
Stochastic Simulation Framework for a Data Mule Network in the Amazon Delta

by

Rachit Agarwal

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2015 by the
Graduate Supervisory Committee:

Andrea Richa, Chair

Partha Dasgupta
Thienne Johnson

ARIZONA STATE UNIVERSITY

August 2015

 i

ABSTRACT

This report investigates the improvement in the transmission throughput, when fountain

codes are used in opportunistic data routing, for a proposed delay tolerant network to

connect remote and isolated communities in the Amazon region in Brazil, to the main

city of that area. To extend healthcare facilities to the remote and isolated communities,

on the banks of river Amazon in Brazil, the network [7] utilizes regularly schedules boats

as data mules to carry data from one city to other.

Frequent thunder and rain storms, given state of infrastructure and harsh geographical

terrain; all contribute to increase in chances of massages not getting delivered to intended

destination. These regions have access to medical facilities only through sporadic visits

from medical team from the main city in the region, Belem. The proposed network uses

records for routine clinical examinations such as ultrasounds on pregnant women could

be sent to the doctors in Belem for evaluation.

 However, due to the lack of modern communication infrastructure in these communities

and unpredictable boat schedules due to delays and breakdowns, as well as high

transmission failures due to the harsh environment in the region, mandate the design of

robust delay-tolerant routing algorithms. The work presented here incorporates the

unpredictability of the Amazon riverine scenario into the simulation model - accounting

for boat mechanical failure in boats leading to delays/breakdowns, possible decrease in

transmission speed due to rain and individual packet losses.

 ii

Extensive simulation results are presented, to evaluate the proposed approach and to

verify that the proposed solution [7] could be used as a viable mode of communication,

given the lack of available options in the region. While the simulation results are focused

on remote healthcare applications in the Brazilian Amazon, we envision that our

approach may also be used for other remote applications, such as distance education, and

other similar scenarios.

 iii

 ACKNOWLEDGMENTS

First and foremost I wish to thank my advisor, Dr. Andrea Richa, for giving me this great

opportunity to work with her. She has been supportive, generous with her time and

patient with me, since the days I began working on my thesis project. Additionally, I

would like to thank Dr. Alon Efrat and Dr. Thienne Johnson for their interest and help in

my work. I am thankful to Dr. Partha Dasgupta for his willingness to help in any way

necessary.

Every result described in this thesis was accomplished with the help and support of

Mengxue Liu - fellow lab mate and collaborator. She and I worked together on several

different phases of the project.

Finally, I would like to acknowledge my friend Aveesha Sharma, I owe a debt of

gratitude to her for her unconditional help and support during my time here.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

LIST OF ALGORITHMS .. viii

CHAPTER

1 INTRODUCTION .. 1

1.1 Main Contributions. ... 3

2 PRELIMINARIES ... 4

2.1 CoDPON .. 4

2.2 DTN and Data Mule .. 5

2.3 Robust Routing Protocols .. 6

2.3.1 Epidemic Routing ………………………………………………………6

 2.3.2 Opportunistic Routing .. 7

 2.3.3 Robust Routing…………………………………………………………8

 2.3.3.1 Fountain Codes ... 8

 2.3.3.2 Routing with Acknowledgements and Priority Partitions 8

2.4 Fountain Codes .. 8

2.5 Other Related Work ... 11

3 THE ONE SIMULATOR.................. ... 12

3.1 Node Capabilities ... 13

3.2 Mobility Modeling ... 14

 v

CHAPTER Page

 3.2.1 Map Based Mobility Modeling .. 15

3.3 Routing ... 16

3.4 Stochastic Process .. 18

4 EXPERIMENTS 22

4.1 Transmission Affected by Rain ... 26

4.2 Transmission Loss ... 27

4.3 Break Down and Delay .. 30

5 CONCLUSION .. 33

5.1 Future Scope .. 33

 5.1.1 Routing with Acknowledgements .. 34

REFERENCES.. 36

APPENDIX

A CODE SNIPPETS ... 39

 vi

LIST OF TABLES

Table Page

 1. Fixed Simulation Parameters. ………………………………………………….24

2. Variable Simulation Parameters. ... 25

3. Parameters Used in Simulations. ... 26

 vii

LIST OF FIGURES

Figure Page

1. Marajo-Archipelago Map and Boat Routes .. 4

2. Fountain Codes Data Generation .. 10

3. A Snapshot Of Pear Base Stations Holding Stack of Data Packets and Boats

 Moving Along the River Stream, Transferring Data from One PBS to Other,

 Till the Time Data Reaches the Final Destination .. 14

4. A Snapshot of Map Incorporated in the Simulator, Showing the River Path,

 Placement of Pear Base Stations and Initial Positioning of Boats 16

5. One Simulator, Representing Boat in Marajo Archipelago, Located in the State

 of Para, Brazil .. 22

6. Percentage of Files Successfully Received at Final Destination, for Different

 Number of Generated Packets with Varying Transmission Loss Probability 26

 7. Number of Files Successfully Received at Final Destination, for Different

 Number of Generated Packets with Varying Transmission Loss Probability 29

8. Percentage of Files Successfully Received at Final Destination, for Different

 Number of Generated Packets with Varying Transmission Loss Probability and

 Boats Being Delayed and Broken ... 31

9. Number of Files Successfully Received at Final Destination, for Different

 Number of Generated Packets with Varying Transmission Loss Probability and

 Boats Being Delayed and Broken .. 32

 viii

ALGORITHMS

 Page

1. The Opportunistic Routing Protocol Implementation. ... 17

2. The Stochastic Process Implementing Transmission Error 19

3. The Stochastic Process Implementing Reduction in Transmission Speed, Given ..

 Harsh/Rainy Weather Conditions. .. 19

4. Boat Mechanical Failure Leading to Delay or Hardware Breakdown 20

5. Routing Protocol with Acknowledgements .. 34

 1

CHAPTER 1

INTRODUCTION

For the people residing on along the banks of the Amazon River and its tributaries in

Brazil, boats on river are the only mean to commute. Thus the boats provide an

alternative way to set up an affordable communication channel to the outside world,

given the lack of communication infrastructure in these areas. Thus boats can be used as

data mules to carry messages, using store and forward mechanism, to transmit data from

its origin to the final destination. Considering no strict requirements on delay, and if

communications can bear disconnections, we can build a collaborative network and a

data collection system to mitigate the telecommunication infrastructure problems. A

prototype [6], [7] is under construction at the Laboratory for Research on Alternative

Technologies Related to the Amazon (PETALA), at University of Amazonia (Unama),

Brazil, in partnership with the University of Arizona and Arizona State University, USA.

