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 ABSTRACT  

   

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and 

chemical properties of several intrinsically ductile metals. Consequently, understanding 

the mechanisms behind HE has been of particular interest in both experimental and 

modeling research. Discrepancies between experimental observations and modeling 

results have led to various proposals for HE mechanisms. Therefore, to gain insights into 

HE mechanisms in iron, this dissertation aims to investigate several key issues involving 

HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries 

(GBs); c) the dislocation-GB interactions and d) the dislocation mobility. 

The crack tip, which presents a preferential trap site for hydrogen segregation, was 

examined using atomistic methods and the continuum based Rice-Thompson criterion as 

sufficient concentration of hydrogen can alter the crack tip deformation mechanism. 

Results suggest that there is a plausible co-existence of the adsorption induced dislocation 

emission and hydrogen enhanced decohesion mechanisms. In the case of GB-hydrogen 

interaction, we observed that the segregation of hydrogen along the interface leads to a 

reduction in cohesive strength resulting in intergranular failure. A methodology was 

further developed to quantify the role of the GB structure on this behavior. 

GBs play a fundamental role in determining the strengthening mechanisms acting as 

an impediment to the dislocation motion; however, the presence of an unsurmountable 

barrier for a dislocation can generate slip localization that could further lead to 

intergranular crack initiation. It was found that the presence of hydrogen increases the 

strain energy stored within the GB which could lead to a transition in failure mode. 

Finally, in the case of body centered cubic metals, understanding the complex screw 
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dislocation motion is critical to the development of an accurate continuum description of 

the plastic behavior. Further, the presence of hydrogen has been shown to drastically alter 

the plastic deformation, but the precise role of hydrogen is still unclear. Thus, the role of 

hydrogen on the dislocation mobility was examined using density functional theory and 

atomistic simulations. Overall, this dissertation provides a novel atomic-scale 

understanding of the HE mechanism and development of multiscale tools for future 

endeavors. 
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CHAPTER 1 

1     MOTIVATION 

Steel is widely used in construction, marine, aerospace and nuclear applications 

because of the high strength to cost ratio. A wide variation in mechanical properties can 

be achieved by the addition of trace elements (carbon, manganese, niobium, vanadium, 

molybdenum, silicon, chromium and nickel) and controlling the thermal processing. 

However, unless the material is stable chemically in the operating environment the 

enhanced properties such as ductility, strength and toughness would degrade. The 

operational or processing exposure to hydrogen is a prime example of environment 

driven degradation. The continued exposure to a rich hydrogen environment in most 

metallic systems leads to embrittlement which could result in a premature failure of the 

structural components. Throughout modern history, there have been several large scale 

corrosion driven structural failures such as the gas pipeline burst in Louisiana (1965), the 

Silver bridge collapse in West Virginia (1967), and the swimming pool accident in Uster, 

Switzerland (1987) that have resulted in the loss of several lives and large monetary 

expenses. Therefore, HE in metals has been a topic of intense research dating back almost 

150 years (Johnson 1874; Pfeil 1926; Vehoff and Rothe 1983; Shih, Robertson, and 

Birnbaum 1988; P. Ferreira, Robertson, and Birnbaum 1998; Birnbaum and Sofronis 

1994; Lufrano, Sofronis, and Birnbaum 1998). Despite these efforts, there is a lack of 

agreement on the mechanism responsible for embrittlement (M. Louthan Jr et al. 1972; 

Gangloff, RP and Somerday 2012; Somerday and Sofronis 2013; S. Lynch 2012; S. P. 

Lynch 2013) 
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Figure 1: a) Fatigue data under various environmental conditions elucidating the role of 

environment, and b) landing gear before and after a few flight missions (Courtesy of Dr. 

Vasudevan, ONR) 

The lack of understanding hinders the effective mitigation of embrittlement damage, 

especially in structural components for the naval applications and the oil industry. 

According to the recent LMI Cost of Corrosion Study (Herzberg, Ambrogio, and Barker 

2006), the annual cost of corrosion for U.S. Navy Ships and Aviation in 2010 was a 

combined ~$5.75 billion. More than 80% of structural failures were due to combined 

environmental and mechanical loading. This translates into, on average, 20% down time 

due to unscheduled maintenance every year (Nickerson 2015). Consequently, harsh 

environmental conditions in combat zones and the aging of fleets are of paramount 

concern and require a comprehensive predictive framework with optimized corrosion 

resistance fatigue properties. In the case of the oil and gas industry, a large fraction of 

maintenance cost is spent either to prevent leaks or plug them. In fact, a recent report 

suggests that the cost of corrosion is about $3.7 billion annually (Kane 2006). That does 

not include intangible long-term costs, such as environmental impacts due to leaks and oil 

spills. Therefore, reducing the environmental risk of oil spills by extending the lifetime 
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performance of structural components is a big concern for the oil industry. The strength, 

ductility and toughness of these structural alloys are affected by the presence of point 

defects and impurities, such as hydrogen and sulphur. These defects result from diverse 

environmental conditions, such as dilute aqueous solution and sulfide exposure (Carneiro, 

Ratnapuli, and de Freitas Cunha Lins 2003; Gu, Luo, and Mao 1999; Woodtli and 

Kieselbach 2000; Parkins 2000). Therefore, in this work the HE phenomenon in α-Fe was 

studied in a consistent manner by synergistically using the knowledge accrued across 

various length scales to gain a better understanding.  
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CHAPTER 2 

2     BACKGROUND AND RESEARCH OBJECTIVE 

2.1 Background 

The safety and integrity of naval and oil industry infrastructure requires the effective 

mitigation of stress corrosion cracking and fatigue resistance that typically occurs in 

ferritic steel subjected to aggressive environments. The effects of mechanical loads 

coupled with harsh environment conditions results in local damage near highly stressed 

areas leading to the nucleation and growth of small surface cracks that interact, coalesce 

and eventually lead to a catastrophic failure if undetected. The effects of diverse 

environments on the strength, ductility and toughness of these structural alloys has been 

researched extensively (Carneiro, Ratnapuli, and de Freitas Cunha Lins 2003; Gu, Luo, 

and Mao 1999; Woodtli and Kieselbach 2000; Parkins 2000). One example would be loss 

by a factor of 2 to 6 in the fracture toughness/fatigue threshold of 4340 steel and 7075-T6 

aluminum alloy in dilute sodium chloride (NaCl) solution.  

The underlying mechanism lacks broader applicability across various metals. For 

instance, in titanium the formation of hydrides ahead of the crack tip was found to be 

responsible for failure (Birnbaum 1984). However, at higher stress intensity the crack 

was found to propagate by the process of enhanced localized plasticity (Shih, Robertson, 

and Birnbaum 1988). Thus, suggesting that the local stress state determines the operating 

mechanism. Furthermore, in the case of stainless steel and Fe there have been reports of 

enhanced dislocation mobility in the presence of hydrogen (P. Ferreira, Robertson, and 

Birnbaum 1998; S. Wang et al. 2014). On the other hand, hydrogen has been shown to 
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increase susceptibility to decohesion (Troiano 1960; R. A. Oriani 1972; Vehoff and 

Rothe 1983). These instances clearly highlight the ambiguity concerning the HE 

mechanism. Therefore, to gain insights into the HE mechanism, the following multi-scale 

issues need to be examined: a) the chemical process by which the oxide layer on the 

surface is penetrated by the hydrogen atoms to enter the microstructure; b) the influence 

of the interactions of the hydrogen atoms with the microstructural features (grain, grain 

boundary, crack, triple junctions, dislocations etc.) on the transport mechanism and c) the 

effect of hydrogen on the surface energies of the GBs. This dissertation will focus on 

understanding the interaction of hydrogen with defects (crack, dislocation and grain 

boundary) from the perspective of deformation behavior.  

2.2 Literature Review on Hydrogen Embrittlement 

In this section, a literature review of the proposed HE mechanisms affecting both the 

physical and chemical properties of many intrinsically ductile metals, including nickel 

(Vehoff and Rothe 1983; Lassila and Birnbaum 1986; Lassila and Birnbaum 1987; 

Lassila and Birnbaum 1988; Jun Song and Curtin 2011), aluminum (Scamans 1978; 

Pouillier et al. 2012), iron (Johnson 1874; Pfeil 1926; Vehoff and Rothe 1983; Andrew 

1914; Bernstein 1970; Bhatia and Solanki 2013; Masatake Yamaguchi et al. 2011; 

Hwang and Bernstein 1983; S. Wang et al. 2013; S. Wang et al. 2014) and titanium 

(Shih, Robertson, and Birnbaum 1988; Nelson, Williams, and Stein 1972; Hack and 

Leverant 1982; Birnbaum 1984) will be discussed. In spite of the extensive research on 

the subject matter multiple hypotheses have been proposed to explain the underlying 

mechanism (Cotterill 1961; M. Louthan Jr et al. 1972; Ian M. Robertson et al. 2015). The 

proposed HE mechanisms include: 



 

6 

 Hydride formation 

Magnesium, zirconium, titanium, niobium, tantalum and other transition, rare earth 

and alkaline rare earth metals form hydrides when the hydrogen concentration exceeds 

the solid solubility. The aggregation of hydrogen at regions of high dilatational stresses 

(typically at the crack tip) leads to the nucleation of a small size hydride and with 

increasing stresses, leads to the formation of other smaller hydrides that finally coalesce 

and lead to brittle fracture behavior (Birnbaum 1984; Shih, Robertson, and Birnbaum 

1988) (Figure 2a). The advance of the crack tip further causes redistribution of hydrogen 

atoms around it, leading to hydride formation. This cyclic process of precipitation-

fracture takes places until material failure. 

 Hydrogen reaction embrittlement 

The absorbed hydrogen at elevated temperatures reacts with carbides, oxides and 

other solute elements present in the microstructure to form high pressure steam or 

methane. This leads to the formation of internal voids and cracks. Copper and steel 

alloys are mostly affected by the mechanism when exposed to hot hydrogen bearing 

gases. An example of the chemical reaction that takes places between a copper alloy 

and absorbed hydrogen: 

𝐶𝑢2𝑂 + 2𝐻 = 2𝐶𝑢 + 𝐻2𝑂 

The hydrogen attack in steel poses a significant problem for petrochemical 

applications. In this case, the absorbed hydrogen reacts with carbon to form methane, 

further leading to gas pockets that act as sites for internal voids and crack 

(Parthasarathy, Lopez, and Shewmon 1985; During 1997). 
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 Hydrogen enhanced localized plasticity (HELP) 

The enhanced dislocation activity in the presence of hydrogen was first inferred by 

Beachem et al. (Beachem 1972). These conclusions were drawn from the analysis of the 

ductile features on the fracture surface of the specimen. This was a significant shift from 

the conventional thinking on the subject matter. Nonetheless, there was a lack of direct 

microstructural observation of enhanced dislocation activity. To address this dearth in 

observations, Birnbaum et al. (Shih, Robertson, and Birnbaum 1988; Sofronis and 

Birnbaum 1995a; Birnbaum and Sofronis 1994; I. Robertson and Birnbaum 1986; P. 

Ferreira, Robertson, and Birnbaum 1998; S. Wang et al. 2014; Ian M. Robertson et al. 

2015) using in situ transmission electron microscopy observed enhanced dislocation 

velocity in the presence of hydrogen. On the other hand, the of removal hydrogen gas 

caused the dislocation motion to retard. An illustration of the enhanced dislocation 

mobility in the presence of hydrogen is shown Figure 2b. The positions of the 

dislocations with and without hydrogen were superimposed such that they show a 

decrease in the separation distance between dislocations in the presence of hydrogen. The 

underlying mechanism was based on the idea that the segregation of hydrogen atoms 

around the dislocations distorts the stress field of the dislocation consequently decreasing 

the resistance to the dislocation motion posed by the microstructural obstacles (shielding 

effect) (Birnbaum and Sofronis 1994; Sofronis and Birnbaum 1995a). However, for this 

mechanism to have a permanent influence, it requires that the hydrogen atmosphere 

around the dislocation travel with it. This imposes a constraint on the temperature and 

strain rate window in which this mechanism can be observed. 
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 Hydrogen enhanced decohesion (HEDE) 

In this model, hydrogen accumulates within the lattice leading to the decrease in the 

cohesive strength of parent atoms (Pfeil 1926; Troiano 1960; R. A. Oriani 1972). The 

hydrogen atoms segregate like other impurity atoms along the GBs and ahead of the 

crack tip where the tensile stress is maximum thereby decreasing the cohesive strength. It 

has been shown in several experimental works that accumulation of hydrogen ahead of 

the crack tip sharpens the crack tip (Vehoff and Rothe 1983) (Figure 2c-d). The presence 

of hydrogen at the GBs, has been examined using quantum (Masatake Yamaguchi et al. 

2011) and atomistic (Solanki et al. 2012; Rajagopalan, Tschopp, and Solanki 2014) 

methods that report considerable loss in the cohesive strength of the interface.  This 

mechanism is agreed to be the operating means of failure for materials that do not from 

hydrides.  
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Figure 2: a) The brittle crack advance in the presence of hydride formation ahead of the 

crack tip α-Ti (Shih, Robertson, and Birnbaum 1988), b) the presence of hydrogen 

decreases the dislocation-dislocation interaction and thereby increasing the dislocation 

mobility (P. Ferreira, Robertson, and Birnbaum 1998), c) The crack tip with slip bands 

and blunting in Fe-3% Si under vaccum and d) In the presence of hydrogen, the crack tip 

remains sharp (Vehoff and Rothe 1983). 
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 Adsorption induced dislocation emission (AIDE) 

The model proposes the notion that the hydrogen atoms absorbed by the crack surface 

decrease the dislocation nucleation barrier (S. P. Lynch 1988). Unlike, the HELP 

mechanism, the external hydrogen atoms play a critical role in the nucleation aspect. The 

adsorption of hydrogen on the crack tip weakens the interatomic bonds facilitating 

dislocation emission. The nucleation of dislocations leads to high stress build up within 

the plastic zone leading to void nucleation and coalescence ahead of the crack tip and 

coalescence.  

The HE mechanisms discussed here do not encompass all the proposed mechanisms in 

literature. For instance, hydrogen induced ductile to brittle phase transition (Nelson 1994; 

Jun Song and Curtin 2011; Jun Song and Curtin 2012) or hydrogen triggered phase 

transformation (Rozenak and Eliezer 1987) along with several others have questionable 

descriptions of the HE phenomenon. Overall, it has been shown that hydrogen can cause 

a material to either harden or soften by interacting with dislocations or impurities (I.M. 

