

52 

model. This is particularly important because unlike conventional wisdom, a larger 

sample size is not always uniformly better; the sample size is contingent on the 

complexity of the analytic model and the FMI (Jia et al., 2014). 

Matrix sampling techniques have also been applied to longitudinal studies to 

create so-called “wave missing designs” (Graham et al., 2001; Mistler & Enders, 2012; 

Rhemtulla, Jia, Wu, & Little, 2014). In these designs, instead of participants being 

assigned to miss sets of items, participants are assigned to miss one or more measurement 

occasions. A longitudinal planned missing design is relative to planned missing data in 

mediation analysis in two distinct ways. First, by definition, ideal mediation research 

would incorporate a longitudinal design. Thus, the fact that planned missingness may be 

used in longitudinal research is relevant to a discussion of mediation analysis. Second, 

and most importantly, aspects of planned missing data design with longitudinal data are 

similar to one of the designs in my research study. For example, consider the latent 

variable mediation model in Figure 2; this model has three indicators loading onto a 

latent construct. Likewise, a linear growth model in the linear framework is also a latent 

variable model. For example, the model in Figure 4 is an SEM measurement model with 

three waves. Notice the nuts and bolts are virtually the same as in Figure 2. In Figure 2, 

there are three measures of a mediating construct loading onto a latent variable and in 

Figure 4 there are three measurement waves loading onto a latent variable. There are, of 

course, distinct differences between the models. For example, rather than freely 

estimating some of the loadings relating the indicators (observed measures) to the latent 

construct, the loadings in a growth model are typically fixed to demonstrate growth. 

However, the general pieces are still the same and, because of the similarities between 
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this model and one of the models in my research design, the performance of wave 

missing design warrants some discussion.  

One of the earliest variations of wave missing designs is the accelerated time-lag 

design. In an accelerated time-lag design, each participant is measured at two waves, but 

the amount of time between these waves varies across participants (McArdle, Ferrer-

Caja, Hamagami, & Woodcock, 2002; McArdle & Woodcock, 1997). Conceptually, the 

resulting data matrix includes complete-data at the first wave for all participants. Each 

participant has one additional wave (depending on the given time lapse), but is missing 

data on every other potential time lapsed wave collection. In this example, there are 

extremely high rates of missingness, yet this method can be used successfully to 

demonstrate growth over time using latent growth curve techniques (McArdle et al., 

2002; McArdle & Hamagami, 1992; McArdle & Woodcock, 1997). The success of this 

method provides further support to the utility of planned missing data designs.  

Graham and colleagues (Graham et al., 2001) simulated a hypothetical growth 

model with five waves and empirically tested and illustrated the use of seven different 

wave missing patterns . As would be expected, as the percentage of missing data 

increased and the number of observed data points decreased, the standard errors for the 

coefficients of interest increased. However, it is of particular interest that for the 

particular set of conditions simulated, standard errors increased at a faster rate for 

complete case reduction than they did in a planned missing data design. In other words, 

as N decreased, complete case analyses decreased in power more rapidly than planned 

missing data designs. From this, it is reasonable to conclude that planned missing data 

designs were somewhat more robust against decreasing sample sizes. This finding is 
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further strengthened by analyses that put a cost value on each data point. Given the 

selected conditions, the missing data designs had more statistical power than the 

complete case designs that costs the same (Graham et al., 2001).   

The major lesson from wave missing data designs is that these designs have the 

capability of being advantageous to the researcher. As a note, the literature also shows 

that planned missing data designs are not uniformly advantageous and performance of 

these designs is very design specific. Not surprisingly, the advice about planned missing 

designs is not always consistent when it comes from studies on wave missing designs 

interested in different components of the model, using different population parameters, 

and with missing data rates. For example, Rhemtulla et al. (2014) and Graham et al. 

(2001) found somewhat conflicting results. In Graham and colleagues’ simulation studies 

(2001), they found that wave missing designs resulted in higher power per observation 

than complete-data designs. Rhemtulla et al. (2014) found this not to be the case for 

variances and covariances among the slopes in a LGM model. This conflicting advice is 

more evidence that the optimal design is dependent on the exact model specification, 

relation among variables, and parameters of interest, and corresponding effect sizes. It is 

clear that there is no “one size fits all” approach to wave missing data designs. This is 

true in general of planned missing data designs. I also expect the same to be true in a 

mediation design.  

Another type of efficiency design that incorporates planned missing data proposed 

by Graham and colleagues is the two-method measurement design (Graham & Shevock, 

2012; Graham et al., 2006; Rhemtulla & Little, 2012). This is the design that is most 

aligned with my research study and provided inspiration for my model. As a note, the 
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two-method measurement design is a bias correction design. In my line of study, I 

evaluate only a basic design that does not include a bias factor. Still, given the similarities 

between this design and one of the designs evaluated in the current research, I provide 

details on the two method measurement design.  

The two-method measurement design involves collecting data on two types of 

measures – generally inexpensive measures and more expensive measures. Researchers 

collect data on inexpensive measures that may have less construct validity for the entire 

sample. Data is collected on more expensive, but more valid, measure of the same 

construct for a subset of the sample – this is the planned missingness of the two-method 

measurement. To understand the importance of this design, consider that in most research 

scenarios there are a variety of measures that may be used to test a construct of interest. 

In health and social sciences, these measures range from a simple self-report to more 

comprehensive assessments such as clinician observations or biological sampling. In 

many research situations, there often exist better measures of the construct with improved 

reliability and/or construct validity. However, these “better” measures may be more 

costly in terms of time and other resources (e.g., money, materials, equipment). For 

example, Graham and Shevock (2013) note that in smoking research, although self-

reports of smoking continue to be common, researchers also use methods such as 

measures of cotinine (a metabolite of nicotine) in saliva. Here, the less valid measure is 

the virtually costless self-report of smoking and the more valid measure is the more 

expensive biological measure of smoking. VanderWeele and colleagues (VanderWeele, 

Asomaning, et al., 2012) provide an example of smoking as a mediator measured with 

error. In health studies, body composition relative to healthy norms is often of interest. 
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An inexpensive, but less valid measure relies on self-report of height and weight to 

compute a standardized numeric measure of a person’s body composition, the Body Mass 

Index (BMI). A better measure of body composition is determining percentage of body 

fat using hydrostatic weighing but this technique is prohibitively expensive. In sum, 

although many measures exist for any one particular construct, often the more expensive 

measures are most valid. Ideally, researchers would routinely use the better measures, but 

cost constraints are often a limiting factor in research designs. For example, assuming a 

fixed budget, choosing expensive measures may significantly reduce the number of 

participants in the sample. On the other hand, using a less expensive measure typically 

allows for increased sample size, but the low construct validity may pose a problem in 

both results and interpretation. Weighing and balancing these issues is something that 

must be taken into account in designing a research study.  

The two-method measurement design provides an innovative way to maximize 

sample size and construct validity while simultaneously controlling for cost by using 

multiple measures of the same construct and only providing the more expensive measures 

to a subsample of the participants. With modern missing data analysis methods, these 

designs leverage the statistical benefits of collecting inexpensive measures on a larger 

sample of participants and a more expensive, but more accurate, measures on a smaller 

subset. Furthermore, because the expensive measures provide greater construct validity, 

these expensive measures can be used to model bias (i.e., lack of construct validity) in the 

inexpensive measure resulting in more valid statistical conclusions (Graham & Shevock, 

2012; Graham et al., 2006).  
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The two-method measurement model is a two factor response bias-correction 

model’ this model borrows heavily from the multitrait-multimethod tradition. Response 

bias is bias as relates to construct validity. The degree that a measure is “valid” is based 

on the degree to which it measures the construct purports to measure. On the other hand, 

the extent that a measure measures something different than intended reflects the extent 

that the measure is not valid (i.e., biased). For example, in a measure that assesses dietary 

behaviors, the valid part of the measure is the extent that the measure captures actual 

dietary behaviors. The biased part of the measure may be the systematic underreporting 

of unhealthy dietary behaviors that is often observed (e.g., Braam, Ocké, Bueno-de-

Mesquita, & Seidell, 1998; Lafay et al., 1997). The two-method measurement design 

allows researchers to model this type of systematic bias in the analysis by including both 

a factor getting at construct and a factor getting at bias in the measurement model. 

Readers may recognize familiarity of the notion of response bias with other terms the 

literature such as halo errors (Hoyt, 2000) and correlational errors (Berman & Kenny, 

1976; Graham & Collins, 1991). 

 The general bias correction model must have at least two measures of the 

inexpensive but potentially flawed measure of the construct of interest and one (or more) 

expensive measure. This expensive measure should be a highly valid measure, but for 

actual application, Graham and Shevock (2012) assert that the expensive measure simply 

needs to be the preferred measure and not necessarily a perfectly valid measure. In terms 

of a missing data design, this measure can be thought of as the measure that would have 

been collected if expense (e.g., time, cost, etc.) was of no consideration.  
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To illustrate the bias correction model, Figure 5 shows the Bias Correction model 

presented by Graham et al. (2006) and also discussed elsewhere (e.g., Garnier-Villarreal, 

Rhemtulla, Mijke, & Little, Todd D., 2014; Graham & Shevock, 2012; Rhemtulla & 

Little, 2012). The structural equation model in Figure 5  shows a latent construct with 

three indicators. Returning to the smoking example, the two biased indicators might be 

two smoking self-reports. The unbiased measure is a saliva measure of cotinine. In this 

model, there are two factors allowing for correlation between the biased measures. One 

factor in the IV (“bias” in the figure) represents response bias and the other factor 

(“construct” in the figure) is the common constructs. For purposes of the smoking 

example, bias represents systematic self-report bias. Importantly, to model bias, there 

must be at least two measures that are thought to have a common source of bias. 

Although Figure 5 shows only one unbiased measure, more than one may be used. The 

dependent variable can take on any form (of course, within the boundaries of the rules of 

structural equation modeling). As another option, rather than estimating a separate bias 

factor, an alternative model estimates the residual covariance between the two self-report 

items (Graham et al., 2006; Kenny, 1976; Marsh, 1989). My research is concerned only 

with additional error rather than bias, thus, evaluated model does not include the bias 

factor.  

Important to this model if it includes a bias factor, there must be at least one 

(presumably) unbiased measure in order to estimate a separate factor for bias. That means 

that the unbiased/expensive measure is crucial to disentangling the biased parts of the 

biased measures from the unbiased parts. Notice that the model I just described doesn’t 

mention anything about missing data. In reality, this is a model that can be used in a 
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complete-data scenario. However, in the two-method measurement design, only a random 

subsample of participants are given the more expensive/unbiased measure to create a 

planned missing data design that satisfies the MCAR mechanism. By using modern 

missing data techniques, the data are analyzed using all available information.  

Graham and colleagues (Graham et al., 2006) explored the benefit of using two-

method measurement designs and described this research again more recently (Graham & 

Shevock, 2012). The benefit of this design stems largely from leveraging the power 

obtained by a larger sample size with the inexpensive measures and the information 

gained from the sub sample of participants with data on both the expensive and 

inexpensive measures. Simulations placing a dollar amount per participant have shown 

this method’s utility. In a scenario with a 5:1 cost ratio where for every one less 

participant presented with the expensive measure subsample, five more participants can 

be added to the inexpensive measure total sample. In a scenario where all IV indicators 

have loadings of .5, the DV indicators have loadings of .7, the response bias factor 

accounts for 25% of the variation in self-reports and the common factor accounts for 49% 

of the variation, it is shown that this method generally produces much higher “effective 

N” than it would have had only the expensive measure for a smaller sample size been 

used (Graham et al., 2006). “Effective N” is a tool used to compare to complete-case 

designs costing the same as the optimal two-method measurement design configuration. 

Effective N is the number of participants needed in a complete case scenario to achieve 

the same power as obtained in the two-method measurement design. As an example, a 

simulation demonstrated that a two-method measurement design that collected 

inexpensive measures for 1200 participants and expensive measures for 120 participants 
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provided statistical tests with power equivalent to a sample size 1.81 times larger than the 

comparable complete-case design. Effective N is most influenced by the cost ratio 

between the inexpensive and expensive measures and the size of the relationship between 

the IV and the DV. For smaller effect sizes, the ratio of Effective N to complete case N 

for the same dollar amount, demonstrates this methods potential utility in scenarios with 

small effect sizes (Graham & Shevock, 2012). In general, like all planned missing 

designs, the exact benefits of such a design are conditional on the anticipated parameters 

and researchers are encouraged to simulate conditions in order to create the optimal 

planned missing design. Even so, it is clear from the body of literature that in many 

research scenarios, planned missing data designs have the potential to enhance research 

findings.  

Missing Data and Mediation   

In this section, I review missing data literature that particularly evaluates 

missingness in the context of mediation.  Recall that researchers may perform mediation 

analyses in the SEM framework or the OLS regression framework (which is really just a 

specialized case of the SEM framework). Although there has been a significant amount of 

literature on modern missing data analyses in both the SEM and regression frameworks 

(e.g., Baraldi & Enders, 2010; Enders, 2010; Rubin & Little, 2002; Schafer & Graham, 

2002), only a handful of research papers have focused on mediation specifically (e.g., 

.Enders, Fairchild, & MacKinnon, 2013; Wang, Zhang, & Tong, 2014; Wu & Jia, 2013; 

Zhang & Wang, 2013). Perhaps not surprisingly, a common practice in the substantive 

literature is to use deletion methods to analyze mediation effects using complete data 

methods (Zhang & Wang, 2013). Although the papers that have been published 
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addressing mediation analyses using modern missing data methods do not assess 

performance under the paradigm of planned missingness, research on missing data that 

assumes the MCAR mechanism is relevant to planned missing data designs as these 

designs also typically assume the MCAR mechanism. One recent example of missing 

data analysis in mediation extended work on Bayesian mediation methods (Yuan & 

MacKinnon, 2009) to a general Bayesian missing data handling approach for mediation 

manifest variable models (Enders et al., 2013). There are two major benefits of 

accommodating missing data (and complete data) in the Bayesian framework in terms of 

power. First, the Bayesian approach does not require distributional assumptions so the 

fact that the mediated effect has a non-normal distribution is not a concern. Second, prior 

information from earlier research can be incorporated. Simulations suggest that, from a 

frequentist standpoint, incorporating prior information improves power to detect 

mediation effects with missing data (Enders et al., 2013). The results of the Bayesian 

missing data analyses suggest that even with a non-informative prior, coverage and 

power estimates are comparable to the use of maximum likelihood estimation with bias 

corrected bootstrap (Enders et al., 2013). A review of literature looking at PRODCLIN 

suggests that the distribution of product method performs similarly to the bootstrap (Fritz 

& MacKinnon, 2007; Tofighi & MacKinnon, 2011) suggesting the appropriateness of 

using PRODCLIN in my simulation study. Another study compared maximum likelihood 

approaches to multiple imputation approaches to mediation analyses with missing data 

(Zhang & Wang, 2013). This research found that for the studied conditions, under MCAR 

mechanism, both the deletion methods (listwise and pairwise deletion) and modern 

missing data methods (multiple imputation and maximum likelihood estimation) could 
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capture the mediated effect with little bias even with a small sample size and high 

missing data rates. However, only the modern methods of maximum likelihood and 

multiple imputation obtained good coverage values, and these methods had much 

increased power to detect the mediated effect. None of these findings are particularly 

surprising given the current state of the literature on missing data (e.g., Enders, 2010; 

Schafer & Graham, 2002).  

Justification for Research 

 The discussion in this chapter illuminates a few key points that justify the current 

research study. Generally, we know that unreliable measures can have treacherous results 

on parameter estimates and tests of significance. Because the mediated effect relies on the 

distribution of the product of two coefficients and corresponding standard error, estimates 

of the mediated effect may be biased and/or underpowered if α and/or β are biased and/or 

if the corresponding standard errors are too large. We also know that even with perfect 

reliability, tests of the mediation effect are often underpowered and often require sample 

sizes larger than those generally seen in psychology and related fields. Moreover, there is 

a great deal of literature suggesting that planned missing data designs analyzed using 

modern missing data methods has the potential to create an efficient design that 

maximizes resources. Specifically, it has been shown that a two-method measurement 

design utilizing multiple measures of the same construct can have greater accuracy power 

than a complete data design in some scenarios. Consequently, a logical next step is to 

investigate the utility of a planned missing data design to address logistical constraints of 

mediation analysis (i.e., limited resources), while maximizing power to detect the 

mediated effect. In a traditional mediation research design, an ideal scenario would 
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include data collection of multiple measures of the mediator or a single mediator with 

near perfect reliability all while simultaneously using a very large sample size. None of 

these components come for free – there is typically a cost associated with each of these 

items. Measures with high reliability tend to have high cost, and come at the expense of 

number of participants. Likewise, collecting multiple mediators may also be more 

expensive. The researcher could consider including more participants in the study, but 

that might mean sacrificing the quality of a measure or reducing the number of measures 

of the mediation construct. Thus my research evaluates the utility of using purposeful 

missing data to leverage resources in mediation analyses.  
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CHAPTER 3 

METHODS 

This dissertation evaluates the utility of a planned missing data design in a 

mediation analysis that incorporates multiple mediators of the same construct. 

Specifically, I empirically evaluate research designs that address limited resources with 

purposeful missing data on one of the mediation variables. This study uses Monte Carlo 

simulations to determine the empirical power to detect the mediated effect under a variety 

of simulation conditions and analysis methods. I address the question of how to maximize 

the power to detect mediation with multiple mediators including an expensive measure 

that incorporates planned missingness. The associations among the mediators are defined 

based on correlation matrix of the mediating variables and corresponding measurement 

model.  

The study uses simulations with data generated from a variety of population 

parameters for manifest X and Y variables and a latent mediator variable, LM, with three 

observed indicator variables, M1, M2, and M3. Planned missingness is implemented on 

variable M1. When using multiple mediators with missing data, there are a variety of 

ways to analyze the data, and I evaluate five approaches. First, data are analyzed using a 

latent variable mediation model where all three of the mediators are indicators of a latent 

mediation construct (Method 1). Next, I consider auxiliary variable models where one of 

the mediation variables, M1, is the mediator of interest, and one or both of the other 

mediating variables, M2 and M3, serve as auxiliary variables. As described in Chapter 2, 

auxiliary variables are variables that are not part of the research question, but can be 

incorporated to predict the propensity for missing data and/or predict the incomplete 
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analysis variables. In the auxiliary variable models evaluated in the study, the less 

reliable but inexpensive measures of the mediator serve as auxiliary variables. In a 

planned missing data design such as in this study, where the underlying mechanism is 

known to be MCAR, highly correlated auxiliary variables may be useful in increasing 

power (Collins et al., 2001). In this particular simulation study where M1 is missing, the 

highly correlated variables M2 and M3 would restore some of the power lost in a planned 

missing data design. The ability for auxiliary variables to increase the power to detect the 

mediated effect was also demonstrated empirically (Zhang & Wang, 2013). The second 

and third methods considered in the study are auxiliary variable models with one model 

utilizing two auxiliary variables (Method 2 incorporates M1 as mediator and M2 and M3 as 

auxiliary variables) and one model utilizing only one auxiliary variable (Method 3 

incorporates M1 as mediator and M2 as an auxiliary variable).  The fourth and fifth 

methods of interest consider a situation where only the expensive mediation measure, M1, 

is included; M1 is the variable that includes planned missingness when applicable. A 

model including only M1 may be analyzed using MAR-based maximum likelihood 

estimation missing data approaches (Method 4) or using a deletion method such as 

listwise deletion (Method 5). The main outcome of interest is the comparison of empirical 

power across the models. Type 1 errors, bias, and confidence interval coverage are also 

considered.  

A Monte Carlo simulation study is used to study the performance of the varying 

analyses. Factors that were hypothesized to affect the performance of the methods 

include: (1) sample size, (2) planned missing data rate of the expensive measure, M1, (3) 

the correlation among M1, M2, and M3, (4) magnitude of α path, (5) magnitude of the β 
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path, and (6) analysis method. Each of these factors were varied in a simulation study and 

crossed in full factorial design.  

It was expected that the missing data analysis models that incorporate all three 

mediation measures (latent variable model with three indicators and single mediator 

model with two auxiliary variables) would perform better than the other models by virtue 

of the availability of additional data. Like most statistical methods, I also expected that all 

evaluated methods would perform better as sample sizes increase and missing data rates 

decrease. Because of the literature suggesting that very large sample sizes are needed to 

estimate power for a small mediated effect size (e.g., Fritz & MacKinnon, 2007), I also 

anticipated that power would increase rather dramatically as a function of effect size. Of 

particular interest was whether or not a model incorporating all three measured mediators 

performs better as a latent variable or an auxiliary variable missing data model. To date, 

no study makes such a comparison. For methods that incorporate all three mediation 

measures, the auxiliary variable model (Method 2) estimates more parameters than the 

latent variable mediation model (Method 1); this difference might explain any observed 

differences in the performance of these methods.  

Population Generation Model 

Data were generated based on the data generation model in Figure 6. In this 

model, observed variables are X, M1, M2, M3 and Y. Variable M1 is the “expensive” 

mediation variable and variables M2 and M3 are the “inexpensive” mediation variables. 

All variables are assumed to be multivariate normal with a mean of zero (as if they had 

been “centered” or deviated around the mean). Although many mediation examples in the 

prevention and treatment literature often use a dichotomous X variable, I chose to use 
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multivariate normal independent variables for greater generalizability. Supporting this 

decision, a study comparing methods to test mediation effects found that power for 

models in which X was binary was not noticeably different than power with a continuous 

X variable when effect sizes are equal (MacKinnon et al., 2002).  

Although the research question assumes variables X and Y are manifest variables, 

they are generated as single manifest indicators latent variables with loadings and 

residual variances of one and zero, respectively. Using the standard SEM approach, the 

data generation model is defined by both a measurement model and a structural model. 

The measurement model defines the relationship of the observed variables to their latent 

variable constructs and the structural model summarizes the relationships between the 

latent variables. Equations 3.1 – 3.2 below provide a measurement model in matrix form 

for the observed variables in Figure 6. For clarity, I use notation consistent with Bollen 

(1989).  

 𝐱 =  𝚲𝑥𝛏 + 𝛅 (3.1) 

 𝐲 =  𝚲𝑦𝛈 + 𝛆 (3.2) 

The matrix, 𝐱, in Equation 3.1 is a matrix of the observed indicators of the latent 

exogenous variables. In the model depicted in Figure 6, there is only one indicators of the 

exogenous latent variable, LX. Thus the 𝐱 matrix is simply the observed variable, X.  

