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ABSTRACT

Cosmology, carrying imprints from the entire history of the universe, has emerged as

a precise observational science over the past 30 years. It can probe physics beyond

the Standard Model at energy scales much higher than the weak scale. This thesis

reports on some important probes of beyond standard model physics derived in a

cosmological setting - (I) It is shown that primordial gravitational waves left over

from inflation carry unique detectable CMB signatures for neutrino masses, axions

and any other relativistic species that may have been present. (II) Higgs Inflation, the

most popular and compelling inflation model with a higgs boson is studied next and it

is shown that quantum e↵ects have so far been incorrectly incorporated. A spurious

gauge ambiguity arising from quantum e↵ects enters the canonical prediction for

observables in Higgs Inflation that must be addressed. (III) A new novel mechanism

for generating the observed baryon asymmetry of the universe via decaying gravitinos

is proposed. If the Supersymmetry (SUSY) breaking scale is high, then in the presence

of R-parity violation, gravitinos can successfully reproduce the baryon asymmetry and

evade all low energy constraints. (IV) The final chapter reports on a new completely

general analysis of simplified models used in direct detection of dark matter. This is

useful to explore what high energy physics constraints can be obtained from direct

detection experiments.
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Chapter 1

INTRODUCTION

The Standard Model of particle physics is a remarkable theory and one of the tow-

ering and most significant scientific achievements of the 20th century. It is a precise

quantum mechanical theory of the fundamental particles that make up all matter

and the interactions among them. The existence of these particles and interactions

have been verified to a high degree of accuracy. The last important piece, the Higgs

Boson, a particle which gives mass to all the other particles in the standard model

(including itself) and which eluded detection for many decades was recently discov-

ered, e↵ectively closing the chapter on the validity of this theory.

However, this wonderful theory isn’t complete. The most glaring inadequacy of

the standard model is the absence of a description of gravity. Einstein’s General

Relativity (GR) is a classical field theory of gravity, described by the warping of the

spacetime metric as a function of matter energy-momentum. It provides a description

of gravity at the macroscopic scale, however the microphysical laws of gravity still

elude us. It is hoped that a microphysical theory of gravity would provide resolutions

to the singularity puzzles of the big bang and black holes.

Besides the exclusion of gravity, there are other cosmological and experimental

observations that can’t be explained by the contents of the standard model alone.

Over the past 30 years, cosmological observations have given us a detailed picture of

the contents of the universe. This is shown schematically in Fig. (1.1). Only 4.1%

of the matter-energy budget of the universe today is made up of ordinary baryonic
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matter, that is described by the Standard Model. Most (95.1%) of the universe isn’t

in the form of matter described by the standard model. Since Dark Matter redshifts

just like ordinary matter (a�3), it is expected that it is a new kind of particle, that

interacts perhaps very weakly (if at all, besides gravitationally) with the standard

model particles. Dark Energy, on the other hand is best modeled by a cosmologi-

cal constant (vacuum energy) in Einstein’s equations which causes repulsive gravity.

However, its value isn’t explained by the standard model, which predicts a vacuum

energy which is o↵ from the cosmological observations by O(10120)!

Figure 1.1: Matter-Energy content of the Universe as determined by the Planck
satellite.

Cosmological parameters like the energy budget of the universe are measured

by observations of the Cosmic Microwave Background (CMB) radiation, which is

the remnant afterglow of the Big Bang. The radiation has a predicted blackbody

spectrum and this was verified by NASA’s COBE satellite in 1992. The imprints of
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fundamental physics are most readily captured by studying the anisotropies in the

CMB, shown in Fig (1.2). Planck’s observations show an incredibly smooth universe

with small anisotropies, the temperature fluctuating only O(10�5)K from the mean,

TCMB = 2.725K across the sky.

Figure 1.2: Anisotropies in the CMB radiation, measured by the Planck satellite.

An important feature of the anisotropic sky is the extreme homogeneity and

isotropy of the universe. Why did the Universe start in a state that is so isotropic

and homogenous? The Standard Model doesn’t make any prediction to explain this

observation. Whats even more troubling is there are superhorizon correlations in the

CMB, that is, correlations which are larger than the horizon scale at photon decou-

pling. These parts of the sky never had a chance to communicate in the evolution

of the universe up to that point. How could perturbations on patches of which were

causally disconnected be correlated? Inflation provides a possible explanation. It

introduces the possibility that the universe went through a phase of exponential ex-

pansion just after the big bang. This tearing of space smoothed out a small patch,

which was initially causally connected that grew to be our observable universe. The

repulsive gravity needed to cause this expansion involves beyond standard model

physics.
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An important prediction of inflation is the existence of primordial tensor pertur-

bations or gravity waves. An inflating universe excites (via quantum fluctuations) all

possible modes of the metric. The scalar mode is the density fluctuation (hot and

cold patches in the CMB), which provides the primordial seeds for structure. They

also fix the amplitude of quantum fluctuations. The excited tensor perturbations,

imprint themselves as curl-like patterns on the CMB and they instead determine the

energy scale of inflation. Because we expect that inflation happened at a relatively

high scale, the CMB can potentially give us information about physics at energy

scales much larger than those probed by typical astrophysical processes and particle

accelerators. Moreover, as these gravitational waves travel, they are damped (or am-

plified) by other decoupled species like photons, neutrinos etc. Thus, studying their

impact on the CMB can potentially give us valuable information about additional

neutrino species or axions.

Another shortcoming of the standard model which manifests itself only in the cos-

mological context is the baryon asymmetry of the universe. The universe has more

particles than anti-particles. The strongest evidence comes from big bang nucleosyn-

thesis (BBN) - a highly successful theory that correctly predicts the abundance of

light elements like 2H, 3H, 3He, 4He, 6Li, 7Li and 7Be. However, the calculation

requires the essential input of baryon asymmetry, (nB � nB̄)/n� ⇠ O(10�10) where

n� is the number of photons. The Standard Model does indeed predict that the uni-

verse should be baryon asymmetric but its predicted asymmetry is smaller than that

required by BBN. To explain this asymmetry, we again need some physics beyond

the standard model.
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In the past couple of decades then, cosmological observations have emerged as

the most important probe for investigating physics beyond the standard model. The

CMB can tell us about the physics of inflation and via primordial tensors provide us

with valuable information about physics at energy scales higher than the weak scale

(which is the highest scale to which the standard model has yet been tested). The

statistical features of the CMB are also sensitive to the specifics of inflation. From

BBN constraints on baryon asymmetry, we can infer the amount of CP violation and

baryon number violation that must exist in the universe. Finally, the presence of dark

matter definitively tells us that there must be particle species beyond the standard

model.

This thesis investigates, in detail, cosmological probes of beyond standard model

physics, specifically focusing on primordial tensor perturbations, baryon asymmetry

and discernibility of dark matter models via direct detection. A brief outline of this

thesis is as follows. The propagation of tensor perturbations in the presence of new

particles, not present in the standard model is studied in Ch 2. We take a careful

look at the classical and quantum predictions of the most well motivated inflation

model, Higgs Inflation in Ch 3. Supersymmetry (SUSY) being the most important

prevailing beyond standard model theory that provides viable dark matter candidates,

coupling constant unification and keeps the higgs mass light (weak scale). With LHC

searches for SUSY currently underway, cosmology can provide an alternative probe

into the nature of SUSY interactions. It is shown in Ch 4 that SUSY with R-parity

violation, and high scale SUSY breaking can successfully create the observed baryon

asymmetry of the universe and avoid any serious observational constraints. Direct

detection of Dark Matter is an active area of observational research in astroparticle

physics, with number of experiments currently underway and more coming online in
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the future. Ch 5 investigates what could be learned about underlying microphysical

interactions of dark matter, were a detection be made. This study is based on the

recently developed non-relativistic e↵ective theory of dark matter direct detection.

A new catalog of nuclear detector responses directly arising from a general set of

fundamental dark matter interactions is derived and presented.
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Chapter 2

COSMOLOGICAL DAMPING OF PRIMORDIAL TENSORS

2.1 Introduction

A generic prediction of cosmological perturbation theory in an inflating back-

ground of the early universe [2, 3, 4] is the production of gravitational waves (GW)

with a nearly flat spectrum [5, 6]. There are ongoing observational e↵orts to detect

such a spectrum [7, 8]. The dominant signature in the near term involves the e↵ect

that long-wavelength gravitational waves can have on the cosmic microwave back-

ground (CMB) through the generation of B-mode polarization (e.g., [9, 10, 11, 12,

13, 14, 15]). The amplitude of the gravitational waves can be related to the energy

scale at which inflation occurred, and the ratio of the power spectrum of gravitational

waves to that of the scalar power spectrum, also known as the “tensor-to-scalar ra-

tio”, r, can give vital information into the nature of the inflaton – the field which

drives inflation – via the Lyth bound [16, 17]. Additionally, primordial gravitational

wave spectra produced by various non-inflationary mechanisms have been suggested

[18, 19, 20, 21]. Therefore any observation of a primordial gravitational wave spec-

trum would be an immensely powerful tool in the study of the very early universe.

A question naturally arises - are there any e↵ects that can intervene and alter the

nature of the GW spectrum from the time of its production until the time of observa-

tion? If the answer is yes, then one must account for such e↵ects in order to accurately

describe the primordial spectrum. As is well known, just such an intervening e↵ect

does arise due to the fact that an anisotropic stress from free streaming particles can
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damp the amplitude of GWs from their primordial value. Weinberg showed in [22]

that the damping e↵ect of free-streaming neutrinos on the GW spectrum can be quite

significant with up to 35.6% loss in amplitude, and following this work, the issue has

been the subject of some attention [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

The original study of Weinberg, and much of the following work has been focused

on the e↵ects of three massless neutrinos of the Standard Model. However, recent

cosmological observations have shown hints of deviations from the standard cosmo-

logical value of three e↵ective neutrino degrees of freedom [34, 35, 36, 37, 38]. Due

to neutrino oscillation experiments, it is also known that neutrinos are not mass-

less, as described in a recent global analysis of neutrino properties [39]). There are

also some, albeit statistically insignificant presently, hints that the addition of extra

neutrino species can improve fits to short baseline neutrino oscillation data [40]. Re-

cently issues regarding light sterile neutrinos and cosmology have been addressed in

[41, 42, 43, 44].

In this chapter, we broaden the scope of this calculation to include beyond stan-

dard model species. The most relevant are massive neutrinos, additional (beyond

three) massive and massless neutrino species, extra bosonic degrees of freedom and

axions (an extensive introduction to axions is given in Appendix C). The impor-

tant step in including the e↵ect of these species is to derive a general expression for

the anisotropic stress caused by any massive particle species. We present a general

treatment below and then apply it to study the e↵ect of these beyond standard model

species on primordial gravity waves. Introductions to Cosmological Perturbation The-

ory (deriving the general evolution equation for tensor perturbations) and Inflation

are given in Appendices A & B respectively.
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2.2 Generalized Anisotropic Stress

We have already seen in cosmological perturbation theory, to first order, a per-

turbed FRW metric with scale factor a(t) can be written as

ds2 = �(1 + 2�)dt2 + 2a(@iB + Si)dxidt

+a2(t)[�ij(1� 2 )� hij � 2@i@jE � @jFi � @iFj]dxidxj (2.1)

Gravitational waves or tensor perturbations arise as the transverse, traceless compo-

nents of the metric fluctuations, which are characterized by hij,

@ihij = 0 ; hii = 0 (2.2)

They satisfy the tensor equation which in fourier transformed k-space is,

h00
k + 2Hh0

k + k2hk = 16⇡GNa2(⌧)⇧k (2.3)

where the prime denotes di↵erentiation with respect to conformal time d⌧ = dt/a(t),

and ⇧k is the anisotropic stress i.e., the o↵-diagonal elements of the stress-energy

tensor.

In order to solve this equation, we first need an expression for the anisotropic

stress for di↵erent species like decoupled neutrinos or bosons or axions. To do this,

we turn to the Boltzmann equation, which determines the evolution of the phase space

density of the particles, F (x, P ). It is in general a function of the four-momentum P

which has components P µ = dxµ/d�. The anisotropic stress can be determined by

perturbing the distribution function about the equilibrium background distribution,

F (x, P ) = F̄ (P 0) + �F (x, P ), and employing the collisionless Boltzmann equation

dF (x, P )/dt = 0. In general, the RHS has a collision term, but in this project we

only consider free-streaming species. This is because such particles have the highest

9



anisotropic stress which means they have the most significant e↵ect on tensor pertur-

bations. We generalize the situation of three massless neutrinos which already exists

in literature to include massive neutrinos, extra neutrinos beyond three, bosonic de-

gree of freedom, as well as the novel case of relativistic axions produced by axion

strings. As we have already seen these relativistic axions have a non-thermal spec-

trum.

For particles with a thermal distribution, the background phase space density is

given by

F̄ (P 0) =
g

eP 0/T⌫ ± 1
(2.4)

where the plus sign is for fermions while the minus sign is for bosons, and g gives the

number of degrees of freedom. For the two cases of interest in this work: g = g⌫ = 2 for

a single neutrino, and g = gB = 1 for a real scalar. T⌫ is the temperature of neutrinos

which is related to the photon temperature at times after neutrinos decoupling as

T⌫ = (4/11)1/3T�. We begin with the energy-momentum relationship,

gµ⌫P
µP ⌫ = �(P 0)2 + gijP

iP j = �m2 (2.5)

We write this as

p̃2
0 = gijP

iP j (2.6)

where we have defined a new variable through a shift

P 0 ⌘
q

m2 + p̃2
0. (2.7)
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2.2.1 Damping from Neutrinos

Neutrinos decouple early in the history of the universe. Their distribution function

then satisfies the relativistic collisionless Boltzmann equation,

dF (t, xi, �i, p̃0)

dt
=
@F

@t
+

dxi

dt

@F

@xi
+

dp̃0

dt

@F

@p̃0

+
d�i

dt

@F

@�i
= 0 (2.8)

Using the variable p̃, one finds that to first order that Eq. (2.8) becomes the

Einstein-Vlasov equation

✓

@F

@t

◆

first order

=
@�F

@t
+

�ip̃0

a
p

m2 + p̃2
0

@�F

@xi
� ȧ

a

(m2 + p̃2
0)

p̃0

@�F

@p̃0

� 1

2

@F̄

@p̃0

p̃0
@hij

@t
�i�j

= 0 (2.9)

and �i = �i are directional cosines. Defining µ ⌘ �iki/k and using the mode decom-

position of hij and �F

hij =
X

�=+,⇥

Z

d3k

(2⇡)3
h�,k(t)Q

�
ij(~x) (2.10)

�F =
X

�=+,⇥

Z

d3k

(2⇡)3
f�,k(t, p̃0, µ)�i�jQ�

ij(~x) (2.11)

where Q�
ij are symmetric, traceless and divergenceless tensors that satisfy: Q�

ij = Q�
ji,

Q�
ij;a

;a
(~x) + k2Q�

ij(~x) = 0 and Q�
ij

;j
= 0. The covariant derivative is with respect to

the unperturbed spatial FRW metric. Thus, the first order Einstein-Vlasov equation

in terms of the decomposed modes becomes

@fk

@t
+

ikµ

a

 

p̃0
p

m2 + p̃2
0

!

fk �
ȧ

a

✓

m2 + p̃2
0

p̃0

◆

@fk

@p̃0

=
1

2
p̃0
@F̄

@p̃0

@hk

@t
(2.12)

Once again, following [26] we define new variables qµ = aP µ and q0 = aP 0 ⌘ q

and conformal time, d⌧ = dt/a(t). Then Eq. (2.12) can be written as

@fk

@⌧
+

ikµp̃0
p

m2 + p̃2
0

fk =

✓

q2 � a2m2

q

◆

@F̄

@q

1

2

@hk

@⌧
(2.13)
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This equation determines the time evolution of the perturbation of distribution func-

tion �F which in turn determines the anisotropic stress part of the perturbed energy-

momentum tensor that goes into the RHS of Eq. (2.3).

�Tij = a2
X

�=+,⇥

Z

d3k

(2⇡)3
⇧�,kQ

�
ij(~x) (2.14)

and

Tij =
1p�g

Z

d3q

(2⇡)3q
qiqjF (q) =) �Tij =

1p�g

Z

d3q

(2⇡)3q
qiqj�F (q) (2.15)

Using Eqs.(2.11), (2.14) and (2.15), one finds that the anisotropic stress is

⇧�,kQ
�
ij(~x) = a�4

Z

d3q

(2⇡)3q
q2�i�j�l�mf�,kQ

�
lm(~x) (2.16)

where f�,k ⌘ f�,k(⌧, q, µ). On the other hand, Eq. (2.13), which is a first order

di↵erential equation, has the following solution

fk(⌧, q, m, µ) =
q2

2

@F̄

@q

Z ⌧

⌧dec

d⌧ 0h0
k(⌧

0)↵(m, ⌧ 0, q)2e�iµ↵2k(⌧�⌧ 0) (2.17)

where we have defined

↵(⌧, m, q)2 = 1� m2a(⌧)2

q2
(2.18)

and

µ =
�iki

k
=) µ = �̂ · k̂ (2.19)

and used the fact that fk(⌧dec, q, m, µ) = 0 because there is no anisotropic stress at

neutrino decoupling since the neutrinos just start to free-stream at decoupling. The

polarization index � is suppressed on both sides of Eqs.(2.17). Finally using the

identity

Z

d⌦q�
i�j�l�me�i�ik

iuQ�
lm =

1

8
(�il�jm + �im�jl)

Z

d⌦qe
�iµu; d3q = q2dq d⌦q

(2.20)
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one can write the anisotropic stress in momentum space (again the polarization index

� is suppressed)

⇧k =
1

8a(⌧)4

Z

d⌧ 0 d3q

(2⇡)3
(1� µ2)2e�iµbh0

k(⌧
0)
@F̄ (q)

@q
q2↵2 (2.21)

where

b ⌘ k(⌧ � ⌧ 0)↵2 (2.22)

↵2 ⌘ 1� m2a(⌧ 0)2

q2
(2.23)

µ = �̂ · k̂ = cos ✓q (2.24)

where we have taken k̂i to be in the z-direction in q-space. We also define

u ⌘ k⌧ (2.25)

s ⌘ k⌧ 0 (2.26)

We can perform the integrations over d⌦q = d�qd(cos✓q) and find that anisotropic

stress is then given by

⇧k =
⇡

2a(u)4

Z u

udec

dsdq
dhk(s)

ds

@F̄ (q)

@q
q4↵2



sinb

b
+ 2↵2

✓

�sinb

b
� 2

cosb

b2
+ 2

sinb

b3

◆

+ ↵4

✓

sinb

b
+ 4

cosb

b2
� 12

sinb

b3
� 24

cosb

b4
+ 24

sinb

b5

◆�

(2.27)

Furhermore we define

x ⌘ q

aT
=

q

a0T0

=
q

T0

(2.28)

where the second equality holds for our normalization that the present day scale factor

is a0 = 1. This allows us to write the distribution F̄ (q) and the function ↵ as

F̄ (x) =
g⌫

ex + 1
(2.29)

↵2(m, x) = 1� m2a2

T 2
0 x2

(2.30)
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With this we find

⇧k =
1

16⇡2a(u)4

Z u

udec

ds dx
dhk(s)

ds

@F̄ (x)

@x
x4T 4

0↵
2(m, x)



sin((u� s)↵2(m, x))

(u� s)↵2(m, x)

+ 2↵2(m, x)

✓

�sin((u� s)↵2(m, x))

(u� s)↵2(m, x)
� 2

cos((u� s)↵2(m, x))

((u� s)↵2(m, x))2

+2
sin((u� s)↵2(m, x))

((u� s)↵2(m, x))3

◆

+ ↵4(m, x)

✓

sin((u� s)↵2(m, x))

(u� s)↵2(m, x)

+ 4
cos((u� s)↵2(m, x))

((u� s)↵2(m, x))2
� 12

sin((u� s)↵2(m, x))

((u� s)↵2(m, x))3
� 24

cos((u� s)↵2(m, x))

((u� s)↵2(m, x))4

+ 24
sin((u� s)↵2(m, x))

((u� s)↵2(m, x))5

◆�

(2.31)

The full gravitational wave equation is

d2hk(u)

du2
+ 2

✓

da(u)/du

a(u)

◆

dhk(u)

du
+ hk(u) =

16⇡GNa2(u)

k2
⇧k

=
6

⇢(u)

✓

da(u)/du

a(u)

◆2

⇧k

(2.32)

This gives an equation for the transverse-traceless tensor modes as a general func-

tion of the mass of the particle creating the anisotropic stress for a general phase

space distribution F̄ (x). It can be seen to reduce to the standard form for three

massless neutrinos when g⌫ = 6 and m = 0 [26].

From the relation Eq. (2.31), one can then include additional degrees of freedom

by simply using g⌫ = 8 (10) for four (five) massless neutrino species. We use the

simplifying assumption that the neutrinos all have the same decoupling temperature.

(To generalize to arbitrary decoupling temperatures we would change the lower inte-

gration limit of the anisotropic stress for that species). For a mixed scenario where

particles of di↵erent masses contribute, one can use Eq. (2.31) for the anisotropic

stress, ⇧k ,i, generated by a single species of mass m = mi with g⌫ = gi degrees of
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freedom, and then add another anisotropic stress term of this form for any additional

species of mass mj with degrees of freedom gj. In other words, the total anisotropic

stress due to i particles is given by the sum ⇧k,tot =
P

i⇧k,i.

To graphically display the e↵ect of adding non-zero neutrino masses we adopt the

simple analytic form for the scale factor a(⌧) in a matter plus radiation universe given

by

a(⌧) =

✓

⌧

⌧0

◆2

+ 2

✓

⌧

⌧0

◆

p
aeq; ⌧0 =

2p
⌦MH0

. (2.33)

Note that today, the relation between radiation and matter densities is given by

⌦r = aeq⌦M (2.34)

For the standard cosmological scenario with Ne↵ = 3, i.e., three e↵ective neutrino

degrees of freedom, we have aeq = 1/3600, ⌦M = 0.3 and ⌦r = ⌦� + ⌦⌫ since the

free-streaming neutrinos are relativistic. Further it can be shown that [26]

⌦⌫
⌦⌫ + ⌦�

= 0.40523; g⌫ = 6 (2.35)

When adding extra neutrino species, we use the above relation and keep ⌦M fixed but

change the ratio in Eq. (2.35) accordingly to get a new redshift for matter-radiation

equality [45]. So, for Ne↵ = 4, aeq = 1/3172 and for Ne↵ = 5, aeq = 1/2834.

One sees that Eq. (2.32) is an integro-di↵erential equation since the source term

on the right-hand-side is the integral in Eq. (2.31). To put the equation into a

suitable form for a numerical solution, we adopt the method in Appendix A of [46],

which consists of rewriting the single, second order integro-di↵erential equation as a
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system of coupled first-order Volterra type integro-di↵erential equations. This can

then be solved by standard methods of numerical integration [47]. There is a slight

di↵erence in our method of solution from that in [26] and [46] due to the form of

the integral kernel. Namely, we do not have the simplifying option of integrating

out the distribution function (which would give the energy density in the standard

case of massless neutrinos) due to the additional x-dependence of other factors in the

integrand. We therefore were forced to generate numerical values for the integrand

at each value of u and s, after which the procedure of [46] could be implemented.

2.2.2 Damping from Axions

The fine tuning of ✓QCD can be avoided in models of particle physics that con-

tain an extra U(1) Peccei-Quinn (PQ) symmetry. A consequence of these models

is a light pseudo-scalar particle, the axion. In a cosmological setting, the axion is

massless above the QCD temperature but gains a small mass below this tempera-

ture. Even though the axion is very light, with a typical mass ma = O(10�3 eV), it

can be non-relativistic because it is produced coherently throughout the cosmological

horizon and has momenta given by ⇠ t�1 at cosmic time t. This argument, however,

ignores the topology that accompanies the breaking of the PQ symmetry, which is

relevant if the PQ symmetry breaking scale occurs below the scale of inflation. In

this case, the spontaneous breaking of the PQ symmetry leads to the production of

axionic cosmic strings with energy density set by the PQ energy scale. As the strings

oscillate, they radiate relativistic axions. At the QCD temperature scale, the strings

get connected by axionic domain walls, and the whole network of strings and walls

collapses, dissipating energy again into relativistic axions. Hence the axion density in

the universe contains two separate components: the non-relativistic component due

to coherent oscillations of the axion field, and the relativistic component due to the
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radiation from topological defects. The latter component can be significant, and may

even dominate the non-relativistic component for large values of the Peccei-Quinn

symmetry breaking scale. Relativistic axions can also have anisotropic stress and

hence they can couple to gravitational waves just as neutrinos do.

In Appendix C, we present an extended introduction to Axions as well as derive

the spectral energy density of relativistic axions which is presented here again,

⇢a(t) =
4⇡f 2

a

t2

Z ⌦5/6/
p

t̃t⇤

⌦2/3/t̃

✓

q2 + (t/t̃)m2
a

q2 + m̃2

◆1/2 

ln

✓

⌦5/3

t̃q2�

◆

� 1

2

�

dq

q
(2.36)

where, as previously defined, q is the comoving momentum, fa  2 ⇥ 1010 GeV is

the PQ symmetry breaking scale, � = 1/fa, ⌦ = 2⇡, m̃ ⌘ 1/t̃ = 10�9 � 10�8 eV

and t⇤ is the time at which the axions decoupled. The mass of the axion ma and the

decoupling temperature T ⇤
d of axions is related to the scale fa through [48]

ma = 6⇥ 10�6eV

✓

1012GeV

fa

◆

=
6⇥ 1015eV2

fa

(2.37)

T ⇤
d = 5⇥ 1011 GeV

✓

fa

1012 GeV

◆2

(2.38)

Since T / 1/a(t), we can find t⇤ using T ⇤
d and the scale factor a(t) in (2.33). We

will consider damping from relativistic axions with the spectrum (2.36) for three

di↵erent fa values 108, 109 and 1010 GeV. This lies within the range 107GeV < fa <

2⇥ 1010GeV where the lower bound on fa comes from astrophysical constraints [49]

and the upper bound which comes from the requirement that the energy density

in relativistic axions remain below critical energy density to avoid overclosing the

universe. To calculate the anisotropic stress ⇧k, we need the unperturbed phase

space distribution function F̄ (q) of these relativistic axions which we can read o↵

from (2.36)

F̄ axion(q) =
f 2

aa(t)4

t2q3(q2 + a(t)2m2
a)

1/2

✓

q2 + (t/t̃)m2
a

q2 + m̃2

◆1/2 

ln

✓

⌦5/3

t̃q2�

◆

� 1

2

�

(2.39)
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However, there are few di↵erences from the neutrino case of (2.31). Since axions

have a non-thermal spectrum, we don’t do the substitution of (2.28) and retain the

expression for ↵2 in (2.18). Thus, the expression for ⇧k for axions becomes

⇧axion
k = ⇧k(F̄ ! F̄ axion) (2.40)

where ⇧k is defined in Eq. (2.31) and ↵(m, q, ⌧)2 is the same as in Eq. (2.18)

2.3 Results and Analysis

For massless neutrinos, the e↵ects of damping are determined solely by the neu-

trino energy density contribution, (which falls as a�4) once one enters the matter-

dominated era, and will thus be most significant for k & keq = aeqHeq ⇡ 170/⌧0. The

e↵ect of non-zero neutrino masses will be to add an extra k-dependence to damp-

ing, as free streaming, and hence damping, will be reduced when the temperature

is of order of the mass. k-modes that come inside the horizon while neutrinos are

relativistic, and contribute significantly to the overall energy density, will be damped

more. On the other hand, those modes that come inside the horizon at later times,

either when neutrino masses become significant, or during matter domination, when

the neutrino energy density fraction may have been reduced considerably due to red-

shifting will be damped less. This heuristic behavior is validated by our detailed

calculations, which quantitatively explore this e↵ect. For demonstrations purposes

here, we display the damping as a function of neutrino mass for three di↵erent values

of k⌧0 = 100, 200, 1000.

In Fig. 2.1, we plot the damping from 3 massless and a 1 eV neutrino and com-

pare it to the case of 4 massless neutrinos. In doing so, we have adjusted aeq to

Ne↵ = 4 for both cases, which is a good approximation since neutrino masses of
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Figure 2.1: The k-dependence of the damping of an extra massive neutrino is demon-
strated. The plots show that the damping is reduced for gravitational wave modes
that enter the horizon as neutrinos are beginning to become non-relativistic. The
damping is also less at later times when the neutrino energy fraction has been re-
duced due to redshifting. The region in each plot on the left around the first minima
is zoomed in the adjacent plot on the right. For the k⌧0 = 1000, the red and blue
lines are overlapping, implying a negligible e↵ect of mass.
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O(1) eV are largely relativistic at matter-radiation equality. Note that a cosmologi-

cal scenario with a 1 eV neutrino and Ne↵ = 4 is consistent with the current Planck

data [50]. For k⌧0 = 100, the ratio between the minima of 3 massless plus 1 eV

and homogeneous (undamped) case is 0.94, and for the 4 massless vs homogeneous

case is 0.92, a di↵erence of order 2%. For k⌧0 = 200, the di↵erence in damping is

of order 1.5%. And finally, for k⌧0 = 1000 the di↵erence in damping is now only 0.7%.
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Figure 2.2: The damping e↵ect of extra massless neutrino species is shown. Each
neutrino species has 2 degrees of freedom, thus g⌫ = 6, 8, and 10 correspond to 3, 4,
and 5 neutrinos.

Similarly the e↵ect of additional massless degrees of freedom is to increase the

damping of gravitational waves. As seen in Fig. 2.2 this e↵ect varies slightly with

conformal time, ⌧ . We can compare the e↵ect of extra species for example at the

first minima. For the undamped case, this minima occurs at u = 4.54 independent

of Ne↵ . However, including GW damping through free-streaming, this minima shifts
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to u = 4.72, 4.74, 4.76 (Ne↵ = 3, 4, 5 respectively). With respect to homogenous

case, the mode amplitude at the minima is 76.5%, 73.1% and 70.5% as large for

Ne↵ = 3, 4, 5, respectively. Thus, tensor modes are damped more, with increasing

Neff , as expected. Since the identity of the source of any possible extra degrees of

freedom is currently unknown, one may want to expand the realm of possibilities to

include bosonic degrees of freedom. As expected on the basis of number of degrees

of freedom, and hence Ne↵ , the damping due to a single boson is less by about 19%,

than for that of a single, massless neutrino species. Two bosonic degrees of freedom

are virtually indistinguishable from a single neutrino.
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Figure 2.3: The e↵ect of axions produced by axionic strings.

In Fig. 2.3, we examine the damping of gravitational waves caused by relativistic

axions. We compare the results for axions with fa = 109 GeV versus 3 massless

neutrinos since relativistic axions have 26% and 3 massless neutrinos constitute 10%
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of critical density at last scattering. With respect to the no-damping case, the mode

amplitudes at the minima are damped by 76.5% for 3 neutrinos versus 77% for ax-

ions. However, note that the minima for neutrinos is at u = 4.72 but for axions it

is at u = 4.42. And as can be seen this phase shift persists throughout the time

evolution. Thus, although axions damp the amplitudes by the same amount as neu-

trinos for these parameters, their phase shift is an important distinguishing feature.

We can understand this e↵ect on physical grounds. The axion phase space distribu-

tion, Eq. (2.39), has an explicit time dependence that is not present in the thermal

neutrino distribution function. As a result the integral over time of the anisotropic

stress, which produces the damping, is modulated compared to the neutrino case,

and hence modulates the resulting k-dependent damping of gravitational waves. This

phase di↵erence will have an observational impact on the damping of CMB B-modes.

Recall that it is �̇ that enters into the Boltzmann equation for the temperature per-

turbations [51]. Following [22], we expect all tensor multipole coe�cients to depend

on �(u) only through a factor of |�0(uLSS)|2, where uLSS = (1 + zEQ)/(1 + zLSS) is the

value of u at the last scattering surface (LSS). We take zLSS = 1089 and convert into

uLSS using Eq. (2.33) and ⌦M = 0.3. Moreover, we expect the dominant contribution

to multipole l in the CMB will come from wavenumber, k ⇡ aLSSl/dLSS [22] where

aLSS is the scale factor at the surface of last scattering and dLSS is the angular diame-

ter distance of the surface of last scattering. Using numerical values of aLSS and dLSS

we get

l = 0.878uLSS. (2.41)

In Fig. 2.4 we show the ratio of �02 for damped to undamped gravitational waves

for axions and di↵erent numbers of massless neutrinos. We have extracted this ratio

at the surface of last scattering for several di↵erent low l values. We expect the graph
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Figure 2.4: The square of the ratio of the time derivative of damped modes to
undamped modes which is useful for calculating the B mode correlation function
CBB

l .

to look similar at higher l values but the computations at high l become prohibitively

expensive. Both neutrinos and axions produce an oscillatory pattern in the damping

but there is a phase shift between them. It is important to note that at certain l,

“damped” gravitational waves can actually produce a larger signal than undamped

waves by a factor of 2 or more. This surprising e↵ect is due to the fact that for some

k⌧ values there is actually a relative amplification caused by anisotropic stress, as

can be seen from Figs. 2.1 and 2.2, where the mode amplitude does not decrease as

rapidly as in the undamped case.

2.4 Conclusions

The observation of a primordial gravitational wave spectrum would provide a

direct window on physics of the very early universe and possibly beyond standard
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model physics. In order to extract as much cosmological information as possible from

such a signal, one must be mindful of any phenomena which may alter the primordial

signal. One example of such a process is the damping of gravitational waves by

free-streaming particles such as neutrinos. In this chapter, we have generalized the

formalism for deriving the e↵ects of damping of gravitational waves due to anisotropic

stress caused by free-streaming by deriving a general formula for the anisotropic

stress as a function of mass and number of degrees of freedom, which should be

useful for calculating the cosmological signature of possible additional non-standard

model relativistic species. We find that for additional neutrino masses of current

cosmological interest, the e↵ects of non-zero mass on damping in comparison to the

massless case is most pronounced for k⌧0 ⇡ 100� 200. For longer wavelength modes,

that enter the horizon later, the damping is suppressed for all cases because the

neutrino energy density is less significant. In addition we have explored the possible

impact of a relativistic axion background, as might be present due to radiation from

axion strings. While the overall damping produced by such a background could

perhaps be comparable to that due to three standard model neutrinos, we find that

their non-thermal phase space distribution will produce a possibly measurable phase

shift in the damping signature. If a non-zero tensor B-mode contribution is observed

in future CMB experiments, one might hope to use these results to help constrain

new physics beyond the standard model.
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Chapter 3

INFLATING WITH THE HIGGS BOSON

3.1 Introduction

Inflation [52, 2, 3] successfully addresses the greatest puzzles of theoretical cosmol-

ogy. Over the past 20 years, increasingly precise measurements of the temperature

fluctuations of the cosmic microwave background radiation (CMB) have confirmed

the nearly scale invariant power spectrum of scalar perturbations, a relatively generic

inflationary prediction. These many successes, however, underscored the inability

to probe perhaps the most robust and unambiguous prediction of inflation, the gen-

eration of a stochastic background of gravity waves associated with what are likely

enormous energy densities concomitant with inflation (e.g., [53]).

Higgs Inflation (HI) postulates that the Standard Model Higgs field and the infla-

ton are one in the same [54]. This powerful assumption allows HI to be, in principle

much more predictive than many other models of inflation, as by measuring the

masses of the Higgs boson and the top quark at the electroweak scale (100 GeV),

one might predict observables at much larger energy scales associated with inflation

(V 1/4
inf . 1016 GeV).

However, in practice this enhanced predictive power is elusive due to a strong

sensitivity to quantum e↵ects, unknown physics, and other technical subtleties in

the model. Specifically, one connects observables at the electroweak and inflationary

scales using the renormalization group flow (RG) of the SM couplings [55, 56, 57, 58,
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59, 60]. It is reasonable however to expect that there is new beyond standard model

physics at intermediate scales, and even if the SM is extended only minimally to in-

clude a dark matter candidate [61] or neutrino masses [62, 63, 64, 65] this new physics

can qualitatively a↵ect the connection between electroweak and inflationary observ-

ables. Moreover, perturbative unitarity arguments require new physics just above the

scale of inflation [66, 67], and in addition the unknown coe�cients of dimension six

operators can significantly limit the predictive power of HI [68]. The HI calculation

also runs into various technical subtleties that arise from the requisite non-minimal

gravitational coupling and quantization in a curved spacetime [69, 70, 71]. Finally,

it is worth noting that HI is also at tension with the measured Higgs boson and top

quark masses, and an O(2�) heavier Higgs or lighter top is required to evade vacuum

stability problems [72].

Besides these issues that impair the predictivity of HI, we discuss in this chapter

an important additional source of ambiguity in calculations of HI that had not been

fully explored before. Since the quantum corrections are significant when connecting

the low energy and high energy observables, one should not work with the classical

(tree-level) scalar potential, as is done in may models of inflation, but one must cal-

culate the quantum e↵ective potential. It is well-known that in a gauge theory the

e↵ective potential explicitly depends upon the choice of gauge in which the calculation

is performed [73, 74], and care must be taken to extract gauge-invariant observables

from it [75, 76, 77, 78] (see also [79, 80]). This fact can perhaps be understood most

directly by recalling that the e↵ective action is the generating functional for one-

particle irreducible Green’s functions, which themselves are gauge dependent [74]. In

practice one often neglects this subtlety, fixes the gauge at the start of the calculation,

and calculates observables with the e↵ective potential as if it were a classical poten-
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tial. In the context of finite temperature phase transitions, it is known that when

calculated naively in this way, the predictions for observables depend on the choice

of gauge used [81, 82, 83, 80, 84, 85, 86]. Because of the extreme tension between HI

models and the data, we assess here the degree to which this gauge uncertainty might

a↵ect the observables in Higgs Inflation. We found that the gauge ambiguity intro-

duces uncertainties that are comparable to the variation of the physical parameters,

i.e. the Higgs mass. As a result, this ambiguity alone cannot resuscitate moribund

models.

This chapter is organized as follows - we first present the canonical theory of HI

in Section 3.2. Next, we briefly discuss the modifications to Standard Model e↵ective

potential when working with HI in Section 3.3. In Section 3.4 we present the results of

gauge dependence of physical observables predicted from HI. Finally, we conclude in

Section 3.5. A thorough introduction to the concept of E↵ective Potential is relegated

to Appendix D.

3.2 Fundamentals of Higgs Inflation

Since the most common models of inflation are driven by a scalar field, it is most

interesting to see if the Higgs could be that field. The higgs field potential is quartic,

so to flatten it, higgs inflation relies on a non-minimal gravitational coupling. Let

� = (�+,�0)T be the Standard Model (SM) Higgs doublet. Its gauge interactions are

determined from the gauge covariant derivative,

Dµ� =

✓

rµ � igtaW a
µ �

ig0

2
Bµ

◆

� (3.1)

where rµ is the metric covariant derivative and ta = �a/2 are the SU(2) generators.

After adding the non-minimal coupling term, �†�R with R the Ricci scalar, the
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action for the Higgs sector becomes

SJ [gµ⌫ ,�] =

Z

d4x
p
�g

⇢

(Dµ�)†Dµ�� V (�†�)� ⇠�†�R� 1

2
M2

p R

�

(3.2)

where

V (�†�) = m2�†�+ �(�†�)2 (3.3)

is the scalar potential. Taking m2 < 0 causes the Higgs to acquire a vacuum expecta-

tion value h�i = (0, v
p

2)T . To prevent the theory from containing ghosts, we must

require M2
p + ⇠v2 > 0.