Robertson 2001; Kimura and Matsui 1987). Hydrogen can increase dislocation mobility 

(Sofronis, Liang, and Aravas 2001b; P. J. Ferreira, Robertson, and Birnbaum 1998) by 

shielding the elastic interactions between dislocations and other point defects (Sofronis 

and Birnbaum 1995b). Hydrogen can also induce shear localization and associated plastic 

instabilities that lead to premature material failure (Sofronis, Liang, and Aravas 2001c). 

Furthermore, hydrogen diffusion along the GBs and interfaces encourages intergranular 

failure due to the decohesion mechanism (Matsui, Kimura, and Moriya 1979; Masatake 

Yamaguchi 2011). Researchers also suggest that hydrogen promotes void nucleation 

based on experimental data for steels (Kwon and Asaro 1990; M. . Louthan Jr. et al. 
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1972; R A Oriani 1978; R.A. Oriani and Josephic 1979; T. D. Lee, Goldenberg, and Hirth 

1979), nickel alloys (Tang and Thompson 1994; A. W. Thompson 1985) and aluminum 

alloys (You, Thompson, and Bernstein 1995; Bonakdar et al. 2012). Hydrogen can affect 

plastic flow by lowering the energy barrier for dislocation slip, thereby enhancing strain 

localization and also by reducing the dislocation spacing that can affect observed strain 

hardening (Davenport and Estrup 1990). However, some of these experimental studies 

have shown discrepant views such as the yield and flow stresses in a uniaxial tension 

support both increasing (Asano and Otsuka 1976; Ulmer and Altstetter 1991; Abraham 

and Altstetter 1995a; Watson, Meshii, and Shen 1988) and decreasing (Beachem 1972; 

Matsui, Kimura, and Moriya 1979; Eastman et al. 1982). Similarly some strain hardening 

experiments have been questioned for experimental setup error (Myers et al., others 1992; 

Abraham and Altstetter 1995a; Abraham and Altstetter 1995b). The interplay of the 

variables that influence embrittlement complicates the separation of which properties 

affect and do not affect HE such as slip versus cleavage. The difficulties with preparing 

and fully characterizing experimental samples have made the prospect of accurate 

simulations appealing. Thus, the various HE mechanism can be carefully examined by 

observing the influence of hydrogen on the crack tip response using atomistic simulations 

(Jun Song and Curtin 2012).  
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2.3 Research Objectives 

Understanding the fundamental issues that are involved in HE is still a work in 

progress (S. P. Lynch 2013). In fact, the indeterminate understanding of the mechanistic 

origin of the HE hinders our ability to satisfactorily address this issue. HE affects several 

infrastructural applications, such as petroleum, nuclear and naval structures. Therefore, 

the objectives of this dissertation aim to address some of the critical questions of the HE 

phenomenon: 

1. Understanding the influence of hydrogen on incipient crack tip events in α-Fe. 

A major concern with HE is the transition of the service component’s mechanical 

behavior from ductile to low-toughness, brittle. Hydrogen permeates the microstructure 

through rapid diffusion along the GB networks or by ingress through cracks and diffusing 

with the dislocations ahead of the crack tip. Thus, it becomes difficult to avoid the 

interactions between microstructural features and hydrogen atoms. The crack tip presents 

a preferential trap site for hydrogen and sufficient concentration of hydrogen can change 

the incipient crack tip behavior to cleavage.  Experiments are not definitive enough to 

separate the dominant factors as it varies based on the interpretation. Hence, a numerical 

simulation of the problem provides an appealing alternative. For instance, atomic-scale 

simulations can offer critical understanding regarding the effect of hydrogen on crack tip 

events (Jun Song and Curtin 2011; Jun Song and Curtin 2012; Matsumoto et al. 2009; S. 

Taketomi, Matsumoto, and Miyazaki 2010). Thus, examining the competition between 

dislocation nucleation vs. cleavage under the influence of hydrogen at the atomic length 

scale can provide insights into the underlying mechanism (Chapter 3). In this section, two 

distinctly different HE mechanisms were observed depending on the crack orientation: a) 
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the critical stress intensity factor required for dislocation emission was found to decrease, 

thereby promoting plastic behavior during deformation (AIDE) and b) the presence of 

hydrogen around the crack tip reduced the cohesive energy along the cleavage plane, 

thereby promoting brittle failure (HEDE). 

2. Quantifying the role of the GB structure on the hydrogen segregation.  

The GBs are the weakest microstructural link during embrittlement, as segregation of 

hydrogen atoms at the interface reduces the cohesive strength. This behavior leads to 

sudden catastrophic failure at sub-critical loads due to intergranular fracture. 

Additionally, the variation in the underlying atomic structure of the GBs results in 

distinct material behavior. A great deal of research has been conducted on understanding 

and quantifying these effects across a wide range of scenarios (Kumar, King, and 

Schwartz 2000; Kumar, Schwartz, and King 2002; Sangid et al. 2011; Tschopp et al. 

2012a; Kashinath, Misra, and Demkowicz 2013; N. R. Rhodes, Tschopp, and Solanki 

2013; Adlakha et al. 2014; Rajagopalan et al. 2014; Bhatia, Groh, and Solanki 2014; 

Adlakha and Solanki 2015). The technological advances in 3D characterization 

capabilities offers experimental quantification of the variations in GB degrees of freedom 

associated with misorientation between grains and the GB plane (i.e., five-parameters GB 

character) (Taheri, Rollett, and Weiland 2004; Groeber et al. 2006; Taheri et al. 2010; 

Bulatov, Reed, and Kumar 2014). These insights coupled with the developments in 

thermo-mechanical processing techniques can be utilized in engineering the 

microstructure with desired interfaces (grain boundary engineering) (Watanabe 2011). 

This has been utilized in development of microstructures with tuned interfaces that have 

shown improved resistance to stress corrosion cracking (Cheung, Erb, and Palumbo 
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1994; Shimada et al. 2002; B. et al. 2013; Kobayashi et al. 2008; Kobayashi et al. 2011) 

and reduced susceptibility to HE (Watanabe and Tsurekawa 2004; Bechtle et al. 2009; 

Kobayashi et al. 2011). Firstly, this technique demands the systematic investigation of the 

role of the GB atomic structure on hydrogen segregation (Chapter 4). Here, the hydrogen 

segregation behavior was quantified across a large database of GBs. The energetic 

preference of hydrogen atoms to segregate close to each other along the GB was found. 

Lastly, a physically motivated model that related the intrinsic GB characteristics to the 

hydrogen segregation behavior was developed. 

3. Assessing the effect of hydrogen on slip transmission across GBs in α-Fe. 

The strength of a crystalline material is governed by the ability of the microstructure 

to pin the dislocation motion. In that sense, the GBs present a significant barrier to the 

dislocation motion through the microstructure. The initiation of a fatigue crack can take 

place solely due to mechanical loading, but it is highly unlikely. In an aggressive 

environment the susceptibility for fatigue crack initiation increases (Rice and Wang 

1989; Bechtle et al. 2009; Novak et al. 2010; S. Wang et al. 2014).  Thus, in order to 

design environmentally tolerant materials subjected to mechanical loads the influence of 

hydrogen on the dislocation-grain boundary (DGB) interaction needs to be examined 

(Chapter 5). This the first study that consistently examines the role of hydrogen on the 

DGB interactions at the atomic length scale. It was found that the presence of hydrogen 

increased the energy barrier for the slip transmission. Based on the findings the fatigue 

crack initiation was reexamined for the effect of hydrogen. The enhanced dislocation 

mobility due to the surrounding hydrogen atmosphere (HELP) provides an effective 

transport medium to deposit hydrogen atoms along the GB. On the other hand, the 
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increasing concentration of hydrogen leads to a reduction in the cohesive strength of the 

interface. Therefore, in the absence of a feasible mechanism for the trapped dislocation 

intergranular crack initiation becomes a viable option. These insights will aid in the 

development of multi-scale predictive capabilities and the optimization of the interfacial 

network for a polycrystalline material subjected to mechanical loads in an aggressive 

environment. 

4. Quantifying the role of hydrogen on the dislocation mobility in α-Fe 

A predictive model that can capture the physical aspects at the atomic scale of the 

plastic deformation is critical in order to design structural materials. In the case of body 

centered cubic (BCC) metals, this task has proven challenging due to the complexity 

associated with the non-Schmid nature of plastic flow (Rodney and Martin 2000; Itakura, 

Kaburaki, and Yamaguchi 2012; Proville, Rodney, and Marinica 2012; Ventelon and 

Willaime 2010; Hale, Zimmerman, and Weinberger 2014; Hale et al. 2015; Lim et al. 

2015; Gröger, Bailey, and Vitek 2008; Duesbery and Vitek 1998; Christopher R. 

Weinberger, Tucker, and Foiles 2013; Christopher R. Weinberger et al. 2012). At room 

temperature, the plastic deformation takes place primarily by the glide of the a/2〈111〉 

screw dislocations. Thus, in order to accurately model the role of hydrogen on dislocation 

motion, atomistic simulations are required to evaluate the change in the continuum 

description of the yield surface in the presence of hydrogen (Chapter 6). Here, we present 

preliminary results from the methodology developed to examine the effect of hydrogen 

on the non-Schmid behavior of the Peierl’s stress. 
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5. Investigate the intrinsic properties and the hydrogen segregation behavior of grain 

boundary triple junctions. 

Nanocrystalline materials (mean grain size, d < 100 nm) have enhanced mechanical 

properties compared to polycrystalline materials (d > 1 m). The technological advances 

in material processing have made nanocrystalline materials a viable option (Valiev, Xia, 

and Langdon 2009). However, the stability of the nanocrystalline microstructure at 

elevated temperature has been a challenge. It has been long established that the structural 

stability, mechanical behavior and fracture of nanocrystalline materials are often driven 

by GBs (planar defects), triple junctions (line defects), and their underlying structures 

(Meyers, Mishra, and Benson 2006; Gleiter 2000). Hence, the intrinsic properties of the 

triple junction (TJ) that influence the material properties requires attention in the 

development of interface-dominant materials, especially in the case of nanocrystalline 

materials where TJs constitute a large volume fraction (Gleiter 2000). Further, the 

presence of hydrogen around the TJ can increase the susceptibility to crack nucleation as 

the TJs act as effective sinks for defect aggregation (Chapter 7). In this chapter we 

present a future research idea, the following key insights were accrued: a) a systematic 

methodology to study the effect of TJ on structural stability was developed; b) a strong 

energetic preference for self-interstitial atom around the TJ over a vacancy defect was 

observed and c) the defect segregation behavior across a wide range of temperature for a 

TJ were found to be distinctly different from the constituent GBs. 
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CHAPTER 3 

3     EFFECT OF HYDROGEN ON THE INCIPIENT CRACK TIP EVENTS IN α-Fe 

3.1 Introduction 

HE has been a consistent problem in the application of metals in harsh environmental 

settings for decades (Rogers 1968; Merrick 1989; Energy et al. 2004; P. R. Rhodes, 

Skogsberg, and Tuttle 2007). In the past, various mechanisms in the literature including 

hydrogen-enhanced decohesion (HEDE) (Troiano 1960; R. A. Oriani 1972; R. A. Oriani 

and Josephic 1974; Gerberich, Marsh, Hoehn, Venkataraman, Huang, et al. 1993; 

Gerberich, Marsh, Hoehn, Venkataraman, and Huang 1993), hydrogen-enhanced local 

plasticity (Birnbaum and Sofronis 1994; Abraham and Altstetter 1995a; Sofronis, Liang, 

and Aravas 2001a), adsorption-induced Hydrogen dislocation emission (S. P. Lynch 

1988; Y. Liang and Sofronis 2003) and cleavage (Gahr, Grossbeck, and Birnbaum 1977; 

Shih, Robertson, and Birnbaum 1988; Oda and Noguchi 2005) all of which have been 

developed to explain the HE phenomenon in Fe. However, these proposed theories are 

often contradictory resulting in a lack of agreement on the underlying mechanism. For 

instance, whether HE occurs due to dislocation starvation, a significant increase in 

dislocation density due to an increase in dislocation mobility or reduction in 

surface/cohesive energies is still not understood.  

Atomistic (Matsumoto et al. 2009; S. Taketomi, Matsumoto, and Miyazaki 2010; Jun 

Song and Curtin 2011; Jun Song and Curtin 2012; Solanki et al. 2012; Rajagopalan et al. 

2014; Bhatia, Groh, and Solanki 2014) and quantum mechanics-based (Masatake 

Yamaguchi 2011; Zhao and Lu 2011a; Itakura, Kaburaki, and Yamaguchi 2012) 
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simulations have been increasingly utilized in investigations of the fundamental HE 

mechanism. These studies include hydrogen-dislocation core interactions (Zhao and Lu 

2011a; Bhatia, Groh, and Solanki 2014), GB segregation (Solanki et al. 2012; Solanki et 

al. 2013; Rajagopalan, Tschopp, and Solanki 2014) and the effect of hydrogen on crack 

tip events (Matsumoto et al. 2009; S. Taketomi, Matsumoto, and Miyazaki 2010; Jun 

Song and Curtin 2012).  

In this work, we examine the influence of hydrogen on the incipient crack tip events 

in α-Fe. The objective was to gain atomistic insights into stress-corrosion mechanisms for 

HE in iron. A multi-scale approach was employed by utilizing the density functional 

theory (DFT) and atomistic simulations. The effect of hydrogen on generalized stacking 

fault energy was quantified with the help of density functional theory. Further, these 

findings were employed in evaluating the Rice-Thompson criterion to predict the critical 

stress intensity factor required for dislocation nucleation ahead of a crack tip. The 

predicted behavior was compared against the observed incipient crack tip events using 

atomistic simulations for different single crystal orientations in Fe subjected to Mode-I 

loading conditions. It was found that the increasing coverage of hydrogen on the shear 

plane decreases the generalized stacking fault energy, thereby decreasing the critical 

stress intensity factor for dislocation emission. On the other hand, the presence of 

hydrogen reduces the cohesive strength of the material (Jiang and Carter 2004). Further, 

it was found that the presence of hydrogen decreased the critical stress intensity required 

for cleavage and dislocation nucleation in different crack orientations.  
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Therefore, implying the co-existence of both characteristics of HE depending on the 

crack orientation: a) the critical stress intensity factor for dislocation nucleation ahead of 

the crack tip decreases in the presence of hydrogen and b) The presence of hydrogen 

ahead of crack tip promotes brittle behavior by weakening the interatomic bonds along 

the cleavage plane. 