 𝐱 = [𝑥1] = [𝑋] (3.3) 

The matrix, 𝐲, in Equation 3.2 is a matrix of the observed indicators of the latent 

endogenous variables. In this model, the 𝐲 matrix is comprised of the observed mediation 

and outcome variables, M1, M2, M3 and Y. 
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 𝐲 = [

𝑦1

𝑦2

𝑦3

𝑦4

] = [

𝑀1

𝑀2

𝑀3

𝑌

] (3.4) 

The Lambda Matrices, 𝚲𝑋 and 𝚲𝑦, are matrices of coefficients relating the 

manifest variables to the latent variables.  

 𝚲𝑋 = [1]      𝚲𝑦 = [

𝜆1 = 1 0
𝜆2 = 𝜆 0
𝜆3 = 𝜆 0

0 1

] (3.5) 

Notice that 𝚲𝑋 has a single value of one, corresponding with the creation of the X latent 

variable with a single manifest indicator with a loading of one. This loading (coupled 

with a residual variance of zero) creates a latent variable that is identical to a normally 

distributed manifest variable. The matrix, 𝚲𝑦, includes the path coefficients for the 

mediation latent variable indicators (𝜆1, 𝜆2, and 𝜆3 in column 1, rows 1-3). The 𝚲𝑦 

matrix also includes a path coefficient of one (in column 2, row 4) to denote the one-to-

one relation of the Y indicator with the latent variable of Y creating a latent variable 

identical to a normally distributed manifest variable. In order to facilitate comparison 

across the different analysis methods, the factor loading relating 𝑀1 to LM, 𝜆1, is 

constrained to one (𝜆1 = 1). This ensures that the structural paths of all analysis models 

are on the same metric for comparison. Additionally, because M1’s loading equals one, it 

sets up a scenario where 𝑀1 is perfectly reliable; the ideal scenario. As will be described 

in the study design, the values of 𝜆2 and 𝜆3 in the 𝚲 matrices are constrained to be equal 

such that 𝜆2 = 𝜆3. Thus, only one value of lambda is included in the population 

generation model and subscripts are no longer needed (𝜆2 = 𝜆3 = 𝜆). 
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The covariance matrices are denoted by the 𝛉𝛿 matrix for the covariance matrix of 

𝛅 in Equation 3.1, and the 𝛉𝜀 matrix for the covariance of 𝛆 in Equation 3.2.  

 𝛉𝛿 = [0]        𝛉𝜀 =

[
 
 
 
 
𝜎𝜀1

2 = 0 0 0 0

0 𝜎𝜀2
2 = 1 − 𝜆2 0 0

0 0 𝜎𝜀3
2 = 1−𝜆2 0

0 0 0 0]
 
 
 
 

 (3.6) 

Here, 𝛉𝛿 only has one term, zero, corresponding to the residual variance of zero for the X 

variable. Again, this is the value that creates a latent variable, LX that is identical to the 

observed X variable. The matrix, 𝛉𝜀, has three potentially non-zero values: the residual 

variances of the three mediation indicators. For reasons that will be described in the next 

section, 𝜎𝜀1
2 is constrained to zero and 𝜎𝜀2

2  and 𝜎𝜀3
2  is constrained to 1−𝜆2. The value in the 

last row and column is zero to denote the residual variance of zero for the observed Y 

variable. The first portion of Appendix B provides the expanded equations (in non-matrix 

form) for the measurement model of population generation model.  

Now that I have defined the measurement portion of the data generation model, I 

will explicate the structural portion of the population generation model. The structural 

portion is expressed by the following matrix equation:  

 𝛈 = 𝚩𝛈 + 𝚪𝛏 + 𝛇. (3.7) 

The matrix equation representing the structural design can also be written out in full 

matrix form as in terms of Bollen (1989) notation:  

 [
η1

η2
] = [

0 0
𝛽21 0

] [
η1

η2
] + [

𝛾11

𝛾22
] [𝜉1] + [

𝜁1
𝜁2

] , (3.8) 

and can be re-expressed in notation consistent with Figure 6 as:  

 [
LM
LY

] = [
0 0
𝛽 0

] [
LM
LY

] + [
𝛼
𝜏′

] [𝑋] + [
𝜁𝑀

𝜁𝑌
]. (3.9) 
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The last component of Equation 3.7 is the Zeta Matrix, 𝛇. This matrix denotes the 

latent errors in the equations. The Psi Matrix, Ψ, is the covariance matrix of 𝛇 and 

includes the residual variances of LM and LY.  

 𝚿 = [
𝜎𝜁𝑀

2 0

0 𝜎𝜁𝑌

2 ] (3.10) 

As will be described in the next section, the values in the Psi Matrix, Ψ, are constrained 

based on a function of the model coefficients, 𝛼 and 𝛽, resulting in the variances of LM 

and LY being equal to one. The second portion of Appendix B provides the expanded 

equations (in non-matrix form) for the structural portion of population generation model.  

Manipulated Factors 

Population Parameters  

The population parameters were manipulated to vary both the correlation matrix 

of the Mi’s (and corresponding loadings in the measurement model) and the magnitude of 

the mediated effect size via the α and β paths. For the measurement portion of the model, 

as stated previously, the X and Y variables are single indicators of latent variables with 

loadings of one and residual variances of zero. In order to facilitate comparison across the 

different analysis methods and ensure all analysis methods are on the same metric for 

comparison, the factor loading relating 𝑀1 to LM, 𝜆1, is constrained to one. This 

constraint mimics the ideal scenario of an expensive measure where 𝑀1 is perfectly 

reliable. The factor loadings for 𝑀2 and 𝑀3, are constrained to be equal and represented 

as 𝜆. The value of 𝜆 was varied to reflect pairs of low, medium and high loadings for the 

two inexpensive measures, 𝑀2 and 𝑀3. Factor loadings corresponding with low, medium, 

and high loadings were chosen to be 0.4, 0.6, and 0.8, respectively. These three factor 
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loading conditions can also be expressed as three corresponding correlation matrices. In 

general, the correlation between any of the two mediating indicator variables, 𝑀𝑗 and 𝑀𝑘, 

in the measurement model can be expressed as: 

 𝑟𝑗𝑘 =
𝜆𝑗𝜆𝑘𝜎𝐿𝑀

2

𝜎𝑀𝑗
𝜎𝑀𝑘

. (3.11) 

In the population generation model, the standard deviations of the mediation variables, 

𝜎𝑀𝑗
 and 𝜎𝑀𝑘

, are equal to one. As mentioned, and to be described in more detail later, the 

variance of the latent mediation variable, LM, was also constrained to one. Thus Equation 

3.11 reduces to 𝑟𝑗𝑘 = 𝜆𝑗𝜆𝑘. In the low loading scenario, the correlation between 𝑀1 and 

the two other mediation variables is 𝑟𝑀1𝑀2
= 𝑟𝑀1𝑀3

= 1 ∗ 𝜆 = .4, reflecting that the 

loading of 𝑀1 is constrained to one and the loadings of 𝑀2 and 𝑀3 are equal to 𝜆. Based 

on the constraints of the data generation model, the loadings of 𝑀2 and 𝑀3 are equivalent 

to the value of the correlation of 𝑀1 with 𝑀2 and 𝑀3. In the low loading scenario, the 

correlation between 𝑀2 and 𝑀3 is 𝑟𝑀2𝑀3
= 𝜆2 =. 42 = .16. The residual variance for 

𝑀2 and 𝑀3 is 1 − 𝜆2. Similarly we can calculate the correlations for the medium and high 

factor loading conditions. Table 3 provides a summary of the standardized factor 

loadings, residual variances and resulting correlations among the three mediation 

variables for each of the three measurement model conditions.  

Next, I manipulated the structural portion of the data generation model to 

represent varying combinations of the α and β path coefficients to represent different 

mediation effect sizes. I did not manipulate the direct effect, τ’, and constrained this 

direct effect to zero to represent complete mediation. Although it is often unrealistic to 

expect complete mediation with a single mediation construct (Baron & Kenny, 1986), I 
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chose to only evaluate conditions with complete mediation for two reasons. First, the 

addition of partial mediation adds complexities to creating comparable effect sizes across 

conditions. Second, and importantly, previous research suggests that partial mediation 

does not significantly affect power of the mediated effect when using tests of significance 

that rely on the product of the distribution (Fritz & MacKinnon, 2007; MacKinnon et al., 

2004). Because the main outcome of interest in this study is power, it is not crucial that 

the simulation incorporates partial mediation; avoiding the assessment of partial 

mediation eliminates complications in comparing the performance of the methods across 

different effect sizes.  

In all conditions, 𝜙𝑋 = 𝜎𝑋
2 = 1. In order to retain the correlation structure of M1, 

M2, and M3 in the population generation covariance matrix, 𝜎𝜁𝑀

2  was constrained to 

1 − 𝛼2 so that the variance of the mediation latent variable, LM, is equal to one
1
. For 

simplicity, I likewise constrained 𝜎𝜁𝑌

2 = 1 − 𝛽2 so that the variance of latent Y, LY, is also 

equal to one.
2
  

By constraining the variances of the latent variables to one, parameters α and 𝛽 

are equivalent to correlations. Values for parameters α and 𝛽 are based on Cohen’s 

definition of zero, small, medium, and large effect sizes for the Pearson product-moment 

correlation coefficients: r = 0.0, 0.1, 0.3, and 0.5, respectively (Cohen, 1988). Because 

the latent variables LM and LY have variances of one (created as described in the 

                                                 
1
Based on the derivation of the covariance, Var(𝐿𝑀) =  a2𝜎𝑋

2 + 𝜎𝜁𝑀

2 . Since 𝜎𝑋
2 = 1 in all conditions, 

Var(𝐿𝑀) =  a2 + 𝜎𝜁𝑀

2 . Thus, to constrain the variance of the latent mediator, LM, to one, 𝜎𝜁𝑀

2 = 1 − 𝑎2. 
2
 Based on the derivation of the covariance, Var(𝐿𝑌) =  𝛽

2
(𝑎2𝜎𝑋

2 + 𝜎𝜁𝑀

2 ) + 2𝛽𝑐′𝑎𝜎𝑋
2 + 𝑐′2𝜎𝑋

2 + 𝜎𝜁𝑌

2 . 

Substituting 𝜎𝑋
2 = 1 and 𝜎𝜁𝑀

2 = 1 − 𝑎2, Var(𝐿𝑌) =  𝛽
2
+ 2𝛽𝜏’ 𝑎 + 𝜏′2 + 𝜎𝜁𝑌

2 . Thus, to constrain the 

variance of the latent Y variable, LY, to one, 𝜎𝜁𝑌

2 = 1 − 𝛽2 − 2𝛽𝜏′𝑎 − 𝜏′2. In complete mediation, as in this 

study, the last two terms of the 𝜎𝜁𝑌

2  expression are zero and 𝜎𝜁𝑌

2  can be reduced to 𝜎𝜁𝑌

2 = 1 − 𝛽2. 
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previous paragraph), in a complete mediation condition with τ’ = 0, parameters α and β 

correspond directly to Cohen’s benchmarks of zero, small, medium and large 

correlations. Thus, parameters α and 𝛽 are fully crossed for the values α = 0.0, 0.1, 0.3, 

0.5 and 𝛽 = 0.0, 0.1, 0.3, 0.5. 

Other Manipulated Factors 

Sample Size. Four sample sizes were evaluated: 100, 200, 500, and 1000. These 

were chosen to represent a wide range of sample sizes and correspond with sample sizes 

often seen in psychology and prevention literature. In particular, the chosen sample sizes 

correspond with sample sizes often evaluated in the mediation literature (e.g., Iacobucci, 

Saldanha, & Deng, 2007; MacKinnon et al., 2002). I included the N = 1000 condition in 

order to examine the asymptotic (i.e. large sample) properties of the analysis methods.  

Missing Data Rates. Four missing data rates on M1 were evaluated: 0%, 20%, 

50% and 80%. These correspond to 100%, 80%, 50% and 20% of participants providing 

data on the expensive measure. The 0% missing data scenario (i.e., complete data) serves 

as a benchmark to evaluate power loss due to planned missingness. To impose the 

missing data rates, I used the complete data sets generated with all combinations of the 

parameters and sample sizes described as above and imposed a missing completely at 

random (MCAR) mechanism by randomly deleting scores on M1 (the expensive 

variable). Specifically, a random number from a uniform distribution ranging from zero 

to one was generated for each observation in a data set. Cases were sorted based on this 

random number, and the bottom 20%, 50% and 80% of the cases had the score for M1 

deleted corresponding with the manipulated missing data rates.  
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Analysis Methods. The analysis method to assess the mediated effect was also a 

manipulated factor. When using multiple mediators in a planned missing data design, 

there are a variety of approaches available to analyze the data including a latent variable 

mediation models, a mediation model among manifest variables with the expensive 

measure as the mediator and either one or both of the inexpensive measures as auxiliary 

variables, and a manifest variable model using only the expensive mediator analyzed 

using maximum likelihood estimation that accounts for missing data or with listwise 

deletion. For full consideration of possible methodological scenarios, I included these 

five analysis methods in the study. For all methods, I used Mplus with maximum 

likelihood estimation. Recall from Chapter 1 that there are multiple methods to determine 

the standard error and the resulting significance of the mediated effect. For purposes of 

this simulation study, I utilized the distribution of the product approach using 

asymmetrical confidence intervals as implemented with PRODCLIN (MacKinnon, et al., 

2007). I chose to use the distribution of the product approach because it has been 

empirically shown to be more accurate than many of the other commonly used 

approaches such as those that rely on a normal distribution assumption (MacKinnon et 

al., 2004), but the distribution of the product approach is not as computer intensive as 

boot-strap strategies (e.g., bias-corrected bootstrap, percentile bootstrap). Furthermore, 

the bias-corrected bootstrap method may have inflated Type 1 error rates, and, 

particularly for smaller sample sizes, may result in coverage less than the desired 95% 

(Tofighi & MacKinnon, 2011). 

The first analysis method (Figure 7, Method 1) was a latent mediation model 

analysis approach. Method 1 considers the scenario where all three of the mediating 
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variables are available (expensive variable for the subset of the data and two inexpensive 

measures for the entire sample). I also analyzed the data in Mplus using a MAR-based 

maximum likelihood estimation approach with the three observed mediator variables 

serving as indicators of a latent mediation construct. The complete data version of this 

model (condition where missing data rate = 0%) serves as a benchmark for comparison of 

the various analysis approaches.  

The second analysis method (Figure 7, Method 2) also incorporates all three 

mediating variables. This approach utilized a MAR-based maximum likelihood 

estimation approach with an expensive mediator, M1, as the sole mediator in the model, 

and M2 and M3 serving as auxiliary models using the saturated correlates approach as 

described by Graham (2003). In this approach, the auxiliary variables are incorporated 

with a series of correlations that do not alter the substantive interpretation of the 

parameter estimates. For this mediation model, the auxiliary variables must correlate with 

the manifest explanatory variables, other auxiliary variables, and the residual terms of the 

indicators of the latent outcome variables. Figure 7, Method 2, depicts this analysis 

model.  

Next, I evaluated another auxiliary variable approach (Figure 7, Method 3); this 

method incorporated only two mediation variables and applies an auxiliary variable 

approach to a scenario where only one inexpensive mediator is available. Like Method 2, 

Method 3 uses a saturated correlates approach for inclusion of auxiliary variables. 

However, unlike Method 2, Method 3 only includes one auxiliary variable (i.e., the model 

only incorporates mediating variables (M1 and M2). As a note, a latent variable model 

similar to Method 1 would also potentially work in a scenario that only incorporates 
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variables M1 and M2. However, such a model requires additional constraints. In a model 

where the mediating latent variable has only two indicators, both M1 and M2 would need 

to correlate with another variable in the model, have both loadings constrained to be 

equal, or have a fixed error variance. I chose not to incorporate this model into my 

research because it would not generalize well to real data where the expensive measure 

does not have perfect reliability and the choice of initial constraints might be somewhat 

arbitrary.  

Next I applied a manifest variable model with M1 as the sole mediator and no 

auxiliary variables using maximum likelihood estimation (Figure 7, Method 4). This 

mimics a scenario where X and Y are collected on a large sample and an expensive 

mediator is collected on a subsample. Finally, I applied a manifest variable single 

mediator analysis to subsample of expensive variables only (M1) using Mplus with 

listwise deletion (Figure 7, Method 5). As a note, because the population generation 

model was estimated with a loading of one and a residual variance of zero, there was a 

possibility of there being issues estimating some of the models. To address this potential 

issue, I constrained the residual variance of M1 to a small number close to zero (i.e., 

 𝜎𝜀1
2 = .001). 

Methods 1 and 2 serve to demonstrate power that would be achieved when all 

three of the mediating variables are available. Because there were two viable methods for 

incorporating these variables, the comparison of these methods will help guide analytical 

decisions in these scenarios. Method 3 incorporated only two mediating variables and 

provides information on the viability of only collecting two mediating measures. Method 

4 only included one mediator, M1, but was analyzed with the MAR-based maximum 
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likelihood estimation. Method 5 also included only one mediator, but used listwise 

deletion. This model can also be thought of as the analysis and reduced N that might have 

been used had the researcher only collected data on the expensive measure.  

Data Generation  

Data were generated in SAS 9.3 software based on the data generation model in 

Figure 6. Each design cell has 2000 replications. Data were generated by algebraically 

computing the model-implied population covariance matrix from the defined manipulated 

population parameters. For an algebraic expression of the population covariance matrix, 

see Appendix C. The SAS program in Appendix D automated the process of computing 

the population covariance matrix based on the chosen population parameters and requires 

choosing values for twelve parameters: 𝜆1,, 𝜆2, 𝜆3,  𝜎𝜀1
2 , 𝜎𝜀2

2 , 𝜎𝜀3
2 , 𝛼, 𝛽, 𝜏′, 𝜙𝑋 , 𝜎𝜁𝑀

2 , 𝜎𝜁𝑌

2 .  In 

this simulation study, 𝜆1, 𝜎𝜀1
2 , 𝜏′, and 𝜙𝑋 were fixed values,  𝜎𝜀1

2 , 𝜎𝜀2
2 𝜎𝜀3

2 , 𝜎𝜁𝑀

2  and 𝜎𝜁𝑌

2  were 

values solely dependent on the other population parameters, and all other parameters 

were varied as described in the manipulated factors section. Data were generated using 

the SAS IML procedure by generating five standard normal variables and then using the 

Cholesky decomposition technique to impose the desired correlation structure based on 

the population covariance matrix.  

Outcomes 

The 1,536,000 artificial data sets (2000 replications for each cell of a 4 sample 

sizes 4 missing data rates4 α coefficients4 β coefficients 3 λ’s denoting 

mediation variable correlation matrices) were analyzed using all five of the analysis 

methods described in the previous section and illustrated in Figure 7. The first step in 

analysis of outcomes was to analyze the rates of non-convergence and improper solutions 
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from when the maximum likelihood algorithm fails to converge or results in a non-

positive definite covariance matrix. High rates of non-convergence were not expected for 

these simulation conditions, particularly because of the constraint on the residual error, 

but it was expected that high non-convergence would be more likely to occur for high 

rates of missing data. Any cases with improper solutions would be identified and 

removed before computing the other outcome variables. Finally, I evaluated the outcomes 

of interest: bias, empirical power, and confidence interval coverage. This study is 

particularly interested in the empirical power to detect the mediated effect.   

Bias 

 Bias is a measure of systematic deviation from the true population parameter. 

Because the missing data mechanism is MCAR and all analysis methods used have been 

empirically demonstrated to be unbiased for data that satisfy the MCAR mechanism, it 

was expected that the procedures would produce negligible levels of bias. Nevertheless, it 

is prudent to evaluate a measure of bias. The raw bias of a parameter is the difference 

between the average estimates of the parameter of interest across the 2000 simulation 

replications and the true population parameter estimate. Note that because the factor 

loading relating 𝑀1 to LM was constrained to one, all models have the same population α 

paths, β paths, and resulting mediated effects (𝛼𝛽). This ensures that all analysis models 

were on the same metric for comparison. As pointed out by Collins, Schafer & Kam 

(2001), with a large number of replications it is easy for raw bias to have statistical 

significance even though it may not be practically significant. To address this, I used a 

measure suggested by Collins et al. (2001) of standardized bias. Standardized bias is a 
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measure of bias that expresses bias in standard error units. Standardized bias was 

calculated for 𝛼𝛽 effects as follows: 

 𝑆𝐵𝛼𝛽 =
𝛼𝛽̅̅ ̅̅ −𝛼𝛽

𝐸𝑆𝐷
. (3.12)  

Here, 𝛼𝛽̅̅̅̅  is the average estimate of the mediated effect across all converged replications 

and 𝛼𝛽 is the true population mediated effect. ESD is an empirical standard deviation of 

the estimates of αβ from the complete data conditions. Because the empirical SE from 

complete data may vary slightly across simulation conditions, I use the within-cell ESD 

from the complete data (𝑀1 missing data rate = 0%) maximum likelihood estimation 

approach as in Method 1, Figure 7 across all conditions.  

Empirical Power 

The empirical power to detect the α path, β path, and mediated effect (𝛼𝛽) for 

each condition is calculated by determining the proportion of non-zero effect size 

replications in which a significant result was obtained using the distribution of the 

product approach implemented using PRODCLIN as previously described (MacKinnon, 

Fritz, et al., 2007; Tofighi & MacKinnon, 2011). Because power is only relevant for non-

zero effects, power was not evaluated for situations where the population mediated effect, 

𝛼𝛽, is zero; this includes any instance of α and/or β equal to zero. In conditions where the 

population value of 𝛼𝛽 equals zero, empirical power was replaced with Type 1 error 

rates. Type 1 error was calculated by determining the proportion of replications where the 

asymmetric CI does not include zero. 

Confidence Interval Coverage 

I also evaluated the 95% confidence interval coverage for the mediated effect. 

Confidence interval coverage was determined by computing the proportion of 
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replications in which the asymmetric confidence intervals contain the true population 

parameter. Ideally, coverage would be close to 95% for a .05 alpha level. The extent to 

which coverage deviates from 95% reflects inaccuracies in the standard errors. If the 

standard errors are too large, confidence intervals capture the population parameters too 

frequently and coverage rates are larger than 95%. Conversely, if standard errors are too 

small, confidence intervals do not capture the population parameter as frequently as they 

should and coverage rates drop below 95%. Because of these properties of coverage, 

coverage provides a benchmark for assessing the accuracy of the standard error estimates 

because it is directly related to Type 1 error inflation (e.g., 90% coverage implies a two-

fold increase in Type I errors).    