The action in Eqn (3.2), known as the Jordan frame action, yields field equations

with an undesirable coupling between the Higgs field and the metric. We can remove

the non-minimal coupling term and move to the Einstein frame by performing a Weyl

transformation

gµ⌫ =
1

⌦2(x)
ĝµ⌫(x) (3.4)

where

⌦2(x) ⌘ 1 +
2⇠�†�

M2
p

(3.5)

Under this transformation,

gµ⌫ = ⌦2ĝµ⌫ det g = ⌦�8det ĝ (3.6)

and thus the action becomes

SE[ĝµ⌫ ,�] =

Z

d4x
p
�g

⇢

(Dµ�)†Dµ�

⌦2
� V (�†�)

⌦4
+

3M2
p

4

rµ⌦2

⌦2

rµ⌦2

⌦2
� 1

2
M2

p R̂

�

(3.7)
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However, the kinetic term is no longer canonically normalized. For a theory with

one real scalar field, it is always possible to perform a field redefinition and return

the kinetic term to its canonical form. But when the theory contains multiple scalar

fields with non-minimal couplings this is not possible in general. The Standard Model

Higgs doublet, for example, contains four real scalar degrees of freedom. However,

for the SM Higgs we can make use of the SU(2) symmetry by writing,

�(x) = U

0

B

@

0

h(x)/
p

2

1

C

A

where U = exp [2i⇡a(x)ta] (3.8)

Here h(x) and ⇡a(x) are real scalars. And in this frame (Einstein) the action becomes,

SE[ĝµ⌫ , h, ⇡a] =

Z

d4x
p

�ĝ

⇢

1

2

rµhrµh

⌦2
+

h2

⌦2
Tr[VµV

µ]� U(h)� 1

2
M2

p R̂

+
3M2

p

4

rµ⌦2

⌦2

rµ⌦2

⌦2

�

(3.9)

where importantly,

U(h) ⌘ V (h2/2)

⌦2
=

2m2h2 + �h4

4
⇣

1 + ⇠h2

M2

p

⌘2 (3.10)

and Vµ is defined as

Vµ ⌘ (@µU) U † + iW a
µ ta � iUBµt

3U † (3.11)

The second term in Eqn (3.9) represents interactions between the physical Higgs

field and the gauge and Goldstone boson fields. These interactions are important for

reheating and for loop-corrections to inflation, but for the moment we will drop them.

Finally, we put the action in its canonical form by introducing a new field �(h) which

satisfies,

d�

dh
=

s

1

⌦2
+

3

2

M2
p

⌦4

✓

d⌦2

dh

◆2

(3.12)
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We can solve this explicitly to obtain �(h),

�(h) = �(0) +
p

6Mp

q

1 + 1
6⇠

arcsinh
h

⇠h
Mp

q

6 + 1
⇠

i

�
p

6Mp arctanh

2

4

1r
1+ 1

6⇠ +
m2

p
6⇠2h2

3

5 (3.13)

The solution can be broken up into three district regimes:

�(h) ⇡
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>
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>

>

>

>

>

>
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3
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Mp ln
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i
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8
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q

3
2
Mp

⇠h2
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p
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< h < Mpp

⇠

q

3
2
Mp ln ⇠h2

M2

p
for Mpp

⇠
< h

(3.14)

where we have also assumed ⇠ � 1 and dropped higher order terms in ⇠�1. These

solutions (taking �(0) = 0) are shown in Fig. 3.1. Since �(h) is monotonically

increasing, it is generally possible to invert and obtain h(�), but a closed form, exact

expression does not exist.
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Figure 1: Left: The solution of Eq. (11) subject to the boundary condition �(0) = 0. Note how the solution differs across the
threshold values h = M/� and M/

p
�. Right: Exact and approximate expressions for �(h), given by Eqs. (12) and (13),

respectively.
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where we have also assumed � � 1 and dropped higher order terms in ��1. These solutions (taking �(0) = 0) are shown
in Fig. 1. Since �(h) is monotonically increasing, it is generally possible to invert and obtain h(�), but a closed form,
exact expression does not exist. We can however invert the approximations Eq. (13) to obtain
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in the three regimes.

In terms of the rescaled field �, the action becomes (check)

SE [ĝµ� , �] =
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d4x
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�ĝ

⇢

1

2
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U(�) ⌘ U(h(�)) =
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M4
P

M4
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is the scalar potential. For the purposes of studying Higgs inflation (or vacuum stability), the O(h4
) term dominates and

we can neglect the terms of order O(�M2, m2h2
). Using the approximations for h(�), Eq. (14), we can obtain U(�) in

the three regimes:
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Figure 3.1: The canonically normalized field � as a function of the higgs field, h.

In terms of the rescaled field ⇠, the action becomes

SE[ĝµ⌫ ,�] =

Z

d4x
p

�ĝ

⇢
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2
rµ�rµ�� U(�)� 1

2
M2

p R̂
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(3.15)
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where the scalar potential U(�) is given by

U(�) =
2m2h(�)2 + �h(�)4

4
⇣

1 + ⇠h(�)
M2

p

⌘2 (3.16)

For the purposes of studying Higgs inflation, the O(h4) term dominates and we can

neglect the terms of order O(m2h2). Using the approximations for h(�), Eq. (14), we

can obtain U(�) in the three regimes:
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Figure 2: Left: A plot of U(�), given by Eq. (16), for various values of �. Right: The approximation Eq. (17).

We show a plot of U(�) in Fig. 2. As seen in the figure, and confirmed in Eq. (17), the potential becomes exponentially
close to flat above � & MP . This is the regime in which we will have slow-roll inflation.

1.4 Inflationary Potential

Inflation occurs in the large field region of the potential where h � M/
p

� and � � MP . As we will see in the following
section, inflation ends in the transition region � ⇠ MP , and it is not a good approximation to assume � � MP always.
Therefore we will use the lower expression in Eq. (17) which is valid for all � > MP /�. That is, the inflationary potential
is given by

U(�) =

�

4
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P
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1 � e�
p

2/3�/MP

⌘2
with � =

r
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�

(18)

If we are only working with the tree-level theory, then � is a constant parameter. Since we would eventually like to consider
the loop corrections, we will anticipate the RG scale dependence now by writing � = �(h(�)). The slow roll parameters
are defined by
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They are straightforward to calculate
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4

Figure 3.2: The inflationary potential as a function of the canonically normalized
scalar field �.

We show a plot of U(�) in Fig. 3.2. As seen in the figure, and confirmed in Eq

(3.17), the potential becomes exponentially close to flat above � & Mp. This is the

regime in which we get slow-roll inflation.

Inflation occurs in the large field region of the potential where h � Mp/
p
⇠ and

��Mp and ends in the transition region � ⇠Mp, and it is not a good approximation
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to assume � � Mp always. Therefore we will use the lower expression in Eq (3.17)

which is valid for all � > Mp/⇠. That is, the inflationary potential is given by

U(�) =
�

4

M4
p

⇠2

⇣

1� e�
p

2/3�/Mp

⌘2

with � =
3

2
Mp ln



1 +
⇠h2

M2
p

�

(3.18)

If we are only working with the tree-level theory, then � is a constant parameter.

Since we would eventually like to consider the loop corrections, we will anticipate

the RG scale dependence now by writing � = �(h(�)). The slow roll parameters are

defined by

✏ ⌘
✓

dU/d�

U

◆2

, ⌘ ⌘M2
p

d2U/d�2

U
(3.19)

and so for the Higgs Inflation potential given above it can be simply calculated as

✏ =
4

3

1

(1 + ✓2)2



✓2 +
1

4

d ln�

d ln h
(1 + ✓2)

�2

⌘ = �4

3
✓2(1� ✓2) + ✓2(1 + ✓2)

✓

d ln�

d ln h

◆

+
1

6
(1 + ✓2)2

"

d2 ln�

d(ln h)2
+

✓

d ln�

d ln h

◆2
#

(3.20)

where ✓ = Mp/(
p
⇠h) and during inflation ✓ ⌧ 1. If we are only working to tree level,

then � is just a constant, and we find ✏ / ✓4, ⌘ / ✓2. Then as long as the Higgs

field begins at large field values, h � Mp/
p
⇠, we are in the slow roll regime. At

the one-loop level, quantum corrections cause � to run, and in this case we find, for

instance, ✏ / (d ln�/d ln h)2. Assuming that the initial conditions provide ✏, ⌘ ⌧ 1

inflation will continue until ✏ = O(1). For the tree-level higgs potential in which

d ln�/d ln h = 0, we find the inflationary observables,

✏ = 1 =) hend

Mp/
p
⇠

=

✓

4

3

◆1/3

⇡ 1.07 ,
�end

Mp

=
p

32 ln

✓

2p
3

+ 1

◆

⇡ 0.940 (3.21)

As we anticipated in the previous section, at the end of inflation we have � = O(Mp)

and we are in the transition region, see Fig. (3.17). The number of e-foldings as the
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field rolls from �i to �f < �i is given by

N = ln
af

ai

=

Z �f

�i

U(�)

U 0(�)M2
p

d� ⇡ 3

4

✓

⇠h2
i

M2
p

�
⇠h2

f

M2
p

◆

� 3

4
ln

1 + ⇠h2

i
M2

p

1 +
⇠h2

f

M2

p

(3.22)

The CMB scale perturbations were set up approximately N = 60 e-foldings before

the end of inflation. By requiring N = 60 and �f = �end we can solve for �i = �cmb

to be

�cmb ' 5.45Mp (3.23)

Equivalently hcmb ' 9.21Mp/
p
⇠. Note that N and �cmb are independent of ⇠. In

the slow roll limit, it is straightforward to calculate the scalar spectral index ns,

its running d ln ns/d ln k, and the tensor-to-scalar ratio r. These are given by the

standard formulae

ns � 1 = �6✏+ 2⌘ = �8

3
✓2(1 + 2✓2)

r = 16✏ =
64

3
✓4 (3.24)

↵s =
d ln ns

d ln k
= �2⇣ + 16✏⌘ � 24✏2 = �32

9
✓4(1 + 4✓2 + 4✓4)

where ✓ = Mp/(
p
⇠hcmb) and its clear from above that the spectrum is red-tilted

meaning ns < 1. Using �comb obtained above, we can write these observables down

immediately in terms of the higgs self coupling �

ns � 1 ⇡ 0.9678� 0.0239
d ln�

d ln h
� 0.1706

✓

d ln�

d ln h

◆2

+ 0.3412
d2 ln�

d(ln h)2

r ⇡ 0.00296 + 0.1272
d ln�

d ln h
+ 1.365

✓

d ln�

d ln h

◆2

(3.25)

↵s ⇡ �0.0005233� 0.0116
d ln�

d ln h

The amplitude of curvature perturbations is given by

�2
R =

1

24⇡2M2
p

U(hcmb)

✏(hcmb)
' 2.359

p
�Mp

⇠

1

1 + 21.46 d ln�/d ln h
(3.26)
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From CMB observations, we know that �R ⇡ 5 ⇥ 10�5Mp and so we finally obtain

an expression for the non-minimal coupling

⇠ ⇡ 47183
p
�

1 + 21.46 d ln�/d ln h
(3.27)

and thus Higgs inflation requires ⇠ ⇡ 17000 for � ⇡ 0.13. The energy scale of inflation

is then predicted to be

V0 ⇡ (0.79⇥ 1016 GeV)4 (3.28)

leading to a tensor-to-scalar ratio, assume scalar density perturbations fixed by CMB

observations, r ⇡ 0.0036. To obtain a large value of r in Higgs inflationary models

isn’t generally possible because HI potential asymptotes to a constant at large field

values where inflation occurs. This flat potential then results in relatively large density

perturbations, which, in order to then match observations, constrain the magnitude

of the potential, resulting in a small tensor contribution.

3.3 Standard Model E↵ective Potential in Higgs Inflation

The Standard model e↵ective potential, (as discussed in the Appendix D) requires

modifications in the context of HI. The canonical Standard Model e↵ective potential

is calculated (i) to the one-loop order, (ii) working in the MS renormalization scheme

with renormalization scale µ, and (iii) in the renormalizable class of gauges (R⇠) as

follows:

Ve↵(h) = V (0)(h) + V (1)(h) . (3.29)

The tree-level potential is

V (0)(h) =
�

4
h4 , (3.30)
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and we can neglect the O(h0) and O(h2) terms for the purposes of studying HI

where the field value is large. The one-loop correction is [87] (see also [80] for gauge

dependent factors)

V (1)(h) = �12

4
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t
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(3.31)

where we have neglected the light fermions. We also neglect the contribution from

the Higgs mass term. During inflation, the potential is very flat and this contribution

is subdominant. The remaining SM fields, the massless photon and gluons, do not

enter the e↵ective potential at the one-loop order. The e↵ective masses are

Top Quark m̃2
t = y2

t
2⌦2

h2

W-Bosons m̃2
W = g2

4⌦2

h2

Z-Bosons m̃2
Z = g2+g0 2

4⌦2

h2

Higgs Boson m̃2
H = 3�

⌦4

h2 1�⇠h2/M2

P

⌦2+6⇠2h2/M2

P

Neutral Goldstone m̃2
G = �

⌦4

h2 + m̃2
cZ

Charged Goldstones m̃2
G± = �

⌦4

h2 + m̃2
cW

Ghosts m̃2
cZ

= ⇠gfm̃2
Z

Ghosts m̃2
cW

= ⇠gfm̃2
W

(3.32)

where ⌦2 = 1+⇠h2/M2
P was given by Eq. (3.5). We denote the gauge fixing parameter

by ⇠gf to distinguish it from the non-minimal gravitational coupling parameter, ⇠. We

implement the RG improvement as per [88, 89, 90]. (See also the reviews [87, 91]).

This consists of (1) solving the RG equations (RGEs) to determine the running pa-

rameters as functions of the RG flow parameter t, (2) replacing the various coupling

constants in Ve↵ with the corresponding running parameter, and (3) evaluating the
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RG flow parameter at the appropriate value t = t⇤ so as to minimize the would-be

large logarithms.

For the sake of discussion, let us denote the running parameters collectively as

ĉi(t) =
�

ĝ3(t), ĝ2(t), ĝ1(t), �̂(t), ŷt(t), ⇠̂(t)
 

where g2 = g and g1 = g0. Then the RGEs

take the form �ĉi/(1+ �) = dĉi/dt with the boundary condition ĉi(t = 0) = ci,0. Here

� is the anomalous dimension of the Higgs field. We neglect the running of the gauge-

fixing parameter, ⇠gf , since it is self-renormalized. This approximation is reasonable

since we focus on ⇠gf < 4⇡; for larger values of ⇠gf , perturbativity becomes an issue.

The Higgs field runs according to ��ĥ = dĥ/dt where the anomalous dimension �(t)

is given as [92]

� =
1
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3
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3
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1 + 8g2

3
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y2
t +

27

4
y4

t

i

This last equation may be solved immediately along with the boundary condition

ĥ(t = 0) = hc to obtain

ĥ(t) = hc e�̂(t) (3.34)

where �̂(t) = �
R t

0
�(t0)/(1+�(t0)) dt0, and we seek to calculate the e↵ective potential

as a function of hc. The beta functions are independent of ⇠gf , but the anomalous

dimension is gauge-variant since the Higgs field is a gauge-variant operator. Finally,

the renormalization scale runs according to µ̂ = dµ̂/dt, which may be solved along

with µ̂(t = 0) = µ0 to obtain µ̂(t) = µ0et. We solve the one-loop beta functions

using the Mathematica code made publicly available by Fedor Bezrukov at http://

www.inr.ac.ru/

~

fedor/SM/ . The code implements the matching at the electroweak
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scale to determine the couplings, ci,0, at the scale µ0 = Mt in terms of the physical

masses and parameters. The code was extended (1) by generalizing the anomalous

dimension to the R⇠ gauge as in Eq. (3.33), and (2) by including the field-dependent

factors of

s =
1 + ⇠̂(t)ĥ(t)2

M2

P

1 + (1 + 6⇠̂(t)) ⇠̂(t)ĥ(t)2

M2

P

(3.35)

in the two-loop beta functions, as indicated by [59]. The factor of s arises because of

the non-canonical Higgs kinetic term, and it appears in the commutator of the Higgs

field with its conjugate momentum [55]. Finally the RG-improved e↵ective potential

is evaluated as in Eq. (D.39) after making the replacements � ! �̂(t⇤), g ! ĝ(t⇤),

h ! ĥ(t⇤), µ ! µ̂(t⇤), and so on. The RG flow parameter, t⇤, is chosen to minimize

the would-be large logarithm arising from the top quark. This is accomplished by

solving

ŷt(t)2ĥ(t)2

2(1 + ⇠̂(t)ĥ(t)2

M2

P
)µ̂(t)2

�

�

�

�

�

t=t⇤

= 1 , (3.36)

which must be done numerically. Note that t⇤ is an implicit function of the field

variable, hc. This can be seen by writing

t⇤ =
1

2
ln

"

ŷt(t⇤)2e2�̂(t⇤)h2
c

2µ2
0

#

⇡ 1

2
ln



y2
0h

2
c

2µ2
0

�

. (3.37)

Using Eq. (3.36), the commutator factor in Eq. (3.35) is written as

s =
h

1 + 12
⇠̂(t)2µ̂(t)2

ŷ2
t M

2
P

i�1

, (3.38)

and the field dependence drops out.

3.4 Gauge Dependence Ambiguities

When working with a gauge theory, such as the Standard Model electroweak

sector, calculations typically involve spurious gauge dependence that cancels when
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physical observable are calculated. For example, in a spontaneously broken Yang-

Mills theory one may work in the renormalizable class of gauges (R⇠) upon aug-

menting the Lagrangian with a gauge fixing term Lgf = �GaGa/2 where Ga =

(1/
p

⇠gf)(@µAa µ � ⇠gF a
i�i) where �i are the would-be Goldstone boson fields and

F a
i = T a

ijvj with T a
ij the symmetry generators and vj the symmetry-breaking vacuum

expectation value. (See, e.g., [79]). A corresponding Fadeev-Popov ghost term is also

added. Physical or “on-shell” quantities, such as cross sections and decay rates, may

be calculated perturbatively, and any dependence on the gauge fixing parameter, ⇠gf ,

cancels order-by-order. Unphysical or “o↵-shell” quantities, such as propagators or

one-particle irreducible Green’s functions, may harmlessly retain the spurious gauge

dependence.

The Coleman-Weinberg e↵ective action �e↵ and e↵ective potential Ve↵ [93] have

become standard tools in the study of vacuum structure, phase transitions, and in-

flation. The e↵ective action is the generating functional of one-particle irreducible

Green’s functions, and therefore it is important to recognize that both �e↵ and Ve↵

are o↵-shell quantities, which will carry spurious gauge dependence [74]. When ap-

plying the e↵ective potential to a problem, special care must be taken to extract

gauge-invariant information. In particular, the Nielsen identities express the gauge

invariance of the e↵ective potential at its stationary points, but derivatives of the

e↵ective potential are not generally gauge invariant [77]. This suggests that inflation-

ary observables, e.g. nS, r, and dnS/d ln k, naively extracted directly from the slow

roll parameters will acquire a spurious gauge dependence.

Ideally one would like to determine the “correct” procedure for calculating phys-

ical quantities like nS from a given model in such a way that the spurious gauge
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dependence is canceled. There have been significant e↵orts made in this direction

[69, 70], but a full gauge invariant formalism is yet to be developed. Here we will take

a di↵erent approach that is more aligned with recent work on the gauge dependence

of phase transition calculations [80, 84, 85]. Specifically, we numerically perform the

“naive” HI calculation using the R⇠ gauge e↵ective potential and RG-improvement to

assess the sensitivity of the inflationary observables to the spurious gauge dependence.

After performing the RG improvement, the parameter � that appears in Eq. (3.18)

should be understood as the running coupling evaluated at the scale of inflation. Gen-

erally, � < 0.1 and its value depends upon the physical Higgs boson and top quark

masses at the input scale. For the best fit observed values, MH ⇡ 125 GeV and

Mt ⇡ 173 GeV, the coupling runs negative at h ⇡ 1010 � 1012 GeV; this is the well-

known vacuum stability problem of the Standard Model [72]. Successful HI requires

an O(2�) deviation from central values toward either larger Higgs boson mass or

smaller top quark mass.

Gauge dependence enters the calculation at two places: explicitly in the one-loop

correction to the e↵ective potential and implicitly through the Higgs anomalous di-

mension upon performing the RG improvement. To calculate the slow roll parameters,

e.g.

✏ =
M2

P

2

�

V 0/V
�2
�

�

�

h
cmb

(3.39)

the derivatives are taken with respect to �, i.e., V 0(h(�)) = (@V/@h)(d�/dh)�1. The

potential and its derivatives are evaluated at the field value, hcmb, for which the

number of e-foldings, given by

N =

Z h
cmb

h
end

dh
V (h)

V 0(h)M2
P

, (3.40)
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is N = 60. Inflation terminates at h = hend where (M2
P /2)(V 0/V )2 = 1. In Fig. 3.3

we show the energy scale of inflation,

Vinf = V (hcmb) , (3.41)

as the the Higgs boson and top quark masses are varied, and the non-minimal cou-

pling, ⇠ ⇡ few⇥103, is determined to match the observed amplitude of scalar pertur-

bations. This demonstrates that the scale of inflation is insensitive to MH , varying

only at the O(10�4) level.

To illustrate the gauge dependence, we show in Fig. 3.4 how Vinf varies with ⇠gf .

We find that Vinf also changes at a level comparable to its sensitivity to MH or Mt

as the gauge parameter deviates from the Landau gauge (⇠gf = 0). It is therefore im-

portant to consider this ambiguity for model building purposes. Note that at larger

vales of ⇠gf the scale of inflation appears to continue to decrease, but in this limit

the perturbative validity of the calculation begins to break down. To resolve this

issue, the unphysical degrees of freedom, the Goldstone bosons and ghosts, should be

decoupled as the unitary gauge is approached.

Our numerical results appear consistent with the Nielsen identities [77, 78] which

capture the gauge dependence of the e↵ective potential. The relevant identity is


⇠
@

@⇠
+ C(�, ⇠)

@

@�

�

Ve↵(�, ⇠) = 0 . (3.42)

In the slow roll regime, the gradient of the e↵ective potential is small, and the gauge

dependence is proportionally suppressed. We note that a rigorous gauge invariant

calculation could perhaps take Eq. (3.42) as a starting point. This might be an

interesting avenue for future work, either in the context of HI or other, potentially

more viable models of inflation that are embedded in gauge theories.

40



169 GeV

170 GeV

171 GeV

123 124 125 126 127 128
0.77667

0.77668

0.77669

0.77670

0.77671

0.77672

0.77673

Higgs Mass: MH @GeV D

In
fla
tio
n
Sc
al
e
:
V i
nf1ê4
@10

16
G
eV
D

Figure 3.3: The predicted energy scale of inflation, V 1/4
inf , over a range of Higgs boson

masses (MH), for three values of the top quark mass (Mt), and in the Landau gauge,
⇠gf = 0.
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Figure 3.4: The energy scale of inflation, Vinf , as the gauge parameter, ⇠gf , varies.
We fix Mt = 170 GeV and show three values of MH .

3.5 Conclusions

This chapter draws attention to the issue of gauge dependence in the Higgs Infla-

tion calculation. We find that observables like the energy scale of inflation acquires an

artificial dependence on the gauge fixing parameter by virtue of the gauge dependence

of the e↵ective potential from it is extracted. However, we find this gauge dependence

of the scale of inflation is comparable to the dependence on other physical parameter

uncertainties, which are themselves small.
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Chapter 4

LEPTOGENESIS VIA GRAVITINO DECAYS

4.1 Introduction

The Standard Model is a precise theory backed by strong experimental experience

and a tight mathematical structure. It is a quantum field theory based on relativistic

invariance and one of the consequences of that is CPT invariance - that is, invariance

under the combined shift of discrete transformations of charge conjugation, parity

and time reversal. Practically, this means that for any particle species X with mass

mX , charge QX and (say) decay width �X , there exists an anti-particle with the same

mass and decay width but opposite quantum number Q�X where in general QX = 0

is possible (implying the particle is charge neutral like the Higgs boson is neutral

under electric charge). Therefore, we expect this symmetry to be around us, meaning

equal numbers of particles and anti-particles not only in our local patch but also the

universe at large.

However, this conclusion isn’t borne out by observations of either our local neigh-

borhood or even the universe at large. For example, there is no evidence of anti-matter

in the solar system and the observational bounds on anti-helium is

nHe

nHe

< 3.1⇥ 10�6 (4.1)

If on the other hand matter and anti-matter exist in equal amounts, they must be

spatially well separated so that they can’t annihilate. If regions of equal protons and

anti-protons existed in the primordial universe for example, they would annihilate
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into pions which decay into photons, ⇡ ! 2� and this injection of photons would

significantly distort the CMB, kind of distortion (µ) we don’t observe. Based on this

we can put bounds on the separation length between matter and anti-matter lB & 10

kpc. Further, the abundances of light elements from big bang nucleosynthesis which

matches observations well requires as input matter asymmetry.

The matter/anti-matter asymmetry is quantified simply as the di↵erence in the

number density of matter vs anti-matter. However, this scales with cosmological

expansion as a(t)�3 and we can divide this factor out by the number density of

photons,

⌘ ⌘ nB

n�
=

nb � nb̄

n�
(4.2)

The number density of photons is related by thermodynamical relation to its temper-

ature simply as

n� = 2
⇣(3)

⇡2
T 3
� (4.3)

where the temperature of the CMB, T� = 2.725K and thus

n� ⇡ 411 cm�3 (4.4)

The current experimentally determined value of ⌘ = 6.2⇥ 10�10. The ratio of baryon

to entropy is also used frequently. This is because the entropy density also scales

as a�3 and mostly relativistic species contribute to entropy density. With photons

being the largest component of relativistic energy density, these two are easily related.

The fact that ⌘ 6= 0 and is a time independent measure of the baryon asymmetry

implies the existence of some mechanism that must have been operable in the early
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universe which could have created this asymmetry. Any cosmological mechanism

that generates this asymmetry is generically called Baryogenesis. However, the exact

model of baryogenesis is one of the central open questions in modern cosmology. In

the Appendix E, we describe conditions required for successful baryogenesis including

some common models. In this chapter, we propose a new mechanism of baryogene-

sis, which relies on the decay of the spin-3/2 partner of the graviton that arises in

Supergravity theories called the gravitino. An introduction to Supersymmetry is also

provided in Appendix F.

4.2 Unique Role of Gravitinos

The gravitino has two features that, taken together, make it unique among the

particles of the Minimal Supersymmetric Standard Model (MSSM): the gravitino

mass is directly related to the scale of supersymmetry breaking, and its interactions

are fixed to be uniform and of gravitational strength. Together these properties

imply that if it is kinematically allowed for the gravitino to decay, then its decay will

necessarily be out of equilibrium. That is to say, the inverse decay process occurs

with a rate �inv ⇠ T 3/M2
P , which is always smaller than the Hubble expansion rate

H ⇠ T 2/MP . A departure from thermal equilibrium is one of the three necessary

conditions for the creation of the baryon asymmetry of the universe (BAU) [94]. The

two remaining conditions, the violation of CP and the violation of baryon number

(B), are already present in the MSSM through SUSY-breaking and R-parity violating

operators. This makes the gravitino a prime candidate with which to study the origin

of the cosmological baryon asymmetry.

A possible connection between the gravitino and the cosmic baryon asymmetry

was first identified by Cline and Raby [95], hereafter denoted as CR, who recognized
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that the so-called ‘gravitino problem’ and the problem of the cosmic baryon asym-

metry could have a common solution. If the gravitino decays prior to the onset of

Big Bang Nucelosynthesis (BBN) at TBBN ⇡ 1 MeV, then the abundance of light

elements is not disrupted and the gravitino problem is avoided [96, 97, 98, 99]. The

gravitino decays with a rate [100]

�3/2 =
Ne↵

2⇡

m3
3/2

M2
P

(4.5)

where Ne↵ is the e↵ective number of decay channels, m3/2 is the gravitino mass, and

MP ⇡ 2.4⇥ 1018 GeV is the reduced Planck mass. Therefore, a gravitino with mass

m3/2 � O(10 TeV) will safely decay at a temperature Td � TBBN . CR supposed

that these gravitinos decay into a quark / anti-squark pair and that the anti-squark

subsequently decays through the MSSM’s B-violating operator

Wbv =
1

2
�00Û cD̂cD̂c , (4.6)

(see, e.g., [101] for a review of R-parity violation), and showed that such a decay

could give rise to the cosmological baryon asymmetry.

The present work explores how a baryon asymmetry can be generated from grav-

itino decays at a di↵erent scale, without the aid of the MSSM’s B-violating operator.

If gravitino decay gives rise to a lepton asymmetry, this asymmetry can be transferred

to the baryons by the weak sphaleron process [102], which violates the anomalous

B +L charge conservation and rapidly coverts L-number into B-number, as in the by

now standard leptogenesis scenario in which the lepton asymmetry arises from the

out of equilibrium decay of the Majorana neutrino [103] (see also [104] for a review).

In some sense, gravitino leptogenesis is more general than either the case consid-

ered by CR, or standard leptogenesis, as the gravitino can decay through one of the
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MSSM’s three lepton number violating operators:

Wlv =
1

2
�L̂L̂Êc +

1

2
�0L̂Q̂D̂c + µ0ĤuL̂ . (4.7)

Since weak sphalerons go out of equiliburm after electroweak symmetry breaking

occurs at Tew ⇡ 100 GeV [102], to ensure that the gravitino decays prior to this time,

we obtain a lower bound on the gravitino mass: m3/2 & 108 GeV (see Sec. 4.3 for

details). Therefore, a gravitino leptogenesis mechanism can be operative for models

with a high SUSY-breaking scale, MS & 1013 GeV.

The organization of this chapter is as follows. In Sec. 4.3, we discuss the cos-

mological context of gravitino leptogenesis, and specifically we derive bounds on the

gravitino mass and reheat temperature which are imposed by requiring that gravitinos

decay prior to electroweak symmetry breaking. Sec. 4.4 describes the CR gravitino

baryogenesis scenario [95] because it forms a useful template for our leptogenesis

model. In Sec. 4.5, we consider each of the MSSM R-parity violating operators in

turn, including a brief review of the B-violating operator that was previously stud-

ied by CR. For the other operators, we determine the parameter ranges required

to generate the baryon asymmetry of the universe through a gravitino leptogenesis

mechanism. In Sec. 4.6 we summarize our conclusions.

4.3 Cosmological Context of Gravitino Decays

In this section, we will derive an expression for the baryon asymmetry of the

universe in terms of i) the gravitino mass, ii) the reheat temperature after inflation,

and iii) a parameter � which controls the branching fraction of gravitino decays into

L-number. In the following section we then present detailed estimates of � for each

of the MSSM’s R-parity violating operators.

46



4.3.1 Gravitino Production

Inflation dilutes any primordial gravitino abundance, but during reheating grav-

itinos are regenerated by interactions in the hot plasma. This regeneration occurs

at T ⇡ TRH , which is generically much earlier than gravitino decay. During adia-

batic expansion following inflation, the gravitino to entropy ratio Y3/2 ⌘ n3/2/s is

conserved. We denote the number density of gravitinos by n3/2 and s = 2⇡2

45
g⇤(T ) T 3

is the entropy density of the plasma, where g⇤ is the number of helicity states with

equilibrium number density in the relativistic gas at temperature T . At the (later)

time of gravitino decay, when all of the SM species are light and all but a few of

the superpartners are heavy and decoupled, we have g⇤ & 100. By summing the

various production processes and solving the thermally averaged Boltzmann equation

the gravitino relic abundance has been estimated to be [98, 99]

Y3/2 =

✓

45⇣(3)

2⇡4

1

g⇤(TRH)

◆2 s(TRH)h�3/2vi
H(TRH)

. (4.8)

In making this estimate the universe is assumed to be radiation dominated with a

Hubble parameter H(T ) ⇡
p

⇡2g⇤(T )/90 T 2/MP .

The thermally averaged gravitino production cross section can be written as

h�3/2vi = Cig2
i M

�2
P , where gi represent gauge couplings and the sum runs over gauge

groups, and Ci = O(1� 10) [99]. This result reflects the fact that gravitinos only in-

teract with a gravitational strength and that the higher-spin gauge fields are required

to build up the spin-3/2 gravitino. The largest contribution comes from the SU3

group for which C3 ⇡ 10 and g3 ⇡ 1, and therefore we will conservatively assume

h�3/2vi = 10M�2
P . This gives the gravitino relic abundance estimate

Y3/2 ⇡ 10�10 TRH

1012 GeV
. (4.9)

In order for gravitinos to be su�ciently abundant to account for the baryon asymme-
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try, YB ⇠ 10�10, the reheat temperature must be su�ciently high, TRH & 1012 GeV.

On the other hand, if the gravitinos could be produced from a direct coupling to the

inflaton, then it may be possible to relax the bound on TRH due to preheating. Such

a scenario, however, would depend on the nature of the gravitino–inflaton coupling

and thereby introduce additional model dependent questions.

4.3.2 Gravitino Decay

As can be seen from Eq. (4.9), the relic gravitino abundance is generally low,

and therefore presumably the gravitinos can decay before they come to dominate

the energy density of the universe. We can confirm this expectation by comparing

the energy density of radiation, ⇢ = 3
4
sT , with the energy density in gravitinos,

⇢3/2 = m3/2n3/2. Imposing ⇢3/2 = ⇢ gives

Teq =
4

3
Y3/2m3/2 ⇡ 0.1 MeV

TRH

1010 GeV

m3/2

108 GeV
. (4.10)

Since successful gravitino leptogenesis requires the gravitino to decay prior to elec-

troweak symmetry breaking at Tew ⇠ 102 GeV, it is clear in light of Eq. (4.10) that

the universe will be radiation dominated at the time of gravitino decay.

The couplings of the gravitino are only gravitational strength, and its decay rate

is given by [100]

�3/2 ⇡
Ne↵

2⇡

m3
3/2

M2
P

. (4.11)

where Ne↵ is the e↵ective number of decay channels. If all the decay products are much

lighter than the gravitino, then Ne↵ just counts the total number of kinematically

allowed channels with relative weighting between the chiral superfield and vector

superfield final states due to helicity:

Ne↵ = NV +
1

12
N� (4.12)
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where NV is the number of vector superfields and N� is the number of chiral superfields

into which the gravitino can decay. If the entire MSSM particle content is light

compared to the gravitino, then NV = 1 + 3 + 8 = 12 and N� = 36 + 9 + 4 = 49,

which give Ne↵ ' 16.

We will work in an instantaneous decay approximation with a gravitino lifetime

is ⌧3/2 = ��1
3/2. The temperature Td at which gravitino decays take place is given by

⌧ = tage(Td) (4.13)

where tage(T ) is the age of the universe as a function of temperature. During the

radiation dominated era

tage(T ) =
1

2

1

H
=

r

45

2⇡2g⇤

MP

T 2
(4.14)

where we have used H =
p

⇢/3M2
P . Solving for Td one finds

Td = m3/2

✓

3

2

Ne↵

⇡2

r

5

2g⇤

m3/2

MP

◆1/2

' 400 GeV
⇣ m3/2

108 GeV

⌘3/2

. (4.15)

Let us now discuss the constraints on m3/2 and TRH . Typically these parameters

are constrained by the requirement that stable gravitinos do not overclose the universe

[96, 97] or the requirement that late decaying gravitinos do not disrupt the abundance

of light elements or distort the cosmic microwave background [98, 99]. In our model,

the gravitino must satisfy an even more stringent requirement. It must decay before

the electroweak phase transition takes place when the electroweak sphalerons are

still in equilibrium. Imposing Td & 100 GeV, we then obtain a lower bound on the

gravitino mass

m3/2 & 108 GeV . (4.16)

It is evident that successful gravitino leptogenesis requires an especially heavy grav-

itino. Since the gravitino mass is set directly by the scale of SUSY breaking, MS,
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through the relationship

m3/2 ⇡
M2

S

MP

, (4.17)

the bound Eq. (4.16) implies

MS & 1013 GeV . (4.18)

Such a large scale of SUSY-breaking is less theoretically attractive than connecting

it to the weak scale in order to resolve the hierarchy problem, but not only is such

a scenario is not ruled out on empirical grounds [96, 97], weak scale SUSY breaking

models are becoming more tightly constrained due to the absence of SUSY-induced

e↵ects at colliders, including the LHC. High scale SUSY breaking models have in

fact already been considered as interesting alternatives to weak scale SUSY for other

reasons[105, 106, 107].

There is no direct empirical probe of the reheat temperature, and the only hard

bound is TRH > TBBN ⇡ 1 MeV. However, energy conservation arguments relate the

reheat temperature to the energy scale of inflation Vinf = 3M2
P H2

inf ⇠ T 4
RH . The scale

of inflation, in turn, is probed by tensor perturbations in the cosmic microwave back-

ground (CMB) radiation power spectrum. In particular, the ratio of the amplitudes

of tensor and scalar perturbations, r = �2
h/�

2
R, is, for single field inflation mod-

els, generally proportional to the energy scale of inflation Vinf ⇡ (1016 GeV)4(r/.01)

[53] [108] [8]. Precisions measurements of the CMB by the Planck satellite yield the

bound r < 0.11 at 95 % CL [109]. This translates into an upper bound on the reheat

temperature,

TRH . O(1016 GeV) , (4.19)

which in turn implies an upper bound on the gravitino relic abundance, Y3/2 .

O(10�6), via Eq. (4.9).
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4.3.3 Lepton Number Generation

The gravitino decay rate, described earlier, is estimated through its dominant,

standard decay channels. We now suppose that the gravitino has a number of sub-

dominant decay channels which are mediated by CP- and L-number-violating in-

teractions. This will provide the conditions necessary for the creation of a lepton

asymmetry nL, which will be proportional to the number density of gravitinos be-

fore they decay multiplied by the branching ratio for the decays which lead to the

asymmetry. We can therefore write:

nL(Ta) = � n3/2(Td) (4.20)

where Ta > Td is the temperature immediately after gravitino decays, assumed to be

instantaneous, and the parameter � is defined as the weighted branching fraction

� =
X

i

L [{fi}] BR
⇣

G̃! {fi}
⌘

(4.21)

where the sum runs over all possible final states labeled by {fi}, and L[{fi}] is the

lepton number of a given final state (possibly negative). In Sec. 4.5 we will evaluate

Eq. (4.21) in terms of the model parameters. For now, we will simply treat � as a

free parameter.

Since presumably the L-violating decays are rare, we expect � ⌧ 1. In the

instantaneous decay approximation, the energy density is conserved, and all of the

energy in the gravitinos is transferred to radiation. Since the number of thermalized

species remains unchanged (since MSUSY � Td � MEW ), the plasma heats up as a

result of the energy injection [110]. The energy density after decay ⇢ is given by

⇢(Ta) = ⇢(0)(Td) + ⇢3/2(Td) (4.22)

where Ta is the temperature after the gravitinos decay and we use the superscript “(0)”
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to denote the era prior to gravitino decay. The lepton asymmetry is parametrized by

YL =
nL

s
. (4.23)

Using Eqns. (4.20) and (4.22) and s = (4/3)⇢/T , we can evaluate the lepton asym-

metry as

YL =
� Y3/2

⇣

1 + 4
3

m
3/2

Td
Y3/2

⌘3/4
. (4.24)

Using Eqns. (4.9) and (4.15), we see that YL is a function of the free parameters

m3/2, TRH , and �. For the allowed range of parameters, m3/2 & 108 GeV and TRH .

