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ABSTRACT  
   

Node-link diagrams are widely used to visualize the relational structure of real 

world datasets. As identical data can be visualized in infinite ways by simply changing 

the spatial arrangement of the nodes, one of the important research topics of the graph 

drawing community is to visualize the data in the way that can facilitate people's 

comprehension. The last three decades have witnessed the growth of algorithms for 

automatic visualization. However, despite the popularity of node-link diagrams and the 

enthusiasm in improving computational efficiency, little is known about how people read 

these graphs and what factors (layout, size, density, etc.) have impact on their 

effectiveness (the usability aspect of the graph, e.g., are they easy to understand?). This 

thesis is comprehensive research to investigate the factors that affect people's 

understanding of node-link diagrams using eye-tracking methods. Three experiments 

were conducted, including 1) a pilot study with 22 participants to explore the layout and 

size effect; 2) an eye tracking experiment with 43 participants to investigate the layout, 

size and density effect on people's graph comprehension using abstract node-link diagram 

and generic tasks; and 3) an eye tracking experiment with the same participants to 

investigate the same effects using a real visualization analytic application. Results 

showed that participants' spatial reasoning ability had significant impact on people's 

graph reading performance. Layout, size, and density were all found to be significant 

effects under different task circumstances. The applicability of the eye tracking methods 

on visualization evaluation has been confirmed by providing detailed evidence that 

demonstrates the cognitive process of participants' graph reading behavior. 
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CHAPTER 1 

INTRODUCTION 

 
Graphs are defined as "a set of vertices and set of edges that connect the vertices 

(Battista, Eades, Tamassia, & Tollis, 1998)." In the context of mathematics and computer 

science, a graph is a formal mathematical representation of a network. Graphs are widely 

used to model the relational structure of real world data, such as social networks, 

computer networks, partial orders, and algebraic geometry, etc. Graphs are usually 

visualized as node-link diagrams. One challenge of the graph drawing community is to 

take a set of nodes and their relationships as input and automatically visualize them to 

optimize both efficiency (e.g. how much time it costs to produce/visualize the graph?) 

and effectiveness (e.g., how much cognitive and perceptive resources are required for 

viewers to understand the embedded information correctly?). In the past three decades, 

most efforts have been placed on improving computational efficiency of the automatic 

graph layout algorithms, whereas relatively little attention has been given to 

understanding how people actually read the graphs. 

In order to ensure the readability of the node-link diagrams, many aesthetic 

criteria (rules to layout the graphs) have been proposed (Bennett, Ryall, Spalteholz, & 

Gooch, 2007; Coleman & Parker, 1996). These criteria are used as quality measures of 

the graphs. However, in the absence of empirical support, as most of these criteria are 

proposed based on intuition of the designers, their relationship with better comprehensive 

performance cannot be guaranteed. Furthermore, as most criteria are mutually exclusive 

(Purchase, Carrington, & Allder, 2002), their relative importance needs to be ranked for 
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designers to make compromises among them to achieve both good readability and 

efficiency.  In addition, empirical evidence has revealed that useful layouts for certain 

application domains obey different aesthetic criteria (Purchase et al., 2002). There is a 

need to validate the criteria both on abstract graphs and in a real application context. 

Eye tracking is a research method to measure the individual's eye movements. It 

provides information on where a person is looking at a specific time and how their eyes 

shift from one place to another (Rayner, 1998). In visualization evaluation research, eye 

tracking methodology can help uncover the subtle cognitive processes that are otherwise 

hard to observe using traditional usability measurements (Goldberg & Helfman, 2011). 

The focus of this dissertation research is to empirically investigate how people 

read, interpret, and respond to different graph layouts, sizes and densities using eye-

tracking methodology. By using eye-tracking methods, the study is grounded in data that 

relates directly to cognitive processing for how users understand the visualizations across 

task contexts, graph sizes and densities, rather than based on self-report, or perception 

data. Contributions of this study include: 1) determining which layout should be used and 

what properties (edge crossing frequency, crossing angle, etc.) should be optimized given 

certain tasks and context; 2) understanding the cognitive process of people’s graph-

reading behavior; 3) suggestions for designers to choose appropriate algorithms to 

visualize a node-link diagram for a certain applications. 

The remainder of this document is structured as follows. The �background and 

related� work section provides an overview of the research literature on graph theory 

and eye tracking methods. This section also introduces and justifies the choice of eye 

tracking methodology to evaluate graph visualizations. The �pilot study� section 
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describes a pilot eye tracking study to investigate the layout effect on graph reading 

performance. Based on the lessons learned from this pilot study, two formal eye tracking 

experiments were structured to investigate the layout, size and density effect on people’s 

graph comprehension using abstract node-link diagrams (�experiment with abstract 

graphs�) and a real application (�experiment with DIA2�), respectively. Finally, the 

findings and suggestions for future research are discussed in the �discussion and 

conclusion� section. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 
The purpose of this section is to provide the theoretical and methodological 

background for understanding the rest of this document. The chapter begins with a review 

of what is known about the aesthetic criteria for laying graphs out in the context of graph 

theory. The need to validate these criteria for graph layouts, which is the main focus of 

this study, is also discussed in this section. Also included is an extensive discussion of 

using eye tracking as a research method for visualization evaluation, including an 

introduction to eye tracking technology, a review on previous eye tracking research in the 

Human-Computer-Interaction (HCI) field and a discussion of commonly used eye 

movement metrics. 

Graph Theory 
In the context of mathematics and computer science, the study of graphs is called 

Graph Theory.  

Graph and node-link diagram. A great number of real-world data sets have 

relational structures that consist of entities and the relationships between them (e.g., 

social networks, citation networks, communication networks, and neural networks, etc.). 

Graphs are usually visualized as node-link diagrams for an easier understanding of the 

embedded information. 

A visualization of a graph is only useful when the node-link diagram is readable 

and can convey the underlying information effectively. One issue with graph drawing is 

that the same data set can be visualized in infinite ways by simply changing the spatial 
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arrangement of the nodes (see Figure 1 as an example of using different layouts to 

visualize identical information). Empirical studies have shown that spatial layout has an 

effect on people's comprehension of the graphs (Purchase, 1997; Purchase, Cohen, & 

James, 1996; Ware, Purchase, Colpoys, & McGill, 2002).The two main concerns of the 

graph drawing community are: 1) the computational efficiency of constructing geometric 

representations of abstract graphs; and 2) the effectiveness of conveying the underlying 

information to viewers (Purchase, McGill, & Colpoys, 2001).  

 

 
Arc layout Tree layout 

 

 

Circular layout Circular layout (centered) 

Figure 1. Different layouts representing identical information. 

Aesthetic criteria. Aesthetic criteria (rules for laying out graphs) have been 

widely used as quality measures to evaluate the "goodness" of a visualization (W. Huang, 

2013). In the past three decades, a variety of aesthetic criteria have been proposed with an 
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assumption that they will improve the readability and understanding of graphs. Table 1 

summarized the most accepted aesthetic criteria. 

Table 1. Commonly accepted aesthetic criteria for graph visualization. 

Concerns Brief description Proposed by 

Crosses The number of edge 

crossings in the drawing 

should be minimized 

(Reingold & 

Tilford, 1981) 

Bends The total number of bends in 

polyline edges should be 

minimized 

(Tamassia, 1987) 

Angles The minimum angle between 

edges extending from a node 

should be maximized 

(Coleman & Parker, 

1996; Gutwenger & 

Mutzel, 1998) 

Orthogonally Fix nodes and edges to an 

orthogonal grid 

(Papakostas & 

Tollis, 2000; 

Tamassia, 1987) 

Symmetry Where possible, a 

symmetrical view of the 

graph should be displayed 

(Gansner & North, 

1998) 

 

By far the most accepted aesthetic criteria for graph visualization is to minimize 

the number of edge crossings (Davidson & Harel, 1996; Purchase, 2002; Tamassia, Di 

Battista, & Batini, 1988; Taylor & Rodgers, 2005). Because of its great impact on graph 

comprehension, extensive validation of this criterion has been carried out to understand 

user preference and optimize user performance. With the same idea in mind, it is believed 

that minimizing the number of edge bends can also benefit the effectiveness of graph 

visualization. Edges with sharp bends are more difficult to follow, as they are more likely 
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to be perceived as two separate objects. If several edges are connected to a same node, 

they should be spaced at even angles around the node. This leads to the criterion to 

maximize minimum edge angles between all edges of a node (Purchase, 2002; Taylor & 

Rodgers, 2005). The side effect of these criteria is that the nodes with more connections, 

which are more likely to be the important nodes, may be put closer to the center. To 

satisfy these criteria, graph designers may have to make compromises with competing 

structural criteria. Purchase (2002) proposed to maximize edge orthogonality by placing 

the edges and edge segments to match the lines of an imaginary grid. It is believed that 

this can reduce edge crossings and maximize the angles. Besides the spatial relationships 

between nodes and edges, the overall graph layout is also an important factor of 

aesthetics. Maximizing global symmetry is the one of the most widely studied criteria. 

Most of the criteria could be mutually exclusive (optimizing one criterion would 

result in suboptimal performance of another criterion). The graph drawing community 

had developed many layout algorithms to meet the requirements of both computational 

efficiency and optimizing certain aesthetic criteria. See Table 2 for a review of widely 

used layouts. 
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Table 2. Examples of widely used layouts. 

Layout Sample graph Description Reference 

Force-

directed 

 

Forces 1  are assigned 

among the edges and 

nodes based on their 

relative positions. These 

forces are then used to 

simulate the motion of 

edges and nodes or to 

minimize their energy. 

(Fruchterman 

& Reingold, 

1991) 

Circular 

 

All nodes are places on 

a circle. 

Scott (2000) 

Concentric 

 

All nodes are laid on 

circumference of circles 

in a way that their 

distances from the 

center exactly reflect 

their centrality2 levels. 

(Brandes, 

Kenis, & 

Wagner, 

2003) 

 

Criteria validation. There are two main issues with these aesthetic criteria. First, 

they were primarily proposed based on the intuition of algorithm designers. Thus, their 

                                                
1 Forces are assigned among the set of edges and the set of nodes. Typically, spring-like attractive forces based on 

Hooke’s law are used to attract pairs of endpoints of the graph’s edges towards each other; repulsive forces like those 

of electrically charged particles based on Coulomb’s law are used to separate all pairs of nodes. 
2 Degree centrality, the nodes with high degree (connections) are likely to be at the intuitive center. 
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positive effect on human graph comprehension is not guaranteed, and empirical studies 

are needed to support the assumptions embedded in the criteria. Second, the literature 

suggests that the establishing of aesthetics should be based on empirical evidence and the 

theories of how people read graphs (W. Huang, 2013; Purchase, Pilcher, & Plimmer, 

2012). Appendix A is a summary of studies on criteria validation. Studies are described 

based on their independent variable, dependent variable, number of subjects, stimuli, 

tasks, and conclusion. 

Purchase is the pioneer of investigating the cognitive measure of the aesthetics of 

graph drawing. Her study in the mid-1990�s showed that human performance with 

node-link diagrams is negatively correlated with the number of edge crossing and bends 

(Purchase et al., 1996). By comparing the relative importance of five commonly accepted 

aesthetic criteria (bends, cross, angles, orthogonality, symmetry), Purchase and her 

colleagues found that edge crossing was the most prominent affecting factor, followed by 

edge bends and symmetry (Purchase, 1997). This finding coincided with the results of 

Körner et al.'s research, which argued that the reasoning stage of human's graph 

comprehension process was only affected by the visual property of edge crossing (Körner, 

2011). Empirical evidence also revealed that the impact of edge crossings varies under 

different experimental settings: Huang's research on layout effect found that the edge 

crossing just affects human performance on path-finding tasks but not node-locating tasks 

(Huang, 2007b). In another study, Huang et al. found that edge crossing does not inhibit 

human performance when the crossing angle is large (Huang, Eades, & Hong, 2009). 

Ware et al. (Ware et al., 2002) found that path continuity also has an important impact on 

graph comprehension. 
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Beside the research on individual aesthetics, there is substantial research focused 

on the effect of layouts on graph comprehension. Pohl et al. (Pohl, Schmitt, & Diehl, 

2009) conducted a study to look into the readability of three kinds of commonly used 

layouts: force-directed, hierarchical, and orthogonal and found that force-directed out-

performed the other two layouts on almost every task. Burch et al. (Burch, Konevtsova, 

Heinrich, Hoeferlin, & Weiskopf, 2011) conducted a study to investigate the readability 

of layouts depicting hierarchical structures (traditional, orthogonal, and radial tree). The 

results showed that the traditional and orthogonal tree layouts significantly outperformed 

radial tree layouts. 

Although previous empirical studies confirmed the strong influence of graph 

layout on the readability of node-link diagrams, a comprehensive analysis and 

comparisons of different layouts in terms of performance, quality, and relative 

importance is still lacking in the literature.  

Specifically, the diagrams used in these prior studies usually have sparse nodes 

and low density. As a node-link diagram is inherently a space-inefficient representation 

that suffers from scalability problems for large datasets (Burch et al., 2013; Ghoniem, 

Fekete, & Castagliola), it is insufficient to investigate the readability of graphs without 

considering the influence of the size and density of the graph. In this dissertation research, 

graph size and density were investigated as independent variables.  

Furthermore, as it is often not possible to optimize across multiple criteria; instead, 

compromises usually have to be made. It is important to understand the relative important 

priorities of aesthetic criteria. Purchase initiated the studies in this direction by 

prioritizing five aesthetics (edge crossing, number of bends, symmetry, maximizing the 
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minimum angle between neighboring edges, and maximizing orthogonality); however, 

the knowledge gained from her study is useful only for a specific task (node locating). 

This dissertation research included more factors (layout, size, density and task types) to 

guarantee the generalizability of the results when the method or task is varied.  

Finally, as Bennett et al. (Bennett et al., 2007) pointed out, semantics and tasks 

are as important as structure when creating graphs. The same factors were not only 

evaluated using abstract graphs and generic tasks, but also using a real application 

context. 

Cognitive model on graph comprehension. Several cognitive models have been 

developed and compared for graph comprehension during the last two decades. Top-

down models break the process into theoretical sub-processes that are pre-determined by 

an individual's viewing strategies. In contrast, bottom-up models provide implications to 

higher cognitive processes based on observed behaviors. Lohse (1992) proposed a top-

down model to predict the time needed to complete common graphical tasks. Carpenter 

and Shah (1998) modeled the graph comprehension process as a series of internal sub-

processes, including encoding, pattern interpretation, and integration. In line with 

Carpenter and Shah, Bojko and Stephenson (2005) proposed a model of visual search 

which includes two stages: 1) deployment of attention and 2) target processing. In the 

first stage, people have to focus their attention on the targets. The �noticeability’ of the 

target, in other words, the layout of the graph will affect the efficiency and effectiveness 

of people's comprehension. In the second stage, people need to make sense of the target 

and relate it to their goal of information searching. At this stage, the efficiency of the task 

is affected by the understandability of the target. In this dissertation research, Bojko and 
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Stephenson's model was used to define metrics to investigate the cognitive process of 

people's comprehension of node-link diagrams. Specifically, the graph comprehension 

process has been divided into two sub-stages: target searching and target comprehension. 

Eye Tracking as a Research Method 
The objectives of this section are threefold. First, the basics of eye tracking 

technology are introduced. Second, previous visualization evaluation studies that used 

eye-tracking methods are reviewed, and the reason to use eye tracking in this study is 

presented. Third, the advantages of a range of different eye movement metrics are 

illustrated with reference to state-of-the-art visualization evaluation research. 

Eye tracking technology. Since the first use of eye tracking technology in 

reading research over 100 years ago (Rayner, Pollatsek, Ashby, & Clifton, 2012), many 

different methods have been used to track eye movements. Early historical methods are 

invasive, requiring electrodes to be mounted on the skin around the eye or wearing large 

contacts that covered the cornea. Most modern eye tracking systems are camera based, 

using video images of the eye to determine where a person is looking. This method relies 

on determining properties of the eye, such as iris-sclera boundary and corneal reflections 

(Duchowski, 2007). 