Recap of Expectations 

As stated in the introduction of this chapter, I expected that the missing data 

analysis model that incorporate all three mediation measures (Figure 7, Methods 1 and 2) 

would perform better than the other models by virtue of the availability of additional 

data. As with most methods, I also expected that all methods would perform better as 

sample sizes increase and missing data rates decrease. Because there are two viable 

missing data methods for incorporating multiple measures of the same mediation 

construct, one goal of this study is to compare latent variable mediation models with 

auxiliary variable models to help guide analytical decisions in the future. This research 

seeks to provide guidance to researchers interested in utilizing planned missing data 

designs in mediation analyses.  
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CHAPTER 4 

RESULTS 

To begin, I checked the accuracy of the data generation by confirming accurate 

missing data rates, checking for non-convergence and improper solutions, and computing 

the average complete-data parameter estimate within each design cell. To check for non-

convergence, I evaluated the minimum and maximum parameter estimates in each design 

cell to ensure all values were reasonable estimates of the population parameters and also 

confirmed that Mplus did not provide any negative variances. There was no evidence of 

either non-convergence or improper solutions. Next, I turned to the outcomes of interest 

as described in the previous chapter: bias, empirical power, Type 1 error, and confidence 

interval coverage.  

Bias 

  Bias is a measure of systematic deviation from the true population parameter. In 

this study, the missing data mechanism is MCAR. Previous literature clearly indicates 

that all of the analysis procedures evaluated produce unbiased results when the MCAR 

mechanism is satisfied (e.g., as described in Enders, 2010). As expected, the analysis 

procedures produced negligible levels of bias. Table 4 shows the descriptive statistics of 

raw bias for each missing data rate collapsed across all other factors (i.e., α, β, λ and N). 

Table 4 demonstrates that the values of raw bias range from -0.0001 to 0.0009. Raw bias 

across all design cells (last row in Table 4) had a trivial mean, median and standard 

deviation (𝑀𝑒𝑎𝑛𝛼𝛽̅̅ ̅̅ −𝛼𝛽 = 0.0003, 𝑀𝑒𝑑𝑖𝑎𝑛𝛼𝛽̅̅ ̅̅ −𝛼𝛽 = -0.0003, 𝑆𝐷𝛼𝛽̅̅ ̅̅ −𝛼𝛽 = 0.0442). 

Correspondingly, standardized bias (calculated using Equation 3.12 from the previous 

chapter) also indicated negligible levels of bias. As described previously, I used the 
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within-cell Empirical Standard Error (ESD) from the complete data condition (M1 

missing rate = 0% which provides equivalent results across all methods) to standardize 

raw bias; the resulting value provides the proportion of a standard error the estimate falls 

above or below the true parameter value. Table 5 shows descriptive statistics for 

standardized bias by method and missing rate collapsed across all other factors (i.e., α, β, 

λ and N). Previous literature suggests that a design cell with bias above an absolute value 

of 0.40 is of practical significance (Collins et al., 2001). As Table 5 demonstrates, 

standardized bias values across all conditions were well under the threshold that might be 

considered problematic; even the cells with the minimum and maximum bias were well 

below an absolute value of 0.40. The design cell with the largest bias (-0.337) occurred in 

the 80% missing data rate condition with the maximum likelihood analysis method that 

incorporated no addition mediators (Method 4 in Figure 7) where α = 0, β = 0, λ = .8, and 

N = 100. A standardized bias value of -0.337 suggests that, on average, the estimate falls 

about one third of a standard error below the true parameter value. In general, the 80% 

missing data rate condition had the greatest bias. Appendix E provides the standardized 

bias with an 80% missing rate for all sample sizes, non-zero effect sizes, and analysis 

conditions. Because the bias outcome performed as expected and demonstrated minimal 

bias, the function of estimating bias served mainly as a data generation check and I did 

not explore further trends.  

Empirical Power  

The empirical power to detect the mediated effect (𝛼𝛽) for each condition was 

calculated by determining the proportion of non-zero effect size replications in which a 

significant result was obtained using the distribution of the product approach; the 
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distribution of product approach was described in the previous chapter. In other words, 

power was determined as the percentage of replications that did not include zero in the 

asymmetric confidence interval. For conditions where the population value of 𝛼𝛽 was 

equivalent to zero, Type 1 error rates were evaluated in lieu of power and discussed later.  

Power varied widely depending on design cell with power estimates ranging from 

nearly zero (0.60%) to 100.00%. As would be expected, power tended to increase with 

increasing mediation effect size (αβ), increasing sample size (N) and decreasing missing 

data rate. Power also varied as a function of analysis method within a given design cell. 

Consistent with expectations, power is the greatest for analysis methods that include all 

three mediators. Specifically the latent variable model (Method 1, Figure 7) demonstrates 

the most empirical power followed by the model with two auxiliary variables (Method 2, 

Figure 7). Power decreases with analysis methods that include less information with the 

other methods showing decreasing power in the following order: one auxiliary variable 

model (Method 3, Figure 7), maximum likelihood estimation model with no additional 

mediators (Method 4, Figure 7), and listwise deletion (Method 5, Figure 7). This pattern 

of decreasing power among the five methods was consistent in every design cell with the 

exception of cells that had floor or ceiling effects (i.e., power at or near 0 or 100% across 

all methods). Table 6 shows the power for each method collapsed across all other factors. 

The average power across all design cells was 57.14% (last row in Table 6). For 

reference, Appendix F provides the power results for all design cells.  

To probe the effects of the manipulated factors on power, I ran a variety of 

logistic regression analyses on the replications where the population mediated effect, αβ, 

was not equal to zero. In total, there were 4,320,000 replications where population 𝛼𝛽 
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was non-zero. However, because all five analysis methods produced identical results with 

no variability for design cells in the complete data condition, I limited the logistic 

regression analyses to the 3,240,000 replications with a non-zero missing data rate (i.e., 

20%, 50% or 80% missing on variable M1). The outcome variable in the logistic 

regression analysis was coded zero when the asymmetric confidence interval of 𝛼𝛽 

contained zero (i.e., non-significant results) and coded one when the asymmetric 

confidence interval did not contain zero (i.e., significant results at the .05 significance 

level). In order to simplify analyses, all factors were treated as between-subjects factors, 

including the analysis method factor which is technically a within-subjects factor. 

Additionally, for ease of analysis, the manipulated factors were effect coded as 

categorical variables. I started by running a logistic regression analysis using the full 

factorial up to a six-way interaction (αβλNMissing RateMethod; χ
2
(192) = 

148, p = 0.99). In order to better understand the interactions among the simulated factors, 

I ran a model using effect coding that included all lower order terms up to and including 

all three-way interactions. I also chose to combine factors α and β into one mediated 

effect size factor, αβ. I chose this combination because a preliminary assessment of the 

data suggested that the mediated effect size, αβ, provided similar results regardless of the 

pattern of α and β comprising the mediated effect. In other words, power results were 

similar small α and medium β versus medium α and small β and so forth. Table 7 

provides the results of this logistic regression analysis treating the mediated effect size as 

one factor for an analysis with all lower order terms up to and including all three-way 

interactions. The Table is grouped by order of terms and ranked by the size of the Wald 

χ
2 

joint test. Because the factors were effect coded, the lower-order terms represent the 
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conditional effects at the mean. All three-way and two-way interactions from this 

analysis were significant. The only significant conditional main effect was the mediation 

effect, αβ.  

Due to the number of significant effects in the logistic analysis, and because so 

many cells in the design were constrained by floor and ceiling effects (i.e., very low 

power or power reaching 100%), it was difficult to identify trends. Only a limited range 

of cells provided sufficient variation to evaluate power trends. Consequently, it became 

fruitful to look at effects graphically. Because this research is concerned with method, I 

focused on effects that included method as a factor and evaluated all two and three-way 

interactions. In a graphical investigation, I identified two prominent two-way 

interactions. Specifically, there appeared to be a method by λ interaction and a method by 

missing rate interaction. Evaluation of three-way interactions suggested that these two-

way interactions were modified by a third dimension. The notable three-way interactions 

that demonstrated a noticeable change in power by method, and supported by the size of 

the Wald joint test and non-centrality parameters (shown in Table 7), were 

MethodλMissing Rate, MethodαβMissing Rate, and Methodαβλ. The 

remainder of this section will focus on these three three-way interactions.  

MethodλMissing Rate 

Table 8 provides percent power to detect the mediated effect for the Method 

λMissing Rate interaction. This table shows the average percent power value for each 

combination of λ, missing rate, and method averaged across N, α, and β. For reference 
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purposes, power for the complete data condition is shown in the first row of data.
3
 Recall 

that λ is the loading used in the data generation model for indicators M2 and M3 and 

values of λ directly correspond with the correlations among the mediators. As shown in 

Table 3, values of λ = 0.4, 0.6 and 0.8 for M2 and M3 are equivalent to the correlations of 

M2 and M3 with M1 (𝑟𝑀1𝑀2
= 𝑟𝑀1𝑀3

 = 0.4, 0.6 and 0.8, respectively). As demonstrated by 

Table 8, there is a Method by λ interaction effect whereby increasing λ results in 

increasing power for the missing data methods that incorporate M2 and M3 (Methods 1 – 

3, the latent variable model and the auxiliary variable models). Not surprisingly, power 

for methods that don’t include M2 and M3 (Methods 4 and 5, ML with no additional 

mediators and listwise deletion, respectively) was not functionally improved by increased 

λ. The missing data rate further modifies the method by λ interaction; the impact of λ on 

power is amplified for higher missing data rates. This three-way interaction is graphically 

presented in Figure 8. This figure depicts the interaction between method and λ paneled 

by missing data rate for M1. This figure demonstrates that for 80% missing (bottom panel 

of Figure 8), power is extremely variable for the five methods when λ is large (λ = 0.8), 

but this variability is reduced considerably when λ is small (λ = 0.4). When the missing 

rate is 20% (top panel of Figure 8) there is minimal variability of power as a function of 

λ. Figure 9 is an alternative visual presentation of these results and shows a bar graph of 

the percent power for each analysis method for the different values of λ paneled by the 

missing data rate. The solid bars denote power for λ = 0.4, the striped bars denote λ = 0.6, 

                                                 
3
 Note that in complete data conditions, all methods provide nearly identical estimates for α, β, and the 

corresponding standard errors. Consequently, percent power values for the five methods are identical 

through the first decimal place for complete data, and it is only necessary to provide power estimates for 

one of the analysis methods. In all tables that include complete data results, I present results for Method 1, 

the latent variable model.  
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and the grey bars denote λ = 0.8. Note that the replications with 20% missing data (the 

left panel) show limited variability across missing data methods and ranges of λ whereas 

80% missing data (the right panel) demonstrate significant changes in power conditioned 

on the analysis method and value of λ.  

MethodαβMissing Rate 

Table 9 presents power for the MethodαβMissing Rate interaction. Complete 

data results are provided in the first row for comparison. Recall that I collapsed the α and 

β factors into a single factor (e.g., α = 0.1 and β = 0.3 were treated the same as α = 0.3 

and β = 0.1), resulting in a single effect size factor with six levels: 0.01, 0.03, 0.05, 0.08, 

0.15, and 0.25. This table shows the average percent power of each combination of 

mediated effect size (αβ), missing data rate, and method averaged across sample size and 

λ. For reference, complete data results are included in the first row of data. There is a 

method by αβ interaction where the differences in the performances of the five methods 

change depending on effect size. This two-way interaction is further moderated by the 

missing data rate of M1; the interaction between method and effect size on power is 

contingent on the missing data rate. This three-way interaction is clearer with graphical 

inspection. Figure 10 provides graphs showing the interaction between αβ and method on 

power paneled by missing data rate. Notice that for the 20% missing data rate (the top 

panel) there is no two-way interaction: all methods effectively produce the same level of 

power for the 20% missing data condition. For higher rates of missing data, there is an 

interaction between method and mediated effect size. Differences among the performance 

of the methods for a given effect size are particularly salient when the missing data rate is 

80% (bottom panel of Figure 10). Some of the observed interaction may be driven by 
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floor and ceiling effects. For example, notice that for αβ = .25, missing data rates 20% 

and 50% demonstrate nearly 100% power and no differentiation among the methods; this 

may be due to a ceiling effect. Differential performance for the effect size when both α 

and β are large, αβ = .25, only occurs at a missing data rate of 80%. Figure 11 is an 

alternative visual presentation of these results and shows a bar graph of the percent power 

for each analysis method for three select mediated effect sizes (αβ = 0.01, 0.09 and 0.25, 

corresponding with α = β for small, medium and large effect sizes, respectively) paneled 

by missing data rate on M1. The black bars denote power for αβ = 0.01, the striped bars 

denote power for αβ = 0.09, and the grey bars denote power for αβ = 0.25. Notice that the 

relation between method and power for a given mediated effect size is relatively 

consistent across the methods for a missing data rate of 20% (left panel). For a missing 

data rate of 80%, it is clear that there is an interaction between method and effect size 

because the power for a particular effect size varies depending on method. To illustrate 

these differences, consider that at a 20% missing data rate, power only ranges from 22.93 

– 26.71% (range of 3.78) for αβ = 0.01 across the analysis methods, from 87.80 – 90.42% 

(range of 2.62) across the methods for αβ = 0.09, and from 99.69 – 99.84% for αβ = 0.25 

(range of 0.15). These ranges become more extreme at 80% missing data with the 

medium sized mediated effect (αβ = 0.09) showing the most differences between 

methods. For an 80% missing data rate, power ranges from 2.71 – 16.71% (range of 

13.56) across the methods for αβ = 0.01, from 49.97 – 78.70% across the methods for αβ 

= 0.09 (range of 28.73), and from 80.03 – 96.93% (range of 16.90) across the methods for 

αβ = 0.25. This variation in ranges supports a method by αβ by missing rate interaction.  

  



   

89 

Methodαβλ 

Table 10 provides power for the Methodαβλ interaction. This table shows the 

average percent power value for each combination of mediated effect size αβ, λ, and 

method averaged across all non-zero missing data rates and sample size. Recall that λ 

directly corresponds to the correlations among the mediators. This three-way interaction 

suggests that the interaction between method and mediated effect size (as previously 

described) is moderated by λ. Figure 12 depicts the interaction of method and mediated 

effect size on power paneled by λ. This particular three-way interaction doesn’t appear to 

be as strong as the other interactions discussed. As shown in the top panel of Figure 12, 

for small λ (λ = 0.4 corresponding with small correlations among the mediators), 

differences among the methods are not very pronounced across all effect sizes. For larger 

λ (λ = 0.6 and 0.8), differences among the methods become more pronounced. Not 

surprisingly, methods that do not incorporate the additional mediators (making the size of 

λ irrelevant) do not perform as well. There also appears to be a ceiling effect for λ = 0.8 

as shown in the last panel of Figure 12. For most mediated effect sizes, there is 

differentiation among the methods when λ = 0.8. However, the influence of λ by method 

on power is negligible for a large mediated effect size (αβ = 0.25) and power is greater 

than 92% across all methods. Figure 13 presents an alternative graphical representation of 

this three way interaction. This figure depicts a bar graph of percent power for each 

analysis method for three values of αβ paneled by the values of λ. The solid bars denote 

power for αβ = 0.01 (α = β = 0.1), the striped bars denote αβ = 0.09 (α = β = 0.3), and the 

grey bars denote αβ = 0.25 (α = β = 0.5). The interaction is not particularly clear from this 

graph, but the potential ceiling effect can be seen by the grey bars indicating the power 
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for αβ = 0.25. These bars have less variation relative to the black bars representing αβ = 

0.01. 

Type 1 Error Rates  

For conditions where the population values of 𝛼𝛽 equal zero (i.e., α and/or β 

equal zero), Type 1 error rates were evaluated in lieu of power. Because I used the 5% 

significance level in estimating the confidence intervals of the mediated effect, it is 

expected that 5% of the samples will yield intervals that do not contain zero when the 

population mediated effect is zero (i.e., αβ = 0). Asymmetric confidence interval 

estimates calculated using the product of coefficients approach described previously 

when the population mediated effect is zero yielded an empirical Type I error rate 

averaged across all cells of 3.40%; Type 1 error rates across all cells ranged from 0.00 – 

9.90%. Based on a sample size of 2000 (2000 replications per design cell), I calculated 

the standard error expected for the proportion 0.05. Then I formed a ±1.96SE interval 

around the nominal rate of 0.05. This resulted in a range of 0.0404 to0 .0596. From this 

calculation, I conclude that values with honest error rates would expect to yield Type 1 

error rates ranging from 4.04% to 5.96%; this is the range we might expect to see if the 

Type 1 error rate was actually 5%. For replications with complete data, 54.76% of the 

Type 1 error rates were within this range and complete data had a mean Type 1 error rate 

of 3.51% (M = 3.51, SD = 2.11). For 20% missingness, 51.43% of the Type 1 error rates 

were within the honest error rate range (M = 3.42, SD = 2.11). For 50% missingness, 

45.24% of the Type 1 error rates were within the range (3.34, SD =2.21), and for 80% 

missingness, 35.00% were within the range (M = 3.35, SD = 2.41). For conditions where 

population parameters α = β = 0 (as opposed to conditions where only α or β equivalent 
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to zero), there were no instances of Type 1 error rates within the honest error rate range 

of from 4.04% to 5.96% across all design cells; these conditions where both population 

values of α and β equivalent to zero had a mean Type 1 error rate extremely close to zero 

(M = 0.23, SD = 0.25).  

To better understand the effect of the manipulated factors on Type 1 error rates, I 

further probed using logistic regression. I conducted a logistic regression analysis with 

the manipulated factors as predictors including all three-way interactions and 

corresponding lower order terms on the 2,520,000 analysis results for where population 

αβ = 0. In order to simplify analysis and to be consistent with the logistic regression used 

for power analysis, all factors were treated as between-subjects factors, including analysis 

method which is technically a within-subjects factor. For ease of analysis, the 

manipulated factors were effect coded as categorical variables. The treatment of the 

mediated effect size in this analysis warrants a comment. Assessment of Type 1 errors is 

only pertinent to data with α or β equivalent to zero. When α and β are included as 

separate factors, the resulting logistic model is a fractional factorial requiring more 

complex estimation; the resulting design is not fully crossed because Type 1 errors are 

only pertinent when at least α or β is equivalent to zero, all levels of α (0.0, 0.1, 0.3 and 

0.5) are not fully crossed with all levels of β (0.0, 0.1, 0.3 and 0.5). To remedy this, I 

combined factors α and β into a single factor. Combined, and including only conditions 

where at least α or β is equivalent to zero, the effect size factor has 7 potential levels: (1) 

α = β = 0.0, (2) α = 0.0 and β = 0.1, (3) α = 0.1 and β = 0.0, (4) α = 0.0 and β = 0.3, (5) α 

= 0.3 and β = 0.0, (6) α = 0.0 and β = 0.5, (7) α = 0.5 and β = 0.0. A review of the Type 1 

error rates suggested that Type 1 error rates for α or β at a particular effect size (small = 
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0.1, medium = 0.3, and large = 0.5) were virtually equivalent; in other words, α = 0.0 and 

β = 0.1 provides similar Type 1 error rates as α = 0.1 and β = 0.0 and likewise for 

medium and large effect sizes of α and β. Thus, conditions with a non-zero path of α or β 

= 0.1 (Levels 2 and 3 above) produced similar Type 1 error rates across all other factors. 

Similarly, conditions with a non-zero path of α or β = 0.3 (Levels 4 and 5) produced 

similar Type 1 error rates and α or β = 0.5 (Levels 6 and 7) produced similar Type 1 error 

rates. To simplify analyses, the effect size factor was collapsed to four levels: (1) α = β = 

0.0, (2) α or β = 0.1, (3) α or β = 0.3, (4) α or β = 0.5.  

The results of the logistic regression are in Table 11. I focus mainly on the three-

way interactions as the important main effects are subsumed in the presentation of the 

three-way interactions. Interpretation of the lower order terms is based on effect coding, 

thus lower order terms are evaluated at the mean. Three of the three-way interactions had 

extremely large Wald χ
2
 values (Wald χ

2
 > 99) and large non-centrality parameters (λ > 

75). Of these three interactions, two interactions included the method effect, the effect of 

most interest to this research study. I used these three-way interactions to parse out 

interactions that were meaningful for presentation purposes. I present results in terms of a 

Method  αβ  Missing Rate interaction and a Method  N  Missing Rate 

interaction.  

Method  αβ  Missing Rate 

 Table 12 presents the Type 1 error rates of Effect Size  Method  Missing 

Data Rate. Bold values in Table 12 represent values within the honest range of 4.04% to 

5.96% as previously described. To ease presentation of results, Figure 14 displays the 

results graphically showing the Type 1 error rates of method crossed with effect size (size 
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of α or β) paneled by missing rate on M1. Effect size indicates the size of the non-zero α 

or β effect (effect size equal to zero for α = β = 0.0). The grey brands represent the range 

4.04% - 5.96%, the values we might expect to see if the Type 1 error rate was actually 

5%. A three-way interaction means that the two-way interaction of method by effect size 

differs by missing data rate. For a 20% missing data rate, all methods performed 

comparably for a given effect size. With increasing missing data rates, there was a greater 

distinction in Type 1 error rates across methods and this distinction is magnified as the α 

or β paths increase. The differential performance of the different methods was 

particularly acute for a high missing data rate (missingness = 80%) and a small sample 

size (N = 100). Also notice that the Type 1 error rates within or very close to the expected 

range (represented by the grey band) for a 5% Type 1 error rate only when α or β = 0.3 or 

0.5 (corresponding with an α or β path that is medium or large).  