3.2 Methodology 

3.2.1 Generalized Stacking Fault Energies (GSFE) 

Here, DFT calculations to characterize GSFE curves were performed using the 

Vienna Ab-initio Simulation Package (VASP) plane wave electronic structure code 

(Kresse and Hafner 1993; Kresse and Furthmüller 1996a; Kresse and Furthmüller 1996b). 

The generalized stacking fault energy serves as a measure of energy required to nucleate 

a dislocation in a ductile material. The projector augmented wave (PAW) (Blöchl 1994; 

Kresse and Joubert 1999) potentials were used to represent the nuclei and core electrons 

up to the 3p shell with 3d7 and 4s1 as valence electrons for Fe. Exchange and correlation 

was treated with generalized gradient approximation (GGA) using the PBE formulation 

(Perdew, Burke, and Ernzerhof 1997) with an energy cutoff of 380 eV and the Monkhorst 

Pack k-point of 14x18x1. To compute energy differences along the slip directions, 

periodic boundary conditions were maintained along the X <112> and Y <111> 

directions; whereas, a vacuum of 15 Angstrom was introduced along the third direction 

(Z <110> direction). An incremental shear displacement of 0.01% was applied on the top 

of the unit cell along the Y direction. Each displacement increment was followed by a 
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nonlinear conjugate gradient energy minimization process with energy criteria of 0.1 

meV on each atom.  

3.2.2 Studying the Incipient Crack Tip Response with Mode I Fracture Specimens 

A parallel molecular dynamics code (large-scale atomic/molecular massively parallel 

simulator, LAMMPS (Plimpton 1995)) with a semi-empirical embedded atom method 

(EAM) (M. S. Daw and Baskes 1984) potential was used to study the role of H on plastic 

events and the subsequent crack dynamic behavior in (111) [112̅] (Orientation-I) and 

(010) [101̅] (Orientation-II) crack orientations (refer Table 1 for details). For an 

overview of atomistic simulations refer to Appendix A. In this work, we employed the 

EAM potential of Ramasubramaniam et al. (Ashwin Ramasubramaniam, Itakura, and 

Carter 2009a) to describe the Fe-H system, which is based on the Fe EAM potential of 

Hepburn and Ackland (Hepburn and Ackland 2008). The Fe-H potential was 

parameterized using an extensive database of energies and configurations from DFT 

calculations of the dissolution and diffusion of hydrogen in bulk -Fe, the binding of 

hydrogen to free surfaces, vacancies and dislocations as well as other cross interactions 

between hydrogen and Fe. Moreover, the binding and the formation energies 

corresponding to multiple hydrogen-segregations to bulk -Fe are consistent with the 

values predicted using ab initio calculations and experimentation (Hayward and Deo 

2011a). This potential has been used to study hydrogen-dislocation core interactions 

(Shinya Taketomi, Matsumoto, and Miyazaki 2008; Zhao and Lu 2011b), GB segregation 

(Matsui, Kimura, and Moriya 1979; Masatake Yamaguchi 2011; Solanki et al. 2012; 

Rajagopalan, Tschopp, and Solanki 2014) and subsequent decohesion (Solanki et al. 

2013) as well as the effect of hydrogen on generalized stacking fault energies (Shinya 
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Taketomi, Matsumoto, and Miyazaki 2010) and surface energies (Ashwin 

Ramasubramaniam, Itakura, and Carter 2009b; Jiang and Carter 2003), and it has shown 

good agreement with DFT results. Therefore, in this work the aforementioned potential 

was deemed appropriate for studying the role of hydrogen on crack tip deformation. 

Molecular statics (0 K) fracture simulations were performed using the displacement 

field corresponding to a semi-infinite crack being subject to stress intensity factor (KI) at 

infinity (Figure 3). These simulations were used to quantify the critical stress intensity 

factor for the first plastic/cleavage event from the crack tip and to corroborate with the 

Rice-Thompson predictions. The cylindrical specimens were loaded along the X (u), Y 

(v) and Z (w) directions using the following conditions: 

 

Figure 3: The geometric representation of a fracture specimen that was subjected to 

Mode-I loading by displacing boundary atoms using the molecular statics framework. 
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where  𝐾𝐼 is the stress intensity factor for a Mode-I loading, 𝜗 is the Poisson’s ratio (𝜗 = 

0.3), E is the Young’s modulus (E = 230 GPa), and r and 𝜃 are the polar coordinates 

defined from the crack tip as shown in Figure 3. These displacement boundary conditions 

were applied to atoms within 1 nm of the cylindrical surface as shown in Figure 3. The 

displacement fields were varied by incrementally changing the stress intensity factor (ΔK 

= 1.5 x 10-3 MPa√𝑚) (Ringdalen Vatne et al. 2013; Ko et al. 2013). The boundary along 

the Z direction was modeled with a periodic boundary condition while the X and Y 

boundaries were modeled as free surfaces. The minimum dimension for the entire 

specimen at equilibrium was approximately 20 nm in radius and was 4 nm thick along the 

Z direction (~300,000 atoms). Atoms were deleted to create an atomistically sharp crack 

of 4 nm length. Each displacement increment was followed by a nonlinear conjugate 

gradient energy minimization process. 

Table 1: The different crystallographic orientations employed in the Mode-I specimen 

 X Y Z 

Orientation-I  [100] [010] [001] 

Orientation-II  [1̅10] [111] [112̅] 

Orientation-III  [1̅01̅] [010] [101̅] 

 

3.3 Results 

3.3.1 Theoretical Analysis of the Effect of Hydrogen on the Incipient Crack Tip Behavior    

The effect of hydrogen on the generalized stacking fault energy (GSFE) curve of Fe was 

plotted as a function of shearing distance along the Burgers vector direction (
𝑎

2
〈111〉) 

(Figure 4a). The presence of segregated hydrogen atoms in the vicinity of the shear plane 
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significantly decreases the stacking fault energy barrier (Figure 4a). Further, the Rice-

Thompson (RT) criterion (Rice 1992) was employed to predict the critical stress intensity 

factor for a dislocation nucleation ahead of the crack tip. The RT criterion is dependent 

on the angle between normal to the crack tip and the slip direction (ϕ) and f defines the 

geometry factor dependent on the angle between the slip plane and crack plane. 

𝐾𝑑𝑖𝑠𝑙 ≥ 𝑓√
2𝜇𝛾𝑢𝑠

1 − 𝜗
[1 + (1 − 𝜗)𝑡𝑎𝑛𝜙] (2) 

where 𝜇 is the shear modulus. To quantify the effect of hydrogen on critical stress intensity 

factor, we used the calculated unstable stacking fault energy (𝛾𝑢𝑠)  from Figure 4b.  

The effect of hydrogen on critical stress intensity factor was quantified with the help of 

the change in unstable stacking fault energy in the presence of hydrogen (Figure 4b). It 

was found that increasing hydrogen concentrations decrease the critical stress intensity 

factor required for dislocation nucleation ahead of the crack tip (Figure 4c). This creates 

opportunities for localized plasticity, which is consistent with the available experimental 

data. Therefore, the theoretical analysis appears to be consistent with the mechanisms  

suggested in the HELP model (Birnbaum and Sofronis 1994) and AIDE model (S. P. 

Lynch 1988). However, examining the effect of hydrogen on the crack tip deformation in 

a continuum framework several assumptions are made. For instance, the competition 

between the crack tip events is evaluated for an athermal scenario (T = 0 K). Further, the 

analysis ignores the anistropic effect in estimating the dislocation emission. Lastly, there 

is no accountability for dislocations processes not directly related to the crack tip 
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deformation. Therefore, the RT criterion can only serve as an indicative tool for studying 

the effect of hydrogen on incipient crack tip events. 

    

 

Figure 4: a) The effect of hydrogen on the generalized stacking fault energy for Fe. b) 

The effect of hydrogen coverage on the unstable stacking fault energy in Fe. c) The 

resultant change in critical stress intensity factor for dislocation nucleation using the 

Rice-Thompson criterion. 

3.3.2 Effect of Hydrogen on the Incipient Crack Tip Events in Iron 

3.3.2.1 Orientation-I  

The influence of hydrogen on the incipient events for the (010)[001] crack 

orientation was examined here. In the absence of hydrogen at the crack tip, the crack 

growth takes place along the (110) plane at a critical stress intensity factor of 0.59 
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MPa√𝑚 (Figure 5a). This is consistent with surface energy variations in iron, the (110) 

plane has the lowest surface energy.  

An initial concentration (𝑐0) of  4 × 10−4 of hydrogen was introduced ahead of the crack 

tip. The presence of hydrogen reduces the critical stress intensity factor (0.48 MPa√𝑚) 

required for initiation of cleavage behavior along the (110) plane (Figure 5b).  

    

 

Figure 5: a) The incipient cleavage crack advance along the (110) plane for the 

(010)[001] orientation is in agreement with the theoretical predictions. b) The presence 

of a hydrogen rich environment ahead of the crack tip reduces the critical stress intensity 

factor required for cleavage. The atoms were colored according to atomic volume 

estimated by the Voronoi tessellation. 

3.3.2.2 Orientation-II  

Here, we investigate the interplay between various embrittlement mechanisms 

observed in hydrogen rich environments by examining the incipient crack tip event for 

the (111)[112̅] crack orientation. The presence of hydrogen on the slip plane where 

dislocation nucleation took place for pure Fe causes the dislocation nucleation to occur 

on another plane (Figure 6) similar results have been seen for the dislocation emission in 

a Ni-H system (J. Song, Soare, and Curtin 2010).  
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Thus, it was found that the presence of hydrogen ahead of the crack tip decreases the 

critical stress intensity factor required for dislocation nucleation. However, the 

dislocation propagation was preferred along an alternate slip plane that was free of 

hydrogen (see Figure 6b). 

                

Figure 6: a) The emission of an edge dislocation ahead of the crack tip with an orientation 

of (111)[112̅]. b) The presence of H shifts the slip plane away from the H rich 

environment. The atoms were colored according to common neighbor analysis (CNA) 

such that BCC atoms are blue and defects white and hydrogen atoms were depicted with 

red color. 

An edge dislocation was nucleated with a Burgers vector of 
𝑎

2
[111] at KI = 1.35 

MPa.m1/2 (Figure 7a). In the presence of hydrogen ahead of the crack tip, the nucleation 

of the dislocation took place at 𝐾𝐼 = 1.2 MPa.m1/2 (Figure 7b). The critical stress intensity 

factor for the dislocation emission decreases in the presence of hydrogen, promoting an 

increase in plastic behavior during deformation (S. P. Lynch 1984). However, the edge 

dislocation gets pinned in a hydrogen atmosphere until 𝐾𝐼 reaches 1.4 MPa.m1/2 (Figure 

7c). This is in agreement with previous findings in literature (P. Ferreira, Robertson, and 

Birnbaum 1998; P. J. Ferreira, Robertson, and Birnbaum 1999; Tapasa, Osetsky, and 

Bacon 2007; I. Robertson and Birnbaum 1986; Bhatia, Groh, and Solanki 2014) that 

solute rich environments present an obstacle to dislocation motion. However, the 

hardening provided by a hydrogen atmosphere is relatively small compared to carbon, 
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and is only observable at the small time scales accessed by atomistic simulations. 

Hydrogen has a high diffusivity at room temperature in iron to move along with the 

glissile dislocations and provides a shielding effect on the interactions between 

dislocations. Thus, creating conditions for enhanced mobility at room temperature (S. 

Wang et al. 2014; P. J. Ferreira, Robertson, and Birnbaum 1999; P. Ferreira, Robertson, 

and Birnbaum 1998; I. Robertson and Birnbaum 1986).

               

                                          

Figure 7: The effect of H coverage on the critical stress intensity factor for a dislocation 

nucleation in (111)[112̅]. a) The hydrogen free crack tip event had a nucleation of edge 

dislocation. b) The incipient events when H atoms were placed along the slip plane lead 

to a decrease in the critical stress intensity factor required for the dislocation nucleation. 

c) The effect of a H rich region on the dislocation mobility. The atoms were colored 

according to CNA, where blue represents the BCC lattice atoms, white represents the 

defect atoms and red represents the hydrogen atoms. 

3.3.2.3 Orientation-III  

The crack plane was oriented along the (010) plane and the crack front along the 

[101̅] direction. This orientation is known to exhibit crack propagation along the (010) 
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cleavage plane under the Mode I fracture. The effect of H ahead of the crack tip on brittle 

fracture behavior was studied by random addition of H atoms along the cleavage plane 

ahead of the crack tip. The critical stress intensity factor for the crack growth decreased 

from 0.85 MPa.m1/2 to 0.73 MPa.m1/2 in the presence of hydrogen (Figure 7). These 

findings clearly show that hydrogen reduces the material resistance during brittle fracture 

(HEDE). 
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Figure 8: The effect of H coverage on the crack tip deformation for the (010)[101̅] crack 

orientation. a-b) show the crack tip events for a hydrogen free crack tip. c-d) shows 

premature crack propagation, due to the presence of H atoms ahead of the crack tip. The 

dashed curve outlines the initial crack geometry. The atoms were colored according to 

CNA, blue represents the BCC lattice atoms, white the defect atoms and red the hydrogen 

atoms.  

3.4 Conclusions 

The following conclusions can be drawn based on studying the influence of hydrogen 

on the incipient crack tip events in α-Fe: 

1. The presence of hydrogen has a dual role on the dislocation motion in α-Fe as it 

aids in the nucleation of dislocation from the crack tip. Simultaneously, the 

hydrogen rich atmosphere offers an initial microscopic resistance to the dislocation 

motion. The hydrogen atoms have an energetic preference to segregate around the 

dislocation core (Bhatia, Groh, and Solanki 2014). However, the resistance is only 

observable at the small time scales examined by atomistic simulations as at room 

temperature hydrogen readily diffuses along with mobile dislocations.  