The remote tracking system implemented in these methods uses infrared light 

directed to the eye to create strong reflections in target eye features in order to easily 

track them. Then, camera-based trackers compute the gaze direction of the eye along with 

head position by determining the relationship between the corneal reflection and pupil. 

(See Figure 2 as an illustration of corneal reflection and bright pupil as seen in the 

infrared camera image). 
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Figure 2. Bright pupil and corneal reflection as seen in the infrared camera image 
(adapted from Poole & Ball, 2006). 

During analysis, eye movements are typically divided into fixations and saccades. 

A fixation is when the eye gaze pauses in a certain spot. A saccade is when it moves to 

another position. The resulting series of fixations and saccades is called a scan-path. 

Most information from the eye is made available during a fixation, but not during a 

saccade. In eye tracking, the fixation is the most important point of data. 

Why use eye tracking in visualization evaluation. When people read graphs, 

their eye movements are not random, but guided toward interesting and informative 

regions (Buswell, 1935; Yarbus, Haigh, & Rigss, 1967). Just and Carpenter (1976) 

formulated one of the strongest validations for the power of eye tracking—the Mind-Eye 

Hypothesis. They argued that what people are looking at indicates what they are thinking 

about. During the 1980s, the Eye-Mind Hypothesis was often questioned in light of 

covert attention—the attention to something that one is not looking at, which people often 

do. However, in experimental scenarios when participants are looking at a visual stimulus, 

the eye-mind hypothesis usually holds true: people usually pay attention to and think 

about what they are looking at (Goldberg & Tang, 2011). 

Using eye tracking can have several benefits for visualization evaluation research: 

first, other than traditional measurements such as response time and accuracy, sequences 
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of fixations (scan-path) provided by eye movement data can help inform the strategy used 

by the viewer (Goldberg & Helfman, 2011). Understanding the difference between 

several design alternatives is valuable for improving the visualization to maximize 

efficiency. Second, eye tracking is sensitive enough to detect whether the predictable 

influence came from certain design features. Comparing the differences in strategies used 

by viewers between trials with and without error can provide diagnostic information for 

designers. 

In sum, regarding the applicability of eye tracking method in this study, this study 

considered: 1) sometimes fixations do not necessarily translate into a conscious cognitive 

process; 2) fixations can be interpreted in different ways depending on the context and 

objective of the study; 3) during the processing of a visual scene, participants will move 

their eyes to relevant features in that scene; and 4) eye tracking data should not be used 

alone, but with self-report and interview data. 

Previous eye tracking research. Eye tracking has been successfully used in 

psychology and education for many years. However, very few studies are available in the 

graph evaluation field. In 2005, Huang and Eades conducted the first eye tracking study 

to investigate how people read relational node-link graphs by looking into the effect of 

different layouts (Huang & Eades, 2005). The analysis of eye tacking data led them to the 

discovery of the geo-metric tendency in path-finding tasks of node-link diagram. Huang's 

research started the promising use of eye tracking in graph evaluation; however, by 

looking across available studies, we found that eye tracking data were mostly used for 

qualitative analysis in the form of heat-map visualization and video of eye movement 

trajectory, but rarely for statistical analysis and quantitative findings. As an attempt to 
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fully understand the use of eye tracking data, Burch et al. calculated a transition matrix of 

the Areas of Interest (AOIs) to trace the attention distribution of the participants (Burch et 

al., 2011). However, the definition of AOI was somewhat arbitrary and may expose their 

study to questionable methodology. The only identified study that used eye-tracking data 

to extract quantitative conclusions is Körner's research on hierarchical graphs. In this 

work, the number of fixations in different phases is used to identify distinct stages of 

comprehension (Körner, 2011).  In line with Körner's research, the same idea of using 

eye tracking data to distinguish different comprehension stages has been used in this 

dissertation research. However, unlike the bottom-up model adopted by Körner, in this 

research, participants’ fixation data has been used to statistically support the two 

predefined sub-stages of graph comprehension. In order to support this top-down 

discovery path, other than the number of fixations, more metrics (e.g., time till first 

fixation on target, duration between target locating to task completion) have been 

included to provide quantitative evidence. 

Eye movement metrics. There are over ten different kinds of eye movements 

(e.g., saccades, smooth pursuit, mergence, vestibular, and physiological nystagmus, etc.). 

Duchowski (2007) suggests that, based on the functionality of the eye movement, only 

fixation, smooth pursuits and saccades need be modeled to gain insights into the overt 

localization of visual attention. When the eyes focus on a point it is called a fixation (the 

duration varies from 100~600 milliseconds depending on the filter algorithm adopted), 

and saccades are the movements between these fixations. The duration of a fixation is 

usually an indication of information processing. Table 3 gives a review of commonly 

used eye movement metrics. 
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Table 3. Commonly used eye movement metrics. 

Metrics Meaning / Interpretation Reference 

Number of 

fixations 

A higher number of fixations indicates 

less efficient search 

(Goldberg & Kotval, 

1999) 

Fixation duration A longer fixation duration indicates 

difficulty in extracting information, or it 

means that the object is more engaging in 

some way 

(Just & Carpenter, 

1976) 

Time to first 

fixation 

Faster time to first-fixation on an object or 

area means that it has better attention-

getting properties 

(Byrne, Anderson, 

Douglass, & Matessa, 

1999) 

Gaze  Gaze is usually the sum of all fixation 

durations within a prescribed area. Gaze is 

best used to compare attention distributed 

between targets. 

(Mello-Thoms, 

Nodine, & Kundel, 

2002) 

Number of 

saccades 

More saccades indicate more searching (Goldberg & Kotval, 

1999) 

Saccade amplitude Larger saccades3 indicates more 

meaningful cues, as attention is drawn 

from distance 

(Goldberg, Stimson, 

Lewenstein, Scott, & 

Wichansky, 2002) 

Regressive 

saccades 

Regressions indicate the presence of less 

meaningful cues. 

(Sibert, Gokturk, & 

Lavine, 2000) 

Scan-path duration A longer-lasting scan-path indicates less 

efficient scanning 

(Goldberg & Kotval, 

1999) 

Scan-path length A longer scan-path indicates less efficient 

searching 

(Goldberg et al., 2002) 

Scan-path direction Scan-path direction can determine a 

subject’s search strategy 

(Aaltonen, Hyrskykari, 

& Räihä, 1998) 

!
                                                
3 The amplitude of a saccade is the angular distance the eye travels during the movement. 
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CHAPTER 3 

PILOT STUDY 

 
This study served as a pilot for the following two formal, follow-up studies on 

graph layout, size and density effect on participants’ graph-comprehension using abstract 

graphs and with a real application respectively (see Chapters 4 & 5). The objectives of 

this pilot study were two-fold: first, set the attribute value (reasonable graph size, path 

length, etc.) for the formal experiments by investigating the layout (force-directed, 

circular, and random) and size effect on participants’ graph comprehension; and second, 

validate the applicability of the eye tracking method on graph evaluation. Accuracy, 

completion time, and eye movement of the participants were recorded as they conducted 

node-locating and path-finding tasks. 

Method 
Participants. 22 (14 males and 8 females) volunteers were recruited from peers 

in similar graduate programs at the researcher’s institution. They were graduate students 

from various fields, including applied psychology, computer science and engineering. All 

of the participants had normal vision and were regular computer users. 

Apparatus. An EyeTech VT2 eye tracking system running QuickCapture 

software was used to collect eye movement data at a sampling rate of 35 Hz. Stimuli 

were presented on a 17-inch diagonally measured 1280×1024 display. Pupil position and 

corneal reflection from both eyes were used to locate participants’ gaze positions on the 

screen. Heat-map and scan-path visualizations of participants’ eye movement were 
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produced using the open source software OGAMA (Open Gaze And Mouse Analyzer) 

for analysis purposes. Statistical analysis was conducted using Microsoft Excel and SPSS. 

Stimuli. Graphs were generated using the open source software Gephi. Circular, 

force-directed and random layout algorithms were used to produce graphs in sizes of 5 

nodes, 10 nodes, and 20 nodes (see Table 4). Nodes were labeled by numbers. Graphs 

with the same size illustrated the same underlying data structure. By using graphs that are 

equally unfamiliar and meaningless to users, this study focused on the abstract 

characteristics of graphs. 

Table 4. Stimuli used in pilot study. 

 Circular Force-directed Random 
5 

!
!

!
10 

!
! !
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 Circular Force-directed Random 
20 

!
!

!

 
Tasks. Participants were asked to conduct two generic tasks of graph 

comprehension: node-locating and path-finding. These tasks were chosen because of their 

frequency of user in real-world applications. 

1. Node-locating: find the nodes with the highest number of connections. 

2. Path-finding: find the shortest path between two highlighted nodes. 

Experimental Design. The study followed a repeated-measures design.  

The factors of interest include: 

•! Layout: force-directed, circular, and random; 

•! Graph size: graphs were created at three size levels to include 5, 10 and 20 

nodes; 

•! Tasks: node-locating (find the nodes with the highest number of connections) 

Path-finding (find the shortest path between two highlighted nodes). 

Each participant performed one trial of each layout type, each diagram size, and 

each task type, resulting in 18 trials in total.  

Procedure. Participants were first introduced to the basic characteristics of node-

link diagrams. Then, they were given time to ask questions and practice with two warm-

up tasks (one for the node-locating and one for the path-finding task), during which they 

were instructed to put emphasis on correctly answering because the focus of the study 
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was participants’ graph reading strategy. A 16-point calibration was carried out every 3 

trials to guarantee the reliability of the data. Participants were informed about the tasks 

before they saw the stimuli. They conducted one node-locating and one path-finding task 

on each stimuli. The same set stimuli including 18 node-link diagrams were presented to 

all participants. Time recording was started as soon as they saw the stimuli on the screen 

and ended when they gave answers verbally. Answers were recorded manually by the 

experiment coordinator. The whole experiment took about 30 minutes per participant. 

Results & Discussion 
Across all tasks, accuracy did not differ by gender, F(1, 394) = 2.76, p = .10. As 

illustrated in Figure 3, the path-finding task had a significantly higher accuracy compared 

to node-locating task. Since node-locating and path-finding are essentially two different 

kinds of cognitive tasks, the following analysis presents the findings in node-locating task 

and path-finding task separately. 
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Figure 3. Task accuracy (percentage of correct answers) by gender and task type. 

Error bars indicate standard errors4. 

Node-locating task. Table 5 summarizes the mean and standard deviation of node-

locating tasks. A two-way ANOVA was conducted to investigate the effect of graph size 

and layout on task accuracy and completion time. Results (see Table 6 for a summary of 

results of ANOVA analysis) show that both graph size and layout had a significant effect 

on task accuracy, F(2, 189) = 33.01, p < .05 and  F(2, 189) = 9.42, p < .05 respectively. 

The larger the graph was, the lower the task accuracy participants achieved. The 

interaction between graph layout and size also affect task accuracy significantly, F(4, 189) 

= 5.12, p < .05). Figure 4 illustrates that at size 20, circular layout graphs had 

significantly higher accuracy than graphs in the other two layouts. Further analysis of 

participants’ eye movement revealed that force-directed and random layouts had more 

back-and-forth checking on dense areas, whereas circular layouts provided participants 

with a visual “circle” to guide their eyes to compare the number of connections between 

                                                
4 Error bars used in graphs of this document indicate standard errors. 
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nodes. As a result, the participants’ attention distributed on the circular layout graph was 

more ‘organized’ and in a ‘circular’ form, whereas more scattered with force-directed and 

random layout (see Figure 5 and Figure 7).  

Table 5. Mean and standard deviation of task accuracy and time of node-locating tasks. 

Layout 

Accuracy  Time (s) 

Mean Std. Deviation Mean Std. Deviation 
Circular 5 .86 .35 8.09 3.64 

10 .64 .49 19.73 9.58 
20 .68 .48 27.82 11.81 
Total .73 .45 18.55 12.07 

Force-
directed 

5 .82 .39 8.50 5.77 
10 .64 .49 19.00 8.68 
20 .14 .35 34.50 18.68 
Total .53 .50 20.67 16.24 

Random 5 .86 .35 8.55 8.61 
10 .41 .50 20.23 12.04 
20 .00 .00 48.86 37.35 
Total .42 .50 25.88 28.51 

Total 5 .85 .36 8.38 6.25 
10 .56 .50 19.65 10.05 
20 .27 .45 37.06 26.21 
Total .56 .50 21.70 20.32 

 
Table 6. Summarized results of ANOVA analysis of node-locating tasks. Significance 
level α = .05. Effect size calculated using partial eta squared (η2). 

Source 

Dependent Variable 
Accuracy Time (s) 

df F Sig. η2 df F Sig. η2 
Layout 2 9.42 <.05 0.09 2 3.65 0.03 0.04 
Size 2 33.01 <.05 0.26 2 53.55 <.05 0.36 
Layout * Size 4 5.12 <.05 0.10 4 3.14 0.02 0.06 
Error 189    189    
Total 198    198    
Corrected Total 197       197       
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Figure 4. Graph size and layout effect on task accuracy of node-locating task. 

 

   

Size 5 Size 10 Size 20 
Figure 5. Scan-path visualizations of one participant’ eye movements for node-locating 
tasks with circular layout graphs at three sizes. Pink number indicates the viewing 
sequence; blue lines represented the link between two successive fixations. Note the guide 
effect (circular scan-path) of the layout. 
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Figure 6. Heat-map visualization of  participants’ aggregated eye movement of node-
locating task with three layouts. Warmer color indicates more fixations in that area. Note 
back and forth movements confirming eye movements with force-directed and random 
layout graphs. 

As illustrated in Figure 8, size, layout, and their interaction also had significant 

effect on completion time of node-locating task, F(2, 189) = 53.55, p < .05,F(2, 189) = 

3.65, p < .05, and F(4, 189) = 3.14, p < .05. The layout effect was significant at graph 

size of 20 nodes. Random layout that didn’t optimize the readability of the graphs at all 

had significantly longer time-on-task than graphs in force-directed and circular layout. 

 
Figure 7.Graph size and layout effect on completion time of node-locating task. 

Path-finding task. Table 7 summarizes the mean and standard deviation of path-

finding tasks’ accuracy and completion time. Two-way ANOVA (see Table 8 for the 

summary of the results) shows that size, layout and their interaction also had significant 

effect on accuracy of the path-finding tasks, F(2, 189) = 66.18, p < .05, F(2, 189) = 86.20, 

p < .05, F(4, 189) = 22.88, p < .05 respectively. Participants answered all path-finding 

tasks correctly with graphs in size 5. However, as graph size increased, the accuracy of 

random layout dropped dramatically and ended with no participants answering correctly 
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for graph size20 (see Figure 8).  Scan-path visualization of participants’ eye movement 

data of path-finding tasks with the random layout shows frequent over-checking that 

indicated confusion with graphs (see Figure 9). 

Table 7. Mean and standard deviation of task accuracy and completion time of path-
finding tasks. 

Layout 
Time (s) Accuracy 

Mean Std. Deviation Mean Std. Deviation 
Circular 5 8.50 3.64 1.00 0.00 

10 35.91 18.96 0.86 0.35 
20 25.95 18.85 0.95 0.21 
Total 23.45 19.12 0.94 0.24 

Force 5 7.82 8.30 1.00 0.00 
10 35.86 31.75 0.50 0.51 
20 16.95 6.32 0.95 0.21 
Total 20.21 22.34 0.82 0.39 

Random 5 8.36 3.80 1.00 0.00 
10 27.91 18.71 0.14 0.35 
20 74.77 36.94 0.00 0.00 
Total 37.02 36.70 0.38 0.49 

Total 5 8.23 5.59 1.00 0.00 
10 33.23 23.86 0.50 0.50 
20 39.23 34.98 0.64 0.48 
Total 26.89 27.98 0.71 0.45 

 

Table 8. Summarized results of ANOVA analysis on path-finding tasks. 