Method  N  Missing Rate 

Table 13 presents Type 1 error rates based on Method  N  Missing Rate 

interaction. Bold values in Table 13 represent values with honest error rates ranging from 

4.04% to 5.96%. Notice only two cells contain values within this range (complete data 

for N = 1000 and the model with two auxiliary variables with an 80% missing data rate 

for N = 100), demonstrating that these Type 1 error rates are somewhat lower than the 

expected value of 5%. To ease presentation of results, I provide Figure 15 showing the 

Type 1 error rates of method crossed with sample size (N) paneled by the missing data 

rate. Because of the low rate of values within the honest error range, I do not include grey 

bands to depict this range as the grey band would be largely outside the scope of the 

graph. The three-way interaction means that the method by sample size (N) interaction 
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varies across missing data rate. As demonstrated by Figure 15, the relationship between 

method and sample size on Type 1 error rates differs depending on the missing rate. At a 

20% missing data rate, there is a minimal N by method interaction; methods perform 

nearly identically for a particular sample size, with minor differentiation for small sample 

sizes. For larger missing data rates (50% and 80%), there is a clear method by sample 

size interaction. For example, the Method 4 (ML with no additional mediators) trajectory 

is much less steep than the Method 1 (latent variable model) trajectory. The interaction 

becomes more acute for a missingness rate of 80%. For small samples (N = 100) with a 

high missing data rate (80% missing), the various methods produced large ranges of Type 

1 error rates (0.00% - 9.90%). For large samples (N = 1000), the range of Type 1 error 

rates across methods for 80% missingness was reduced considerably (.05% -6.75%).  

Confidence Interval Coverage 

I assessed confidence interval coverage by computing the proportion of 

replications where the 95% asymmetric confidence interval contained the true mediation 

population parameter, αβ. If the estimated asymmetric confidence intervals are accurate, 

confidence interval coverage for a .05 alpha level should equal 95%. In contrast, if the 

asymmetric confidence intervals are too narrow, confidence intervals will not capture the 

population parameter as frequently as they should, and coverage rates will drop below 

95%. From a practical standpoint, coverage provides a benchmark for assessing the 

accuracy of the asymmetric confidence intervals because it directly related to Type I error 

inflation (e.g., a 90% coverage value suggests a twofold increase in Type I errors, an 85% 

coverage value reflects a threefold increase, and so on). Based on a sample size of 2000 

(2000 replications per design cell), I calculated the standard error expected for the 
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proportion 0.95. I then formed a ±1.96SE interval around the nominal rate of 0.95. This 

resulted in a range of 0.9405 to 0.9596. From this computation, I conclude that values 

with honest confidence intervals would expect to yield confidence interval percentages 

ranging from 94.05 to 95.96%; this is the range we might expect to see if the confidence 

interval was actually 95%. 

Coverage was evaluated only for replications where the mediated effect was non-

zero; when the mediated effect is zero, coverage is directly related to Type 1 error (i.e., 

Coverage = 100% – Type 1 error %). Across all design cells where both αβ and the 

missing rate are non-zero, confidence interval coverage had a mean of 94.90% and 

ranged from 89.75 to 99.80%. For complete data, coverage performed exactly as 

expected with a mean of 95.00% and a range of 93.00 to 99.25%. For replications with 

missing data (i.e., missing rates 20%, 50% and 80%), coverage had a minimum value of 

89.75% and a maximum value of 99.80%. Across the five analysis methods, there was 

not a lot of variation with coverage. Table 14 shows the average percent coverage for 

each analysis method collapsed across all other factors (only for αβ > 0 and missing rate 

> 0). Although some cells had coverage values outside of the honest range for 95% 

coverage values (i.e., 94.05 to 95.96% as described), the aggregate values for coverage 

by method as presented in Table 14 all fall within the expected range for 95% confidence 

interval coverage.  

Even though coverage generally performed as expected and desired, I further 

probed the effects of the manipulated factors on coverage. Similarly to the previous 

logistic regression to understand the effects of the manipulated factors on power to detect 

the mediated effect, I limited the logistic regression analyses for coverage to the 



   

96 

3,240,000 replications with both a non-zero mediated effect and a non-zero missing data 

rate (i.e., 20%, 50% or 80% missing). The outcome variable in the logistic regression 

analysis was coded zero when the asymmetric confidence interval for the mediated effect 

did not contain the population value of αβ and coded one when the asymmetric 

confidence interval for the mediated effect did contain the true population value of αβ. As 

in previous analyses, all factors were treated as between-subjects factors, including the 

analysis method factor which is technically a within-subjects factor. Additionally, for 

ease of analysis, the manipulated factors were effect coded as categorical variables. I 

started by running a logistic regression analysis using the full factorial up to a six-way 

interaction (αβλ N Missing Data Rate Method; χ
2
(192) = 239.63, p = 0.01). 

Consistent with the power section, I also ran a model that only included all lower order 

terms up to and including all three-way interactions. As previously, I ran the logistic 

regression on the 3,240,000 replications in two ways: (1) treating α and β as separate 

factors and (2) combining α and β into one mediated effect factor, αβ. As previously, I 

provide the results for this second analysis treating the mediated effect as a single factor. 

Table 15 provides the results of this logistic regression analysis grouped by order of 

terms and ranked by the size of the Wald χ
2 
joint test. Because the factors were effect 

coded, the lower-order terms represent the conditional effect at the mean. Although 

overpowered, not all effects were significant. Based on the results, I further investigated 

three three-way interactions that include the method factor: MethodαβMissing Rate, 

MethodαβN, and MethodNMissing Rate. However, because there was limited 

variation in the design cells and a majority of the coverage values were in the range 
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expected for a true 95% coverage, I only briefly focus on the confidence interval 

coverage interactions.  

MethodαβMissing Rate 

Table 16 shows the 95% confidence interval coverage values for the method by 

αβ by missing data rate interaction; each cell is averaged across all values of sample size 

(N) and λ. All values were close to the desired 95% value. Bold values in Table 16 

represent values within the previously described honest range of 94.05 to 95.96%. Figure 

16 shows the method by missing rate interaction paneled by mediation effect size, αβ. 

This Figure makes the interaction more clear. The graph shows that the interaction 

between method and mediation effect size is moderated by missing data rate. The 

interaction between method and mediated effect is nearly non-existent for a missing data 

rate of 20%, but quite apparent for a missing data rate of 80%. From this graph, it is also 

clear that for lower missing data rates (missing rates = 20 and 50%), coverage values fall 

in the honest range for all mediated effect values where αβ > 0.01. However, for the high 

missing data rate (missing rate = 80%), very few coverage values fall in this range.  

MethodαβN 

Table 17 shows the 95% confidence interval coverage values for the method by 

αβ by N interaction; each cell is averaged across all other factors (i.e., missing data rate 

and λ). Consistent with the logistic regression analysis, complete data conditions were not 

included when aggregating values across missing data rates. Bold values in Table 17 

represent values within the previously described honest range of 94.05 to 95.96%. Figure 

17 provides a graphical depiction of the method by sample size (N) interaction paneled by 

mediated effect size (αβ). Here, it is clear that as N increases, all design cells converge 
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towards 95%. However, the effect of method on coverage varies differentially depending 

on sample size. At smaller sample sizes, coverage is more likely to be out of the honest 

range. Furthermore, this two-way interaction is moderated by mediated effect size. 

Depending on the mediated effect size, coverage values may be above or below the 

desired range for small sample sizes.  

MethodNMissing Rate 

The last three-way interaction considered in terms of coverage is the method by N 

by missing rate interaction. Table 18 provides the percent coverage rates for method by N 

by missing rate averaged across all other factors (i.e., αβ and λ). Bold values in Table 18 

represent values within the honest range of 94.05 to 95.96%. Note that only two 

conditions fall outside of this range: missing rate of 80% for N = 100 for both auxiliary 

variable models. Figure 18 provides a graphical depiction of the method by sample size 

(N) interaction paneled by missing data rate. The top two panels (missingness = 20% and 

50%) show a slight interaction between method and sample size, N. However, when 

missingness is high (missingness = 80%, bottom panel), the interaction is particularly 

salient. Not surprisingly, small sample sizes coupled with large missing data rates 

magnify the differential performance of the analysis methods. For missingness = 80% 

and a small sample size (N = 100), there is considerable differentiation among the 

methods in terms of coverage values.  
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CHAPTER 5 

DISCUSSION 

Psychologists and other social scientists often use mediation analyses to 

investigate mechanisms of change. However, the sample sizes required to achieve 

sufficient power to detect a mediated effect are frequently quite high. Modern research in 

psychology and social sciences also entails increasingly sophisticated measurement of 

mediating mechanisms, but these measurements are often expensive. Researchers with 

limited budgets may be forced to choose between using expensive measures on a small 

sample of participants or less expensive measures on a larger sample of participants. One 

area of methodological research, modern missing data analysis, has demonstrated that, in 

some situations, carefully planned missing data designs that employ modern analysis 

techniques may optimize utilization of resources. The current study investigated the use 

of intentional missing data designs for a mediation analysis that incorporates multiple 

measures of the same mediation construct. My research considered two classes of 

measures of a mediating variable: expensive and inexpensive. Specifically, the current 

study considered a scenario where researchers are most interested in an expensive 

measure of the mediating variable, but they are unable to afford the required sample size 

to ensure adequate statistical power to detect the mediated effect. However, the 

researchers can potentially collect additional, less expensive, mediators on a larger 

sample of participants. 

As described in detail in Chapter 3, the study used simulations with data 

generated from a variety of population parameters for manifest X and Y variables and a 

latent mediator variable, LM, with three observed indicator variables, M1, M2, and M3. 
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Planned missingness was implemented under the missing completely at random (MCAR) 

mechanism on variable M1 to mimic a scenario where M1 is the expensive mediator that 

cannot be collected for the full sample of participants. I then evaluated five approaches of 

incorporating the available measures into a mediation analysis: (Method 1) a latent 

variable mediation model where all three mediators are indicators of a latent mediation 

construct, (Method 2) an auxiliary variable model where one of the mediation variables, 

M1, is the mediator, and the other mediation variables, M2 and M3, are auxiliary variables, 

(Method 3) an auxiliary variable model where M1 is the mediator, and M2 serves as a 

single auxiliary variable, (Method 4) an analysis using maximum likelihood estimation, 

including  all available data but incorporating only one mediator, M1, and (Method 5) an 

analysis using listwise deletion and incorporating only one mediator, M1. The goal of this 

study was to evaluate the potential use of planned missing data designs with mediation 

analysis by evaluating the empirical power to detect the mediated effect using five 

different analysis methods under a variety of simulation conditions. Specifically, the 

research aimed to address the question of what the best method is for incorporating 

additional inexpensive measures into a cross-sectional mediation analysis with planned 

missing data.  

Summary and Discussion of the Results 

 Chapter 4 describes the results in detail. As expected given that all analyses 

satisfied the MCAR mechanism, there was minimal bias in the results. Design cells with 

80% missing data on M1 demonstrated the most bias. I also evaluated confidence interval 

coverage for conditions where the population value of the mediated effect, αβ, was non-

zero. In most situations, coverage values were within the range of values expected if the 
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true coverage rate in the population was 95%. Coverage most often deviated from the 

desired 95% value for conditions with high missing data. I evaluated Type 1 error rates 

for conditions where the population mediated effect, αβ, was zero. When both mediated 

effect population coefficients, α and β, were zero, Type 1 error rates were extremely close 

to zero for all missing data rates. For conditions where the population mediated effect 

was zero, but either α or β were non-zero, Type 1 error rates were closer to the expected 

value of 5%. As the missing data rate increased, Type 1 error rates tended to decrease.  

The main outcome of interest was empirical power to detect the mediated effect; 

empirical power was evaluated for conditions where the population mediated effect, αβ, 

was non-zero. The average empirical power across all design cells for the complete data 

condition was 66.46%. The empirical power values observed for complete data 

conditions were somewhat lower than the values found in previous literature (MacKinnon 

et al., 2002; Fritz & MacKinnon, 2007), but these differences can be ascribed to the 

population generation model and the specific  definition of small, medium, and large 

effect sizes between the current and the previous studies. Unlike the current study which 

used standardized regression coefficients (equivalent to correlations) to define small, 

medium, and large effects for α and β (i.e., 0.1, 0.3, and 0.5, respectively), MacKinnon 

and colleagues (2002) defined small, medium, and large effect sizes based on proportion 

of variation accounted for in the dependent variable. The specific data generation 

procedure of the previous literature resulted in larger standardized α and β coefficients for 

small, medium, and large effect sizes (i.e., 0.139, 0.363, 0.508 for conditions with 

complete mediation). Consequently, empirical power values from these previous 

simulation studies were higher. Table 19 compares the complete data power estimates 
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from this study to the results from MacKinnon and colleagues (2002) for mediated effect 

sizes where α = β for small, medium, and large α and β coefficients.  

As expected based on previous literature (e.g., Graham, et al., 2001), empirical 

power to detect the mediated effect decreased when missing data was introduced; as the 

percent of missing data in the mediator increased, empirical power to detect the mediated 

effect decreased. However, as compared to the reduction in the amount of observed data 

on M1, the decrease in power was less than might be expected. This is consistent with the 

literature that suggests that the proportion of information lost due to planned missing data 

(i.e., the proportion of missing data observations)  is often larger than the amount of 

power lost due to planned missing data (Graham et al., 2001; Graham et al., 2006; Jia et 

al., 2014). Although there was 20% missingness on M1, the latent variable mediation 

model (Method 1) only demonstrated a reduction in power of 2.06% across all design 

cells relative to the complete data condition. The condition with 50% missingness using 

the latent variable mediation model (Method 1) resulted in a 6.02% reduction in power 

across all design cells. Similarly, for 80% missingness, there was only an 11.86% 

reduction in power across all design cells using the latent variable mediation model 

(Method 1). The other analysis methods did not perform as well as the latent variable 

mediation model. For the 80% missing data condition, the model with two auxiliary 

variables (Method 2) demonstrated an average reduction of power of 20.72% relative to 

the power for complete data.  Method 2 had lower empirical power than Method 1 even 

though the total amount of data utilized in the two methods was the same. Not 

surprisingly, Methods 3 through 5 exhibited larger reductions in power for the mediated 

effect, given that they were, in fact, based on fewer variables. The model with one 
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auxiliary variable (Method 3) demonstrated an average reduction of power of 23.87%; 

the model with no additional mediators using maximum likelihood estimation (Method 4) 

demonstrated an average reduction of power of 29.35%; and listwise deletion (Method 5) 

demonstrated an average reduction of power of 32.40%. Consistent with expectations, 

power was the greatest for analysis methods that included all three mediators and power 

decreased with analysis methods that included less information (i.e., fewer mediators).   

The fact that maximum likelihood estimation only performed marginally better  

than listwise deletion  (3.03% more power averaged across all design cells) was 

somewhat surprising given previous missing data literature that suggests that using 

maximum likelihood estimation results in greater statistical power and efficiency than 

listwise deletion (e.g., Enders & Bandalos, 2001; Little & Rubin, 2002; Schafer, 1997; 

Schafer & Graham, 2002).  As described in Chapter 2, Zhang and Wang (2013) 

specifically evaluated modern missing data methods in the context of mediation and 

found that maximum likelihood estimation had increased power to detect the mediated 

effect compared to listwise deletion. The similarities between the aggregated empirical 

power values of maximum likelihood estimation (Method 4) and listwise deletion 

(Method 5) may be somewhat driven by the many design cells that had floor and ceiling 

effects in the results (i.e., power approaching zero or 100%). For conditions that showed 

the greatest variability among the methods, the differences between the performance of 

maximum likelihood estimation and listwise deletion in terms of empirical power were 

more notable. The largest difference between the two methods was found in the design 

cells where α = β = 0.5 (large effect size) and N = 100 (using results from λ = 0.8). For 

this condition, maximum likelihood estimation achieved power that was 12.60% higher 



   

104 

than power attained with listwise deletion. Although there was only a small power 

advantage with maximum likelihood over listwise deletion, when aggregated across all 

design cells, in some conditions, maximum likelihood estimation may have an 

appreciable increase in power over listwise deletion. The increase in power of maximum 

likelihood estimation over listwise deletion is consistent with the missing data literature.  

The results of the simulation study also demonstrated that, in terms of accounting 

for empirical power, the analysis method (i.e., Methods 1 – 5) interacted with missing 

data rate, mediated effect size, and the correlation among the mediators. The specific 

performance of each analysis method in terms of power depended on the interactions 

among these factors. Specifically, the missing data rate modified both the interaction 

between method and the correlation among the mediators (λ) and the interaction between 

method and mediated effect size (αβ). The correlation among the mediators (λ) modifies 

the interaction between method and mediated effect size (αβ).  

Latent Variable Mediation versus Auxiliary Variable Mediation Models 

One issue this research aimed to address was whether or not a model 

incorporating all three measured mediators would perform better as a latent variable 

model including all three measures of the mediator in a single latent variable 

specification or an auxiliary variable missing data model with missingness on the variable 

in the mediated path and with two complete auxiliary variables to support estimation of 

the mediated effect. The results demonstrated that the latent variable mediation model 

(Method 1) outperformed the auxiliary variable model with two auxiliary variables 

(Method 2) in terms of power. Coverage and Type 1 error rates were comparable across 

the two methods. 
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 Although the latent variable mediation model performed better in terms of power 

to detect the mediated effect, aspects of the simulation design may explain the results. 

First, the data generation model was a latent variable mediation model. Consequently, it 

is not surprising that the analysis model that most closely matches the data generation 

model (Method 1) performed better. Furthermore, the latent variable mediation model 

(Method 1) had fewer parameters than the model with two auxiliary variables (Method 2) 

and was more parsimonious. In other words, the latent variable mediation model 

accurately represents the relations in the data using fewer degrees of freedom.  

 To further understand the difference in performance between Methods 1 and 2, it 

is useful to investigate how the population generation model used in the current study 

may have affected these results. Specifically, the model-implied covariance matrix of the 

data generation model always resulted in the partial correlation of Y and M2 controlling 

for M1 equal to zero (𝑟𝑌𝑀2.𝑀1
= 0). Likewise, the partial correlation of Y and M3  

controlling for M1 is also equal to zero (𝑟𝑌𝑀3.𝑀1
= 0). Given M1 in the model prediction 

Y, no further increment in in prediction from M2 or M3 was possible.  

 To demonstrate this, consider the population model implied covariance matrix of 

the manifest variables based on the population generation model as shown in Appendix 

C. The constraints chosen for this simulation study simplify the model implied 

covariance matrix for in Appendix C to:  

 

𝑋 𝑀1 𝑀2 𝑀3 𝑌

𝑋 | 1

𝑀1 | 𝛼 1

𝑀2 | 𝛼𝜆 𝜆 𝜆2 + 𝜎𝜀
2

𝑀3 | 𝛼𝜆 𝜆 𝜆2 𝜆2 + 𝜎𝜀
2

𝑌 | 𝛽𝛼 + 𝜏′ 𝜏′𝛼 + 𝛽 𝜆(𝜏′𝛼 + 𝛽) 𝜆(𝜏′𝛼 + 𝛽) 1

 (5.1) 
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The partial correlation of Y with M2 controlling for M1 can be expressed as follows.  

 
𝑟𝑌𝑀2.𝑀1

=
𝑟𝑌𝑀2

− 𝑟𝑌𝑀1
𝑟𝑀2𝑀1

√(1 − 𝑟𝑌𝑀1

2 )(1 − 𝑟𝑀2𝑀1

2 )

 
(5.2) 

Because the variances of the latent variables LM and LY are both equal to one resulting in 

the model-implied variances of M1 and Y being equivalent to one, the three correlations 

required for the formula in Equation 5.2 are as follows.  

 𝑟𝑌𝑀2
=

𝐶𝑜𝑣(𝑌,𝑀2)

𝜎𝑌𝜎𝑀2

= 
𝝀(𝜏′𝛼 + 𝛽)

√𝜆2 + 𝜎𝜀
2

 (5.3) 

 
𝑟𝑌𝑀1

=
𝐶𝑜𝑣(𝑌, 𝑀1)

𝜎𝑌𝜎𝑀1

= 𝜏′𝛼 + 𝛽 
(5.4) 

 
𝑟𝑀2𝑀1

=
𝐶𝑜𝑣(𝑀2,𝑀1)

𝜎𝑀2
𝜎𝑀1

=
 𝜆

√𝜆2 + 𝜎𝜀
2
 

(5.5) 

Substituting the expressions from Equations 5.3 – 5.5 into the numerator of Equation 5.2 

demonstrates that, given the population generation model, the partial correlation between 

Y and M2 controlling for M1 will always be zero (regardless of the values of α, β, or τ’).  

 𝑟𝑌𝑀2.𝑀1
=

𝜆(𝜏′𝛼 + 𝛽)

√𝜆2 + 𝜎𝜀
2

−
(𝜏′𝛼 + 𝛽)𝜆

√𝜆2 + 𝜎𝜀
2

 (5.6) 

Similarly, the same algebra demonstrates that the partial correlation between Y and M3 

controlling for M1 will also always be zero given the population generation model. As a 

result of the data generation model, after controlling for M1, both M2 and M3 have no 

correlation with Y. As a note, the above algebraic manipulations took into account the 

constraints placed on the variances of LM and LY (and correspondingly the variances of 

M1 and Y) so that the variances are equivalent to unity. These constraints simplified the 

algebraic proof, but it can also be demonstrated that the partial correlations of the two 
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inexpensive mediators with Y controlling for M1 are zero regardless of whether the 

variance constraints on LM and LY are included.  

Careful examination of the covariance matrix and corresponding partial 

correlation calculations suggest that the assumption of M1 being perfectly reliable with a 

loading of one and a residual variance of zero was the critical component driving the 

population partial correlations of the Y with the inexpensive mediators to be zero. In other 

words, generating data assuming perfect reliability of M1 resulted in the following 

expression holding true at the population level: 𝑟𝑌𝑀2.𝑀1
= 𝑟𝑌𝑀3.𝑀1

= 0.  However, if M1 

had not been generated as perfectly reliable and, consequently, the residual variance of 

M1 was non-zero (i.e., 𝜎𝜀𝑀1

2 > 0) then the population partial correlations of the two 

inexpensive mediators with Y controlling for M1 would not necessarily be zero.  

The fact that the data were generated with partial correlations equal to zero 

(𝑟𝑌𝑀2.𝑀1
= 𝑟𝑌𝑀3.𝑀1

= 0) has important ramifications on interpreting the results. The 

model that incorporates two auxiliary variables (Method 2) includes the partial 

correlations of Y with both M2 and M3 in the model specification. Thus, given the data 

generation, the auxiliary variable model (Method 2) is at a power disadvantage relative to 

the latent variable model (Method 1) because the auxiliary variable model requires these 

two additional parameters in the model (i.e., 𝑟𝑌𝑀2.𝑀1
and 𝑟𝑌𝑀3.𝑀1

); both of these additional 

parameters have true population values equivalent to zero. This issue is specific to the 

current population data generation model and the somewhat tenuous assumption that M1 

has perfect reliability. Had I not constrained 𝜎𝜀𝑀1

2  to zero, the population partial 

correlation of Y with the inexpensive mediators (M2 and M3) after controlling for the 
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expensive mediator (M1) would not necessarily be zero, and these non-zero partial 

correlations may improve power to detect the mediated effect.  