2. The presence of hydrogen atoms ahead of the crack tip were found to reduce the 

work done for initiating a cleavage fracture. 
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3. In this study, we have successfully demonstrated the co-existence of both 

characteristics of HE: a) the hydrogen enhanced plasticity where the critical stress 

intensity factor for dislocation nucleation ahead of the crack tip decreases and a 

shielding effect is created by the segregation of hydrogen atoms around the 

dislocation, thereby reducing dislocation-dislocation interaction (Bhatia and 

Solanki 2013) and enhancing the mobility of dislocations (HELP); b) The presence 

of hydrogen reduces the work of decohesion by reducing the strength of 

interatomic bonds on the cleavage plane.  
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  CHAPTER 4 

4     THE ROLE OF GRAIN BOUNDARY STRUCTURE ON HYDROGEN 

SEGREGATION  

4.1 Introduction 

Grain boundaries act as preferential sites for impurity segregation (Sadananda and 

Vasudevan 2011; S. Lynch 2012; Barnoush and Vehoff 2010; Solanki et al. 2012; 

Birnbaum and Sofronis 1994). Aggregation of sufficient concentration at the interface 

can lead to a sudden intergranular failure (Rice and Wang 1989). This is a serious 

problem for structural components in aggressive environments such as α-Fe based alloys 

that fail catastrophically in the presence of dilute NaCl solutions. The degrading effects 

of HE were first observed almost 140 years back (Johnson 1874). Since, a great deal of 

research on understanding the HE mechanism has been carried out (Pfeil 1926; Vehoff 

and Rothe 1983; Shih, Robertson, and Birnbaum 1988; P. Ferreira, Robertson, and 

Birnbaum 1998; Birnbaum and Sofronis 1994; Lufrano, Sofronis, and Birnbaum 1998). 

Due to the high diffusivity, the hydrogen atoms permeate the microstructure rapidly 

along the GB networks, dislocations and voids etc leading to mechanical degradation. 

However, it is the intergranular embrittlement that leads to a sudden catastrophic failure. 

The susceptibility to intergranular fracture increases in the presence of adequate 

hydrogen concentration at the interface (Banerji, McMahon, and Feng 1978; McMahon Jr 

and Vitek 1979; Masatake Yamaguchi et al. 2011; McMahon 2001; Solanki et al. 2012; 

Rajagopalan, Tschopp, and Solanki 2014). The GB engineering approach tailors the 

microstructure with certain interfaces to mitigate intergranular fracture. Significant 
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progress has been made to develop embrittlement-resistant material systems through this 

approach (Palumbo, Doyle, et al. 1991; Palumbo, King, et al. 1991; Watanabe 1994; 

Aust, Erb, and Palumbo 1994; Watanabe and Tsurekawa 1999; Bechtle et al. 2009; 

Kobayashi et al. 2011). The fundamental step is the identification of the type of the 

relation that exists between the underlying GB structure and the segregation energy 

landscape in a quantitative manner. The solute segregation behavior is known to be 

greatly influenced the local atomic structure. This in turn affects the intergranular fracture 

behavior (Hondros et al. 1996; Lejček and Hofmann 1995; Lejček, Hofmann, and Paidar 

2003).  For instance, “special” low energy GBs such as twin GBs exhibit limited 

segregation potency and are, thus highly resistant to embrittlement (Masatake Yamaguchi 

et al. 2011; Masatake Yamaguchi 2011; Solanki et al. 2012; N. R. Rhodes, Tschopp, and 

Solanki 2013; Rajagopalan, Tschopp, and Solanki 2014; Tschopp et al. 2014). The GB 

character often encompasses the macroscopic degrees of freedom. In other words, it 

describes the five degrees of freedom associated with the misorientation between the 

crystallographic orientations of the two adjoining grains. Three degrees of freedom are 

used to define the misorientation between the two grains and two degrees of freedom are 

associated with the GB plane. The microscopic degrees of freedom cover the local 

structure arrangement that are dependent on the translations between adjoining grains 

which is important as well as the localized dislocation structure of the boundary.  

In the past few decades, a lot of research has been conducted on developing 

techniques to describe the grain boundary’s degrees of freedom (Burgers 1940; Bragg 

and Nye 1947; Read and Shockley 1950; Bishop and Chalmers 1968; Hirth and Balluffi 

1973; Hirth 1974; Grimmer, Bollmann, and Warrington 1974; Pond, Smith, and Vitek 
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1979; A. P. Sutton and Vitek 1980) and their influence on physical properties. These 

models have utilized dislocation arrays, disclinations and coincident site lattice (CSL) to 

describe microscopic and macroscopic degrees of freedom of GBs. Based on identifying 

the favored GB for the corresponding GB systems, these methodologies (A. Sutton and 

Vitek 1983; Rittner and Seidman 1996; Bristowe and Crocker 1978; Pond 1979; Pond, 

Smith, and Vitek 1979; Ingle and Crocker 1980; Vitek, Smith, and Pond 1980; A. Sutton 

1982; A. Sutton 1989) described the structural elements comprising symmetric tilt, 

asymmetric tilt, twist and twin GBs. They determined that the favored GBs are entirely 

composed of unique structural units that cannot be decomposed into other GB structures. 

Experimentally, GB structure has been observed using field ion microscopy and high 

resolution transmission electron microscopy (Brandon 1966; Pond 1977; Balluffi 1977; 

Bristowe and Crocker 1978; Merkle and Wolf 1992). 

Experimental studies are often limited in examining solute segregation near GBs 

because of the complicated atomic structure. On the other hand, atomistic and first 

principle calculations can be effectively utilized to explore the complicated interactions 

between the GB structure and solute atoms (Masatake Yamaguchi, Shiga, and Kaburaki 

2004; M. Yamaguchi, Nishiyama, and Kaburaki 2007; Masatake Yamaguchi 2011; 

Solanki et al. 2012; Rajagopalan, Tschopp, and Solanki 2014; Tschopp et al. 2012b). For 

instance, Yamaguchi et al. (Masatake Yamaguchi 2011) used density functional theory to 

examine the segregation of boron and carbon to iron GBs and found that these trace 

elements can be beneficial by strengthening GB cohesion. These results indicate that the 

segregation behavior of these elements plays an important role in GB embrittlement or 

strengthening (Cr) behavior. Further, the presence of sulphur and hydrogen was found to 
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drastically decrease the cohesive strength. These results highlight the importance of the 

solute elements on the embrittlement/strengthening mechanism at the GB. Additionally, 

the underlying GB structure can greatly influence the segregation behavior. The 

segregation behavior of solutes/vacancies around microstructural features such as grain 

boundaries, dislocation core and TJs have been examined to understand the role of the 

underlying atomic structure (Solanki et al. 2012; N. R. Rhodes, Tschopp, and Solanki 

2013; Rajagopalan, Tschopp, and Solanki 2014; Bhatia and Solanki 2013; Adlakha and 

Solanki 2015). These studies provide a generalized framework for exploring how GB 

character over a large number of boundaries can affect the solute segregation behavior. 

Molecular statics simulations were employed to investigate the influence of the 

underlying atomic structure on the hydrogen segregation behavior and the consequent 

embrittlement for the Fe-H system. A database consisting of <100>, <110>, <111> and 

<112> symmetric tilt GBs in α-Fe were generated at 0 K with the help of LAMMPS 

(Plimpton 1995). In this work, two hydrogen defect configurations were examined: a) a 

single hydrogen atom at an interstitial and b) two hydrogen atoms at an interstitial. The 

following research shows that both the GB structure and the hydrogen defect 

configuration play a significant role in hydrogen segregation and the subsequent 

embrittlement of α-Fe. However, an increased energetic preference due to the hydrogen-

hydrogen interaction was found for the case of two hydrogen atoms at an interstitial site. 

Finally, a physically motivated model capturing the probabilistic segregation behavior 

was developed for various hydrogen defect configurations thereby enabling the 

identification of GB interfaces for mitigating the HE by using the intrinsic properties of 

the interface. 
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4.2 Methodology 

Molecular statics simulations using the semi-empirical embedded atom method 

(EAM) (Murray S. Daw and Baskes 1983; M. S. Daw and Baskes 1984) potentials were 

used to describe the Fe-H system (Ashwin Ramasubramaniam, Itakura, and Carter 

2009a). The reader is encouraged to refer to Appendix A for an overview to atomistic 

simulation methods. This potential was parameterized using an extensive database of 

energies and configurations from DFT calculations of dissolution and diffusion of H in 

bulk -Fe, the binding of H to free surfaces, vacancies and dislocations as well as other 

cross interactions between H and Fe atoms. The formation and binding energies of 

multiple H atoms within a monovacancy in bulk -Fe using this potential were found to 

be in good agreement with DFT predictions and experiments (Hayward and Deo 2011a). 

The equilibrium 0 K GB structure and energy was calculated using a bicrystal 

computational cell with three-dimensional (3D) periodic boundary conditions consisting 

of two grains. The minimum distance between the two periodic boundaries in each 

computational cell was 12 nm (see Figure 9a). As with past work (Tschopp, Spearot, and 

McDowell 2008; Tschopp et al. 2012b; Solanki et al. 2012), an atom deletion criterion 

along with multiple initial configurations with various in-plane rigid body translations 

were utilized to accurately obtain an optimal minimum energy GB structure via the 

nonlinear conjugate gradient energy minimization process.  

A large database consisting of <100>, <110>, <111> and <112> symmetric tilt grain 

boundaries (STGBs) in α-Fe were generated at 0 K. Next, the segregation behavior of 

various defect configurations was computed for the database of GBs. This was carried out 

by examining the atomic sites within a distance of 15 Å of the GB plane as possible 
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defect sites. In this study, we focus on interstitial instead of the substitutional 

configurations, as the previous study established the energetic preference for hydrogen to 

occupy an interstitial site rather than the substitutional site in α-Fe (Solanki et al. 2012). 

For the interstitial hydrogen, the hydrogen atom was placed 0.5 Å away from the Fe atom 

in a direction parallel to the GB plane. For the two hydrogen interstitial configuration, the 

hydrogen atoms were placed 0.5 Å away from the Fe atom along two orthogonal 

directions parallel to the GB plane (Figure 9b). In this manner, each hydrogen defect 

configuration is associated with a GB atomic site in the minimum energy structure. In the 

remainder of the analysis, the spatial locations of the initial defect sites are used for 

subsequent analyses involving distances, such as for GB distances. 

For each atomic site (α) for a particular GB these hydrogen defect configurations 

were placed and the simulation cell was relaxed using the nonlinear conjugate gradient 

energy minimization process. The potential energy of the computational cell was 

calculated and the process was repeated for each atomic site across various GBs. The 

segregation energy of the interstitial hydrogen defect configuration for an atomic site α 

was calculated as follows: 

𝐸𝑠𝑒𝑔
𝛼 = (𝐸𝐺𝐵

𝛼 − 𝐸𝐺𝐵) − (𝐸𝑏𝑢𝑙𝑘
𝐻 − 𝐸𝑏𝑢𝑙𝑘) (3) 

where, 𝐸𝐺𝐵
𝛼  and 𝐸𝐺𝐵 are the potential energies of the GB structure with and without  the 

hydrogen defect configuration. 𝐸𝑏𝑢𝑙𝑘
𝐻  and 𝐸𝑏𝑢𝑙𝑘 are the potential energies of a single 

crystal bulk Fe simulation cell with and without the hydrogen defect configuration.  
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The embrittlement of -Fe GBs in the presence of hydrogen was quantified by 

assessing the cohesive energy of the GB interface (2𝛾𝑖𝑛𝑡), which is the energy difference 

between the fractured surface (2𝛾) and the GB (𝐸𝑔𝑏
𝛼 ) at atomic site α [47]. In this case, 

for example, the GB energy (𝐸𝑔𝑏
𝛼 ) with hydrogen at atomic site α was calculated as 

𝐸𝑔𝑏
𝛼 = 𝐸𝐺𝐵 + 𝐸𝑠𝑒𝑔

𝛼  (4) 

where, 𝐸𝐺𝐵 is the GB energy without hydrogen. The energy required to create surface 

along the GB plane in bulk with hydrogen (2𝛾) at atomic site α was calculated as 

2𝛾 = 2𝛾𝑠 + 𝐸𝑠
𝛼 (5) 

where 2𝛾𝑠 is the surface energy without hydrogen and 𝐸𝑠
𝛼  is the segregation energy of 

hydrogen on the free surfaces 2(𝛾 − 𝛾𝑠). Hence, the cohesive energy (2𝛾𝑖𝑛𝑡) of the GB in 

the presence of H is given by 

2𝛾𝑖𝑛𝑡 = 2𝛾 − 𝐸𝑔𝑏
𝛼 = 2𝛾𝑠 + 𝐸𝑠

𝛼 − (𝐸𝑔𝑏 + 𝐸𝑠𝑒𝑔
𝛼 ) (6) 

Grain boundary embrittlement occurs when the presence of hydrogen reduces the 

cohesive energy of the interface (2𝛾𝑖𝑛𝑡) in comparison to the hydrogen free interface. 

The increasing segregation of hydrogen to the interface can cause a significant drop in 

cohesive strength, resulting in an intergranular failure. 

4.3 Results 

A range of GB structures that represent the variation in the GB character distribution 

in a polycrystalline sample were used to investigate the hydrogen segregation behavior. 

As an example, the GB energy as a function of  the misorientation angle for the <110> 

STGB system is shown in Figure 9c; this is comparable to what has been previously 
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reported in the literature (A. Sutton and Vitek 1983; Solanki et al. 2012; Tschopp et al. 

2012b; Tschopp et al. 2011; Rajagopalan, Tschopp, and Solanki 2014). The low-order 

CSL <110> STGBs (i.e., Σ3, Σ11 and Σ9 boundaries) are highlighted in Figure 9c. The 

two deep cusps are the Σ 3 (112) twin boundary (262 mJ/m2) and the Σ 11 (332) (1039 

mJ/m2) (Figure 9c). 
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Figure 9: (a) The periodic simulation cell setup with two symmetric GB interfaces spaced 

12 nm apart. The minimum periodic lengths in the orthogonal directions parallel to the 

GB plane were 3 and 7 Å. (b) The body-centered cubic unit cell with the hydrogen 

configurations: single hydrogen and two hydrogen in an interstitial site. (c) <110> 

symmetric tilt grain boundary energy as a function of misorientation angle with the low-Σ 

GBs identified.  

The atomic structure for a few selected GBs is shown in Figure 10 with the help of 

atomic volume variation at the interface. The Σ5 GBs can be described as a “favored” GB 

as described by Sutton and Vitek (A. Sutton and Vitek 1983; A. Sutton 1989). According 

to the structural unit method, for each tilt axis there are a set of GB structures (favored 

GBs) that can aid in the structural decomposition of high angle GBs (A. Sutton 1989).  
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Figure 10: The GB structures are highlighted with the help of the atomic volume 

estimated by Voronoi tessellation (Vvor). Atomic volume is maximum (14.8 Å3) at the GB 

and decays to the bulk value (11.6 Å3). 