Source 

Dependent Variable 

Time (s) Accuracy 
df F Sig. η2 df F Sig. η2 

Layout 2 13.21 0.00 0.12 2 86.20 0.00 0.48 
Size 2 44.94 0.00 0.32 2 66.18 0.00 0.41 
Layout * Size 4 20.80 0.00 0.31 4 28.88 0.00 0.38 
Error 189    189    
Total 198    198    
Corrected Total 197       197       
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In regard to completion time of the path-finding task, Figure 10 revealed that the 

layout effect is significant at graph size 20. Graphs that have been optimized using either 

the force-directed or circular layout algorithm had a significantly shorter time-on-task 

than the graphs that were randomly produced. 

Circular layouts had significantly higher accuracy than force-directed layouts at 

size 10 but not 20. Interestingly, the accuracy increased for force-directed layouts as 

graph size increased from 10 to 20. As both end nodes (node 8 and 13, randomly selected) 

of this task were located in the upper-right corner of the graph, the shortest path between 

the end nodes was quite straightforward. The heat-map visualization revealed that 

participants’ fixations almost exclusively focused on the upper-right corner and did not 

cross the graph, resulting in a shorter response time and higher accuracy for the path-

finding task in this example. These same findings were confirmed during our interviews 

with the participants after the experiment: they found it is surprisingly easy to get the 

answer for this task because the two highlighted nodes are located close and somewhat 

isolated from other “messed-up” neighbors (see Figure 11). 

 

Figure 8. Graph size and layout effect on accuracy of path-finding task. 
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Size 5 Size 10 Size 20 

Figure 9. Scan-path visualization of participants’ eye movement on path-finding tasks 
with random layout at three sizes. Node the frequent back-and-forth checking behavior. 

 
Figure 10. Graph size and layout effect on completion time of path-finding task. 

 

   
Size 5 Size 10 Size 20 

0
10
20
30
40
50
60
70
80
90

5 10 20

C
om

pl
et
io
n%
Ti
m
e%
(s
)

Graph%Size

Force

Circular

Random



  28 

Figure 11. Heat-map visualization of participants’ eye movement of path-finding tasks 
with graphs at three sizes. Note the centralized fixations of size20 graph. 

Summary 
The size and layout effect were confirmed by this pilot study. Participants’ 

performance on tasks dropped as graph size increased. Compared to random layouts, 

participants performed better on those layouts that were optimized using some aesthetic 

criteria such as minimizing edge crossing and node overlapping. Specifically, for node-

locating tasks, circular layout graph had significant higher task accuracy and short task 

completion time; for path-finding tasks, circular layout and force-directed layout 

performed equally well. However, the high accuracy with circular layouts on node-

locating tasks was achieved when the graph was relatively sparse (density = .2). Although 

the graphs had identical density at same size level, density was not investigated as an 

independent variable and was not controlled strictly across three size levels. Thus, the 

same size and layout effect was investigated at different density levels (.2 and .4 

respectively) in the following chapter (see Chapter 4). 

The visualizations (heat-map & scan-path) of participants’ eye movement have 

been used as qualitative support for the task accuracy and completion time findings. They 

provide insights from a cognitive perspective to answer ‘how’ questions arising from 

behavior observation. More metrics were included in the eye tracking analysis in the 

following experiments (see Chapter 4 & 5) to deepen our understanding of people’s 

graph reading behavior. 
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CHAPTER 4 

EXPERIMENT WITH ABSTRACT GRAPHS 

 
This experiment was designed to investigate not only the layout effect but also the 

effect of graph density, as scalability is always a concern with node-link diagrams.  

Based on the experience of the pilot study, several adjustments were made to the 

experimental design: 

1.! The three layouts (force-directed, circular, and concentric) investigated in 

the experiment were chosen not only because they are the most commonly 

used layouts for visualizing relational structure, but also because they are 

the exact layout used by Deep Insight Anytime Anywhere (DIA2), the 

application used as a task context in next experiment (see Chapter 5). A 

comparison was conducted to understand the layout effect on both abstract 

graphs and a real application—visualizations with contextual information. 

The random layout as a control group was dropped because the existence 

of layout effect has already been shown in the pilot study. 

2.! Density was included as an independent variable. Two density levels (0.2 

and 0.4) were investigated in the experiment. 

3.! Spatial ability has been shown to relate to people's comprehension of 

graphs (Lohse, 1997). During the pilot study, it was noticed that 

participants who mentioned that they are good at video games (related to 

spatial ability) tended to have better task performance. Thus, a spatial 

reasoning test was added in the experiment to provide data to analyze the 
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relationship between people’s spatial reasoning ability and their 

performance on node-link graph reading.  

4.! In the pilot study, the same diagram was used for both node-locating task 

and path-finding task if they were in the same layout and size. In this 

experiment, different graphs were used for two types of tasks to avoid the 

learning effect. 

5.! Eye tracking data from the pilot showed patterns of different information-

processing stages. Instead of highlighting the end-nodes for path-finding 

tasks, which was the situation in pilot study, the numbers of the designated 

end-nodes were read to participants before they saw the stimuli in order to 

better investigate their graph reading strategies. 

6.! Participants were instructed that there was only one correct answer and 

that this experiment focused on the right answer rather than quick 

responses in an effort to minimize random answers. 

7.! Unlike the pilot study, think-aloud protocols were not encouraged to yield 

a more strictly controlled experiment. 

 

Methods 
Participants. 43 participants (36 males, 7 females) were recruited through ASU 

Polytechnic Psychology Subject Pool. They were students enrolled in PSY101 

(introductory psychology) on ASU Polytechnic campus. Participants had diverse majors, 

including Engineering, Business, and Professional Flight. Figure 12 shows the 
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distribution of participants’ majors. Participants’ age ranges from 18 to 35 with a mean of 

20.81 (SD = 4.02). They received one credit for PSY 101 course for their participation. 

 

 

Major!
!

GIT!
Graphic!Information!
Tech!

PF# Professional#Flight#

TEM#

Technological#

Entrepreneurship#and#

Management#

AMT#

Aeronautical#

Management#

Technology#

BM# Business#Management#

ATM# Air#Traffic#Management#

BC# Bio#Chemistry#

ME# Mechanical#Engineering#

BT# Business#Tech#

EET#

Electric#Engineering#

Technology#

SE# Software#Engineering#

AB# Agriculture#Business#

F# Finance#

N# Nursing#

Bu# Business#

MES#

Mechanical#Engineering#

Systems#

HR# Human#Resources#
 

 
Figure 12. Major distribution of experiment participants.  

Apparatus. An Eyetech VT2 model eye tracker, running QuickCapture software 

was used to capture participants’ eye movement at a sampling rate of approximate 35 Hz. 

Stimuli were displayed using a Dell 20.8 inch screen with 1600 × 1200 resolution. 

Another screen, which was a duplication of the stimuli-display screen, was used for 

experiment coordinator to control the experiment process. Eye tracking data was 

analyzed and visualized using the combination of open source software Ogama, Excel 

and SPSS. 

Graph Stimuli. A standard spatial reasoning test (adapted from jobtestprep.co.uk) 

that includes 5 tasks was used to test participants’ spatial reasoning ability. These 5 tasks 

were chosen to include the popular task types (see Table 9). Participants were asked to 
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choose one from the four shapes on the right side which was the ‘best match’ with the 

shape on the left side after spatial re-arrangement (e.g. combine, fold up, mirror, etc.) 

Table 9. Stimuli used for spatial reasoning test. 

Stimuli Category 
 

 
 

Organizing two 
dimensional 
shapes 

 

Perspectives 

 

 

Mirror images 

 

 

Spatial 
reasoning 
cubes 
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Stimuli Category 

 

Organizing two 
dimensional 
shapes 

 

Thirty-six node-link diagrams were produced using open source software Gephi. 

There were several considerations when creating these graphs: first, the Erdos-Renyi G (n, 

m) model was used as graph generator to control the size and density of the produced 

graphs. Graphs included 3 graph sizes (5, 10, and 20) and two densities (0.2, 0.4); second, 

each graph size and density level had 3 layouts, including force-directed, circular and 

concentric generated using ForceAtlas, Circular Layout and Concentric Layout 

algorithms respectively; third, graphs with the same size and density illustrated the same 

underlying data structure; fourth, graphs were drawn with black line on white background 

to ensure their readability. Also, unnecessary overlapping (other than inherited from 

density) was minimized using Noverlap layout algorithm.  

Table 10 shows the produced graphs for the node-locating task and Table 11 

shows those generated for the path-finding task.  
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Table 10. Stimuli produced using Gephi for node-locating tasks. 

Layout Size .2 density .4 density 
Force-
directed 

5 

 
 

10 

  
20 

  
Circular 5 
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Layout Size .2 density .4 density 
10 

  
20 

  
Concentric 5 

 
 

10 
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Layout Size .2 density .4 density 
20 
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Table 11. Stimuli produced using Gephi for path-finding tasks. 

Layout Size .2 density .4 density 
Force-
directed 

5 

  
10 

  
20 

  
Circular 5 
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Layout Size .2 density .4 density 
10 

  
20 

  
Concentric 5 

  
10 
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Layout Size .2 density .4 density 
20 

  
 

Tasks. There were two kinds of cognitive tasks: 1) the node-locating task (N task) 

asked participants to find the most connected node in the graph; 2) the path-finding (P 

task) asked participants to locate the shortest path between two designated nodes (note 

here that the shortest path is the one that goes through the least number of nodes). 

Procedure. Participants were first welcomed and the experimenter explained the 

purpose of the study and the basic mechanism of the eye tracker. They were given time to 

read the consent form and ask questions. After addressing concerns and questions about 

the study (if any), participants’ demographic information (age, gender, and major) was 

collected. Then a demo was presented to show how to conduct the spatial reasoning test, 

N task and P task. They had two practice trials with the spatial reasoning test and one 

practice trial each for the N task and P task. Participants were instructed to focus on 

finding the correct answer rather than quickly answering, and they were reminded that 

there was only one correct answer for spatial reasoning tests and N tasks. Then, 5 spatial 

reasoning test tasks were conducted. The task was completed as participants verbally 

gave their answers. Task completion time and participants’ answers were recorded for 

further analysis. Eye tracking data were not collected for the spatial reasoning test. 
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The main experiment included 36 counterbalanced trials in total (18 each for N 

task and P task), and was divided into 2 blocks (18 N tasks followed by 18 P tasks). 

Participants were reminded to constrain their head movement during tasks in order to get 

reliable eye tracking data. The number of the two designated nodes for P tasks was read 

to participants (instruction: please find the shortest path between node * and *) before 

they saw the stimuli. Time recording was started as soon as they saw the stimuli on the 

screen and ended when they gave answers verbally. Answer and completion time were 

recorded manually by the coordinator. Eye tracking data were recorded using Eyetech 

VT2 eye tracker. A 16-point calibration was conducted every 6 trails to ensure the quality 

of the eye tracking data. A short interview was conducted after participants completed the 

tasks. For each participant, the experiment took around 40 minutes on average to 

complete.  

Experimental design. The experiment was a repeated-measures design. The 

study presented 3 graph layouts (force-directed, circular, concentric) × 3 graph sizes (5, 

10, 20 nodes) × 2 densities (0.2, 0.4) × 2 task types (node-locating, path-finding) to each 

participant. Each participant performed one trial of each graph layout, size, density, and 

two task types, resulting in 36 trials in total. 

Results 
Spatial Reasoning Test.!42 (Male=35, Female=7) participants’ data were 

included in this analysis. One participant‘s data was excluded because of missing data. 

Figure 13 is the histogram of participants’ task accuracy. The spatial reasoning 

test proved to be a challenge for participants: no one answered all five tasks correctly. 
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Only one participant gave correct answers to four tasks. Most of the participants had 40% 

(two tasks) accuracy. 

 
Figure 13. Histogram of participants’ task accuracy of spatial reasoning test. 

  
No statistically significant difference was found between male and female on task 

accuracy (see Figure 14). 

  

Figure 14 . Task accuracy of female and male participants for spatial reasoning test. 
Note, other than noted specifically, error bars indicate Standard Error. Significance level 
α = .05. 

Figure 15 and Figure 16 show the task accuracy and completion time by task 

respectively. Interestingly, participants had the shortest completion time and lowest 
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accuracy on Task 3. By further analysis of their answers, it was noticed that most 

participants chose B (see Table 9. Stimuli used for spatial reasoning test Table 9), which 

is identical to the test shape as their answer. However, the intention of this task is to find 

the mirror shape, which is A. Most participants overlooked the original intention and 

misunderstood it as a straightforward test (find the identical shape), resulting in quick but 

wrong answers. 

  
Figure 15. Participants’ task accuracy on every spatial reasoning tasks. 

  
Figure 16. Participants’ task completion time of every spatial reasoning task. 

Node-locating and Path-finding task. Participant S01 and S36 had an average 

task completion time of 40.92 (s) and 39.56 (s) respectively, which is substantially higher 
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than the average time of all participants (M = 13.44, SD = 17.50). Their data were 

excluded for the analysis of task completion time. Two data points that were higher than 

100 seconds were considered outliers, and have been replaced with the average 

completion time for that task (e.g., a 113 seconds completion time has been replaced with 

the average time of task 1 which is 26.72). 

The 41 participants’ data (35 male, 6 female) used for analysis have an average 

task completion time (across tasks) of 11.98 (SD = 12.62) seconds.  

 As illustrated in 17, significant correlation was found between participants’ task 

accuracy and their performance on the spatial reasoning test (measured by the number of 

correct answers) for P tasks (Pearson’s r = .081, p = .028, α = .05), but not for N tasks (r 

= .063, p = .87). As demonstrated in Figure 18, the correlation between participants’ task 

completion time and spatial reasoning performance was significant for both N tasks (r = -

.134, p <.001) and P tasks (r = -.076, p = .039). Participants who performed better on the 

spatial reasoning test tended to have a higher task accuracy and shorter task completion 

time. 
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Figure 17. Participants’ task accuracy on N and P tasks as a function of spatial 
reasoning test score. 

 

Figure 18. Participants’ task completion time (s) on N and P task as a function of spatial 
reasoning test score. 

Since node-locating and path-finding tasks were essentially different cognitive 

tasks, the following analysis was divided into analysis on node-locating tasks and path-

finding tasks accordingly. 
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Task accuracy and completion time for the node-locating task. Figure 19 and 

Figure 20 provide an overview of accuracy and completion time of node-locating tasks. 

Table 12 summarizes the mean and standard deviation of task accuracy and completion 

time of node-locating tasks. 

Table 12. Mean and standard deviation of task accuracy and completion time of node-
locating tasks. 

Size 
 Accuracy Time (s) 

Task No. Mean SD Mean SD 
5.00 .20 Circular 15 1.00 0.00 1.88 0.93 

Concentric 6 0.88 0.33 4.37 4.48 
Force 11 0.98 0.16 2.39 1.41 
Total  0.95 0.22 2.88 2.94 

.40 Circular 18 0.95 0.22 2.78 1.42 
Concentric 17 1.00 0.00 3.00 1.96 
Force 14 0.93 0.26 4.15 3.50 
Total  0.96 0.20 3.31 2.51 

Total Circular  0.98 0.16 2.33 1.28 
Concentric  0.94 0.24 3.68 3.50 
Force  0.95 0.22 3.27 2.79 
Total  0.96 0.21 3.09 2.74 

10.00 .20 Circular 9 1.00 0.00 4.68 3.14 
Concentric 12 1.00 0.00 5.07 3.10 
Force 1 1.00 0.00 6.93 7.49 
Total  1.00 0.00 5.56 5.07 

.40 Circular 13 0.98 0.16 8.56 5.03 
Concentric 4 0.83 0.38 10.93 5.62 
Force 5 1.00 0.00 7.80 4.26 
Total  0.93 0.25 9.10 5.14 

Total Circular  0.99 0.11 6.62 4.60 
Concentric  0.91 0.28 8.00 5.39 
Force  1.00 0.00 7.37 6.07 
Total  0.97 0.18 7.33 5.39 

20.00 .20 Circular 7 0.76 0.43 18.02 10.35 
Concentric 10 0.98 0.16 14.24 10.78 
Force 2 0.80 0.40 14.71 8.03 
Total  0.85 0.36 15.66 9.86 

.40 Circular 16 0.46 0.50 24.30 11.37 
Concentric 3 0.76 0.43 20.68 14.67 
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Size 
 Accuracy Time (s) 

Task No. Mean SD Mean SD 
Force 8 0.56 0.50 21.28 13.50 
Total  0.59 0.49 22.08 13.24 

Total Circular  0.61 0.49 21.16 11.26 
Concentric  0.87 0.34 17.46 13.19 
Force  0.68 0.47 17.99 11.52 
Total  0.72 0.45 18.87 12.08 

Total .20 Circular  0.92 0.27 8.19 9.41 
Concentric  0.95 0.22 7.89 8.26 
Force  0.93 0.26 8.01 8.14 
Total  0.93 0.25 8.03 8.60 

.40 Circular  0.80 0.40 11.88 11.61 
Concentric  0.86 0.35 11.53 11.61 
Force  0.83 0.38 11.08 11.16 
Total  0.83 0.38 11.50 11.43 

Total Circular  0.86 0.35 10.04 10.71 
Concentric  0.91 0.29 9.71 10.22 
Force  0.88 0.33 9.54 9.87 
Total  0.88 0.32 9.76 10.26 
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Figure 19. Task accuracy of 18 node-locating tasks. 