The difference in the number of parameters between the latent variable mediation 

model (Method 1) and the auxiliary variable mediation model (Method 2) raises an 

important point. Even when the partial correlations between Y and the inexpensive 

mediators are non-zero, the additional number of parameters in the auxiliary variable 

mediation model as compared to the latent variable mediation model may pose a power 

disadvantage. In fact, I tested several conditions and demonstrated that using the auxiliary 

variable model (Method 2) and constraining the partial correlations between Y and the 

inexpensive mediators to zero (resulting in a reduction of the number of estimated 

parameters), the power to detect the mediated effect increases. In other words, when the 

true partial correlations of the auxiliary variables with Y are zero, removing these extra 

parameters increases power. Researchers will be at an advantage using the more 

parsimonious latent variable mediation model (Method 1) when possible. In other words, 

if the measurement model fits, when using the latent variable mediation model (Method 

1) there is a slight boost in parsimony (i.e., fewer parameters), and thus, a resultant boost 

in power. If the measurement model is not tenable, the auxiliary variable model may be 

the better model because it ends up being no less parsimonious than a measurement 

model that is modified to fit (e.g., a model with post hoc correlated errors) and the 

auxiliary variable model avoids the need to conceptualize the mediators as indicators of a 

unitary construct.  

 The finding that the auxiliary variable model does not perform as well as the 

latent variable model is contrary to what might be expected.  Previous research suggests 
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that an inclusive strategy of including auxiliary variables is preferred due to 

improvements in efficiency (Collins et al., 2001; Rubin, 1996). In fact, Collins and 

colleagues (2001) noted that the inclusion of auxiliary variables is neutral in the worst 

case scenario and extremely beneficial in the best case scenario. Additional research has 

explicitly shown that, in terms of detecting mediation, auxiliary variables can increase the 

power to detect the mediated effect (Zhang & Wang, 2013). In the current study, the 

inclusive strategy of two auxiliary variables was beneficial compared to an analysis with 

only one auxiliary variable or maximum likelihood estimation with no additional 

mediators, but the inclusion of auxiliary variables was not beneficial as compared to the 

latent variable mediation model.   

Illustrative Example of Analyzing Planned Missing Data in Mediation in Terms of 

Cost 

 As demonstrated by the results, with the exception of floor and ceiling effects 

(i.e., power approaching zero or 100%), in a mediation analysis, the use of planned 

missingness in the mediator will always decrease the power to detect the mediated effect. 

However, this decrease in power is not always as extreme as what may be expected. 

Furthermore, if a design is considered from the perspective of cost, it can be 

demonstrated that given a fixed budget there are scenarios where planned missing data 

designs can have more power than traditional complete data designs.  

 To better understand the potential for planned missing data to increase power to 

detect the mediated effect given a fixed budget, we can explore some artificial cost 

scenarios and compare power across different ways of allocating the same resources. 

These scenarios demonstrate that given a fixed budget, there are some scenarios in which 
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a planned missing data design may perform better than a complete data design in terms of 

power to detect the mediated effect. To illustrate, consider a research design that costs 

$10 per participant to enroll in the study (regardless of which variables are collected), an 

additional $10 per participant per measure to collect data for measures X, Y, M2 and M3, 

and $500 per participant to collect data on the expensive mediator, M1. For the condition 

where the true mediated effect is composed of both small and medium paths (ie., αβ = .03 

where α is small and β is medium or α is medium and β is small), using results for λ = .8, 

N = 1000, and 50% missing rate on M1, the empirical power for the latent variable model 

(Method 1) is 82.85% and the empirical power for the model with two auxiliary variables 

(Method 2) is 79.40%. Both of these results would generally be considered adequate 

power using the convention of power = 80%. Alternatively, the researcher could use a 

complete data design with N = 1000 using only the expensive mediator, M1, resulting in 

empirical power of 86.83%. The complete data design does provide a slight increase in 

power; however, this increase in power comes at considerable expense given a set of 

measures with costs as described above. For this cost scenario, the missing data designs 

described above (i.e., 50% missingness) would cost $300,00, whereas the complete data 

design would cost and addition $230,000 for a total cost of $530,000. The calculations 

are below.  

Missing Data Design (50% on M1) with N = 1000 and empirical power = 82.85% 

1. $10 per participant for enrollment  1000 participants = $10,000 

2. $10 per participant to collect each of X, Y, M2 and M3  = $40 per participant  

100 participants = $40,000 

3. $500 for 50% of participants to collect M1 = 500 participants  $500 = $250,000 
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Total: $300,000 

Complete Data Design with N = 1000 and empirical power = 86.83% 

1. $10 per participant for enrollment  1000 participants = $10,000 

2. $10 per participant to collect each of X and Y  = $20 per participant  1000 

participants = $20,000 (M2 and M3  are not needed for complete data design) 

3. $500 for 100% of participants to collect M1 = 1000 participants  $500 = 

$500,000 

Total: $530,000 ($550,000 if M2 and M3 are collected for the entire sample)  

Given that the increase in power for the complete data condition is approximately four to 

seven percent higher as compared to the missing data models (Methods 1 and 2), the 

increase in power resulting from using a complete data design may not justify the 

increase in expense.  

To further illustrate this point, Table 20 summarizes all the simulated conditions 

where the empirical power to detect the mediated effect is in the 75-87% range for αβ = 

0.03 (i.e., one small and one medium path comprising the mediated effect) and N = 1000. 

Cost is calculated using the method above based on the same hypothetical research 

design that costs $10 per participant included, $10 per participant to collect data for 

variables X, Y, M2 and M3, and $500 to collect data per participant on the expensive 

mediator, M1. Results in Table 20 are ranked from the most expensive to the least 

expensive. The table shows that the latent variable model (Method 1) with 80% missing 

data produces an empirical power value of 79.45% at a cost of $150,000 compared to the 

complete data designs which produce slightly higher power (86.83%), but come at a 

substantially increased cost ($530,000 to $550,000 total cost).  
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 The example above considered a scenario with 1,000 participants in the sample. 

With such a large sample size, concern about power loss from planned missingness may 

be somewhat mitigated. As another example, consider another scenario using the same 

costs associated with each measure as in the previous example, but using smaller sample 

sizes. If we consider the condition where both α and β are medium effect sizes (α = β = 

0.30 and αβ = 0.09) for a medium correlation among the mediators (λ = 0.6), a complete 

data design with a sample of only 100 participants (N = 100) results in 70.30% empirical 

power to detect the mediated effect for a cost of $53,000 (assuming only one mediator, 

M1, is collected; the cost increases for more mediators, but without an increase in power). 

On the other hand, a design with 200 participants (N = 200) with 80% missing data 

produces a power value of 81.35% at a reduced cost of $30,000. The calculation of costs 

is below.  

Missing Data Design (80%) with N = 200 and empirical power = 81.35% 

1. $10 per participant for enrollment  200 participants = $2,000 

2. $10 per participant to collect each of X, Y, M2 and M3  = $40 per participant  

200 participants = $8,000 

3. $500 for 80% of participants to collect M1 = 40 participants  $500 = $20,000 

Total: $30,000  

Complete Data Design with N = 100 and empirical power = 70.30% 

1. $10 per participant for enrollment  100 participants = $1,000 

2. $10 per participant to collect each of X and Y  = $20 per participant  100 

participants = $2,000 

3. $500 for 100% of participants to collect M1 = 100 participants  $500 = $50,000 
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Total: $53,000 ($55,000 if M2 and M3 are collected for the entire sample)  

In this scenario, a design with 200 participants but 80% missing data on M1 actually 

provides more power and costs $23,000 less than a design with complete data and 100 

participants. This example demonstrates a condition where 80% missingness on M1 for a 

larger sample, N = 200, can provide greater empirical power to detect the mediated effect 

than a complete data design on a smaller sample, N = 100. This is an example of a 

situation where a planned missing data design could have greater power at a potentially 

lower cost than a complete data design.  These two hypothetical examples are supported 

by previous literature suggesting that given certain conditions, some missing data designs 

have more statistical power than the complete case designs that cost the same (Graham et 

al, 2001).  

Recommendations 

 The illustrative example of analyzing planned missing data in mediation in terms 

of cost demonstrates that there are viable scenarios where missing data rates as high as 

80% might actually be worthwhile in a planned missing data mediation analysis. 

However, the exact circumstances of when planned missing data can be used, and how 

high the missing data rate can be, depend largely on the anticipated effect sizes and cost 

of the measures. In situations where there isn’t an extreme cost differential between the 

mediators, high planned missing rates may not be worth the reduction in power when 

considered from a cost perspective. The results also demonstrate that the specific planned 

missing design and analysis method a researcher uses may also depend on costs. For 

example, simulation results from the current study demonstrate the difference in power 

between the model with two auxiliary variables (Method 2) and the model with one 
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auxiliary variable (Method 3) is often not very large. Depending on the cost of the 

inexpensive mediator, it may actually be most efficient to use the model with only one 

auxiliary model.  

 One major result from this study is that the latent variable mediation model had 

more power to detect the mediated effect than the mediation model with two auxiliary 

variables. As described previously, this difference can be attributed to the data generation 

model. However, because the latent variable mediation model estimates fewer 

parameters, this model is the recommended model for researchers evaluating planned 

missing data when there are multiple measures of the same mediation construct. 

Furthermore, the measurement portion of a latent variable model can help address issues 

of measurement error in the mediator and mitigate the potential detrimental impact of 

measurement error. The next logical inquiry is whether there are any conditions where a 

researcher should choose an auxiliary variable mediation model over a latent variable 

mediation model.  There are three situations when a researcher may make this choice; the 

first two of these situations are based on theoretical considerations of the research. First, 

when the additional measures collected are not actually theoretically indicators of one 

latent mediation construct, but instead are highly correlated with the mediator of interest 

(and potentially X and/or M), it may make theoretically more sense to use an auxiliary 

variable model. In this case, only the desired mediator serves as the mediator. The 

researcher would then consider collecting highly correlated additional variables, but the 

burden of whether or not these additional variables represent the same construct of the 

mediator of interest need not be a concern. The auxiliary variable model eliminates the 

need to conceptualize the multiple mediators as indicators of a unitary construct. If 
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researchers attempted to force a measurement model to fit data that does not represent a 

single construct, additional parameters would be required to make the mediators fit a 

measurement model (i.e., residual correlations between the Mi’s and Y) and the resulting 

model would be statistically equivalent to the auxiliary variable model. Second, an 

auxiliary variable model may make more sense when X and Y are manifest variables and 

the study is only able to collect one additional inexpensive mediator. If X and Y are 

manifest variables, a latent variable model with only two indicators requires additional 

model constraints (e.g., both M1 and M2 correlate with another variable in the model or 

both loadings constrained to be equal). From a theoretical standpoint, the auxiliary 

variable model with one auxiliary variable may be more defensible than a latent variable 

model with the required constraint. Constraints aren’t needed if X and Y are latent 

variables with multiple indicators. Finally, some researchers may be more comfortable 

avoiding the latent variable framework and prefer to use the MAR-based procedure of 

multiple imputation with a regression analysis that includes auxiliary variables. Unlike 

the latent variable model (Method 1), the auxiliary variable models (Methods 2 and 3) 

can be implemented in the OLS regression framework using multiple imputation.  

The vital question that remains is, for a given effect size, how much missing data 

is recommended? Unfortunately, there is no simple answer to that question. The optimal 

planned missing data design depends on the effect size, the strength of the correlations of 

the auxiliary variables, the sample size, and the cost associated with each of the collected 

measures. Depending on the parameters listed above, a planned missing design with 80% 

missing data might be optimal design, but there are cases where a design with a lower 

missing rate or a traditional complete data might be optimal. Before implementing any 
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design with purposeful missing data, researchers should conduct Monte Carlo power 

analyses to determine the best design strategy for the parameters of a given research 

scenario. A Monte Carlo analysis can take into account the cost of each measure and the 

anticipated effect sizes to determine which design might best optimize resources. There 

are several resources available to researchers describing power calculations for missing 

data designs (Enders, 2010, pp. 30–32; Mistler & Enders, 2012; L. K. Muthén & Muthén, 

2002).  

A power analysis may also want to take into consideration that research involving 

human participants may also include unplanned missing data. Little and Rhemtulla  

(2013) offer guidelines for preemptively accommodating unplanned missing data in a 

planned missing data design. First, power analyses of planned missing data designs 

should incorporate the potential for unplanned missing data. Rates of unplanned missing 

data from previous research may be used to estimate the amount of unplanned 

missingness that may arise above and beyond the planned missingness. Second, 

additional measures should be collected in order to ensure that unplanned missingness 

satisfies the MAR-mechanism. These measures might be chosen based on previous 

research and theoretical reasons unplanned missingness might arise (e.g., lack of 

conscientiousness, socioeconomic status). In some cases, the inexpensive mediators may 

serve both purposes (i.e., the inexpensive mediator chosen to help increase power on the 

mediator with missing data may also help satisfy the MAR-mechanism). In other research 

scenarios, additional auxiliary variables may be required to satisfy the MAR-mechanism 

when there are unplanned missing data.  
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Limitations and Future Directions  

 Planned missing data analysis in mediation is a research area that has many 

possibilities beyond the conditions explored in the current study.  The current simulation 

has a number of limitations. The simulation is limited by the levels of the manipulated 

factors chosen for this study. For non-zero mediated effects, both α and β were positive 

values resulting in a positive mediated effect; the current study did not consider situations 

when the two paths that comprise the mediated effect are both negative or in opposite 

directions. The study also constrained τ’ (the direct effect of Y on X) to zero and only 

evaluated conditions with complete mediation in the population. Although this choice is 

defensible given previous literature on the impact of partial mediation on power to detect 

the mediated effect (Fritz & MacKinnon, 2007; MacKinnon et al., 2004), methodologists 

have argued that complete mediation is unlikely with a single mediation construct (Baron 

& Kenny, 1986). The presence of inconsistent mediation (which only occurs in the 

presence of partial mediation) may also affect the results. In inconsistent mediation, τ’ is 

in the opposite direction of αβ (MacKinnon et al., 2000). Consequently, the mediator acts 

like a suppressor variable, and this suppression could potentially influence the 

performance of the evaluated analysis methods.  

As another limitation, the current study only investigated missingness on the 

mediator, M. Planned missing designs may also be appropriate with planned missingness 

on the independent variable, X, and/or the dependent variable, Y. Furthermore, this 

research assumed all variables were normally distributed. Although the assumption of 

normally distributed variables is often tenable, there are many variables of research 

interest that are non-normal. Mediational planned missing designs need to be evaluated in 
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the context of non-normal distributions on X, M and Y (e.g., skewed, binary outcomes, 

count variables). Because the distribution of the mediated effect, αβ, is not normally 

distributed, non-normal distributions may have unexpected effects on power to detect the 

mediated effect with planned missing data. Planned missingness with non-normal 

variables requires further investigation.  

A major limitation of this study is the assumption that the expensive mediator, 

M1, was perfectly reliable. Although many simulation studies make the assumption of 

perfect reliability, in reality, very few measures are perfectly reliable. As stated earlier in 

this document, the unreliability of M may cause an increased standard error in the α 

coefficient and may attenuate the β coefficient.  Overall, the effect of unreliability of the 

mediator may decrease the power to detect the mediated effect. Thus, to the extent that 

the expensive mediator is unreliable, evaluated analysis methods may have decreased 

power to detect the mediated effect.  On the other hand, we also found that a perfectly 

reliable mediator, M1, may actually undermine the performance of the auxiliary variable 

analysis as compared to a latent variable model.  

This study focused on maximum likelihood estimation in the analysis models 

(Methods 1 – 4).  Multiple imputation is another viable MAR-based strategy that may be 

used to analyze a planned missing data design. Because multiple imputation is 

asymptotically equivalent to maximum likelihood estimation, there was no reason to 

expect major differences between the two approaches. In this study, maximum likelihood 

estimation was chosen because the method required reduced computing resources as 

compared to multiple imputation. However, at smaller sample sizes, there may be some 

differences between these two MAR-based approaches. Future research should 
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investigate the use of planned missing data designs analyzed using multiple imputation. 

Jia et al. (2013) found evidence that at smaller sample sizes, maximum likelihood 

estimation performed better than multiple imputation.  

The current research project considered planned missing data designs in terms of 

data that satisfy the MCAR mechanism. MAR-based designs may also be of interest and 

it is possible to consider the same analysis methods in the context of MAR-based designs. 

In a MAR-based design, it may be that the value of one collected measure predicts 

whether or not the researcher collects an additional measure. This may be particularly 

true in data collected in a clinical setting. It may be by design that one measure is only 

collected for people who score above or below a certain threshold on another measure. 

Schafer and Graham (2002) provide an example where only participants who score above 

a certain threshold on blood pressure return at a later date to provide a repeated blood 

pressure method. Examples exist in cross-sectional research as well. For example, 

perhaps participants visiting a clinic who score above a certain threshold for fasting blood 

sugar may have additional blood drawn for more extensive laboratory tests (e.g., A1C test 

for average blood glucose level).  

Conclusion 

 There is no one-size fits all prescription for planned missing data. When 

designing a research study, researchers must carefully evaluate both the potential 

measures and cost of these measures relative to the study budget. Simulation studies are 

necessary to determine how to best allocate resources. It is clear that there are scenarios 

where planned missing data designs may be beneficial tools for optimizing resources to 

study questions of interest; there are also situations where planned missingness may not 
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have much added benefit. However, in some scenarios, planned missing data designs do 

have the capacity to optimize resources. Rather than questioning why anyone would want 

to have missing data, perhaps we should always consider such a design as a possibility 

when designing a study. Researchers investigating mechanisms of change, particularly in 

situations where expensive measures are involved, would be prudent to consider a 

planned missing data design as a possibility. The results of this study support the 

rhetorical question posed by Graham et al. (2001), “why would anyone not want to 

consider a planned missing-data design?”  
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Table 1. 3-form Design 

  

Blocks 

Form 

 

X A B C 

1 

 
    

2 

 
    

3       

Note.  denotes included item sets.  denotes excluded item sets.  

Adapted from Graham et al. (2006) and Graham (2012).  
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Table 2. 3-Form Design as Described in Illustrative Example  

  

Items Included in Each Block 

Form 

 

X A B C 

Total 

Items 

1 

 

1-25 26-50 51-75 - 75 

2 

 

1-25 26-50 - 76-100 75 

3   1-25 - 51-75 76-100 75 

Note. In this illustrative example, Block X contains items numbered 1-25, Block  

A contains 26-50, Block B contains 51-75, and Block C contains 76-100.  
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Table 3. Measurement Model Conditions  

Factor 

Loading 

Condition 

 Standardized 

Factor Loadings  

Residual 

Variances  

Correlations between 

M1, M2, and M3   

 
𝜆1 𝜆2 𝜆3    𝜎𝜀1

2  𝜎𝜀2
2    𝜎𝜀3

2    𝑟𝑀1𝑀2
 𝑟𝑀1𝑀3

 𝑟𝑀2𝑀3
 

Low  1 .4 .4 
 

.00 .84 .84 
 

.4 .4 .16 

Medium  1 .6 .6 
 

.00 .64 .64 
 

.6 .6 .36 

High  1 .8 .8 
 

.00 .36 .36 
 

.8 .8 .64 
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Table 4. Raw Bias by Missing Data Rate Averaged across All Other Factors 

Missing Data Rate Mean Median SD 

Complete Data -0.0001 -0.0002 0.0294 

20% Missing on M1  0.0001 -0.0002 0.0321 

50% Missing on M1 0.0004 -0.0003 0.0395 

80% Missing on M1 0.0009 -0.0006 0.0659 

All Missing Rates 0.0003 -0.0003 0.0442 
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Table 5. Standardized Bias by Missing Data Rate and Method across All Other Factors  

Method Mean SD Min Max 

Complete Data         

1. Latent Variable Model 0.001 0.023 -0.065 0.050 

2. Two Auxiliary Variable Model 0.000 0.023 -0.065 0.050 

3. One Auxiliary Variable Model 0.000 0.023 -0.065 0.050 

4. ML with No Additional Mediators 0.000 0.023 -0.065 0.050 

5. Listwise Deletion 0.000 0.023 -0.065 0.050 

20% Missing on M1      

1. Latent Variable Model 0.002 0.024 -0.058 0.078 

2. Two Auxiliary Variable Model 0.002 0.024 -0.060 0.077 

3. One Auxiliary Variable Model 0.002 0.025 -0.066 0.079 

4. ML with No Additional Mediators 0.003 0.027 -0.076 0.081 

5. Listwise Deletion 0.000 0.026 -0.080 0.079 

50% Missing on M1      

1. Latent Variable Model 0.011 0.028 -0.071 0.079 

2. Two Auxiliary Variable Model 0.012 0.030 -0.069 0.103 

3. One Auxiliary Variable Model 0.014 0.031 -0.066 0.104 

4. ML with No Additional Mediators 0.015 0.035 -0.082 0.104 

5. Listwise Deletion 0.004 0.032 -0.078 0.081 

80% Missing on M1      

1. Latent Variable Model 0.025 0.053 -0.098 0.272 

2. Two Auxiliary Variable Model 0.030 0.058 -0.135 0.225 

3. One Auxiliary Variable Model 0.035 0.068 -0.170 0.268 

4. ML with No Additional Mediators 0.041 0.087 -0.337 0.268 

5. Listwise Deletion 0.001 0.068 -0.277 0.250 
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Table 6. Empirical Power (%) for each of the Analysis Methods Averaged across All 

Other Factors  

Method Power (%) 