Mobile Ubiquitous LAN Extension (Data Mule) refers to vehicles moving between

remote areas that effectively create data communication links [22]. These vehicles

usually carry a computer with a storage device and a limited telecommunication module

(usually Wi-Fi). Delay-Tolerant Network (DTN) architecture [5] provides a common

method for interconnecting heterogeneous gateways or proxies that employ store-and-

forward message routing in order to overcome communication disruptions. Data Mule

and DTN technologies are both tolerant to disconnections in the network and are often

complementary.

 2

They open doors to integrate hundreds of applications that were not possible before,

mostly due to the high costs, or even infeasibility, of implementing a physical networked

infrastructure in some scenarios.

Located in the Amazon region in northern Brazil, the Marajo archipelago, which occupies

a vast area of 104,142 km2, is an example of a scenario where implementing a networked

infrastructure, if indeed feasible, would impose very high costs that would not scale with

the scarcely distributed population. Only 43% of the entire archipelago’s population of

487, 010 inhabitants lives in urban areas according to the last Brazilian census [11]. Boats

are by far the main method of transportation in the region since there are no bridges

connecting the islands to the mainland, and some cities are even completely built on

water. In these places, socio- infrastructure problems abound, especially health related

problems, as there are few physicians available in the remote communities.

Most medical care in the region is done through sporadic government programs, which

involve the displacement of a medical team from the main city in the region, Belem, to

serve the remote population of the Marajo archipelago, especially in the outlying areas.

An alternative would be to have local nurses or technicians perform routine clinical

examinations, such as ultrasounds on pregnant women, and have the examination records

sent to the doctors in Belem for evaluation. However, due to the lack of modern

communication infrastructure in these communities — e.g. no cellular networks and no

Internet connection — and of fast river transportation, one must fully utilize the regular

ferryboats, with a predefined time schedule of routes and stops at the villages, and

potentially also some of the local fisherman boats, as data mule nodes for timely delivery

 3

of healthcare data records (e.g. ultrasound videos, electrocardiogram records) to

physicians in the city for remote analysis. Unpredictable boat delays and breakdowns, as

well as high transmission failures due to the harsh environment in the region, mandate the

design of robust delay- tolerant routing algorithms. The proposed solution incorporates

fountain codes into an opportunistic algorithm, in order to significantly enhance the

robustness/reliability of the routing scheme while incurring just a linear overhead on the

number of packets circulating in the network (rather than the exponential number of

packets incurred by epidemic routing). Fountain codes have been used in the literature to

improve the reliability of many other systems, e.g. [3], [16], [17], [20], [23].

1.1 Main Contributions

The main contribution of this thesis was to incorporate the unpredictability of the

Amazon riverine scenario as a stochastic framework for into our simulation model, by

extending the functionality of the ONE simulator (as explained in Chapter 3). Therefore,

various stochastic algorithms related to boat delays/breakdowns, to possible decrease in

transmission speed due to rain and individual packet losses have been included as

modules into the simulator. We present extensive simulations results to evaluate our

proposed delay tolerant network in such an unpredictable scenario, verifying that the

proposed solution could be used as a viable mode of communication, in the region.

 4

CHAPTER 2

PRELIMINARIES

2.1 CoDPON

CoDPON stands for Continuous Displacement Plan Oriented network, which derives

from air traffic control systems. There are two basic types of nodes in a CoDPON

network model: boats and Peer Base Station (PBS). Boats can be seen as data mules since

they can carry a certain amount of data. Using CoDPON we try to model boats and Peer

Base Stations (PBS) on river Amazon in Marajo-archipelago [7], [8]. Data originating at

different PBSs is transferred, to final destination, using boats as data mules. Boats carry

data in form of small data packets while moving through a predefined path, called as

Displacement Plan (DP). When a boat comes in range of another boat or a PBS, a boat

form a connection, and start transferring data based on opportunistic routing mechanism.

Figure 1 presents a picture from Amazon River where boats and PBSs are deployed.

Figure 1: Marajo-Archipelago Map And Boat Routes

 5

2.2 DTN And Data Mule

Data mule is defined as a vehicle that physically carries a computer with storage, between

the remote locations having limited connectivity. Thus data mule serves as a

communication link between these terminal points and data is automatically transferred

between a data mule and a terminal point, once a mule reached a terminal. On the other

hand a delay-tolerant network (DTN) is the underling network architecture, employing

data mules and different gateways or terminal points [7]. The data hops from one

terminal to another, using store and forward mechanism, before reaching the final

destination. Despite the long delays involved in receiving the data, large bandwidths are

possible by deploying large memory disks both on data mules and terminal points.

Data mules offer an inexpensive means of data connectivity and thus are prominently

used to set up communication link between remote areas. A computer with a disk and

antennae is mounted on a bus, and as bus stops at different villages on its route data can

be uploaded or downloaded, providing connectivity between the villages on the bus route.

Sensor networks [4, 12, 24] were the first to employ DTN for ground communication.

2.3 Robust Routing Protocols

In the Amazon delta, boats are very often delayed and break down. This significantly

affects their displacement plan and connections with other boats and PBSs. Moreover,

due to challenging environmental conditions in the Amazon delta, wireless

communication is often disrupted or slowed down significantly due to rain and mist, as

well as the strong current and tidal waves resulting from the dense vegetation [1]. Hence,

the data packet routing paths, resulting from a general max flow algorithm analysis,

 6

might no longer be feasible under such an unpredictable environment. Hence, one needs

to consider alternative approach that would enable the system to be more robust to

frequent changes in the boats displacement plans and any loss in data transmission that

may occur.

2.3.1 Epidemic Routing

On one side of the spectrum would be to utilize epidemic routing [25] as the underlying

routing mechanism. In epidemic routing, every packet of data is replicated and forwarded

at every connection (boat to boat or between boat and PBS). In a system without any

constraints on the capacity of data transmissions, epidemic routing would guarantee

fastest delivery times for every data packet, since the many replicas of a data packet

explore all the possible delivery paths for the given packet.

Given the very high level of replication, epidemic routing is also very robust in capacity

unconstrained systems, since the chance that at least one of the replicas make it to one of

the destination PBSs is high. The problems with epidemic routing appear when there are

limitations on the capacity of the network (i.e., on how much total data the network can

sustain from source to destination nodes), since epidemic routing increases the volume of

traffic in the network exponentially on the number of connections. This phenomenon has

already been verified for the CoDPON network [6], [7].