 
Figure 20. Task completion time of 18 node-locating tasks. 

 
A three-way ANOVA was conducted to explore the size, density, layout, and their 

interaction effect on participants’ task performance measured by accuracy and 

completion time. Participants’ performance on spatial reasoning test was also included as 

a covariate variable. As illustrated in Table 13, participants’ score on the spatial 

reasoning test (designated as SR Score in the table) had significant effect on task 

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ta
sk
*A
cc
ur
ac
y

NodeBlocating%Task

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ta
sk
*C
om

pl
et
io
n*
TI
m
e*
(s
)

NodeBlocating%Task



  48 

completion time F(1, 719) = 25.95, p < .05) but not task accuracy. Graph size and density 

were found to have significant effect on both task completion time F(2, 719) = 303.64, p 

< .05, F(1, 719) = 41.01, p < .05,  and accuracy F(2, 719) = 58.23, p < .05, F(1, 719) = 

23.71, p < .05 . The graph size had a larger effect size measured as partial eta squared5 

(.46 and .14 for task completion time and accuracy respectively), compared to the small 

effect size of graph density (.05 and .03). The interaction between size and density was 

also significant for both task completion time F(2, 719) = 10.24, p < .05, and task 

accuracy  F(2, 719) = 13.41, p < .05. Layout as a main effect was not significant for both 

task accuracy and task completion time. However, the interaction between graph size and 

layout was found to be significant for both task completion time F(4, 719) = 3.62, p < .05, 

and task accuracy F(4, 719) = 8.98, p < .05.  

Table 13. Summary results of the ANOVA analysis on node-locating tasks. 

Source 
Dependent Variable 

Time (s) Accuracy 

 F Sig. η2 F Sig. η2 

SR Score 25.95 .000* 0.04 3.73 0.05 0.01 

Size 303.64 .000* 0.46 58.23 .000* 0.14 
Density 41.01 .000* 0.05 23.70 .000* 0.03 
Layout 0.29 0.75 0.00 1.79 0.17 0.01 
Size * 
Density 10.24 .000* 0.03 13.41 .000* 0.04 

Size * 
Layout 3.62 .006* 0.02 8.98 .000* 0.05 

Density * 
Layout 0.13 0.87 0.00 0.21 0.81 0.00 

                                                
5 The interpretation of partial eta squared was according to: .02~ .13 small effects; .13~ .26 medium effects; >.26 large 

effect. 
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Source 
Dependent Variable 

Time (s) Accuracy 
Size * 
Density * 
Layout 

1.62 0.17 0.01 2.33 0.06 0.01 

 

As illustrated in Figure 21, at size 10, the task accuracy of concentric layout 

graphs was lower than force-directed and circular layout. However, this was not the case 

for graphs of size 20: as graph size enlarged from 10 to 20, accuracy of circular and 

force-directed layout dropped dramatically, whereas concentric layout has a more 

consistent performance, which is demonstrated by a significantly higher accuracy. 

All three layouts had almost the same task completion time at different sizes with 

one exception: at size 20, participants took more time to complete the task with the 

graphs in circular layout than the other two layouts (see Figure 22). 
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Figure 21. Layout, size, and their interaction effects on task accuracy. 

 
Figure 22. Layout, size, and their interaction effects on task completion time. 

As illustrated in Figure 23and Figure 24, graph density’s effect was significant at 
size 10 and 20, but not at size 5. Graphs with lower density had higher task accuracy and 
shorter task completion time. 
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Figure 23. Graph size and density’s effect on task accuracy. 

 

Figure 24. Graph size and density’s effect on task completion time. 

Eye tracking data analysis of node-locating tasks. Thirty participants’ eye 

movement data were used for eye tracking analysis. Twelve participants’ data were 

removed because of quality concerns (e.g. unreliable calibration, miss-record of data, 

etc.). Other trials containing missing data points (marked as ‘-1’ in output spreadsheet of 

eye movement data) were also omitted before analysis. 
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AOI definition. Areas of Interest (AOIs) were defined for stimulus of node-

locating tasks to facilitate analysis. As the process of participants searching for the most 

connected node was of concern, the target nodes of every task were defined as AOI ‘T’. 

Padding area (r = 20 pixels) around the nodes was provided to tolerate inevitable error in 

gaze locating. 

Metrics. Three eye tracking metrics were used to analyze the node locating data in 

order to examine the participants’ graph reading behavior. The definition of these metrics 

was guided by the top-down cognitive model of graph comprehension as adopted by this 

research. The model divided the graph reading process into two sub-stages: target 

searching and target comprehension.  

1.! Complete fixation time at AOI T, indicating the time participants needed to 

‘read’ the target node. 

2.! Time till first fixation on AOI T, indicating the time participants needed to 

‘search’ the target. 

3.! The duration between first fixation on AOI T to task completion, indicating 

the ‘comparison’ and ‘consideration’ (disambiguation and comprehension 

process) before decision-making. 

Complete fixation time on AOI T. Three-way ANOVA was conducted to 

investigate size, density, layout, and their interaction’s effect on complete fixation time 

on AOI T (see Table 15 and   as a summary of the results). Graph size and density as 

main effect were found to be significant, F(2, 469) = 61.30, p < .05 and F(1, 469) = 8.57, 

p < .05. The interaction between size, density, and layout also had significant effect on 

participants’ fixation time on AOI T, F(4, 469) = 3.24, p = .01. 
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Table 14. Mean and standard deviation of three metrics. 

Size 

Fixation duration on 
T(ms) 

Duration from 
locating T to task 
completion (ms) 

Time till first fixation 
on T (ms) 

Mean SD Mean SD Mean SD 
5 .20 Circular 409.50 471.66 688.67 1017.43 1061.33 889.87 

Concentric 604.78 401.94 2116.33 1617.98 1291.07 672.78 
Force 853.44 503.76 1188.78 1137.51 959.37 588.60 
Total 630.77 489.46 1355.97 1407.62 1105.56 725.62 

.40 Circular 769.52 441.42 1480.30 1296.01 1038.22 779.83 
Concentric 1292.38 1011.74 1709.03 1748.03 773.72 488.33 
Force 1082.70 647.94 1948.70 2873.36 1310.56 998.82 
Total 1054.08 769.05 1712.59 2056.67 1034.40 799.83 

Total Circular 600.10 486.41 1107.76 1228.35 1049.10 825.00 
Concentric 960.86 847.16 1905.41 1683.83 1023.16 635.15 
Force 968.07 586.37 1568.74 2198.20 1134.96 831.13 
Total 849.00 680.77 1539.82 1775.76 1068.88 763.23 

10 .20 Circular 1360.07 806.58 3892.75 3126.35 1142.96 978.97 
Concentric 1633.26 949.97 3318.41 2718.29 1866.78 1539.34 
Force 2082.00 1581.73 5302.40 5226.36 997.60 1194.72 
Total 1701.65 1201.77 4207.84 3946.41 1321.58 1295.35 

.40 Circular 2797.18 1285.03 5906.43 5199.69 3272.14 2379.66 
Concentric 2187.92 1565.93 8011.04 9268.05 5604.35 5970.37 
Force 1492.67 1323.93 5167.41 3952.19 3054.81 2389.78 
Total 2166.78 1478.47 6335.64 6517.78 3948.31 4028.30 

Total Circular 2078.63 1286.75 4899.59 4370.69 2207.55 2098.65 
Concentric 1905.36 1307.09 5620.45 7113.38 3700.30 4677.63 
Force 1802.84 1482.41 5238.46 4626.21 1972.07 2112.98 
Total 1928.61 1359.94 5246.10 5446.45 2603.30 3233.63 

20 .20 Circular 3911.48 3484.66 17107.69 18489.99 5306.10 5555.59 
Concentric 3939.29 2968.63 12798.18 10328.46 2844.68 3882.87 
Force 2769.48 2346.09 9617.88 7390.30 6222.12 5193.64 
Total 3572.80 3008.76 13352.67 13393.36 4744.89 5071.64 

.40 Circular 4727.96 6979.04 25908.83 33433.72 11757.83 10903.87 
Concentric 3875.08 3737.64 16653.27 22762.44 9269.81 13182.65 
Force 5967.64 6373.96 17453.93 17824.73 10296.07 11872.10 
Total 4888.68 5840.27 19788.55 25109.78 10403.76 11931.87 

Total Circular 4281.21 5315.10 21093.11 26420.99 8227.64 8928.56 
Concentric 3908.37 3328.69 14654.33 17393.26 5938.26 10007.71 
Force 4459.08 5121.84 13757.68 14344.83 8374.40 9478.86 
Total 4214.29 4643.83 16490.16 20177.56 7503.59 9492.14 

Total .20 Circular 1991.89 2600.04 7674.67 13234.71 2609.28 3932.11 
Concentric 2082.04 2294.79 6159.60 7883.25 2011.13 2520.20 
Force 1887.07 1794.04 5263.61 6145.28 2577.85 3809.40 
Total 1986.98 2244.88 6360.62 9570.10 2398.57 3474.35 

.40 Circular 2690.75 4190.18 10470.38 21173.61 5086.58 7600.69 
Concentric 2408.85 2580.04 8528.81 15107.16 5051.43 8834.34 
Force 2885.72 4387.90 8302.99 12619.60 4953.11 8039.14 
Total 2662.46 3795.02 9086.11 16592.96 5029.59 8144.28 

Total Circular 2336.95 3483.87 9055.05 17607.58 3832.45 6137.04 
Concentric 2244.44 2438.67 7336.94 12049.44 3521.96 6636.39 
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Size 

Fixation duration on 
T(ms) 

Duration from 
locating T to task 
completion (ms) 

Time till first fixation 
on T (ms) 

Mean SD Mean SD Mean SD 
Force 2386.40 3379.06 6783.30 10011.42 3765.48 6383.26 
Total 2322.64 3128.30 7714.97 13578.39 3705.98 6378.57 

 

As illustrated in Figure 25, size has significant effect across all three layouts, F(2, 

469) = 61.30, p < .05. Complete fixation on AOI T increased significantly as graph size 

enlarged. Participants needed 2.29 seconds more on graph of size 20 than size 10, and 

3.37 seconds more than size 5 to read the target nodes. 

Table 15. Summarized ANOVA results. 

Source 

Dependent Variable 
Fixation time on T 

(ms) 
Time till first fixation on T 

(ms) 
Duration between locating T 

to task completion (ms) 
F sig η2 F sig η2 F sig η2 

Size 61.29 .000 0.21 61.53 .000 0.21 69.96 .000 0.23 
Density 8.57 .004 0.02 30.12 .000 0.06 8.47 .004 0.02 
Layout 0.08 0.93 0.00 0.14 0.87 0.00 1.73 0.18 0.01 
Size * Density 1.32 0.27 0.01 10.77 .000 0.04 3.14 .044 0.01 
Size * Layout 0.42 0.79 0.00 2.35 0.05 0.02 2.69 .031 0.02 
Density * 
Layout 0.48 0.62 0.00 0.39 0.68 0.00 0.12 0.89 0.00 

Size * Density 
* Layout 3.24 .012* 0.03 0.47 0.76 0.00 0.57 0.68 0.01 
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Figure 25. The effect of graph size and layout on fixation time on AOI T. 

Time till fist fixation on AOI T. As illustrated in Figure 26, graph size has a 

significant effect F(2, 469) = 61.53, p < .05 on time till first fixation on AOI T. 

Participants needed more time to locate the target nodes as graph size increased.  

 
Figure 26. The effect of graph size, layout and their interaction on time to first fixation at 
AOI T. 

The duration between first fixations on AOI T to task completion. As illustrated in 

Figure 27, graph size has significant effect on this duration time F(2, 467) = 69.97, p 
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< .05. Participants needed significantly more time to compare and confirm their decision 

as the graph size enlarged. At size 20, the circular layout needed significantly longer time 

to disambiguate than force-directed layout. 

 

Figure 27. The effect of graph size, layout and their interaction on the duration between 
first fixations on target to task completion. 

Error task analysis. The former analysis showed that larger graph size brought 

more difficulties for participants to complete the tasks correctly. Analysis on error trials 

would bring a deeper understanding on the cognitive process behind the wrong answers 

and hence the participants visual search strategies. The tasks with size 20 graphs had the 

lowest accuracy and longest completion time, and thus these 6 tasks (3 layouts × 2 

densities) were the focus of following analysis. Scan-path, heat-map, and transition graph 

visualizations of eye movement data were used to facilitate the analysis. 

N2 task, force-directed layout, size 20, density .2. The task was to find the most 

connected node in the graph (see Table 2). 80 % (24) of participants gave the correct 

answer of node No. 11, 6 participants gave the wrong answer of node No. 12. 
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Heat-map visualization (Figure 28. Heat-map visualizations of participant eye 

movement of N2 task. Note that the correct answer has been totally overlooked by 

participants who gave the wrong answer.) of participants’ eye movement data showed 

participants who gave the wrong answers have totally ignored the node No. 11.  

  
Heat-map visualization of participants� who 
answered No.11 node. 

Heat-map visualization of participants� who 
answered No.12 node. 

Figure 28. Heat-map visualizations of participant eye movement of N2 task. Note that the 
correct answer has been totally overlooked by participants who gave the wrong answer. 

 

  
Scan-path visualization of participant S12 with N2 
task. 

Scan-path visualization of participant S23 with N2 
task. 

Figure 28. Scan-path visualization of participant S12 and S23. 

N7 task, circular layout, size 20, density .2. This task (N7) was to find the most 

connected node (see table 2). 80% participants gave the correct answer, which was No. 5 
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node. Wrong answers given by other 6 participants included node 12 (4 answers), 13(1) 

and 7(1). 

Visualization of eye tracking data revealed that S05 (Figure 29) had an interesting 

scan-path: participant S05 followed the circle in a clock-wise direction and compared 

node 5 with 12 several times before making his decision (wrong answer node 12).  

Participant S12 had a different scan-path pattern compared to S05 (Figure 29): 

other than follow the visual lead of the circle, participant S12’s eye movements jumped 

between dense areas to locate the answer. 

  
Scan-path of S05 had circular pattern. He compared 
between 5 and 12 several times. 

Scan-path of S12 showed jumps between dense 
areas. 

Figure 29. Scan-path visualization of participant S05 and S12 on N7 task. 

N10 task, concentric layout, size 20, density .2. Most participants (29 out of 30) 

gave the right answer (node 4). Only one participant gave the wrong answer of node 16. 

Analysis of scan-path visualization showed participants had a very efficient search 

process: they quickly went through several dense areas and then made their decision 

without too much back and forth comparison (see Figure 30). 
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Figure 30. Scan-path visualization of S03 on N10 task. 

N8 task, force-directed layout, size 20, density .4. As graph density increased, 

participants had more difficulties: compared to density .2, a graph with same size and 

layout at density .4 had more diverse wrong answers (8 different answers). From the eye 

tracking data, participants did look at the right answer, even compared it with others (see 

Figure 31). The pattern suggests that the density and overlapping required heavy 

cognitive loads making it perceptually difficult to discriminate. 

  
Scan-path visualization of S17. Attention has been 
paid to the right answer. 