1. Latent Variable Model 61.47 

2. Two Auxiliary Variable Model 58.72 

3. One Auxiliary Variable Model 57.33 

4. ML with No Additional Mediators 54.68 

5. Listwise Deletion 53.52 

All Methods 57.14 
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Table 7. Logistic Regression Results for Power Ranked by Wald χ
2
 Combining Factors α 

and β into Mediated Effect Factor, αβ 

Effect Wald df NCP p-value 

Three-Way Interactions 

αβNMissing Rate 2168.729 30 2138.729 <.0001 

MethodλMissing Rate 1342.585 16 1326.585 <.0001 

MethodαβMissing Rate 1107.393 40 1067.393 <.0001 

Methodαβλ 986.2488 40 946.2488 <.0001 

MethodNMissing Rate 789.2546 24 765.2546 <.0001 

MethodαβN 694.3005 60 634.3005 <.0001 

MethodλN 389.1778 24 365.1778 <.0001 

αβλN 200.1886 30 170.1886 <.0001 

αβλMissing Rate 178.0867 20 158.0867 <.0001 

λNMissing Rate 139.9992 12 127.9992 <.0001 

Conditional Two-Way Interactions 

λN 110.8432 6 104.8432 <.0001 

MethodN 292.5393 12 280.5393 <.0001 

αβλ 418.2972 10 408.2972 <.0001 

λMissing Rate 475.6014 4 471.6014 <.0001 

NMissing Rate 488.7682 6 482.7682 <.0001 

αβMissing Rate 769.6084 10 759.6084 <.0001 

Methodαβ 846.6286 20 826.6286 <.0001 

MethodMissing Rate 3171.798 8 3163.798 <.0001 

Methodλ 4203.292 8 4195.292 <.0001 

αβN 18806.91 15 18791.91 <.0001 

Conditional Main Effects 

αβ 26524.68 5 26519.68 <.0001 

N 3.5548 3 0.5548 0.3137 

Missing Rate 0.8498 2 -1.1502 0.6538 

Method 0.1974 4 -3.8026 0.9954 

λ 0.0203 2 -1.9797 0.9899 

Note. NCP is the non-centrality parameter calculated as Wald χ
2
 – degrees of freedom.   
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Table 8. Empirical Power (%) for the MethodλMissing Rate Interaction Averaged across 

All Levels of Effect Size (αβ) and Sample Size (N)  

Method λ = 0.4 λ = 0.6 λ = 0.8 

Complete Data        

All Methods
a
  66.44 66.63 66.30 

20% Missing on M1        

1. Latent Variable Model 63.42 64.43 65.34 

2. Two Auxiliary Variable Model 63.19 64.18 65.12 

3. One Auxiliary Variable Model 62.76 63.51 64.39 

4. ML with No Additional Mediators 62.35 62.27 61.99 

5. Listwise Deletion 61.89 61.82 61.65 

50% Missing on M1        

1. Latent Variable Model 56.90 60.62 63.78 

2. Two Auxiliary Variable Model 55.20 58.38 61.99 

3. One Auxiliary Variable Model 54.06 56.37 59.70 

4. ML with No Additional Mediators 52.77 53.12 53.04 

5. Listwise Deletion 51.56 51.94 51.78 

80% Missing on M1        

1. Latent Variable Model 47.12 55.01 61.64 

2. Two Auxiliary Variable Model 40.41 44.40 52.38 

3. One Auxiliary Variable Model 38.93 41.36 47.46 

4. ML with No Additional Mediators 37.24 37.04 37.05 

5. Listwise Deletion 34.17 34.00 34.06 
a
For complete data conditions, percent power estimates are identical through the first 

decimal place for all five methods. The table presents percent power from the latent 

variable model (Method 1) to represent power for all five methods in the complete data 

condition.   
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Table 9. Empirical Power (%) for the MethodαβMissing Rate Interaction  

 Population αβ 

Method 0.01 0.03 0.05 0.09 0.15 0.25 

Complete Data  
      

All Methods
a
 30.15 47.23 45.64 92.26 95.02 99.91 

20% Missing on M1        
1. Latent Variable Model 26.71 44.22 43.28 90.42 93.81 99.84 

2. Two Auxiliary Variable Model 26.33 43.83 43.12 90.19 93.63 99.80 

3. One Auxiliary Variable Model 25.53 42.94 42.32 89.63 93.27 99.80 

4. ML with No Additional Mediators 23.07 41.05 40.94 88.16 92.46 99.71 

5. Listwise Deletion 22.93 40.63 40.14 87.80 92.06 99.69 

50% Missing on M1  
      

1. Latent Variable Model 21.90 38.98 38.43 85.95 90.99 99.29 

2. Two Auxiliary Variable Model 19.39 36.58 36.34 83.54 89.45 99.03 

3. One Auxiliary Variable Model 16.75 34.33 34.22 81.41 88.23 98.69 

4. ML with No Additional Mediators 12.36 29.39 30.23 76.68 85.41 97.70 

5. Listwise Deletion 11.95 28.46 28.49 75.36 83.72 97.20 

80% Missing on M1  
      

1. Latent Variable Model 16.27 32.56 32.13 78.70 85.03 96.93 

2. Two Auxiliary Variable Model 8.57 22.74 24.72 66.51 75.34 90.88 

3. One Auxiliary Variable Model 6.22 19.54 21.63 62.42 71.73 88.82 

4. ML with No Additional Mediators 3.41 14.04 17.41 53.46 64.91 84.38 

5. Listwise Deletion 2.71 12.24 14.64 49.97 60.10 80.03 
a
For complete data conditions, percent power estimates are identical through the first 

decimal place for all five methods. The table presents percent power from the latent 

variable model (Method 1) to represent power for all five methods in the complete data 

condition. 
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Table 10. Empirical Power (%) for the Methodαβλ Interaction 

 Population αβ 

Method 0.01 0.03 0.05 0.09 0.15 0.25 

λ = 0.40 
      

1. Latent Variable Model 16.89 34.00 33.66 80.00 86.43 97.25 

2. Two Auxiliary Variable Model 14.64 30.90 31.61 75.79 82.97 94.98 

3. One Auxiliary Variable Model 13.63 29.69 30.64 74.36 82.10 94.40 

4. ML with No Additional Mediators 12.62 28.43 29.56 72.66 80.95 93.93 

5. Listwise Deletion 12.16 27.37 27.71 70.91 78.63 92.35 

λ = 0.60 
      

1. Latent Variable Model 21.68 38.58 38.10 85.44 90.32 99.06 

2. Two Auxiliary Variable Model 17.56 33.71 34.17 79.54 85.85 96.33 

3. One Auxiliary Variable Model 15.58 31.53 32.20 77.09 84.00 95.59 

4. ML with No Additional Mediators 12.93 28.13 29.64 72.81 81.02 93.95 

5. Listwise Deletion 12.55 27.06 27.94 71.05 78.65 92.40 

λ = 0.80 
      

1. Latent Variable Model 26.30 43.18 42.08 89.62 93.07 99.74 

2. Two Auxiliary Variable Model 22.09 38.53 38.40 84.91 89.59 98.41 

3. One Auxiliary Variable Model 19.28 35.59 35.32 82.00 87.13 97.31 

4. ML with No Additional Mediators 13.29 27.91 29.37 72.83 80.82 93.91 

5. Listwise Deletion 12.88 26.91 27.63 71.17 78.60 92.17 

Note. Methods averaged only over conditions where the missing data rate is non-zero.   
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Table 11. Logistic Regression Results for Type 1 Error Rates ranked by Wald χ
2
 

Effect Wald df p-value 

Three-Way Interactions 

Effect Size  N  Missing Data Rate 500.81 18 <.0001 

Method  N  Missing Data Rate 117.03 24 <.0001 

Effect Size  Method  Missing Data Rate 99.93 24 <.0001 

Effect Size  Method  N 77.48 36 <.0001 

Effect Size  Method  Lambda  38.12 24 0.03 

N  Missing Data Rate  Lambda 29.39 12 <.01 

Effect Size  Missing Data Rate  Lambda 20.20 12 0.06 

Effect Size  N  Lambda 18.31 18 0.44 

Method  N  Lambda 14.10 24 0.94 

Conditional Two-Way Interactions 

Effect Size  N 2973.87 9 <.0001 

Effect Size  Missing Data Rate 319.44 6 <.0001 

N  Missing Data Rate 136.83 6 <.0001 

Effect Size  Method 119.35 12 <.0001 

Method  Missing Data Rate 57.29 8 <.0001 

Method  N 43.74 12 <.0001 

Effect Size  Lambda 22.32 6  <.01  

Missing Data Rate  Lambda 10.30 4  0.04  

Method  Lambda 8.66 8  0.37  

N  Lambda 2.10 6  0.91  

Conditional Main Effects 

Effect Size 21036.66 3 <.0001 

Method 51.62 4 <.0001 

N 51.08 3 <.0001 

Missing Data Rate 20.83 2 <.0001 

Lambda 11.17 2  <.01  
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Table 12. Type 1 Error Rates (%) for the MethodEffect SizeMissing Rate Interaction 

Averaged across All Levels of λ and Sample Size (N) 

Method α = β = 0 α or β = .1 α or β = .3 α or β = .5 

Complete Data     

All Methods
a
 0.16 1.99 4.88 5.32 

20% Missing on M1      

1. Latent Variable Model 0.13 1.87 4.68 5.34 

2. Two Auxiliary Variable Model 0.12 1.85 4.72 5.32 

3. One Auxiliary Variable Model 0.14 1.87 4.72 5.36 

4. ML with No Additional Mediators 0.16 1.76 4.72 5.45 

5. Listwise Deletion 0.15 1.73 4.67 5.40 

50% Missing on M1      

1. Latent Variable Model 0.19 1.66 4.68 5.36 

2. Two Auxiliary Variable Model 0.19 1.58 4.77 5.59 

3. One Auxiliary Variable Model 0.22 1.50 4.69 5.62 

4. ML with No Additional Mediators 0.25 1.30 4.63 5.64 

5. Listwise Deletion 0.20 1.19 4.37 5.42 

80% Missing on M1      

1. Latent Variable Model 0.18 1.44 4.41 5.29 

2. Two Auxiliary Variable Model 0.48 1.33 4.75 6.40 

3. One Auxiliary Variable Model 0.50 1.17 4.79 6.32 

4. ML with No Additional Mediators 0.59 1.07 4.52 6.56 

5. Listwise Deletion 0.29 0.65 3.48 5.41 

Note. Values ranging from 4.04 to 5.96% are bold; a procedure with honest error rates 

would be expected to yield Type I errors between these values.  

a
Type 1 error rates were nearly identical across all methods for the complete data 

condition. The Type 1 error results from the latent variable model (Method 1) are 

presented to represent complete data results.  
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Table 13. Type 1 Error Rates (%) for the MethodNMissing Data Rate Interaction 

Method N = 100 N = 200 N = 500 N = 1000 

Complete Data     

All Methods
a
 3.03 3.32 3.61 4.07 

20% Missing on M1      

1. Latent Variable Model 3.02 3.24 3.49 3.91 

2. Two Auxiliary Variable Model 3.00 3.23 3.52 3.91 

3. One Auxiliary Variable Model 2.99 3.28 3.54 3.93 

4. ML with No Additional Mediators 2.93 3.35 3.51 3.93 

5. Listwise Deletion 2.87 3.33 3.46 3.90 

50% Missing on M1      

1. Latent Variable Model 2.80 3.14 3.57 3.98 

2. Two Auxiliary Variable Model 3.06 3.21 3.56 3.91 

3. One Auxiliary Variable Model 3.11 3.14 3.60 3.77 

4. ML with No Additional Mediators 3.07 3.15 3.48 3.65 

5. Listwise Deletion 2.66 2.92 3.44 3.65 

80% Missing on M1      

1. Latent Variable Model 2.73 2.90 3.46 3.74 

2. Two Auxiliary Variable Model 4.07 3.37 3.39 3.71 

3. One Auxiliary Variable Model 3.84 3.37 3.46 3.65 

4. ML with No Additional Mediators 3.91 3.39 3.38 3.54 

5. Listwise Deletion 2.17 2.49 3.03 3.37 

Note. Values ranging from 4.04 to 5.96% are bold; a procedure with honest error rates 

would be expected to yield Type I errors between these values  

a
Type 1 error rates were nearly identical across all methods for the complete data 

condition. The Type 1 error results from the latent variable model (Method 1) are 

presented to represent complete data results.  

.   
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Table 14. Asymmetric Confidence Interval Coverage (%) for each of the Analysis 

Methods Averaged across All Other Factors for Conditions where αβ > 0 and Missing 

Rate > 0 

Method Power (%) 

1. Latent Variable Model 94.96 

2. Two Auxiliary Variable Model 94.71 

3. One Auxiliary Variable Model 94.78 

4. ML with No Additional Mediators 94.89 

5. Listwise Deletion 95.04 

All Methods 94.88 
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Table 15. Logistic Regression Results for Confidence Interval Coverage Ranked by Wald 

χ
2
 Combining Factors α and β into Mediated Effect Factor, αβ 

Effect Wald df p-value 

Three-Way Interactions 

αβNMissing Rate 741.65 30 <.0001 

MethodαβMissing Rate 250.81 40 <.0001 

MethodαβN 176.11 60 <.0001 

αβλN 158.67 30 <.0001 

MethodNMissing Rate 87.88 24 <.0001 

αβλMissing Rate 84.12 20 <.0001 

λNMissing Rate 45.59 12 <.0001 

MethodλMissing Rate 43.83 16 <.001 

Methodαβλ 34.02 40 .74 

MethodλN 15.65 24 .90 

Conditional Two-Way Interactions 

αβN 3715.08 15 <.0001 

αβMissing Rate 612.92 10 <.0001 

NMissing Rate 152.98 6 <.0001 

Methodαβ 133.92 20 <.0001 

MethodMissing Rate 121.13 8 <.0001 

MethodN 56.09 12 <.0001 

λN 33.16 6 <.0001 

αβλ 27.10 10 <.01 

λMissing Rate 18.09 4 <.01 

Methodλ 15.30 8 .05 

Conditional Main Effects 

αβ 5084.28 5 <.0001 

N 615.16 3 <.0001 

Method 124.65 4 <.0001 

Missing Rate 13.72 2 <.01 

λ 9.41 2 .01 

 

  



   

146 

Table 16. Asymmetric Confidence Interval Coverage (%) for the MethodαβMissing 

Rate Interaction Averaged Across λ and Sample Size (N) 

 Population αβ 

Method 0.01 0.03 0.05 0.09 0.15 0.25 

Complete Data       

All Methods
a
 96.57 94.84 94.56 94.75 94.73 94.98 

20% Missing on M1        

1. Latent Variable Model 96.56 94.73 94.83 95.17 94.87 94.69 

2. Two Auxiliary Variable Model 96.60 94.69 94.82 95.22 94.88 94.65 

3. One Auxiliary Variable Model 96.62 94.72 94.85 95.12 94.80 94.72 

4. ML with No Additional 

Mediators 

96.70 94.76 94.86 95.22 94.86 94.80 

5. Listwise Deletion 96.67 94.80 94.90 95.18 94.91 94.84 

50% Missing on M1        

1. Latent Variable Model 96.77 94.97 94.62 94.60 94.58 94.63 

2. Two Auxiliary Variable Model 96.80 94.89 94.42 94.44 94.53 94.45 

3. One Auxiliary Variable Model 96.93 94.99 94.43 94.49 94.48 94.60 

4. ML with No Additional 

Mediators 

97.13 95.06 94.35 94.56 94.54 94.68 

5. Listwise Deletion 97.10 95.14 94.63 94.48 94.78 94.46 

80% Missing on M1        

1. Latent Variable Model 97.12 95.09 94.59 94.19 94.62 94.50 

2. Two Auxiliary Variable Model 97.28 94.70 93.45 93.70 93.60 93.98 

3. One Auxiliary Variable Model 97.64 95.04 93.56 93.77 93.76 94.01 

4. ML with No Additional 

Mediators 

98.30 95.32 93.62 94.32 93.80 93.93 

5. Listwise Deletion 98.79 95.94 94.38 94.30 93.83 93.75 

Note. Values ranging from 94.05 to 95.96% are bold; a procedure with honest error rates 

would be expected to yield coverage values within this range.  

a
Coverage values were nearly identical across all methods for the complete data 

condition. The coverage results from the latent variable model (Method 1) are presented 

to represent complete data results.  
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Table 17. Confidence Interval Coverage (%) for the Methodαβ N 

 Population αβ 

Method 0.01 0.03 0.05 0.09 0.15 0.25 

N = 100 
      

1. Latent Variable Model 99.13 95.05 94.24 93.94 94.09 94.12 

2. Two Auxiliary Variable Model 98.79 94.87 93.35 93.50 93.24 93.70 

3. One Auxiliary Variable Model 98.81 95.17 93.38 93.76 93.34 93.82 

4. ML with No Additional Mediators 98.82 95.56 93.37 94.38 93.43 93.93 

5. Listwise Deletion 99.22 96.21 94.43 94.28 93.59 93.44 

N = 200       

1. Latent Variable Model 98.38 94.85 94.48 94.97 94.67 94.74 

2. Two Auxiliary Variable Model 98.35 94.71 93.94 94.54 94.56 94.49 

3. One Auxiliary Variable Model 98.48 94.99 94.02 94.48 94.48 94.35 

4. ML with No Additional Mediators 98.69 95.20 94.15 94.79 94.45 94.46 

5. Listwise Deletion 98.90 95.47 94.38 94.64 94.56 94.32 

N = 500       

1. Latent Variable Model 94.88 94.88 94.96 94.66 95.16 94.54 

2. Two Auxiliary Variable Model 95.68 94.63 94.80 94.73 94.81 94.33 

3. One Auxiliary Variable Model 95.91 94.69 94.81 94.65 94.76 94.58 

4. ML with No Additional Mediators 96.39 94.68 94.71 94.84 94.99 94.53 

5. Listwise Deletion 96.34 94.73 94.77 94.90 95.07 94.59 

N = 1000       

1. Latent Variable Model 94.87 94.96 95.04 95.04 94.84 95.02 

2. Two Auxiliary Variable Model 94.76 94.83 94.84 95.04 94.73 94.92 

3. One Auxiliary Variable Model 95.06 94.81 94.91 94.94 94.82 95.01 

4. ML with No Additional Mediators 95.61 94.75 94.87 94.79 94.74 94.97 

5. Listwise Deletion 95.61 94.76 94.97 94.79 94.82 95.05 

Note. To be consistent with the logistic regression analysis, cells only represent 

replications where the missing data rate is non-zero. Values ranging from 94.05 to 

95.96% are bold; a procedure with honest error rates would be expected to yield coverage 

values within this range.  
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Table 18. Confidence Interval Coverage (%) for the MethodNMissing Rate 

Interaction 

Method N = 100 N = 200 N = 500 N = 1000 

Complete Data          

All Methods
a
 95.04 94.98 94.96 94.83 

20% Missing on M1      

1. Latent Variable Model 95.09 95.12 94.89 95.02 

2. Two Auxiliary Variable Model 95.07 95.14 94.89 95.01 

3. One Auxiliary Variable Model 95.09 95.09 94.88 95.03 

4. ML with No Additional Mediators 95.07 95.22 95.01 94.99 

5. Listwise Deletion 95.08 95.27 94.98 95.06 

50% Missing on M1      

1. Latent Variable Model 94.75 95.23 94.94 94.80 

2. Two Auxiliary Variable Model 94.59 95.05 94.83 94.81 

3. One Auxiliary Variable Model 94.61 95.09 94.92 94.86 

4. ML with No Additional Mediators 94.74 95.14 95.01 94.78 

5. Listwise Deletion 94.94 95.21 95.05 94.85 

80% Missing on M1      

1. Latent Variable Model 94.81 95.01 94.86 95.05 

2. Two Auxiliary Variable Model 93.31 94.40 94.69 94.69 

3. One Auxiliary Variable Model 93.69 94.59 94.75 94.80 

4. ML with No Additional Mediators 94.13 94.82 94.81 94.92 

5. Listwise Deletion 95.10 95.08 94.96 94.93 

Note. Values ranging from 94.05 to 95.96% are bold; a procedure with honest error rates 

would be expected to yield coverage values within this range.  

a
Coverage values were nearly identical across all methods for the complete data 

condition. The coverage results from the latent variable model (Method 1) are presented 

to represent complete data results.  
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Table 19. Complete Data Power (%) Results from Current Study compared to 

MacKinnon et al. (2002)  

 Power (%) 

 Current Study  MacKinnon et al. (2002) 

αβ = Small-Small    

N = 100 2.37  6.20 

N = 200 6.58  27.40 

N = 500 34.38  76.00 

N = 1000 77.27  98.00 

αβ =Medium-Medium    

N = 100 71.07  92.00 

N = 200 97.97  100.00 

N = 500 100.00  100.00 

N = 1000 100.00  100.00 

αβ = Large-Large    

N = 100 99.65  100.00 

N = 200 100.00  100.00 

N = 500 100.00  100.00 

N = 1000 100.00  100.00 

Note. The two studies defined effect sizes differently as described in the text.  
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Table 20. Empirical Power and Associated Cost for Conditions where αβ = 0.03, N = 

1000, and Power Values are in the 75 – 87% Range  

Missing Rate Analysis Method Power (%) Cost
a
 

Complete Data All Methods
b
 86.83 $530,000 - $550,000

b
 

20% Missing 1. Latent Variable Model 85.23 $450,000 

20% Missing 2. Two Auxiliary Variable Model 85.00 $450,000 

20% Missing 3. One Auxiliary Variable Model 83.50 $440,000 

20% Missing 4. ML with No Additional Mediators 78.90 $430,000 

20% Missing 5. Listwise Deletion
c
 78.47 $424,000

c
 

50% Missing 1. Latent Variable Model 82.85 $300,000 

50% Missing 2. Two Auxiliary Variable Model 79.40 $300,000 

50% Missing 3. One Auxiliary Variable Model 75.50 $290,000 

80% Missing 1. Latent Variable Model 79.45 $150,000 

a
Cost based on a hypothetical research design that costs $10 per participant included, $10 

per participant to collect data for variables X, Y, M2 and M3, and $500 to collect data per 

participant on the expensive mediator, M1 
b
For complete data conditions, percent power estimates are identical through the first 

decimal points for all analysis methods. The cost will vary depending on whether or not 

additional mediators are collected. Methods 1 and 2 cost $550,000 because all three 

mediators are collected for 1000 participants. Method 3 only collects two mediators, M1 

and M2, and costs $540,000. Methods 4 and 5 only collect one mediator, M1, and costs 

$530,000.  
c
This condition would be identical to a complete data condition where N = 800. The cost, 

$424,000 reflects a situation where X, M1, and Y are only collected for 800 participants. If 

additional data are collected on X and Y and thrown out, the cost would be $430,000.  
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Figure 1. Illustration of the mediation model using path diagrams. Paths indicating error 

in prediction have been eliminated for simplicity. The path diagram on the left side is 

expressed by Equation 1.1. The path diagram on the right side is expressed by Equations 

1.2 and 1.3.  
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Figure 2. Path diagram of a mediation model with multiple indicators of the mediation 

construct. Similar to Figure 1, the mediated effect is assessed based on the α and β paths. 
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Figure 3. Reproduction of the cross-sectional confirmatory factor analysis model as 

described in Jia et al., 2014.  
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Figure 4. SEM measurement model. 
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Figure 5. Bias response model for two-method measurement. DV = Dependent Variable. 