2.3.2 Opportunistic Routing

On the other side of the spectrum is opportunistic routing, which never replicates a data

packet, and which forwards the single original copy of a data packet during a connection

if and only if the data packet could potentially get closer to its destination. More

 7

specifically, opportunistic routing translates to our scenario through the following rule: a

boat A will forward a data packet to a boat B if and only if B has a PBS still to be visited

in its displacement plan that is closer to Belem than those still to be visited in the

displacement plan of A (for convenience, we assume that the displacement plan of a PBS

contains only the PBS itself). A boat A may also forward a data packet to a PBS P, when

there is another boat B that will stop by PBS P in the future and whose displacement plan

will get the packet closer to Belem than the displacement plan of A.

As opportunistic routing do not replicate data, there are no issues related to memory

overflow. But at the same time, no replication makes this routing protocol vulnerable to

data loss occurring in the network. As can been seen in Figure 5 and Figure 8

(simulations results presented later in the report for 133 no FC data packets), without

replication, percentage of files successfully reaching the final destination reduces below

5%, even with a small transmission loss probability.

2.3.3 Robust Routing

2.3.3.1 Fountain Codes

We propose to incorporate the use of fountain codes (see Section Chapter 2.4) into our

opportunistic algorithm, in order to significantly enhance the robustness/reliability of the

routing scheme while incurring just a linear overhead on the number of packets

circulating in the network (rather than the exponential number of packets incurred by

epidemic routing). Our simulations results in chapter 4 show that fountain codes can

dramatically increase the performance of opportunistic routing under boat and packet

transmission failures, keeping the successful delivery rate of the generated files at the

 8

remote communities close to 100% even at high boat delay/breakdown and packet loss

probabilities. Fountain codes have been used in the literature to improve the reliability of

many other systems, e.g. [3], [16], [17], [20], [23].

2.3.3.1 Routing With Acknowledgements And Priority Partitions

Some other porches can incorporate acknowledgements or assign priority to partitioned

packets, along with the fountain codes, to make opportunistic routing more robust.

Especially in case of mechanical failure of a boat/data mule may lose all its data packets;

in such a scenario a simple replication, using fountain code, may not be enough to ensure

delivery of data to destination.

2.4 Fountain Codes

The original CoDPON model and standard routing algorithms do not handle the situation

where packets can be lost during the transmission. Fountain codes approaches are often

used to tackle the challenge of packet loss and file recovery. Fountain codes are sparse-

graph codes for channels with erasures. Applications arise in the Internet, where files are

partitioned into multiple small packets and each packet is either successfully transferred

or not received at its destination node.

Instead of simply partitioning a file into some number K of packets, fountain codes

generate a total of N>K packets using random functions of the whole file. Once any N'

packets are received successfully, where N' is slightly greater than the original number of

packets K, but smaller than N, the whole file can be recovered. In the fountain code

solution, the server sends out a stream of distinct but multiplexed data, called packets that

can constitute a message, when put together. The server will transmit these packets

 9

whenever there are any clients listening in on the session. A client accepts multiplexed

packets from the channel until it obtains exactly N’ packets. In this fountain code

solution, the data can be reconstructed regardless of which multiplexed packets the client

obtains. Therefore, once N’ multiplexed packets have been received the client can

disconnect from the channel. We assume that in this fountain code solution that there is

very little processing required by the server to produce the multiplexed packets and by

the clients to recover the original data from N’ received packets.

Hence fountain codes allow for some of the packets to be dropped without compromising

the integrity of a file. In [13], three basic fountain code approaches are discussed. The

random linear fountain code generates subsets of random K bits and tries to recover the

original file if sufficiently enough packets are received. The number of packets required

to have probability 1-δ of success is K+log2(1/δ). Another approach is given by the LT

codes proposed in [2], where an encoder is used based on a degree distribution that

defines a graph connecting encoded packets to source packets, and a respective decoder is

later used for recovering the original file. The LT codes retain the good performance of

the random linear fountain code and also reduce the encoding and decoding complexities.

A third approach, called Raptor codes [19], concatenates a weakened LT code with an

outer code patching the gaps in the LT code, achieving linear time encoding and

decoding. Other fountain code approaches that involve unequal error protection (UEP)

are discussed in [4], [16]. With UEP, different packets may have different weights and

the redundancies are of different levels, so that more important packets have higher

probability of being delivered.

 10

Figure 2: Fountain Codes Data Generation.

We metaphorically describe the stream of multiplexed/encoded packets produced by the

server (PBS) in this idealized solution as a fountain. The fountain has properties similar

to a fountain of water for quenching thirst: drinking a glass of water, irrespective of the

particular drops that fill the glass, quenches one's thirst.

2.5 Other Related Work

Following the success of DTN in terrestrial applications and owing to the low operating

cost, soon DTN became a popular choice to connect remote communities like Daknet

[19]. In another application, DTN were used to connect remote rural villages in India, the

project name MotoPost [18]. The concept was developed to address the communication

and information access needs of the villages [7].

 11

Merugu, Ammar and Zegura [21] have considered a routing problem where nodes are

moving and carrying information, and the path between nodes might appear or disappear

at certain times, making traditional mobile ad hoc routing protocols unusable. In the

paper, they proposed a space and time routing framework, constructed a space-time

routing table, which can choose the next hop node from the current and future neighbors

using both arrival time and destination to calculate the next node, aiming at minimizing

the delay time for transferring the information from source to destination.

In [2], the authors proposed a routing algorithm that aims at computing shortest routes

based on a stochastic model of real-life bus traces in an urban network. They use buses as

data carriers to deliver timely data to its final destination, tackling quasi-deterministic

mobility scenarios. Their optimal routing algorithm outperforms other approaches that

aim at minimizing the expected traversal time or at maximizing the delivery probability

in the bus network. They do not consider direct data transmission between data carriers

(buses).

 12

CHAPTER 3

THE ONE SIMULATOR

ONE is an agent-based discrete event simulation engine, which updates a number of

modules that implement the main simulation functions at each simulation step. The

detailed description and source code can be found at [26] and the ONE simulator project

page [27]. The main functions of the ONE simulator are the modeling of node

movement, inter-node contacts, routing and message handling. Visualization, reports and

post processing tools are made use of for result collection and analysis.

Movement models implement node movement. These are either synthetic models or

existing movement traces. Connectivity between the nodes is based on their location,

communication range and the bit-rate. Routing modules that decide which messages to

forward over existing contacts implement the routing function. Finally, the messages

themselves are generated through event generators. The messages are always unicast,

having a single source and destination host inside the simulation world.