Scan-path visualization of S25. Comparison has 
been conducted between several candidate nodes. 

Figure 31. Scan-path visualization of S17 and S25 on N8 task. 

N16 task, circular layout, size 20, density .4. Answers were distributed relatively 

evenly on node 7 (13 participants, correct answer) and node 20 (11 participants, wrong 
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answers). These two nodes have nearly equivalent connection numbers (12 and 11 

respectively). The highly dense edge crossings made it difficult for participants to 

visually count the connections. Further eye tracking data analysis revealed the common 

visual-search pattern for this task: participants always followed the circle ‘lead’ to search 

for the ‘dense’ nodes, the final answer was decided after a series of comparisons (see 

Figure 32). Moreover, the transitions maps using selected AOI (node 7, 20, 10, 17, 18, 

covered all answers given by participants) illustrated the different search patterns 

between participants who answered correctly and incorrectly (see Figure 33): The 

participants who gave the right answer seemed to have a more thorough comparison 

before making their decision (relatively equal attention had paid to both node 20 and 7, 

means they have compared these two nodes carefully.) 
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Figure 32. Scan-path visualization of participant S21. Note the formed circular pattern of 
the scan-path and the comparisons between several candidates (highlighted nodes). 

  
Transitions map of participants who answered node 
7. Note there were comparisons between several 
competitors (transitions came and from node 7 to 
other nodes). The main transitions went toward 
node 20, implying the comparison and the final 
decision of 7. 

Transitions map of participants who answered 20. 
Note the main transitions went towards node 20 
instead of node 7. 

Figure 33. Transitions maps of participants who answered node 7(correct) and node 20 
(incorrect). 

N16 task, concentric layout, size 20, density .4. Heat-map comparisons between 

right and wrong answer groups showed the attention focus of these two groups: right 
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answers focused on the comparison between limited candidates, whereas wrong answer 

had a more scattered attention pattern (see Figure 34). 

  
Heat-map visualization of aggregated right answers. Heat-map visualization of aggregated wrong 

answers. Note the more scattered focus points than 
the right answer group. 

Figure 34. Heat-map visualization of the right answer group and wrong answer group. 

Summary of node-locating tasks. Layout does not have a significant effect on 

accuracy and task completion time. The interaction between layout and graph size is 

significant on both accuracy and task completion time: at size 10, Circular and Force-

directed layout has higher accuracy; at size 20, concentric layout has the highest accuracy 

and shortest time-on-task.  

Density has a significant effect on task accuracy and task completion time. Less 

dense graphs had higher accuracy and shorter time-on-task. Larger and denser graphs 

resulted in more and diverse wrong answers. More quick answers were observed when 

participants conducting tasks with larger and denser graphs. The visualizations suggest 

that dense overlapping caused perceptual difficulty on counting connections. Participants 
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made the tradeoff between accuracy and efficiency: for example, one might choose the 

‘looks most connected’ node instead of really counting its connections and comparing it 

with other competitors. 

Analysis of eye tracking data supported the findings of statistical analysis on task 

accuracy and completion time. The force-directed layout had the significant shorter 

disambiguation time than the other two layouts. Participants tended to make quicker 

decisions, even though the target had been totally ignored, implying force-directed layout 

gave participants confidence in their answers. 

At size 20, the circular layout had a longer first-fixation-on-target time and longer 

disambiguation time. Eye tracking analysis showed that circular layout had a visual ‘lead’ 

effect: participants always followed the circle when they searched for the target. This 

made the target less ‘ignorable’ to participants, compared to force-directed layout. 

However, even though the target was noticed by participants and compared with other 

competitors, the right answer was not guaranteed. The dense overlapping made it hard to 

find the right answer even under careful consideration. 

Concentric layout was found to be more ‘insensitive’ to size effect: at size 20, it 

had the shortest first fixation at target time and relatively shorter disambiguation time. 

Through eye tracking data analysis, it was found that concentric layout made the dense 

area stand out more. Participants always identified several dense areas quickly and made 

an efficient comparison before making a decision. 

Task accuracy and completion time of path-finding task. Table 16 shows the 

mean and standard deviation of task accuracy and completion time of path-finding tasks 

under different conditions. A three-way ANOVA was conducted to investigate the effects 
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of graph size, density, layout and their interaction on task accuracy and completion time. 

Participants’ performance on spatial reasoning test was also included in the analysis as a 

covariate variable, and was found to have significant effect on task accuracy F(2, 729) = 

7.27, p < .05, and task completion time F(2, 729) = 10.50, p < .05.The results of ANOVA 

analysis (see Table 17) revealed the significant effect of all investigated factors and their 

interactions on task accuracy and completion time except the three-way interaction 

between size, density, and layout.  

For path-finding tasks, both layout and size had significant effect on task accuracy 

F(2, 729) = 4.22, p < .05 and F(2, 729) = 71.29,  p < ,05 respectively. Force-directed 

layout had higher task accuracy than circular and concentric layout at size 10 and 20 (see 

Figure 35). Both layout and size had significant effects on task completion time F(2, 729) 

= 30.80, p < .05 and F(2, 729) = 379.27,  p < .05 respectively. The effect of layout by 

size interaction was also found to be significant for task accuracy F(4, 729) = 12.87, p 

< .05 and completion time F(4, 729) = 5.81, p < .05. At size 20, circular layout and 

concentric layout had the longest and shortest time-on-task respectively (see Figure 36). 

Table 16. Mean and standard deviation of path-finding tasks’ accuracy and completion 
time. 

Layout 

Task No. Accuracy Time (s) 
 

Mean SD Mean SD 
Circular 5 .20 15 1.00 0.00 2.76 0.97 

.40 3 1.00 0.00 9.59 5.67 
Total  1.00 0.00 6.17 5.31 

10 .20 8 1.00 0.00 7.29 2.47 
.40 4 0.59 0.50 20.67 10.14 
Total  0.72 0.45 16.21 10.51 

20 .20 10 0.63 0.49 26.12 10.04 
.40 5 0.54 0.50 28.37 11.59 
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Layout 

Task No. Accuracy Time (s) 
 

Mean SD Mean SD 
Total  0.59 0.50 27.25 10.83 

Total .20  0.88 0.33 12.06 11.77 
.40  0.68 0.47 19.82 11.71 
Total  0.76 0.43 16.49 12.33 

Concentric 5 .40 16 1.00 0.00 3.56 1.60 
Total  1.00 0.00 3.56 1.60 

10 .20 9 1.00 0.00 9.51 4.01 
Total  1.00 0.00 9.51 4.01 

20 .20 17 0.20 0.40 20.76 9.16 
.40 2 0.93 0.26 16.90 6.50 
Total  0.56 0.50 18.83 8.13 

Total .20  0.60 0.49 15.13 9.02 
.40  0.98 0.15 8.01 7.44 
Total  0.82 0.38 10.86 8.81 

Force 5 .20 11 1.00 0.00 2.71 1.45 
.40 1 1.00 0.00 5.22 3.96 
Total  1.00 0.00 3.96 3.22 

10 .20 18 1.00 0.00 5.15 1.96 
.40 13 0.76 0.43 12.12 6.98 
Total  0.88 0.33 8.63 6.19 

20 .20 7 0.73 0.45 20.41 11.09 
.40 6 0.71 0.46 23.38 9.77 
Total  0.72 0.45 21.90 10.49 

Total .20  0.91 0.29 9.42 10.20 
.40  0.82 0.38 13.57 10.44 
Total  0.87 0.34 11.50 10.51 

Total 5 .20  1.00 0.00 2.73 1.23 
.40  1.00 0.00 5.48 4.37 
Total  1.00 0.00 4.57 3.86 

10 .20  1.00 0.00 7.32 3.42 
.40  0.64 0.48 17.82 10.03 
Total  0.82 0.38 12.57 9.14 

20 .20  0.52 0.50 22.43 10.38 
.40  0.72 0.45 22.89 10.56 
Total  0.62 0.49 22.66 10.45 

Total .20  0.82 0.38 11.84 10.75 
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Layout 

Task No. Accuracy Time (s) 
 

Mean SD Mean SD 
.40  0.81 0.39 14.40 11.31 
Total  0.81 0.39 13.26 11.13 

 

Table 17. Summary results of three-way ANOVA analysis of path-finding tasks. 

Source 
Dependent Variable 

Time (s) Accuracy 
F Sig. η2 F Sig. η2 

SRscore 10.49 .001 0.01 7.27 .007 0.01 
Size 379.27 .000 0.51 71.29 .000 0.17 
Density 44.16 .000 0.06 4.50 .034 0.01 
Layout 30.80 .000 0.08 4.23 .015 0.01 

Size * Density 13.53 .000 0.04 13.67 .000 0.04 

Size * Layout 5.81 .000 0.03 12.87 .000 0.07 

Density * Layout 9.23 .000 0.03 43.94 .000 0.11 

Size * Density * 
Layout 2.86 0.06 0.01 0.81 0.45 0.00 
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Figure 35. Layout and size effect on task accuracy. 

 

 
Figure 36. Layout and size effect on task completion time. 

Interestingly, the three-way ANOVA analysis revealed that the concentric layout 

had higher task accuracy at density .4 than .2.  Figure 38 shows that density had a 

significant effect on task completion time F(2, 732) = 44.4.50, p < .05. The significant 

effect of graph density is illustrated in Figure 38 (F(2, 732) = 44.16, p < .05). 

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 20

Ta
sk
%A
cc
ur
ac
y

Graph%Size

Circular

Force!directed

Concentric

0

5

10

15

20

25

30

35

5 10 20

Ta
sk
%C
om
pl
et
io
n%
Ti
m
e

Graph%Size

Circular

Force!directed

Concentric



  68 

 
Figure 37. Density effect on task accuracy. 

 
Figure 38. Density effect on task completion time. 

Eye tracking data analysis of path-locating tasks. As in the node-locating task, 

30 participants’ eye movement data were used for eye tracking analysis. The ‘-1’ value in 

the output spreadsheet of eye tracking data (means eye tracker either didn’t record this 

measure or no fixation was recorded on this particular AOI.) were omitted from the 

analysis to make the result more interpretable. 
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AOI definition. The two designated end-nodes were defined as AOI T1 and T2 

respectively.  

Metrics. Note that the metric defined using T1 and T2 refer to their absolute 

values. For example, participants might look at T2 before T1, the value used for the time 

participants needed to find the second target after locating the first target was calculated 

as T1 minus T2 (instead of T2 minus T1). What is at issue in this study is the cognitive 

processing stage instead of the watching sequence. 

The analysis of path-finding tasks’ eye tracking data included the following 

metrics: 

1. Time till first fixation on the AOI T1 and T2: Time to locate the first/second 

target (searching process) 

2. The duration between first fixation on AOI T1 to first fixation on AOI T2: the 

time participants needed to locate the second target after the first target was located. 

3. The duration between first fixation on T2 (or T1) to complete the task: The time 

after two targets are located to task completion (comprehension and disambiguation 

process): This is the time participants needed to find the shortest path after they have 

located the two designated end-nodes. The value of this metric is not necessarily positive, 

as the negative value might imply that the participant completed the task even though the 

eye tracking data showed they did not look at the target nodes. There are two 

explanations for this negative value: first, participants actually ‘looked’ at these nodes 

and the eye tracker didn’t catch this looking; second, participants found the path without 

looking at the end nodes.  This is evidence of covert attention which needs further study. 
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Here, negative values were omitted from the analysis to make the result more 

interpretable.) 

Time till first fixation on first target (used T1 if the value of T2 minus T1 is 

positive, use T2 if negative). One outlier (33135 ms, > 3 SD) was omitted from dataset 

before analysis. Table 18summarizes the mean and standard deviation of four eye 

tracking metrics under different conditions. Three-way ANOVA (see the summarized 

results in Table 19) showed that graph size had significant effect on the time participants 

needed to locate the first target F(2, 397) = 16.87, p < .05. At size 20, the force-directed 

layout was significantly faster (by .78 s) than concentric layout to locate the first target 

(see Figure 39). 

Table 18. Mean (ms) and standard deviation of the eye movement metrics of path-finding 
tasks at different conditions. 

Size 

Time till first 
fixation on AOI T1 

(ms) 

Time till first 
fixation on AOI T2 

(ms) DeltaT1 (ms) DeltaT2 (ms) 
Mean SD Mean SD Mean SD Mean SD 

5 .20 Circular 582.82 314.95 1127.47 414.95 544.65 287.50 1651.00 1140.53 
Force 918.06 394.19 1715.38 456.50 797.31 495.87 819.25 825.96 
Total 745.36 389.08 1412.52 522.30 667.15 415.97 1247.73 1071.63 

.40 Circular 875.15 572.42 1787.22 1994.59 912.07 1494.81 7564.22 6456.27 
Concent
ric 

740.52 586.29 1582.55 1008.92 842.02 783.95 2072.84 1454.05 

Force 1838.83 1199.00 3405.94 1890.58 1567.11 1164.91 1714.22 1667.85 
Total 1003.49 851.38 2013.42 1693.66 1009.92 1141.56 3666.24 4538.37 

Total Circular 762.20 505.73 1532.32 1604.74 770.11 1189.36 5279.57 5845.58 
Concent
ric 

740.52 586.29 1582.55 1008.92 842.02 783.95 2072.84 1454.05 

Force 1405.53 1014.32 2610.38 1633.90 1204.85 981.30 1293.06 1395.96 
Total 933.67 761.88 1850.88 1493.37 917.20 1008.41 3012.05 4055.48 

10 .20 Circular 1201.26 713.88 2323.63 1246.96 1122.37 1102.83 5866.19 3746.09 
Concent
ric 

1381.38 913.65 3094.33 1907.93 1712.96 1310.91 8118.46 5077.79 

Force 1080.74 802.67 2940.47 971.62 1859.74 867.79 2662.16 2203.11 
Total 1230.30 807.95 2755.30 1472.38 1525.00 1155.05 5768.73 4441.88 

.40 Circular 1579.70 934.34 4124.88 3313.98 2545.18 2758.71 17434.08 10612.45 
Force 1361.91 870.03 3004.17 1893.00 1642.26 1810.44 10547.74 7255.05 
Total 1511.08 914.21 3771.78 2973.87 2260.70 2521.75 15264.41 10154.10 

Total Circular 1447.00 877.63 3493.27 2891.58 2046.27 2406.21 13377.81 10405.95 
Concent
ric 

1381.38 913.65 3094.33 1907.93 1712.96 1310.91 8118.46 5077.79 

Force 1234.71 842.07 2975.36 1529.15 1740.64 1449.61 6980.45 6793.73 
Total 1373.64 872.25 3274.20 2407.84 1900.57 2002.22 10616.17 9195.49 

20 .20 Circular 1908.44 2074.20 5909.04 5739.38 4000.59 5566.01 22865.63 14779.65 
Concent 2847.74 2107.54 6916.85 3806.02 4069.11 2833.15 14630.19 10337.36 
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Size 

Time till first 
fixation on AOI T1 

(ms) 

Time till first 
fixation on AOI T2 

(ms) DeltaT1 (ms) DeltaT2 (ms) 
Mean SD Mean SD Mean SD Mean SD 

ric 
Force 2330.71 1241.00 5458.50 2607.61 3127.79 2118.48 19323.92 18625.80 
Total 2363.51 1888.84 6119.27 4291.83 3755.76 3832.78 18925.14 15014.31 

.40 Circular 3126.66 6177.86 6977.62 8415.57 3850.97 3563.89 33361.90 32810.48 
Concent
ric 

2448.85 2206.07 5576.70 2998.86 3127.85 1986.71 17496.96 31913.01 

Force 1429.37 1268.58 5107.89 4683.61 3678.52 4251.50 26402.67 29812.56 
Total 2354.04 3947.31 5913.67 5885.70 3559.64 3378.72 25937.17 31864.55 

Total Circular 2539.30 4673.44 6462.41 7205.34 3923.11 4595.34 28301.20 26063.76 
Concent
ric 

2648.30 2146.38 6246.78 3460.55 3598.48 2469.74 16063.57 23539.92 

Force 1853.53 1323.53 5272.88 3816.53 3419.35 3397.16 23071.49 25189.03 
Total 2358.63 3114.86 6013.28 5160.32 3654.65 3595.82 22540.04 25322.15 

T
ot
al 

.20 Circular 1322.11 1442.54 3400.69 4120.82 2078.58 3785.06 11321.49 13123.93 
Concent
ric 

2157.69 1800.03 5118.02 3594.47 2960.33 2524.90 11565.84 8843.28 

Force 1545.08 1133.73 3632.53 2365.11 2087.44 1732.34 8940.05 14662.02 
Total 1630.23 1497.36 3960.15 3540.29 2329.92 2909.66 10614.07 12623.26 

.40 Circular 1823.46 3375.60 4309.91 5349.24 2486.44 2940.26 19277.67 21015.23 
Concent
ric 

1390.17 1648.15 3101.45 2789.08 1711.28 1758.56 7938.35 20891.23 

Force 1514.94 1130.04 3945.82 3394.56 2430.88 3078.33 14504.79 21662.54 
Total 1612.27 2463.69 3858.65 4238.72 2246.38 2706.90 14666.87 21599.34 

Total Circular 1622.36 2772.43 3945.19 4901.50 2322.84 3300.89 16086.21 18635.31 
Concent
ric 

1711.02 1747.81 3944.44 3291.91 2233.43 2192.28 9454.76 16971.48 

Force 1528.94 1127.36 3800.28 2954.12 2271.33 2539.66 11919.60 18874.61 
Total 1619.90 2105.81 3901.77 3952.97 2281.88 2791.79 12944.90 18421.59 

 

Table 19. Summary of three-way ANOVA analysis results of path-finding tasks. 