1016 GeV, the ratio m3/2Y3/2/Td ⌧ 1 and the entropy injection is negligible. Also,

provided that Ta � TEW , the EW sphalerons will then e�ciently convert L-number

into B-number. The final baryon asymmetry is obtained from YL after multiplying

by a factor of �8/23 [111] to obtain

YB ⇡ �
8

23
�Y3/2 . (4.25)

Note that YB > 0 requires � < 0.

The observed value of the baryon asymmetry is (YB)phys ⇡ 0.89 ⇥ 10�10 [109].

Since the e↵ective parameter � is independent of m3/2 and TRH , we can plot the

the value of � which is required to give YB = (YB)phys, shown in Fig. 4.1. If �

is larger (smaller) than the value shown at a given m3/2 and TRH then B-number

is overabundant (underabundant). Inspecting the figure reveals that if we hope to

satisfy both constraints Eq. (4.16) and Eq. (4.19), then we must have � > �min with

�min ⇡ 10�4 (4.26)

in order for gravitino leptogenesis to be successful. Alternatively, requiring � < 1

yields a lower bound on the reheat temperature TRH > 1012 GeV, which then provides

a firm limit on gravitino leptogenesis scenarios of the type we consider here.
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Figure 4.1: The value of � required to ensure YB = (YB)phys as m3/2 and TRH are
varied. See text for further discussion.

4.4 Gravitino Baryogenesis Details

We review here details of the gravitino decay calculation of Ref. [95] that are

relevant for our leptogenesis analysis. The baryon asymmetry parameter is given by:

� = BR[¯̃q ! qq]⇥
X

q,q̃

(

⇣

BR[G̃! q ¯̃q]� BR[G̃! q̄q̃]
⌘

(4.27)

+
X

X̃=g̃,Z̃,�̃

BR[G̃! XX̃]
⇣

BR[X̃ ! q ¯̃q]� BR[X̃ ! q̄q̃]
⌘

)

In principle the sum runs over all quark and squark species, but in light of the interac-

tions in Eq. (4.38), CP violation is only carried by quanta of the fields sc, bc, tc, s̃c, b̃c,

and t̃c. Since these fields carry B-number of �1/3, the sum is over q = sc, bc, tc and

q̃ = ¯̃sc, ¯̃bc, ¯̃tc. The expression Eq. (4.39) assumes that BR[¯̃q ! qq] = BR[q̃ ! q̄q̄] ⌘

BRbv since any di↵erence must be proportional to the CP violating parameter, which

would yield a higher order correction to �.

These various branching ratios in Eq. (4.39) can be calculated exactly [95], but
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since we are primarily interested in exploring the possibility of obtaining the correct

order of magnitude for the resulting baryon asymmetry here, we will assume the

hierarchy of mass scales m3/2 > mX̃ > mq̃ > mq. In this limit, the branching ratios

can be estimated from dimensional analysis up to undetermined O(1) prefactors.

Since the gravitino has a universal gravitational strength coupling, it decays with

equal probability into every light species. Then, the branching fraction into the

vector supermultiplets can be estimated as

BR[G! XX̃] ⇡ CX̃

Ne↵

(4.28)

where CX̃ is the dimension of the adjoint representation of the gauge group corre-

sponding to the gaugino X̃, i.e.,

CB̃ = CZ̃ = C�̃ = 1 , CW̃ = 3 , Cg̃ = 8 , (4.29)

and Ne↵ ' 16 is given by Eq. (4.12).

The di↵erential branching fractions into the quark – squark final states are nonzero

due to an interference between graphs of the form shown in Fig. 4.2. The CP violation

arises from the relative phase of the coupling A00
332 and the gravitino or gaugino mass

parameter. Up to factors of O(1), the interference can be estimated as

⇣

BR[Ṽ ! q ¯̃q]� BR[Ṽ ! q̄q̃]
⌘

⇠ ↵00
332

Im [A00
332mṼ ]

|mṼ |2
⇥

8

>

>

<

>

>

:

1 Ṽ = g̃, Z̃, �̃

1
N

e↵

Ṽ = G̃

(4.30)

where ↵00
332 ⌘ |�00

332|
2 /4⇡. For simplicity one can assume that there is a universal CP-

violating parameter ✓cp = Arg[A00
332mṼ ] for both the gravitino and gaugino masses,

and therefore

Im[A00
332mṼ ]

|mṼ |2
=

|A00
332|

|mṼ | sin ✓cp . (4.31)

54



One can also assume that there is a universal gaugino mass mX̃ = m�̃ = mZ̃ = mg̃. In

this case to evaluate Eq. (4.39) one need only sum the possible decay channels. The

gravitino, photino, and zino each have 9 decay channels, given by summing over the

combinations of three flavors (sc, tc, bc) and three colors. Since the gluino is colored, it

has only 3 channels, given by the sum over flavors alone. After these simplifications,

Eq. (4.39) becomes

� ⇠ ↵00
332 sin ✓cp

1

Ne↵

Max

"

9
|A00

332|
�

�m3/2

�

�

, 42
|A00

332|
|mX̃ |

#

BRbv . (4.32)

Since the relative O(1) factors between the gravitino and gaugino contributions have

been left unspecified in Eq. (4.30) one cannot precisely sum the two contributions,

and instead one can simply estimate � by taking the larger of the two. The numerical

factors of 9 and 42 = 9 + 9 + 8 · 3 arise from counting the decay channels. Making

the further assumption mX̃ ⇡ m3/2 one obtains Eq. (4.40).

One may worry that strong constraints on the RPV coupling �00
332 would cause

BRbv, and therefore �, to be too small for baryogenesis to succeed. However, if

alternate decay channels are kinematically blocked by spectral constraints then the

branching fraction can be O(1). For instance, if the squark is the LSP then BRbv = 1.

More generally, one can suppose that the gluinos are light and the other gauginos are

heavy, and in this case the branching fraction is estimated as

✏bv ⇡ 1�O (↵s/↵332) . (4.33)

This helps to evade strong constraints on B-number violation.

4.5 L-number Violating Gravitino Decay Channels

The MSSM admits four operators in the superpotential that violate R-parity. One

of these four violates baryon number and the remaining three violate lepton number
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(see [101] for a review):

Wrpv = Wbv + Wlv (4.34)

Wbv =
1

2
�00

ijkÛ
c
i D̂

c
jD̂

c
k (4.35)

Wlv =
1

2
�ijkL̂iL̂jÊ

c
k + �0

ijkL̂iQ̂jD̂
c
k + µ0

iĤuL̂i . (4.36)

In this section, we will focus on each of the three L-number violating operators, in

order to calculate the parameter � = nL/n3/2, defined by Eq. (4.21), and to assess

whether the critical value �min = 10�4 can be reached given constraints on the models.

The single B-number violating operator, Wbv, has already been shown by CR to

be able to give rise to the baryon asymmetry of the universe through gravitino de-

cays [95] (see also [112]). In order to draw a contrast between the CR mechanism

and gravitino leptogenesis we briefly review the CR gravitino baryogenesis calculation

here.

The B-number violating operator, given by Eq. (4.35), contains 9 distinct terms

after the sum over flavor indices has been performed. One may take a conservative

approach and assume that only one of these terms is nonzero. In particular, the

MSSM superpotential may be extended to include the operator

Wbv =
1

2
�00

332T̂
cB̂cŜc , (4.37)

which violates B-number by one unit. Since this operator does not involve any first

generation quarks, it is not strongly constrained by bounds on neutron oscillations

and heavy nuclei decay. The other components of �00
ijk are generated at one-loop

order due to flavor violation in the quark mass matrix, but the smallness of the quark

mixing angles renders these contributions negligible [112].
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In this scenario, the baryon asymmetry is generated directly by gravitino decays

after weak sphalerons go out of equilibrium. Then, the gravitino need only decay

before the onset of BBN at Td ⇡ TBBN ' MeV, which imposes m3/2 & 10 TeV [97].

The superpotential Wbv gives rises to the trilinear interactions

Lbv = � 1

2
�00

332

⇣

tcbcs̃c + bcsct̃c + sctcb̃c
⌘

� 1

2
A00

332�
00
332t̃

c b̃c s̃c + h.c. , (4.38)

where the corresponding soft SUSY-breaking term is also included. Quadrilinear B-

number violating operators also arise, but these scalar interactions only contribute to

gravitino decay at the two loop order.

In the CR scenario, baryogenesis can be divided into two stages. First, CP-

violation biases gravitino decays into anti-squarks (¯̃q) over squarks (q̃), and second,

B-number is violated when the anti-squarks decay into quark (q) pairs and the squarks

decay into anti-quark (q̄) pairs. In the first stage, the gravitino can decay into the

squark directly or by way of a gaugino (X̃). In the second stage, the squarks decay

through the channels q̃ ! q̄q̄ and ¯̃q ! qq. Thus the two decay chains G̃ ! qi
¯̃qi !

qiqjqk and G̃ ! XX̃ ! Xqi
¯̃qi ! Xqiqjqk are responsible for generation of the B-

number asymmetry. The parameter � = nB/n3/2 may be calculated from Eq. (4.21)

with the modification that B-number is counted instead of L-number:

� = BR[¯̃q ! qq]⇥
X

q,q̃

(

⇣

BR[G̃! q ¯̃q]� BR[G̃! q̄q̃]
⌘

(4.39)

+
X

X̃=g̃,Z̃,�̃

BR[G̃! XX̃]
⇣

BR[X̃ ! q ¯̃q]� BR[X̃ ! q̄q̃]
⌘

)

where BR is the branching ratio of the associated process. The gravitino and gaugino

decays violate CP due to an interference between graphs of the form shown in Fig. 4.2.
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Figure 4.2: Interference between graphs of the form shown here give rise to CP
violation via the Û cD̂cD̂c operator. Additionally graphs with the b̄cb̃c and s̄cs̃c final
states are also included.

The parameter � is estimated up to O(1) factors as

� ⇠ ↵00
332 sin ✓CP

|A00
332|

�

�m3/2

�

�

42

Ne↵

BRBV , (4.40)

where ↵00
332 ⌘ |�00

332|
2 /4⇡ and Ne↵ was given by Eq. (4.12), and BRbv ⌘ BR[¯̃q ! qq],

which may be O(1) if the squark is the LSP. The phase ✓cp = Arg[A00
332m3/2] quantifies

the degree of CP violation, which is constrained by the bound on the neutron electric

dipole moment (EDM), dn . 2.9⇥ 10�26 cm [113]. For typical values,

�

�m3/2

�

� = 20 TeV , |A00
332| = 10 TeV , ↵00

332 = 0.1 , sin ✓cp = 0.3 (4.41)

one finds [95]

� ' 0.03 and dn ' 10�26 cm . (4.42)

In this way, a su�cient baryon asymmetry is generated while evading constraints on

CP violation from low energy observables.

Successful baryogenesis requires both the generated baryon asymmetry and CP

asymmetry to survive potential washout processes. The baryon asymmetry could be
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washed out by the inverse decay processes qq ! ¯̃q and q̄q̄ ! q̃, but these processes are

suppressed kinematically since T ⇡ Td ⌧ mq̃. The CP asymmetry may be washed

out by the s-channel scattering with quarks in the plasma, q̃q̄ ! X̃ ! ¯̃qq, where a

Majorana mass operator is inserted in the gaugino propagator. If this process occurs

on a time scale shorter than the lifetime of the squarks, then the CP asymmetry would

be washed out before they have a chance to decay. However, since the CP asymmetry

is only carried by the second and third generation squarks, these processes are sup-

pressed by the exponentially low abundances of heavy second and third generation

quarks in the MeV-scale plasma.

We now describe how gravitino leptogenesis, which operates prior to electroweak

symmetry breaking, involves qualitatively di↵erent constraints in order to remain

cosmologically viable and consistent with low energy phenomenology.

4.5.1 Decay through L̂L̂Êc

We now consider the first of the three L-number violating operators which give

rise to a lepton asymmetry through gravitino decay through a violation of L-number

and R-parity

Wlv =
1

2
�233L̂2 · L̂3Ê

c
3 (4.43)

The notation “ · ” stands for a contraction of SU2 indices with the antisymmetric ten-

sor. We have focused on the 233 component of the tensor �ijk primarily for simplicity.

As we will discuss below, the high scale of SUSY breaking renders the constraints on

�ijk to be very weak. The Lagrangian-level interactions are

Llv = �1

2
�233

⇣

l2 · l3⌧̃
c + l̃2 · l3⌧

c + l2 · l̃3⌧
c
⌘

� 1

2
A233�233l̃2 · l̃3⌧̃

c + h.c. , (4.44)
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Figure 4.3: Lepton asymmetry generated directly from a gravitino decay through a
loop process. Interference between the two graphs gives rise to CP violation.

which may be compared with Eq. (4.38). Since the electroweak symmetry is still un-

broken at the time of gravitino decays, the presence of isospin doublets in Eq. (4.44)

simply provides a multiplicative prefactor.

In standard leptogenesis, the Majorana neutrino decays into a lepton and a Higgs

in a CP violating manner [104]. Based on kinematic arguments one would expect

the corresponding supersymmetric decay channels, G̃! h̄dli,
˜̄hdl̃i, huli and h̃ul̃i, with

2-body final states to yield the dominant contribution to the lepton asymmetry. How-

ever, the absence of a direct gravitino–lepton–Higgs vertex requires these decays to be

loop suppressed. Specifically, graphs of the form shown in Fig. 4.3 are responsible for

mediating these decays. Not only are these decays doubly-loop suppressed, but addi-

tionally they require factors of the lepton Yukawa couplings. Even the largest Yukawa

coupling gives O(m2
⌧/v

2) ⇠ O(10�4). This suppresses these channels compared to the

three-body final states that we consider below, and moreover makes them irrelevant

for leptogenesis in light of the requirement �min ⇡ 10�4, Eq. (4.26).

The calculation of the appropriate gravitino decay channels then runs parallel to
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the B-number violating decay that was discussed in Sec. 4.5.1. We generate the lepton

asymmetry in two stages. First, the gravitino decays out of equilibrium through the

channels G̃! l¯̃l and l̄l̃ where l(l̄) is a (anti-)lepton and l̃(¯̃l) is an (anti-)slepton. This

creates equal and opposite CP asymmetries in the leptons and sleptons. The heavy

sleptons then decay through L-number violating interaction as l̃ ! ll and ¯̃l ! l̄l̄,

thereby creating the lepton asymmetry. We calculate � by summing over the final

states

� = ✏l
2

+ ✏l
3

+ ✏⌧c (4.45)

where

✏l
2

= BR[¯̃l2 ! l3⌧ c]

(

⇣

BR[G̃! l2
¯̃l2]� BR[G̃! l̄2l̃2]

⌘

+
P

X̃=B̃,W̃ BR[G̃! XX̃]

⇣

BR[X̃ ! l2
¯̃l2]� BR[X̃ ! l̄2l̃2]

⌘

)

,

✏l
3

= BR[¯̃l3 ! l2⌧ c]

(

⇣

BR[G̃! l3
¯̃l3]� BR[G̃! l̄3l̃3]

⌘

+
P

X̃=B̃,W̃ BR[G̃! XX̃]

⇣

BR[X̃ ! l3
¯̃l3]� BR[X̃ ! l̄3l̃3]

⌘

)

(4.46)

✏⌧c = BR[¯̃⌧ c ! l2l3]

(

⇣

BR[G̃! ⌧ c ¯̃⌧ c]� BR[G̃! ⌧̄ c⌧̃ c]
⌘

+
P

X̃=B̃ BR[G̃! XX̃]

⇣

BR[X̃ ! ⌧ c ¯̃⌧ c]� BR[X̃ ! ⌧̄ c⌧̃ c]
⌘

)

CP violation arises in the standard way from the interference of tree level and one

loop graphs as shown in Fig. 4.4. Then, following a similar calculational strategy to

that employed in CR, we can estimate the branching fractions and obtain

� ⇠ ↵233 sin ✓cp
1

Ne↵

Max

"

5
|A233|
�

�m3/2

�

�

, 11
|A233|
|mX̃ |

#

BRlv , (4.47)

where ↵233 ⌘ |�233|2 /4⇡, and where we have assumed a common mass mX̃ = mB̃ =

mW̃ for the binos and winos, and also for simplicity, we assume a comparable amount
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of CP violation arises in the gravitino and gaugino decays, i.e., ✓cp = Arg[A233m3/2] =

Arg[A233mX̃ ]. If it is kinematically forbidden for the sleptons to decay into gauginos

or higgsinos, then the branching ratio for the L-number violating decay can be large:

BRlv = BR[¯̃l2 ! l3⌧
c] ⇡ BR[¯̃l3 ! l2⌧

c] ⇡ BR[¯̃⌧ c ! l2l3] = O(1) . (4.48)

The CP asymmetry in squarks may be washed out by scatterings with leptons in

the plasma mediated by a gaugino, i.e., l̃l̄ ! X̃ ! l¯̃l where X̃ is a bino or a wino.

In the model of gravitino baryogenesis [95] reviewed above, such scattering processes

were negligible due to the exponential Boltzmann suppression of heavy quarks in the

T ⇠ MeV scale plasma. In the case of leptogenesis, all of the leptons are relativistic

at the time of gravitino decay at T ⇠ 103 GeV, and we must verify that this scattering

is out of equilibrium. The cross-section for the CP washout process may be estimated

as

�
l̃l̄!˜̄ll
⇡ ↵2

m2
X̃

(4.49)

where mX̃ is the gaugino mass and ↵ is the fine structure constant. Since all leptons

are relativistic at this time their equilibrium number density is nl ⇠ T 3 and the CP

washout rate is

�
l̃l̄!˜̄ll
⇡ ↵2

m2
X̃

T 3 . (4.50)

This must be compared against the slepton decay rate

�l̃!ll ⇡ ↵233ml̃ (4.51)

where ml̃ is the slepton mass. The requirement that slepton decay is more rapid than

the CP washout imposes a lower bound on the gaugino mass

mX̃ >

s

↵2T 3

↵233ml̃

. (4.52)
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Taking T ⇠ 103 GeV to be the temperature at which gravitinos decay, ↵ ⇠ 10�2,

↵233 = O(1), and ml̃ ⇠ m3/2 ⇠ 108 GeV we obtain the weak bound mX̃ & O(1 GeV).

For the scale that we are considering however, we expect mX̃ ⇠ 108 GeV, so wash

out is not a problem.

Low energy observables can be used to constrain CP violation in baryogenesis

models. In the decoupling limit, in which the SUSY breaking scale is taken to infinity,

these constraints disappear. Since the SUSY breaking scale that we consider is high,

we do not expect strong constraints, which we will explicitly confirm below.

The trilinear R-parity violating operators in Eq. (4.44) can radiatively give the

neutrinos a mass with a lepton-slepton in the loop. For example, the term with

coe�cient �233 yields a mass for the muon neutrino: [114, 115]

m⌫µ '
�2

233

8⇡2

m2
⌧

ml̃

(4.53)

where m⌧ is the ⌧ lepton mass and ml̃ is the slepton mass. The current neutrino mass

constraints of
P

m⌫ < 1 eV therefore imply a bound on the Rp-violating coupling �ijk.

For example, ↵233 ⌘ �2
233/4⇡ < 0.2 for ml̃ ⇠ 108 GeV. Phenomenologically acceptable

neutrino masses might result from the same operator responsible for leptogenesis.

CP violation in the lepton sector generates an electron EDM, de. The contribution

to de in the MSSM may be estimated as [116]

de ⇡
me

m2
l̃

sin ✓cp (4.54)

where ml̃ is the slepton mass, me is the electron mass, and ✓cp is the CP violating

phase. The current bound, de < 5⇥ 10�14 GeV�1 [117], imposes a constraint on the

slepton mass ml̃ & 105 GeV, which is easily accommodated for our fiducial super-

partner mass scale m3/2 ⇠ 108 GeV. The interactions in Eq. (4.44) also violate lepton

flavor, which is constrained by bounds on the decay µ ! e�. The branching ratio
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Figure 4.4: Feynman graphs that yield CP violation in gravitino decays via the
L̂L̂Êc operator. Other graphs with l̄3l̃3 and ⌧̃ c⌧ c on the external lines are not shown.

may be estimated as

BR[µ� ! e��] ⇠ ↵233

m2
µ

m2
l̃

. (4.55)

The current bound, BR[µ� ! e��] . 2.4 ⇥ 10�12 [117], imposes a lower bound on

the slepton mass, ml̃ & O(104 GeV), which is also easy to accommodate.

4.5.2 Decay through L̂Q̂D̂c

The symmetries and field content of the MSSM admit just one other trilinear R-

parity and L-number violating operator. Once again we will focus on a single element

of the flavor tensor and write the R-parity violating superpotential as

Wlv =
1

2
�0

233L̂2 · Q̂3D̂
c
3 , (4.56)

which violates L-number but preserves B-number. The interaction Lagrangian con-

tains the following terms

Llv = �1

2
�0

233

⇣

l2 · q3b̃
c + l̃2 · q3b

c + l2 · q̃3b
c
⌘

� 1

2
A233�

0
233l̃2 · q̃3b̃

c + h.c. . (4.57)

which may be compared with Eq. (4.44).
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The calculation of � parallels the discussion in Sec. 4.5.1. The qualitative dif-

ference is that in the first stage of leptogenesis, the gravitino can decay into either

a lepton–slepton pair or a quark–squark pair. Subsequently, both the slepton and

the squark decay violating L-number. Summing over the various decay channels, we

obtain

� ⌘ ✏l
2

+ ✏q
3

+ ✏bc (4.58)

where

✏l
2

= BR[¯̃l2 ! q3bc]

(

⇣

BR[G̃! l2
¯̃l2]� BR[G̃! l̄2l̃2]

⌘

+
P

X̃=B̃,W̃ BR[G̃! XX̃]

⇣

BR[X̃ ! l2
¯̃l2]� BR[X̃ ! l̄2l̃2]

⌘

)

,

✏q
3

= BR[¯̃q3 ! l2bc]

(

⇣

BR[G̃! q3
¯̃q3]� BR[G̃! q̄3q̃3]

⌘

+
P

X̃=B̃,W̃ ,g̃ BR[G̃! XX̃]

⇣

BR[X̃ ! q3
¯̃q3]� BR[X̃ ! q̄3q̃3]

⌘

)

, (4.59)

✏bc = BR[¯̃bc ! l2q3]

(

⇣

BR[G̃! bc ¯̃bc]� BR[G̃! b̄cb̃c]
⌘

+
P

X̃=B̃,g̃ BR[G̃! XX̃]

⇣

BR[X̃ ! bc ¯̃bc]� BR[X̃ ! b̄cb̃c]
⌘

)

.

Once again, we estimate

� ⇠ ↵0
233 sin ✓cp

1

Ne↵

Max

"

11
|A233|
�

�m3/2

�

�

, 27
|A233|
|mX̃ |

#

BRlv , (4.60)

where ↵0
233 ⌘ |�0

233|
2 /4⇡. With the appropriate spectral constraints we can obtain

BRlv = BR[¯̃l2 ! q3b
c] ⇡ BR[¯̃q3 ! l2b

c] ⇡ BR[¯̃bc ! l2q3] ⇡ O(1) , (4.61)

as in the previous cases.
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Figure 4.5: Feynman graphs that yield CP violation in gravitino decays via the
L̂Q̂D̂c operator. Other graphs with q̄3q̃3 and b̃cbc in the final state are not shown.

Apart from the distinctions discussed thus far, the remainder of the analysis of this

case follows similarly to Sec. 4.5.1. Washout is possible due to s-channel scatterings

through gauginos, but the avoidance of washout imposes only a very weak bound on

the gaugino mass. Empirical constraints, arising from electron and neutron EDMs

and lepton flavor violation, have little constraining power on the R-parity violating

couplings, �0
233 and A0

223, due to the high scale of SUSY breaking. Neutrinos again ac-

quire a radiatively generated mass with a quark-squark in the loop and the expression

for muon neutrino mass in this case involves a bottom-sbottom loop [114, 115],

m⌫µ '
3�02

233

8⇡2

m2
b

mb̃

(4.62)

which gives an upper bound on ↵0
233 ⌘ �0 2

233/4⇡.

4.5.3 Decay through ĤuL̂

As a last case we will consider the bilinear R-parity and L-number violating op-

erator,

Wlv = µ0
iĤu · L̂i . (4.63)
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This operator supplements the R-parity symmetric terms from the MSSM

Wmssm = µĤu · Ĥd + (�e)ijĤd · L̂iÊ
c
j � (�u)ijĤu · Q̂iÛ

c
j + (�d)ijĤd · Q̂iD̂

c
j . (4.64)

The full superpotential W = Wmssm + Wlv yields the Lagrangian L = Lbi
lv + Ltri

lv +

Lquad
lv + Llp + Lmssm where

�Lbi
lv = µ0

ih̃u · li + Bu
i hu · l̃i +

�

Bd
i + µ⇤µ0

i

�

h†
dl̃i + h.c. , (4.65)

�Ltri
lv = �µ0 ⇤

i (�u)jk l̃†i q̃jũc
k + µ0⇤

i (�e)ij h†
uhdẽc

j + h.c. , and (4.66)

�Llp = |µ0
i|

2 h†
uhu + (µ0 ⇤

i µ0
j)l̃

†
i l̃j (4.67)

are the bilinear L-violating, trilinear L-violating, and L-preserving contributions that

are in addition to the MSSM Lagrangian, Lmssm. We will not need the quadrilinear

terms, Lquad
lv , since they only contribute to gravitino decay at the two loop order. As

we have done in the previous sections, we will suppose that Wlv is the only source of

R-parity violation at tree-level.

We will see that bilinear L-number violation provides various gravitino decay

channels that generate a lepton asymmetry. This scenario, however, is significantly

constrained, because the mixings in Eq. (4.65) allow L-number violation to enter into

low energy observables, specifically the neutrino mass, at tree level. This is in con-

trast to the previous cases of trilinear R-parity violation in which L-number violating

e↵ects were loop suppressed. If the mass scale of the sleptons and neutralinos is

comparable to the fiducial gravitino mass that we have considered in the previous

sections, m3/2 ⇠ 108 GeV, then the neutrino mass constraints bound the mixings so

as to forbid the generation of a su�ciently large lepton asymmetry. Only if the mass

scale is lifted to the somewhat more uncomfortable scale, m3/2 & O(1010�1011 GeV),

can the low energy constraints be evaded. While it makes this leptogenesis scenario
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less attractive, for completeness we review the parameter ranges that remain viable

for this case as well.

In this scenario, the lepton asymmetry is created by the decays of the gravitino or

gaugino into a lepton and a Higgs boson. Depending on the spectrum, the gravitino

could also decay into a slepton and a Higgsino through the R-parity violating mixing.

However, the slepton and Higgsino would eventually decay back through the R-parity

violating operator into SM particles, and this may lead to significant washout of the

lepton asymmetry. Therefore, we assume the spectrum

ml̃ ⇠ mh̃ ⇠ mq̃ & m3/2 & mX̃ ⇠ mh � ml , mq , (4.68)

and we focus on the two decay channels (and their CP conjugates), Ṽ ! lih̄d and

lihu, where Ṽ = G̃, B̃, or W̃ . In the case of trilinear L-number violation, we had

dismissed these two-body final states as subdominant (see Sec. 4.5.1) because they

arose from an interference of two one-loop graphs, but for bilinear L-number violation

the decays can proceed due to the tree level mixing.

For this scenario, the lepton asymmetry is given by summing over the two final

states

� = (✏lih̄d
+ ✏lihu)fwo (4.69)
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where

✏lih̄d
⌘
X

i

n

�

BR[G̃! lih̄d]� BR[G̃! l̄ihd]
�

(4.70a)

+
X

X̃=B̃,W̃

BR[G̃! XX̃]
�

BR[X̃ ! lih̄d]� BR[X̃ ! l̄ihd]
�

o

✏lihu ⌘
X

i

n

�

BR[G̃! lihu]� BR[G̃! l̄ih̄u]
�

(4.70b)

+
X

X̃=B̃,W̃

BR[G̃! XX̃]
�

BR[X̃ ! lihu]� BR[X̃ ! l̄ih̄u]
�

o

and fwo  1 is a suppression factor to account for washout e↵ects (see below). CP

violation arises from the interference of graphs such as the ones shown in Fig. 4.6.

We could include additional graphs with more insertions of the mixing operators,

but as we will see below the mixing induced by the parameters µ0
i, Bd

i , and Bu
i must

be small compared to the superpartner mass scale, and the higher order graphs can

be neglected from a perturbative standpoint. Additionally, graphs containing factors

of the electron and down-type quark Yukawa coupling are subdominant. Taking

|Bu| ⇠
�

�Bd
�

� ⇠ |µ0|2 and the spectrum in Eq. (4.68) for simplicity, we obtain the order

of magnitude estimate

� ⇠ |�u|2 sin ✓cp
1

Ne↵

�

�Bd
�

� |µ0|
�

�m3/2

�

�

3 fwo (4.71)

where ✓cp = Arg[Bdµ0⇤m3/2].

The magnitude of the washout depends critically on the spectrum of the super-

partners. For instance, if the gravitino can decay into squarks, then these will scatter

on quarks in the plasma and potentially violate R-parity and L-number. It is also

possible for two SM particles to scatter violating R-parity, but since the energy of

the plasma (⇠ TeV) is insu�cient to produce a heavy superpartner on shell, such a

scattering must contain two factors of the mixing, which is highly suppressed. Thus,
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Figure 4.6: Examples of the Feynman graphs whose interference give rise to a lepton
asymmetry via bilinear R-parity and L-number violation.

if we assume that the gravitino cannot decay into on shell squarks and sleptons, then

washout can be negligible.

Let us now turn to the low energy constraints on this model. The neutrinos mix

with the up-type Higgsino through the bilinear operator Lbi
lv 3 µ0

ih̃
0
u⌫i. This mixing

causes the neutrinos to acquire a mass, and therefore neutrino mass constraints impose

an upper bound on the mixing [114, 118]. The neutralinos can be integrated out to

yield a neutrino mass [119]

m⌫ ⇠
m2

Z |µ0|2

m3
�̃

1

1 + t2�
. (4.72)

where m�̃ � mZ , m⌫ is the neutralino mass and t� = hhui/hhdi ⇠ O(1). Taking

m⌫ . 1 eV and the fiducial reference m�̃ ⇠ m3/2, we obtain the bound

|µ0|
m3/2

. 10�3

r

m3/2

108 GeV

s

1

1 + t2�
. (4.73)

Despite the high scale of SUSY breaking, a strong constraint is obtained because the

neutrino mass arises at tree level, unlike in the cases of the trilinear operators.
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After electroweak symmetry breaking the Higgs fields acquire vacuum expectation

values and the mixings in Eq. (4.65) induce tadpole terms for the sneutrino fields

t⌫̃i = (Bd
i + µ⇤µ0

i) vd � Bu
i vu . (4.74)

This causes the sneutrinos to acquires VEVs, which may be estimated as

v⌫̃ ⇡
(Bd + µ⇤µ0) cos � � Bu sin �

M2
l̃

+ |µ0|2
v (4.75)

where M2
l̃

is the soft SUSY-breaking slepton mass parameter. The charged slepton

VEVs are protected by the residual electromagnetic symmetry. The VEV v⌫̃ causes

the gauginos and neutrinos to mix and gives rise to a neutrino mass [120]

m⌫ ⇠
m2

Z

v2

v2
⌫̃

mX̃

(4.76)

where mX̃ is the gaugino mass. Once again taking mX̃ ⇠ m3/2, the observed neutrino

mass scale implies the bound

v⌫̃
m3/2

. 10�8

s

108 GeV

m3/2

. (4.77)

Provided that there is not an unnatural tuning in Eq. (4.75) which would give v⌫̃ ⌧

O(Bd) ⇠ O(Bu), the bound in Eq. (4.77) imposes

Bd

m2
3/2

⇠ Bu

m2
3/2

. 10�3

r

m3/2

108 GeV
. (4.78)

The lepton asymmetry, estimated by Eq. (4.71), requires two factors of the mixing,

and in light of the constraints Eqs. (4.73) and (4.78), it is not possible to achieve

� & 10�4, which is required for successful gravitino leptogenesis (see Eq. (4.26)). The

gravitino mass scale must be lifted to at least m3/2 & O(1010 � 1011 GeV) in order

for the bounds to be evaded, unless we also impose artificial tuning to lift the masses

of the sleptons and neutralinos.
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Finally, one may wonder why we have not considered L-number violation entering

directly in the the Kähler potential instead of the superpotential. The term Klv =

↵iĤ
†
dL̂i may be added to the Kähler potential without violating any gauge symmetries

or supersymmetry. This term leads to the desired tree level gravitino – lepton –

Higgs vertex. However, since the addition of this term makes the Kähler potential

non-diagonal, it will also result in non-canonical kinetic terms. A basis may be found

in which the kinetic terms are diagonal by rotating away the bilinear coupling, but

this also removes the tree level gravitino–lepton–Higgs vertex.

4.6 Conclusions

We have considered in this chapter a possible mechanism for the creation of the

baryon asymmetry of the universe via gravitino decays in the MSSM. In this sce-

nario, the out of equilibrium decay of the gravitino gives rise to a lepton asymmetry

that is subsequently converted into a baryon asymmetry by weak sphalerons. The re-

quirements of CP and L-number violation are then provided by three of the MSSM’s

possible R-parity violating operators: W = L̂L̂Êc, L̂Q̂D̂c, and ĤuL̂. For the case

of the two trilinear operators, the gravitino decay channels responsible for L-number

creation are similar to the B-number creation gravitino decays discussed by Ref. [95]

for the operator W = Û cD̂cD̂c, and the analysis of the subsequent generation of lep-

ton number asymmetry follows a similar line of analysis, with some key changes due

to the di↵ering presumed scale of gravitino mass.

For comparison purposes and to demonstrate the viability of these scenarios, we

provide in, Table 4.1 some sample parameter sets which may produce the correct

order of magnitude of the observed baryon asymmetry, without coming into conflict

with low energy observables such as EDMs and µ! e�.
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In the case of the bilinear operator W = ĤuL̂, a lepton asymmetry can be gener-

ated through mixing between leptons and Higgsinos and between sleptons and Higgs

bosons. In the particular case where the gravitino decays into a Higgs boson and a

lepton via the R-parity violating mixing, the neutrino also acquires a mass by virtue

of this mixing. As a result, bounds on the neutrino mass constrain the mixing to the

point that an insu�cient baryon asymmetry is generated unless the mass scale of the

gravitino is increased to m3/2 & 1010�12 GeV, as demonstrated in Table 4.2.

The /Rp operators used to generate a baryon asymmetry in this chapter via grav-

itino decay can also, radiatively, give neutrinos mass. For example, the trilinear /Rp in-

teractions LLEc generates a muon mass given by m⌫µ ⇠ (1 eV)(↵233/0.2)(Ml̃/108 GeV)�1.

Note that there are values that give successful leptogenesis and the correct neutrino

mass. This fact is interesting as it provides a possible new connection between neu-

trino mass generation and the origin of the baryon asymmetry.

All of these mechanisms of gravitino leptogenesis require an unconventional spec-

trum of superpartners to the SM fields, or equivalently, a restriction on the mechanism

of SUSY breaking. The gravitino must be heavy, m3/2 & 108 GeV, to ensure that it

decays while the weak sphalerons are still in equilibrium, and this corresponds to a

SUSY breaking scale MS & 1013 GeV. There is no a priori reason to think that the

scale of SUSY-breaking cannot be so high, and in fact, the cosmological consequence

of high-scale SUSY breaking have been studied [96, 97]. However, if MS � TeV then

supersymmetry does not provide a natural solution to the Higgs hierarchy problem.

Nevertheless, the lack of evidence for supersymmetry at the LHC already implies that

the scale of SUSY breaking is higher than naturalness arguments would suggest, and
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�

�m3/2

�

� MX̃ Ml̃ ⇠Mq̃ |A| ✓cp ↵ BRlv TRH �(10�3)
Y ⇤

B

Y
(obs)

B

de

d
(lim)

e

BRµ!e�

BR
(lim)

µ!e�

m⌫

m
(obs)

⌫

1 0.1 0.5 0.01 0.4 0.1 0.9 1015 2 1.0 2 · 10�6 2 · 10�7 1.0

1 0.01 0.2 0.01 0.9 0.05 0.1 1015 2.6 1.0 2 · 10�5 5 · 10�7 1.3

1 0.01 0.001 0.03 0.9 0.001 0.9 1015 1.5 0.6 8 · 10�1 4 · 10�3 5.0

1 0.01 0.1 0.03 0.05 0.02 0.6 1015 1.2 0.5 5 · 10�6 8 · 10�7 1.0

5 1 0.1 0.05 1 0.4 0.8 1014 10 0.4 8 · 10�5 2 · 10�5 20

5 0.05 2.0 0.05 1 0.4 0.8 1013 185 0.7 82 · 10�7 4 · 10�8 1.0

10 1 0.5 3.0 0.1 0.1 0.1 1015 2 0.8 4 · 10�7 2 · 10�7 1.0

104 0.1 10 1 0.05 0.1 0.5 1014 17 0.7 5 · 10�10 4 · 10�10 5 · 10�2

Table 4.1: Typical parameter sets for the model Wlv = L̂L̂Êc. The input parameters
are the gravitino mass

�

�m3/2

�

�, the gaugino mass (MX̃), the squark or slepton mass
(Ml̃ ⇠ Mq̃), the A parameter |A|, the CP-violating phase (✓cp = Arg[Am3/2]), the
R-parity violating Yukawa coupling (↵ = |�|2 /4⇡), the L-number violating branch-
ing ratio (BRlv), and the reheat temperature (TRH). Dimensionful parameters are
expressed in units of 108 GeV except TRH which is in GeV, ✓cp is in radians. We
estimate the baron asymmetry, Y ⇤

B using Eq. (4.25) along with the approximate esti-
mate for � given by Eq. (4.47), as well as estimate the ratio of the electron EDM (de)
to the observed upper limit upper limit, he branching ratio for µ ! e� with respect
to its observed upper limit and the ratio of the neutrino mass m⌫ to the observational
upper bound,

P

m(obs)
⌫ . 1 eV, by Eq. (4.53). The results for L̂Q̂D̂c would be very

similar, di↵ering only by an O(1) factor.

it is therefore worth exploring the possibility that it could be much higher as, for

example, in the case of split supersymmetry [105, 106, 107]. Also, if the gravitino is

to be responsible for leptogenesis, it must decay and therefore cannot be the LSP.