Report modules generate reports during the simulation run. The simulation results are

collected primarily through these reports. Report modules receive events (e.g., message

or connectivity events) from the simulation engine and generate results based on them.

The results generated may be logs of events that are then further processed by the

external post-processing tools, or they may be aggregate statistics calculated in the

simulator. Secondarily, the graphical user interface (GUI) displays a visualization of the

simulation state showing the locations, active contacts and messages carried by the nodes.

 13

3.1 Node Capabilities

The basic agents in the simulator are called nodes. A node models a mobile endpoint

capable of acting as a store-carry-forward router (e.g., in our case boats and pear base

stations with the required hardware). Groups of nodes in a simulation world are used to

build simulation scenarios. Each group is configured with different capabilities and hence

has a set of basic capabilities that are modeled.

These are radio interface, persistent storage, movement, energy consumption and

message routing. Node capabilities that involve only simple modeling, such as such as

the radio interface and persistent storage, are configured through parameterization (e.g.,

communication range, bitrate, peer scanning interval and storage capacity). Specialized

modules that implement a particular behavior for a capability (e.g., different mobility

models) are used to configure more complex capabilities, such as movement and routing.

The list of corresponding parameter values, for our simulation model, can be find in table

I and in table II - present in next chapter.

Modules in each node have access to the node’s basic simulation parameters and state,

including the position, current movement path, and current neighbors. This allows

implementing, e.g., geographic routing and other context-specific algorithms. Also,

modules can make any of their parameters available for other modules in the same node

through an inter module communication bus.

Therefore, the behavior of a movement module can be changed, depending on the

router’s module’s state or a router module can adjust the radio parameters based on the

node inter contact times. The focus of the simulator is on modeling the behavior of store

 14

carry-forward networking. Figure 3 shows different boats and PBS represented as nodes,

with capabilities of holding and transmitting data.

Figure 3: A Snapshot Of Pear Base Stations Holding Stack Of Data Packets And Boats

Moving Along The River Stream, Transferring Data From One PBS To Other Till The

Time Data Reaches The Final Destination.

3.2 Mobility Modeling

Mobility models are used to implement node movement capabilities. Mobility models

define the algorithms and rules that generate the node movement paths. Here we follow

map-constrained movement, where every boat has a predefined path, passing through

different PBSs. Similarly PBSs are placed on fixed coordinates with zero movement

capabilities, thus acting as fixed nodes.

For the purpose of refining the real-world mobility, map-based mobility constrains node

 15

movement to predefined paths and routes derived from real map data. Also, the simulator

includes a framework for creating movement models as well as interfaces for loading

external movement data. Using the interface we uploaded the Amazon River path,

flowing across the Brazil. Also the data provided from CoDPON project has been used to

place PBSs along with mapping out the boat movement along the river.

3.2.1 Map-Based Mobility

To constrain the node movement to paths defined in map data, Map-based movement

models are employed. The simulator contains the map data of the Amazon River in Brazil

(boats and pear base stations) that the map-based movement models can use. Such data is

typically converted from real-world map data or created manually using Geographic

Information System (GIS) programs such as OpenJUMP.

In the simplest map-based model, boats/data mule nodes move from PBS to PBS always

following the paths defined by the map data. Resultant is a random walk of the network

defined by the map data and thus may not be a very accurate approximation of real

human mobility. Thus the nodes have pre-determined routes that they follow, along with

stopping at the PBSs on their path. Also, we numbered PBSs, from left to right, in

increasing numeric order i.e. from 1 to 13 while boats are named randomly. The Figure 4

shows the snapshot of the map of Amazon River, pear base stations and the initial

placements of boats along the river.

 16

Figure 4: A Snapshot Of Map Incorporated In The Simulator, Showing The River Path,

Placement Of Pear Base Stations And Initial Positioning Of Boats.

3.3 Routing

The message routing capability is implemented similar to the movement capability. The

simulator includes a framework for defining the algorithms and rules used in routing

protocols. To evaluate new routing protocols in the ONE simulator, a new routing

module needs to be created for the respective protocol. All routing modules inherit basic

functionality, such as simple buffer management and callbacks for various message-

related events, from the MessageRouter module. The simulator engine for all kinds of

events invokes these callbacks, e.g., when a new message is created or a message is sent

to the node. A router module handles these events and also defines actions to be carried

out at every time step and the behavior when a new node comes into or leaves the nodes

radio range.

 17

The basic functionality for all these events is simply re-used for new routing protocols by

extending the ActiveRouter module. This module provides functions for checking if any

of the currently buffered messages are destined to a neighboring node, offering sets of

messages to neighboring nodes, and dealing with successfully transferred and aborted

message transfers, and it implements FIFO and random-ordering buffer management.

For our model we implemented opportunistic routing protocol, a node transmits a

message as soon as its gets an opportunity to push message closer to the destination PBS.

The following algorithm is implemented to incorporate opportunistic routing protocol:

START

IF transmitting NODE is a PBS and receiving NODE is a BOAT

Transfer data packets from the PBS to the BOAT, only if BOAT’s itinerary

has PBSs numbered (name/label) higher than the number (name/label)

transmitting PBS.

IF transmitting NODE is a BOAT and receiving NODE is a PBS

Transfer data packets from the BOAT to the PBS, only if the receiving PBS

has largest numeric label among the PBSs in the BOAT’s itinerary.

IF transmitting NODE is a BOAT and receiving NODE is also a BOAT

COMPARE the largest PBS numeric label present in transmitter BOAT

itinerary with the largest PBS numeric label present in the receiver BOAT

 18

itinerary and transfer data only if the receivers BOAT’s PBS label has

higher/greater value.

END

Algorithm 1: The Opportunistic Routing Protocol Implementation

3.4 Stochastic Process

We implemented various probabilistic models, as an extension to the existing movement

model, to incorporate various real world scenarios leading to data loss. Common

occurring phenomenon’s specific to the Amazon River environment are included as a part

of simulator. For example Algorithm 2 is used to implements error in the transmission

channel, Algorithm 3 is used to represent reduction in transmission speed due to

harsh/rainy weather conditions, and finally Algorithm 4 includes the stochastic process

representing the mechanical failure in boats that can possibly affect their schedule or

damage the hardware carrying the data. These different stochastic processes may or may

not occur at the same time; also they are computed independently for each node under

consideration, hence they cannot be classified as global or regional based phenomena.

Hence, in the following work we study their effect mainly under two major scenarios;

first when transmission is only affected by rain and transmission channel errors, and

second when along with rain and transmission channel faults, boats may loose packets

due to mechanical failure.