Dependent 
Variable Source F Sig. η2 

Time till first 
fixation on T1 

Size 16.87 0.00 0.08 
Density 0.89 0.35 0.00 
Layout 0.06 0.94 0.00 
Size * Density 0.27 0.76 0.00 
Size * Layout 1.56 0.18 0.02 
Density * Layout 0.96 0.38 0.01 
Size * Density * 
Layout 2.97 0.05 0.01 

Time till first 
fixation on T2 

Size 46.17 0.00 0.18 
Density 0.92 0.34 0.00 
Layout 0.03 0.97 0.00 
Size * Density 0.33 0.72 0.00 
Size * Layout 1.25 0.29 0.01 
Density * Layout 1.40 0.25 0.01 
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Dependent 
Variable Source F Sig. η2 

Size * Density * 
Layout 0.95 0.39 0.01 

DeltaT1 

Size 38.25 .000 0.16 
Density 0.34 0.56 0.00 
Layout 0.05 0.95 0.00 
Size * Density 0.19 0.83 0.00 
Size * Layout 0.46 0.77 0.00 
Density * Layout 0.94 0.39 0.01 
Size * Density * 
Layout 1.57 0.21 0.01 

DeltaT2 

Size 51.71 0.00 0.20 
Density 10.57 0.00 0.03 
Layout 4.66 0.01 0.02 
Size * Density 0.94 0.39 0.01 
Size * Layout 1.86 0.12 0.02 
Density * Layout 1.18 0.31 0.01 
Size * Density * 
Layout 0.02 0.99 0.00 

 

 
Figure 39. Time till first fixation on first target AOI. 

Time till first fixation on second target (used T2 if the value of T2 minus T1 is 

positive, use T1 if negative).  As illustrated in Figure 40, force-directed layout was 
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significantly faster than both circular and concentric layout (by 2.06 s and .68 s) to locate 

the second target. At size 10, force-directed layout was faster by 1.41 s compared to 

circular layout. Participants almost always used the same time to locate the second target 

of graphs at size 20. 

 
Figure 40. Time till first fixation at second target. 

The duration between first fixations on AOI T1 to first fixation on AOI T2. Three-

way ANOVA showed size had significant effect on the time participants needed to search 

for the second target after locating the first target, F(2, 400) = 38.25, p < .05. As 

illustrated in Figure 41, at size 5, force-directed layout was significantly faster than 

concentric and circular layout (by .72 s and 1.29 s respectively). 
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Figure 41. The duration between first fixations on AOI T1 to first fixation on AOI T2. 

The duration between first fixations on T2 (or T1) to complete the task. Four 

outliers (> 3 SD, 174842 from circular layout at size 5, 10 and 20, 173658 from 

concentric layout at size 20) were moved from dataset before analysis. As illustrated in 

Figure 42, both size and layout had significant effects, F(2, 396) = 51.71, p < .05 and F(2, 

396) = 4.66, p < .05. Circular layout needed significantly longer time than force-directed 

and concentric layout at all three size levels. Force-directed layout was most sensitive to 

size effect. Like the case in node-locating tasks, concentric layout seems to be more 

rersistent to the size effect: there was no significant size effect on concentric layout. 
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Figure 42. The duration between first fixations on T2 (or T1) to task completion. 

Error tasks analysis. Like the case in node-located tasks, tasks with graphs size at 

20 presented most difficulties to participants (lower accuracy and longer time-on-task). 

The following analysis was focused on the six path-finding tasks with graph at size 20. 

P7 Task, force-directed layout, size 20, density .2. The P7 task asked the 

participants to find the shortest path between node 6 and 15. Figure 43 showed the 5 

different paths considered by participants. The widths of the path were proportional to the 

number of participants who provided that answer. The closer the path was to the 

geometric path (straight line) of the two end-nodes, the more participants who chose that 

path. Further analysis of the eye tracking data revealed that participants’ scan-path clearly 

had a three-stage processing pattern: 

1.! Exploring, fixations dispersed to almost all nodes. 

2.! Comparing, back-and-forth scan-path from one end-node to compare 

several possible paths. 
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3.! Confirming, several back-and-forth scan-path on the selected path to 

confirm the verbally given answer. 

 
Figure 43. The visualization of participants’ answers on P7 task. 

Figure 44 shows two heat-maps of participants’ eye movements. The heat-map on 

the right is evidence of ‘careless’ answer: participants did not notice that the path 

between node 2 and 12 was a false connection. Transitions map visualizations also 

supported this discovery (see Figure 45). The eye movement of participants who gave the 

right answers demonstrated a clear comparison stage before decision-making.  
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Heat-map visualization of participants� eye 
movement who answered path 6-12-5-15 (right). 
Note that participants paid much attention to figure 
out whether node 5 and 12 were directly connected 
or connected through node 2. 

Heat-map visualization of participants� eye 
movement who answered path 6-12-2-15 (wrong). 
Note that no comparison between node 2 and 5: 
participants didn�t notice that this is a false 
connection. 

Figure 44. Heat-map visualization of participants’ eye movement of P7 task. 

  
Transitions map of the eye movement of participants 
who answered path 6-12-5-15. Note that most 
transitions happened from node 12 to 2 (7%) and 2 
to 5 (7%) to check the connectedness.  

Transitions map of the eye movement of participants 
who answered path 6-12-2-15. Note that most 
transitions happened from node 12 to 2 (8%) but not 
very much from 2 to 5 (3%). 

Figure 45. Transitions map visualizations of participants’ eye movement of P7 task. 

P6 Task, force-directed layout, size 20, density .4. The P6 task was to find the 

shortest path between node 19 and 20. As illustrated in Figure 46, as density increased, 

the answers became more diverse—evidence of density effect. Like task P7, the answers 

presented a geometric path tendency. Analysis of participants’ scan-paths showed that 
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wrong answers had a relatively ‘intensive’ attention map; they tend to include the options 

they were confronted with first and do not go further to discover more possibilities (see 

Figure 47). 

 
Figure 46. The visualization of participants’ answers on P6 task. 

  
Transitions map visualization of participants� 
eye movement who gave the right answer.  

Transitions map visualization of participants� 
eye movement who gave the wrong answer. Note 
that comparing the transitions map on the left, not 
too much attention transitions happened on the 
lower part the graph.  

Figure 47. Transitions map visualizations of participants’ eye movement of P6 task. 

P10 Task, circular layout, size 20, density .2. The task was to find the shortest 

path between node 10 and 11. As illustrated in Figure 48, the answers covered almost 
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every possible path (went through 4 or 5 nodes) that connected node 10 and 11. Wrong 

answers were either counting that node 6 and 3 were connected or including one more 

node on the path than the shortest one (4 nodes). Two kinds of search strategies have 

been presented by the scan-path visualization of participants’ eye movements: 1) first 

participants searched along the circle to get a general impression of the graph 

(exploration) then focused on the comparisons of several possible routes; 2) several 

interested areas have been compared (see Figure 49). 

 
Figure 48. The visualization of participants’ answers to P10 task. 
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The scan-path visualization of participant S30�s 
eye movement on P10 task. First searched along the 
circle outliner to get a general impression. 

The scan-path visualization of participant S03�s 
eye movement on P10 task. Jumping between 
several interested areas to do the comparisons. 

Figure 49. Scan-path visualizations of participants’ eye movement of P10 task. 

P5 Task, circular layout, size 20, density .4. P5 task asked participants to find the 

shortest path between node 9 and 20. Like the case for P10 task, answers covered almost 

all possible routes between node 9 and 20 (see Figure 50). Wrong answers were either 

caused by dense edge crossing and overlapping, or participant’s got lost during the task 

(ended up on the wrong nodes). 
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Figure 50. The visualization of participants’ answers to P5 task. 

P17 Task, concentric layout, size 20, density .2. P17 task was to find the shortest 

path between node 4 and 15. As illustrated in Figure 51, most participants (20) gave the 

wrong answer 4-16-15 because of the overlapping caused misreading. Participants who 

gave the wrong answer all had a sparse attention distribution pattern (see Figure 52).  
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Figure 51. The visualization of the participants’ answer to P17 task. 

  
Scan-path visualization of the eye movement of 
participant S03. 

Scan-path visualization of the eye movement of 
participant S05. 

Figure 52. The scan-path visualization of participants’ eye movements. Note that they 
have an economic scan-path pattern. 

P2 Task, concentric layout, size 20, density .4. P2 task asked participants to find 

the shortest path between node 13 and 19. As illustrated in Figure 53, most participants’ 

gave the correct answer 13-16-11-19 (26 out of 30)—another evidence of geometric scan-

path tendency.  
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Figure 53. The visualization of participants’ answers to P2 task. 

Summary of path-finding tasks. For path-finding tasks, layout and size had 

significant effect on accuracy and task completion time. For all three sizes (5, 10, 20), 

force-directed layout has the highest accuracy, while the circular layout has the longest 

time-on-task and lowest task accuracy. 

Density had a significant effect on task completion time, but not on task accuracy. 

The effect of density on task accuracy and completion time depends on graph layout. The 

accuracy on the concentric layout task did not drop with a denser graph (participants had 

significantly higher accuracy rates on density level of 0.4 than 0.2). At density level of 

0.2, participants spent more time to complete tasks with a circular layout. At density level 

of 0.4, participants spent equal time on tasks of all three layouts. 

At size 20, graphs with force-directed layouts, participants were significantly 

quicker than with the circular layout to locate the first target. Both size and layout had a 
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significant effect on the comprehension process of path-locating tasks. Force-directed 

layout was most sensitive to size effect, whereas concentric was most insensitive to size 

effect. Circular layout needed significantly longer comprehension time than force-

directed layout and concentric layout. 

Edge crossing and node overlapping caused the most wrong answers of path-

finding tasks. Scan-path analysis of participants’ eye movements revealed clear 

geometric-path tendency when they searched for the paths between two nodes. Scan-path 

analysis also showed a three-stage-processing of path-locating tasks: exploring-

comparing-confirming. 

Summary 
Spatial reasoning ability had a significant effect on participants’ performance on 

node-locating and path-finding tasks: participants’ who had higher score on the spatial 

reasoning test tended to have higher task accuracy and shorter task completion time. 

For the node-locating task, participants had decreased task performance (longer 

completion time, lower accuracy) as graph size enlarged. Force-directed and circular 

layouts seemed to be more sensitive to the effect of size: the task accuracy of these two 

layouts dropped dramatically as graph size enlarged from 10 to 20. Concentric layout was 

insensitive to size effect: it had a relative constant accuracy across three size levels.  

Eye tracking evidence showed participants needed more time to ‘read’ (here, 

counting connections) the target nodes as graph size enlarged. The larger and denser the 

graph, the more cognitive load was required from participants for information processing. 

Concentric layout is ‘insensitive’ to size effect on task accuracy, which resulted in 

a higher accuracy than circular and force-directed layout at size 20. This was consistent 
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with eye tracking data of concentric layout on time to locate targets: concentric layout 

had a more tempered response to size effect demonstrated by a shorter time to locate the 

target at size 20. Interestingly, the shorter target-locating time didn’t necessarily bring a 

‘hasty’ decision: concentric layout also has a higher accuracy rate compared to force-

directed and concentric layout at size level of 20, implying that this is a confident and 

informative decision. Further analysis on participants’ scan-paths showed that concentric 

layout made it easier for participants to discover the target and disambiguate between 

competitive answers. 

Eye tracking analysis showed that participants had the shortest 

confirming/disambiguating time for force-directed graph at size 20. However, they didn’t 

have the highest accuracy on task. Further error task analysis revealed that for N2 

(forced-direct graph at size 20), the correct answer was totally ignored by participants 

who gave the wrong answer. Participants made quick/confident but incorrect answers. 

The guiding effect of circular layout made the target more ‘noticeable’. However, 

six participants (20%) gave the incorrect answer after comparison, inferring the problem 

is not coming from the target-noticeability of the circular layout, but visual difficulty 

resulting from dense overlapping. 

Compared to node-locating tasks, path-finding tasks resulted in more/diverse 

wrong answers. This was partially because path-finding tasks had more than one answer. 

More importantly, path-finding was a different type of cognitive task which consumed 

more cognitive resources to find the answer. 

Compared to node-locating tasks, the visual leading effect of circular layout was 

not the case for path finding tasks: Instead of going through every node one by one along 



  86 

the circle, participants were more likely to jump here and there leading by the 

connectedness. The search strategy was predetermined by participants according to the 

cognitive task type. 

The scan-path analysis of path-locating tasks revealed three stages of processing: 

exploring-comparing-confirming (more discussion on this subject see Chapter 6). 
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CHAPTER 5 

EXPERIMENT WITH DIA2 

 
The previous chapter described the experiment to investigate the layout ,density, 

and size effects using abstract graphs and generic tasks. The experiment described here 

was designed to investigate the same layout and size effects using a real application and 

task-within-context.  

The real application used here is Deep Insight Any Time Any Where (DIA2). 

DIA2 is a web-based visual analytics platform for searching, viewing, and analyzing the 

NSF research portfolio for ‘casual experts’ who have a high degree of training in their 

discipline, yet with little to no training in advanced visualization and analytics 

(Madhavan et al., 2015; Molnar et al., 2015). To help users get actionable insights, the 

visualization algorithms used by DIA2 were chosen not because of their novelty but the 

capability of producing familiar or self-explanatory representations to a casual expert. 

DIA2 currently archives data from January 1973 to March 2014 (only data from 1995 is 

exposed for searching purpose). The main visualizations used by DIA2 were force-

directed (to visualize the collaboration network of PIs/coPIs within an institution or 

research topic, see Figure 54) or a concentric layout (to visualize the collaboration 

network of a specific PI/coPI, see Figure 55).  

The graphs generated by DIA2 for this experiment were chosen to have two size 

levels: small graph, which includes less than 100 nodes; and large graph, which includes 

more than 100 nodes. Tasks that have been tested with abstract graphs were mapped and 

tested using the real application.  
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Figure 54. Collaboration network of PIs/coPIs of Washington University visualized using 
force-directed layout. 

 

 
Figure 55. Collaboration network of a particular researcher using concentric layout. The 
red dot represents the targeted researcher. The blue dots are his/her first level 
collaboration, and green dots are the second level collaboration. 
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Methods 
Participants. The same participants who participated in the experiment with 

abstract graphs automatically signed up for this second-stage experiment with DIA2. 

Apparatus. The same apparatus and set-up were used as in the last experiment 

with abstract graphs. An Eyetech VT2 model eye tracker, running QuickCapture software 

was used to capture participants’ eye movement at a sampling rate of approximate 35 Hz. 