Since the latter possibility is a generic prediction of gauge mediated models of SUSY

breaking [121], therefore gauge mediation seems incompatible with gravitino leptoge-

nesis. Finally, although we typically assume that the squark and slepton masses are

comparable to the gravitino mass, they could be much lighter. It is di�cult to imag-

ine a SUSY breaking mechanism that yields m3/2 � mq̃, ml̃, but it may be possible

that such a scenario is consistent with gravitino leptogenesis and would put SUSY

within reach of the LHC.
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While our consideration of gravitino leptogenesis is motivated in part by neutrino

moderated leptogenesis, there are a number of key di↵erences. The gravitino always

decays out of equilibrium by virtue of its universal gravitational strength coupling,

whereas the Majorana neutrino decay will be accompanied by some washout factor

due to inverse decays [104]. In gravitino decay, the violation of L-number and CP are

a consequence of the MSSM’s R-parity violating operators. On the other hand, the

Majorana neutrino mass operator violates L-number and the mass matrix carries the

CP-violating phases. Successful gravitino leptogenesis requires a high SUSY-breaking

scale, MS & 1013 GeV, while Majorana neutrino leptogenesis (motivated by a Type

I seesaw with O(0.01 � 1) Yukawa couplings) requires a high Majorana mass scale,

MNR & 1010 GeV. Since these scales are much higher than the energies accessible

in the laboratory today, conventional low energy tests of CP-violation do not probe

the high energy CP-violating parameters that may be responsible for generation of

the lepton asymmetry (with few exceptions in cases of standard neutrino leptogenesis

[122] [123]). Similarly, bounds on lepton flavor violation in the form of the process

µ! e� are insensitive to the L-number violation that is responsible for leptogenesis.

Finally, gravitino leptogenesis requires a firm lower bound on the reheat tem-

perature Tmin
RH ⇡ 1012 GeV in order to generate a su�ciently large population of

gravitinos to account for the observed baryon asymmetry in their decays. At present,

constraints on the CMB tensor-to-scalar ratio, r / T 1/4
RH , give an upper bound on the

reheat temperature, Tmax
RH ⇡ 1016 GeV, so that significant improvements in sensitivity

beyond those likely in the near future would be required to use this limit to probe

this scenario.
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�

�m3/2

�

�

�

�µ
0�
� Ml̃ ✓cp fwo TRH �

Y ⇤
B

Y
(obs)

B

m⌫

m
(obs)

⌫

108 9 · 107 8 · 108 0.1 0.1 1016 1 · 10�4 0.4 1.0

1010 3 · 109 1010 1 1.0 1016 7 · 10�4 3 40

1012 3 · 1011 1012 0.5 0.7 1016 3 · 10�4 1 0.4

1013 1013 1013 0.1 0.05 1015 2 · 10�4 0.1 0.4

1014 9 · 1013 1014 0.1 0.1 1016 2 · 10�4 1 4 · 10�2

Table 4.2: Typical parameter sets for the model with Wlv = ĤuL̂ that produce the
observed baryon asymmetry. The input parameters are the gravitino mass

�

�m3/2

�

�, the

mixing mass scale (µ0 ⇠
p

Bu ⇠
p

Bd), the CP-violating phase (✓cp) in radians, the
washout factor (fwo), and the reheat temperature (TRH). Dimensionful parameters are
expressed in units of GeV. We estimate the baron asymmetry, Y ⇤

B using Eq. (4.25)
along with the approximate estimate for � given by Eq. (4.71), and the ratio of

the neutrino mass m⌫ to the observed value, m(obs)
⌫ . 1 eV, by Eq. (4.72), setting

mX̃ ⇠ m3/2 and t� = 1.
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Chapter 5

GENERAL ANALYSIS OF DIRECT DARK MATTER DETECTION

5.1 Introduction

The existence of non-baryonic dark matter has been inferred from measurements

including galactic rotation curves [124], large scale structure surveys [125, 126, 127],

X-ray observations [128], gravitational lensing [129, 130], and cosmic microwave back-

ground anisotropy measurements [50], spanning cosmological eras from the present

day to the remote past. This widespread and robust data has led to cold dark mat-

ter models with a cosmological constant, labeled ⇤CDM becoming entrenched as the

standard cosmological model.

Nevertheless, this impressive array of observations has only been sensitive to the

gravitational influence of dark matter and constrained its relic abundance, leaving its

particle nature as one of the most important open questions in physics. The search

for dark matter includes indirect astrophysical searches ([131, 132, 133, 134, 135]),

collider production e↵orts (for some examples of dark matter searches at the LHC,

see [136, 137, 138, 139, 140]) which will examine new territory soon with LHC run

2 which will commence this year, and attempts to observe dark matter interactions

with Standard Model (SM) particles via dark matter-nucleus scattering processes in

direct detection experiments, to which we now turn.

The search for dark matter via direct detection goes back at least three decades

[141, 142] and has been particularly vigorous over the last decade or so with experi-
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ments such as LUX [143], Xenon100 [144], CDMS II (Ge) [145], CDMS I (Si) [146],

DAMA/LIBRA [147], COGENT [148], and CRESST [149] pushing ever deeper into

weakly interacting dark matter mass and scattering cross-section parameter space,

but has thus far failed to yield a convincing signal. In the near future detectors such

as Super CDMS [150] (which has recently released its first results on low mass dark

matter searches [151, 152]), XENON1T [153], and DARWIN [154] are expected to

push the limits of direct detection orders of magnitude below the current levels.

In order to connect observations to microphysical models one needs a general

framework within which to interpret the observations of direct detection experiments.

For quite some time the prevailing method of analyzing dark matter-nucleus interac-

tions has been to assume that dark matter is a weakly interacting massive particle

(WIMP), and then to categorize the interactions as elastic and isospin conserving and

either spin-independent or spin-dependent [155, 156]. For some well studied models

of dark matter, such as the weakly interacting Majorana neutralino found in super-

symmetry models, this assumption is reasonable.

With an absence of observed dark matter signals, there has of late been a surge in

interest in exploring more general types of interactions between dark matter and

nuclei. Generalizations include inelastic and momentum dependent interactions,

which may arise due to additional structure in the dark sector including excited

dark matter states, or dark gauge bosons giving rise to electric and magnetic form

factors [157, 158, 159, 160, 161, 162, 163, 164].

The formalism of choice for many of these investigations is relativistic e↵ective field

theory, which provides a model independent framework to analyse dark matter-SM
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interactions [165, 166, 167]. It has been shown that these e↵ective theories break down

when applied to high-momentum transfer experiments, such as the LHC [168]. There-

fore analyses moved beyond this framework and have moved to what are labeled as

‘simplified models’ instead [169, 170, 171]. Simplified models are field theories which

extend the SM by a single dark matter particle and a single mediator particle which

allows the WIMP to communicate with quarks and/or leptons. The newly added

dark matter content is assumed to be a singlet under the SM gauge groups (we will

consider some cases where the particles mediating the interaction have SM charge).

In this context it is then possible to calculate collider amplitudes valid at the high

energies of interest in such experiments. Given this simple dark sector, one can write

down an exhaustive list of every combination of WIMP and mediator spins, and all

possible tree level interactions. These simplified models have now gained popularity

for analyzing indirect detection signals [172, 173], allowing connections to be made

with the growing body of literature which make use of them.

Another step towards placing dark matter-nucleus interactions on a general foot-

ing has been accomplished recently by utilizing a non-relativistic e↵ective field theory

(EFT) approach [174, 1, 175, 176]. Since the interactions in direct detection scenarios

are assumed to take place due to an incoming dark matter particle with a typical ve-

locity O(100km/s), the recoil momenta in such an interaction will be O(. 100keV).

The particle masses involved, including the nucleons of roughly GeV scale, the dark

matter particles, which typically range from the GeV region to several orders of mag-

nitude above, and mediators that can also be quite heavy compared to the typical

interaction momenta, produce a situation where an EFT treatment is quite natural.

In order to circumvent as much model dependence as possible, one can construct
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general interactions which obey Galilean invariance, T -symmetry, and Hermiticity.

These operators will take the standard e↵ective four-particle interaction form, rem-

iniscent of Fermi’s original model of weak interactions. The non-relativistic interac-

tions can be shown to be functions of only four parameters including the nucleon spin

SN , the dark matter spin S�, the momentum transfer, ~q, and a kinematic variable

~v? which is a function of the relative incoming (~v�,in � ~vN,in) and outgoing velocities

~v�,out � ~vN,out

~v? =
1

2
(~v�,in � ~vN,in + ~v�,out � ~vN,out) = ~v�,in � ~vN,in +

~q

2µN

(5.1)

which obeys ~v? · ~q = 0. It was demonstrated in [1] that there exist fifteen such

non-relativistic interactions which arise from twenty possible bi-linear combinations

of dark matter and nucleons.

The formalism developed in [1] is unique in being the only analysis to comprehen-

sively develop the nuclear physics of direct detection experiments. From this general

framework it is now apparent that there are interactions beyond the standard spin

independent/dependent type. The origins of these ‘new’ interactions are not neces-

sarily exotic and it has been shown, in the context of relativistic EFT, how many of

them can be generated [177].

What has been lacking to date however, is a completely general and comprehensive

treatment that connects high energy microphysics with low-energy e↵ective nuclear

matrix elements in a model independent way. It is possible, for example, that the

various interactions listed in [1] can give rise to degeneracies where di↵erent funda-

mental dark matter Lagrangians, describing dark matter and interaction mediators

of various spins, can produce the same interaction types. This will obviously pose
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problems for attempts to discern the properties of dark matter when interpreting the

results of experimental data. Furthermore, dark matter may not be spin- 1
2
, which cre-

ates a need for extending the parametric framework from the four descriptors listed

above. In particular, as we shall show in this chapter, this allows the existence of new

non-relativistic operators to appear in the low energy e↵ective theory.

Motivated by the above we present in this chapter a general analysis covering

a broad spectrum of particle and interaction types, starting from the microphysics,

which will enable one to link experiment with fundamental theory while incorporating

the new nuclear responses described in [1].

We build upon the NR-EFT description by examining simplified models which

incorporate the most general renormalizable Lagrangians for scalar, spinor, and vec-

tor dark matter interacting with nucleons via scalar, spinor, and vector mediators,

consistent with Lorentz invariance and hermiticity while imposing stability of the

dark matter candidates. We integrate out the heavy mediator and obtain e↵ective

relativistic interaction Lagrangians. Next, we take the non-relativistic limit of these

Lagrangians, and identify them with the NR operators from [1], which are reproduced

below, in Table 5.1. Using these, we identify which electroweak nuclear responses are

excited by a given fundamental interaction model and determine the relative impor-

tance of various models within the context of direct detection experiments consisting

of xenon and germanium targets by exploring the relative magnitude of coe�cients

of these operators, and also their energy dependence.

This chapter is organized as follows; in section 5.2 the EFT formalism of [1] is

summarized, in section 5.3 we build the generalized relativistic Lagrangians and in

section 5.4, we outline the signatures and distinguishability of these models in the con-
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text of direct detection experiments, providing a framework for both experimentalists

and theorists to base their future analyses.

5.2 Non-Relativistic E↵ective Field Theory of Direct Detection

Conventionally, coherent WIMP-nucleus scattering has been considered to come

from two types of interactions; spin-independent (SI) and spin-dependent (SD). SI

interactions couple to the charge/mass of the nucleus while SD couples to the spin.

The nuclear cross section is generally written in terms of the nucleon cross section at

zero momentum transfer, �0, and a form factor, F (q), to take into account the loss

of coherence over the finite size of the nucleus,

d�

dEr

=
M

2⇡µ�Mv2

�

�SI
0 F 2

SI(q) + �SD
0 F 2

SD(q)
�

. (5.2)

where M is the mass of the target nucleus and µ�M is the WIMP-nucleus reduced

mass. This picture has recently been shown to be incomplete, as it is also possible

for the WIMP to couple to the nucleus through additional nuclear responses [1].

Working in the language of a non-relativistic (NR) e↵ective field theory Fitzpatrick

et al. identified 15 operators to characterize the ways in which a WIMP can couple

to the various nuclear responses. These operators are constructed from combinations

of non-relativistic vectors which respect Galilean invariance, T symmetry and which

are Hermitian. We list them in table 5.1. The Hermitian vectors are:

i
~q

mN

, ~v? = ~v +
~q

2µN

, ~S�, ~SN , (5.3)

where ~q = ~p0 � ~p = ~k � ~k0 is the momentum transfer, ~v is the velocity of WIMP with

respect to the nucleus of the detector, µN is the reduced mass of the system and ~S�

and ~SN are the WIMP and nuclear spins respectively. Throughout the chapter, we

denote by ~p and ~p0 the incoming and outgoing WIMP momenta and by ~k and ~k0 the
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incoming and outgoing nuclear momenta respectively. Energy-momentum conserva-

tion implies the orthogonality condition ~q · ~v? = 0. Here we will briefly outline the

procedure employed in [1] in going from the NR operators to the final di↵erential

WIMP-nucleus cross section.

Table 5.1: List of NR e↵ective operators described in [1]

O1 1�1N

O2 (~v?)2

O3 i~SN · ( ~q
mN
⇥ ~v?)

O4
~S� · ~SN

O5 i~S� · ( ~q
mN
⇥ ~v?)

O6 ( ~q
mN

· ~SN)( ~q
mN

· ~S�)

O7
~SN · ~v?

O8
~S� · ~v?

O9 i~S� · (~SN ⇥ ~q
mN

)

O10 i ~q
mN

· ~SN

O11 i ~q
mN

· ~S�

O12
~S� · (~SN ⇥ ~v?)

O13 i(~S� · ~v?)( ~q
mN

· ~SN)

O14 i(~SN · ~v?)( ~q
mN

· ~S�)

O15 �(~S� · ~q
mN

)
⇣

(~SN ⇥ ~v?) · ~q
mN

⌘

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
X

↵=n,p

15
X

i=1

c↵i O↵
i , (5.4)

where the coe�cients c↵i are given by the microphysics of the interaction and in

general one could allow for isospin violation by having di↵erent couplings to neutron
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and proton inside the nucleus. This can be rewritten in 2-component isospin space as

LNR =
X

⌧=0,1

15
X

i=1

c⌧i Oit
⌧ (5.5)

where t0 and t1 are the identity matrix and the Pauli matrix �3 respectively. The

nucleus is composed of nucleons, and these can individually interact with the WIMP.

This is incorporated by considering the operator O(j) as an interaction between a

single nucleon, j, and the WIMP, and then summing over the nucleons.

X

⌧=0,1

15
X

i=1

c⌧i Oit
⌧ !

X

⌧=0,1

15
X

i=1

c⌧i

A
X

j=1

Oi(j)t
⌧ (j) (5.6)

where A is the atomic mass number given by the total number of neutrons and

protons. One can do the same reduction with ~v?,

~v? ! {~v� � ~vN(i), i = 1, ..., A}

⌘ ~v?
T � {~̇vN(i), i = 1, ..., A� 1} (5.7)

where ~v� and ~vN(i) are the symmetrized combination of incoming and outgoing ve-

locities for the WIMP and nucleons respectively. ~v?
T (here T stands for target, i.e.,

the nuclear center-of-mass) is defined as

~v?
T = ~v� �

1

2A

A
X

i=1

[~vN,in(i) + ~vN,out(i)] (5.8)

This allows for a decomposition of the nucleon velocities into internal velocities ~̇vN(i)

that act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve

as a WIMP scatters o↵ the detector. As an example, the dot product between ~v?
N

and ~SN can be rewritten as

~v? · ~SN !
A
X

i=1

1

2
[~v�,in + ~v�,out � ~vN,in(i)� ~vN,out(i)] · ~SN(i) (5.9)

= ~v?
T ·

A
X

i=1

~SN(i)�
(

A
X

i=1

1

2
[~vN,in(i) + ~vN,out(i)] · ~SN(i)

)

int

(5.10)

84



The second term in the curly brackets is internal to the nucleus and acts as an oper-

ator on the ‘in’ and ‘out’ nucleon states. ~vN,in can be replaced by ~pN,in/M acting on

the incoming state, which can in turn be replaced by i
 �r/M , and similarly ~pN,out/M

by �i
�!r/M on the outgoing nuclear state. Finally, since the nucleus is non-zero in

size and individual nucleons locally interact with the WIMP, nuclear operators built

from Oi are accompanied by an additional spatial operator e�i~q·~x(i) where x(i) is the

location of the ith nucleon inside the nucleus.

Starting from Eqn. 5.6 and using the substitution rules for ~v? and including a

factor of e�i~q·~xi , the interaction Lagrangian can be written as a sum of five distinct

terms (nuclear electroweak operators) that only act on internal nucleon states. Their

coe�cients, on the other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus

interaction can then be written as

X

⌧=0,1

n

l⌧0S + lA⌧0 T +~l⌧5 · ~P +~l⌧M · Q +~l⌧E · ~R
o

t⌧ (i) (5.11)

where

S =
A
X

i=1

e�i~q·~xi

T =
A
X

i=1

1

2M



�1

i

 �r i · ~�(i)e�i~q·~xi + e�i~q·~xi~�(i) · 1

i

�!r i

�

~P =
A
X

i=1

~�(i)e�i~q·~xi

~Q =
A
X

i=1

1

2M



�1

i

 �r ie
�i~q·~xi + e�i~q·~xi

1

i

�!r i

�

~R =
A
X

i=1

1

2M

h �r i ⇥ ~�(i)e�i~q·~xi + e�i~q·~xi~�(i)⇥�!r i

i

(5.12)
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and

l⌧0 = c⌧1 + ic⌧5 ~S� ·
✓

~q

mN

⇥ ~v?
T

◆

+ c⌧8(~S� · ~v?
T ) + ic⌧11

~q · ~S�
mN

lA⌧0 = �1

2



c⌧7 + ic⌧14

✓

~S� · ~q

mN

◆�

~l5 =
1

2

"

c⌧3i

�

~q ⇥ ~v?
T

�

mN

+ c⌧4 ~S� + c⌧6
(~q · ~S�)~q

m2
N

+ c⌧7~v
?
T + ic⌧9

(~q ⇥ ~S�)

mN

+ ic⌧10

~q

mN

!

c⌧12(~v
?
T ⇥ ~S�) + ic⌧13

(S� · ~v?
T )~q

mN

+ ic⌧14

✓

~S� · ~q

mN

◆

~v?
T + c⌧15

(~q · ~S�)(~q ⇥ ~v?
T )

m2
N

#

~lM = c⌧5

✓

i
~q

mN

⇥ ~S�

◆

� ~S�c
⌧
8

~lE =
1

2

"

c⌧3
~q

mN

+ ic⌧12
~S� � c⌧13

(~q ⇥ ~S�)

mN

� ic⌧15

(~q · ~S�)~q
m2

N

#

(5.13)

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
X

⌧=0,1

hj�, M�; jN , MN |
n

l⌧0S + lA⌧0 T +~l⌧5 · ~P +~l⌧M · Q +~l⌧E · ~R
o

t⌧ (i)|j�, M�; jN , MNi (5.14)

By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can

be further rewritten in terms of standard nuclear electroweak responses as follows:

M =
X

⌧=0,1

hj�, M�f ; jN , MNf |
 

X

J=0

p

4⇡(2J + 1)(�i)J



l⌧0MJ0;⌧ � ilA⌧0

q

mN

⌦̃J0;⌧ (q)

�

+
X

J=1

p

2⇡(2J + 1)(�i)J
X

�±1

(�1)�
n

l⌧5�[�⌃J��;⌧ (q) + i⌃
0
J��;⌧ (q)]

�i
q

mN

l⌧M�[��J��;⌧ (q)]� i
q

mN

l⌧E�[��̃J��;⌧ (q) + i�̃
0
J��;⌧ (q)]

�

(5.15)

+
1
X

J=0

p

4⇡(2J + 1)(�i)J



il⌧50⌃
00
J0;⌧ (q) +

q

mN

l⌧M0�̃
00
J0;⌧ (q)

+
q

mN

l⌧E0�̃
00
J0;⌧ (q)

�◆

|j�, M�i; jN , MNii
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Where there is an implicit sum over the nucleons,

OJM ;⌧ (q) ⌘
A
X

i=1

OJM(q~xi)t
⌧ (i), (5.16)

and the various electroweak responses are defined as

MJM(q~x) ⌘ jJ(qx)YJM(⌦x)

~MM
JL ⌘ jJ(qx)~YJLM(⌦x)

�JM ⌘ ~MM
JJ(qxi) · 1

q
~ri

⌃
0
JM ⌘ �i

⇢

1

q
~ri ⇥ ~MM

JJ(q~xi)

�

· ~�(i)

⌃
00
JM ⌘

⇢

1

q
~riMJM(q~xi)

�

· ~�(i)

�̃
0
JM ⌘



1

q
~ri ⇥ ~MM

JJ(q~xi)

�

·


~�(i)⇥ 1

q
~ri

�

+
1

2
~MM

JJ(q~xi) · ~�(i)

�
00
JM ⌘ i



1

q
~riMJM(q~xi)

�

·


~�(i)⇥ 1

q
~ri

�

⌃JM ⌘ ~MM
JJ(q~xi) · ~�(i)

⌦̃JM ⌘ ⌦JM(q~xi) +
1

2
⌃

00
JM(q~xi)

�̃JM ⌘ �JM(qxi)�
1

2
⌃

0
JM(qxi)

�̃
00
JM ⌘ �

00
JM(qxi)�

1

2
MJM(qxi) (5.17)

where YJM and ~YJLM are spherical harmonics and vector spherical harmonics respec-

tively. We are only considering elastic transitions, and assuming parity and CP as

symmetries of the nuclear ground state. This eliminates some of the responses, and

only M,�
00
,⌃

0
,�,⌃

00
, �̃

0
survive. To calculate cross-sections, one needs to square the

amplitude, average over initial spins and sum over final spins. The matrix element

squared for the nuclear portion of the amplitude has been made available by Fitz-

patrick et al. [1], and codes have been supplied to calculate the full amplitude and

rate [175].
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As we shall describe, in the following analysis we discovered that two additional

NR operators are required to fully describe the scattering of spin-1 WIMPs o↵ nuclei,

O17 ⌘ i
~q

mN

· S · ~v?,

O18 ⌘ i
~q

mN

· S · ~SN , (5.18)

where S is the symmetric combination of polarization vectors.

5.3 Simplified Models for Direct Detection

From a model building perspective, one would like to know how relevant the

novel nuclear responses are in interpreting direct detection data. Previous work [177]

demonstrated that using only the SI/SD form factors (even with additional momen-

tum dependence taken into account) can lead one to infer wildly incorrect values of

the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level,

where ‘simplified model’ means a single WIMP with a single mediator coupling it to

the quark sector. This is useful for two reasons; it allows us to better explore which NR

operators arise from a broad set of UV complete theories, and also make connection

with the growing body of literature which use simplified models for indirect detection

and collider searches.

When it comes to interpreting signals, knowing comprehensively how di↵erent

interactions with di↵erent nuclei arise from di↵erent UV complete models will allow

us to identify degeneracies between competing models. Further, it can also help

optimize target selection for maximum discrimination of the UV model parameter

space.

In building these simplified models we remain agnostic about the WIMP’s spin,
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and consider dark matter spins of 0, 1
2

and 1. We do however only consider renor-

malizable interactions between quarks and WIMPs. To ensure a stable WIMP, we

assume that the WIMP is either charged under some internal gauge group or a dis-

crete symmetry group (for example Z2). However, we assume that this gauge charge

is not shared by quarks. We will couple the WIMP to the quarks via a heavy mediator

in two distinct ways: charged and uncharged mediators, each with all possible spins

consistent with angular momentum conservation. The mediator mass is chosen to be

the heaviest scale in the problem (and certainly much greater than the momentum

exchange which characterizes the scattering process) so that we can integrate it out

(see Appendix G for details). This leads to relativistic e↵ective WIMP-nucleon in-

teractions, whose NR limit can then be examined. In the uncharged mediator case

we will consider mediators that are neutral under all SM and WIMP gauge charges,

while in the charged case, the mediator must have both WIMP and SM gauge charges.

Given the above as a guide, our Lagrangian construction is then constrained only by

gauge invariance, Lorentz invariance, renormalizability and hermiticity. In certain

cases which follow, the requirement of hermiticity demands coupling constants be

complex. Unless explicitly noted, the coupling constants are dimensionless and can

be assumed to be real.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure

stability, and S† is its Hermitian conjugate. To have renormalizable interactions, the

neutral mediator can only be a scalar or a vector. We denote the scalar mediator by

� and the vector mediator by Gµ with field strength tensor Gµ⌫ .
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The most general renormailzable Lagrangian for scalar mediation consistent with

the above assumptions is given by

LS�q = @µS
†@µS �m2

SS†S � �S

2
(S†S)2 +

1

2
@µ�@

µ�� 1

2
m2
��

2 � m�µ1

3
�3 � µ2

4
�4

+iq̄D/ q �mq q̄q � g1mSS†S�� g2

2
S†S�2 � h1q̄q�� ih2q̄�

5q� (5.19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian

for vector mediation (up to gauge fixing terms) is

LSGq = @µS
†@µS �m2

SS†S � �S

2
(S†S)2 � 1

4
Gµ⌫Gµ⌫ +

1

2
m2

GGµG
µ � �G

4
(GµG

µ)2

+iq̄ /Dq �mq q̄q �
g3

2
S†SGµG

µ � ig4(S
†@µS � @µS

†S)Gµ

�h3(q̄�µq)G
µ � h4(q̄�µ�

5q)Gµ (5.20)

2. Spin-1
2
Dark Matter

If the WIMP has spin-1
2

(denoted by � below), then, as in the scalar WIMP case,

mediation will only occur via scalar or vector mediators. The most general renormal-

izable interactions for the scalar (�) and vector mediator (Gµ) cases respectively are

given below,

L��q = i�̄ /D��m��̄�+
1

2
@µ�@

µ�� 1

2
m2
��

2 � m�µ1

3
�3 � µ2

4
�4

+iq̄D/ q �mq q̄q � �1��̄�� i�2��̄�
5�� h1�q̄q � ih2�q̄�5q (5.21)

L�Gq = i�̄ /D��m��̄��
1

4
Gµ⌫Gµ⌫ +

1

2
m2

GGµG
µ + iq̄D/ q �mq q̄q

��3�̄�
µ�Gµ � �4�̄�

µ�5�Gµ � h3q̄�µqG
µ � h4q̄�µ�

5qGµ (5.22)

3. Spin-1 Dark Matter
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If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector

can occur via a heavy scalar or a vector particle. For the case of vector mediation,

there are many possible interactions because the Lorentz indices on the vectors af-

ford a more diverse set of terms. The general interaction Lagrangian for the scalar

mediation case is

LX�q = �1

2
X †

µ⌫X µ⌫ + m2
XX†

µX
µ � �X

2
(X†

µX
µ)2 +

1

2
(@µ�)2 � 1

2
m2
��

2

�m�µ1

3
�3 � µ2

4
�4 + iq̄ /Dq �mq q̄q � b1mX�X†

µX
µ � b2

2
�2X†

µX
µ

�h1�q̄q � ih2�q̄�5q (5.23)

For the case of vector mediation, there are many possible interactions because the

Lorentz indices on the vectors a↵ord a more diverse set of terms. The Lagrangian is

given by

LXGq = �1

2
X †

µ⌫X µ⌫ + m2
XX†

µX
µ � �X

2
(X†

µX
µ)2 � 1

4
Gµ⌫Gµ⌫ +

1

2
m2

GG2
µ

��G

4
(GµG

µ)2 + iq̄ /Dq �mq q̄q �
b3

2
G2

µ(X†
⌫X

⌫)� b4

2
(GµG⌫)(X†

µX⌫)

�
⇥

ib5X
†
⌫@µX

⌫Gµ + b6X
†
µ@

µX⌫G
⌫ + b7✏µ⌫⇢�(X

†µ@⌫X⇢)G� + h.c.
⇤

�h3Gµq̄�
µq � h4Gµq̄�

µ�5q (5.24)

where, for the Lagrangian to be Hermitian, b6 and b7 are complex (this implies a new

source of CP violation, which will not be considered further here).

5.3.1 Charged-Mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both

the DM internal symmetry group and SM gauge groups. This is motivated by the

absence of spin-1
2

mediators (s-channel processes) in the previous section. Such a

mediator, if neutral, is forbidden by simultaneous requirements of gauge invariance
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and renormalizability. Dark Matter models with mediators endowed with charges

from both DM and SM side have been considered in the literature before [178, 179].

The case of a spin-1
2

mediator carrying SU(3)c is also motivated by studies of heavy

quark models. This allows unique interactions as we show below. In particular

they necessitate a direct interaction between quarks and WIMPs at the level of the

Lagrangian.

1. Scalar Dark Matter

Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector)

and the quark are required in the (gauge invariant) interaction, but there is no way to

contract the spinor indices consistently if the mediating particle is a scalar or vector.

Therefore, the only possibility is that of a spin-1/2 mediator, Q, which acts like a

heavy quark. The general renormalizable action is given by

LSQq = @µS
†@µS �m2

SS†S � �S(S†S)2 + iQ̄ /DQ�mQQ̄Q

+iq̄ /Dq �mq q̄q �
�

y1SQ̄q + y2SQ̄�5q + h.c.
�

(5.25)

where y1 and y2 are again complex.

2. Spin-1
2
Dark Matter

For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange

can lead to novel interactions. The charged scalar is denoted by � and the charged

vector by Vµ

L��q = i�̄ /D��m��̄�+ (@µ�
†)(@µ�)�m2

��
†�� ��

2
(�†�)2 + iq̄ /Dq �mq q̄q

�
�

l1�
†�̄q + l2�

†�̄�5q + h.c.
�

(5.26)
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L�V q = i�̄ /D��m��̄��
1

2
V†

µ⌫Vµ⌫ + m2
V V †

µ V µ + iq̄ /Dq �mq q̄q

�
�

d1�̄�
µqV †

µ + d2�̄�
µ�5qV †

µ + h.c.
�

, (5.27)

where l1, l2, d1 and d2 are complex.

3. Vector DM

Here again we only have the case of a spin-1
2

mediated interaction between vector

DM and quarks (again scalar and vector charged mediators aren’t possible because

they don’t lead to Lorentz invariant and renormalizable interactions). The general

Lagrangian is given by

LXQq = �1

2
X †

µ⌫X µ⌫ + m2
XX†

µX
µ � �X

2
(X†

µX
µ)2 + iQ̄ /DQ�mQQ̄Q + iq̄ /Dq �mq q̄q

�
�

y3XµQ̄�
µq + y4XµQ̄�

µ�5q + h.c.
�

, (5.28)

where y3 and y4 are complex.

5.4 Non-Relativistic Reduction of Simplified Models

After integrating out the heavy mediator we replace quark operators with nucleon

operators, take the non-relativistic limit, and match onto the operators given in ta-

ble 5.1. The details of this procedure are given at the end of this section. The results

of this calculation are presented in terms of the ci coe�cients from [175], described in

section 5.2, facilitating a straightforward computation of amplitudes and rates. The

ci’s are given for each of the WIMP spins in tables 5.2, 5.3 and 5.4. With this general

framework in place we can now easily find the leading order NR operators for each

distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios in

which a combination of two Lagrangian couplings that give rise to a direct detection

signal is non-zero with all others set to zero, and then proceeding in this manner for
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the entire set. Each of these scenarios is listed with its leading operators in table 5.5

and with all operators generated in table 5.10. Note that in the case of a complex

coupling constant we consider purely real and purely imaginary values as separate

cases since they produce a distinct set of operators.

Table 5.2: Non-zero ci coe�cients for a spin�0 WIMP

Uncharged Mediator Charged Mediator

c1
hN
1

g
1

m2

�

y†
1

y
1

�y†
2

y
2

mQmS
fN

T

c10
�ihN

2

g
1

m2

�
+ 2ig

4

hN
4

m2

G

mN
mS

iy†
2

y
1

�y†
1

y
2

mQmS
�̃N

Table 5.3: ci coe�cients for a spin-1
2

WIMP

Uncharged Mediator Charged Mediator

c1
hN
1

�
1

m2

�
� hN

3

�
3

m2

G

⇣

l†
2

l
2

�l†
1

l
1

4m2

�

+ d†
2

d
2

�d†
1

d
1

4m2

V

⌘

fN
T +

⇣

� l†
2

l
2

+l†
1

l
1

4m2

�

+ d†
2

d
2

+d†
1

d
1

8m2

V

⌘

N N

c4
4hN

4

�
4

m2

G

l†
2

l
2

�l†
1

l
1

m2

�

�N �
⇣

l†
1

l
1

+l†
2

l
2

m2

�

+ d†
2

d
2

�d†
1

d
1

2m2

V

⌘

�N

c6
hN
2

�
2

mN

m2

�m�
( l†

1

l
1

�l†
2

l
2

4m2

�

+ d†
2

d
2

�d†
1

d
1

4m2

V
)mN

m�
�̃N

c7
2hN

4

�
3

m2

G
( l†

1

l
2

�l†
2

l
1

2m2

�

+ d†
1

d
2

+d†
2

d
1

4m2

V
)�N

c8 �2hN
3

�
4

m2

G
( l†

1

l
2

�l†
2

l
1

2m2

�

� d†
1

d
2

+d†
2

d
1

4m2

V
)N N

c9 �2hN
4

�
3

mN

m�m2

G
� 2hN

3

�
4

m2

G
( l†

1

l
2

�l†
2

l
1

2m2

�

� d†
1

d
2

+d†
2

d
1

4m2

V
)N N � ( l†

1

l
2

�l†
2

l
1

2m2

�

� d†
1

d
2

+d†
2

d
1

4m2

V
)mN

m�
�N

c10
hN
2

�
1

m2

�
i( l†

1

l
2

�l†
2

l
1

4m2

�

+ d†
2

d
1

�d†
1

d
2

4m2

V
)�̃N � i l†

1

l
2

�l†
2

l
1

m2

�

�N

c11 �hN
1

�
2

mN

m2

�m�
i( l†

2

l
1

�l†
1

l
2

4m2

�

+ d†
2

d
1

�d†
1

d
2

4m2

V
)mN

m�
fN

T + i l†
1

l
2

�l†
2

l
1

m2

�

mN
m�
�N

c12 0 l†
2

l
1

�l†
1

l
2

m2

�

�N

As described earlier, we find that it is important to consider operators beyond

those incorporated into the standard spin-independent and spin-dependent formal-

ism, i.e. simple models exist in which one would infer an incorrect rate in current

experiments by not including these e↵ects. Also importantly, not all of the NR oper-

ators are actually generated at leading order; for example, the operators O2, O3, O13
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Table 5.4: ci coe�cients for a spin-1 WIMP

Uncharged Mediator Charged Mediator

c1
b
1

hN
1

m2

�

y†
3

y
3

�y†
4

y
4

mQmX
fN

T

c4
4Im(b

7

)hN
4

m2

G
+ i q2

m2

X

Re(b
7

)hN
4

m2

G
� q2

mXmN

Re(b
6

)hN
3

m2

G
2y†

3

y
3

�y†
4

y
4

mQmX
�N

c5
Re(b

6

)hN
3

m2

G

mN
mX

0

c6
Re(b

6

)hN
3

m2

G

mN
mX
� iRe(b

7

)hN
4

m2

G

m2

N

m2

X
0

c8
2Im(b

7

)hN
3

m2

G
0

c9 �2Re(b
6

)hN
4

m2

G

mN
mX

+ 2Im(b
7

)hN
3

m2

G
0

c10
b
1

hN
2

m2

�
� 3b

5

hN
4

m2

G

mN
mX

iy†
4

y
3

�y†
3

y
4

mQmX
�̃N

c11
Re(b

7

)hN
3

m2

G

mN
mX

iy†
4

y
3

�y†
3

y
4

mQmX
�N

c12 0 2iy†
3

y
4

�y†
4

y
3

mQmX
�N

c14 �2Re(b
7

)hN
4

m2

G

mN
mX

0

c17 �4Im(b
6

)hN
3

m2

G

mN
mX

0

c18
4Im(b

6

)hN
4

m2

G

mN
mX

�2iy†
4

y
3

�y†
3

y
4

mQmX
�N

and O15 are missing at leading order. Note that we only consider renormalizable La-

grangians, higher order non-renormalizable operators, which are presumably further

suppressed. We have also not considered the case of kinetic mixing, which could be

used to generate anapole interactions [177], because the e↵ective interaction doesn’t

arise from one mediator exchange.

While spin independent interactions are a generic feature of direct couplings to

quarks in our charged mediator cases, it is sometimes possbile to suppress them. In

the scalar (and vector) WIMP with charged mediator cases, it is possible to suppress

the spin independent interaction by ensuring that |y1| = |y2|(|y3| = |y4|) while keep-

ing their relative phases non-zero (or ⇡). While these non-minimal scenarios require
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some fine tuning we include it for completeness and label them y1, y2 and y3, y4.

Aside from scalar WIMPs, each particular spin produces some non-relativistic op-

erators that are unique to that spin. Also, importantly, the operators O1 and O10 are

generic to all spins. In five cases relativistic operators generate unique non-relativistic

operators at leading order. Therefore distinguishing WIMP scenarios in these cases

reduces to experimentally discerning between these operators (see also [180]). Given

the likely low statistics of any detection in upcoming direct detection experiments,

sub-leading operators are not likely to contribute enough to provide any further dis-

criminating power.

5.4.1 Non-Relativistic Reduction

We find e↵ective relativistic interaction Lagrangians by integrating out heavy me-

diators. We only keep the leading order interactions (suppressed by m or m2). To

the right of each operator is their non-relativistic reduction expressed in terms of the

operators in table 5.1 with the coe�cient derived from the Lagrangian parameters

along with the relevant nucleon form factor. As multiple operators can have the same

non-relativistic limit, it is important to include the nucleon form factor at the rela-

tivistic level. If this is not performed, erroneous cancellations can occur.

For free spinors we use the Bjorken & Drell [181] normalization and � matrix
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Table 5.5: Leading order operators which can arise from the relativistic Lagrangians
considered in this work, the column ‘L terms’ gives the non-zero couplings for that
scenario. Each row represents a possible leading order direct detection signal. A ‘†’
indicates that the mediator is charged. The ‘Eqv. Mm’ column gives the mediator
mass required for each scenario to produce ⇠10 events t�1yr�1keV �1 in xenon, with
couplings set to 0.1.

WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV

0 0 h2, g1 O10 14 GeV

0 1 h4, g4 O10 8 GeV

0

1
2
† y1 O1 3.2 PeV

0

1
2
† y2 O1 3.2 PeV

0

1
2
† y1, y2 O10 41 GeV

1
2 0 h1, �1 O1 12.7 TeV

1
2 0 h2, �1 O10 293 GeV

1
2 0 h1, �2 O11 14 GeV

1
2 0 h2, �2 O6 1.9 GeV

1
2 1 h3, �3 O1 6.3 TeV

1
2 1 h4, �3 O9 6.4 GeV

1
2 1 h3, �4 O8 180 GeV

1
2 1 h4, �4 O4 135 GeV

1
2 0

† l1 O1 7.1 TeV

1
2 0

† l2 O1 5.5 TeV

1
2 1

† d1 O1 5.9 TeV

1
2 1

† d2 O1 6.7 TeV

1 0 h1, b1 O1 13 TeV

1 0 h2, b1 O10 10 GeV

1 1 h4, b5 O10 5.1 GeV

1 1 h3, bRe
6 (bIm6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm6 ) O9(O18) 3 GeV(4.6 GeV)

1 1 h3, bRe
7 (bIm7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, bRe
7 (bIm7 ) O4(O4) 78 MeV (172 GeV)

1

1
2
† y3 O1 3.2 PeV

1

1
2
† y4 O1 3.2 PeV

1

1
2
† y3, y4 O11 120 TeV

conventions. In the non-relativistic limit we make the following replacements:

S ! 1Sp
mS

Xµ !
✏sµp
mX

� !
s

E + m�

2m�

0

B

@

⇠

~�·~p
E+m�

⇠

1

C

A

(5.29)

where s = 1, 2, 3 are the di↵erent polarization states of the vector. ⇠ = (1 0)T is

the left handed Weyl spinor. The following Fierz transformation and gamma matrix
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identites were useful in the charged mediator cases, (a sign di↵erence was found in

the final identity when compared with [182]):

(q̄�)(�̄q) = �1

4



q̄q�̄�+ q̄�µq�̄�µ�+
1

2
q̄�µ⌫q�̄�µ⌫�� q̄�µ�5q�̄�µ�

5�

+q̄�5q�̄�5�
⇤

(q̄�5�)(�̄�5q) = �1

4

⇥

q̄q�̄�+ q̄�5q�̄�5�� q̄�µq�̄�µ�+ q̄�µ�5q�̄�µ�
5�

+
1

2
q̄�µ⌫q�̄�µ⌫�

�

(5.30)

(q̄�)(�̄�5q) = �1

4

⇥

q̄q�̄�5�+ q̄�5q�̄�� q̄�µq�̄�µ�
5�+ q̄�µ�5q�̄�µ�

+i✏µ⌫↵� q̄�
µ⌫q�̄�↵��

⇤

(q̄�µ�)(�̄�µq) = �


q̄q�̄�� q̄�5q�̄�5�� 1

2
q̄�µq�̄�µ��

1

2
q̄�µ�5q�̄�µ�

5�

�

(q̄�µ�
5�)(�̄�µ�5q) = �



�q̄q�̄�+ q̄�5q�̄�5�� 1

2
q̄�µq�̄�µ��

1

2
q̄�µ�5q�̄�µ�

5�

�

(q̄�µ�)(�̄�µ�5q) = �


q̄q�̄�5�� q̄�5q�̄�+
1

2
q̄�µq�̄�µ�

5�+
1

2
q̄�µ�5q�̄�µ�

�

�µ⌫�5 =
i

2
✏µ⌫⇢��⇢� (5.31)

All of the following operators are collected in terms of the coe�cients of the NR

operators, ci, in tables 5.2,5.3 and 5.4.
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Table 5.6: Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) �!
⇣

hN
1

g
1

m2

�

⌘

O1

(S†S)(q̄�5q) �!
⇣

hN
2

g
1

m2

�

⌘

O10

Vector Mediator

i(S†@µS � @µS†S)(q̄�µq) �! 0

i(S†@µS � @µS†S)(q̄�µ�5q) �!
⇣

2ig
4

hN
4

m2

G

mN
mS

⌘

O10

Charged Spinor Mediator

(S†S)(q̄q) �! y†
1

y
1

�y†
2

y
2

mQmS
fN

T O1

(S†S)(q̄�5q) �! iy†
2

y
1

�y†
1

y
2

mQmS
�̃NO10

Table 5.7: Operators for a spin-1
2

WIMP via a neutral mediator

Scalar Mediator

�̄�q̄q �!
⇣

hN
1

�
1

m2

�

⌘

O1

�̄�q̄�5q �!
⇣

hN
2

�
1

m2

�

⌘

O10

�̄�5�q̄q �!
⇣

�hN
1

�
2

mN

m2

�m�

⌘

O11

�̄�5�q̄�5q �!
⇣

hN
2

�
2

mN

m2

�m�

⌘

O6

Vector Mediator

�̄�µ�q̄�µq �!
⇣

�hN
3

�
3

m2

G

⌘

O1

�̄�µ�q̄�µ�5q �!
⇣

�2hN
4

�
3

m2

G

⌘⇣

�O7 + mN
m�

O9

⌘

�̄�µ�5�q̄�µq �!
⇣

�2hN
3

�
4

m2

G

⌘

(O8 + O9)

�̄�µ�5�q̄�µ�5q �!
⇣

4hN
4

�
4

m2

G

⌘

O4
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Table 5.8: Non-relativistic reduction of operators for a spin-1
2

WIMP via a charged
mediator (after using Fierz identities)

Charged Scalar Mediator

�̄�q̄q �! l†
2

l
2

�l†
1

l
1

4m2

�

fN
TqO1

�̄�q̄�5q �! i l†
1

l
2

�l†
2

l
1

4m2

�

�q̃NO10

�̄�5�q̄q �! i l†
2

l
1

�l†
1

l
2

4m2

�

mN
m�

fN
TqO11

�̄�5�q̄�5q �! l†
1

l
1

�l†
2

l
2

4m2

�

mN
m�
�q̃NO6

�̄�µ�q̄�µq �! � l†
1

l
1

+l†
2

l
2

4m2

�

N N
q O1

�̄�µ�5�q̄�µq �! l†
1

l
2

+l†
2

l
1

2m2

�

N N
q (O8 + O9)

�̄�µ�q̄�µ�5q �! l†
1

l
2

+l†
2

l
1

2m2

�

�N
q (O7 � mN

m�
O9)

�̄�µ�5�q̄�µ�5q �! � l†
1

l
1

+l†
2

l
2

m2

�

�N
q O4

�̄�µ⌫�q̄�µ⌫q �! l†
2

l
2

�l†
1

l
1

m2

�

�N
q O4

✏µ⌫↵��̄�µ⌫�q̄�↵�q �! l†
2

l
1

�l†
1

l
2

m2

�

�N
q (iO10 � imN

m�
O11 + 4O12)

Charged Vector Mediator

�̄�q̄q �! d†
2

d
2

�d†
1

d
1

4m2

V
fN

TqO1

�̄�q̄�5q �! id†
2

d
1

�d†
1

d
2

4m2

V
�q̃NO10

�̄�5�q̄q �! id†
2

d
1

�d†
1

d
2

4m2

V

mN
m�

fN
TqO11

�̄�5�q̄�5q �! d†
2

d
2

�d†
1

d
1

4m2

V

mN
m�
�q̃NO6

�̄�µ�q̄�µq �! d†
2

d
2

+d†
1

d
1

8m2

V
N N

q O1

�̄�µ�5�q̄�µq �! �d†
2

d
1

+d†
1

d
2

4m2

V
N N

q [O8 + O9]

�̄�µ�q̄�µ�5q �! d†
2

d
1

+d†
1

d
2

4m2

V
�N

q

h

O7 � mN
m�

O9

i

�̄�µ�5�q̄�µ�5q �! �d†
2

d
2

+d†
1

d
1

2m2

V
�N

q O4
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Table 5.9: Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X†
µXµq̄q �!

✓

b
1

hN
1

m2

�

◆

O1

X†
µXµq̄�5q �!

✓

b
1

hN
2

m2

�

◆

O10

Vector Mediator

(X†
⌫@µX⌫ � @µX†

⌫X⌫
)(q̄�µq) �! 0

(X†
⌫@µX⌫ � @µX†

⌫X⌫
)(q̄�µ�5q) �!

⇣

�3b
5

hN
4

m2

G

mN
mX

⌘

O10

@⌫(X⌫†Xµ + X†
µX⌫

)(q̄�µq) �!
⇣

Re(b
6

)hN
3

m2

G

mN
mX

⌘ h

O5 + O6 � q2

m2

N
O4

i

@⌫(X⌫†Xµ + X†
µX⌫

)(q̄�µ�5q) �!
⇣

�2Re(b
6

)hN
4

m2

G

mN
mX

⌘

O9

@⌫(X⌫†Xµ �X†
µX⌫

)(q̄�µq) �!
⇣

�4Im(b
6

)hN
3

m2

G

mN
mX

⌘

O17

@⌫(X⌫†Xµ �X†
µX⌫

)(q̄�µ�5q) �!
⇣

4Im(b
6

)hN
4

m2

G

mN
mX

⌘

O18

✏µ⌫⇢�

�

X⌫†@⇢X�
+ X⌫@⇢X�†�

(q̄�µq) �!
⇣

Re(b
7

)hN
3

m2

G

mN
mX

⌘

O11

✏µ⌫⇢�

�

X⌫†@⇢X�
+ X⌫@⇢X�†�

(q̄�µ�5q) �!
⇣

Re(b
7

)hN
4

m2

G

mN
mX

⌘ h

i q2

mXmN
O4 � imN

mX
O6 � 2O14

i

✏µ⌫⇢�

�

X⌫†@⇢X� �X⌫@⇢X�†�
(q̄�µq) �!

⇣

2Im(b
7

)hN
3

m2

G

⌘

[O8 + O9]

✏µ⌫⇢�

�

X⌫†@⇢X� �X⌫@⇢X�†�
(q̄�µ�5q) �!

⇣

4Im(b
7

)hN
4

m2

G

⌘

O4

Charged Spinor Mediator

(X†
µX⌫)(q̄�µ�⌫q) �!

✓

y†
3

y
3

�y†
4

y
4

mQmX

◆

h

fN
TqO1 + 2�N

q O4

i

(X†
µX⌫)(q̄�µ�⌫�5q) �!

✓

y†
4

y
3

�y†
3

y
4

mQmX

◆

h

i�N
q̃ O10 + i�N

q O11 � 2i�N
q O12

�2i�N
q O18

i

5.4.2 Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from

point-like nucleons, one must evaluate the quark (parton) bilinears in the nucleons.

For a full discussion see the Appendices of [182] and [183]. Here, we write the nucleon

couplings in terms of the quark couplings times a form factor (in the limit of zero

momentum transfer): The scalar bilinear for light quarks can be evaluated from
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hNo| mq q̄q |Nii �! fN
TqN̄N

hNo| q̄�5q |Nii �! �q̃NN̄�5N

hNo| q̄�µq |Nii �! N N
q N̄�µN

hNo| q̄�µ�5q |Nii �! �N
q N̄�µ�5N

hNo| q̄�µ⌫q |Nii �! �N
q N̄�µ⌫N

hN | mq q̄q |Ni = mNfN
Tq (5.32)

while for the heavy quarks

hN | mq q̄q |Ni =
2

27
mNFN

TG =
2

27
mN

 

1�
X

q=u,d,s

fN
Tq

!

. (5.33)

Summing over all the quarks one finds

hN
1 =

X

q=u,d,s

hq
1

mN

mq

fN
Tq +

2

27
fN

TG

X

q=c,b,t

hq
1

mN

mq

(5.34)

The pseudo-scalar bilinear was recently revisited in [183]:

hN
2 =

X

q=u,d,s

hq
2�q̃N ��G̃N

X

q=c,b,t

hq
2

mq

(5.35)

The vector bilinear essentially gives the number operator:

hN
3 =

8

>

<

>

:

2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(5.36)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note

that sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

X

q=u,d,s

hq
4�

N
q (5.37)

Throughout this chapter the following values are used (it should be noted that
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there are large uncertainties in these values) [182, 183]:

fn
Tu = 0.014 f p

Tu = 0.02

fn
Td = 0.036 f p

Td = 0.026

fn
Ts = 0.118 f p

Ts = 0.118

�n
u = �0.427 �p

u = 0.842

�n
d = 0.842 �p

d = �0.427

�n
s = �0.085 �p

s = �0.085

�ũn = �108.03 �ũp = 110.55

�d̃n = 108.60 �d̃p = �107.17

�s̃n = �0.57 �s̃p = �3.37

�G̃n = 35.7MeV �G̃p = 395.2MeV

(5.38)

Assuming a universal coupling of the mediators to all quarks, the nucleon level cou-

plings can then be written as,

hN
1 = fN

T h1

hN
2 = �̃Nh2

hN
3 = N Nh3

hN
4 = �Nh4

(5.39)
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where we have defined,

fn
T = 11.93 f p

T = 12.31

�̃n = �0.07 �̃p = �0.28

N n = 3 N p = 3

�n = 0.33 �p = 0.33

�n = 0.564 �p = 0.564

. (5.40)

This introduces a small amount of isospin violation, and it is known that relaxing the

assumption of universal couplings to quarks can lead to interesting isospin violating

e↵ects [183, 184].

5.5 Observables

The principle observable in direct detection experiments is the di↵erential event

rate. Since the incoming WIMPs originate in the galactic halo, one must average over

the WIMP velocity distribution, f(v), which we assume to be Maxwell-Boltzmann,

dR

dER

= NT
⇢�M

2⇡m�

Z

vmin

f(v)

v
Ptotdv (5.41)

where we use the value ⇢� = 0.3GeV/cm3 for the local dark matter density, NT is the

number of nuclei in the target and Ptot can be calculated from the amplitude M in

Eq. 5.14

Ptot =
1

2j� + 1

1

2jN + 1

X

spins

|M|2. (5.42)

Thoughout this work we use the mathematica package supplied in [175] to calculate

rates. To determine the leading order operator which arises from a given relativistic

scenario we first plot the rate for each of the NR operators in xenon-131. To simply
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Figure 5.1: The relative strength of event rates for a 50GeV spin-1
2

WIMP in xenon
for each of the non-relativistic operators in table 5.1, where the coe�cients of each
operator are set to be equal

compare the operators we set the ci coe�cients to be the same and normalized the

overall rate to that of O1, see Fig. 5.1. Since operators are either zero, first or second

order in momentum transfer q or velocity ~v?, the relative strengths of the operators

span 16 orders of magnitude. This is an important point to keep in mind when find-

ing the leading operator, as sometimes a term which appears to be higher order in q

can dominate the non-relativistic reduction. For example in the bRe
7 h4 scenario, one

finds that q2O4 dominates over the O6 and O14 which contain powers of q within the

operators.

Since the Lagrangians we have considered are not tied to specific complete and

consistent particle physics models, the mediator masses are not fixed in advance and

thus specific event rates are not predicted in advance. Clearly one requires a rate

that is low enough to evade the current experimental constraints. For example, a 50

GeV WIMP producing 10 events per tonne per year is su�ciently low to evade the

bounds from LUX [143]. For demonstration purposes we set the couplings to 0.1 (or

0.1i for imaginary) in the various Lagrangians and find a mediator mass that will

produce 10 events/t/y in the signal region for xenon (5 � 45keV). The calculated

masses are given in table 5.5. It is perhaps telling that the mediator masses span 6
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orders of magnitude, from just a few GeV up to a PeV. While it is unlikely that a full

model of thermal relic dark matter could be built around all of these Lagrangians, it

is nevertheless a useful metric to estimate the relative strength of the di↵erent nuclear

responses to each of the operators.

In Figs. 5.2, 5.3, 5.4 and 5.5 we have plotted rates for two common targets. For

simplicity and again for demonstration purposes, we only plot the rates for a single

isotope of both germanium and xenon. The choice of isotopes, 73Ge and 131Xe, was

made to ensure sensitivity to spin-dependent responses. As can be seen in the figures,

many operators produce rates with similar recoil energy dependence in the same tar-

get, but di↵erent nuclei can have very di↵erent responses to the various operators [1].

Thus a complementary choice of nuclear targets can provide important discriminating

information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and

germanium in Fig. 5.5 and 5.6. We choose to only present ratios for the uncharged

mediator cases of spinor and vector WIMPs since the other cases produce trival re-

sults (all operators being spin independent). To estimate the e↵ect astrophysical

uncertainties will have on discriminating between operators, we plot the rate for a

range of astrophysical parameters from v0 = 200m/s, and vesc = 500m/s (lower) to

v0 = 240m/s and vesc = 600m/s (upper). The uncertainty in the dark matter density

does not appear since we are considering the ratio of rates. Given the vastly di↵er-

ent energy dependence of the ratio of rates of each scenario the astrophysical errors

do not completely inhibit their identification. Furthermore, operators O9 and O14,

produced in scenarios h4bRe
7 and h4bRe

6 respectively, remain indistingushable when con-

sidering the ratio of rates. While it appears that in principle almost every operator
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is discernible, in practice isotopically impure targets and low statistics will further

complicate the situation and provide limits on practical discrimination.
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Figure 5.2: Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium
(dashed) with uncharged (left) and charged mediators (right), assuming mediator
mass of 1TeV and O(1) coupling constants.
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Figure 5.3: Rates for a 50GeV spin-1
2

WIMP in xenon (solid) and germanium
(dashed) with uncharged (left) and charged mediators (right), assuming mediator
mass of 1TeV and O(1) coupling constants.

5.6 Calculation Details

5.6.1 Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered

previously. Specifically, the operators depend on the symmetric combination of polar-

ization vectors, Sij = 1
2

⇣

✏†i✏j + ✏†j✏i
⌘

. This necessitates a modification to the WIMP

response functions by first modifying the ` coe�cients given in Eq. 5.13. Based on

our non-relativistic reduction for vector dark matter, the Lagrangian for vector dark
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Figure 5.4: Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium
(dashed) with uncharged (left) and charged mediators (right), assuming mediator
mass of 1TeV and O(1) coupling constants.
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Figure 5.5: Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium
(dashed) with uncharged mediators and imaginary couplings, assuming mediator mass
of 1TeV and O(1) coupling constants. Also shown is the ratio of rates in xenon and
germanium (right).

matter and the nucleus, interacting via an uncharged scalar or vector mediator can

be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17

+c18O18 (5.43)

where we’ve defined O17 ⌘ i~q
mN

· S ·~v? and O18 ⌘ i~q
mN

· S · ~SN and the ci’s are given in

table 5.4. To decompose these new operators we replace ~v? with the target velocity

and the internucleon velocities and sum over nucleons. O17 can then be put into the

form

O17 !
i~q

mN

.S.

"

~v?
T e�i~q.~xi �

A
X

i=1

1

2M

✓

�1

i

 �r ie
�i~q·~xi + e�i~q·~xi

1

i

�!r i

◆

int

#

(5.44)
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Figure 5.6: Ratio of rates in xenon and germanium, illustrating the discriminating
power of having multiple nuclear targets. For a 50GeV spin-1

2
WIMP with uncharged

mediator (left) and a 50GeV spin-1 WIMP with uncharged mediator (right), the
shaded regions show the upper and lower bounds due to the astrophysical parameters

O18 can be expanded as

O18 !
1

2

i~q

mN

· S · ~� (5.45)

Together, all the terms of Lvector give rise to the following ` factors from Eq. 5.13,

`⌧0 = c⌧1 + i

✓

~q

mN

⇥ ~v?
T

◆

· ~S�c⌧5 + (~v?
T · ~S�)c⌧8 + i

✓

~q

mN

· ~S�
◆

c⌧11

+i

✓

~q

mN

· S · ~vT
?

◆

c⌧17

lA⌧0 = �i

✓

~q

2mN

· ~S�
◆

c⌧14

~l⌧E = 0 (5.46)

~l⌧M = i

✓

~q

mN

⇥ ~S�

◆

c⌧5 � ~S�c
⌧
8 � i

✓

~q

mN

· S
◆

c⌧17

~l⌧5 =
1

2
~S�c

⌧
4 + i

✓

~q

mN

⇥ ~S�

◆

c⌧9 +
1

2

✓

i
~q

mN

◆

c⌧10 +
1

2
~v?

T

✓

~q

2mN

· ~S�
◆

c⌧14

+
1

2

✓

i
~q

mN

· S
◆

c⌧18

Based on the `’s above, the coe�cients of the various nuclear responses are found

by squaring the amplitude and then summing over spins. To simplify calculations,

we choose a convenient basis for polarization vectors, ✏si = �s
i . Recall that the spin

can then be written as the anti-symmetric combination iSk = ✏ijk✏
†
i✏j. The WIMP
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responses unique to the vector case are then given by:

R⌧⌧ 0
M = c⌧1c

⌧ 0
1 +

2

3

✓

~q2

m2
N

v?2
T c⌧5c

⌧ 0
5 + v?2

T c⌧8c
⌧ 0
8 +

q2

m2
N

c⌧11c
⌧ 0
11 +

q2v?2
T

4m2
N

c⌧17c
⌧ 0
17

◆

R⌧⌧ 0
�00 = 0

R⌧⌧ 0
�00M = 0

R⌧⌧ 0
�̃0 = 0

R⌧⌧ 0
⌃

00 =
1

6
c⌧4c

⌧ 0
4 +

q2

4m2
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(5.47)

5.7 Conclusions

The analysis we have given here builds on previous analyses to provide, in gen-

erality, a roadmap to use event rates in direct dark matter detectors to constrain

fundamental dark matter models. We have outlined the steps needed to go from fun-

damental Lagrangians, first to relativistic operators, then to non-relativistic opera-

tors, and finally to produce nuclear matrix elements. In the process several significant

facts have been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix el-

ements in direct detection will arise from simple UV complete dark matter

models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic

operators that are unique to that spin.
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• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all

WIMP spins we have explored.

• In 5 scenarios, relativistic operators generate unique non-relativistic operators

at leading order.

• Two new non-relativistic operators not previously considered within the context

of the full array of allowed nuclear responses arise at low energies if spin-1 WIMP

dark matter is allowed for.

• While the di↵erent operators that can contribute to event rates in detectors

using specific elements or isotopes cannot be distinguished on the basis of their

impact on the di↵erential event rates in these detectors, they can produce rad-

ically di↵erent energy dependence for scattering o↵ di↵erent nuclear targets.

Thus, a complementary use of di↵erent target materials will be necessary to reli-

ably distinguish between di↵erent particle physics model possibilities for WIMP

dark matter.

While current detectors have only yielded upper limits, with new generations of

larger detectors with greater energy resolution and lower thresholds coming online,

the search for WIMP dark matter has never been so vibrant and promising. The tools

we have provided here should help experimenters to probe the most useful parameter

space, to interpret any non-zero signals in terms of constraints on fundamental models,

and should allow theorists who build fundamental models to frame predictions in an

accurate and simple way so that they might be directly compared with experiment.
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Table 5.10: List of scenarios with leading operators colored by which are distin-
guishable via the ratio

�

dRXe
dE

�

/
�

dRGe
dE

�

.

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) 3

(h2, g1) 3

(h4, g4) 3

S
p
in

-0
W

IM
P

(y1) 3 3

(y2) 3 3

(y1, y2) 3

(h1,�1) 3

(h2,�1) 3

(h1,�2) 3

(h2,�2) 3

(h3,�3) 3

(h4,�3) 3 3

(h3,�4) 3 3

S
p
in

-1 2
W

IM
P

(h4,�4) 3

(l1) 3 3 3

(l2) 3 3 3

(d1) 3 3 3

(d2) 3 3 3

(h1, b1) 3

(h2, b1) 3

(h4, b5) 3

(h3, b6) 3 3 3 3*

(h4, b6) 3 3*

S
p
in

-1
W

IM
P

(h3, b7) 3* 3* 3

(h4, b7) 3* 3 3 3

(y3) 3 3 3 3 3 3

(y4) 3 3 3 3 3 3

(y3, y4) 3 3 3 3
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The FRW metric describes a uniform, isotropic and homogenous universe. But
such a universe would be exceedingly boring because it would look exactly the same
everywhere. And thats of course not our universe at the small scale. So if we want
to describe the real universe which has large scale structure like clusters of galaxies,
we have to move beyond this zeroth order. Fortunately though, at the very largest
scales, the universe is still to a high degree of accuracy homogenous ad isotropic.
NASA’s COBE satellite which studied anisotropies in the CMB that probe matter
over-densities showed in 1992 (these observations have been improved by WMAP and
Planck) that universe was indeed extremely homogenous and isotropic. This means
that large scale structure is but a small perturbation on top of this homogenous and
isotropic background. Perturbation theory is a powerful technique to get accurate
quantitative solutions to problems for which an exact closed form analytical solution
may not exist. Thus, if we could study perturbations on top of FRW universe, we
could describe the evolution of this large scale structure. We now turn to a review
of cosmological perturbation theory which was extensively used in our research. The
treatment here borrows heavily from Ch.7 of [185].

Einstein’s equations connect space-time geometry i.e., metric to energy-momentum
tensor of matter in that space-time. To understand the evolution of small perturba-
tions, we need to expand both the LHS and RHS of this equation about the FRW
background. To keep the discussion general lets label the background FRW metric
as g(0)

µ⌫ and the perturbation as g(1)
µ⌫ .

gµ⌫ = g(0)
µ⌫ + �gµ⌫ (A.1)

Now ideally we want this perturbation �gµ⌫ to be small. However, there’s a di�-
culty. Einstein’s equations are di↵eomorphic invariant. So, there exist coordinate
transformations under which the perturbation and the background metric can mix
and thus there is no unique way of decomposing a metric into a big and small part.
Fortunately, this dilemma can be solved by working with gauge invariant quantities.

Di↵eomorphic invariance is simply invariance under general coordinate transfor-
mations x↵ ! x̃↵ = f(x↵). Consider infinitesimal transformations so that x̃↵ =
x↵ + ✏↵(x↵) where ✏↵(x↵)⌧ x↵. Under this transformation the metric will transform
as a rank-2 tensor,

g̃µ⌫(x̃) =
@x↵

@x̃µ

@x�

@x̃⌫
g↵�(x) = gµ⌫(x)� @⌫✏µ(x)� @µ✏⌫(x) (A.2)

where the derivatives are w.r.t. x↵. The symmetric piece on the right side, @µ✏⌫ +
@⌫✏µ = L✏gµ⌫(x) is the Lie derivative of the metric tensor in the direction of the vector
field ✏µ(x).

Using this lets derive the infinitesimal coordinate transformation rule for the per-
turbation �gµ⌫ . The key idea in cosmological perturbation theory is that observers
in any frame see a FRW background and small perturbations on top. So, we should
expand about the same background in both frames. Then the perturbation follows a
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gauge transformation law,

g(0)
µ⌫ (x̃) + �g̃µ⌫(x̃) = g(0)

µ⌫ (x) + �gµ⌫(x)� @⌫✏µ(x)� @µ✏⌫(x)

�g̃µ⌫(x̃) = �gµ⌫(x)� ✏↵(x)@↵g
(0)
µ⌫ (x)� @⌫✏µ(x)� @µ✏⌫(x) (A.3)

The indices are raised and lowered w.r.t. the original metric g(0)
µ⌫ . This coordinate

transformation law for the perturbations is used to construct gauge-invariant vari-
ables. But before that we want to understand the physical degrees of freedom hidden
in this perturbation. Similarly, we can also derive the gauge transformation law for a
scalar �q and a vector �ui. A scalar doesn’t change under coordinate transformation.
So, q̃(x̃) = q(x). Expanding q(x) = q0(x)+�q(x) about a background q0 and similarly
q̃(x̃) = q0(x̃) + �q̃, we immediately have

�q ! �q̃ = �q � (@↵q
0)✏↵ (A.4)

We can do a similar expansion for a 4-vector u↵ except unlike the metric which
changes with two factors of @x/@x̃, a vector only needs one such factor. Following
the same method of expanding about a background, we get

�u↵ ! �ũ↵ = �u↵ � (@�u
0
↵)✏

� � u0
�✏
�
↵ (A.5)

Recall that the background FRW metric g(0)
µ⌫ is spatially homogenous and isotropic

but time asymmetric.

ds2 = g(0)
µ⌫ dxµdx⌫ = dt2 � a(t)2d~x2 = a(⌘)2

⇥

d⌘2 � d~x2
⇤

(A.6)

where d⌘ = dt/a(t) is the conformal time (the derivative w.r.t. ⌘ is denoted by a prime
0). Therefore, it has 3 killing vectors, namely the rotation generators corresponding
to the spherically symmetric background. We can thus decompose the perturbations
according to their transformation properties under rotations in three dimensions.
First we observe that the zeroth component of the perturbation parameter, ✏0 is
obviously a scalar w.r.t. 3-rotations. And the spatial component ✏i is a 3-vector.
However, the 3-vector can further be decomposed into a divergenceless pure 3-vector
part and a gradient of a scalar by Helmholtz theorem! ✏i = ✏0?i + @i⇠ where @i✏i = 0
is a divergenceless vector field and ⇠ is a scalar field. Under this decomposition of the
infinitesimal gauge parameter, the various components of the metric transform as

�g̃00 = �g00 � 2a(a✏0)0

�g̃0i = �g0i + a2
⇥

✏0?i + @i(⇠
0 � ✏0)

⇤

(A.7)

�g̃ij = �gij + a2



2a0

a
�ij✏

0 + 2@ij⇠ + @j✏
0?
i + @i✏

0?
j

�

Its now easy to see that the (00) component of the perturbation has one scalar degree
of freedom. The (0i) component has one and the (ij) component has two scalar
degrees of freedom. So, if we just considered scalar perturbations the metric contain
4 scalars,

ds2 = a(⌘)2
⇥

(1 + 2�)d⌘2 + 2@iBdxid⌘ � ((1� 2 )�ij � 2@ijE) dxidxj
⇤

(A.8)
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Using (A.7), they would transform as

�̃ = �� 1

a
(a✏0)0

B̃ = B + ⇠0 � ✏0 (A.9)

 ̃ =  +
a0

a
✏0

Ẽ = E + ⇠

We can use the gauge freedom to set two of these four scalars to zero. This means
a physical perturbation has only two scalar degrees of freedom. In fact, two simple
linear combinations of the above scalars are gauge invariant,

� = �� 1

a
[a(B � E 0)]0 ,  =  +

a0

a
(B � E 0) (A.10)

We use this representation to describe physical scalar perturbations in a gauge in-
variant matter. If they are both zero in one frame, they are zero in all frames and in
that case there is no physical scalar perturbation and thats a coordinate independent
statement.

To describe purely vector perturbations, we again refer back to (A.7) and observe
that only the (0i) and (ij) components contain truly vector degrees of freedom. Thus,
for vector only perturbations the metric becomes

ds2 = a(⌘)2
⇥

d⌘2 + 2Aidxid⌘ � (�ij � @iCj � @jCi)dxidxj
⇤

(A.11)

Under gauge transformation, they transform only via the purely vector part ✏?i ,

Ãi = Ai + ✏0?i , C̃i = Ci + ✏?i (A.12)

Thus, the combination,

Vi = Ai � C 0
i (A.13)

is gauge invariant and describes the purely vector perturbation in a gauge invariant
fashion. And physically, this has only two degrees of freedom.

Finally, there is no purely tensor part of the gauge parameter, ✏µ and thus looking
at the (ij) component, we see that if the scalar and vector components of the gauge
transformation parameter is zero, then

�gij = �g̃ij (A.14)

i.e., there is a part of the (ij) component that is purely gauge invariant. We call this
a tensor perturbation and it describes a gravitational wave. And the metric with only
tensor perturbations is given as

ds2 = a(⌘)2
⇥

d⌘2 � (�ij � hij)dxidxj
⇤

(A.15)
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To describe the dynamics of perturbations, we need to perturb Einstein’s equa-
tions and we turn our attention to that now.

G↵� = 8⇡GT↵� =) �G↵� = 8⇡�T↵� (A.16)

The energy-momentum tensor is a rank-2 tensor object so it transforms under a gauge
transformation similar to the metric. We can thus find a suitable gauge invariant
combination of its components separately under scalar, vector or tensor perturbations
of the metric. For scalar only perturbations,

�T̄ 0
0 = �T 0

0 � (T (0)0
0 )0(B � E 0)

�T̄ 0
i = �T 0

i �
 

T (0)0
0 � T (0)k

k

3

!

@i(B � E 0) (A.17)

�T̄ i
j = �T i

j � (T (0)i
j )0(B � E 0)

are the gauge invariant components of the perturbation in energy-momentum ten-
sor. A superscript (0) denotes the background energy-momentum tensor and H =
a0(⌘)/a = ȧ(t) is the ‘Hubble’ constant in conformal time. And given this, we can
write the evolution equations for the gauge-invariant scalar perturbations � and  ,

r2 � 3H( 0 + H�) = 4⇡Ga2�T̄ 0
0

@i ( 
0 + H�) = 4⇡Ga2�T̄ 0

i (A.18)



 00 + H(2 + �)0 + (2H0 + H2)�+
1

2
r2(�� )

�

�ij � 1

2
@i@j(�� ) = �4⇡Ga2�T̄ i

j

Similarly, the evolution equations for vector perturbations depend only on �T̄ 0V
i and

�T̄ iV
j respectively. For vector only perturbations, they are both gauge invariant when

expanded about a FRW background.

r2Vi = 16⇡Ga2�T̄ 0V
i

(Vi,j + Vj,i)
0 + 2H (Vi,j + Vj,i) = �16⇡Ga2�T̄ iV

j (A.19)

The tensor perturbation hij is the remainder in �gij in (A.7) that can’t be factored
into a scalar or vector part. It has the simplest evolution equation,

h00
ij + 2Hh0

ij �r2hij = 16⇡Ga2�T̄ T
ij (A.20)

where the tensor part of the stress-energy tensor is already gauge invariant. This
component of the energy momentum tensor is also called anisotropic stress. Tensor
perturbations were extensively studied in this thesis and we now turn our attention
exclusively to these perturbations.
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A.1 Tensor Perturbations

A simple assumption for the energy-momentum tensor of matter in the universe
is a perfect fluid with energy density ⇢ and pressure p. At the largest scales, the
inhomogeneities in the universe are small to first approximation - so a hydrodynamic
assumption isn’t a bad starting point. In perturbation theory, these inhomogeneities
i.e., departures from the perfect fluid approximation are handled as first order cor-
rections to the the perfect fluid energy-momentum tensor T ↵

� , which is given as

T ↵
� = (⇢+ p)u↵u� � p�↵� (A.21)

u↵ is the normalized 4-velocity field of the fluid and in the case of a perfect fluid at
rest is given by u↵ = (a, 0, 0, 0). We can find it in any other frame by simply lorentz
boosting. This serves as our background energy-momentum tensor T 0↵

� . To find the
perturbed energy momentum tensor, we perturb each variable ⇢, p and u↵ and expand
to first order,

�T ↵
� = (⇢0 + p0)(�u↵u0

� + �u�u
0↵) + (�⇢+ �p)u0↵u0

� � �p�↵� (A.22)

The velocity is normalized, u↵u↵ = (u0
↵+�u↵)(u0↵+�u↵) = 1 =) u0

↵�u
↵ = 0. Thus,

if u0
↵ = (a, 0, 0, 0) then �u↵ = (0, �ui) and so the components of �T ↵

� become

�T 0
0 = �⇢, �T i

j = ��p�i
j, �T

0
i =

✓

⇢0 + p0

a

◆

�ui (A.23)

The velocity field can be decomposed again as �ui = �u||
i + �u?

i where like before
@i�u?

i = 0 and so �u?
i is the purely vector part of the velocity field. Using (A.4),

(A.5) and (A.17), we can then write the gauge invariant components of the energy-
momentum tensor for a perfect fluid,

�T̄ 0
0 = �⇢̄ = �⇢� ⇢00

(B � E 0)

�T̄ 0
i =

✓

⇢0 + p0

a

◆

⇣

�ū||
i + �u?

i

⌘

where �ūll
i = �ui � a@i (B � E 0)

�T i
j = ��p̄ �i

j = �
h

�p� p00
(B � E 0)

i

�i
j (A.24)

Thus, a perfect fluid energy-momentum tensor is invariant under a tensor-only
perturbation i.e., there is no anisotropic stress in a perfect fluid. Thus, the RHS of
(A.20) is zero,

h00
ij + 2Hh0

ij �r2hij = 0 (A.25)

Recall that the tensor perturbation hij is the part of metric perturbation that can’t
be written in terms of a scalar or a vector. There are two scalars in �gij and one
divergence free vector giving a total of 4 degrees of freedom. A symmetric �gij on the
other hand has 6 degrees of freedom. Thus, 6�4 = 2 degrees of freedom are contained
in hij. Specifically, it is the transverse traceless part of �gij. The trace �gi

i is excited
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solely by scalar perturbations and the transverse part which satisfies @i�gi
j = 0 is

excited by vector only perturbations ✏?i . Since hij is transverse and traceless, we can
expand it in fourier space using polarization tensors as follows:

hij =
X

�=+,⇥

Z

d3k

(2⇡)3
h�(k, ⌘)eik·x✏�ij (A.26)

where ✏�ij is time-independent, transverse, traceless and depends on k. The two degrees
of freedom in hij are equivalent to two polarizations, denoted � = +,⇥ in fourier
space. And so the polarization tensors are orthogonal i.e.,

X

i,j

✏�ij · ✏�0ij = ���
0

(A.27)

Substituting the fourier decomposition in (A.25) and using the orthogonality of the
polarization tensors, the two polarization states decouple and evolve similarly but
independently and the equation becomes

h00
�,k +

✓

2a0

a

◆

h0
�,k + k2h�,k = 0 (A.28)

In a radiation dominated (RD - a(⌘) / ⌘) or matter dominated (MD - a(⌘) / ⌘2)
universe for example, the equation can be solved in general,

h�(k) =
C1

k⌘
sin(k⌘)! RD

=
C1

k⌘



sin(k⌘)

(k⌘)2
� cos(k⌘)

(k⌘)

�

! MD (A.29)

where C1 is related to initial conditions (i.e., primordial tensor amplitude). A plot of
this evolution is shown below. It is interesting to note that freely propagating tensor
perturbations damp out much faster in a matter dominated universe.
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Figure A.1: The two lines show propagation of free tensor perturbations in a radi-
ation or matter dominated universe. The amplitude of oscillations damps out much
faster during matter domination.
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The standard model of Big-Bang cosmology is a wonderful theory. Starting with
the FRW metric, it predicts Hubble expansion, a result that was experimental ver-
ified in the 1920’s. It predicts the existence of the cosmic microwave background,
which decoupled 380,000 years after the big bang, at a temperature 2.7K and that
was discovered in the 1960’s. Next, the theory also correctly predicts the relative
abundances of the light nuclei (which happened just 3 mins after the big bang) and
this is perhaps one its most triumphant quantitative achievements.

However, this theory su↵ers from a few fundamental issues -

• Homogeneity & Isotropy At the largest scales, the universe is very homogenous
and isotropic. That is it looks the same at every point and in every direction, to
a high degree of accuracy. Measurements of the comic microwave background
seem to bear this out in explicit detail. The CMB is very uniform with an aver-
age temperature of 2.7K and the hot and idol spots on it di↵er from this mean
by only 10�5K as measures most erectly by Planck satellite. Thus, the picture
of the universe that the CMB paints is one which is extremely uniform i.e., ho-
mogenous and isotropic to a high degree. The standard big bang model doesn’t
explain why this is so. At first glance, it may seem this may not be a problem
since we could argue that the universe was created homogenous and isotropic at
the big bang. However, the present universe consists of many regions which were
causally disconnected up to the time of recombination of electrons and photons
after which the photons we now observe as the cosmic microwave background
underwent no further scattering. The puzzle is how these causally disconnected
regions could have ended up with the same microwave background temperature.

To give a quantitative estimate of the scale of this homogeneity problem, con-
sider the present size of the particle horizon, ct0 ⇠ 1028cm where t0 is the time
today, since the big bang. This is the furthest point that has ever been in causal
contact with us i.e., the furthest points from which we can receive a signal. The
hubble horizon and particle horizon are slightly di↵erent but for the purposes
of this discussion, we can take them to be the same, approximately (aH)�1.
Inhomogeneities can’t be diluted away by uniform hubble expansion and our
current universe is homogenous over a length scale of 1028cm. Thus, the uni-
verse should have been homogenous for about the same length across at some
initial time like planck time ti as it is today t0, scaled by appropriate ratio of
scale factor,

li
l0

=
ai

a0

=
T0

Ti

(B.1)

where T0 is the Planck temperature 1032K and T0 is the temperature today, 2.7K.
One more thing to note is that if the scale factor grows as time, then li/lc ⇠
ȧi/ȧ0. We have used here the formula for CMB redshift while maintaining a
thermal spectrum, aT = const.. On the other hand, the particle horizon of
the universe at an initial time ti is cti. Thus, extrapolating from today the
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homogeneity scale at Planck time versus the particle horizon at that time is

li
lc

=
t0
ti

T0

Ti

⇠ 1017

10�43
10�32 ⇠ 1028 (B.2)

Thus the casual scale of the universe at some initial time was 28 orders of
magnitude smaller than the size of the universe then. Thus, how could there
be uniformity across 1028 casually disconnected patches? The universe was
homogenous and isotropic on super-horizon scale if it is homogenous today!
Back to the CMB spots, this means that their temperature of spots which were
widely casually disconnected seem to be the same.