 19

START

WHILE two NODES are in vicinity of each other AND a connection is established

between the two NODES

FOREACH data packet to be transferred CHECK for the occurrence of

EVENT TRANSMISSION LOSS

The EVENT TRANSMISSION LOSS is set to TRUE with

probability p.

IF EVENT is TRUE

 DON’T TRANSMIT the data packet.

IF EVENT is FALSE

 TRANSMIT the data packet.

DELETE the data packet from the source node.

END

Algorithm 2: The Stochastic Process Implementing Transmission Error

START

WHILE two NODES are in vicinity of each other AND a connection is established

between the two NODES

CHECK for the occurrence of the EVENT RAIN.

The EVENT RAIN is set to true with probability of 0.5.

IF EVENT RAIN is TRUE

 20

Reduce the TRANSMISSION SPEED of the established connection

to 30% of the original value.

IF EVENT RAIN is FALSE

Don’t make any change in the TRANSMISSION SPEED.

SET the TRANSMISSION SPEED back to its original value.

END

Algorithm 3: The Stochastic Process Implementing Reduction In Transmission Speed,

Given Harsh/Rainy Weather Conditions.

START

 Every time a BOAT reaches a PBS and establishes a connection for data

transmission. Check for the EVENT MECHANICAL FAILURE.

The EVENT MECHANICAL FAILURE is set to TRUE, with probability of 0.20

independently at all 9 PBSs.

IF the EVENT MECHANICAL FAILURE is TRUE

RANDOMLY select the duration, a values from 1,2,4,8,16,32 in hours,

for which boat suspends its movement.

Suspend boat movement.

Further CHECK for the EVENT BOAT-DELAY or BOAT-BREAKDOWN

Either one of the two EVENT is set to TRUE, with equal probability of

0.5.

IF the EVENT BOAT-DELAY is TRUE

 21

Transmit all the data packets to the current PBS.

Mark a flag on the BOAT, which MARKS BOAT to reduce its stay

on all successive PBSs, to 5 minutes than usual 20 minutes.

ELSE IF the EVENT BOAT-BREAKDOWN is TRUE

DELETE all the data packets on the BOAT, without transmitting

them to the PBS.

END

Algorithm 4: Boat Mechanical Failure Leading To Delay Or Hardware Breakdown

 22

CHAPTER 4

EXPERIMENTS

For the simulation study, an area of 104,142 km2 comprising the Marajo Archipelago,

located in the state of Para, Brazil will be selected. The routes for the boats will be

created according to local data, obtained from the office of the public boats terminal in

the city of Belem (capital of Para). Boats will be equipped with Wi-Fi (IEEE 802.11)

devices and they will follow predefined routes throughout the simulation area. Each boat

will have scheduled stopovers at various Peer Base Stations (villages). In order to

configure the traffic generator for the simulator, the demand of real data loads in Marajo

will be investigated.

Figure 5: One Simulator, Representing Boat In Marajo Archipelago, Located In The

 23

State Of Para, Brazil.

During sporadic government health programs, physicians perform one hundred

ultrasound exams in one weekend, once a month. In other words, working at maximum

capacity, they perform fifty exams per day. If we consider the size of each ultrasound file

in MPEG format, and we add the high quality video of a health agent performing the

examination (so the physician at Belem can see if the technician performed the exam

correctly) the total size of an ultrasound examination record s around 75Megabytes. Thus,

the traffic generator of the ONE simulator will be set up to work at 384kbps. The value is

obtained considering that fifty ultrasounds per day are performed, each generating a

75MB ultrasound files. All PBSs besides Belem (located at the extreme points of the

Marajo-archipelago), will be selected as sources of video transmissions, all of them

sending files to the main PBS in Belem. The average boat speed at that region is 15Km/h.

For evaluating our robust opportunistic routing, we will create 50 files with their

generation being uniformly distributed across all PBSs except for final destination Belem.

These files will be created uniformly during the first 20 hours of the total simulation time,

i.e. twenty-four hours, so that files generated during the end of the simulation have

enough time to reach Belem. Here, a file will travel from source to destination by hoping

from boat to boat, boat to PBS or PBS to boat, following an opportunistic routing model.

The network under consideration consists of boats and PBS, serving as nodes where a

route of a boat determines the path between two nodes; here the edges between nodes

will be dynamically formed and broken when one node moves in and out of the

transmission range of the other node.

 24

The simulation will be operated for two different modes: one being normal mode and

second being the fountain code mode. In normal mode, we will partition a file directly

into 133 packets with all packets belonging to a file being generated at the same PBS. A

file will be considered transmitted successfully, if all 133 packets are received at the final

destination. Under fountain code mode, we will generate more than 133 packets per file

(packets will of the same size as in normal mode and all packets belonging to the same

file will be generated at the same PBS), generating different levels of redundancy in the

code. We will be considering three different fountain codes that generate 161, 175, and

205 packets per file respectively. For all three-fountain codes considered, only 144

packets from a file will be required to be reach to the final destination for the file to be

successfully received, following [17]. A summary of all these parameters is summarized

in Table I and Table II

Parameter Value

Number of PBS 9

Number of Original Boats 13

Transmission Speed (Mbps) 30

Transmission Range (m) 40

Buffer Size Infinite

Probability of loosing a packet, when boat gets delayed 50%

Table I: Fixed Simulation Parameters

 25

Parameter Value Alt. Value Alt. Value Alt. Value

Number of files 50 100 200 400

Generation

Interval

171 342 684 13680

File Size (MB) 75 150 225 300

Transmission

Success

Probability

100% 70% 50%

Routing

Scheme

Epidemic Opportunistic

Number of

Fishing Boats

5 10 20

Number of

Fountain Code

Partitions

161 175 205

Duration of a

Boat Staying at

PBS (minutes)

5 20

Table II: Variable Simulation Parameters

In order to evaluate fault tolerance performance, we will have three sets of stochastic

processes where speed of transmission would be reduced, transmission a packet may fail

and a boat may break, loosing all packets or might be delayed. Table III gives the

combination of parameters used for the simulation results presented in this report

 26

Parameter Value

Number of PBS 9

Number of Original Boats 13

Transmission Speed (Mbps) 30

Transmission Range (m) 40

Buffer Size Infinite

Probability of loosing a packet, when boat gets

delayed

50%

Number of files

50

Generation Interval 171

File Size (MB) 75

Transmission Success Probability 100%, 98%, 95%, 90%, 80%,

70%
Routing Opportunistic

Number of Fishing Boats 5
Number of Fountain Code Partitions 161, 175, 205

Duration of a Boat Staying at PBS (minutes) 20

Table III: Parameters Used For Simulation

4.1 Transmission Affected By Rain

When a boat comes in contact with another boat or PBS, transmission speeds may be

affected by heavy rain, which occurs frequently in the Amazon region. We assign a rain

probability of 50% at any point in time and, if rain occurs, we assume that transmission

speed is reduced to 9 Mbps, 30% of the original value of 30 Mbps, for the node for which

rain event is evaluated to true. From simulation we found that, rain had no observable

 27

effect on number of packets reaching the final destination.