Stimuli were displayed using a Dell 20.8 inch screen with 1600 × 1200 resolution. 

Another screen, which was a duplication of the stimuli-display screen, was used for 

coordinator to control the experiment process. Eye tracking data were analyzed and 

visualized using the combination of open source software Ogama, Excel, and SPSS. 

Graph Stimuli. All stimuli were screenshots from the DIA2 application with real 

data. In order to simulate the real context, the node-link diagram was presented with other 

information as a whole widget6 (see Figure 54 and Figure 55).  

Table 20 and Table 21 shows all eight stimuli used in the experiment.  

                                                
6 DIA2 uses widgets to present the concrete results for search inquires. A widget includes several tabs that each present 

a certain characteristic of the search results. For example, as Figure 54 shows, when a search is performed for NSF 

funded projects at Washington University, the information is presented across three tabs to include information on the 

collaboration network of funded Pi/coPIs, the awards they made, and the program officers who are managing these 

awards. 
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Table 20. Stimuli for DIA2 experiment node-locating tasks. 

Layout Size Node-locating task 
Force-
directed 

Small 

 
Large 
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Layout Size Node-locating task 
Concen
tric 

Small  

 
Large 
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Table 21. Stimuli for DIA2 experiment path-finding tasks. 

Layout Size path-finding task 
Force-
directed 

Small 

 
Large  
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Layout Size Node-locating task 
Concen
tric 

Small  

  
Large  
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Tasks. The tasks used in this experiment were the mapping of the tasks in the last 

experiment with abstract graphs, except that in this experiment they are described using 

contextual information consistent with the real application. The generic nodes and paths 

used in the experiment with abstract graphs were replaced using meaningful entities 

(researchers and collaboration relationship). Comparing to read abstract graphs, 

participants had to understand the implications of tasks in order to complete the tasks.  

Moreover, in the purpose of comparing participants’ performance on abstract graphs and 

graphs in real application, the same two kinds of tasks were includes for DIA2 

experiment: 

1.! Node-locating task: find the most connected researchers. 

2.! Path-finding task: decide whether two researchers were connected, or try 

to find the ‘introduction path' between researcher A and B (Though whom 

could researcher A be introduced to researcher B, if s/he want to build 

collaboration).  

Table 22shows the eight DIA2 tasks used in the experiment. 

Table 22. Tasks used for DIA2 experiment. 

No. Layout Size Task instructions 
1 Force Small You will see the network of the Principal 

Investigators (PI) of Arizona State University in the 
year of 1996. Please identify the most connected 
researcher(s). 

2 Force Large You will see the network of the Principal 
Investigators (PI) of Arizona State University in the 
year of 2012. Please identify the most connected 
researcher (s). 

3 Force Small You will see the network of the Principal 
Investigators (PI) of Purdue University in the year of 
1997. Could you tell me if researcher A collaborated 
with researcher B? 

4 Force Large You will see the network of the Principal 
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No. Layout Size Task instructions 
Investigators (PI) of Purdue University in the year of 
2009. Could you tell me if researcher A collaborated 
with researcher B? 

5 Concentric Small You will see the collaboration network George Wolf. 
Please identify the most connected researcher in this 
network. 

6 Concentric Large You will see the collaboration network Paul 
McMillan. Please identify the most connected 
researcher in this network 

7 Concentric Small You will see the collaboration network Kurt 
Leinenweber. If researcher A wants to collaborate 
with researcher B, whom should he/she ask for 
introduction? 

8 Concentric Large You will see the collaboration network John 
Holloway. If researcher A wants to collaborate with 
researcher B, whom should he/she ask for 
introduction?  

 
Procedure. This experiment commenced immediately after each participant 

completed the last experiment with abstract graphs. They were first given a general 

introduction to DIA2 and its visualizations. During this process the mapping between 

nodes-researchers and edge-collaboration relationship was established. Participants were 

then given several test questions to check whether they were ready to conduct the tasks. 

The eight tasks were presented in a random sequence. After completing all of the tasks, 

participants were invited to take a short interview to discuss the experience they had with 

DIA2. 

Experimental design. In order to compare the layout and size effects between the 

abstract graph and real application, the experiment was designed as a repeated-measure 

experiment. The study presented 2 graph layouts (force-directed and concentric) × 2 

graph sizes (large and small) × 2 task types (node-locating and path-finding) to each 
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participant7. Each participant performed one trial of each layout, graph size, and task type, 

resulting in 8 trials in total.  

Results 
Participant S02’s data was removed because of missing data. Forty-two 

participants’ (35 male, 7 female) contributed responses for the statistical analysis on task 

accuracy and completion time. 

Task accuracy and completion time. A two-way ANOVA (size by layout) was 

conducted. Like the case for the experiment with abstract graphs, participants’ 

performance on spatial reasoning tasks was included in the analysis as a covariate 

variable. Results showed there was no significant effect of participants’ performance on 

spatial reasoning tasks on their task accuracy and completion time (see Figure 56 and 

Figure 57). Also, no significant correlation was founded between participant’s score of 

spatial reasoning test with their performance on graph reading tasks using DIA2.This 

results is in contrast with the findings for abstract graphs, in which participants’ 

performance was significantly affected by their score on spatial reasoning test. One 

feasible explanation for this contradiction is that, for DIA2 tasks, other than spatial 

reasoning ability, more context factors contributed to the variations in the results. As 

which will be elaborated later in this chapter, the design attributions of the visualization 

(e.g. color coding, weighted path) significantly affected participants’ understanding of the 

graphs. Therefore, the effect comes from participants’ spatial ability has been ‘diluted’.  

                                                
7 Constrained by the real data used by DIA2, this experiment only included two size levels and two graph layouts.  
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Table 23 summarizes the results of ANOVA analysis. Size and layout were found 

to have significant effect on task accuracy, F(1, 334) = 4.51, p < .05 and F(1, 334) = 

48.14, p < .05. 

 

Figure 56.The effect of participants’ spatial reasoning test performance on task accuracy. 

 

Figure 57. The effect of participants’ spatial reasoning test performance on task 
completion time (s). 

Figure 58 and Figure 59 show the task accuracy and completion time by task. 

Task 1, 2, 5 and 6 were node-locating tasks, while task 3, 4, 7 and 8 were path-finding 
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tasks (see Table 22). Notice that Tasks 3 and 4 had 100% accuracy and shortest 

completion times. 

Table 23. Summary results of ANOVA analysis of DIA2 tasks. 

Source Dependent Variable 

 
Accuracy Time (s) 

F Sig. η2 F Sig. η2 
       
SR Score 0.85 0.36 0.00 1.02 0.31 0.00 
Size 4.51 0.03 0.01 13.77 0.00 0.04 
Layout 48.15 0.00 0.13 0.03 0.87 0.00 
Size * Layout 0.50 0.48 0.00 12.89 0.00 0.04 

 

 
Figure 58. Task accuracy of each DIA2 task. Note that task 3 and 4 had 100% accuracy. 
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Figure 59. Task completion time of each DIA2 task. Note that task 3 and 4 had shortest 
completion time. 

No significant difference on task accuracy was found between node-locating task 

and path-finding task. However, as illustrated in Figure 60, participants spent 

significantly more time (8.11 s on average) to complete node-locating task than path-

finding task, F(1, 334) = 23.25, p < .05. These results are in contrast with the findings of 

the experiment with abstract graphs, in which path-finding tasks had longer time-on-task. 

By a further look, participants’ performance on task 3 and 4 mainly contributed to this 

short task completion time. In task 3, 4, participants were asked to identify whether two 

designated researchers (A and B) were collaborated. Their answers were in the “Yes” or 

“No” format. The results shows participants completed these two tasks less than 5 

seconds and all participants answered correctly.  
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Figure 60. Average task completion time of DIA2 tasks by different task type. 

For the node-locating task, a two-way ANOVA was conducted to investigate the 

size and layout effect on accuracy. No significant differences for both main effects 

(layout out and graph size) were found. However, the interaction was significant F(1,164) 

= 18.28, p < .05 (see Figure 61). As illustrated in Figure 62, the size and layout effects 

had significant effect on task completion time, F(1,164) = 7.04, p < .05 and F(1,164) 

=51.49, p < .05. The effect of layout on task accuracy and completion time was depend 

on graph size: for small graphs (include less than 100 nodes), force-directed layout had 

higher accuracy (95%) compared to concentric layout (62%), although this 33% higher 

accuracy was achieved assuming more mental effort (significantly longer task completion 

time). For larger graphs, however, concentric layout out-performed force-directed layout 

with a significantly shorter completion time and higher task accuracy. This result is 

consistent with the findings of experiment on abstract graphs: concentric layout made the 

target more ‘noticeable’, thus resulted in a higher task accuracy with less mental effort 

(shorter completion time). 
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Figure 61. The effect of layout and size on accuracy of node-locating tasks of DIA2. 

 
Figure 62. Size and layout effect on task completion time of node-locating tasks of DIA2. 

For path-finding task, both main effects (size and layout) are significant on 

accuracy and task completion time (see Figure 63 and Figure 64). Forced-directed layout 

had significantly shorter completion time and higher task accuracy compared to 

concentric layout. This result is also consistent with the findings of experiment with 

abstract graphs. 
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Figure 63. Layout and size effect on accuracy of path-finding task of DIA2. 

 
Figure 64. Layout and size effect on task completion time of path-finding task of DIA2. 

Error analysis. Because the DIA2 tasks were affected by additional factors 
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AOIs were defined accordingly in order to analyze participants’ attention transitions 

between these three subgroups (see Figure 69).  

Considering the complexity of the tasks with application context and the 

objectives of the study, participants’ answers were considered correct, as long as they 

mentioned one of the possible choices (if there were multiple correct answers). For 

example, for task 1, the right answers included ‘the blue dots on that hexagon’, ‘the 

yellow dot’, ‘the group of dots on that hexagon’. Participants’ verbal answers were coded 

for analysis purpose. 

Task 1. Participants were asked to find out the most connected researcher(s) in 

this collaboration visualization. As illustrated in , 6 researchers formed a ‘group’. They 

had the same connection number (5) which is higher than other researchers’. Thus, the 

correct answer of the task is the researchers within this group. Interestingly, participants 

tended to give their answer using the color-attributes of the dots. For example, one 

participant answered by ‘the blue dots on that hexagon’. As mentioned before, 

participants’ answers were considered correct as long as they belong to the possible 

answers. Figure 65 shows the distribution of participants� answers. Other than ‘the dots 

on that hexagon’ (coded ‘1’ in Figure 66), correct answers also include ‘the blue dots in 

that group’ (coded ‘2’) and ‘the yellow dot’ (coded ‘3’).  Only one participant (S18) gave 

the wrong answer (coded ‘4’). During the post-task interview, he said the reason he chose 

this answer was that he thought ‘color must mean something, and red made this stand out.’ 

His eye tracking data (see Figure 67) showed that this is not a hasty answer: he actually 

compared it with the right answer (the group of dots coded ‘1’). Color-coding in the 
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DIA2 visualizations appears to influence users’ decision-making process, but in this case 

the influence was in contrast with the intended goal.  

 

Figure 65. Distribution of participants’ answers of DIA2 task 1. 

 

 
Figure 66. Participants’ answers to DIA2 task 1. The answers were marked using 
different numbers (also the codes used for analysis). 

 

0

5

10

15

20

25

30

35

1 2 3 4

Fr
eq
ue
nc
y

Answer

Right
Wrong



  105 

 
Figure 67. Scan-path visualization of participant S18’s eye tracking data of DIA2 task 1. 

Task 2.  demonstrated the five different answers for task 2. As participants’ 

answers spread to the three dense sub-groups, in order to investigate the transitions of 

participants’ attention, three AOIs (T1, T2 and T3 in Figure 69) were defined accordingly. 

A transitions map visualizing the participants� eye movements shows that attention 

transitioned between T1 and T3 and from T3 to T2 (but not vice visa). No transitions 

happened between T1 and T2 (see Figure 69). 
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Figure 68. Participants’ coded answers to DIA2 task 2. 

 
Figure 69. Transitions map of participants� eye movement of DIA2 task 2. 

Task 3 & Task 4. These two tasks had 100% accuracy and shortest task 

completion time (see Figure 58 & Figure 59). Eye tracking analysis shows participants 

had a very efficienct scan-path on these two tasks. 
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Task 5. As in the DIA2 task 1, participants’ answers were affected by color and 

their understanding of the context. Six participants answered ‘the red dot’ (coded ‘1’, see 

Figure 70) because its color and central location. Heat-map evidence showed that they 

focused on the center area and just explored within the first level of connections. Their 

answers were mainly decided by their understanding of the color-coding (see Figure 71). 

Answer ‘2’ has 20 connections (26 participants gave this answer), which is 3 more than 

the connections of answer‘3’ (10 participants gave this answer). The visual difference 

between ‘2’ and ‘3’ was subtle. Participants who answered ‘3’ mainly focused on it and 

did not compare it with ’1’, and they did not count all the connections before they gave 

their answers (see Figure 72). Participants who gave the correct answer tended to have a 

more thorough comparison process before giving their answers. 

 
 

 
Figure 70. Participants coded answers of DIA2 task 5. 
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Figure 71. Heat-map visualization of participants’ eye movement data that answered ‘1’ 
to DIA2 task 5. 

  
Heat-map visualization of participants� eye 
movement data who answered �2� to DIA2 task 
5. Note that attention was distributed on both �2�
and �3� areas. 

Heat-map visualization of participants� eye 
movement data who answered �3� to DIA2 task 
5. Note that attention has just focused on �3� 
areas.  

Figure 72. Heat-map visualization of participants’ eye movement data that answered ‘2’ 
and ‘3’to DIA2 task 5. The correct answer had a more thorough comparison before 
decision-making. 

Task 6. Most participants gave the correct answer to this task (38 out of 42) 

within a very short time (see Figure 74). The wrong answers were mainly affected by 

participants’ understanding of the graph’s color-coding (code ‘1’ and ‘3’, see Figure 73). 
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Figure 73. Participants coded answers to DIA2 task 6. 

 
Figure 74. Scan-path visualization of participant S12’s eye movement data on DIA2 task 
6. Note the efficient pattern of the scan-path. 

Task 7. Again, participants� answers were affected by their understanding of the 

visual attributes assigned to the graph (i.e. the color of the dots and the thickness of the 
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lines): 8 participants answered ‘the path that go through the red dot’ (coded ‘1’, see 

Figure 75); 2 participants answered ‘the path with the thick line’ (coded ‘2 see Figure 75). 

 
 

  
 

Figure 75. Participants’ coded answers to DIA2 task 7. 

Task 8. This proved to be a tricky task because the two end nodes were already 

connected directly. This task was used to test participants' real understanding of the 

information. As predicted, most participants (23 out of 42) answered ‘the path goes 

through the red dot’ (code ‘1’, see Figure 76). Their choices seemed affected by the 

color-coding of the graph. 
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Figure 76. Participants’ coded answers to DIA2 task 8.  

Summary 
The same size and layout effects were observed in DIA2 tasks. For the node-

locating task, the performance of concentric and force-directed layouts were consistent 

with their performance with abstract node-link diagrams: accuracy dropped for force-

directed layouts as graph size increased. The concentric was more insensitive to the size 

effect, even having higher task accuracy with larger graph size (the choice of stimuli for 

task 6 contributed to this high task accuracy). Eye tracking analysis provided more 

explanations of the findings: 

1.! There were more factors that affected participants’ decisions in the DIA2 

tasks than the controlled abstracted graph experiment. For example, the 

contextual information such as color-coding made a difference and more 

‘guessing’ was observed in the tasks where contextual information was 

present. 
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2.! Visual attributes of the graph (context) affected participants’ performance on 

task. Participants usually elaborated their answers using color attributes. For 

example, one participant gave his answer to task D1 by saying ‘the ‘red dot’ 

in the middle’. During the after-task interview, participants commented that 

they thought ‘color must mean something’, and even used their assumptions 

about colors to determine their answers. For example, one participant gave his 

answer to task D1 by saying: ‘all the blue dots in that hexagon.’ When he was 

asked why just blue dots, but not the yellow one during the interview, he 

answered: "I think yellow means bad, so I didn’t choose it." The problem here 

was that the rationale for the color-coding used in the DIA2 visualizations was 

not evident and therefore, participants guessed, and most of the time, the 

color-coding led to misunderstandings.  