There must be at least two biased measures to model bias.  
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Figure 6. Data generation model. The observed variables are X, M1, M2, M3 and Y. 

Variable M1 is the “expensive” mediation variable and variables M2 and M3 are the 

“inexpensive” mediation variables. All variables are assumed to be multivariate normal. 

X and Y are manifest variables generated as single manifest indicator latent variables with 

loadings and residual variances of one and zero, respectively. The factor loading, 𝜆1 is 

constrained to one. The factor loadings for M2 and M3 are constrained such that 𝜆2 = 𝜆3 

and varied to reflect low, medium and high loadings of 0.4, 0.6 and 0.8, respectively. The 

variances of LX, LM and LY are all constrained to one as described in the text. Parameters 

α and β are fully crossed with all levels of zero, small, medium and large effect sizes and 

τ’ is constrained to zero with the exception of α = β = 0, where τ’ is constrained to small, 

medium and large.   
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Figure 8. Percent power for the MethodλMissing Rate interaction. Graphs showing 

the relation between λ, method and power are paneled by missing rate on M1. The 

horizontal axis shows λ and the lines represent analysis methods. Analysis methods are 

keyed with numbers corresponding to Analysis Methods 1 – 5 in Figure 7. This graph 

depicts that the interaction between method and λ is modified by missing data rate.  
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Figure 10. Percent power for the MethodαβMissing Rate interaction. Graphs 

showing the relation between population αβ, method and power are paneled by missing 

data rate of M1. The horizontal axis shows mediated effect size, αβ, and the lines 

represent analysis methods. Analysis methods are keyed with numbers corresponding to 

Analysis Methods 1 – 5 in Figure 7. This graph depicts that the interaction between 

method and αβ is modified by missing data rate. 
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Figure 12. Percent power for the Methodαβλ interaction. Graphs showing the relation 

between mediation effect size (αβ), method and power are paneled by missing data rate of 

M1. The horizontal axis shows the value of αβ and the lines represent analysis methods. 

Analysis methods are keyed with numbers corresponding to Analysis Methods 1 – 5 in 

Figure 7. This graph depicts that the interaction between method and αβ is moderated by 

λ.  
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Figure 14. Type 1 error rates for MethodEffect SizeMissing Rate interaction. The 

relation between method and effect size are paneled by missing rate on M1. Effect size 

indicates the size of non-zero α or β (except in the case of effect size = 0 where α = β = 

0). The lines represent analysis methods. Analysis methods are keyed with numbers 

corresponding to Analysis Models 1 – 5 in Figure 7. The grey band represents values 

ranging from 4.04 to 5.96%; a procedure with honest error rates would expect to yield 

Type I errors between these values.  
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Figure 15. Type 1 error rates for the MethodSample SizeMissing Rate interaction. 

The relation between method and ample size (N) on Type 1 error rates is paneled by 

missing rate on M1. The lines represent analysis methods. Analysis methods are keyed 

with numbers corresponding to Analysis Models 1 – 5 in Figure 7. 
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Figure 16. Confidence interval coverage for the MethodαβMissing Rate interaction. 

The interaction between mediated effect (αβ) and method on coverage is paneled by 

missing rate. The lines represent analysis methods. Methods are keyed with numbers 

corresponding to Analysis Methods 1 – 5 in Figure 7. The grey band represents values 

ranging from 94.05 to 95.96%; a procedure with honest coverage would expect to yield 

coverage values within this range.
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Figure 18. Confidence interval coverage for the MethodNMissing Rate interaction. 

The interaction between method and sample size on coverage is paneled by missing rate. 

The lines represent analysis methods. Analysis methods are keyed with numbers 

corresponding to Analysis Methods 1 – 5 in Figure 7. The grey band represents values 

ranging from 94.05 to 95.96%; a procedure with honest coverage would expect to yield 

coverage values within this range.  
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APPENDIX B 

MEASUREMENT AND STRUCTURAL MODELS OF THE POPULATION 

GENERATION MODEL 
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Equations 3.1 and 3.2 in the text provide the measurement model for the population 

generation model in matrix form. These matrix equations may be expanded into a set of 

equations to provide the measurement model as below.  

  𝑋 = 1𝐿𝑋 + 0 = 𝐿𝑋  

 𝑀1 = 𝜆1𝐿𝑀 + 𝜀1  

 𝑀2 = 𝐿𝑀 + ε2  

 𝑀3 = 𝜆3𝐿𝑀 + ε3  

  𝑌 = 1𝐿𝑌 + 0 = 𝐿𝑌  

 

Equation 3.7 in the text provides the structural model for the population generation model 

in matrix form and Equation 3.9 shows the matrix components. This matrix equation can 

be expanded into a set of equations that define the structural model as below.  

 𝐿𝑀 =  𝛼𝑋 + 𝜁𝑀  

 𝐿𝑌 =  𝛽𝐿𝑀 + 𝜏′𝑋 + 𝜁𝑌  
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APPENDIX C 

MODEL IMPLIED COVARIANCE MATRIX  
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Below assumes 𝜎𝑋
2 = 𝜙𝑋 = 1 

  𝑋 𝑀1 𝑀2 𝑀3

𝑋 | 1    

𝑀1 | 𝛼𝝀𝟏 𝝀𝟏
𝟐(𝛼2 + 𝜎𝜁𝑀

2 ) + 𝜎𝜀1
2   

𝑀2 | 𝛼𝝀𝟐 𝝀𝟏𝝀𝟐(𝛼
2 + 𝜎𝜁𝑀

2 ) 𝝀𝟐
𝟐(𝛼2 + 𝜎𝜁𝑀

2 ) + 𝜎𝜀2
2  

𝑀3 | 𝛼𝝀𝟑 𝝀𝟏𝝀𝟑(𝛼
2 + 𝜎𝜁𝑀

2 ) 𝝀𝟐𝝀𝟑(𝛼
2 + 𝜎𝜁𝑀

2 ) 𝝀𝟑
𝟐(𝛼2 + 𝜎𝜁𝑀

2 ) + 𝜎𝜀3
2

𝑌 | 𝛽𝛼 + 𝜏′ 𝝀𝟏(𝛽𝛼2 + 𝜏′𝛼 + 𝛽𝜎𝜁𝑀

2 ) 𝝀𝟐(𝛽𝛼2 + 𝜏′𝛼 + 𝛽𝜎𝜁𝑀

2 ) 𝝀𝟑(𝛽𝛼2 + 𝜏′𝛼 + 𝛽𝜎𝜁𝑀

2 )

 

 

Variance of Y =  𝛽2(𝛼2𝜎𝑋
2 + 𝜎𝜁𝑀

2 ) + 2𝛽𝜏′𝛼 + 𝜏′2 + 𝜎𝜁𝑌

2
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APPENDIX D 

SYNTAX TO DERIVE POPULATION COVARIANCE MATRIX FROM MODEL 

PARAMETERS 
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Note: Replace all parameter values (𝜆𝑖, 𝜎𝜀𝑖

2 , 𝛼, 𝛽, 𝜏′, 𝜙𝑋 , 𝜎𝜁𝑀

2 , 𝜎𝜁𝑌

2 ) with a numeric value. 

Residual variance, 𝜎𝜁𝑀

2  and 𝜎𝜁𝑌

2 , are defined by values of 𝛼 and 𝛽 as described in the text 

and 𝜏′ is zero.  

 

PROC IML; 

 

*LambdaX; 

LX = {1.00}; 

*LambdaY Matrix; 

LY = {𝛌𝟏 0, 𝛌𝟐 0, 𝛌𝟑 0, 0 1.00}; 

*Gamma Matrix; 

GA = { 𝜶,  𝝉′}; 

*Phi Covariance Matrix; 

PH = {1}; 

*Psi Covariance Matrix;  

PS = {𝝈𝜻𝑴

𝟐
 0.00, 0.00 𝝈𝜻𝒀

𝟐
}; 

*Theta Delta Matrix; 

TD = {0}; 

*Theta Epsilon Matrix;  

TE = {𝝈𝜺𝟏
𝟐  0.00 0.00 0.00, 

   0.00 𝝈𝜺𝟐
𝟐  0.00 0.00, 

   0.00 0.00 𝝈𝜺𝟑
𝟐  0.00, 

   0.00 0.00 0.00 0.00}; 

*Beta Matrix; 

B = {0.00 0.00, 𝜷 0.00}; 

*Identity Matrix;  

I = {1 0, 0 1}; 

 

COVY = LY*(INV(I-B))*(GA*PH*GA`+PS)*(INV(I-B`))*LY`+TE; 

COVX = LX*PH*LX` + TD; 

COVYX = LY*(INV(I-B))*GA*PH*LX`; 

COVXY = LX*PH*GA`*(INV(I-B`))*LY`; 

 

UPPER = COVX || COVXY; 

LOWER = COVYX || COVY; 

COV = UPPER // LOWER; 

PRINT COV; 

 

S=SQRT(DIAG(COV));  *** obtain the matrix with standard deviations on the diagonal; 

S_INV=INV(S);    *** the inverse of S matrix; 

R=S_INV*COV*S_INV;  *** obtain correlation matrix; 

 

PRINT COV;      

PRINT S; 

PRINT R; 
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APPENDIX E 

STANDARDIZED BIAS FOR MISSING RATE = 80% FOR ALL NON-ZERO 

MEDIATED EFFECT 
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Table E1. Standardized Bias for Missing Rate = 80% and N = 100 for all non-zero αβ  

   Standardized Bias (for Missing Rate = 80% and N = 100 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 0.076 0.132 0.118 0.074 0.017 

0.6 0.014 -0.069 -0.109 -0.062 -0.106 

0.8 -0.015 -0.013 -0.079 0.047 -0.014 

0.3 

0.4 0.030 0.001 0.036 0.019 -0.029 

0.6 0.045 0.009 0.004 0.048 -0.007 

0.8 -0.003 0.023 0.014 0.040 -0.009 

0.5 

0.4 0.062 0.030 0.042 0.071 0.026 

0.6 0.002 0.009 0.026 0.023 0.008 

0.8 -0.031 0.010 0.036 0.036 -0.036 

0.3 

0.1 

0.4 0.139 0.095 0.163 0.171 0.064 

0.6 0.013 0.051 0.068 -0.016 -0.064 

0.8 -0.020 0.019 0.007 -0.032 -0.101 

0.3 

0.4 0.083 -0.037 -0.013 0.037 -0.055 

0.6 0.069 0.125 0.190 0.202 0.033 

0.8 0.021 0.046 0.066 0.142 0.011 

0.5 

0.4 0.194 0.101 0.126 0.166 -0.022 

0.6 0.059 0.114 0.116 0.161 -0.081 

0.8 0.041 0.067 0.094 0.118 -0.038 

0.5 

0.1 

0.4 0.035 -0.008 -0.013 0.007 -0.034 

0.6 0.012 0.032 0.042 0.110 0.055 

0.8 0.024 0.047 0.103 0.109 0.053 

0.3 

0.4 0.188 0.059 0.107 0.122 -0.043 

0.6 0.063 0.009 0.070 0.125 -0.064 

0.8 0.006 0.013 0.010 -0.017 -0.149 

0.5 

0.4 0.272 0.168 0.218 0.268 0.041 

0.6 0.177 0.148 0.217 0.247 0.007 

0.8 0.043 0.118 0.165 0.240 0.013 
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Table E2. Standardized Bias for Missing Rate = 80% and N = 200 for all non-zero αβ  

   Standardized Bias for Missing Rate = 80% and N = 200 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 0.008 0.045 -0.010 -0.021 -0.056 

0.6 -0.009 -0.001 -0.016 0.009 0.019 

0.8 -0.005 0.010 0.024 0.073 0.032 

0.3 

0.4 0.108 0.070 0.088 0.138 0.092 

0.6 0.017 0.057 0.048 0.147 0.064 

0.8 -0.021 -0.038 -0.026 -0.103 -0.143 

0.5 

0.4 0.040 0.033 0.042 0.026 -0.014 

0.6 0.039 -0.022 -0.025 0.024 0.010 

0.8 0.019 0.014 0.030 0.068 0.001 

0.3 

0.1 

0.4 0.079 0.083 0.100 0.096 0.038 

0.6 -0.008 0.040 0.028 0.013 0.017 

0.8 0.008 0.025 0.043 0.061 0.005 

0.3 

0.4 0.152 0.149 0.143 0.143 0.062 

0.6 0.047 0.064 0.111 0.160 0.073 

0.8 0.028 0.072 0.118 0.106 0.005 

0.5 

0.4 0.176 0.225 0.268 0.262 0.155 

0.6 0.056 0.108 0.112 0.141 0.003 

0.8 0.050 0.085 0.107 0.131 0.007 

0.5 

0.1 

0.4 0.080 0.048 0.071 0.064 0.010 

0.6 0.030 0.032 0.031 0.031 -0.007 

0.8 0.041 0.095 0.091 0.102 0.060 

0.3 

0.4 0.146 0.118 0.132 0.122 0.030 

0.6 0.063 0.060 0.098 0.128 0.021 

0.8 0.060 0.100 0.111 0.114 0.024 

0.5 

0.4 0.198 0.168 0.184 0.205 0.002 

0.6 0.051 0.087 0.123 0.153 -0.044 

0.8 0.020 0.070 0.098 0.172 -0.032 
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Table E3. Standardized Bias for Missing Rate = 80% and N = 500 for all non-zero αβ 

   Standardized Bias for Missing Rate = 80% and N = 500 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 0.052 0.100 0.099 0.073 0.063 

0.6 0.033 -0.012 0.000 -0.021 -0.033 

0.8 0.013 0.040 0.018 0.092 0.054 

0.3 

0.4 0.122 0.084 0.105 0.115 0.077 

0.6 -0.022 -0.006 -0.025 -0.068 -0.101 

0.8 0.005 0.008 0.027 0.027 -0.006 

0.5 

0.4 0.029 0.029 0.043 0.031 0.024 

0.6 -0.021 0.024 0.036 0.006 0.006 

0.8 0.012 0.018 0.001 0.015 -0.033 

0.3 

0.1 

0.4 0.079 0.108 0.066 0.044 0.015 

0.6 0.020 0.088 0.082 0.062 0.035 

0.8 -0.019 0.010 0.035 0.029 0.010 

0.3 

0.4 0.093 0.083 0.109 0.138 0.080 

0.6 0.025 0.025 0.041 0.067 -0.006 

0.8 0.016 0.092 0.114 0.096 0.035 

0.5 

0.4 0.057 0.066 0.069 0.085 0.018 

0.6 0.047 0.127 0.114 0.142 0.036 

0.8 0.008 0.042 0.057 0.047 -0.050 

0.5 

0.1 

0.4 0.074 0.088 0.080 0.065 0.034 

0.6 0.031 0.001 -0.003 0.002 -0.030 

0.8 0.001 0.054 0.042 -0.029 -0.059 

0.3 

0.4 0.068 0.050 0.079 0.074 -0.013 

0.6 0.059 0.125 0.101 0.118 0.039 

0.8 -0.023 0.031 0.077 0.110 0.052 

0.5 

0.4 0.158 0.169 0.178 0.182 0.067 

0.6 0.119 0.161 0.176 0.212 0.088 

0.8 -0.001 0.034 0.074 0.062 -0.033 
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Table E4. Standardized Bias for Missing Rate = 80% and N = 1000 for all non-zero αβ 

   Standardized Bias for Missing Rate = 80% and N = 1000 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 0.004 -0.025 -0.013 -0.029 -0.046 

0.6 -0.005 0.016 0.042 0.057 0.041 

0.8 0.019 0.059 0.036 0.078 0.069 

0.3 

0.4 -0.028 -0.003 -0.013 -0.009 -0.013 

0.6 -0.002 -0.025 -0.021 -0.043 -0.086 

0.8 -0.025 -0.004 -0.001 0.046 0.039 

0.5 

0.4 -0.039 -0.037 -0.063 -0.053 -0.064 

0.6 0.021 0.047 0.049 0.040 0.031 

0.8 0.005 0.010 0.023 0.039 -0.015 

0.3 

0.1 

0.4 0.056 0.031 0.025 0.045 0.024 

0.6 -0.035 -0.062 -0.032 -0.004 -0.021 

0.8 -0.022 -0.007 0.014 -0.049 -0.058 

0.3 

0.4 0.029 0.013 0.015 0.022 0.003 

0.6 0.026 0.042 0.043 0.077 0.036 

0.8 0.046 0.084 0.093 0.053 0.007 

0.5 

0.4 0.043 0.044 0.043 0.034 -0.055 

0.6 -0.004 0.039 0.051 0.050 0.000 

0.8 0.021 0.041 0.043 0.096 0.036 

0.5 

0.1 

0.4 0.040 0.031 0.041 0.028 0.027 

0.6 -0.023 -0.046 -0.044 0.007 -0.010 

0.8 -0.004 0.034 0.055 0.026 0.015 

0.3 

0.4 0.012 -0.019 -0.013 -0.001 -0.056 

0.6 0.047 0.096 0.120 0.150 0.086 

0.8 0.035 0.024 0.018 -0.026 -0.059 

0.5 

0.4 0.073 0.055 0.069 0.094 0.006 

0.6 0.023 0.063 0.091 0.072 -0.026 

0.8 -0.017 -0.037 -0.036 -0.053 -0.160 
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APPENDIX F 

POWER RESULTS FOR ALL CELLS 
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Table F1. Power (%) for Complete Data and N = 100  

   Power (%) for Complete Data and N = 100 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 1.90 1.90 1.90 1.90 1.90 

0.6 2.70 2.70 2.70 2.70 2.70 

0.8 2.50 2.50 2.50 2.50 2.50 

0.3 

0.4 13.35 13.35 13.35 13.35 13.35 

0.6 14.35 14.35 14.35 14.35 14.35 

0.8 14.05 14.15 14.10 14.10 14.10 

0.5 

0.4 18.15 18.15 18.15 18.15 18.15 

0.6 16.95 16.95 16.95 16.95 16.95 

0.8 17.95 17.95 17.95 17.95 17.95 

0.3 

0.1 

0.4 13.40 13.40 13.40 13.40 13.40 

0.6 12.75 12.75 12.75 12.75 12.75 

0.8 14.45 14.45 14.45 14.45 14.45 

0.3 

0.4 70.85 70.85 70.85 70.85 70.85 

0.6 70.40 70.40 70.40 70.35 70.35 

0.8 71.95 71.95 71.95 71.95 71.95 

0.5 

0.4 86.40 86.40 86.40 86.40 86.40 

0.6 88.15 88.15 88.15 88.15 88.15 

0.8 86.05 86.05 86.05 86.05 86.05 

0.5 

0.1 

0.4 14.80 14.85 14.85 14.80 14.80 

0.6 16.25 16.25 16.25 16.25 16.25 

0.8 15.65 15.70 15.70 15.70 15.70 

0.3 

0.4 77.75 77.75 77.70 77.75 77.75 

0.6 77.05 77.05 77.05 77.05 77.05 

0.8 77.75 77.75 77.75 77.70 77.70 

0.5 

0.4 99.70 99.70 99.70 99.70 99.70 

0.6 99.75 99.75 99.75 99.75 99.75 

0.8 99.50 99.50 99.50 99.50 99.50 
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Table F2. Power (%) for Complete Data and N = 200  

   Power (%) for Complete Data and N = 200 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 6.95 6.95 6.95 6.95 6.95 

0.6 6.50 6.50 6.50 6.50 6.50 

0.8 6.30 6.30 6.30 6.30 6.30 

0.3 

0.4 31.05 31.05 31.05 31.05 31.05 

0.6 29.60 29.60 29.60 29.60 29.60 

0.8 29.55 29.55 29.60 29.55 29.55 

0.5 

0.4 29.55 29.55 29.55 29.55 29.55 

0.6 30.00 30.00 30.00 30.00 30.00 

0.8 28.15 28.15 28.15 28.15 28.15 

0.3 

0.1 

0.4 27.10 27.10 27.10 27.10 27.10 

0.6 28.45 28.45 28.45 28.45 28.45 

0.8 25.10 25.10 25.10 25.10 25.10 

0.3 

0.4 98.10 98.10 98.10 98.10 98.10 

0.6 97.80 97.80 97.80 97.80 97.80 

0.8 98.00 98.00 98.00 98.00 98.00 

0.5 

0.4 99.65 99.65 99.65 99.65 99.65 

0.6 99.15 99.15 99.15 99.15 99.15 

0.8 99.45 99.45 99.45 99.45 99.45 

0.5 

0.1 

0.4 24.95 24.95 24.95 24.85 24.85 

0.6 25.35 25.35 25.35 25.30 25.30 

0.8 22.80 22.80 22.80 22.80 22.80 

0.3 

0.4 96.80 96.80 96.80 96.80 96.80 

0.6 95.85 95.85 95.85 95.85 95.85 

0.8 96.50 96.50 96.50 96.50 96.50 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F3. Power (%) for Complete Data and N = 500  

   Power (%) for Complete Data and N = 500 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 33.80 33.80 33.75 33.75 33.75 

0.6 35.95 35.95 35.95 35.95 35.95 

0.8 33.45 33.45 33.45 33.45 33.45 

0.3 

0.4 61.15 61.10 61.10 61.10 61.10 

0.6 61.95 61.95 61.95 61.95 61.95 

0.8 60.50 60.50 60.50 60.50 60.50 

0.5 

0.4 60.50 60.50 60.50 60.50 60.50 

0.6 62.70 62.70 62.70 62.70 62.70 

0.8 59.20 59.20 59.20 59.20 59.20 

0.3 

0.1 

0.4 58.00 58.00 58.00 58.00 58.00 

0.6 58.00 58.00 58.00 58.00 58.00 

0.8 57.35 57.35 57.35 57.35 57.35 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.1 

0.4 50.40 50.45 50.45 50.35 50.35 

0.6 49.45 49.45 49.45 49.45 49.45 

0.8 51.25 51.25 51.20 51.20 51.20 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F4. Power (%) for Complete Data and N = 1000 

   Power (%) for Complete Data and N = 1000 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 77.10 77.10 77.10 77.10 77.10 