4.2 Transmission Loss

Transmission loss is the loss probability associated with every data packet transmission

between two nodes where each data packet transmission is treated as an independent

event. We perform simulations with transmission loss probabilities of 0%, 2%, 5%, 10%,

20% and 30%. With increase in the probability of transmission loss, there is a decrease in

the number of data packets reaching the final destination. As the count of successfully

delivered packets decrease, the number of files successfully received at the final

destination keeps on declining.

It can be seen in Figure 6 that only about 4.8% of files are received for normal mode with

only 2% transmission loss probability. The percentage of successful files received is

further reduced to 0%, with 5% transmission loss probability. With fountain code mode,

though the percentage of successfully received files decrease with increase in

transmission loss probability, there is quite a bit of improvement compared to normal

mode. As it appears in Figure 6 and Figure 7, we are able to successfully transfer all 50

files when we use fountain code with a total of 175 or 205 packets with 2% transmission

loss. We are still able to transfer about 95% of files successfully, even if we increase

transmission loss probability to 5%.

 28

Figure 6: Percentage Of Files Successfully Received At Final Destination, For Different

Number Of Generated Packets With Varying Transmission Loss Probability.

 29

Figure 7: Number Of Files Successfully Received At Final Destination, For Different

Number Of Generated Packets With Varying Transmission Loss Probability.

It may seem that dividing a file into more and more number of packets will increase the

total number of successful files delivered to final destination, making them independent

of transmission loss; at the same time, the number of packets increase the network

becomes more congested and leading to fall in percentage of successful files received at

destination. Hence the number of files successfully received increases with increase in

transmission loss percentage, as increase in transmission loss leads to reduce congestion

in the network. This is further explained in the following section.

4.3 Break Down And Delay

 30

A mechanical failure may stop the movement of a boat temporarily or permanently: such

an event is termed as boat delay or boat breakdown respectively. In a boat breakdown the

boat loses all its data packets, and suspends its movement till the end of simulation,

whereas in a boat-delay event, a boat stops for few hours (less than 24 hours) before

resuming movement again on its path.

A boat delay does not involve any loss of data but reduces the stoppage time (duration for

which a boat stops at a PBS), for all successive PBSs, to 5 minutes from usual 20

minutes. Every time a boat comes in contact with a PBS we first check for the event

mechanical failure, which occurs with 20% probability independently at each PBS. If a

mechanical failure occurs, we then check if it corresponds to a boat-breakdown or a boat-

delay event, which occur with 50% probability each. As expected for the same

transmission loss probabilities, fewer number of packets reach final destination under the

mechanical failure stochastic process, than with no chances of mechanical failure. An

interesting observation can be made in Figure 8 and Figure 9, where the percentage of

successful number of files transferred increases initially as the transmission loss

probability increases from zero to two percent; this might be due to the fact that the

amount of data to be transferred is beyond the network capacity and in that case, since we

are using fountain codes, randomly dropping packets can help.

 31

Figure 8: Percentage Of Files Successfully Received At Final Destination, For Different

Number Of Generated Packets With Varying Transmission Loss Probability And Boats

Being Delayed And Broken, With 95% Confidence Intervals.

 32

Figure 9: Number Of Files Successfully Received At Final Destination, For Different

Number Of Generated Packets With Varying Transmission Loss Probability And Boats

Being Delayed And Broken.

 33

CHAPTER 5

CONCLUSION

Given the significant challenge of providing healthcare to the remote and isolated

communities in the Brazilian Amazon, we proposed a robust opportunistic routing

algorithm, which takes advantage of using fountain codes to improve the delivery

probability of the healthcare data in the presence of failures and unpredictable boat

schedules. The proposed routing algorithm takes into account the probability of boats

being delayed or breaking down, as well as the probability of loss in individual data

packet transmissions due to the harsh environment in the region. Extensive experiments

results show that the delivery probability of the healthcare data is significantly increased

when using our robust opportunistic routing.

5.1 Future Scope

As for future work, we further recommend improving the probability of successful

delivery by incorporating acknowledgements for delivered packets and unequal error

protection in the fountain code approach, so that more important packets of a file are re-

assigned higher priority and hence have higher probability of being delivered to the final

destination. We can also have an intelligent file-partitioning algorithm where paths with

higher throughput can be assigned with larger packets while other paths, which take

longer time to the destination, will be assigned with smaller packets.

 34

5.1.1 Routing With Acknowledgements

For each data packet reaching the final destination (PBS at Belem), an acknowledgement

signal (ACK) should be sent back to the packet source station. Given the small size of the

ACK, we suggest the use of epidemic routing protocol for transmitting ACKs from

packet’s destination PBS to packet’s origin PBS.

The source should keep a copy of the transferred packets, till the time source receives the

ACK signal from the destination. The source may fail to receive the ACK signal in time,

because either the packet was lost during transmission or the packet got delayed in

reaching the final destination. In both the cases i.e. packet loss or getting delayed, source

PBS will resend the corresponding data packets. Data packet should be resent only if it

lost during transmission or it exceeds the expected time of arrival (average time a packet

takes to reach from initial source to final destination) at the destination time. If a data

packet successfully reaches the final destination it should be deleted from the PBS (where

the data originated). Algorithm 5 presents the implementation of routing protocol with

acknowledgements.

START

WHILE two NODES are in vicinity of each other AND a connection is established

between the two NODES

Only for the case where transmitter is a PBS and receiver is a BOAT, along with

various stochastic processes.

FOREACH data packet on the PBS

 35

IF the data packet originated at the sender PBS AND is being

TRANSMITTED again (already transmitted once before).