3.! In addition to the participants' eye movements on the node-link diagram, the 

general visual pattern on the whole widget was investigated in this study. The 

image used for stimuli was divided into four individual AOIs: Title, Graph, 

Table and Bar. Although participants had been instructed that the answer to 

the task can be found by just looking at the node-link diagram, participants’ 

eye movements showed they cross-checked between other information areas 

(see Figure 77). Main transitions happened between the Graph and Table areas, 

implying that the user assumed a connection, or that the information was 

related. This finding can inform future development of DIA2 (and 

visualization designs for other applications).  Specifically designers should: 1) 

provide task-related information and 2) provide the information in a way that 
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is consistent with users’ mental model to help users efficiently and effectively 

comprehend the graph. 

!

 

Figure 77. Transitions map visualization of participants’ attention transitions between 
several AOIs. 

 
 
 



  114 

CHAPTER 6 

DISCUSSION & CONCLUSION 

 
The effect of graph size, density, and layout on people’s graph reading and 

comprehension has been investigated under different circumstances (using abstract 

graphs and a real application DIA2). Eye tracking methodology was used to understand 

people’s cognitive processing which otherwise was difficult to observe using accuracy 

and completion time measures alone. Combined with pre-defined AOIs, analysis metrics 

and static visualizations of people’s eye movements, eye tracking’s utility on human 

graph reading behavior has been demonstrated. 

Layout Effect on Graph Comprehension 
Participants� abilities for spatial reasoning proved to be correlated with graph 

comprehension: participants who had higher scores on the spatial reasoning test tended to 

have higher task accuracy and shorter task completion times.  

The data shows that larger and denser graphs resulted in longer completion times 

and lower accuracy rates. The heat-map and scan-path visualizations also indicated that 

participants had more “guessing” answer when reading larger and denser graphs. These 

findings suggest that denser graphs placed more cognitive demand on participants and 

made it difficult for them to extract information. Moreover, the findings suggest that 

specific layout contributed to better accuracy and completion times, even for large and 

dense graphs. The study found the specific features of the layouts including bend angles, 

crossing lines, and orientation of nodes influence graph reading behavior that can lead to 

successful task completion at different size and density levels. 
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Pre-defined metrics were used to identify different cognitive processes. In this 

study, the searching process was defined to be finished by locating the target nodes. The 

searching process was marked by the ‘time to the first fixations in target AOI’ eye 

tracking metric. After all elements needed to complete the task had been viewed by 

participants, the rest of the time needed to complete the task was designated as the 

comprehension process, during which participants disambiguated and confirmed their 

choices. This duration was calculated by subtracting the ‘time to the first fixations in 

target AOI (in node-locating task) or second target AOI (in path-finding task)’ from task 

completion time.  

For node-locating graphs at size 20, force-directed layouts had a significantly 

shorter time on the ‘comprehension’ cognitive process. By examining the heat-map and 

scan-path visualizations of participants’ eye tracking data, it was revealed that 

participants tended to make quick decisions with graphs in force-directed layout, even 

though the target might have been totally ignored. This implies that force-directed layouts 

made the target less ‘noticeable’ while providing a ‘confidence’ associated with 

participants’ decision making. The circular layout had a significantly longer ‘searching’ 

and ‘comprehension’ process for node-locating task at graph size 20. Eye tracking 

analysis showed that the circular layout had a ‘visual leading effect’: participants tended 

to visually follow the circle while they were searching for the target. Compared to force-

directed layouts, this traversal search behavior appeared to have the effect of making the 

target more noticeable to participants. However, even if the target was viewed by 

participants and compared with other nodes, a correct answer was not guaranteed. The 

dense overlapping made it difficult to find the right answer even with careful reading and 
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repeated checking. Interestingly, the concentric layout was found to be more resistant to 

the size effect: it had a relatively constant accuracy rate over three graph sizes. At size 20, 

concentric layout even had the shortest ‘target searching’ time and highest task accuracy.  

Eye tracking analysis revealed that participants tended to have a more ‘efficient’ scan-

path with the concentric layout, which seemed to have the effect of making the dense area 

‘stand out’ more.  

For path-finding tasks, participants needed to first locate the two designated end 

nodes and then find the shortest path between them. Eye tracking analysis revealed that 

the layout effect was significant at graph size 20 on locating the first target, whereas on 

locating the second target, the same effect was found at size 5. The assumption is that 

people can read information through parafoveal vision; thus the location of the second 

target could somehow be read while they were searching for the first target. However, 

this ‘pre-read’ advantage was ‘diluted’ as graph size increased. As a result, the layout 

effect on time to locate the second target was only significant at graph size five, but not 

20. Force-directed layout was found to have the highest accuracy through all three graph-

sizes. It also happened to be the most sensitive layout to the effect of graph size.  The 

circular layout had the longest time-on-task and lowest task accuracy. Like the case for 

the node-locating task, the concentric layout was found insensitive to size. Through error 

task analysis, it was found that edge crossing and node overlapping caused the most task 

failures of path-locating tasks. Scan-path analysis of participants’ eye movement data 

revealed clear geometric-path tendency (Huang, 2013): Participants tend to follow the 

paths that were near the geometric path, but not necessary the target path because edge 

crossing made the branches along the paths between two end nodes difficult to discern. 
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During the analysis, several ‘out of expectation’ results were observed. For 

example, the significant high accuracy of path-finding tasks using force-directed layout 

graphs in the pilot study, and the higher accuracy of concentric layout at density level .4 

than .2 in the abstract graph experiment. By a closer look at participants’ eye movement 

data, these exceptions were attributed to the randomly picked end nodes that simplified 

the task— either by centralizing the end nodes or designating the geo-matric path as 

target path. Presenting the same stimulus to all participants helped the study detect 

distinct patterns; however, it also limited the findings by adding noise to conclusions 

about different graph sizes, densities and layouts. 

In summary, three layouts were compared by their advantages on accuracy, time 

size sensitivity, searching process and comprehension process. Red check marks and blue 

check marks represent the node-locating path-finding tasks, respectively (see Table 24). 

Force-directed layout out-performed others by its’ shorter comprehension time on both N 

and P tasks. Also, concentric layout should be considered when visualize large datasets, 

since its relative insensitivity to the size effect. 

Table 24.Advantages of different layouts on accuracy, time, size insensitivity, target 
searching and comprehension. 
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Node-link diagram in real application. DIA2 uses node-link diagrams to 

visualize collaboration networks. The DIA2 visualizations are consistent with the 

conventional use of node-link visualizations in current social media platforms (add 

reference). During a former usability study with DIA2, positive feedback about the use of 

node-link diagram was mentioned (Molnar et al, 2015). In Molnar et al.�s study, 

participants showed a good understanding of the information presented by the DIA2 

visualizations. That is, most participants understood the graphs as collaboration networks 

of researchers without providing an explanation other than the general project 

background.  

 The same effect of size and layout was replicated with the experiment on DIA2. 

More factors were observed to have an effect on participants’ decisions making in the 

real application context than the controlled experiment with abstract graphs. For example, 

more guessing answers based on participants’ understanding of the visualization-

attributes (e.g., color coding of the nodes and weight assignment of the link) were 

observed.  

Transitions between AOIs other than graph areas implied that participants scan all 

the information provided even when they had been instructed to focus on a specific area. 

Furthermore, participants’ eye movements demonstrated a frequent cross-checking 

behavior between the Graph area and the Table area. One explanation for this observation 

is that in users’ mental model, these two kinds of information were highly related. Based 

on this finding, one suggestion could be made for a DIA2 developer: provide context 

relevant information in a way that can facilitate users' leveraging of existing mental 

models would facilitate their comprehension of complex visualizations. 
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Graph Reading Behavior 
Although multiple stages of processing model of people’s graph comprehension 

in general have been previously theorized, this study focused on node-link diagrams 

specifically. Eye tracking analysis provided detailed evidence regarding people’s 

attention in addition to their behavior (data collected through observation) and attitude 

(data collected through interview). Static visualizations (heat-map, scan-path, and 

transitions map) of eye tracking data have been used to qualitatively investigate 

participants’ visual search strategies.   

Three-stage processing model. The study used a top-down model to define the 

eye tracking metrics; however, a bottom-up model of graph reading was developed based 

on observing participants’ behaviors as part of this research study. Through the analysis 

of the video of participants’ eye movement trajectories with path-finding tasks, a three-

stage information processing model emerged. The three stages include: 

1. Exploring, fixations dispersed to almost all nodes. 

2. Comparing, back-and-forth scan-paths from one end-node to compare several 

possible paths. 

3. Confirming, several back-and-forth scan-paths on the selected path to confirm 

the verbally give the answer. 

To find the shortest path between two nodes, participants always started by an 

exploration of the whole graph to get a general impression. This exploring stage was 

evidenced by the dispersed fixations to all nodes in the graph. Also, analysis of 

participants� eye tracking data revealed that there was no significant size effect on the 

time needed to search for the second target after locating of the first target. One possible 
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explanation for this is that during the exploration stage, the location of the second target 

had been somewhat noticed by the participants, hence they could conduct relatively faster 

searching for the second target. This exploring stage corresponded to the searching stage 

in the top-down model. The comprehension stage of the top-down model has been further 

refined into two different cognitive stages—comparing and confirming. These two sub-

stages was differentiated by their distinct scan-path pattern: during the comparing stage, 

several branches from both ends nodes were explored as evidenced by the backtracking 

(regressive saccades) scan-path between the nodes that had multiple connections. Before 

verbally giving their answer, participants usually conducted several checks to confirm 

their answer. During this stage, the iterative scans of the candidate path were observed.  

Straight line reading tendency. During the analysis of participants’ eye 

movements, it was observed that the perception of angle was used differently for node-

locating and path-finding tasks. For node-locating tasks, acute angles helped participants 

to identify the connections emanating from nodes, whereas for path-finding tasks for 

which participants tended to follow a straight line to find the path, acute angles made it 

difficult to notice the existence of a path. Therefore, the design of the angles in a graph 

should depend on the specific use context.  

Seeing without looking. While looking at the comprehension process of path-

finding tasks, it was observed that participants did not necessarily need to complete the 

task after ‘looking at’ all target nodes. Other than explaining this as a miss-catch of the 

eye tracker, another explanation was that participants mentally shifted their attention to 

the nodes without moving their eyes, in other words, they saw without looking. This may 
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be eye tracking evidence of covert attention. How graph layout can facilitate or impede 

efficient covert attention is worthy of further research. 

Eye Tracking Analysis for Visualization Evaluation 
Eye tracking is a popular methodology in psychological research as the eye 

movement can be related to people’s cognitive process. However, the application of eye 

tracking methods in visualization evaluation has been limited. It has been used only since 

2003 primarily? to investigate online information retrieval. And in the limited eye 

tracking studies on visualization evaluation, the subjectively qualitative elaboration based 

on static visualization of eye tracking data was mainly conducted. The 

quantitative/objective analysis advantage of rich eye movement data has been under-

utilized over the years. One contribution of this thesis is the comprehensive use of eye 

tracking analysis methods on people’s graph reading behavior.  

By using fine-grained metrics, complex graph reading processes were separated 

into interpretable and insightful cognitive stages and compared among different 

conditions (layout, size, etc.) to yield statistically significant results. Spatial and temporal 

visualization of eye tracking data were used for an analysis of errors to determine which 

features could be attributed to the task failure.  For instance, this analysis informed 

whether it was because information had been layout in a confusing way so that people 

failed to notice it, or was it because the layout was so complicated that people saw it but 

did not understand the relationship with the task goal. 

Lessons have been learned during the analysis of eye movement data.  Heat-maps, 

scan-paths, and transitions maps were applicable depending on different analytic 

purposes. Heat-maps provide aggregated visualizations of attention for all participants. 
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They do not include the viewing –sequence dimension, and sometimes they are 

misleading in that all participants have the same overall visual pattern. Scan-paths present 

both spatial and temporal information, but these representations suffer from visual clutter 

when overlaying the data from several participants in a single representation. Transition 

maps provide a perspective of attention transitions between AOIs, but their 

interpretability depends on the definition of AOIs.  

Limitations of eye tracking method. As recorded every 20-30 ms, the data 

produced from eye tracking generates huge datasets. Analyzing these data can be tedious 

and even misleading if not guided by clear assumptions and pre-defined metrics. 

Also eye tracking analysis is subject to error and misinterpretation even under 

careful applications. First, the gaze samples collected at 35-120 Hz are filtered 

algorithmically to fixations around 3 Hz. The algorithm used to temporally and/or 

spatially disperse this gaze data is often unreported. Whether there are analytic 

differences resulting from the use of different dispersion algorithms may need further 

empirical research. Second, the definition of AOIs will affect the interpretation of 

participants' comprehension strategies. Several considerations on AOI specification 

include: the size of the AOI, the padding area to avoid the effect of gaze location error, 

etc. Third, the selection of metrics, though there are many metrics that can be used for 

analysis, should depend on the research questions. Fourth, the use of different eye 

movement data visualizations should also be determined by the research questions. For 

example, heat-map is more suitable to analyze aggregated behavior (multiple people’s 

attention distribution), whereas scan-path is more suitable for analysis of individual’s 
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sequence strategy.   Overlaying scan-paths of different participants’ scan-path will make 

the result hard to interpret. 

Suggestions for Designers 
Based on the findings of this study, several suggestions could be made for 

algorithm and application designers. 

Consider layouts relative to graph size. Force-directed and circular layouts 

seemed to be more sensitive to the effects related to graph size.  The task accuracy of 

these two layouts dropped dramatically as graph size increased from 10 to 20. Concentric 

layout was insensitive to size effect.  It has a relative constant accuracy across three size 

levels. Designers should consider this size-sensitivity as they design visualizations at 

different scales. 

Choose reasonable graph size and density. There was a threshold at which 

participants’ patience dropped dramatically and they tended to provide rushed answers 

with little regard for accuracy. Graph designers should choose a reasonable graph size to 

visualize their data. When the large size is inevitable, they should try to split the 

dimensions to be visualized in several graphs. 

Use different crossing-angles according to task type.  The layout effect was 

found significant for just path-finding tasks in the abstract graph experiment. This result 

was similar to Huang’s findings (2007b) that the edge crossing affects human 

performance on path-finding tasks but not node-locating tasks. Acute angle inhibited 

human performance when path continuity was under concern. For node-locating tasks, 

acute angles help participants to distinguish the nodes. Designers should choose 

appropriate visualized angles according to the context of the specific task. 
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Provide informative but not overload vis-info. Analysis of the attentional 

transitions between several AOIs of DIA2 tasks revealed that participants’ information 

search strategies were pre-determined by their mental models. Designers should provide 

information in the way that is consistent with users’ mental models to help users 

efficiently comprehend the graph. For example, the place of related information should 

facilitate effortless cross-checking. 

Future research 
Working memory and graph reading. Working memory capacity has been 

empirically shown to have impact on people' ability to comprehend complex displays. 

This study confirmed this effect by the high correlation between participants’ 

performance on spatial reasoning test and participants' graph reading performance. This 

study just used the aggregated score on the four kinds of tasks (perspectives, mirror 

images, spatial reasoning cubes, and organizing two dimensional shapes). It would be 

interesting to include more kinds of task types and examine how they impact people’s 

graph reading behavior individually. In other words, examine how graph reading relates 

to specific abilities. 

Experiments in context. The experiment with DIA2 has demonstrated that there 

are other effects related to details of the design of the graph. Future studies could be 

designed to look into the effect of syntactical information such as labels, color use, etc. 

Visual analytic methods for eye tracking data. Eye tracking has been under-

utilized in research evaluating visualizations. The analysis methods used for eye tracking 

data were mainly focused on qualitative elaboration of the real-time playback of the 

video of participants’ eye movements. These methods are time-consuming and require 
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subjective interpretation. The research advances from the area of data analytics for 

temporal and spatial datasets could and should be applied to future eye tracking studies 

on the evaluation of visualization. 
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