• Initial conditions or flatness As a space-time manifold, the universe can have
non-zero curvature. The Friedmann equation for a space-time with curvature is

H2 +
k

a2
=

8⇡GN

3
⇢ (B.3)

where k is the curvature and ⇢ is ratio of energy density in matter and dark
energy. Call ⇢cr the energy density for a flat universe i.e., k = 0. Then we can
recast this equation as

⌦(t)� 1 =
k

(aH)2
(B.4)

where ⌦ = ⇢/⇢cr and ⇢cr = 3H2/8⇡GN . As before then, we can pick some initial
time ti and calculate how close to one ⌦ would have to be,

⌦i � 1

⌦0 � 1
=

a2
0H

2
0

a2
i H

2
i

=
l2i
l2c
⇠ 10�56 (B.5)

because the physical horizon size is ⇠ (aH)�1. Thus, if we observe today
⌦0 � 1 ⇡ 0, then at some initial time the universe would have had to be flatter
by 56 more orders of magnitude! That is the universe would have started out
exceptionally flat unless we see a huge curvature today. And do we? By measur-
ing the energy density in baryonic matter, dark matter through gravitational
lensing and dark energy through high-z supernova survey and independently
confirming them from the CMB, we observe that ⌦i ⇡ 1 and thus the initial
universe would most definitely have been extremely flat.

• Unwanted relics The Standard Model is a very successful theory which describes
the three forces of nature - the electromagnetic, weak nuclear and strong nuclear
forces. They are all described as gauge interactions, SU(3) ⇥ SU(2) ⇥ U(1).
The weak and electromagnetic forces unite at a scale above the higgs vev of
246GeV. Its likely then that the strong force unites with the other forces at
some higher energy scale. The simplest gauge theory that contains these gauge
groups is the SU(5) Grand Unification Theory (GUT). There are other gauge
theories like SO(10) or SO(32) GUTs. All these GUTs share a common feature
that is when the larger symmetry group breaks into the standard model gauge
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groups, there are topological e↵ects like monopoles for example in the case of
SU(5) or SO(10). The obvious question then is - do we see these relics of a
phase transition of symmetry breaking? A generic relic like a monopole has
never been seen but the theory predicts of the order of one for ever nucleon in
the universe which is in gross violation of observations and they would carry
enough energy to over-close the universe. How do we resolve this issue?

B.1 Exponential Expansion

These problems can be resolved successfully if we imagine a stage of exponential
expansion of space in the early universe. This process is called Inflation and the
idea was first proposed by Alan Guth in 1981 and since then has gained widespread
acceptance and is believed to be the model of the early universe. There have been
tantalizing hints recently of unique inflationary signatures and we will study one of
them in greater detail later.

Inflation resolves all the three issues in the following manner. First note that in
both the case of flatness and horizon problems, the ratio that matters is ȧi/ȧ0 =
aiHi/a0H0. Consider a period of inflation and replace a0H0 ! aIHI where HI is the
Hubble constant during inflation. Since inflation is a period of exponential expansion,
a(t) = eHt and H is a constant. Thus, we see that inflation leads to exponential sup-
pression in the critical ratio, aiHi/aIHI before and after inflation. If during inflation
the universe grew by N e-folds, then then the curvature and horizon by causal horizon
ratios could be down by e�N . Thus, if we started out with O(1) curvature at the
big-bang, after inflation the curvature would be (aiHi)2/(aIHI)2 = e�2N . Similarly,
for the ratio of causal horizon to hubble or particle horizon after inflation would be
down by (aiHi)/(aIHI) = e�N . We have seen that our discrepancy in curvature of
horizon size happens to be of 1028 between now and some very early time. If in-
flation happened at the earliest time, right around the time of big bang or around
Planck time and if the universe we observe is a patch that inflated, then we see that
(aiHi)/(a0H0) = e�N(aIHI)/(a0H0). If N ⇠ 62 then we have the suppression factor
of 28 orders of magnitude we were seeking implying that the universe could have had
O(1) curvature or the particle and causal horizon sizes could have been wildly o↵ at
the big-bang or Planck scale, but a patch which was causally connected underwent
exponential expansion, becoming our observable universe. Thus, we get rid of curva-
ture or horizon issues. The inflating patch would have also pushed out any unwanted
relics like monopoles by diluting them away so that even if a phase transition hap-
pened, the relics like monopoles would have been pushed out of the horizon. However,
this is only possible if the energy scale associated with inflation is lower than that
associated with the phase transition producing these leftover relics.

In the next few sections, we look ay dynamical models which can give rise to
early universe inflation and we also study the predictions and observables that arise
from Inflation. We will also briefly consider the transition from an inflationary phase
to a radiation dominated universe. The treatment in this appendix closely follows
[186, 185].
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B.2 Slow-Roll Inflation

Inflation is a period of exponential expansion. Such an exponentially expanding
maximally symmetric space is also called de Sitter space. That is the scale factor
increases exponentially, a(t) = eHt and H is a constant in de Sitter space. Going
back to Friedmann equation,

H2 =
8⇡GN

3
⇢ (B.6)

we immediately see that it implies a constant energy density in the universe which
doesn’t dilute away much like dark energy. An immediate question then arises - if the
universe inflated once and that expansion was exponential, how did it ever get out of
that phase and transition to a radiation dominated universe? After all, we don’t live
in an exponentially expanding universe right now.

The most common model for inflation is single-field slow-roll. It consists of one
scalar field (this can be easily generalized to multiple fields). We can figure out how
the scalar potential behaves using Friedmann equations. First, (B.6) tells us that if H
is constant then ⇢ should be constant. Now, for a scalar field theory with a potential,

H = const. =) ⇢ =
�̇2

2
+ V (�) = const. (B.7)

The second Friedmann equation for a perfect fluid filling a universe is

ä

a
= �4⇡GN

3
(⇢+ 3p)a (B.8)

A scalar field theory with a potential behaves like a perfect fluid in a FRW background.
This can be most easily seen from the energy-momentum tensor of the theory,

Tµ⌫ = @µ�@⌫�� gµ⌫

✓

1

2
@↵�@

↵�� V (�)

◆

(B.9)

For FRW, g00 = 1, gij = �a2�ij and g0i = 0,

T00 = ⇢ =
1

2
�̇2 + V (�), T0i = 0, Tij = ��ij

✓

1

2
�̇2 � V (�)

◆

(B.10)

Thus, the energy-momentum tensor is diagonal and of the form Tµ⌫ = (⇢,�p,�p,�p).
And thus, using above p = �̇2/2� V (�). Using these the second friedmann equation
(B.8) becomes,

ä

a
= H2 + Ḣ = �8⇡GN

3
(�̇2 � V ) = �8⇡GN

3

✓

3

2
�̇2 � ⇢

◆

(B.11)

Using Ḣ = 0, we immediately see that �̇ = 0 and thus the energy in the field is po-
tential dominated. But we have already seen that this ideal story would cause eternal
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inflation and we would like to have an inflationary scenario where we transition out
into radiation dominated universe. However, this modification can be easily accommo-
dated in the context of a scalar field’s potential energy driven exponential expansion.
We consider a scalar field potential that is slowly sloping downwards. The potential is
mostly flat and the field starts out somewhere afar on this flattish potential and slowly
rolls down with negligible kinetic energy �̇2 so that the energy density is potential en-
ergy dominated and we get quasi-deSitter expansion. Ultimately the field rolls down
to its minima and it typically oscillates about this minima dumping its energy into
particle creation. The field driving inflation (called the inflaton) can couple to other
SM particles and thus particle production happens at the end of Inflation and we get
a plasma of standard model particles and the universe transitions into the radiation
dominated era. This phase is called reheating and we will talk about it in detail later.

Consider a scalar field slowly rolling down its potential such that �̇2 ⌧ V (�) and
�̈⌧ 3H�̇, V 0(�). That is the kinetic energy in the field rolling down the potential hill
is really tiny and even its rate of change i.e., �̈ is small compared to potential term so
that the field continues to move slowly. The equation of motion for the scalar field is

�̈+ 3H�̇+ V,� = 0 (B.12)

In addition using the two Friedmann equations in (B.6) and (B.8), we see that the
condition for slow roll is

✏ ⌘ � Ḣ

H2
=

M2
p

2

✓

V,�

V

◆2

⌧ 1 & ⌘ ⌘ � �̈

H�̇
= M2

p

V,��

V
⌧ 1 (B.13)

and M2
p = 1/8⇡GN is the Planck mass. ✏ and ⌘ are called the slow-roll parameters

and for successful inflation, they should be much smaller than 1.

reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface � = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time � ⌧ 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (�), dominates over its kinetic energy,

1
2

˙�2
. Inflation ends at �end when the

kinetic energy has grown to become comparable to the potential energy,

1
2

˙�2 ⇡ V . CMB

fluctuations are created by quantum fluctuations �� about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field �, the inflaton. Here, we don’t

specify the physical nature of the field �, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

Z

d

4x
p

�g



1

2

R +

1

2

gµ⌫@µ� @⌫� � V (�)

�

= SEH + S� . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, S�. The potential V (�) describes the self-interactions of the

31
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B.3 Observables from Inflation

Inflation solves three important puzzles - horizon, flatness and monopole problem.
If that was it, Inflation wouldn’t be exciting because many theory can explain puzzles.
But a true scientific theory is one that makes reliable predictions which can weighed
against existing and future observations. Although inflation is a model-dependent
theory which depends not only on the inflaton i.e., the field that drives inflation but
also the form of the potential for this field, all models make some generic predictions.
In this thesis, we have studied a specific very well motivated model of Inflation driven
by the standard model Higgs and there have been tantalizing hints recently that this
model might be ruled out based on new observations of tensor perturbations from the
early universe. Thus, in this section, we review these predictions from inflation.

We begin by going back to cosmological perturbation theory. During inflation,
cosmological perturbations are created as a result of quantum fluctuations in the
inflaton field and the background space-time. A slow-rolling scalar field acts like a
perfect fluid with its potential energy dominating the energy. There exists two gauge
invariant combinations of scalar perturbations in the inflaton and space-time metric.
The first one is called the curvature perturbation on uniform density space-like hyper
surfaces ⇣ defined as

�⇣ =  +
H

⇢̇0
�⇢ (B.14)

Its called so because the intrinsic curvature of the hyper surface is R(3) = 4r2 /a2.
Under a gauge transformation  !  +(a0/a)✏0 and �⇢! �⇢�⇢00✏0 and so this com-
bination is invariant. Similarly, there is another unique gauge invariant combination
R defined as

R =  + H�ull (B.15)

where �ui = @i�ull + �u?
i is the perturbation in velocity field of the scalar fluid. The

transformation law for �ull which is the just the scalar part of the velocity perturbation
is �ull ! �ull � a✏0. Geometrically, R the spatial curvature of comoving (or constant
��) hyper surface. And we can see that because for one scalar perturbation �� in
the problem, we can keep it only in the inflaton (by gauge fixing), �T 0

i = �̇@i�� =
�̇2@i�ull =) R =  if �� = 0. Moreover, it turns out that using linearized Einstein’s
equations for scalar perturbations in fourier space, we can relate R and ⇣ as follows:

�⇣ = R +
k2

(aH)2

2⇢0

3(⇢0 + p0)
 (B.16)

where  =  +a0(B�E 0)/a is the previously defined gauge invariant Bardeen variable.
On scales which are much larger than the horizon which is size 1/(aH), k ⌧ aH, we
see that ⇣ = �R and this is all we will need because in what follows, we always work
in this limit. Moreover, using the perturbation evolution equations, we find

⇣̇ = �H
�pen

⇢0 + p0
+

k2

3a2H



⇣ � 
✓

1� 2⇢0

9(⇢0 + p0)

k2

a2H2

◆�

(B.17)
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where

�pen = �p� ṗ0

⇢̇0
�⇢ (B.18)

�pen is zero for adiabatic fluctuations i.e., when there is no entropy production, as is
the case for single field slow-roll inflaton. And again for super-horizon scales where
k ⌧ aH, we get a conservation law - The curvature perturbation ⇣ is conserved on
super-horizon scales. This super horizon conservation is the linchpin for inflation
generating primordial perturbations.

Although these fluctuations always exist in every field and every background, they
typically die down in a time given by Heisenberg’s uncertainty relation. However, a
background deSitter expansion is di↵erent and can create long-lasting fluctuations.
This is because fluctuations are created on all length scales - sub horizon (k � aH)
and super horizon (k ⌧ aH). But during inflation they get stretched out (i.e., per-
turbations of every scale are stretched out by the scale factor) and eventually the sub
horizon perturbations become super horizon. When they do so, their evolution stops
and they get frozen in time. Another way to look at this non-evolution is to look
at the behavior of the coming hubble radius which shrinks during inflation. Thus,
the ends of a perturbation can’t be in casual contact and so the evolution ceases.
After inflation ends, the comoving hubble radius expands again and the perturba-
tions come into the horizon and when they do, they start to evolve again as dictated
by Einstein’s equations. And these scalar fluctuations form the primordial seeds for
inhomogeneities that lead to structure formation as over dense fluctuations that col-
lapse gravitationally give rise to large scale structure of the universe. This behavior
is shown in Figure (B.3) below.

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 16: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on subhorizon scales. While comoving scales, k�1
, re-

main constant the comoving Hubble radius during inflation, (aH)

�1
, shrinks and the

perturbations exit the horizon. Causal physics cannot act on superhorizon perturba-

tions and they freeze until horizon re-entry at late times.

Fluctuations are created on all length scales, i.e. with a spectrum of wavenumbers k. Cosmolog-

ically relevant fluctuations start their lives inside the horizon (Hubble radius),

subhorizon : k � aH . (153)

However, while the comoving wavenumber is constant the comoving Hubble radius shrinks during

inflation (recall this is how we ‘defined’ inflation!), so eventually all fluctuations exit the horizon

superhorizon : k < aH . (154)

10.2 Horizon Exit and Re-Entry

Cosmological inhomogeneity is characterized by the intrinsic curvature of spatial hypersurfaces de-

fined with respect to the matter, R or �. Both R and � have the attractive feature that they remain

constant outside the horizon, i.e. when k < aH. In particular, their amplitude is not a�ected by

the unknown physical properties of the universe shortly after inflation (recall that we know next to

nothing about the details of reheating; it is the constancy of R and � outside the horizon that allows

us to nevertheless predict cosmological observables). After inflation, the comoving horizon grows,

so eventually all fluctuations will re-enter the horizon. After horizon re-entry, R or � determine the

perturbations of the cosmic fluid resulting in the observed CMB anisotropies and the LSS.

In Lecture 1 we explained the evolution of the comoving horizon during inflation and in the

standard FRW expansion after inflation. In this lecture (Lecture 2) we will compute the primordial

power spectrum of comoving curvature fluctuations R at horizon exit. In the next lecture (Lecture

3) we will compute the relation of curvature fluctuations R to fluctuations in cosmological observables

51

Since these fluctuations are created on all scales, a way to characterize them
would be via their statistical properties. The simplest among them is the 2-point
correlation function between any two scales k and k0. The fluctuations are inherently
quantum mechanical in nature. Thus, for example a statistical measure like hRkRk0i
is a quantum expectation value h.i of the Rk viewed as a quantum operator acting
on its ground state.
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B.3.1 Quantized Perturbations

Consider a slow-rolling scalar field � in a FRW background. The action for the
system is

S =

Z

d4x
p
�g



R +
1

2
(@µ�)2 � V (�)

�

(B.19)

We consider perturbations about the FRW background. In this case we can charac-
terize the background metric as

gij = a2 [(1� 2R)�ij + hij] dxidxj (B.20)

where we have surpassed the vector perturbations (because they die as a�2 which
is exponentially fast during inflation) and hij is traverse, traceless part of tensor
perturbations. We work in a gauge (called the coming gauge) where there are no
perturbations in the inflaton field i.e., �� = �q = 0 and E = 0. Moreover in this
gauge using Einstein’s equations we can express � and B solely in terms of R and
�⇢. Using the ADM formalism we expand the action of gravity+inflaton to get a
dynamical second order action for R,

S(2)
R =

1

2

Z

d4x a3 �̇
2

H2



Ṙ2 � (@iR)2

a2

�

(B.21)

There exist higher order self-interaction terms which only contribute to the 2-point
function for R at loop level and thus are suppressed. Moreover, they are also inher-
ently suppressed by factors of the slow-roll parameter ✏ and even the 3-point function
(contributing to non-gaussianities for example) is also surpassed for canonical slow
roll inflation. Thus, one immediate prediction of inflation is small, almost negligible
non-gaussianities in the scalar bispectrum. We use this action to compute the 2-point
function in fourier space of R between two modes with di↵erent momenta k and k0.
There is a subtlety about mode functions to be used in defining the vacuum state.
This arises because we are working in a time dependent theory. Using the standard
Bunch-Davies vacuum, we arrive at

hR
k

(t⇤)Rk

0(t⇤)i = (2⇡)3PR(k)�3(k + k

0) = (2⇡)3�3(k + k

0)
H2

⇤
2k3

H2
⇤

�̇2
⇤

(B.22)

where the 2-point function is evaluated at a certain time t⇤ such that a(T⇤)H(t⇤) = k
is the time at which a mode with coming wavenumber k crosses the hubble horizon.
That is, we evaluate this 2-point function at a time of horizon crossing since we
have already seen that this mode freezes (i.e., doesn’t evolve) till it comes back into
the horizon after inflation ends. Using PR(k) we can define a dimensionless 2-point
function called the power spectrum as

�2
R(k) ⌘ k3

2⇡2
PR(k) =

H2
⇤

(2⇡)2

H2
⇤

�̇2
⇤

(B.23)
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One can immediately observe that this power spectrum is scale-invariant i.e., it
doesn’t explicitly depend on the wavenumber k. However, since inflation doesn’t
involve exact de Sitter expansion but rather quasi-deSitter, t⇤ does depend slightly
on k and so the power spectrum is slightly shifted from perfect scale invariance.

In a similar manner, we can quantize tensor perturbations, hij. The second order
action for fluctuations is given as

S(2)
h =

M2
p

8

Z

d⌘d3x a2
h

h02
ij � (@lhij)

2
i

(B.24)

Here ⌘ is the conformal time and 0 represents a derivative with respect to ⌧ . We
expand hij into fourier modes and using the transverse traceless polarization tensors
(✏ii = ki✏ij = 0), we get two scalars hs

k(⌘), one for each polarization

hij =

Z

d3k

(2⇡)3

X

s=+,⇥
✏sij(k)hs

k(⌘)e
ik·x (B.25)

Substituting this back into the action, we get an action for hs
k(⌘) and thus we can

calculate the 2-point function for tensor perturbations and from that extract the
dimensionless power spectrum
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✓
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(B.26)

where again H⇤ is evaluated at the time of horizon exit of mode k, i.e., a(t⇤)H⇤ = k.
The factor of 2 appears because there are two degrees of freedom in the tensor per-
turbation hij where each acts as its own scalar in fourier space. The tensor power
spectrum also doesn’t depend on the scale k explicitly. However, whats more interest-
ing is that (i) inflation predicts a primordial tensor power spectrum and (ii) its scale
invariant and only depends on the hubble scale during inflation. But the hubble scale
immediately gives us the energy density or the scale of inflation from Friedmann’s
equation. Thus, the existence of primordial tensor perturbations is a non-trivial and
robust (model independent) prediction from inflation that only depends on the energy
scale of inflation.

The ratio of tensor-to-scalar power spectra as predicted from any one model is
denoted as r and the energy scale of inflation V is related to r,

r =
�2

t (k)

�2
s(k)

, V 1/4 ⇠
⇣ r

0.01

⌘1/4

⇥ 1016 GeV (B.27)

Using the definition of the slow-roll parameter ✏ we can re-write �2
s(k) as follows:
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where both H and ✏ are evaluated at horizon crossing. And r is given by

r =
�2

t (k)

�2
s(k)

= 16 ✏
�

�

k=aH
(B.29)

Finally, we also observe that since inflation involves expansion about a quasi
deSitter background, the scalar and tensor power spectra aren’t exactly scale invariant
because the Hubble parameter is time dependent. Their scale dependence is quantified
by spectral index,

ns ⌘
d�2

s

d ln k
= 1 + 2⌘⇤ � 4✏⇤

nt ⌘
d�2

t

d ln k
= �2✏⇤ = �r

8
(B.30)

where again the slow-roll parameters are evaluated at horizon crossing (denoted by
subscript *). Any deviation from perfect scale invariance is captured by ns,t � 1 6= 0.

In short, �2
s, �

2
t , ns, nt and r are the observables predicted from inflation. They

are evaluated when a particular mode crosses the horizon during inflation and freezes
in thereafter (stops evolving). The mode comes back into the horizon during radia-
tion domination and starts evolving according to Einstein’s equations. Thus, inflation
gives us a mechanism for generating primordial perturbations - as quantum fluctu-
ations expanded to macroscopic scales. It ’stores’ them by stretching them out to
macroscopic scales and freezing them in. These primordial perturbations form the
initial seeds of structure formation and give rise to all the matter over and under
densities we see across the sky today in the form of large scale structure. Moreover,
inflation generically predicts scale invariance of these matter densities on three largest
scales, i.e., a very uniform sky with small inhomogeneities. And this is exactly what
is observed in the CMB.
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A relativistic quantum field theory is invariant under the combined set of discrete
transformations - CPT. That is if we change all particles to anti-particles (C), flip all
the coordinate system like a mirror would (P) and run the clock backwards (T) all
the interactions and thus the dynamics of the theory would look exactly the same.
So although the theory is allowed at least in principle to violate any combination of
these transformations but not all three at once.

The Standard Model contains various sources of CP violation (which is the same
as violation of T symmetry by CPT theorem). In the quark sector, there are non-
removable phases in the CKM quark flavor mixing-matrix. This source of CP violation
has been observed (which explains the observed CP violation in Kaons & B mesons).
Similarly, in the lepton sector, neutrino flavor oscillations have been observed and
they contain an unremovable phase that is the source of CP violation. However, both
of these are violations caused by weak interactions. It turns out that the strong inter-
actions have their own source of large CP violation but unlike those caused by weak
force, these haven’t been observed. In trying to understand this puzzle, we will come
across a novel solution to the problem that posits the existence of a new light pseudo
scalar particle called the axion. These axions could be cosmologically created in the
early universe and could contribute to anisotropic stress, thus a↵ecting propagation
of primordial gravitational waves (tensor perturbations).

C.1 Introduction to the Strong-CP Problem

Consider a simple version of QCD with only two quark flavors, u and d [187].
In the limit that the quark masses mu,d ! 0, the lagrangian has a U(2)L ⇥ U(2)R

symmetry which is equivalent to SU(2)L⇥SU(2)R⇥U(1)V ⇥U(1)A. SU(2)L⇥SU(2)R

is the chiral symmetry of QCD in the limit of vanishing quark masses. The U(1)V

symmetry leads to the conservation of the quark current,

JB
µ = ū�µu + d̄�µd (C.1)

which physically manifests itself via baryon number conservation. On the other hand,
the axial current U(1)A leads to the axial gauge invariant current,

J5
µ = ū�µ�5u + d̄�µ�5d (C.2)

that doesn’t correspond to any observed symmetry in hadrons. It is known that this
theory with massless quarks has undergoes spontaneous symmetry breaking called
chiral symmetry breaking when the quark doublet hq̄qi 6= 0 acquires a vacuum ex-
pectation value. The gauge group SU(2)l ⇥ SU(2)R breaks to SU(2) of isospin. In
the process, we get three broken generators that give rise to three goldstone bosons
called the pions. Since the axial symmetry isn’t realized in any interactions it is pos-
sible that the axial current also spontaneously breaks and leads to another goldstone
boson. In the limit the quarks are massless, we expect all these goldstone modes
to be massless. However, small quark masses explicitly break this symmetry and
so pions are actually pseudo-goldstone bosons and are thus massive. For our U(1)A

current then, we might expect the same fate - a pseudo scalar meson state with mass
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comparable to pions. In fact such a pseudoscalar meson with the correct quantum
number exists, called the ⌘ meson. Weinberg first calculated the relationship between
masses as m⌘ 

p
3m⇡. However, experimentally this bound is strongly violated, the

⌘ meson can’t be the pseudoscalar from U(1)A breaking because it is too heavy. This
problem was first dubbed by Weinberg as the U(1) problem and it is also sometimes
called the ⌘-mass problem.

On first glance, this doesn’t appear to be a problem in the standard model. This
is because we already know that in QCD, the U(1)A current is anomalous even in the
absence of quark masses. That is, although the action may be classically invariant
under the transformation, its current conservation is violated by quantum loop e↵ects.
This is the famous Adler-Bell-Jackiw (ABJ) chiral anomaly. The general expression
of the anomaly with Nf flavors is

@µJ5
µ = 2Nf

1

16⇡2
Tr(Gµ⌫G̃

µ⌫) + 2imuū�
5u + 2imdd̄�

5d (C.3)

where G̃µ⌫ is the dual of Gµ⌫ . Thus, in the limit mu,d ! 0, we see that the axial
current is anomalous. However, it turns out that there still exists a conserved current.
To derive it, first note that the right hand side can be written as a total divergence,

@µKµ = 2Nf
g2

16⇡2
Tr(Gµ⌫G̃

µ⌫) where Kµ = 2Nf
g2

16⇡2
✏µ⌫�⇢Tr(G⌫�A⇢) (C.4)

And thus, J̃5
µ = J5

µ � Kµ is still conserved in the limit mu,d ! 0 and there exists a

conserved charge Q̃5 =
R

J̃5
0d3x. However, J̃5

µ and thus Q̃5 are not gauge invariant.
Nevertheless, it can be shown (Weinberg) using current-algebra techniques that there
still should exist a pseudo-goldstone mode satisfying m⌘ 

p
3m⇡. Thus, the fact

that U(1)A is anomalous doesn’t resolve the puzzle.

Before moving on to the resolution of the U(1)A puzzle, we first look at the
structure of the vacuum for a non-abelian gauge theory like QCD. In QFT, vacuum is
defined as the state of lowest possible energy, which is an integral of the hamiltonian
density over all space. In the case of a non-abelian gauge field, we know that there
are an infinite number of gauge field configurations which are equivalent physically.
Specifically, under a gauge transformation (U), the gauge field transforms non-linearly
as

A0
µ = U�1AµU �

i

g
U�1@µU, Aµ = taAa

µ (C.5)

Vacuum being the lowest energy configuration requires that Gµ⌫ = 0. This means
that field configurations be static and the gluon field Aµ be a pure gauge. It turns
out that these various gauge field configurations can be labeled by an integer n called
the winding number. This is because the gauge field which is now made entirely of
the gauge transformation U now represents a mapping between the three sphere S3

to the gauge group G and such mappings form a homotopy class where they can
be uniformly deformed into one another. Each such mapping is labeled by n which
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denotes how many times the mapping winds around the gauge group for each winding
around S3. The winding number n is a topological invariant given by

n =
g2

16⇡2

Z

d4x Tr(Gµ⌫G̃µ⌫) =
1

2Nf

Z

d4x @µK
µ =

1

2Nf

Z

d3x K0 (C.6)

where Kµ is given in Eqn (C.4) above. And so, we have an infinite number of vacuum
states each labeled by its own integer |ni. The true gauge-invariant vacuum state,
denoted by |⇥i is given by the coherent superposition,

|⇥i =
X

n

e�in⇥ |ni (C.7)

and this vacuum state is called the ‘⇥-vacuum’ [187]. These vacua with di↵erent
winding numbers are separated by an energy barrier. A solution of field equations
that interpolates between these vacua is called the instanton solution. It is a solution
to the euclidean equation of motion of the gauge field and the corresponding euclidean
action evaluated at this solution gives the tunneling probability at zero temperature
between various vacua. Finite temperature e↵ects can be incorporated easily using
the finite temperature euclidean action.

In the path-integral formalism, we calculate the transition amplitude from vacuum-
to-vacuum states. However, for a non-abelian gauge theory like QCD, this means
having to sum over all possible initial and vacuum states with di↵erent winding num-
bers. It can be shown that this is equivalent to calculating usual Feynman rules from
the ordinary path-integral but modifying the lagrangian by the following term,

LQCD � ⇥
g2

16⇡2
Tr(Gµ⌫G̃

µ⌫) (C.8)

What has all this got to do with the U(1)A problem? It turns out that under a
gauge transformation labeled by the winding number n, the conserved gauge variant
charge Q̃5 transforms as Q̃5 ! Q̃5 + 2Nf . And so its e↵ect on the gauge-invariant
⇥-vacuum is,

e�i↵Q̃
5 |⇥i = |⇥+ 2↵Nfi (C.9)

The non-gauge invariant but conserved current Q̃5 transforms between disconnected
vacua. And thus its presence simply means that the theory is invariant under trans-
formation between vacuum states |⇥i ! |⇥0i. Choosing a specific ⇥ is like choosing a
vacuum state i.e, the ⇥-term spontaneously breaks the axial symmetry, U(1)A. How-
ever unlike usual spontaneously broken theories with global symmetries, goldstone’s
theorem doesn’t apply. This is because ⇥ is just a parameter of the lagrangian and
di↵erent ⇥ correspond to di↵erent theories each with its own Hilbert space. Thus,
by choosing one among infinitely many such theories, we are choosing a theory, not a
field direction in one theory. There is no gapless mode and thus (when quark masses
are turned on), no ⌘ or U(1)A problem.
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Although the rich vacuum structure of QCD resolves the U(1)A problem, it gives
rise to another big problem - CP violation! The ⇥ term is CP-odd and leads to a
violation of CP in the strong sector. We can’t set by hand ⇥ = 0 because it would
be generated radiatively. On the other hand, we can’t impose CP invariance on the
full lagrangian either, because we know that electroweak interactions that give mass
to the quarks, violate CP. The Cabbibo-Kobayashi-Maskawa (CKM) matrix which
mixes quark flavor and mass eigenstates has imaginary couplings. As we will see
later in our study of baryogenesis, imaginary couplings in a lagrangian that can’t be
rotated away by field redefinitions violate CP invariance.

As we saw above, for massless quarks, a chiral transformation can take one ⇥
vacuum into another and thus it is possible to choose a specific rotation so that
⇥ = 0. However, the quarks aren’t massless and their mass mixing matrix, arising
from the Yukawa couplings of quarks to higgs is in general complex. Because the
weak interactions treat left and right handed quarks di↵erently, transforming to mass
eigenstates, on encounters a net U(1) axial rotation which changes the ⇥ term (�L

and �R are the phases of the rotation of the quart fields to mass eigenstates),

⇥! ⇥̄ = ⇥+ 2Nf (�L � �R) = ⇥+ Arg[det M ] (C.10)

where M is the original non-diagonal mass matrix for quarks. These two contri-
butions are from widely di↵erent sources (QCD vacuum structure and weak mixing
matrix) and in general we have no reason to expect they would cancel. And thus, the
strong sector seems to have a residual source of CP violation. So, do we observe this
violation experimentally?

One important consequence of the presence of the ⇥-term is that it leads to an
electric dipole moment (edm) for the neutron. EDM is calculated as an expectation
value of the following operator,

OEDM = dn
i

2
 ̄�µ⌫�5 Fµ⌫ (C.11)

where  is the fermion field (here the neutron). In the non-relativistic limit, this
operator reduces to

NR(OEDM) = �dn(~SN · ~E) (C.12)

and we know that the interaction hamiltonian for an object that carries a dipole
moment, in the presence of an electric field is �~p · ~E. Since the only vectors that a
quantum particle carries is spin and momenta, in the rest frame the dipole moment
has to be proportional to spin. The EDM induced by the ⇥-term can be calculated

4⇥ 10�17⇥̄ e.cm. < dn < 2⇥ 10�15⇥̄ e.cm. (C.13)

which about 10 orders of magnitude larger than the present experimental limits of
|dn| < 2.9⇥ 10�26 e.cm [113]. Therefore,

⇥̄ = ⇥+ Arg[det M ] < 10�10 (C.14)

The strong CP problem is why ⇥ is so small and not O(1). Peccei and Quinn
proposed an ingenious solution to the strong CP problem which dynamically drives
⇥ to zero.
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C.2 Peccei-Quinn Solution to Strong CP - Axions

Peccei and Quinn (PQ) [188, 189] realized that if the SM has another chiral
global U(1) symmetry, under which the left and right handed quarks are charged
di↵erently, this chiral symmetry would also be anomalously broken by quantum e↵ects
like U(1)A. Maybe the e↵ects of this broken global symmetry and the original axial
SM symmetry could conspire to cancel the ⇥ term? Imposing an extra global U(1)
to the SM requires introduction of an extra complex scalar field charged under this
new U(1)PQ. When this field acquires a vacuum expectation value (vev), the PQ
symmetry is spontaneously broken and we get a massless goldstone mode, dubbed
the axion. However, since like U(1)A, the U(1)PQ symmetry also su↵ers from the
chiral anomaly, the axion isn’t truly massless, but acquires a small mass. The chiral
nature of the symmetry will introduce an anomaly term like ⇥QCD, given by

LPQ =
a

fa

⇠
g2

32⇡2
Ga

µ⌫G̃
µ⌫
a (C.15)

where a(x) is now the axion field. Combined with the ⇥ term of QCD, this induces
a tadpole for the axion, giving it a vev,

hai = h⇥̄|a|⇥̄i = �⇥̄
⇠

fa (C.16)

The physical excitation then is about this vev aphys = a� hai and thus the physical
axion field eliminates the unwanted ⇥̄ term driving it to zero, but trading in its place
a spontaneously broken global symmetry giving rise to a physical pseudoscalar, CP
conserving field called the axion which interacts via the anomaly term.

La �
1

2
(@µaphys)(@

µaphys) +
⇠aphys

fa

g2

32⇡2
Ga

µ⌫G̃
µ⌫
a (C.17)

Since the axion is the NG boson of the global U(1)PQ, it is derivatively coupled to
itself and the SM fermions. For example, its e↵ective interactions with nucleons,
electrons and photons are

La,int =
X

 =e,N

i
ga  

2mN

@µa( ̄�µ�5 )� ga��

4
a(Fµ⌫F̃

µ⌫) (C.18)

The coupling constants in these interaction terms are all inversely proportional to
fPQ, the Peccei-Quinn breaking scale, which is a completely free parameter in the
PQ theory. Each of these interactions of the axion thus give us an independent way
to probe the PQ scale from astrophysics.

The � + � ! a process is called the Primako↵ process and observations from the
Sun - solar age, helioseismology and the solar neutrino flux all constrain ga�� inde-
pendently. The CERN Solar Axion Telescope has looked for axions from the sun and
has come with the most stringent limit (which is almost similar to that from solar
neutrino flux) of ga�� . 1.16 ⇥ 10�10GeV. The axion electron interaction, on the
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other hand a↵ects the He ignition rate for RGB stars and also changes the cooling
rate of White Dwarfs. Through these observations, the most stringent constraints are
gaee < 3⇥ 10�13. Finally, the interaction between nucleons and axions was very well
constrained by the observations of supernova 1987A because the interaction leads to
a new energy-loss mechanism for the supernova which gives a characteristic late-time
signal of reduced neutrino burst duration. The overall best constraint on fPQ from
the various astrophysical searches comes from the supernova, fPQ & 1010GeV.

Axions acquire a tiny mass due to the chiral axial and PQ anomalies, via mixing
with the ⌘ and ⇡0 mesons. This mass has only one unknown parameter - the PQ
scale, fPQ and can be derived using chiral perturbation theory. Thus, knowing the
symmetry breaking scale immediately tells us the mass of the axion,

ma =

p
mumd

mu + md

f⇡m⇡

fPQ

⇠
⇤2

QCD

fPQ

' 6.3eV

✓

106GeV

fPQ

◆

(C.19)

C.3 Axion Cosmology

Axions are phenomenologically interesting in cosmology because (i) their prop-
erties like fPQ can be e↵ectively probed and (ii) they are an ideal candidate for
WIMP (Weakly Interacting Massive Particle) Dark Matter. In this thesis, we study a
new cosmological signature of axions - their e↵ect on primordial tensor perturbations.

Axions are also theoretically interesting in the cosmological context [190]. The
cosmological history of axions begins with Peccei-Quinn breaking at energy scale fPQ.
The PQ symmetry is a global U(1) symmetry and can be broken by a complex scalar
field ~� with a potential,

VPQ = �
⇣

|~�|2 � f 2
PQ/2

⌘2

(C.20)

The minima of the classical potential leaves the angular degree of freedom, i.e., the
argument of h~�i undetermined and this is the goldstone boson of the symmetry break-
ing called the axion. As the universe cools, the axion remains massless. It acquires
a mass around the QCD scale, ⇤QCD ⇠ 200MeV because of instanton e↵ects, i.e.,
mixing with other QCD mesons as indicated above. Thus, between fPQ and ⇤QCD

the axion remains roughly massless after which it has a small mass. The temperature
dependence of the axion mass is given by

ma(T ) = 0.1ma(T = 0)

✓

⇤QCD

T

◆3.7

(C.21)

The axion self-interaction potential has to be computed using e↵ective potential tech-
niques that takes into account non-perturbative QCD. Since the axion couples to the
topological charge, approximate analytical formula can be derived form the path
integral using an approximation of QCD background made up of a dilute gas of in-
stantons. The result is a periodic axion potential, a result that holds up well under
Monte-Carlo simulations of the path integral,

Veff (a) � m2
af

2
PQ[1� cos(a/fPQ)] (C.22)
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This potential above and the time (temperature and time can be exchanged using
the scale factor in cosmology) dependence of axion mass in (C.21) are su�cient to
analyze the cosmology of the axion.

If they exist, axions would be produced in the universe through three primary
mechanisms -

• Thermal Axions
We have seen that axions interact with quarks, gluons, electrons and photons.
The decoupling or freeze-out temperature for axions thermally produced in the
early universe via axion-quark-gluon interaction is given as

TD = 5⇥ 1011GeV

✓

fa

1012GeV

◆2

(C.23)

This is valid if the reheat temperature is above TD. Otherwise inflation would
wipe out this population of axions. But they can also be produced e↵ectively,
below ⇤QCD though pion-axion conversion, ⇡+N ! N +a or photo-production
�+ Q! Q + a or the photon could also be a gluon or a Z-boson and the quark
could be a lepton. The decoupling temperature for such process is

TD ⇠ 2⇥ 107GeV

✓

fa

1012GeV

◆2

(C.24)

All these interactions help thermalize axions in the early universe and when
these reactions become ine�cient, axions decouple and freeze out. Thus, either
way we get a thermal relic of axions with a number density today which is

na(t0) = 7.5cm�3

✓

106.75

ND

◆

(C.25)

where ND is the number of relativistic species in the plasma at the time of axion
decoupling. The axions produced thermally don’t have enough energy to close
the universe because their mass would have to be O(50eV), which is already
excluded.

• ⇥-misalignment production
The axion vev gives a CP conserving value of ⇥ = 0 today. However, there
is no reason to expect that in the early hot universe, this was the value of ⇥.
The axion mass comes form instanton processes and at high temperature, it
is basically massless. Initially, it could be misaligned from the correct value
of zero, instead stochastically set to some non-zero value after the PQ phase
transition. If PQ happened after inflation, ⇥ would vary spatially and we could
have domains in the universe where it is di↵erent from the value in our local
patch.