0.6 77.00 77.00 77.00 77.00 77.00 

0.8 77.65 77.70 77.70 77.70 77.70 

0.3 

0.4 88.85 88.85 88.85 88.85 88.85 

0.6 88.50 88.50 88.50 88.50 88.50 

0.8 89.05 89.05 89.05 89.05 89.05 

0.5 

0.4 88.00 88.00 88.00 88.00 88.00 

0.6 89.00 89.00 89.00 89.00 89.00 

0.8 88.85 88.85 88.85 88.85 88.85 

0.3 

0.1 

0.4 85.45 85.45 85.45 85.45 85.45 

0.6 86.85 86.85 86.85 86.85 86.85 

0.8 84.60 84.60 84.60 84.60 84.60 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.1 

0.4 78.05 78.00 78.00 78.00 78.00 

0.6 78.10 78.10 78.10 78.05 78.05 

0.8 79.25 79.25 79.25 79.20 79.20 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F5. Power (%) for Missing Rate = 20% and N = 100  

   Power (%) for Missing Rate = 20% and N = 100 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 2.15 2.00 1.75 1.75 1.65 

0.6 1.25 1.60 1.40 1.20 1.15 

0.8 1.90 1.95 1.90 1.50 1.35 

0.3 

0.4 11.95 12.05 12.45 11.30 11.40 

0.6 12.20 12.60 11.95 11.95 11.55 

0.8 13.75 13.60 13.45 11.70 10.95 

0.5 

0.4 16.20 15.85 16.00 15.75 14.80 

0.6 17.35 17.05 16.00 16.80 16.05 

0.8 17.40 17.60 16.65 14.80 14.45 

0.3 

0.1 

0.4 12.25 12.40 11.45 11.35 11.25 

0.6 11.65 11.55 11.45 11.30 10.75 

0.8 13.55 13.60 12.55 10.50 10.10 

0.3 

0.4 62.65 61.60 60.30 59.05 57.80 

0.6 64.90 63.55 61.65 57.60 56.35 

0.8 68.30 68.00 66.05 58.60 57.45 

0.5 

0.4 83.65 82.95 82.80 81.90 80.05 

0.6 83.50 83.15 82.00 79.70 77.25 

0.8 85.65 84.55 83.45 80.10 77.70 

0.5 

0.1 

0.4 14.80 14.15 14.50 14.90 14.45 

0.6 14.30 14.50 13.85 13.75 13.45 

0.8 15.40 15.05 14.25 14.35 13.90 

0.3 

0.4 70.05 70.05 68.90 67.85 67.20 

0.6 72.75 72.45 71.50 68.90 68.20 

0.8 74.70 73.35 72.10 68.35 67.65 

0.5 

0.4 99.20 99.00 98.90 98.80 98.65 

0.6 99.55 99.40 99.30 99.20 99.10 

0.8 99.30 99.25 99.35 98.50 98.55 
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Table F6. Power (%) for Missing Rate = 20% and N = 200  

   Power (%) for Missing Rate = 20% and N = 200 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 5.30 4.80 4.35 4.20 4.10 

0.6 6.15 6.25 5.80 4.95 5.00 

0.8 6.80 6.70 6.65 5.80 5.65 

0.3 

0.4 25.20 25.05 24.40 24.00 23.25 

0.6 26.10 25.40 25.25 23.35 22.30 

0.8 28.70 27.75 26.25 23.70 23.35 

0.5 

0.4 26.75 27.75 27.55 27.10 26.35 

0.6 29.60 29.85 29.15 28.15 26.55 

0.8 28.00 27.80 26.75 25.55 24.80 

0.3 

0.1 

0.4 22.45 23.35 22.80 21.90 21.70 

0.6 24.60 23.95 23.10 21.80 21.70 

0.8 26.05 25.60 24.30 22.20 22.15 

0.3 

0.4 95.30 95.10 94.75 93.75 93.55 

0.6 96.55 96.75 95.55 94.55 94.30 

0.8 97.35 97.25 97.20 94.40 94.15 

0.5 

0.4 98.20 98.40 98.25 97.75 97.70 

0.6 99.00 98.90 98.75 97.90 97.70 

0.8 98.80 98.75 98.40 97.80 97.50 

0.5 

0.1 

0.4 21.55 21.70 22.20 21.50 21.35 

0.6 22.20 21.70 21.20 20.25 20.10 

0.8 22.50 22.10 21.35 18.95 18.90 

0.3 

0.4 94.10 93.50 93.15 93.05 92.90 

0.6 95.75 95.80 94.75 93.85 93.65 

0.8 95.25 95.25 94.40 92.20 92.05 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F7. Power (%) for Missing Rate = 20% and N = 500  

   Power (%) for Missing Rate = 20% and N = 500 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 24.60 23.40 23.00 21.95 21.80 

0.6 29.35 28.60 27.00 23.65 23.55 

0.8 31.35 30.90 29.60 23.50 23.55 

0.3 

0.4 55.20 54.30 53.15 53.40 51.85 

0.6 56.65 55.50 54.90 52.05 51.60 

0.8 58.45 58.30 57.35 52.60 51.95 

0.5 

0.4 56.45 55.95 55.75 55.30 52.15 

0.6 57.75 57.45 56.00 54.75 52.35 

0.8 59.50 59.50 57.90 53.30 52.70 

0.3 

0.1 

0.4 50.70 49.55 47.90 47.70 47.60 

0.6 54.65 53.40 52.00 49.40 49.25 

0.8 54.00 53.20 52.15 47.20 47.15 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.1 

0.4 44.90 44.60 43.50 43.00 42.95 

0.6 46.10 45.90 45.05 42.15 42.15 

0.8 45.25 45.20 43.70 41.30 41.15 

0.3 

0.4 100.00 100.00 100.00 99.90 99.90 

0.6 100.00 100.00 100.00 99.95 99.95 

0.8 100.00 100.00 100.00 99.95 99.95 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F8. Power (%) for Missing Rate = 20% and N = 1000 

   Power (%) for Missing Rate = 20% and N = 1000 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 68.40 67.75 65.40 63.65 63.25 

0.6 69.30 68.30 67.00 62.00 61.45 

0.8 73.95 73.70 72.45 62.75 62.65 

0.3 

0.4 83.95 83.65 83.30 82.50 81.70 

0.6 86.20 85.50 84.55 82.15 81.45 

0.8 87.15 87.00 85.50 80.30 79.50 

0.5 

0.4 83.35 83.00 82.40 82.45 79.90 

0.6 85.55 85.85 84.85 83.10 81.25 

0.8 89.90 89.45 88.15 85.10 83.55 

0.3 

0.1 

0.4 80.45 79.60 78.35 77.40 77.30 

0.6 82.15 82.00 80.40 77.85 77.85 

0.8 83.30 83.00 81.50 77.50 77.45 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.1 

0.4 73.45 73.20 72.05 71.35 71.35 

0.6 74.30 73.60 72.10 69.60 69.55 

0.8 76.15 76.05 74.75 69.25 69.25 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F9. Power (%) for Missing Rate = 50% and N = 100  

   Power (%) for Missing Rate = 50% and N = 100 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 1.50 1.80 1.70 1.65 1.00 

0.6 1.75 1.60 1.75 1.75 1.20 

0.8 2.20 2.50 1.75 1.05 .75 

0.3 

0.4 8.90 8.35 7.35 6.70 5.55 

0.6 9.50 8.40 8.15 6.60 5.80 

0.8 12.65 11.50 9.95 6.65 5.85 

0.5 

0.4 14.30 14.05 14.20 13.05 12.55 

0.6 16.45 13.90 12.50 11.45 11.05 

0.8 16.70 15.85 15.50 13.35 12.15 

0.3 

0.1 

0.4 8.60 7.95 7.25 7.30 6.45 

0.6 9.90 9.20 7.90 7.60 6.80 

0.8 12.40 11.55 10.35 7.90 6.40 

0.3 

0.4 42.95 37.95 35.20 32.50 29.65 

0.6 52.60 45.85 41.10 33.35 30.50 

0.8 62.95 56.95 49.95 32.70 29.30 

0.5 

0.4 71.95 67.80 66.45 63.80 58.10 

0.6 77.55 72.80 69.25 63.25 57.75 

0.8 81.35 79.00 75.10 62.30 56.30 

0.5 

0.1 

0.4 12.95 13.05 12.10 12.05 11.05 

0.6 13.15 12.75 12.55 11.65 9.95 

0.8 14.20 14.00 13.30 11.25 9.95 

0.3 

0.4 57.10 52.75 52.35 50.35 47.25 

0.6 64.40 59.90 56.00 50.80 48.00 

0.8 71.55 67.85 63.30 52.80 50.65 

0.5 

0.4 94.50 93.65 92.10 90.35 88.50 

0.6 97.75 96.40 95.40 91.80 90.20 

0.8 99.35 98.60 97.10 91.05 88.75 

 

  



   

190 

Table F10. Power (%) for Missing Rate = 50% and N = 200  

   Power (%) for Missing Rate = 50% and N = 200 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 3.15 3.15 2.75 2.45 2.35 

0.6 4.50 4.45 3.75 3.10 2.75 

0.8 5.80 5.45 3.80 2.75 2.35 

0.3 

0.4 19.60 18.40 17.85 16.60 15.70 

0.6 22.35 20.15 18.45 14.85 14.20 

0.8 26.70 24.90 22.75 15.15 14.80 

0.5 

0.4 22.45 21.55 19.55 19.30 17.35 

0.6 25.00 23.35 20.70 19.45 17.80 

0.8 26.00 24.90 23.60 18.50 18.10 

0.3 

0.1 

0.4 18.70 17.35 16.20 14.75 13.95 

0.6 19.70 18.00 15.95 13.70 12.80 

0.8 23.30 21.40 19.45 14.05 13.45 

0.3 

0.4 84.50 80.35 77.20 73.55 70.95 

0.6 92.30 88.55 84.20 74.80 72.65 

0.8 96.20 93.20 89.80 75.10 73.05 

0.5 

0.4 94.55 93.20 92.20 91.15 86.95 

0.6 97.80 96.40 94.70 91.75 88.25 

0.8 98.70 97.65 96.35 91.35 87.35 

0.5 

0.1 

0.4 16.60 16.15 16.00 15.25 14.10 

0.6 18.75 18.10 17.70 15.40 14.55 

0.8 21.15 20.50 19.00 15.00 14.60 

0.3 

0.4 84.15 81.15 79.95 78.15 77.40 

0.6 90.20 86.65 83.80 78.40 77.20 

0.8 94.60 92.20 89.30 78.90 77.65 

0.5 

0.4 99.85 99.75 99.70 99.65 99.60 

0.6 100.00 100.00 100.00 99.80 99.75 

0.8 100.00 100.00 99.95 99.70 99.65 
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Table F11. Power (%) for Missing Rate = 50% and N = 500  

   Power (%) for Missing Rate = 50% and N = 500 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 14.85 12.25 10.70 10.30 9.60 

0.6 22.85 17.95 14.30 11.50 11.05 

0.8 26.90 23.10 19.55 11.10 10.75 

0.3 

0.4 43.75 41.95 39.65 36.55 35.55 

0.6 50.60 46.35 43.55 36.85 35.40 

0.8 55.00 52.15 47.75 36.50 34.80 

0.5 

0.4 45.25 43.25 41.95 39.25 35.45 

0.6 53.25 49.95 46.00 41.10 37.80 

0.8 57.30 53.35 49.45 40.00 35.20 

0.3 

0.1 

0.4 39.75 36.60 35.70 33.65 33.25 

0.6 45.75 41.55 39.95 34.90 34.30 

0.8 52.30 48.30 45.05 34.50 33.80 

0.3 

0.4 99.90 99.70 99.65 99.35 99.40 

0.6 100.00 99.90 99.80 99.45 99.50 

0.8 100.00 100.00 100.00 99.40 99.35 

0.5 

0.4 100.00 100.00 99.95 99.95 99.90 

0.6 100.00 100.00 100.00 99.95 99.90 

0.8 100.00 100.00 100.00 99.95 99.85 

0.5 

0.1 

0.4 32.15 29.90 27.30 26.20 25.90 

0.6 38.85 35.70 34.00 28.85 28.35 

0.8 44.30 42.00 37.65 28.40 27.95 

0.3 

0.4 99.75 99.45 99.15 98.75 98.70 

0.6 100.00 99.90 99.70 99.10 99.05 

0.8 100.00 100.00 99.95 99.10 99.10 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F12. Power (%) for Missing Rate = 50% and N = 1000 

   Power (%) for Missing Rate = 50% and N = 1000 

α β λ 

Method 1 

Latent 

Variable 

Model 

Method 2 
Two 

Auxiliary 

Variables 

Method 3 

One 

Auxiliary 

Variable 

Method 4 

  

ML with 

M1 only 

Method 5 

 

Listwise 

Deletion 

0.1 

0.1 

0.4 47.95 41.85 37.55 33.00 32.65 

0.6 60.35 52.60 44.65 33.70 33.45 

0.8 70.95 65.95 58.75 36.00 35.45 

0.3 

0.4 71.10 67.95 64.85 62.35 60.60 

0.6 78.30 74.35 69.70 62.25 60.75 

0.8 85.65 82.85 79.25 64.25 62.05 

0.5 

0.4 73.65 70.25 68.20 65.80 61.25 

0.6 80.75 77.00 72.80 67.40 62.15 

0.8 84.90 81.85 77.40 66.20 61.10 

0.3 

0.1 

0.4 66.75 62.40 60.10 57.00 56.60 

0.6 74.20 70.40 65.05 58.45 58.15 

0.8 80.05 75.95 71.75 56.30 56.10 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.1 

0.4 57.35 53.15 51.45 49.10 48.85 

0.6 63.85 59.60 55.80 49.20 48.95 

0.8 73.00 68.00 62.50 48.20 47.65 

0.3 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 
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Table F13. Power (%) for Missing Rate = 80% and N = 100  

   Power (%) for Missing Rate = 80% and N = 100 

α β λ 

1.  

Latent 

Variable 

Model 

2. Two 

Auxiliary 

Variable 

Model 

3. One 

Auxiliary 

Variable 

Model 

4. ML 

with No 

Additional 

Mediators 

5. 

Listwise 

Deletion 

0.1 

0.1 

0.4 1.05 2.25 2.10 1.90 .75 

0.6 1.05 1.80 1.85 1.85 .95 

0.8 1.30 2.05 1.50 2.30 .80 

0.3 

0.4 4.65 4.80 5.00 4.50 3.05 

0.6 7.30 6.25 5.55 4.10 1.95 

0.8 9.95 7.35 6.30 3.95 2.50 

0.5 

0.4 9.80 9.45 9.40 8.35 5.50 

0.6 11.95 9.45 9.15 7.60 5.55 

0.8 14.90 13.25 11.90 8.20 5.65 

0.3 

0.1 

0.4 4.90 5.85 5.45 5.35 3.15 

0.6 6.80 6.70 6.15 4.55 2.05 

0.8 9.55 7.05 5.80 4.60 2.00 

0.3 

0.4 19.15 14.35 13.80 12.00 8.00 

0.6 37.65 19.55 16.90 12.15 8.15 

0.8 56.60 31.60 23.40 13.25 8.45 

0.5 

0.4 45.85 31.05 28.80 26.35 19.30 

0.6 64.30 40.60 34.90 27.95 18.75 

0.8 79.55 56.50 45.35 25.60 18.05 

0.5 

0.1 

0.4 9.00 12.00 11.15 10.20 6.25 

0.6 9.70 12.55 11.40 10.65 7.25 

0.8 12.95 14.20 13.40 11.35 7.25 

0.3 

0.4 34.50 28.15 26.40 24.90 17.90 

0.6 48.85 31.10 27.00 22.95 15.80 

0.8 64.45 44.10 35.95 23.10 16.30 

0.5 

0.4 75.40 57.15 54.65 52.95 40.95 

0.6 91.65 65.55 61.00 53.05 40.95 

0.8 98.25 84.05 74.50 53.50 40.90 
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Table F14. Power (%) for Missing Rate = 80% and N = 200  

   Power (%) for Missing Rate = 80% and N = 200 

α β λ 

1.  

Latent 

Variable 

Model 

2. Two 

Auxiliary 

Variable 

Model 

3. One 

Auxiliary 

Variable 

Model 

4. ML 

with No 

Additional 

Mediators 

5. 

Listwise 

Deletion 

0.1 

0.1 

0.4 1.30 1.95 1.75 1.80 1.10 

0.6 2.90 1.75 1.50 .95 .60 

0.8 4.85 2.75 2.30 1.55 1.00 

0.3 

0.4 11.60 8.45 7.65 7.40 5.80 

0.6 17.10 9.90 7.60 7.15 4.85 

0.8 22.20 15.00 9.90 5.10 3.95 

0.5 

0.4 15.00 12.85 12.45 11.50 10.05 

0.6 20.45 15.15 13.90 11.50 9.80 

0.8 24.35 20.85 17.25 12.00 9.55 

0.3 

0.1 

0.4 10.05 8.55 7.60 6.65 4.30 

0.6 15.05 10.65 8.65 6.95 5.30 

0.8 22.60 14.95 11.85 6.70 4.65 

0.3 

0.4 57.35 35.80 32.00 28.05 21.05 

0.6 81.35 46.10 37.20 27.95 21.75 

0.8 94.10 72.65 59.80 26.50 21.65 

0.5 

0.4 81.80 65.45 61.00 57.90 48.35 

0.6 92.05 75.15 67.95 55.70 46.40 

0.8 97.75 88.45 80.05 53.60 44.85 

0.5 

0.1 

0.4 13.10 13.00 12.15 11.40 8.60 

0.6 15.75 13.40 12.35 11.80 8.75 

0.8 19.90 15.80 14.25 11.50 9.00 

0.3 

0.4 64.10 49.40 47.35 43.45 36.90 

0.6 81.85 57.10 52.30 45.55 38.80 

0.8 91.35 74.60 62.95 45.60 38.75 

0.5 

0.4 98.10 90.25 87.55 85.35 80.70 

0.6 99.75 94.60 91.35 83.90 79.20 

0.8 100.00 99.00 96.85 84.30 78.40 
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Table F15. Power (%) for Missing Rate = 50% and N = 500  

   Power (%) for Missing Rate = 80% and N = 500 

α β λ 

1.  

Latent 

Variable 

Model 

2. Two 

Auxiliary 

Variable 

Model 

3. One 

Auxiliary 

Variable 

Model 

4. ML 

with No 

Additional 

Mediators 

5. 

Listwise 

Deletion 

0.1 

0.1 

0.4 8.20 3.95 3.45 2.95 2.35 

0.6 15.65 6.15 4.55 3.00 2.30 

0.8 24.90 10.95 7.70 2.85 2.60 

0.3 

0.4 34.15 20.50 18.70 16.85 15.30 

0.6 41.30 26.55 21.40 14.80 13.55 

0.8 52.85 38.25 32.10 15.85 14.30 

0.5 

0.4 32.70 26.35 24.00 22.40 17.80 

0.6 40.90 28.90 25.15 19.55 18.55 

0.8 54.15 40.05 32.20 21.05 18.60 

0.3 

0.1 

0.4 28.45 21.00 19.15 16.70 14.75 

0.6 37.65 24.60 20.55 15.40 13.55 

0.8 47.20 32.05 26.55 14.30 13.10 

0.3 

0.4 98.20 85.40 80.70 75.95 72.90 

0.6 99.95 94.30 88.90 75.55 71.40 

0.8 100.00 99.25 97.80 75.45 72.30 

0.5 

0.4 99.30 96.00 95.10 93.20 87.10 

0.6 100.00 98.55 96.70 93.10 87.85 

0.8 100.00 99.85 99.40 92.65 88.50 

0.5 

0.1 

0.4 23.00 18.60 17.60 16.25 14.70 

0.6 31.55 20.75 17.95 15.80 14.20 

0.8 41.00 29.30 22.70 16.35 15.10 

0.3 

0.4 95.55 83.80 81.30 78.20 76.35 

0.6 99.65 92.50 87.70 79.05 77.10 

0.8 99.90 98.10 95.50 79.75 78.05 

0.5 

0.4 100.00 100.00 99.95 100.00 99.85 

0.6 100.00 100.00 100.00 99.70 99.65 

0.8 100.00 100.00 100.00 99.85 99.80 
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Table F16. Power (%) for Missing Rate = 80% and N = 1000 

   Power (%) for Missing Rate = 80% and N = 1000 

α β λ 

1.  

Latent 

Variable 

Model 

2. Two 

Auxiliary 

Variable 

Model 

3. One 

Auxiliary 

Variable 

Model 

4. ML 

with No 

Additional 

Mediators 

5. 

Listwise 

Deletion 

0.1 

0.1 

0.4 24.25 10.55 9.10 5.85 5.35 

0.6 45.10 19.65 13.45 7.55 7.10 

0.8 64.70 39.10 25.40 8.35 7.65 

0.3 

0.4 52.95 38.20 35.05 32.05 29.25 

0.6 72.05 47.75 40.65 31.10 28.75 

0.8 80.95 62.35 54.05 31.40 29.15 

0.5 

0.4 54.90 40.95 37.15 33.90 28.95 

0.6 72.65 49.90 44.10 36.75 30.50 

0.8 82.55 66.35 54.90 35.95 28.70 

0.3 

0.1 

0.4 50.05 33.45 31.25 28.40 27.55 

0.6 64.15 38.45 33.90 26.05 24.70 

0.8 77.95 57.10 48.15 27.00 26.30 

0.3 

0.4 100.00 99.20 98.75 97.70 97.60 

0.6 100.00 99.90 99.80 98.35 98.05 

0.8 100.00 100.00 100.00 98.60 98.30 

0.5 

0.4 100.00 99.95 99.85 99.70 98.95 

0.6 100.00 100.00 99.95 99.70 99.50 

0.8 100.00 100.00 100.00 99.90 99.60 

0.5 

0.1 

0.4 38.15 27.95 26.70 24.05 23.45 

0.6 54.35 33.65 28.60 24.70 23.85 

0.8 68.45 48.65 39.20 25.00 23.80 

0.3 

0.4 99.80 98.30 97.35 96.45 96.20 

0.6 100.00 99.50 98.95 96.90 96.50 

0.8 100.00 100.00 99.65 96.65 96.55 

0.5 

0.4 100.00 100.00 100.00 100.00 100.00 

0.6 100.00 100.00 100.00 100.00 100.00 

0.8 100.00 100.00 100.00 100.00 100.00 

 

 

 

 