The segregation energy as a function of the normalized interplanar distance (d/dhkl, where 

d is the distance of the atomic site from the GB plane and dhkl is the interplanar distance 

of {hkl} plane in the bulk crystal) for the <111>, <110> and <100> tilt GBs was plotted 

in Figure 11. Due to the symmetric nature of the examined GBs, the magnitude of the 

normalized interplanar distance was used for the analysis. In an attempt to analyze the 

segregation behavior for all the GBs the site to site variation was divided into 1 Å bins. In 

Figure 11, the mean segregation energy (green dots) was found generally to be least for 

the atomic sites located one atomic layer away (d/dhkl) from the GB, and the mean 

segregation energy converged to the bulk value further away from the interface. The red 

line in Figure 11 represents the median of the data while the top and bottom edges of the 

blue boxes represent the 25th and 75th percentiles. The dashed extremities of the box 

represent the range of energies for each bin, and the ends of the box denote the maximum 

and minimum values of the segregation energies for each bin. Positive segregation 

energies shown in Figure 10 suggest that it is not always energetically favorable for 
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interstitial H to segregate to the GB (i.e., some sites would in fact increase the total 

system energy). The mean behavior (with deviation) and the extreme value statistics 

shown in Figure 11 are critical for bridging the gap from the nanoscale to higher length 

scales. For example, a phase field model of impurity segregation would require both the 

energetics (i.e., computed herein) and kinetics to model the evolution of an 

inhomogeneous distribution of impurities in a polycrystalline solid solution. 
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Figure 11: The segregation energy of an interstitial hydrogen atom as a function of 

distance from the GB for <100>, <110> and <111> STGBs. The segregation energies 

were divided into 1 Å bins. The red lines are medians, the blue box ends are the 25th and 

75th percentiles, the black whisker ends are extreme minimum and maximum values, and 

the green dotted lines are mean segregation energies.  

The energy required for the second hydrogen atom to occupy a position next to the 

first hydrogen atom was found to be non-additive in nature, due to the strong hydrogen-

hydrogen interaction.  The defect configurations exhibit a strong affinity for segregation 
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along the atomic plane adjacent to the GB plane (d/dhkl = 1). Therefore, the segregation 

energies at d/dhkl = 1 for all the GBs were mapped onto a stereographic triangle as a filled 

contour for both the defect configurations (Figure 12). This methodology helps in 

identification of GBs that can act as an effective sink or exhibit a very low energetic drive 

for hydrogen segregation. The single hydrogen segregation energy to a Σ3 (111), θ = 

109.47° GB reported here was found to be in good agreement with the previously 

reported values in literature (He et al. 2013; Solanki et al. 2012; Masatake Yamaguchi 

2011; Rajagopalan, Tschopp, and Solanki 2014). Since segregation has a direct influence 

on the GB cohesive energy (by reducing the interface energy), it is critical to identify 

interfaces that exhibit a low energetic drive for hydrogen.  

                        

Figure 12: The segregation energies at d/d{hkl} = 1 (one atomic layer away from the GB 

plane) for the two defect configurations and various <100>, <110>, <111> and <112> 

STGBs was plotted on the stereographic triangle using the polar and azimuthal angles. 

The color bar corresponds to the maximum and minimum segregation energy thresholds 

for both hydrogen defect configurations.  

To quantify and validate the correlation between the thermodynamic properties of the 

GB on the segregation behavior, an analytical model was formulated. The simplified 

model captures the intrinsic GB properties influencing the segregation behavior and 



 

44 

decay with the help of a Gaussian formulation with two parameters (α and β). The 

segregation energy as a function of distance from the GB plane is given by: 

                                    𝐸𝑠𝑒𝑔 = 𝛼𝑒𝑥𝑝 (−(
𝑑/𝑑ℎ𝑘𝑙

𝛽
)
2

) eV                                  (7) 

where, 𝛼 represents the innate segregation propensity and β is related to the segregation 

length scale for each defect configuration. For each interface in a particular tilt system, 𝛼 

and 𝛽 were extracted using Equation 7 for both the defect configurations (refer to Table 2 

for mean values). The segregation propensity (𝛼) and length scale (𝛽) increase with the 

addition of hydrogen interstitially to the defect configuration (Table 2).  

Table 2: Mean statistics for Gaussian distribution of one-interstitial (H-int) and two-

interstitial hydrogen (2H-int) segregation to α-Fe STGBs. 

GB system 
H-int 2H-int 

α (eV) β  R R2 α (eV) β R R2 
<100> -0.46 -1.64 0.89 0.8 -1.59 -3.51 0.91 0.82 

<110> -0.71 -3.86 0.91 0.83 -1.61 -3.99 0.92 0.84 

<111> -0.44 -2.75 0.91 0.82 -1.26 -3.98 0.91 0.82 

<112> -0.53 -2.91 0.96 0.92 -1.61 -3.35 0.94 0.88 

 

The site to site atomic volume variation plays a major role in dictating the 

segregation behavior, and our findings indicate the existence of a strong correlation 

between the atomic volume and the segregation energy (Table 2). In other words the GBs 

with a high atomic volume exhibit a higher segregation propensity for hydrogen defect 

configurations than the interfaces with a lower atomic volume. The linear correlation 

factor (R) and coefficient of determination (R2) were found to determine the relationship 

between interfaces structural properties and segregation behavior.  In general, R indicates 

the strength and nature of the linear correlation between two variables whereas R2 

represents the percentage of data points that are closest to the line of best fit.  
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The equation describing the linear relation between the segregation propensity (𝛼) and 

the maximum atomic volume at the interface (𝑉𝑣𝑜𝑟) is given by 

 

                                                𝛼 = p1 ∗ 𝑉𝑣𝑜𝑟 + p2                                           (8) 

where, p1 and p2 are the coefficient variables relating the segregation propensity of the 

defect configuration with the site to site atomic volume variation around the interface 

(Table 3). Since, the segregation propensity (𝛼) varies linearly with atomic volume 

(𝑉𝑣𝑜𝑟), GBs with enhanced segregation tendency can be effectively identified using GB 

metrics such as atomic volume . 

Table 3: A list of the coefficient variables (p1 and p2) values with varying defect 

configurations and GB tilt systems extracted using Equation 8. The R (linear coefficient 

factor) values indicate a very strong correlation between the distribution parameter (𝛼) 

and atomic volume (𝑉𝑣𝑜𝑟). 

GB 

system 

H-int 2H-int 

p1 (eV/Å3) p2 (eV) R R2 
p1 

(eV/Å3) 

p2 

(eV) 
R R2 

<100> -0.15 1.66 -0.87 0.76 -0.78 9.37 -0.8 0.64 

<110> -0.16 1.66 -0.86 0.75 -0.32 2.52 -0.57 0.33 

<111> -0.29 3.3 -0.73 0.54 -0.96 10.89 -0.9 0.80 

<112> -0.49 6.06 -0.82 0.67 -0.83 4.89 -0.81 0.65 

 

 Additionally, a strong positive correlation was identified between the magnitude of  

𝛽 and segregation length scale (Table 4). The segregation length scale accurately 

describes the GB strain decay and was calculated from the segregation data based on the 

three standard deviation (3𝜎) criterion. In the case of a hydrogen atom at an interstitial 

site, the segregation length scale corresponding to the <100> and <111> was found to be 

lower in comparison to the <110> and <112> tilt GBs. The equation describing the 
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relation between the segregation length scale parameter (𝛽)  and the GB strain length 

scale (l) is given by 

                                                       |β| = p3*l + p4                                             (9) 

 where, p3 and p4 are the coefficient variables. The values of p3 and p4 for each tilt system 

and defect configuration are indicated in Table 4. The magnitude of  𝛽 varies linearly with 

segregation length scale thereby indicating a correlation between segregation energy and 

the inherent GB strain energy length scale. 

Table 4: The symmetric tilt GBs with the corresponding p3 and p4 (coefficient) values 

for both hydrogen defect configuration were extracted using Equation 9. The R (linear 

coefficient factor) values indicate a very strong correlation between the distribution 

parameter, β and length scale, l. 

GB system 
H-int 2H-int 

p3  p4  R R2 p3  p4  R R2 

<100> 0.26 0.74 0.84 0.7 0.3 0.01 0.77 0.6 

<110> 1.3 -8.88 0.84 0.7 0.32 -0.01 0.77 0.6 

<111> 0.56 -1.74 0.84 0.7 0.23 1.6 0.77 0.6 

<112> 0.96 -7.48 0.84 0.7 0.31 -0.16 0.84 0.7 

 

The aforementioned analysis shows that hydrogen defect configurations strongly 

segregate to the GB, which eventually leads to embrittlement. To elucidate the influence 

of hydrogen on the GB energy (Equation 4) and the cohesive energy (Equation 6), 

cleavage failure occurs when 2𝛾𝑖𝑛𝑡 = 2𝛾 (since 𝐸𝑔𝑏
𝛼 ≅ 0). A decrease in the GB energy 

(𝐸𝑔𝑏
𝛼 ) was observed with increasing local hydrogen concentration as shown in Figure 13. 

As 𝐸𝑔𝑏
𝛼  approaches zero, there is no more energy to be gained by hydrogen trapping. This 

limit indicates the trapping concentration of hydrogen for this particular interface. To 

illustrate this the local hydrogen trapping limit for the 53 (720), θ = 31.89° interface 
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was found to be 4.4% (0.072 hydrogen atoms/nm2), which resulted in decohesion 

(2𝛾𝑖𝑛𝑡 = 2𝛾) of the interface leading to a brittle failure (Figure 13). Moreover, it was 

found that the underlying GB structure has a strong influence on the trapping limit for 

hydrogen. In the case of the 17 (410), θ = 28.07° GB, the local hydrogen trapping limit 

was found to be ~7% (0.096 hydrogen atoms/nm2), as compared to 4.4% (0.072 hydrogen 

atoms/nm2) for the 53 (720) interface. 

 

Figure 13: The evolution of hydrogen segregated GB energy (𝐸𝑔𝑏
𝛼 ) as a function of local 

hydrogen concentrations for the 53 (720), θ = 31.89°. As the change in GB energy 

(𝐸𝑔𝑏
𝛼 ) approaches zero, there is no significant energy to be gained from further trapping 

hydrogen atoms at the boundary. This transition demarcates the trapping limit of 

hydrogen for this interface. 

These findings quantify the crucial role played by the GB character in determining 

the hydrogen segregation behavior around the interface. Hence, the analysis employed in 

this work can aid in the identification of GBs with limited segregation propensity using 

intrinsic GB characteristics such as the misorientation, GB energy and site to site atomic 

volume around the interface.  
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4.4 Conclusions 

In this work, we investigated the variation in single and two hydrogen interstitial 

segregation behavior for a large database of α-Fe symmetric tilt GBs. The following 

conclusions can be drawn from this work: 

1. In general, the GB tilt axes (e.g. <100>, <110> and <111> tilt directions) had a lesser 

effect than the type of hydrogen defect configuration (see Figure 11 and 12). For 

instance, the segregation energy of <111> tilt GBs for a hydrogen atom at an 

interstitial site along the GB plane was ~99 % of the <100> tilt interfaces (Figure 11). 

On the other hand, the segregation energy of the <100> tilt GBs with hydrogen at an 

interstitial site was found to be about ~23% of the segregation energy of two 

hydrogen atoms at an interstitial site (Figure 12). Thus, the increased energetic 

preference due to the hydrogen-hydrogen interaction was found to be ~54% of the 

segregation energy of two hydrogen atoms at an interstitial site, creating a large 

driving force for two hydrogen atoms to reside alongside each other at the GB. An 

important implication of this is that this can cause a cross-over from a ductile regime 

to a brittle regime (S. Lynch 2012; Vehoff and Rothe 1983).  

2. Grain boundaries with limited segregation potency for hydrogen such as Σ3 (112), θ = 

70.53° (coherent twin boundary), Σ85 (0,7,11), θ = 64.94° and Σ291 (1, 11,13), θ = 

11.65° were identified.  

3. A physically-motivated model that accurately predicts the relationship between 

intrinsic GB properties on the hydrogen segregation behavior was formulated based 

on the results from the study. 
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4. The increasing concentration of hydrogen along the GB was found to decrease the 

interface energy. The trapping limit for the Σ53 (720) GB was found to be 4.4% and 

this H concentration caused decohesion of the interface. A strong correlation between 

the GB character and the trapping limit was observed. 

In summary, this work provides atomistic perspective into examining the probabilistic 

nature of hydrogen segregation and consequent embrittlement of GBs. The identification 

of interfaces that are less susceptible to HE can form the basis for engineering 

polycrystalline microstructures resistant to intergranular failure during HE.   
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CHAPTER 5 

5     CRITICAL ASSESSMENT OF H EFFECTS ON SLIP TRANSMISSION ACROSS 

GRAIN BOUNDARIES IN α-FE  

5.1 Overview 

Grain boundaries present an effective barrier to dislocation motion, thereby 

strengthening the material. The understanding of the interactions between the GBs and 

dislocations is crucial in engineering microstructures with enhanced properties. The 

presence of a corrosive environment drastically deteriorates the service life of the 

material. HE has been a topic of intense research as it affects several structural metals by 

bringing about sudden ductile to brittle transition. During fatigue loading the presence of 

an adequate concentration of hydrogen at sites of dislocation pile-ups can cause 

intergranular failure. Therefore, there is a strong need to quantify the role of hydrogen on 

the energy barrier of the individual GBs. In this work, we employed molecular dynamics 

to study the interactions between screw dislocations and several <111> tilt GBs in Fe. It 

was found that the outcome of the dislocation-grain boundary (DGB) interaction depends 

strongly on the underlying GB structure. A strong correlation between the GB energy and 

the energy barrier for slip transmission was found. The presence of hydrogen causes the 

energy barrier for slip transmission to increase consistently by distorting the underlying 

GB structure. Based on the findings, the fatigue crack initiation under the influence of 

hydrogen was examined and it was found that plasticity acts as an effective transport for 

depositing hydrogen at the GB. The continuous segregation of hydrogen at the interface 

increases the susceptibility for intergranular failure. 
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5.2 Introduction 

The mechanical properties of crystalline materials are strongly governed by the 

presence of obstacles (point defects, solute atoms, dislocation network, grain boundaries 

and precipitates) to the dislocation motion. The GBs play a fundamental role in 

determining the strengthening achieved as they present an effective barrier to the 

dislocation glide (Hall 1951; Petch 1954). Additionally, in most crystalline materials, the 

impedance of dislocation can generate the slip localization could eventually lead to a 

crack initiate in GBs  (Essmann, Gösele, and Mughrabi 1981; Tanaka and Mura 1981; 

Differt, Esmann, and Mughrabi 1986; Zimmermann 2012), stress corrosion cracking 

(Yamashita et al. 1991; Was, Thaveeprungsriporn, and Crawford 1998), radiation damage 

evolution (Was * and Busby 2005; Was, Farkas, and Robertson 2012; Jiao and Was 

2008; McMurtrey et al. 2011) and environmental corrosion (Bechtle et al. 2009; Novak et 

al. 2010; Palin-Luc et al. 2010; Crawford and Was 2013; Zhevnenko, Vaganov, and 

Gershman 2011). These issues have motivated a great deal of experimental (Soer and De 

Hosson 2005; Bieler et al. 2005; Brandl et al. 2007; Britton, Randman, and Wilkinson 

2009; Polcarova et al. 1998; L. Wang et al. 2009; Gemperle, Gemperlová, and Zárubová 

2004) and modelling (Saraev and Schmauder 2003; Jin et al. 2006; Cheng, Mrovec, and 

Gumbsch 2008; Bachurin, Weygand, and Gumbsch 2010; Sangid et al. 2011; Yuasa et al. 