After the mass turns on, the axion field rolls down its potential (around the
minima it is simply a quadratic potential because of mass) and oscillates. How-
ever, because of the time varying mass, the oscillations don’t die down and the
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axion forms a condensate i.e., cold coherent zero-momentum modes. This con-
densate of axions is highly non-thermal and interactions previously discussed
can’t thermalize these axions. This production mechanism of cold axions which
can carry significant energy density makes them an ideal candidate for cold dark
matter.

The equation of motion for the axion with temperature (or time) varying mass
and close to its minima ⇥ = 0 is [190],

⇥̈+ 3H⇥̇+ m2
a(T )⇥ = 0 (C.26)

where we have traded the axion field a for the misalignment angle ⇥ = a/fPQ.
At high temperatures when T � ⇤QCD, ma ⇡ 0 and the solution is ⇥ = const.
Once the mass becomes comparable to the Hubble term, the field starts to roll
towards its minima. Under assumption of adiabatic evolution i.e., axion mass
and hubble rate don’t change much in one oscillation, it is easy to show that

⇢a /
ma

a3
(C.27)

where a is the scale factor. If T is the temperature when the axion density
reaches this behavior, then the cosmological axion density created via this mis-
alignment mechanism is given as

⌦a ⇡ 1.52

✓

fPQ

1012GeV

◆7/6 ✓⇥i

⇡

◆2

(C.28)

where ⇥i is the initial value of the misalignment angle. If PQ phase transition
happens after Inflation, ⇥i would take on di↵erent values in di↵erent patches
of the universe and we use the average values of h⇥2

i i in the range [�⇡, ⇡] and
we get,

⌦a ⇡ 0.65

✓

fPQ

1012GeV

◆7/6

(C.29)

If this density isn’t to over-close the universe, the PQ scale has an upper bound,

fPQ  2.8⇥ 1011GeV =) ma � 21µeV (C.30)

• Axions from PQ strings
If the Peccei-Quinn symmetry breaks after Inflation, we will get topological
defects like strings. This is because PQ is a U(1) symmetry and the first ho-
motopy group of U(1), as in the group formed by mappings from U(1) which
has a topology of a circle to S1 in space is non-trivial. For example we could go
around the gauge group n times for every time we go around a circle in physical
space. That is ⇡1(G) = Zn where G = U(1) and Zn is the group of integers. In
other words, we can have topological defects which can be enclosed by a circle
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and go through entire space being infinite in extent - called topological strings.
Essentially, these strings are peculiar field configurations that can arise as a
result of the phase transition and which can’t relax their energy because it is
topologically impossible for them to do so.

However, it is possible for strings to loose energy through their own dynamics
via gravitational radiation and emission of goldstone bosons of the symmetry.
That is, the PQ strings formed after the phase transition will radiate axions
and this is a novel new source of them. In fact, we will see that this can be the
dominant source of the axion population in the universe. This is only true if
PQ happens after inflation because inflation would wipe out any relic axions,
if PQ happens before it.The spectrum of axions produced via this mechanism
is again non-thermal but unlike those produced by misalignment mechanism,
these axions can be relativistic and also have comparable energy density to the
condensate produced by the misalignment mechanism.

We begin with the energy/length (µ) in a string, which is the hamiltonian for the
PQ complex scalar evaluated on the string solution - a static field configuration
which wraps around S1 with a winding number n,

� = ⌘ein✓ =) µ =

Z



(@�)2 +
�2

r2
+ V (�)

�

rdr d� (C.31)

where V (�) is the symmetry breaking potential and the field � behaves like r
inside the string and goes to fPQ exponentially outside.

µ = 2⇡f 2
PQ log

✓

t

�

◆

(C.32)

where � is the width of the string core and t is a long distance cut-o↵ to make
the energy finite. Davis’ [191] derivation of the energy density in the axions
radiated from PQ strings follows from the above formula. He considers t to be
the length of size of cells the universe is divided into. He works in a radiation-
dominated universe whose age is also t and he considers one string per length
t cell. By computing the expansion of the cell in this universe and taking the
di↵erence in energies of the string to be exclusively lost as radiation in axions
(they are radiated most e↵ectively when kinks appear in strings as the universe
expands), he is able to derive an expression for the energy density in them. This
work also considered the e↵ect of an axion mass turning on. The final result
derived by Davis is

⇢a(t) =
4⇡f 2

PQ

t2

Z ⌦5/6/
p

t⇤ t̃

⌦2/3/t̃

✓

k2 + (t/t̃)m2
a

k2 + m̃2

◆1/2 

log

✓

⌦5/3

t̃k2�

◆

� 1

2

�

dk

k
(C.33)

where ⌦ = 2⇡, t̃ is the time when the axion wavelength of a mode comes within
the horizon and the axion mass at that time is m̃ = 1/t̃. This is because
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for times around t̃, the mass of the axion can be written approximately as
m(t) = t2/t̃3 and � = 1/fPQ. We will utilize this energy density to extract
a distribution function and calculate the e↵ect axions have on propagation of
primordial tensor perturbations. Finally, for the energy-density in this kind of
axions to not over-close the universe implies a bound on fPQ,

⇢a < ⇢cr =) fPQ . 3⇥ 1011GeV (C.34)

which is a bound similar to the one we derived from the axion energy density
produced by the misalignment mechanism. Combining energy density from
all sources and the astrophysical constraints (stingiest of which comes form
supernova 1987A), we get that fPQ can lie in a narrow window,

1010GeV . fPQ . 1011GeV (C.35)

which is a remarkably tight bound coming only from astrophysical and cosmo-
logical sources and no direct searches. There is some wiggle room in these, if
for example the model for star cooling or supernova neutrino emission duration
get theoretical corrections. But nonetheless it is expected to not change the
bounds on the PQ scale, fPQ much.
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APPENDIX D

EFFECTIVE POTENTIAL
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The e↵ective potential is a very useful tool to study quantum e↵ects in a theory
by directly incorporating them as extra terms in the potential of the theory. That
is we continue to view the theory with its classical lagrangian but with quantum ef-
fects that change the potential with terms proportional to powers of ~. The quantum
loop e↵ects get incorporated into the modified potential and thus when we calculate
tree-level scattering from this potential, we have essentially done a loop calculation
implicitly. We review the e↵ective potential formalism, closely following [192] and its
implicit assumptions below.

Consider a scalar field theory � with the action

S[�] =

Z

d4x L{�(x)} (D.1)

The generating functional in quantum field theory is the vacuum-to-vacuum ampli-
tude given by the path integral in the presence of a source J (x)

Z = h0in|0outiJ ⌘
Z

D� exp{i(S[�] + �J )}, �J ⌘
Z

d4x �(x)J (x) (D.2)

J is the generator of all diagrams, connected or not. On the other hand, W [J ],
which is the generator of connected diagrams can be derived from Z[J ],

Z[J ] = exp{iW [J ]} (D.3)

that is functional derivatives of W with respect to J evaluated at J = 0 give the
expression for connected diagrams in the theory. Finally, the e↵ective action �[�̄],
which is the generator of 1-PI (1-particle irreducible) diagrams is derived as the
legendre transform of W [J ],

�[�̄] = W [J ]�
Z

d4x
�W [J ]

�J (x)
J (x) (D.4)

where the field �̄(x) is defined as

�̄(x) =
�W [J ]

�J (x)
(D.5)

�[�] is also called the e↵ective action of the theory for reasons that will be clear later.
From these definitions it follows taking functional derivatives,

��[�̄]

��̄
=
�W [J ]

�J
�J
��̄
� J � �̄�J

��̄
= �J (D.6)

And thus in the absence of sources J = 0, there exists field configurations (called
classical field �cl) such that

��[�̄]

��̄

�

�

�

�

J =0

= 0 for �̄ = �cl such that �cl = h0| �̄(x) |0iJ =0 (D.7)
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and thus �c defines the true quantum vacuum of the theory because its the minima
of the e↵ective action. �[�̄] is the generator of 1-PI diagrams and thus �[�̄] in terms
of the field �̄ we get

�[�̄] =
1
X

n=0

1

n!

Z

d4x1d
4x2...d

4xn �̄(x1)�̄(x2)...�̄(xn)�(n)(x1, x2..., xn) (D.8)

where now �(n) are the one-particle irreducible (1PI) Green functions. Fourier trans-
forming �(n) and �̄ as

�(n)(x) =

Z n
Y

i=1



d4pi

(2⇡)4
exp{ipixi}

�

(2⇡)4�(4)(p1 + p2 + ... + pn)�(n)(p)

�̃(p) =

Z

d4x e�ipx�̄(x) (D.9)

Substituting into �[�̄] we obtain,

�[�̄] =
1
X

n=0

Z n
Y

i=1



d4pi

(2⇡)4
�̃(�pi)

�

(2⇡)4�(4)(p1 + p2 + ... + pn)�(n)(p) (D.10)

In a theory with translational invariance we expect the true quantum vacuum expec-
tation value of �(x) to be translational invariant,

�̄(x) = �c (D.11)

and thus the e↵ective potential should be a divergent integral over space-time volume
of some function of �c. We call this function the e↵ective potential Veff (�c),

�[�c] = �
Z

d4x Veff (�c) (D.12)

Similarly, the fourier transform of �c has a divergent space-time volume,

�̃c(p) =

Z

d4x �ce
�ipx = (2⇡)4�c�

(4)(p) (D.13)

Substituting into Eqn. (D.10), we get

�(�c) =
1
X

n=0

1

n!
�n

c (2⇡)4�4(0)�(n)(pi = 0) =
1
X

n=0

1

n!
�n

c�
(n)(pi = 0)

Z

d4x (D.14)

And thus we get an expression for Veff (�c),

Veff (�c) = �
1
X

n=0

1

n!
�n

c�
(n)(pi = 0) (D.15)

This important formula states that the e↵ective potential can be found by calculating
the 1-PI connected green’s function with the momenta on external legs set to zero.
We use this formula to calculate both the tree-level and one loop e↵ective potential for
a scalar �4 theory as an example. This will also clarify the name “e↵ective potential”.
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D.1 Veff for �4-theory

Consider a scalar field theory of field � with the lagrangian

L =
1

2
(@µ�)(@µ�)� 1

2
m2�2 � �

4!
�4 (D.16)

To compute the tree level e↵ective potential, we need to evaluate the 1-PI diagrams
with no loops. But this is trivial since there is only one diagram with 4 external legs
and one vertex giving the interaction term. The vertex brings a factor of �i� and
there is an extra global factor of i from the definition of the generating functional.
And thus to the lowest order we just get the classical potential back,

V0(�c) = �1

2
m2�2

c �
�

4!
�4

c (D.17)

To compute the e↵ective action up to 1-loop, we consider all 1-PI one loop diagrams
with arbitrary number of external legs as shown in FigD.1. Because of the quartic
nature of the interaction, a diagram with 2n external legs has n vertices and n prop-
agators. The n propagators contribute in(p2 �m2 + i✏)�n. Each vertex contributes
�i�/2 and there is a global symmetry factor 1/(2n) where n comes from the symmetry
of the diagram under the discrete group of rotations Z

n

and 1/2 from the symmetry of
the diagram under reflection. Since we evaluate the diagrams with external momenta
pi = 0, there is only one momentum in the loop, p which is integrated over. And
again there is an extra global factor of i. Thus, the one loop contribution becomes

Scalar fields

We consider the simplest model of one self-interacting real scalar field, de-

scribed by the lagrangian

L =

1

2

@µ�@µ� � V0(�) (22)

with a tree-level potential

V0 =

1

2

m2�2
+

�

4!

�4
(23)

The one-loop correction to the tree-level potential should be computed

as the sum of all 1PI diagrams with a single loop and zero external momenta.

Diagrammatically they are displayed in Fig. 1, where each vertex has 2 external

legs.

Figure 1: 1PI diagrams contributing to the one-loop e↵ective potential of (22).

The n-th diagram has n propagators, n vertices and 2n external legs. The

n propagators will contribute a factor of in(p2 � m2
+ i✏)�n a

. The external

lines contribute a factor of �2n
c and each vertex a factor of �i�/2, where the

factor 1/2 comes from the fact that interchanging the 2 external lines of the

vertex does not change the diagram. There is a global symmetry factor

1
2n ,

where

1
n comes from the symmetry of the diagram under the discrete group of

rotations Zn and

1
2 from the symmetry of the diagram under reflection. Finally

there is an integration over the loop momentum and an extra global factor of

i from the definition of the generating functional.

Using the previous rules the one-loop e�ective potential can be computed

as,

Ve�(�c) = V0(�c) + V1(�c),

aWe are using the Bjorken and Drell’s 6 notation and conventions.

4

Figure D.1: Diagrams contributing to the e↵ective action in �4 theory at 1-loop

V1(�c) = i
1
X

n=1

Z

d4p

(2⇡)4

1

2n



��2
c/2

p2 �m2 + i✏

�n

(D.18)

We can integrate by Wick rotating first,

p0 = �ip0
E, pE = (�ip0, ~p), p2 = (p0)2 � ~p2 = �p2

E (D.19)

an so the integral becomes

V1(�c) =
1

2

Z

d4pE

(2⇡)4
log



1 +
��2

c/2

p2
E + m2

�

(D.20)
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This motivates the definition of the shifted mass, m(�c),

m2(�c) = m2 +
1

2
��2

c =
d2V0(�c)

d�2
c

(D.21)

and in terms of the field dependent mass

V1(�c) =
1

2

Z

d4p

(2⇡)4
log[p2 + m2(�c)] (D.22)

where the field independent term in the logarithm has been neglected because it
doesn’t change anything and can be absorbed in renormalization. To compute the
integral, we first use dimensional regularization and compute a di↵erent integral V 0

which is simply the derivative of V1 with respect to �c,

V 0 =
1

2
(µ2)2�n/2

Z

dnp

(2⇡)n

1

p2 + m2(�c)
(D.23)

The scale µ2 has been included for correct mass dimensions of V 0 in n 6= 4 dimensions.
Using the following identity,

Z

dnp
(p2)↵

(p2 + M2)�
= ⇡n/2(M2)n/2+↵���(↵ + n/2)�(� � ↵� n/2)

�(n/2)�(�)
(D.24)

we get

V1(�c) = � 1

32⇡2

4

n(n� 2)

✓

m2(�c)

4⇡µ2

◆n/2�2

�
⇣

2� n

2

⌘

m4(�c) (D.25)

Taking the limit n! 4 and using the M̄S renormalization scheme, we get

V1(�c) =
1

64⇡2
m4(�c)

⇢

log
m2(�c)

µ2
� 3

2

�

(D.26)

where µ is the renormalization scale or equivalently the energy scale at which we
evaluate the 1-loop potential and the couplings have to be related by renormalization
group flows to this scale. To absorb the divergent counter term

�m4(�c)

64⇡2

⇢

1

2� n
2

� �E + log 4⇡

�

(D.27)

from the potential we need renormalization conditions. The typical conditions on
renormalized field ZR, mass mR and coupling �R are (in evaluating the e↵ective
potential we keep external momenta zero, so we do the same for the renormalization
conditions)

m2
R = ��(2)(p = 0) =

d2V

d�2
c

�

�

�

�

�c=0

�R = ��(4)(p = 0) =
d4V

d�4
c

�

�

�

�

�c=0

(D.28)

ZR = 1
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The second equity for mR and �R follows from the fact that the e↵ective action is
the generator of 1-PI connected diagrams and at one loop the 1PI diagram with two
external legs is the diagram that renormalizes mass and the one with four external
legs renormalizes the coupling constant. So, the divergent counterterms in mass and
coupling constant become

�m2 = 0

�� =
3�2

32⇡2

⇢

1

2� n
2

� �E + log 4⇡

�

(D.29)

Finally, the 1-loop e↵ective potential i �4 theory becomes

Veff (�c) =
1

2
m2�2

c +
�

4!
m2�4

c +
�2�4

c

256⇡2
log

✓

��2
c

2µ2
� 3

2

◆

(D.30)

The higher loop function can be similarly computed. However, this process is quite
cumbersome because an infinite number of Feynman diagrams need to be computed.
There is however another method for deriving a general expression for the e↵ective
action by shifting the field about the classical field �c and using the shifted action to
compute diagrams. We sketch out the method below. Start by defining the lagrangian

Z

d4xL̂{�c;�(x)} ⌘ S[�c + �]� S[�c]� �
�S[�c]

��c

(D.31)

The propagator of the shifted theory is given in terms of the action of Ŝ =
R

d4xL̂,

iD�1{�c; x� y} =
�2S[�]

��(x)��(y)

�

�

�

�

�=�c

(D.32)

and then it can be shown that the e↵ective potential of the original theory is given
as

Veff (�c) = V0(�c)�
i

2

Z

d4p

(2⇡)4
log det iD�1{�c; p} + i

⌧

exp



Z

d4xL̂I{�c;�(x)}
��

(D.33)

where L̂I is the interaction lagrangian of the shifted theory and iD�1{�c; p} is the
propagator of Eqn (D.32) in fourier space.

D.2 Renormalization Group Improved E↵ective Potential

The e↵ective action is the generator of 1PI connected green’s functions. And
these green’s functions are directly to observables. Hence they satisfy the Callan-
Symanzik equation which relates all the scale dependence in the green function to
scale dependence in coupling constants and field strength.



µ
@

@µ
+ �

@

@�
� ��c

�

��c

�

�[�c] = 0 (D.34)
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where � is the beta function for the coupling constant � and � is the anomalies
dimension which gives the running of the field strength renormalization and µ is the
scale at which we renormalize. From this it can be shown that



µ
@

@µ
+ �

@

@�
� ��c

@

@�c

�

Veff = 0 (D.35)

This equation has a general solution

Veff (µ,�,�c) = Veff (µ(t),�(t),�(t)) (D.36)

where they all depend on the RG-flow parameter t,

µ(t) = µexp(t)

�(t) = �c⇠(t)

⇠(t) = exp

⇢

�
Z t

0

�(�(t0))dt0
�

(D.37)

�(�(t)) =
d�(t)

dt

� gives the running of the coupling constant � with respect to RG flow parameter t
which is directly related to µ. In particular, we can fix the scale to be a �c dependent
quantity using boundary conditions,

µ(t) = f(�c) =) t = log{f(�c)/µ} (D.38)

Thus, we see that the solution of the RGE satisfied by Veff implies using renormalized
couplings and fields and the scale dependence can be reabsorbed in to RGE running.
Fixing the scale, as a function of �c (i.e. giving di↵erent scales for di↵erent values
of the field) is usually done to optimize the validity of the perturbative expansion,
i.e. minimizing the value of radiative corrections to the e↵ective potential around
the minimum of the field. A very interesting general result is: The RGE improved
e↵ective potential exact up to (next-to-leading) log order is obtained using the L-loop
e↵ective potential and the (L + 1)-loop RGE �-functions.

D.3 Standard Model E↵ective Potential

The Standard Model e↵ective potential is calculated (i) to the one-loop order, (ii)
working in the MS renormalization scheme with renormalization scale µ, and (iii) in
the renormalizable class of gauges (R⇠) as follows:

Ve↵(�c) = V (0)(�c) + V (1)(�c) (D.39)

The tree-level potential is

V (0)(�c) = �1

2
m2�2

c +
�

4
�4

c (D.40)
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And the one-loop correction is

V (1)(�c) =
X

f=t,b,c..

(�1)
nf

4

m̃4
f

16⇡2

✓

ln
m̃2

f

µ2
� 3

2

◆

+
6

4

m̃4
W

16⇡2

✓

ln
m̃2

W

µ2
� 5

6

◆

(D.41)

+
3

4

m̃4
Z

16⇡2

✓

ln
m̃2

Z

µ2
� 5

6

◆

+
1

4

m̃4
H

16⇡2

✓

ln
m̃2

H

µ2
� 3

2

◆

+
1

4

m̃4
G

16⇡2

✓

ln
m̃2

G

µ2
� 3

2

◆

+
2

4

m̃4
G±

16⇡2

✓

ln
m̃2

G±

µ2
� 3

2

◆

� 2

4

m̃4
cW

16⇡2

✓

ln
m̃2

cW

µ2
� 3

2

◆

� 1

4

m̃4
cZ

16⇡2

✓

ln
m̃2

cZ

µ2
� 3

2

◆

The sum over index f runs over all the SM fermion species with nf = 12 for the quarks
and nf = 4 for the leptons. The e↵ective masses are

Fermions m̃2
f =

y2

f

2
�2

c

W-Bosons m̃2
W = g2

4
�2

c

Z-Bosons m̃2
Z = g2+g02

4
�2

c

Higgs Boson m̃2
H = �m2 + 3��2

c

Neutral Goldstones m̃2
G = �m2 + ��2

c + m̃2
cZ

(D.42)

Charged Goldstones m̃2
G± = �m2 + ��2

c + m̃2
cW

Ghosts m̃2
cZ

= ⇠Zm̃2
cZ

Ghosts m̃2
cW

= ⇠W m̃2
cW

In writing down m̃2
f = y2

f�
2
c we have neglected mixing the quark mixing matrix which

is assumed to be diagonal. One can also use m̃2
f = m2

f�
2
c/v

2 where mf is the fermion
mass (eigenvalue of the mass matrix) and v ' 246 GeV is the Higgs VEV. The re-
maining Standard Model fields, the massless photon and gluons, do not enter the
e↵ective potential at the one-loop order.

In Eq. (D.41) we have distinguished the gauge fixing parameters, ⇠Z and ⇠W , for
generality, but typically they are taken to be equal, ⇠Z = ⇠W = ⇠. The common gauge
choices are:

Landau gauge ⇠ = 0

Feynman gauge ⇠ = 1 (D.43)

Unitary gauge ⇠ =1

Physically, the Goldstone bosons and ghosts decouple in the unitary gauge, but de-
coupling is not manifest in the MS renormalization scheme. Therefore, to implement
the unitary gauge in the e↵ective potential, one simply removes the would-be diver-
gent terms by hand.

The renormalization scale µ should be chosen so as to optimize the validity
of the perturbative expansion. At two-loop order, one finds terms of the form
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V (2) ⇠ m̃4(ln m̃2/µ2)2 where m̃2 is one of the field-dependent masses. If µ is cho-
sen poorly, then the logarithm may be large,

�

� ln m̃2/µ2
�

�� 1, and higher order terms
in the ~ expansion can become significant. In the Standard Model, because there are
multiple would-be large logarithms, it is not possible to find a single t⇤ at which all
of the logarithms are vanishing. We must instead choose to minimize the potentially
most dangerous logarithm. The heaviest field is the top quark, and this logarithm is
minimized by determining the RG flow parameter t⇤ by solving

y2
t �c(t)2

2µ(t)2

�

�

�

�

t=t⇤
= 1 =) t⇤ =

1

2
ln



yt(t⇤)2e2�(t⇤)�2
c

2µ2
0

�

⇡ 1

2
ln



y2
0�

2
c

2µ2
0

�

(D.44)

where like before µ(t) = µ0et. Thus to the leading log order (L = 1) the RG-improved
e↵ective potential is given by Eqns. (D.39) and (D.41) where each parameter is
replaced by the corresponding running parameter and evaluated at t = t⇤. That is,
we replace µ! µ(t⇤), yf ! yf (t⇤). m2 ! m2(t⇤), �c ! �c(t⇤) and so on. To actually
evaluate the e↵ective potential, one must specify the scale µ0 and the values of the
parameters, yf0 etc., at that scale.
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APPENDIX E

BARYOGENESIS
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Andrei Sakharov laid out three conditions for successful generation of baryon
asymmetry,

• Baryon Number Violation
If we assume that at the big bang the universe started out with a new baryon
number of zero and we see a net baryon asymmetry today, baryon number can’t
be a conserved symmetry of nature. It must be violated in the theory either
in perturbative scattering or non-perturbative processes to create a net baryon
asymmetry, B 6= 0.

• C & CP violation
Charge conjugation operator exchanges particles and anti-particles. If this is a
symmetry of the theory then the rate for a particle undergoing a process i! f
which creates a baryon asymmetry Bf � Bi = �B, there will be an analogous
process ī ! f̄ which creates the opposite asymmetry Bf̄ � Bī = �Bf + Bi =
��B and thus the universe as a whole remains baryon symmetric. So, charge
conjugation C can’t be a symmetry of the interactions. Similarly, if the their is
time symmetric, then its easy to see that, time averaged there can be no baryon
asymmetry either. So the theory has to be asymmetric under time reversal
operation i.e, T can’t be a symmetry of the theory. But by CPT theorem, we
know that non-invariance under T is the same as non-invariance under CP .
Thus, for baryogenesis, a theory has be both C and CP violating.

We can illustrate how C and CP violation lead to a baryon asymmetry as
follows. Consider a simple model [193] with two heavy bosons X and Y that
can decay into two fermions each via the following lagragian,

Lint = g1Xf †
2f1 + g2Xf †

4f3 + g3Y f †
1f3 + g4Y f †

2f4 + h.c. (E.1)

where g1, ..g4 are the coupling constant. The lagrangian can lead to following
decays,

X ! f̄1 + f2, f̄3 + f4 (E.2)

T ! f̄3 + f1, f̄4 + f2 (E.3)

and the tree level diagrams of these decay processes are shown in Fig E.1 At
the tree level, the decay rate of X ! f1 + f2 is proportional to |g1|2,

�(X ! f̄1 + f2) = |g1|2IX (E.4)

where IX is the phase space factor. For the conjugate process X̄ ! f1 + f̄2, the
decay rate is,

�(f1 + f̄2) = |g⇤
1|2IX̄ (E.5)

At the tree level, no asymmetry is created because the phase space factors IX

and IX̄ are equal. However, at the one loop level, there are more diagrams via
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over the internal loop momentum due to the exchange of J in I decay. If

fermions f1,...4 are allowed to propagate on-shell, then the factor IXY is

complex. Therefore,

�(X ! f1 + f2) � �(X ! f1 + f2) = 4Im(IXY )Im(g�
1g2g

�
3g4) . (1.30)

Similarly, for the decay mode, X ! f3 + f4, we have,

�(X ! f3 + f4) � �(X ! f3 + f4) = �4Im(IXY )Im(g�
1g2g

�
3g4) . (1.31)

Note that, in addition to the one-loop diagrams shown in Fig. 1.5, there are

also diagrams that involve the same boson as the decaying one. However,

contributions to the asymmetry from these diagrams vanish as the inter-

ference term in this case is proportional to Im(gig�
i gig�

i ) = 0. The total

baryon number asymmetry due to X decays is thus given by,

✏X =

(B1 � B2)��(X ! f1 + f2) + (B4 � B3)��(X ! f3 + f4)

�X
,

(1.32)

where

��(X ! f1 + f2) = �(X ! f1 + f2) � �(X ! f1 + f2) , (1.33)

��(X ! f3 + f4) = �(X ! f3 + f4) � �(X ! f3 + f4) . (1.34)

X

f1

f2

g1 X

f3

f4

g2

(a) (b)

Y

f3

f1

g3 Y

f4

f2

g4

(c) (d)

Fig. 1.4. Tree level diagrams for the decays of the heavy scalar fields, X and Y .
Figure E.1: Tree level diagrams for the decays of the heavy scalar fields, X and Y .

loop process as shown in Fig E.2. The 1-loop amplitude interferes with the
tree-level amplitude to give

�(X ! f̄1 + f2) = g1g
⇤
2g3g

⇤
4IXY + h.c.

�(X̄ ! f1 + f̄2) = g⇤
1g2g

⇤
3g4IXY + h.c. (E.6)

where IXY is the overall phase space factor which is in general complex for on-
shell fermions f1,..4. Thus, we get that the di↵erence between rates for particles
in the final state vs anti-particles is

�(X ! f̄1 + f2)� �(X̄ ! f1 + f̄2) = 4Im(IXY )Im(g⇤
1g2g

⇤
3g4)

�(X ! f̄3 + f4)� �(X̄ ! f3 + f̄4) = �4Im(IXY )Im(g⇤
1g2g

⇤
3g4) (E.7)

Thus, the total baryon number asymmetry due to X decays is thus given by,

✏X =
(B1 � B2)��(X ! f̄1 + f2) + (B4 � B3)��(X ! f̄3 + f4)

�X

(E.8)

where Bi is the baryon number of the fermion fi and �X is the total decay width
for X and

��(f̄1 + f2) = �(X ! f̄1 + f2)� �(X̄ ! f1 + f̄2)

��(f̄3 + f4) = �(X ! f̄3 + f4)� �(X̄ ! f3 + f̄4) (E.9)
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And similarly, we can find expressions for decays via Y . In fact using Eqn (E.7),
we get

✏X =
4

�X

Im(IXY )Im(g⇤
1g2g

⇤
3g4) [(B4 � B3)� (B2 � B1)]

✏Y =
4

�Y

Im(I 0
XY )Im(g⇤

1g2g
⇤
3g4) [(B2 � B4)� (B1 � B3)] (E.10)
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Similar expression can be derived for the Y decays. The total asymmetries

due to the decays of the superheavy bosons, X and Y, are then given,

respectively, by

✏X =

4

�X
Im(IXY )Im(g�

1g2g
�
3g4)[(B4 � B3) � (B2 � B1)] , (1.35)

✏Y =

4

�Y
Im(I �

XY )Im(g�
1g2g

�
3g4)[(B2 � B4) � (B1 � B3)] . (1.36)

By inspecting Eq. 1.35 and 1.36, it is clear that the following three

conditions must be satisfied to have a non-zero total asymmetry, ✏ = ✏X +

✏Y :

• The presence of the two baryon number violating bosons, each of which

has to have mass greater than the sum of the masses of the fermions in

the internal loop;

• The coupling constants have to be complex. The C and CP violation

then arise from the interference between the tree level and one-loop

diagrams. In general, the asymmetry generated is proportional to ✏ ⇠
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Fig. 1.5. One loop diagrams for the decays of the heavy scalar fields, X and Y , that
contribute to the asymmetry.

Figure E.2: One loop diagrams for the decays of the heavy scalar fields, X and Y .

The total asymmetry is then given by ✏ = ✏X + ✏Y . Its clear however, that
the coe�cients have to be in general complex to get a asymmetry. That is,
there should be at least one non-removable phase magnificent itself physically
as violating CP . Moreover, there should be two di↵erent decay channels - typ-
ically a tree-level and loop diagram interfering to give the same baryon number
violating decay products. We will look to this result as a guide in our work to
generate the CP asymmetry needed in our baryogenesis model.

• Departure from thermal equilibrium In thermal equilibrium, the rate of forward
and backward process are the same. So, any baryon asymmetry that could be
created if the above two conditions are satisfied would be wiped out via thermal
scatterings which allow the reverse process to occur at the same rate. This can
be seen as follows. Using the fact that any relativistic theory is CPT invariant,
the thermal equilibrium average of the baryon number B is

hBiT = Tr
�

e��HB
�

= Tr
�

(CPT )(CPT )�1e��HB
�

(E.11)

= Tr
�

e��H(CPT )�1B(CPT )
�

= �Tr
�

e��HB
�

=) hBiT = 0
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The fourth equality comes from using the fact that baryon number B is PT -
even but flips under charge conjugation, C. Thus, so long as we have thermal
equilibrium in the universe, we can’t create any baryon asymmetry. Therefore,
whatever process leads to baryon asymmetry has to happen out-of-equilibrium.
The decay of heavy particle can be one such process and in fact a number of
theories of baryogenesis (including the oner studies in this work) employ this
mechanism and so we take a closer look at it in the following section.

E.1 Out-of-Equilibrium Decays

Given enough time, all particles no matter how weakly they interact would
achieve thermal equilibrium. However, this isn’t so easy for particles in an ex-
panding universe. This is because to achieve thermal equilibrium, particles have
to interact with each other. However, in an expanding universe, particles get
diluted away and thus the ability of a species to achieve equilibrium is dimin-
ished. If this interaction is a decay for a heavy particle X, the rate of decay �X

of the X particles eventually falls below the expansion rate H of the universe
and the decays are unable to reduce the numbers of X particles to the levels
required to stay in equilibrium.

Consider a heavy scalar boson that decays creating a net baryon number. At
high enough temperatures T � mX , the particle behaves like a relativistic
species and the number densities of the X particles and their antiparticles are
the same and we can assume thermal equilibrium with the plasma because the
interaction rate is high at high temperatures,

nX = nX̄ =
⇣(3)

⇡2
T 3 (E.12)

and thus

nX

n�
=

1

2
(E.13)

As the universe expands and the particles X and X̃ need to continue to decay
to maintain their thermal equilibrium densities and so long as they do that, net
baryon number remains 0. However, as temperature keeps falling around T .
mX , the particle number densities are reduced compared to relativistic photons
because the boltzmann suppression factor starts to become more relevant. Thus,
the ratio of equilibrium densities of particle X to photons would become

neq

X̄

n�
=

⇡2

2⇣(3)

⇣ mX

2⇡T

⌘3/2

e�mX/T (E.14)

and the same for nX̄ . For equilibrium densities to be maintained, the decay
rate of X should remain higher than the expansion rate. On the other hand,
for successful baryogenesis we want departure from thermal equilibrium. If the
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decay rate for X falls below the Hubble rate when T > mX , the species freezes
out when its still relativistic. Then their density at a lower temperature doesn’t
have the Boltzmann suppression and thus they are out of equilibrium with the
plasma because they are over abundant. So, if and when they do decay, it is an
out of equilibrium process.

In the simple model of decay of a scalar X, this condition gives a constraint on
the particles mass. We can derive it by noting that at high temperatures when
the plasma is made of relativistic particles,

H2 =
⇢

3M2
p

=

✓

4⇡3g⇤,T

45

◆

T 4

M2
p

(E.15)

where g⇤,T is the e↵ective number of relativistic species. Thus, the out-of-
equilibrium condition becomes

�X . H

�

�

�

�

T=mX

=) m2
X & 3

2⇡

✓

5

⇡g⇤,T

◆1/2

�XMp (E.16)

To calculate an expression for the next baryon asymmetry, suppose that the X
particle has decay channels X ! f to a final state f producing baryon number
B. Then the X̄ has decay channels X̄ ! f̄ producing baryon number �B, and
the net baryon number produced by all of these decays is

�B = ��1
X

X

n

B
⇥

�(X ! f)� �(X̄ ! f̄)
⇤

(E.17)

which gives a net baryon number density

nB = nX�B =) ⌘ ⌘ nB

n�
=
�B

2
(E.18)

We can similarly calculate the baryon-to-entropy ratio except we have to be
careful if there is any entropy injection happening as a result of the decays,
which can also reheat the plasma. We will return to this point later in our
work.

E.2 Models of Baryogenesis

E.2.1 Electroweak (EW) Baryogenesis

The electroweak theory of the standard model has all the ingredients necessary
for baryogenesis. Lets first look at how they arise in the standard model and then
we will discuss how in spite of this the electroweak theory can’t explain the baryon
asymmetry.
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• Baryon number non-conservation in EW theory
The standard model baryon fields are classically invariant under a U(1)B trans-

formation. Thus, there is a conserved baryon current, J (B)
µ

J (B)
µ =

X

 

B ( ̄�µ ), satisfies @µJ (B)
µ = 0 (E.19)

where B is the baryon number of the  field. Similarly, there is also a classical
global U(1)L symmetry for the lepton fields,

J (L)
µ =

X

 

L ( ̄�µ ), satisfies @µJ (L)
µ = 0 (E.20)

where L is the baryon number of the  field. However, classical symmetries
such as these are generally not preserved at the quantum level. In particular,
in a chiral theory, in which the left and right chiral fermion states are coupled
di↵erently, as occurs in electroweak theory, there are chiral anomalies resulting
from the non-invariance of the field measure D D ̄ in the functional integral
determining the generating function. The quantum anomaly arising from U(1)B

non-conservation has the following RHS,

@µJ (B)
µ = � 1

32⇡2
Tr

h

{FL
µ⌫ , F̃

µ⌫L}B � {FR
µ⌫ , F̃

µ⌫R}B
i

(E.21)

where FL
µ⌫ = T aF aL

µ⌫ is the gauge field strength couples to the left handed
fermions and similarly for raw right handed one, and T a are the generators
of there relevant gauge group and F̃L

µ⌫ = ✏µ⌫⇢�F ⇢�L/2 is the dual field strength
tensor. The trace is over all the fermions and thus all the relevant gauge groups
SU(3)c (contributes nothing) and SU(2)L and U(1)Y . Denoting the SU(2)L

field strength by W a
µ⌫ and U(1)Y by Bµ⌫ and the relevant charge assugnments

for all fermions under these symmetries, we get

h@µJB
µ i = � NG

32⇡2

h

g2
2W

a
µ⌫W̃

µ⌫a � g2
1Bµ⌫B̃

µ⌫
i

(E.22)

where NG = 3 is the number of fermion generations and h.i is the quantum
average. It can be shown that the lepton current also satisfies a similar equality
(recall that SU(3) cancels out in the anomaly expression because left and right
handed fermions are couples to gluons the same way).

@µJL
µ =

1

NG

@µJB
µ , L ⌘

X

l

⇥

⌫̄l�µ⌫l + l̄�µl
⇤

(E.23)

and thus from this we see that B � L is a conserved quantity, even quantum
mechanically even though neither B nor L is. Here in lies our baryon number
non-conservation we seek for baryogenesis. This non-conservation is bolstered
at high temperatures by sphaleron inducing non-conservation of baryon number.
This is because (just like with U(1)A), the non-conservation of baryon number
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is related to topologically distinct vacua of the electroweak theory, each labelled
with its own baryon number. Dynamically, baryon number is violated when the
field configurations jump from one vacua to another. Such a process requires
energy and the higgs field configuration which interpolates between these vacua
is called a sphaleron solution. This sphaleron transition rate is highly suppressed
at low temperatures but is very active at high temperatures and this transition
is accompanied by �B 6= 0.

• CP Violation in the EW theory
In the electroweak theory, the CKM matrix is a source of has CP violating
phase in it. The CKM matrix mixes the quark flavors so that the quart mass
and flavor eigenstates are di↵erent. However, it turns out that this CP violation
in the standard model is too small. In fact, so much so that the dimensionless
parameter that controls its � < 10�25 and it can be shown that such a small
parameter can’t produce the baryon asymmetry. We would need new sources
of CP violation in the SM, but that is severely constrained. Thus, CP violation
alone rules out electroweak baryogenesis.

• Phase transition in the EW theory
In spite of the fact that the EW theory has (sphaleron-induced) baryon violating
process as well as CP-violation via the CKM matrix, there is a general argument
that the sphaleron induced baryon non-conservation is suppressed unless the
phase transition, as the Higgs acquires a vev is strongly first order. And this in
turn puts a constraint on Higgs mass

mH . 72 GeV (E.24)

which is in clear contraction with the experimental measured value of mH = 125
GeV. Its also in contraction with the constraints on higgs mass to avoid washout
of the asymmetry created by sphaleron induced process, mH . 47GeV. So, even
before measuring higgs mass, it was known that the electroweak theory can’t
produce the observed baryon asymmetry of the universe.

E.2.2 Leptogenesis

In general, leptogenesis is the generic name given to models of baryogenesis where
we first create a lepton asymmetry which is then converted to a baryon asymmetry
by the sphaleron process. A sphaleron is a field configuration that is a saddle point of
the gauge-higgs system and interpolates between degenerate vacua. It is an instanton
solution that gives the largest contribution to vacuum-to-vacuum transition ampli-
tudes. For the sphaleron process to be e↵ective however, the lepton asymmetry must
be created by before the electroweak phase transition i.e, before this higgs acquires
its vev (implying at temperatures above 246GeV).