IF the difference of current simulator time and the data packet

origin time is GREATER than the expected time of arrival (average

time a packet takes to reach from initial source to final destination)

AND data packet has reached the final destination (check for the

final node in the packet path)

DON’T TRANSMIT the selected data packet between two

NODES

DELETE the data packet

ELSE IF the difference of current simulator time and the data

packet origin time is GREATER than the expected time of arrival

(average time a packet takes to reach from initial source to final

destination) AND data packet has not reached its final destination

RE-TRANSMIT the data packet between two NODES

 ELSE

 TRANSMIT the data packet between two NODE

 IF data packet originated at the same PBS

 DON’T DELETE the packet

 ELSE

 DELETE the data packet

END

Algorithm 5: Routing Protocol With Acknowledgements

 36

REFERENCES

[1] http://en.wikipedia.org/wiki/amazon-river.

[2] U. G. Acer, P. Giaccone, D. Hay, G. Neglia, and S. Tarapiah. Timely data delivery in
a realistic bus network. IEEE T. Vehicular Technology, 61(3):1251–1265, 2012.

[3] S. Ahmad, R. Hamzaoui, and M. Al-Akaidi. Unequal error protection using fountain
codes with applications to video communication. IEEE Transactions on Multimedia,
13(1):92–101, 2011.

[4] G. Anastasi, M. Conti, and M. Di Francesco. Data collection in sensor networks with
data mules: An integrated simulation analysis. In Computers and Communications, 2008.
ISCC 2008. IEEE Symposium on, pages 1096–1102. IEEE, 2008.

[5] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H.
Weiss. Delay-tolerant networking architecture. RFC4838, April, 2007.

[6] Mauro Margalho Coutinho, Alon Efrat, Thienne Johnson, Andrea Richa, and
Mengxue Liu, “Healthcare Supported by Data Mule Networks in Remote Communities
of the Amazon Region,” International Scholarly Research Notices, vol. 2014, Article ID
730760, 8 pages, 2014. doi:10.1155/2014/730760

[7] M. M. Coutinho, T. Moreira, E. Silva, A. Efrat, and T. Johnson, “A new proposal of
data mule network focused on amazon riverine population”, In ExtremeCom '11
Proceedings of the 3rd Extreme Conference on Communication: The Amazon
Expedition, Article no. 10, Published 2011, Sponsors : CAPES Brazilian Higher
Education Funding Council and UFAM Federal University Of Amazonas, In-
Cooperations : SIGCOMM ACM Special Interest Group on Data Communication,
Publisher : ACM New York, NY, USA ©2011, ISBN: 978-1-4503-1079-6.
doi:10.1145/2414393.2414403

[8] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J ACM, 19(2):248–264, 1972.

[9] M. Fonoberova and D. Lozovanu. The maximum flow in dynamic networks.
Computer Science Journal of Moldova, 3(36):387–396, 2004.

[10] E. Husni and J. Waworundeng. Telemedicine system based on delay tolerant
network. In Electrical Engineering and Informatics (ICEEI), 2011 International
Conference on, pages 1–5. IEEE, 2011.

[11] IBGE. Ibge censo 2010. http://www.censo2010.ibge.gov.br/, 2010.

 37

[12] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen, “The one simulator for DTN
protocol evaluation”, In Proceedings of the 2nd International Conference on Simulation
Tools and Techniques at ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) Brussels, Belgium, Belgium ©2009, Article55, ISBN:
978-963-9799-45-5. doi :10.4108/ICST.SIMUTOOLS2009.5674

[13] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference in markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007.

[14] Journal Article by A L. R. Ford, Jr. , A D. R. Fulkerson, “Constructing Maximal
Dynamic Flows from Static Flows”, In 1958 Journal Operations Research, Pages 419-
433, Volume 6, No. 3. doi:10.1287/opre.6.3.419

[15] Ford, L. R. and D. R. Fulkerson. Flows in Networks. Santa Monica, CA: RAND
Corporation, 1962. http://www.rand.org/pubs/reports/R375.

[16] M. Luby, “LT codes”, In 43rd Symposium on Foundations of Computer Science
(FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Pages 271-282, 2002.

[17] D.J.C MacKay, "Fountain codes," Communications, IEE Proceedings- , vol.152,
no.6, pp.1062, 1068, 9 Dec. 2005. doi: 10.1049/ip-com:20050237

[18] S. Naidu, S. Chintada, M. Sen, and S. Raghavan. Challenges in deploying a delay
tolerant network. In Proceedings of the third ACM workshop on Challenged networks,
pages 65–72. ACM, 2008.

[19] A. Pentland, R. Fletcher, and A. Hasson. Daknet: Rethinking connectivity in
developing nations. Computer, 37(1):78–83, 2004. [20] N. Rahnavard, B. N. Vellambi,
and F. Fekri. Rateless codes with unequal error protection property. IEEE Transactions
on Information Theory, 53(4):1521–1532, 2007.

[21] M. A. S. Merugu and E. Zegura, “Routing in space and time in network with
predictable mobility”, CC Technical Report; GIT-CC-04-07, 2004, Georgia Institute of
Technology.

[22] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling and analysis of
a three-tier architecture for sparse sensor networks”, Ad Hoc Networks, 1(2):215–233,
2003.

[23] A. Shokrollahi, “Raptor codes” IEEE Transactions on Information Theory,
52(6):2551–2567, 2006.

[24] L. Sundararaj and P. Vellaiyan, “An overview of alagappa university delay tolerant
water monitoring network”, IJCSNS, 10(5):19, 2010.

 38

[25] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad hoc
networks”, Technical Report CS-200006, Duke University, 2000.

[26] Ari Keränen, “Opportunistic Network Environment Simulator”, Special Assignment
report, Helsinki University of Technology, Department of Communications and
Networking, May 2008.

[27] TKK/COMNET. Project page of the ONE simulator.
http://www.netlab.tkk.fi/tutkimus/dtn/theone, 2008.