2014; Dewald and Curtin 2007a) efforts to gain insights to optimize the microstructure. 

In the case of intergranular failure, the nucleation and propagation of crack can take place 

solely due to the stress state, but this is a rare response. The presence of a corrosive 

environment further increases the tendency for intergranular failure. HE has been a major 

problem for structural materials, as the strength, ductility and toughness is greatly 
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reduced (Carneiro, Ratnapuli, and de Freitas Cunha Lins 2003; Gu, Luo, and Mao 1999; 

Woodtli and Kieselbach 2000; Parkins 2000). For instance, static and cyclic mechanical 

loads under harsh environmental service conditions result in local damage near highly 

stressed areas leading to the nucleation and growth of small surface cracks that interact, 

coalesce and eventually result in catastrophic failure if undetected. Hydrogen has a strong 

bias to segregate around internal cracks, dislocations, grain boundaries and TJs (Murray 

S. Daw and Baskes 1983; Masatake Yamaguchi et al. 2011; Bhatia, Groh, and Solanki 

2014; Rajagopalan, Tschopp, and Solanki 2014). The segregation of adequate hydrogen 

along the GB leads to a reduction in the cohesive strength of the GB interface (Murray S. 

Daw and Baskes 1983; Masatake Yamaguchi et al. 2011), increasing the tendency for 

intergranular fracture (Rice and Wang 1989; Bechtle et al. 2009; Novak et al. 2010; S. 

Wang et al. 2014). The presence of segregated hydrogen along the GB can hinder the 

plastic flow across the grains, thereby promoting crack nucleation at the DGB site (S. 

Wang et al. 2014). There is a lack of systematic studies exploring the role of aggressive 

environments (such as hydrogen, liquid gallium and bismuth) on DGB interactions 

(Kacher et al. 2014). 

On the other hand, several predictive models for the DGB interaction (Livingston and 

Chalmers 1957; T. C. Lee, Robertson, and Birnbaum 1989; Clark et al. 1992; Shen, 

Wagoner, and Clark 1986; Shen, Wagoner, and Clark 1988) have been developed based 

on the geometry of the slip systems and the stress state. Broadly, there are four possible 

outcomes of the DGB interactions: a) a direct transmission; b) a direct transmission with 

a residual dislocation along the GB; c) an indirect transmission with a residual dislocation 

occurring because the incoming and outgoing slip planes do not intersect and d) no 
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transmission because the dislocation is absorbed at the GB. The aforementioned scenarios 

can be summarized in terms of the Burgers vector of the incident (𝑏𝑖), transmitted (bt) and 

residual dislocations (br). 

                                                      𝑏𝑖
⃗⃗⃗  → 𝑏𝑡

⃗⃗  ⃗ + 𝑏𝑟
⃗⃗  ⃗                                                  (10) 

In order to predict the outcome of the DGB interaction several models have been 

proposed. The first of these models was proposed by Livingston and Chalmers 

(Livingston and Chalmers 1957) this is based on the geometry between the slip systems 

in the incident and transmitted grains. Shen et al. (Shen, Wagoner, and Clark 1986; Shen, 

Wagoner, and Clark 1988; Clark et al. 1992) addressed some of the shortcomings of the 

previous model by adding the criterion of maximum resolved shear stress to the geometry 

condition. Lastly, based on in-situ TEM experiments Lee et al. (T. C. Lee, Robertson, and 

Birnbaum 1989) proposed an additional criteria to the model by Shen et al.  (Shen, 

Wagoner, and Clark 1986; Shen, Wagoner, and Clark 1988; Clark et al. 1992) that 

ensures the outcome based on the minimum residual dislocations along the GB, also 

known as the Lee-Robertson-Birnbaum (LRB) criterion. The geometric condition can be 

expressed in terms of the relative orientations of the slip planes relative to the GB plane 

in the following manner. 

𝑀 = 𝑙𝑖𝑛. 𝑙𝑜𝑢𝑡 (11) 

 

where, 𝑙 is the unit normal at the intersection of the incoming and outgoing slip plane with 

the GB plane. Unfortunately, the atomic level details of the interaction of individual GBs 

with dislocations still remain unclear. This has motivated several atomistic studies in FCC 
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(Dewald and Curtin 2007a; Sangid et al. 2011), BCC (Saraev and Schmauder 2003; Cheng, 

Mrovec, and Gumbsch 2008) and HCP (Yuasa et al. 2014) metals to validate these 

proposed models and to glean atomic-scale details regarding the complex DGB 

interactions. In previous atomistic (Dewald and Curtin 2007b; Dewald and Curtin 2007a) 

studies, the slip transmission was observed to violate the LRB criterion of the transmitted 

plane having the highest Schmid factor for all the slip planes. Based on these findings, it 

was suggested that the GB structure around the DGB interaction play a key role in 

determining the slip plane for the transmitted dislocation and there were several 

shortcomings of the LRB criterion. Furthermore, Sangid et al. (Sangid et al. 2011) 

quantified the energy barrier at the atomic scale for  the GBs to permit slip transmission. 

The energy barrier presented by the GB for slip transmission was found to be closely 

related to the static GB energy. Therefore, a fundamental understanding of the effect of 

hydrogen on the motion of dislocations across the GBs and the intrinsic energy barrier for 

slip transmission is critical.  

In this work, for the first time, we perform a systematic investigate the role of 

hydrogen on the slip transfer mechanism in -Fe using molecular dynamics (10 K). In 

particular, we study the effect of hydrogen on the interactions between the screw 

dislocation and eight <111> symmetric tilt grain boundaries (STGBs). Further, the 

observed outcome for the slip transfer were compared with the predictions of the LRB 

criteria. Note that at low temperatures, the yield behavior of -Fe is strongly governed by 

the glissile  𝑎/2 < 111 > screw dislocation. It was found that the outcome of the DGB 

interaction depends strongly on the underlying GB dislocation network. The energy 

barrier for slip transmission across the GB was quantified by measuring the strain energy 
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flux across the DGB interaction site. A strong correlation was found between the GB 

energy and the energy barrier for slip transmission for both scenarios (hydrogen free and 

hydrogen rich environments). In other words, GBs with lower interfacial energy 

demonstrated a higher barrier for slip transmission. These findings are in agreement with 

previous experimental and modeling efforts. The introduction of hydrogen along the GB 

causes the energy barrier for slip transmission to increase consistently for all the GBs 

examined. Based on these findings, the fatigue crack initiation was examined and it was 

found that the higher energy barrier for slip transmission increases the dislocation pileup. 

However, the presence of hydrogen along the GB lowers the cohesive strength for the 

interface promoting intergranular crack nucleation. This provides an alternate relief 

mechanism for the trapped dislocations in the absence of feasible slip transmission. 

5.3 Methodology 

Molecular dynamics (MD) (large-scale atomic/molecular massively parallel simulator, 

LAMMPS (Plimpton 1995)) was utilized to study the effect of hydrogen on the 

interaction of the screw dislocation with  several <111> symmetric tilt GBs (STGBs) 

(Figure 1) in α-Fe at 10 K (for details regarding atomistic simulations refer Appendix A). 

The semi-empirical embedded atom method description for modelling the Fe-H system 

(Ashwin Ramasubramaniam, Itakura, and Carter 2009a). The EAM potential is based on 

the Fe EAM potential (Hepburn and Ackland 2008). The Fe-H potential was 

parameterized using an extensive database of energies and configurations from density 

functional theory (DFT) calculations of the dissolution and diffusion of hydrogen in bulk 

α-Fe, the binding of hydrogen to free surfaces, vacancies and dislocations as well as other 

cross interactions between hydrogen and Fe. Moreover, the formation energies 
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corresponding to multiple hydrogen-segregations to bulk α-Fe are consistent with the 

values predicted using ab initio calculations and experimentation (Hayward and Deo 

2011b). The interatomic potential was able to accurately capture the threefold non-

degenerate screw dislocation core in agreement with DFT findings (Ventelon and 

Willaime 2010; Itakura, Kaburaki, and Yamaguchi 2012), and the binding behavior of 

hydrogen around the dislocation core was found to be in agreement (Ashwin 

Ramasubramaniam, Itakura, and Carter 2009a). The interatomic potential has been 

widely utilized to study the effect of hydrogen on dislocation mobility (S. Wang, 

Hashimoto, and Ohnuki 2013; Bhatia, Groh, and Solanki 2014), crack tip deformation (J. 

Song and Curtin 2014), GBs (Rajagopalan, Tschopp, and Solanki 2014; Liu et al. 2011; 

Solanki et al. 2012) and surface energies (Ashwin Ramasubramaniam, Itakura, and Carter 

2009b; Jiang and Carter 2003) in Fe. 

5.3.1 Equilibrium Grain Boundary Structures and Energies  

The <111> STGBs selected for this work represent both the local minimum energy 

interfaces (Tschopp et al. 2012b) and a large range of possible misorientation angles 

(refer Figure 14 and Table 5). +The GB structure and minimum energy were calculated 

using a bicrystalline simulation cell with three-dimensional (3D) periodic boundary 

conditions consisting of two grains at 0 K as described by Rittner and Seidman (Rittner 

and Seidman 1996). The periodic boundaries (Y direction) were maintained with a 

separation distance of 12 nm between the boundaries. Several 0 K minimum energy GB 

structures were obtained through successive rigid body translations followed by an atom 
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deletion technique and energy minimization using a non-linear conjugate gradient method 

(Rittner and Seidman 1996; Tschopp, Tucker, and McDowell 2007). 

Figure 14: The <111> symmetric tilt grain boundary structures in α-Fe used in this work. 

Atoms are colored based on the atomic volume estimated by Voronoi tessellation on a 

scale of 11.64 Å3 to 13.20 Å3. 

 

Table 5: Grain boundary CSL description, misorientation angle, GB energy, the predicted 

and observed slip plane for the GBs examined in this work.  

 

CSL 

designation 

(𝜮 ) 

Misorientation 

angle, (θ) 

GB energy, 

(mJ/m
2
) 

Predicted 

outgoing  

slip plane 

Observed 

outgoing  

slip plane 

Σ37 (347) 50.6 760 (11̅0) (11̅0) 

Σ19 (235) 46.8 887 (11̅0) (11̅0) 

Σ57 (178) 13.6 1030 (101̅) (101̅) 

Σ7 (123) 38.2 1056 (11̅0) (11̅0) 
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Σ21 (145) 21.8 1114 (101̅) (11̅0) 

Σ13 (134) 27.8 1117 (101̅) (11̅0) 

Σ31 (156) 17.8 1127 (101̅) (11̅0) 

Σ39 (257) 32.2 1137 (11̅0) (11̅0) 

 

5.3.2 Simulation Setup for the Grain Boundary-Dislocation Interaction in Fe 

The orientation of the incident grain along the X [1̅1̅2], Y [11̅0] and Z [111] direction 

were fixed for all the DGB cases investigated (Figure 15a). The orientation of the 

transmitted grain was determined by the GB misorientation angle (Table 5). The 

simulation cell dimensions were approximately 400 Å × 400 Å × 40 Å. The screw 

dislocation was introduced by applying the Stroh’s anisotropic displacement field (Hirth 

and Gehlen 1969) at a distance of ~50 Å away from the GB (Figure 15a). The initial 

displacement field is depicted with the help of the differential displacement map in 

Figure 15b. This was found to be consistent with previous studies (Clouet, Ventelon, and 

Willaime 2009; Itakura, Kaburaki, and Yamaguchi 2012). Subsequently, the free 

boundary conditions were prescribed along the X and Y directions and periodic boundary 

conditions along the Z direction (Burger’s vector direction). The atomistic model was 

equilibrated at a temperature of 10 K using a canonical ensemble (NVT) for 5 ns. 

Subsequently, the pressure along the periodic direction (Z) was minimized using the 

isothermal-isobaric ensemble (NPT) for 15 ns. The top and bottom region (~10 Å) along 

the Y axis were fixed (Figure 15a) and an incremental displacement was applied to these 

atoms to obtain a constant shear strain rate (𝛾𝑦𝑧̇ ) of 108 s-1. 
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Figure 15: a) A schematic representation of the atomistic model employed to study the 

interaction between a screw dislocation and the <111> STGB in α-Fe. b) Differential 

displacement map of the compact core in Fe and the atomic colors emphasize the 

different (111) planes. 

5.3.3 Introduction of Hydrogen around the Grain Boundary 

The influence of hydrogen on the DGB interaction was examined by introducing 

hydrogen atoms around the GB. The hydrogen occupancy at a tetrahedral site, 𝜃𝑖 is 

dependent on the hydrogen binding energy (𝐸𝑏
𝑖 ) (Richard A. Oriani 1970) and the 

temperature (T) and can be expressed in the following manner: 

𝜃𝑖

1 − 𝜃𝑖

=
𝜃𝑏𝑢𝑙𝑘

1 − 𝜃𝑏𝑢𝑙𝑘

𝑒𝑥𝑝
(

𝐸𝑏
𝑖

𝑘𝐵𝑇
)
 (12) 

where, 𝜃𝑏𝑢𝑙𝑘
 is the atomic fraction of hydrogen for the whole system and 𝑘𝐵  is the 

Boltzmann constant. In this work the hydrogen atomic fraction of 3×10-4 was chosen. 