We first give an overview of the sphaleron process [193] that coverts lepton asym-
metry into a baryonic asymmetry. Next, we will study the most common leptogenesis
example, that of a Majorana neutrino decay. Recall that JB

µ �JL
µ is exactly conserved.
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On the other hand, JB
µ + JL

µ becomes

@µ(JB
µ + JL

µ ) = 2Nf@µK
µ (E.25)

where the current Kµ is given in terms of the SU(2)L field strength tensor W a
µ⌫ and

the U(1)Y field Bµ (field strength, Bµ⌫),

Kµ = � g2

32⇡2
2✏µ⌫⇢�W a

⌫

⇣

@⇢W
a
� +

g

3
✏abcW b

⇢W
c
�

⌘

+
g02

32⇡2
✏µ⌫�⇢B⌫B⇢� (E.26)

This violation implies the existence in this non-abelian gauge theory of topologically
distinct vacua labelled by an integer called the Chern-Simons number given as

Ncs =
g3

96⇡2

Z

d3x✏ijk✏
IJKW IiW JjWKk (E.27)

And thus a transition between vacua (either via quantum tunneling whose rate is
exceptionally low or thermally at high temperatures whose rate can be significant)
violates the baryon (lepton) number by �B (�L)

�B = Nf�Ncs (E.28)

Since B � L is conserved, any change in B must be accommodate by a change in L.
In a plasma, the changing number of baryons or leptons is accommodated by using
the grand canonical potential with non-zero chemical potential µ 6= 0. Denoting
by µqi the chemical potential of the quark doublet, µu,di the chemical potential of
the individual quark singlets and similarly µli the chemical potential of the lepton
doublets and µei that of the singlet, we can write the baryon and lepton numbers as

B =
X

i

(2µqi + µui + µdi

L =
X

i

(2µli + µei) (E.29)

Assuming thermal equilibrium and the same chemical potential across generations,
we get

B = �4

3
Nfµl, L =

14N2
f + 9Nf

6Nf + 3
µl =) L = �

✓

9 + 14Nf

4 + 8Nf

◆

B (E.30)

Finally, we look at the most common example of leptogenesis via decay of a heavy
Majorana neutrino which also gives the SM neutrinos a small mass, explaining two
unrelated phenomenon. We begin by introducing a new Majorana (i.e., the fermion
is the same as the anti-fermion) neutrino N = ⌫R + ⌫̄c

R and the interaction lagrangian
is

Lint = fij ēRilLjH
† + hij ⌫̄RilLjH �

1

2
(MR)ij ⌫̄

c
Ri
⌫Rj + h.c. (E.31)
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Here H is the higgs doublet, lLi is the lepton doublet with i = (e, µ, ⌧), eRi the right
handed fermion and ⌫Ri is the right handed neutrino which has a Majorana mass
term MR which is allowed because its a singlet under all SM gauge groups. Upon the
electroweak symmetry breaking, the SM Higgs doublet gets a VEV, hHi = v, and the
charged leptons and the neutrino Dirac masses, which assumed to be much smaller
than the RH neutrino Majorana masses, are generated,

ml = fv, mD = hv ⌧MR. (E.32)

EWSB creates the Dirac mass which appears in the lagrangian as the following term
for a fermion  

LD = �mD

�

 ̄L R + h.c.
�

(E.33)

whereas if  was a Majorana particle the mass term would be

LM = �1

2
mM

L

⇣

 ̄L 
C
R +  C

R L

⌘

� 1

2
mM

R (L$ R) (E.34)

In general then, if we have both type of mass terms, we like we do here, we can write
the mass lagrangian as follows:

LMD = �
⇣

 ̄L  C
L

⌘

✓

mM
L mD

mD mM
R

◆✓

 C
R

 R

◆

+ h.c. (E.35)

Thus, our neutrino mass matrix as a see-saw form
✓

0 mD

mT
D MR

◆

(E.36)

Diagonalizing this matrix,

The lepton asymmetry is created by the decay of the heavy Majorana state Ni !
H + l↵ where ↵ = (e, µ⌧). The total width of this decay is,

�Di =
X

↵

⇥

�(Ni ! H + l↵) + �(Ni ! H̄ + l̄↵)
⇤

=
1

8⇡
(h†h)iiMi (E.37)

The out-of-equilibrium condition requires that the total width for Ni decay, �Di ,
to be smaller compared to the expansion rate of the Universe (H) at temperature
T = Mi like we saw above.

�Di < H

�

�

�

�

T=Mi

(E.38)

CP violation happens due to the interference of tree and loop level vertex diagrams
(a) and (b) in Fig (E.3) and the self-energy diagram in (c) and its characterized by

✏i =

P

↵

⇥

�(Ni ! H + l↵)� �(Ni ! H̄ + l̄↵)
⇤

�Di

(E.39)
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference

of the tree level and one-loop diagrams, as shown in Fig. 1.7,

✏1 =

P

�

⇥

�(N1 ! ��H) � �(N1 ! �� H)

⇤

P

�

⇥

�(N1 ! ��H) + �(N1 ! �� H)

⇤

(1.89)
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives

the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =

p
x



1 � (1 + x) ln

✓

1 + x

x

◆�

. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi � M1| � |�i � �1|, the

self-energy diagram gives the term

g(x) =

p
x

1 � x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ⌧ M2, M3, the

asymmetry is then given by,

✏1 ' � 3

8�

1

(h�h†
�)11

X

i=2,3

Im

⇢

(h�h†
�)

2
1i

�

M1

Mi
. (1.92)

Note that when Nk and Nj in the self-energy diagram (c) have near degen-

erate masses, there can be resonant enhancement in the contributions from

the self-energy diagram to the asymmetry. Such resonant e�ect can allow

Figure E.3: Diagrams contributing to CP violation, each creating a lepton asymme-
try by decay of a right handed neutrino into higgs and SM lepton. The asymmetry
is generated due to the interference of the tree-level diagram (a) and the one-loop
vertex correction (b) and self-energy (c) diagrams.

In this mechanism, we have to be careful with two other things. Since the same
lagrangian also produces neutrino masses, we have to make sure that neutrino mass
constraints are satisfied while creating the asymmetry. The out-of-equilibrium con-
dition which translates to inverse process being suppressed has to be satisfied which
is yet another constraint. We also have to ensure that scattering processes which
change lepton number are also suppressed. Examples of the latter are given in Figs
(E.4) and (E.5). Both of these further constraints will be relevant in our work, too
and we will discuss them further in the relevant context later.
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Fig. 1.9. The �L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The �L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

� + H ! N, � + H ! N (1.105)

(3) 2-2 scattering: These include the following �L = 1 scattering processes

(Fig. 1.9),

[s-channel] : N1 � $ t q , N1 � $ t q (1.106)

[t-channel] : N1t $ � q , N1 t $ � q (1.107)

and �L = 2 scattering processes (Fig. 1.10),

�H $ � H , �� $ H H, � � $ H H . (1.108)

Basically, at temperatures T & M1, these �L = 1 and �L = 2 processes

have to be strong enough to keep N1 in equilibrium. Yet at temperature

T . M1, these processes have to be weak enough to allow N1 to generate

an asymmetry.

Figure E.4: �L = 1 scattering process.
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Fig. 1.10. The �L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

� + H ! N, � + H ! N (1.105)

(3) 2-2 scattering: These include the following �L = 1 scattering processes

(Fig. 1.9),

[s-channel] : N1 � $ t q , N1 � $ t q (1.106)

[t-channel] : N1t $ � q , N1 t $ � q (1.107)

and �L = 2 scattering processes (Fig. 1.10),

�H $ � H , �� $ H H, � � $ H H . (1.108)

Basically, at temperatures T & M1, these �L = 1 and �L = 2 processes

have to be strong enough to keep N1 in equilibrium. Yet at temperature

T . M1, these processes have to be weak enough to allow N1 to generate

an asymmetry.

Figure E.5: �L = 2 scattering process.
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The Standard Model (SM) is incomplete. It doesn’t unify the electroweak and
strong nuclear force into one nor does it incorporate gravity. Further, it doesn’t ex-
plain why the higgs mass is what it is. This is important because the higgs mass is
the only dimensionful parameter in the SM. It receives large quadratic corrections
and unless fine-tuned its mass should be O(Mpl). Supersymmetry (SUSY) is a theory
which doubles the particle content of the standard model. Essentially, it assigns a
new boson (fermion) to every standard model fermion (boson) with the same quantum
numbers. Although, it was born as a loophole to the Coleman-Mandula theorem, it
was quickly realized that SUSY can solve the small higgs mass problem and it unifies
all the coupling constants at a high scale.

We will first take a quick detour into the statement and consequences of the
Coleman-Mandula theorem and then see how SUSY comes about as a loophole. Next,
we will study the SUSY algebra and the superspace formalism which allows us to eas-
ily derive SUSY invariant actions. This will help us in constructing the Minimally
Supersymmetric Standard Model (MSSM), introduce its particle content and see how
the problems of unification and hierarchy (low higgs mass) are solved in the context of
SUSY. Finally, we will briefly look at Supergravity (SUGRA) which arises by gauging
global SUSY and study the gravitino in this context. The treatment in this appendix
is adopted primarily from [194].

F.1 Coleman-Mandula & SUSY Algebra

Simply put, the Coleman-Mandula (CL) theorem states that any internal sym-
metry generator has to be a Lorentz scalar. More formally, consider the following
algebra,

[Pµ, P⌫ ] = 0

[Pµ, M⇢�] = i(⌘µ⇢P� � ⌘µ�P⇢)

[Mµ⌫ , M⇢�] = i(⌘⌫⇢Mµ� � ⌘⌫�Mµ⇢ � ⌘µ⇢M⌫� + ⌘µ�M⌫⇢) (F.1)
⇥

T a, T b
⇤

= iCabcT c

where Pµ is the momentum and Mµ⌫ is the angular momentum operator for the
Poincare group and T a is the generator of whatever internal (non-spacetime) symme-
try group the theory is charged under. Then the theorem states that T a are Lorentz
scalars, i.e.,

[T a, Pµ] = [T a, Mµ⌫ ] = 0 (F.2)

However, imagine a transformation that would exchange a fermion with a boson.
Heuristically, we could write this operator as

Q =
X

ij

Z

d3k d3k0 fij(k, k0)a†
Bj

(k0)aFi(k) (F.3)

where aFi(k) annihilates a fermion of type i with momentum k and a†
Bj

(k0) creates a
boson of type j with momentum k0. Because of the fermionic nature of this operator,
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we expect it would have anti-commutation relations. Thus, it would be an internal
symmetry generator that exchanges bosons and fermions in the theory but unlike
T a’s above it enjoys anti-commutation relations. Such a lie algebra is called graded
lie algebra. And with anti-commutation relations between Q’s, it can be shown that
CL can be evaded. Further, it has also been shown that this is the unique way out
of this no-go theorem.

Since SUSY assigns a fermion to every boson and vice-versa, it must have an
operator like Q which is the generator of this transformation. We have seen above
that it must be fermionic in nature, thus evading the no-go theorem. However, its
anti-commutator {Q, Q} must be bosonic object like T a and so must obey CL. Further
in fact, because the anti-commutator is the symmetric combination of Lorentz spinors
which are (say) (1/2, 0) representations of the Lorentz algebra, the anti-commutator
must be a Lorentz vector because (1/2, 0) ⌦ (1/2, 0) = 1. The only vector it can
be given CL is Pµ. We work with Majorana spinors and to have the spinor-vector
structure work out correctly, we posit the following relations,

{Qr, Q̄s} = 2�µ
rsPµ

[Qr, Pµ] = 0

[Qr, Mµ⌫ ] = i�µ⌫
rs Qs

(F.4)

where

Q̄r =
�

QT�0
�

r
(F.5)

The third relationship basically states that Qr transforms as a spinor in spacetime.
The second relationship is obvious because of the bosonic vector nature of the mo-
mentum operator and fermionic nature of Qr. These relationships for N = 1 SUSY
can be generalized by having N SUSY generators, Qi

r, where a �ij appears on the
right hand side in the first equation of (F.4). The SUSY generator Q acts on a boson
and converts it into a fermion,

Q |bi = |fi (F.6)

Applying PµPµ on both sides and noting that PµPµ commutes with Qr,

PµPµ (Q |bi) = PµPµ |fi = m2
f (F.7)

= Q (PµPµ |bi) = m2
b (F.8)

and thus the fermion and boson connected by a SUSY transformation have the same
mass. Immediately, we can infer that if SUSY is a symmetry of our universe, it must
be broken because we don’t see a boson with the same mass as an electron. The
SUSY algebra uniquely determines the hamiltonian (H = P0) of the system. Use
the first relation between the generators and multiply by �0 on both sides (sum over
repeat matrix indices assumed),

{Qr, Qt}�0
ts = 2�µ

tsPµ =) {Qr, Qt}(�02
)tr = 2Tr(�0�µ)Pµ (F.9)
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Next using �02 = 1 and Tr(�0�µ) = 4⌘0µ, we get

X

r

Q2
r = 4P0 =) H =

1

4

X

r

Q2
r (F.10)

and thus the hamiltonian is uniquely determined in terms of the SUSY generators.
Moreover, its positive definite for theories invariant under global SUSY. This fact
is significant for SUSY breaking - consider a vacuum state |⌦i of a SUSY invariant
theory,

h⌦| H |⌦i =
1

4

X

r

||Qr |⌦i ||2 � 0 (F.11)

Thus, if the vacuum is invariant under SUSY then energy of the ground state is
zero. On the other hand, if SUSY is spontaneously broken, that is, Qr |⌦i 6= 0
then, h⌦| H |⌦i 6= 0 and thus the order parameter for this symmetry breaking is the
vacuum energy, h⌦| H |⌦i. This is very di↵erent from gauge theories, where the order
parameter is typically a scalar field �, whose vacuum lies at h�i 6= 0.

F.2 Superfields

Once we have the relations between the SUSY and Poincare generators as above,
we intend to get at representations. To this end, we introduce the concept of Su-
perspace, which is described by spacetime variables xµ as well as the Grassmann
variables ✓↵, ✓̄↵̇. Thus a function in superspace is now a function of (x, ✓, ✓̄) and such
function are called Supefields. The Grassmann variables are like the Majorana SUSY
generators Q,

{✓↵, ✓�} = {✓̄↵̇, ✓̄�̇} = {✓↵, ✓̄↵̇} = 0 (F.12)

where ↵, ↵̇ = 1, 2 is the spinor index. Since we are working in the 2�component
notation, the algebra becomes,

{Q↵, Q̄↵̇} = 2�µ
↵↵̇Pµ, {Q↵, Q�} = {Q̄↵̇, Q̄�̇} = 0 (F.13)

It can then be shown that the following then is a representation of the algebra,

Pµ = i@µ

Q↵ = i



@

@✓↵
+ i�µ

↵↵̇✓̄
↵̇@µ

�

Q̄↵̇ = �i



@

@✓̄↵̇
+ i✓↵�µ

↵↵̇@µ

�

(F.14)

Q̄↵̇ = i



@

@✓̄↵̇
+ i�̄µ↵̇↵✓↵@µ

�

A function in superspace F (x, ✓, ✓̄), in general if a function of superspace coordinates
x, ✓ and its complex conjugate ✓̄. Using the anti-commutation property enjoyed by
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the grassmann coordinates ✓, ✓̄, we can expand F as

F (x, ✓, ✓̄) = f(x) + ✓⇢(x) + ✓̄�̄(x) + ✓2m(x) + ✓̄2n(x) + (✓�µ✓̄)vµ(x)

+✓2✓̄�̄(x) + ✓̄2✓ (x) + ✓2✓̄2d(x) (F.15)

Recall that there are two grassmannian coordinates ✓↵, ↵ = 1, 2 and its complex
conjugate. The 2-component notation used above is: ✓2 ⌘ ✓↵✓↵ = ✓↵✏↵�✓� = ✓2✓1✏21+
✓1✓2✏12 = ✓2✓1 � ✓1✓2 = 2✓2✓1. The functions f , m, n and d are complex scalars
while ⇢↵, �̄↵̇, �̄↵̇ and  ↵ are (Weyl) spinor fields. A superspace translation �S acts
on function F as (using the di↵erential representation of operators and generalizing
ordinary translations)

F (x, ✓, ✓̄)! ei(yµPµ+⌘Q+⌘̄Q̄)F (x, ✓, ✓̄)e�i(yµPµ+⌘Q+⌘̄Q̄) (F.16)

where yµ is an arbitrary 4�vector and ⌘, ⌘̄ are arbitrary (Weyl) spinor fields. Further,
it can also be shown that

�SF = �iyµPµF � i⌘QF � i⌘̄Q̄F (F.17)

As we see above, a general function of the superspace variables F is composed of com-
plex scalars/spinors and complex vectors/spinors. However, it has too many d.o.f.’s
to describe a single scalar/spinor and/or complex vector/spinor pair that would be
relevant for SUSY. This can be reduced by introducing some constraint on a function
� in superspace that would describe scalar/spinor fields which are connected by a
SUSY transformation. This constraint should be SUSY-invariant and to this end,
covariant derivatives D↵ and D̄↵̇ are introduced such that,

D↵�SF = �SD↵F (F.18)

Using the representation of the SUSY generators in Eqn. (F.14), it can be shown
that D↵ and D̄↵̇ are:

D↵ =
@

@✓↵
� i�µ

↵↵̇✓̄
↵̇@µ

D̄↵̇ = � @

@✓̄↵̇
+ i�µ↵̇↵✓↵@µ (F.19)

A SUSY invariant restrictive condition on a function � in superspace is then,

D̄↵̇ �(xµ, ✓, ✓̄) = 0 =) �(xµ, ✓, ✓̄) ⌘ �(xµ � i✓�µ✓̄, ✓) (F.20)

Thus, our function in superspace now only depends on one of the grassmann coor-
dinates and not its complex conjugate (in a sense we are restricting to holomorphic
functions) and so using Eqn. (F.15), all the terms containing ✓̄ drop out and so we
can write �,

�(y, ✓) = �(y) +
p

2✓↵ ↵(y) + ✓2F (y) (F.21)

Thus, our superfield now contains a complex scalar � and a spinor  and in addition
also contains another complex scalar F . We will see that F is only an auxiliary field

181



and thus � truly defines a scalar/spinor pair (supermultiplet) and such a field is called
a Chiral Superfield.

On the other hand, the vector supermultiplet describes a real vector field and a
spinor field. Just like the chiral superfield wad denoted by �, a vector superfield
is denoted by V , and the spinor partner by �(x) and to describe a real vector field
Aµ(x), we impose a reality condition,

V (x, ✓, ✓̄) = V †(x, ✓, ✓̄) (F.22)

V can then be expanded as follows:

V (x, ✓, ✓̄) = C(x) + i✓�(x)� i✓̄�̄(x) +
i

2
✓(x)2 [M(x) + iN(x)]

� i

2
✓̄(x)2 [M(x)� iN(x)] + ✓�µ✓̄Aµ(x) + ✓2✓̄↵̇



�↵̇(x) +
1

2
(�̄µ@µ�(x))↵̇

�

+✓̄2✓↵


�↵(x)� 1

2
(�µ@µ�̄(x))↵

�

� 1

2
✓2✓̄2



D(x) +
1

2
2C(x)

�

(F.23)

It turns out that by a gauge transformation (abelian or non-abelian) that a vector
field enjoys can eliminate all degrees of freedom except the gauge field Aµ(x), gaugino
field �(x) which is the superpartner of the gauge field and D(x) is the auxiliary field
like for a chiral superfield. It turns out these components can be captured by a chiral
superfield W↵,

W↵ = �1

4
D̄↵̇D̄

↵̇D̄↵V =) D̄�̇W↵ = 0 (F.24)

It turns out that W↵ can be expanded into component fields as below,

W↵ = �↵(y)�


��↵D(y) +
i

2
(�µ�̄⌫)�↵Fµ⌫(y)

�

✓� + i✓2�µ
↵↵̇@µ�̄

↵̇(y) (F.25)

F.2.1 Constructing SUSY Invariant Actions

We can construct a SUSY invariant action of the chiral superfield with any an-
alytic, holomorphic function W (�) of the chiral superfield, �. In general, the full
action for a SUSY invariant non-abelian gauge theory is (after integrating out the F
term),

S =

Z

d4x

(

Dµ�i⇤Dµ�i + i i�
µDµ ̄i �

�

�

�

�

@W

@�
(�)

�

�

�

�

2

�
✓

1

2

@2W

@�2
(�)  + h.c.

◆

+g
⇣

�i⇤DaT aj
i �j +

p
2�i⇤�aT aj

i  j +
p

2�̄a ̄iT aj
i �j

⌘

+

✓

�1

8
Fa

µ⌫Fµ⌫a � i

8
Fa

µ⌫F̃µ⌫a +
i

2
�a�µDµ�̄

a +
1

4
DaDa

◆�
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where F̃ is the dual of F given as

F̃a
µ⌫ =

1

2
✏µ⌫⇢�Fa⇢� (F.26)

T a are the generators of the non-abelian gauge group and g is the gauge coupling.
The fields �i and  i are in the (same) fundamental representation of the gauge group
whereas the gauginos �a are in the adjoint representation of the gauge group, like the
gauge bosons Aa

µ. That is,

Dµ�
a = @µ�

a + gCabcAb
µ�

c

Dµ�i = @µ�i � igAa
µT

aj
i �j (F.27)

Dµ i = @µ i � igAa
µT

aj
i  j

The auxiliary field Da is a lagrange multiplier and can be integrated out. The index i
denotes the number of di↵erent chiral superfields whereas a is the non-abelian gauge
index denoting the number of generators of the Lie algebra.

F.3 Minimally Supersymmetric Standard Model (MSSM)

The MSSM has twice the number of fields of the Standard Model (counted as
degrees of freedom before EWSB). For the quarks, there’s spin-0 squarks, the lep-
tons SUSY partner are scalar sleptons, the gauge bosons have spin-1/2 gauginos and
there’s one additional higgs field. The Standard Model Higgs is a linear combination
of scalar degrees of freedom of the two MSSM higgs doublets.

The quark and lepton superfields may be expanded in flavor space as

Q̂i =
�

Q̂1 , Q̂2 , Q̂3

 

Û c
i =

�

Û c , Ĉc , T̂ c
 

D̂c
i =

�

D̂c , Ŝc , B̂c
 

L̂i =
�

L̂1 , L̂2 , L̂3

 

Êc
i =

�

êc , µ̂c , ⌧̂ c
 

. (F.28)

The left-chiral superfields may be expanded in superspace as

Q̂1 =
�

q̃1 , q1

�

Q̂2 =
�

q̃2 , q2

�

Q̂3 =
�

q̃3 , q3

�

Û c =
�

ũc , uc
�

Ĉc =
�

c̃c , cc
�

T̂ c =
�

t̃c , tc
�

D̂c =
�

d̃c , dc
�

Ŝc =
�

s̃c , sc
�

B̂c =
�

b̃c , bc
�

L̂1 =
�

˜̀
1 , `1

�

L̂2 =
�

˜̀
2 , `2

�

L̂3 =
�

˜̀
3 , `3

�

êc =
�

ẽc , ec
�

µ̂c =
�

µ̃c , µc
�

⌧̂ c =
�

⌧̃ c , ⌧ c
�

(F.29)

and
Ĥu =

�

hu , h̃u

�

Ĥd =
�

hd , h̃d

� (F.30)

where the first entry is a complex scalar scalar field and the second is a left-chiral
Weyl spinor. In the two-component spinor notation, �↵ transforms in the (1/2, 0)
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representation of the Lorentz group while �†
↵̇ transforms in the (0, 1/2) representation.

Each of the spinors is left-chiral, including those denoted with a “c” superscript. The
three vector superfields are given by

ĝ = (g , g̃)
Ŵ = (W , W̃ )
B̂ = (B , B̃)

. (F.31)

The charge assignments under the SM gauge groups of the various fields is given
in Table F.1 below.

Field SU(3)C SU(2)L U(1)Y U(1)R U(1)B U(1)L

Q̂i 3 2 1/6 1 1/3 0
Û c

i 3̄ 1 �2/3 �1 �1/3 0
D̂c

i 3̄ 1 1/3 �1 �1/3 0
L̂i 1 2 �1/2 �1 0 1
Êc

i 1 1 1 1 0 �1
Ĥu 1 2 1/2 0 0 0
Ĥd 1 2 �1/2 0 0 0
ĝ 8 1 0 0 0 0
Ŵ 1 3 0 0 0 0
B̂ 1 1 0 0 0 0

Table F.1: The MSSM field content and charges.

The supersymmetric lagrangian is described by a superpotential which is an ana-
lytic, holomorphic function of fields. Using the Higgs fields only, we get the quadratic
potential,

W (2) = �µ Ĥu · Ĥd ⌘ �µ ✏ijĤ
i
u · Ĥj

d (F.32)

The parameter µ is the only dimensionful parameter in the MSSM. Its value should
be of the order of grand unification or Planck scale or some high scale where the
theory breaks down. It turns out that EW higgs vev is related to µ and thus it can’t
be very large. This apparent smallness of the dimensionful parameter is called the
µ-problem in SUSY.

At the cubic level, the superpotential has Yukawa couplings of the form,

W (3) = �dQ · H1D
c + �uQ · H2U

c + �eL · H1E
c (F.33)

After EWSB, the higgses acquire vevs and the Yukawa couplings are thus given by

md = ��d hH0
1 i , mu = �u hH0

2 i , me = ��e hH0
1 i (F.34)

In addition, there are following baryon and lepton violating terms that are possible
at the level of the superpotential,

L · L Ec, Q · L Dc, U cDcDc (F.35)
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The first two violate lepton number whereas the third one violates baryon number.
These are dangerous interactions and to avoid that a symmetry called R-parity is
imposed on the MSSM. The fields in the SM all have parity +1 (including both
the higgs doublets) and its �1 for the superpartners. In general, the R-parity of a
paprticle in the MSSM is given by R = (�1)3B+L+2S where B is the baryon number,
L the lepton number and S the spin of the particle. The origin of R-parity is in the
global continuous U(1) symmetry that exists in N = 1 SUSY called R-symmetry.
It basically arises whenever there is an internal symmetry group under which the
SUSY generators transform non-trivially. It turns out that Q↵ and Q̄↵̇ transform
under a U(1) sub-group called R-symmetry and they have opposite charges under
this symmetry.

F.4 Hierarchy Problem & Soft SUSY breaking

The Standard Model has one fundamental scalar particle - the higgs boson. Fun-
damental scalars su↵er from self-energy divergences which modify their mass quadrat-
ically as a function of the energy scale. Specifically, in the case of the higgs, the three
types of diagrams that contribute to its self-energy are shown in Fig. (F.1), thus
modifying its mass in a quadratic manner:

�M2
H / (⇤/MW )2

h

3
�

M2
W + M2

Z + M2
H

�

/4�
X

m2
f

i

(F.36)

Here ⇤ is the cut-o↵ of the theory (or equivalently the regularized version of the
momentum integrals), i.e., the energy scale to which we trust the theory. The higgs
mass has been recently measured to be ⇠ 125 GeV. Since ⇤ can be as high as the cut-
o↵ of the theory, i.e., the Planck scale, ⇤ ⇠MP ⇠ 1018GeV. Since M2

H = M2
0 +�M2

H ,
where M2

0H is the bare higgs mass, this means that the squared bare mass and the
self-energy corrections should cancel to 1 part in 1030! This is called the Hierarchy
Problem - why is the higgs mass so low in spite of the potentially large quadratic
divergences (there are still smaller logarithmic corrections)? That is, why is the SM
so fine-tuned? Alternatively, this is also called the naturalness problem where ’t Hooft
defines a theory as natural when sending its parameters to 0 enhances the symmetry
of the system. The SM isn’t natural because setting any of the masses doesn’t enhance
the symmetry of the theory.

But we want a light Higgs ( <∼ 1 TeV) for unitarity etc... reasons
We need thus to make: M 2

H |Physical = M 2
H|0 + �M 2

H + countreterm
And adjust this counterterm with a precision of 1030 (30 digits)!

This is the naturalness problem.

In a complete theory, no problem formally: we adjust the bare
MH and the counterterm which are infinite, to have the physical
finite mass. This is the case of the log divergence of me in QED.

However, we want to give a physical meaning to the cut–off � and
the logarithmic and quadratic divergences are of different nature.

In the Standard Model:
besides the fermions, there are also contributions to MH from the
massive gauge bosons and from the Higgs boson itself:

H

W,Z,H

H H

W,Z,H

W,Z,H

Total contributions of fermions and bosons in the SM at one–loop:

�M 2
H ∝ [3(M 2

W + M 2
Z + M 2

H)/4 −
X

m2
f ](�2/M 2

W )

We can adjust the unknown MH so that the quadratic divergence
disappears (would be a prediction for Higgs mass, MH ∼ 200 GeV).

However: does not work at two–loop level or at higher orders....

Summary: the problem of the quadratic divergences to MH is there.
There is no symmetry which protects MH in the SM.

22

SUSY introduces a beautiful and most compelling solution to the hierarchy prob-
lem. We’ve already seen that SUSY imposes that for every fermion in the spectrum
of the theory, there’s also a boson with equal mass and charges and vice versa. Be-
cause of this, every bosonic contribution to the quadratic divergence is countered by a
fermionic one (note the minus sign in Eqn. (F.36)). In fact, were as exact symmetry
at the weak scale, then the quadratic divergences would be exactly zero and we would
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3. Higgs boson self–energy

Fermionic contributions:

f

f̄

H H

−i�H(p2) = Nf

Z

d4k

(2⇡)4
(−1)Tr (−

i�f√
2
)

i

̸k − m
(−

i�f√
2
)

i

̸p+ ̸k − m

Usual calculation. Simpler: p2 = M 2
H = 0 (fermion heavy compared

to MH). Using a cut–off � for the integral on k2, one obtains:

�H(p2 = 0) = 4Nf

� �f√
2

�2 1

16⇡2

Z 1

0
dx

Z ⇤2

0
dy

y(−y + m2
f)

(y + m2
f)

2

After the trivial integral on x and the one on y, one gets:

�M 2
H = = Nf

�2
f

8⇡2

⇥

− �2 + 6m2
f log

�

mf
− 2m2

f

⇤

+ O(1/�2)

We have thus a quadratic divergence, �M 2
H ∼ �2.

Divergence is independent of MH, and does not disappear if MH=0:
The choice MH=0 does not increase the symmetry of LSM.

Here, the cut–off does not break any symmetry and the problem is
not solved with dimensional regularization (though we have only
poles in 1/✏ and the quadratic divergence is not apparent).

If we fix the cut–off � to MGUT or MP : ⇒ MH ∼ 1014 to 1017 GeV!
The Higgs boson mass prefers to be close to the very high scale:

This is the hierarchy problem.
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Figure F.1: Diagrams contributing to 1-loop corrections of the Higgs Mass in SM.

be left only with tamer (but expected) logarithmic divergences.

If we take cancellation of quadratic divergences to be the physical motivation
behind SUSY (and not as a loophole to Coleman-Mandula), then it turns out that
one can introduce more terms, modifying the MSSM. These terms are called soft
SUSY breaking terms, which although explicitly break SUSY, still keep cancellation
of quadratic divergences intact. In this sense, they break SUSY ‘softly’. There are
three type of soft SUSY terms:

• Scalar mass terms introduce a gap between Re(�) and Im(�) where � is the
complex scalar,

�LSB = (�m2 + �m02)(Re �)2 + (�m2 � �m02)(Im �)2 (F.37)

• A-terms are cubic analytic functions (real part), if these are allowed by gauge
symmetry,

�LSB = �A
�

�3 + �⇤3
�

(F.38)

• Gaugino mass terms,

�LSB = �1

2
M��̄� (F.39)

Soft SUSY breaking terms can in general have complex coe�cients and together with
R-parity violation play a pivotal role in leptogenesis studied in this thesis.

F.5 Supergravity

Consider finite SUSY transformations with parameters ✏1(x) and ✏2(x), which are
Majorana spinors (and at the classical level grassmann variables). Then, the following
can be shown using (F.4),

[✏̄1(x)Q, ✏̄1(x)Q] = 2✏̄1(x)�µ✏̄2(x)Pµ (F.40)

Note that since the parameters ✏1(x) and ✏2(x) are arbitrary, the RHS amounts to
a spacetime dependent translation or a general coordinate transformation. So, if we
try to make SUSY local, we can expect a theory invariant under local coordinate
transformations, or in other Einstein’s general relativity follows. We get a particle in
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the spectrum that is spin 2, i.e., the graviton and also a spin 3/2 particle, called the
gravitino. To see this, consider the Wess-Zumino model,

S0 =

Z

d4x



@µ�⇤@µ�+
i

2
 ̄�µ@µ 

�

(F.41)

where � is a complex scalar field and  is a Majorana fermion. Writing � = (A +
iB)/
p

2, this lagrangian is invariant under global SUSY transformation,

�A = ✏̄ , �B = i✏̄�5 

� r = �i
�

�µ
⇥

@µ(A + i�5B)
⇤

✏
�

r
(F.42)

The mass dimension of the parameter ✏r is �1/2. Under a local spacetime dependent
transformation ✏r, the action is no longer invariant,

�S0 =

Z

d4x(@µ✏̄) �
⇢�µ

⇥

@⇢(A + i�5B)
⇤

 (F.43)

Just like the electromagnetic vector field arises by starting with the globally invariant
Dirac lagrangian and imposing local invariance, we demand here the existence of a
new field that carries both vector and spinor indices,  µr, which has mass dimension
of 3/2 (and lorentz spin of 3/2 as well) that introduces a new term in the action that
counteracts Eqn. (F.43) as follows,

S1 = �
2

Z

d4x  ̄µ�
⇢�µ

⇥

@⇢(A + i�5B)
⇤

 (F.44)

and we impose that under the SUSY transformation,  µr changes as follows,

� µr =
2


@µ✏r (F.45)

This cancels the local SUSY variation in Eqn. (F.44) but now S0 + S1 is no longer
invariant under local SUSY. S1 itself transforms under ✏r(x) as

�S1 = i

Z

d4x  ̄µ(x)�⌫✏(x)



@µA@⌫A� 1

2
gµ⌫@⇢A@⇢A + · · ·

�

(F.46)

To make this combined action invariant again, first note that the term inside the
square bracket is the energy momentum tensor of the A field. If the space-time
metric is gµ⌫ , then the energy-momentum tensor Tµ⌫ is given by the variation of the
action with respect to the metric,

�S =
1

2

Z

d4x �gµ⌫T µ⌫ (F.47)

Thus, we introduce the local metric field gµ⌫ which under SUSY transforms as

�gµ⌫(x) = �i
�

 ̄µ�⌫✏(x) +  ̄⌫�µ✏(x)
�

(F.48)
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Therefore, under local SUSY transformation, the spin-2 graviton field gµ⌫ transforms
into the spin-3/2 field  µr, which is called the gravitino.  which has mass dimension
of 1 and its nothing but the fundamental reduced Planck scale, Mp/

p
8⇡. We can

continue this procedure and it can be shown that this infinite series of the graviton and
gravitino can be summed up to the Ricci scalar plus a kinetic term for the gravitino,

S =

Z

d4x
p
�g



� 1

22
R� i

2
✏µ⌫⇢� ̄µ�

5�⌫@⇢ �

�

(F.49)

and this action of Einstein gravity plus its superpartner is fually invariant under
local SUSY. The second term for the gravitino is called the Schwinger-Rarita term.
This can be generalized to include matter and the gravitino-matter interactions in the
MSSM can thus be constructed. Being the superpartner of the graviton, the gravitino
is a singlet under all SM gauge groups.
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APPENDIX G

EFFECTIVE FIELD THEORY
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It appears a basic fact of nature that phenomenon occurring at widely di↵erent
energy scales don’t impact each other much. There is a separation of scales where
for example, we don’t quite need to know what goes inside a nucleus to describe a
ball (made up of atoms) in projectile motion. The knowledge of QCD would be quite
irrelevant for physics described e�ciently and accurately by Newton’s laws. In other
words, the corrections would be quite small. If that were not the case, we would
need a full theory valid all the way up to the Planck scale to make any meaningful
predictions. This simple fact is captured in quantum field theory by the idea of an
E↵ective Field Theory (EFT). An EFT is a quantum field theory with the same or
less number of degrees of freedom than the original theory and its non-renormalizable,
valid only up to a certain heavy scale M which is greater than all other scales in the
original problem. It is typically used in low-energy calculations when the e↵ect of
the heavy degree of freedom, not being important decouples leading to new e↵ective
interactions between the remaining low energy degrees of freedom.

To quantitatively understand how an EFT calculation works, consider [195] a
renormalizable theory with a heavy scalar h with mass M and a light scalar l with
mass m (the treatment here is adapted from the EFT review by C. Burgess) with
a lagrangian L(h, l). We are only interested in processes involving the low energy
modes of l, which have energies far less than the scale M . Recall that the e↵ective
action �['] is the generator of the 1PI connected diagrams. It is calculated as the
Legendre transform of the generator of connected diagrams, W [J ] in the presence of
a source J that couples linearly to the field, �,

exp{iW [J ]} =

Z

D� exp

⇢

i

Z

d4x [L[�] + J �]

�

(G.1)

The mean field ' is defined as the quantum expectation value of the field � in the
presence of J ,

' =
�W

�J = h�(x)iJ (G.2)

Then,

�['] = W [J (')]�
Z

d4x 'J =) ��[']

�'
+ J = 0. (G.3)

In the absence of a source, J = 0, the e↵ective action, �['] is minimized by the
true quantum vacuum ' of the theory. However, solving for �['] requires (G.2)
be inverted to solve for J in terms of ', which is possible in principle but maybe
practically impossible. It turns out not to be needed. Writing the field � = �̂ + ',
we note that

exp{i�[']} =

Z

D�̂ exp

⇢

i

Z

d4x
h

L('+ �̂) + J �̂
i

�

=

Z

D�̂ exp

⇢

i

Z

d4x



L('+ �̂)� ��[']

�'
�̂

��

(G.4)
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This is an implicit equation for �['] and it can be immediately solved perturbatively
in terms of ~ or equivalently the loop expansion,

�['] = S['] +
i

2
log det



�2S

��(x)��(y)

�

�='

+ · · · (G.5)

where S['] =
R

d4x L(') is simply the classical action. Thus, to the lowest order, the
e↵ective action is the same as the classical action evaluated at the mean field value
'.

In the case of a theory with two degrees of freedom, lighter l and heavier h, the
EFT would consist of an e↵ective action �[l] made up only of low-energy modes of
l. �[l] would have tree level and loop pieces and we restrict our attention here only
to the tree level low energy e↵ective action. We begin with the full e↵ective action
�[l, h] with two sources j and J which excite all the modes of the lighter and the
heavier particles respectively. It can be explicitly derived using Eqn. (G.5). Now, if
we don’t want to excite the heavier modes h and the high energy modes of l, then
we simply set J = 0 and j(E ⇠ M) = 0. Using Eqns. (G.3) and (G.5) thus, the
tree-level low-energy e↵ective action �t[l] is given by solving the classical equations of
motion for h and any high energy modes of l and putting them back into the action.
This process is called integrating out the high energy modes. We thus get an action
that only contains the low energy degree of freedom, l and the mass scale M , which
would inevitably appear in the denominator. Such an action �[l] then defines an EFT
with its validity only up to scale M or the lowest high energy modes integrated out.
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