[28] Menxgue Liu, Rachit Agarwal, Andrea Richa, Thienne Johnson, Alon Efrat and
Mauro Margalho Coutinho, “Robust Data Mule Networks With Remote Healthcare
Applications in the Amazon Region: A Fountain Code Approach, Submitted to
IEEE Healthcom, 2015

39

APPENDIX A

CODE SNIPPETS

40

Listing A.1 Implementation of Algorithm 2

public boolean canMessageBeTransfered() {
 Random randomNumberGenerator = new Random();
 int number = randomNumberGenerator.nextInt(100);
 // we can have 100% or 70% or 50% probability that message
 might be transferred

 if(number < 100)
 return true;
 return false;
}

Listing A.2 Implementation of Algorithm 3

public double getTransmitSpeedMultiplyingFactorInRainyCondition() {
 Random randomNumberGenerator = new Random();
 int number = randomNumberGenerator.nextInt(2);
 // we have 50% probability of rain thats, why
 generation random number from 0...1
 // the transmission speed decreases to 30%of original
 value in case it rains.
 if(number == 0)
 return 1.0;
 return 0.3;
}

Listing A.3 Implementation Of Algorithm 4

public class HostBreakdown {
 static int[] duration = {1,2,4,8,16,32};
 private double start;
 private double end;

 public HostBreakdown() {
 this.start = SimClock.getTime();
 double temp = durationOfBreakdown();
 this.end =m start + temp*60.0*60.0;
 }

 public void setBreakdownState() {
 if(SimClock.getTime() > this.end+1) {

41

 this.start = SimClock.getTime();
 this.end = start + durationOfBreakdown()*60.0*60.0;
 }
 }

 public boolean isBroken() {
 return isInRange(SimClock.getTime());
 }

 private boolean isInRange(double time) {
 if (time >= start && time < end) {
 return true;
 }
 return false;
 }

 // returns true if boats break down else false
 private boolean probabilityOfBreakdown() {
 Random randomNumberGenerator = new Random();
 // set the argument as n for probability of 1/n+1
 int number = randomNumberGenerator.nextInt(45);
 // marking '0' as a number which results in breakdown of a host
 // since number can take any value from 0(inclusive) to 45(exclusive) with
equal probability
 // hence probability of getting 0 is 1/45
 // use -1 in order to enforce no breakdown
 if(number == -1)
 return true;
 else
 return false;
 }

 // return time duration of breakdown in hours
 // returns a random value from array "duration" if probability of breakdown is true
 private double durationOfBreakdown() {
 if(probabilityOfBreakdown()) {
 Random randomNumberGenerator = new Random();
 int number = randomNumberGenerator.nextInt(6);
 return duration[number];
 // return 1;
 }
 return -1;
 }
}

42

// the whole boat break code remains the same

// but of consider that boat was only delayed, its transmitter and receiver were working
fine
// we set this variable to true with 50% probability.
public void setOnlyDelayed() {
 Random randomNumberGenerator = new Random();
 int number = randomNumberGenerator.nextInt(2);
 if(number == 0) {
 this.isOnlyDelayed = false;
 }
 this.isOnlyDelayed = true;
}

public boolean setBreakdownState() {
 if(this.state == null) {
 this.state = new HostBreakdown();
 }
 else {
 this.state.setBreakdownState();
 }
 boolean state = this.state.isBroken();
 if(state) {
 this.setOnlyDelayed();
 }
 if(state && !this.isOnlyDelayed) {
 List<Message> messages = new
 ArrayList<Message>(this.getMessageCollection());
 for(Message m : messages)
 this.deleteMessage(m.getId(), false);
 }
 return state;
 }
 public boolean isConnectionBroken() {
 if(this.state != null && this.state.isBroken())
 return true;
 else
 return false;
 }

 public boolean isConnected() {
 return this.connected;
 }

 public void setConnectdToPBS(double startTime) {

43

 if(startTime > this.timeToEndConnectionToPBS) {
 // set the value for the duration you want boat to stop at PBS
 // if boat was delayed but not broken then it stops only for 5
minutes at PBS
 int timeInMinute = 20;
 if(this.isOnlyDelayed) {
 timeInMinute = 5;
 }
 this.timeToEndConnectionToPBS = startTime+timeInMinute*60;
 }
 }

 public double getTimeToEndConnectionToPBS() {
 return this.timeToEndConnectionToPBS;
 }

 // the whole boat break code remains the same
 // but of consider that boat was only delayed, its transmitter and receiver were
working fine
 // we set this variable to true with 50% probability.
 public void setOnlyDelayed() {
 Random randomNumberGenerator = new Random();
 int number = randomNumberGenerator.nextInt(2);
 if(number == 0) {
 this.isOnlyDelayed = false;
 }
 this.isOnlyDelayed = true;
 }

// Delete original messages
 public int startTransfer_2(DTNHost from, Message m) {
 assert this.msgOnFly == null : "Already transferring " +
 this.msgOnFly + " from " + this.msgFromNode + " to " +
 this.getOtherNode(this.msgFromNode) + ". Can't "+
 "start transfer of " + m + " from " + from;

 this.msgFromNode = from;
 Message newMessage = m.replicate();

 int retVal = getOtherNode(from).receiveMessage(newMessage, from);

 if (retVal == MessageRouter.RCV_OK) {

44

 this.msgOnFly = newMessage;
 this.transferDoneTime = SimClock.getTime() +
 (1.0*m.getSize()) / this.speed;

 ///Delete the original message here
 if(from != m.getFrom())
 from.deleteMessage(m.getId(), false);
 // mark message to wait for acknowledgement
 if(from == m.getFrom())
 m.setWaitForAcknowledgement(true);
 }
 if (retVal == MessageRouter.DENIED_TRANSMISSION_FAILURE) {
 ///Delete the original message here
 if(from != m.getFrom())
 from.deleteMessage(m.getId(), false);
 }

 return retVal;
 }

Listing A.4 Implementation To Set Parameters To Generate Different Number Of
Packets E.G. 133, 161, 175, 205 And To Set PBS = 13 (Belem) As Destination For Every
Generated Packet.

public class MessageCreateEvent extends MessageEvent {
 private int size;
 private int responseSize;
 private int generateNumN = 205;

 */
 public MessageCreateEvent(int from, int to, String id, int size,
 int responseSize, double time) {

 super(from,to, id, time);
 this.size = size;
 this.responseSize = responseSize;
 }

 /**
 * Creates the message this event represents.
 */
 @Override
 public void processEvent(World world) {
 //Messages are always trasfered to Belem, PBS ID = 13

45

 //DTNHost to = world.getNodeByAddress(this.toAddr);
 DTNHost to = world.getNodeByAddress(13);

 //from address are continuous from 14
 //DTNHost from = world.getNodeByAddress(this.fromAddr);
 int tempfrom = Integer.parseInt(this.id.substring(1)) % 8;

APPENDIX A

CODE SNIPPETS

 DTNHost from = world.getNodeByAddress(tempfrom + 14);

 for (int i = 0; i != this.generateNumN; i++)
 {
 String Newid = this.id + "_" + Integer.toString(i);
 Message m = new Message(from, to, Newid, this.size);

 m.setResponseSize(this.responseSize);
 from.createNewMessage(m);
 }
 }

 @Override
 public String toString() {
 return super.toString() + " [" + fromAddr + "->" + toAddr + "] " +
 "size:" + size + " CREATE";
 }
}