The binding energy indicates the preference of hydrogen atoms to remain at a particular 

site instead of a bulk lattice with positive values favoring binding and negative values 

opposing the same. A detailed survey on the site to site variation in the binding energy of 

hydrogen across several GBs can be found here (N. R. Rhodes, Tschopp, and Solanki 

2013; Rajagopalan, Tschopp, and Solanki 2014). Hydrogen atoms were initially placed 
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along the GB based on the occupation probability for the GBs (Equation 12). 

Furthermore, the Monte-Carlo method was employed at 10 K to obtain a realistic 

hydrogen distribution around the GB at finite temperature. 

5.3.4 Quantifying the Energy Barrier for Slip Transmission 

The energy barrier for slip transmission across the GB was quantified by defining a 

control volume at the site of the DGB interaction (Sangid et al. 2011). The defected 

atoms (centrosymmetry parameter (Kelchner, Plimpton, and Hamilton 1998) > 0.5) 

within the control volume were used to estimate the energy barrier for slip transmission. 

The evolution of the net change in energy of the defected atoms during the loading 

process was quantified by comparing instantaneous energy (𝐸𝑡
𝑖) with reference/initial 

atomic energy (𝐸𝑟). The net energy was normalized with the atomic volume occupied by 

the defect atoms in the reference configuration (V): 

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 =
∑ 𝐸𝑡

𝑖𝑛
𝑖 − 𝐸𝑟

𝑉
 (13) 

5.4 Results  

In this section, we discuss in detail the role of hydrogen on the atomic dislocation-

grain boundary interactions for a selected few grain boundaries, such as Σ7 (123), Σ13 

(134) and Σ57 (178). As discussed earlier, overall eight grain boundaries were used in 

this work which represents both the local minimum energy interfaces (Tschopp et al. 

2012b) and a large range of possible misorientation angles. In this case, based on the 

Equation 10 the slip transmission across the <111> symmetric tilt grain boundaries does 

not leaves behind residual dislocation at the interface. Additionally, the isotropic elastic 
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displacement fields for the dislocation and the grain boundaries do not interfere with each 

other. Therefore, the grain boundary should not offer any resistance to dislocation glide. 

However, due to the anisotropic nature of both the defects at the atomic level the 

dislocation may require thermal activation or critical stress to transmit across the 

interface. Therefore, we selected three boundaries to understand the precise role of the 

atomic details during slip transmission using various metrics, such as the atomic shear 

strain invariant, common neighbor analysis and centrosymmetry parameter. As these 

interfaces show a very distinct behavior in the presence of hydrogen environment. For 

instance, in all three grain boundaries with addition of hydrogen, it was found that the 

underlying structure of the grain boundary was distorted, and thereby increases the 

energy barrier for slip transmission. Furthermore, the Σ13 (134) STGB shows change in 

the transmission mechanism, i.e., from a direct to indirect transmission, while the Σ7 

(123) STGB shows no noticeable change in the transmission mechanism (i.e., indirect 

transmission with or without aggressive environments).  

5.4.1 Σ7 (123) STGB 

The influence of hydrogen on the atomic events in the DGB interaction for the Σ7 

(123) GB was examined; the predicted outcome by the LRB criterion was transmission 

along the (11̅0)2 plane (Table 5). As the applied shear strain increases, the screw 

dislocation overcomes the Peierls stress and begins gliding towards the GB by 

transforming into an extended core that is formed from the split core and appears to travel 

in a zig-zag manner by alternating on {110} planes (Figure 16a). At an applied shear 

strain (𝛾𝑦𝑧) of 3%, the screw dislocation was absorbed into the GB (Figure 16b). The 

DGB interaction was observed to take place at a site of high atomic volume along the GB 
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as shown in the Figure 16b inset. The inset in Figure 16b shows the magnified view of 

the atomic Voronoi volume variation due to the formation of the GB (Figure 14). The 

absorption of the dislocation at this site affords a relatively easier absorption and 

rearrangement of the GB dislocation network.  Subsequently, the dislocation is 

transmitted across the GB at an applied shear strain (𝛾𝑦𝑧) of 5.7% (Figure 16c). The 

dislocation was transmitted across the GB in an indirect manner. In other words the GB 

sites for the dislocation absorption and transmission were separated from each other by 6 

Å along the GB (Figure 16c). The dislocation transmits on the (11̅0)2 which was found 

to be in agreement with the outgoing plane predicted by the LRB criterion (Figure 16d). 

The energy barrier for the slip transmission was 2.75 × 1011 mJ/m3. 

The addition of hydrogen atoms along the GB distorts the underlying atomic 

structure, thereby decreasing the coincident sites along the GB. In the presence of 

hydrogen, the shear strain (𝛾𝑦𝑧 = 8.8 %) required to transmit the dislocation was much 

greater compared to the hydrogen free case (Figure 16e). The magnified view in Figure 

16e shows the hydrogen atoms at the DGB site. The energy barrier for the dislocation 

increases from 2.75 × 1011 mJ/m3 for a hydrogen free case to 4.16 × 1011 mJ/m3 in the 

presence of hydrogen. This clearly shows the additional work done to transmit a 

dislocation across the GB in the presence of hydrogen. 
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Figure 16: a-d) The interaction of a screw dislocation with the Σ7 (123) GB under the 

applied shear strain (𝛾𝑦𝑧) along the Burgers vector direction. The inset b) shows the 

magnified GB structure colored according to the atomic volume estimated by Voronoi 

tessellation as described earlier. d) The schematic representation of the slip transmission 

mechanism. e) The influence of hydrogen atoms on the dislocation-grain boundary 

interaction. The magnified view in e) shows the hydrogen atom positions depicted by 

black circles. The atoms were colored according to the local atomic shear strain invariant 

(γs) on a scale of 0 to 0.5. 

 



 

64 

5.4.2 Σ13 (134) STGB 

We now focus on the influence of hydrogen on the atomic events during the slip 

transmission across the Σ13 (134) STGB. Here the observed slip transmission for both 

scenarios (with and without hydrogen) occurred on the slip plane (11̅0)2 that was not the 

maximum resolved shear stress slip plane (101̅)2 (refer to Table 5), thereby violating the 

LRB criterion. In the case of a hydrogen free environment, the screw dislocation was 

absorbed in the GB near the site of coincidence (Figure 17a). Subsequently, the 

dislocation was transmitted along the (11̅0)2 by overcoming an energy barrier of 1.2 ×

1011 mJ/m3 (Figure 17b). The dislocation was transmitted from the absorption site at the 

GB without requiring significant atomic rearrangement of the GB (direct transmission) 

(Figure 17b). The addition of hydrogen along the GB region shows that the energy barrier 

for slip-transmission increases to 3.5 × 1011 mJ/m3 (Figure 17c). The absorbed 

dislocation was accommodated within the GB up to an applied shear strain of 8.0% 

transmitting from a site 8 Å away from the initial GB site (Figure 17c). The presence of 

hydrogen clearly modifies the dislocation-grain boundary interaction (Figure 17c-d) by 

changing the transmission mechanism and increasing the energy barrier. 
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Figure 17: a-b) The interaction of a screw dislocation with the Σ13 (134) GB under the 

applied shear strain (𝛾𝑦𝑧) along the Burgers vector direction. The inset a) shows the 

magnified GB structure colored according to the atomic volume estimated by Voronoi 

tessellation. c) The change in atomic events for the dislocation-grain boundary interaction 

in the presence of hydrogen. The atoms were colored according to the local atomic shear 

strain invariant (γs) on a scale of 0 to 0.5. d) The schematic representation of the change 

in slip transmission mechanism in the presence of hydrogen. 
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5.4.3 Σ57 (178) STGB 

In the case of the Σ57 (178) GB, the predicted outcome for the DGB interaction was 

transmission along the (101̅)2 plane (Table 5). The screw dislocation was absorbed in the 

GB and with further shear strain moved along the GB to finally transmit by overcoming 

an energy barrier of 3.3 × 1011 mJ/m3 along the (101̅)2 (Figure 18a). The addition of 

hydrogen along the GB increases the slip transmission energy barrier to 5.1 × 1011 

mJ/m3 (Figure 18b). The schematic representation in Figure 18c clearly highlights the 

influence of hydrogen which causes the dislocation to move further away from the 

absorption site before transmitting. 
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Figure 18: a) The interaction of a screw dislocation with the Σ57 (178) GB under the 

applied shear strain (𝛾𝑦𝑧) along the Burgers vector direction. b) The atomic events of 

hydrogen on the slip transmission mechanism. The atoms were colored according to the 

local atomic shear strain invariant (γs) on a scale of 0 to 0.5. c) The schematic 

representation of influence of hydrogen on the slip transmission. 

5.5 Discussion 

The GBs are the primary strengthening mechanism in a crystalline material as they 

offer resistance to the easy glide of the dislocations. This phenomenon provides the 

required toughness and ductility to the polycrystalline material. However, during HE 

segregation of adequate hydrogen atoms along the GBs leads to a reduction in the 
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cohesive strength of the interface. In order to engineer microstructures less susceptible to 

fatigue crack initiation under the influence of hydrogen, it is important to understand the 

effect of hydrogen coupled with the GB structure on slip transmission. There have been 

several studies (Shih, Robertson, and Birnbaum 1988; S. Wang et al. 2014) that have 

observed an enhanced dislocation mobility in the presence of hydrogen. This has been 

primarily attributed to the shielding effect that the hydrogen atoms present when 

segregated around the dislocation core. In other words, the presence of hydrogen atoms 

modifies the stress field around the dislocation, thereby, decreasing the separation 

distances between the pile-up dislocations. Furthermore, this significantly decreases the 

stress required to overcome microstructural obstacles (precipitates and grain boundaries). 

On the other hand, the segregation of sufficient hydrogen concentration leads to a 

significant reduction in the cohesive strength of the interface (Masatake Yamaguchi et al. 

2011; Solanki et al. 2012). However, there are several concerns related to the enhanced 

decohesion mechanism discussed elsewhere  (S. Wang et al. 2014; Ian M. Robertson et 

al. 2015).  

The energy balance for fatigue crack initiation in the presence of hydrogen was 

examined here. The energy balance takes into consideration the energy contributions of 

a) the persistent slip band structure under applied stress (Tanaka and Mura 1981; Sangid, 

Maier, and Sehitoglu 2011) and b) the interaction energy of the persistent slip band with 

GBs (𝐸𝑝𝑒𝑛). This physically represents a fraction of the dislocation density 

penetrating/transmitting across the GB. The energy barrier for slip transmission across 

the GB (𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟) is quantified at the atomic scale. In the case of fatigue crack initiation, 

the stored strain energy of the microstructure (𝐸𝑖𝑛𝑡) must be greater than the energy 
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required to nucleate an intergranular crack at the GB (𝐸𝑐𝑙𝑒𝑎𝑣𝑎𝑔𝑒). This can be formulated 

in the following manner:      

𝐸𝑖𝑛𝑡 = 𝐸𝑃𝑆𝐵(𝜎𝑎, 𝑁, 𝜌, 𝜏𝑐, 𝑐) + 𝐸𝑝𝑒𝑛(𝑐, 𝑁, 𝐸𝐺𝐵, 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟) (14a) 

𝐸𝑖𝑛𝑡 ≥ 𝐸𝑐𝑙𝑒𝑎𝑣𝑎𝑔𝑒(𝛾𝑠
𝐺𝐵, 𝑐) (14b) 

where, 𝜎𝑎 is the applied stress , N is the number of fatigue cycles, 𝜌 is the dislocation 

density within the persistent slip band structure, 𝜏𝑐 is the Peierls stress, c is the hydrogen 

concentration at the GB given by Equation 12 and 𝐸𝐺𝐵 is the GB energy. The presence of 

hydrogen increases the glissile dislocation density (𝜌0,𝐻) in comparison to the hydrogen 

free case (𝜌0) because of the shielding effect afforded by the hydrogen environment 

surrounding a dislocation (S. Wang et al. 2014; Shih, Robertson, and Birnbaum 1988; P. 

Ferreira, Robertson, and Birnbaum 1998). This leads to an increased dislocation density 

in the persistent slip band, thereby increasing the energy contribution (𝐸𝑃𝑆𝐵) in the 

energy balance equation (Equation 14a). In general, it was found that the energy barrier 

for slip transmission of the dislocation (𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟) increased in the presence of hydrogen 

at the GB (refer to Figure 19) for the several scenarios examined here. The energy barrier 

for slip transmission (𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟) was found to have a strong relationship to the initial GB 

energy (Figure 19). In other words, GBs with lower interfacial energy demonstrated a 

higher barrier for slip transmission these findings are in agreement with the previous 

study (Sangid et al. 2011). An inverse power law fit was found to best describe this 

relation. 

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 2.54 × 1017(𝐸𝐺𝐵)−1.94 (15) 
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The presence of hydrogen along the GB consistently increases the energy barrier for slip 

transmission across the <111> STGBs (Figure 19). The key finding being that the energy 

barrier for slip transmission was still best described by an inverse power law fit 

expression as derived earlier (Equation 15). 

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 1.29 × 1017(𝐸𝐺𝐵)−1.82 (16) 

 

Figure 19: The effect of hydrogen on the slip transmission barrier through <111> 

symmetric tilt grain boundaries. 

Thus, the presence of hydrogen increases the strain energy stored within the GB 

promoting alternative relief mechanisms, consequently, increasing the interaction energy 

between the persistent slip band and the GB (𝐸𝑝𝑒𝑛) (Equation 14a). These cascading 

events due to the presence of hydrogen lead to an increase in the strain energy 

accumulated at the persistent slip band GB interaction site. Furthermore, the glissile 

dislocations would carry along the hydrogen atmospheres responsible for the enhanced 
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mobility, thereby continuously depositing hydrogen at the GB. This effective transport 

mechanism of hydrogen in turn causes a decrease in the cohesive strength of the GB 

interface, as noted by previous studies (Masatake Yamaguchi et al. 2011; Solanki et al. 

2012). This provides an opportunity for intergranular crack initiation in the absence of an 

effective release of the trapped dislocations within the GBs. Therefore, based on the 

results and the examination of the energy balance for fatigue crack initiation we highlight 

the role of plastic events in hydrogen-induced intergranular failure. These findings 

provide further evidence to the mechanism proposed by Wang et al (S. Wang et al. 2014). 

The effect of hydrogen on the increased susceptibility of the microstructure to 

intergranular fatigue crack initiation can be summarized in terms of the schematic in 

Figure 20. 
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Figure 20: Schematic representation of the effect of hydrogen on the intergranular fatigue 

crack initiation. The top half shows the hydrogen free interaction of incident dislocation 

density of 𝜌0 and the emitted dislocation density is 𝜌𝑒. In presence of hydrogen, the 

incident dislocation density (𝜌0,𝐻) increases in comparison to hydrogen free because of 

the shielding effect afforded by the hydrogen environment surrounding a dislocation. The 

emitted dislocation density (𝜌𝑒,𝐻) is lower than in the hydrogen free case (𝜌𝑒,𝐻 < 𝜌𝑒). 

5.6 Conclusions 

In this work, the influence of hydrogen on the DGB interaction was examined for 

several <111> STGBs in Fe using atomistic simulations. The primary objective was to 

quantify the influence of hydrogen on the DGB interactions and reexamine the fatigue 

crack initiation criterion in light of these findings. The significant contributions of this 

study are as follows: 

1. The outcome of the DGB interaction was strongly dependent on the GB character. 

2. The segregated hydrogen atoms along the GB distorts the underlying structure, 

thereby increasing the energy barrier for slip transmission. In terms of fatigue 

loading, this would lead to an increase in the dislocations with the persistent band 

structure. 
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3. The energy required for the dislocation to transmit across the GB was found to be 

inversely related to the GB energy. 

4. Based on the findings in this work and previous studies (P. Ferreira, Robertson, and 

Birnbaum 1998; Troiano 1960; R. A. Oriani 1972; Masatake Yamaguchi, Shiga, 

and Kaburaki 2004; Solanki et al. 2013) the fatigue crack initiation was examined 

by considering the various interaction energies under the influence of hydrogen. 

The presence of hydrogen was found to increase the energy barrier for the 

dislocations trapped at the dislocation to transmit across. In addition, the plasticity 

provides an effective transport medium for hydrogen to be deposited at the GB (P. 

J. Ferreira, Robertson, and Birnbaum 1999; S. Wang et al. 2014). In the absence of 

a feasible mechanism for the trapped dislocation intergranular crack initiation 

becomes a viable option. 
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CHAPTER 6 

6     THE EFFECT OF HYDROGEN ON DISLOCATION MOBILITY IN IRON 

6.1 Introduction 

The plastic deformation of BCC metals is well known to be significantly different 

than other close-packed metals (Christian 1983). The lattice resistance (Peierl’s barrier) 

for the screw dislocation motion is large enough that it results in a temperature and strain 

rate dependent behavior (Christian 1983; Caillard and Martins 2003; Argon 2008). These 

metals also exhibit noticeable tension-compression asymmetry in flow stress in the low 

temperature regime (Taylor 1928), which has been attributed to the lattice resistance 

(Duesbery, Vitek, and Bowen 1973). In the case of face-centered-cubic metals, the plastic 

behavior is controlled by the obstacles in the dislocation motion at low temperatures. 

However, in BCC metals the lattice resistance dictates the plastic behavior in the low 

temperature regime. In contrast, the edge dislocation in BCC metals and the dislocations 

in face-centered-cubic metals exhibit low lattice resistance (Christopher R. Weinberger, 

Tucker, and Foiles 2013; Duesbery and Vitek 1998; Bhatia, Groh, and Solanki 2014).  

In the case of BCC metals there is ambiguity regarding the preferred slip plane among 

{110}, {112} and {123} that correspond to the <111> slip direction (C R Weinberger, 

Boyce, and Battaile 2013). The slip along the {123} plane has only been observed at high 

temperatures or the presence of impurities. Therefore, it appear slip can take place along 

the {110} or the {112} planes. However, modelling and experimental efforts have 

observed that at low temperature slip happens along the {110} plane (Christian 1983; 

Wasserbäch et al. 2002; C R Weinberger, Boyce, and Battaile 2013). The non-planar 

configuration of the screw dislocation has been attributed with the high lattice resistance 
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(Ito and Vitek 2001; C R Weinberger, Boyce, and Battaile 2013). This non-planar 

dislocation core structure brings about a non-Schmid effect on the yield behavior (for 

details refer (Christian 1983).  Therefore, it is critical to understand the slip behavior of 

screw dislocations for the comprehensive understanding of the plastic flow. 

However, there are additional complications involved in studying the role of 

hydrogen on the dislocation mobility. In general, the presence of solutes in solid solution 

is a commonly used method to attain strengthening in alloys. The strength comes from 

modifications to the elastic, chemical and electronic interactions between the dislocations 

(Cottrell 1948; Hirth and Lothe 1966). In the presence of hydrogen, it has been suggested 

that hydrogen reduces the stress required for dislocations to multiply and glide (Beachem 

1972). This concept was further examined by Lynch (S. P. Lynch 1984; S. P. Lynch 

1988) from the perspective of adsorbed hydrogen atoms weakening the interatomic bonds 

leading to localized plasticity. However, Birnbaum, Robertson and coworkers (Birnbaum 

and Sofronis 1994; P. Ferreira, Robertson, and Birnbaum 1998; I. Robertson 1999; 

Sofronis, Liang, and Aravas 2001a) proposed that hydrogen forms an atmosphere around 

the dislocation by redistribution of the hydrogen atoms leading to the modification of the 

elastic interactions between dislocations and microstructural obstacles. Consequently, the 

dislocations glide at lower levels of applied stress.  

Atomistic and first principle simulations have provided valuable insights into the 

plastic behavior of BCC metals. These studies have been able to establish the non-planar 

nature of the <111> screw dislocation core (Duesbery, Vitek, and Bowen 1973; Duesbery 

and Vitek 1998; Ito and Vitek 2001; Itakura, Kaburaki, and Yamaguchi 2012). Further, 

these simulations have reported the existence of two possible equilibrium core structures 
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(Vitek and Paidar 2008) both having D3 symmetry along the <111> zone (Gordon, 

Neeraj, and Mendelev 2011; Itakura, Kaburaki, and Yamaguchi 2012; Ashwin 

Ramasubramaniam, Itakura, and Carter 2009a) (Figure 21a-b). The existence of an 

unstable split-core configuration is observed in the motion of the dislocation across the 

lattice (Itakura, Kaburaki, and Yamaguchi 2012; Ventelon et al. 2013; Christopher R. 

Weinberger, Tucker, and Foiles 2013) as seen in Figure 21c. These studies have led to the 

development of crystal plasticity formulations which take into account the temperature 

and strain rate effects (Gröger et al. 2008; Gröger and Vitek 2008; Christopher R. 

Weinberger et al. 2012; Lim et al. 2015). However, the choice of interatomic potential for 

the atomistic simulations has a large influence on the stable dislocation configuration and 

the shape of the Peierls energy barrier (single hump vs. camel hump) (Ventelon and 

Willaime 2010; Christopher R. Weinberger, Tucker, and Foiles 2013; Hale, Zimmerman, 

and Weinberger 2014). In order to overcome this limitation, the first principle methods 

(density functional theory and quantum mechanics/ molecular mechanics method) (Zhao 

and Lu 2011a; Itakura, Kaburaki, and Yamaguchi 2012; Christopher R. Weinberger, 

Tucker, and Foiles 2013; Ventelon et al. 2013) can be employed. However, the 

computational cost involved with this method makes it unfeasible for the development of 

crystal plasticity formulation. Hence, the atomistic simulations employing an interatomic 

potential that can accurately predict the equilibrium dislocation core structure and the 

Peierls barrier curve can be employed to study the effect of hydrogen on the dislocation 

mobility. 
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Figure 21: Differential displacement maps for the anisotropic linear elasticity solution for 

a) the easy-core, b) hard-core and c) split-core configurations. The atomic positions are 

represented by different colors to emphasize the distinct {111} planes. 

In this chapter, we will present a systematic investigation that will focus on the effect 

of stress state on the 
𝑎

2
〈111〉 screw dislocation mobility in iron under the influence of 

hydrogen at 0 K. We start by calculating the stacking fault energies for the <111> 

Burger’s vector along various planes ({110}, {112} and {123}), and found that the {110} 

plane has the lowest stacking fault energy followed by the {112} then the {123} in 

agreement with previous findings. Next, we examined the ability of the Fe-H interatomic 

potential (Ashwin Ramasubramaniam, Itakura, and Carter 2009a) to correctly predict the 

dislocation cores in pure Fe. It was found that the interatomic potential predicts a 

metastable state in the dislocation migration path (camel hump shaped), but for BCC 
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metals it has been established that during the dislocation motion there are no metastable 

configurations (Ventelon et al. 2013; Proville, Rodney, and Marinica 2012; Christopher 

R. Weinberger, Tucker, and Foiles 2013; Hale, Zimmerman, and Weinberger 2014; 

Itakura, Kaburaki, and Yamaguchi 2012). Nonetheless, we developed a consistent 

framework to quantify the effect of stress state on the critical resolved shear stress 

(CRSS) at which the dislocation overcomes the frictional resistance. It was found that the 

sense of shearing revealed a twinning-antitwinning asymmetry (Christian 1983; Duesbery 

and Vitek 1998; Gröger et al. 2008) for pure iron with the help of the interatomic 

potential of Chamati et al. (Chamati et al. 2006). This clearly illustrates that the CRSS 

was dependent on the orientation of the maximum resolved sheared stress plane 

(MRSSP) that does not obey the Schmid law. Therefore, the methodology developed in 

this chapter represents a significant contribution in development of a crystal plasticity 

framework that accurately describes the effect of hydrogen on dislocation mobility. 

6.2 Methodology 

In this section, the simulation technique to quantify the non-Schmid behavior 

associated with the effect of stress state of the screw dislocation is described. This work 

was performed using the LAMMPS molecular dynamics package (Plimpton 1995). The 

atomistic simulations were constructed with a perfect BCC lattice of Fe atoms with the 

crystallographic orientations [1̅21̅] (X), [1̅01] (Y) and [111] (Z) (Figure 22). The 

simulation cell dimensions were 24𝑎[1̅21̅] × 40𝑎[1̅01̅] × 4𝑎[111], where a is the lattice 

constant for iron. The screw dislocation was inserted using Stroh’s anisotropic solution 

(Stroh 1958). The Burgers vector direction (Z) was periodic, while the outer layer of 

atoms along the X and Y directions were held fixed. The angle between the MRSSP and 
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the (1̅01) plane is defined by χ (measured in a clockwise sense) (Figure 22). Due to the 

crystal symmetry, χ was only varied in the range −30° ≤ 𝜒 ≤ 30° representing the {112} 

planes in BCC crystal. It is worth mentioning that the positive (twinning) and negative 

(anti-twinning) angles of χ are not equivalent. 

 

Figure 22: The schematic representation of the simulation cell. The fixed region (gray) 

atoms are held fixed through the minimization and the relaxed region (blue) atoms are 

allowed to relax during the minimization process. The angle between the MRSSP and the 

(1̅01) plane is defined by χ (measured in a clockwise sense). 

In the right-handed coordinate system with the normal to the MRSSP aligned along 

the Y axis, the Z axis parallel to the Burgers vector. The stress tensor for applying shear 

stress parallel (𝜎) and perpendicular (𝜏) to the Burgers vector is given as follows: 

𝛴𝑀𝑅𝑆𝑆𝑃 = [
−𝜏 0 0
0 𝜏 𝜎
0 𝜎 0

] (17a) 

The stress tensor mentioned above can be transformed by rotation of −𝜒 about the 

Burger vector direction (Z) to obtain various MRSSP.  

𝛴(1̅01) = [
−𝜏 cos 2𝜒 𝜏 sin 2𝜒 𝜎 sin 𝜒
𝜏 sin 2𝜒 𝜏 cos 2𝜒 𝜎 cos 𝜒
𝜎 sin 𝜒 𝜎 cos 𝜒 0

] (17b) 
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The transformed stress tensor was then used to apply load to the atomistic simulation 

cell (Figure 21). The atoms within the relaxed region were minimized using a nonlinear 

conjugate gradient scheme. The CRSS was obtained by measuring the shear stress acting 

on the MRSSP in the slip direction that is required to initiate slip. The CRSS was 

calculated by incrementally applying the shear stress acting on the MRSSP 

(5 × 10−5 × 𝐶44 ≈ 5.7 𝑀𝑃𝑎) until the dislocation moves by at least one periodic unit 

cell.  

6.3 Results 

The Peierls energy barrier for a screw dislocation was measured using the nudge 

elastic band (NEB) method (Henkelman, Uberuaga, and Jónsson 2000) for the  

interatomic potentials developed by Chamati et al. (Chamati et al. 2006) and 

Ramasubramaniam et al. (Ashwin Ramasubramaniam, Itakura, and Carter 2009b) (Figure 

23). The NEB calculations require the initial and final dislocation core positions to 

predict the energy pathway (camel hump shaped). The embedded atom description by 

Ramasubramaniam et al. (Ashwin Ramasubramaniam, Itakura, and Carter 2009b)  clearly 

predicts a metastable dislocation configuration in the middle of the reaction pathway, 

corresponding to the split-core (Figure 21c and 30).  On the other hand, the interatomic 

potential description by Chamati et al. (Chamati et al. 2006) predicts single hump 

sinusoidal shaped Peierls barrier that was found to be in agreement with previous 

findings (Ventelon et al. 2013; Itakura, Kaburaki, and Yamaguchi 2012) (Figure 23). It 

has been established by various previous studies that during the dislocation motion in 

BCC metals, there is a lack of metastable configurations (Ventelon et al. 2013; Proville, 

Rodney, and Marinica 2012; Christopher R. Weinberger, Tucker, and Foiles 2013; Hale, 
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Zimmerman, and Weinberger 2014; Itakura, Kaburaki, and Yamaguchi 2012). The Fe-H 

interatomic potential by Ramasubramaniam et al. (Ashwin Ramasubramaniam, Itakura, 

and Carter 2009b) fails to accurately predict the Peierls energy barrier. Therefore, the 

methodology developed here to examine the non-Schmid effect was applied in α-Fe. 

 

Figure 23: The Peierls potentials for various interatomic potentials for Fe using molecular 

dynamics. The energy barrier for dislocation motion was calculated by moving an 

isolated dislocation by one periodic length using the NEB method. 

The generalized stacking fault energy along the <111> direction for {110}, {112} and 

{123} slip planes was measured using the interatomic potential by Chamati et al. 

(Chamati et al. 2006)  as shown in Figure 24. The generalized stacking fault energy curve 

is defined as the change in energy per unit area obtained by gliding atomic planes past 

each other. The shape of the generalized stacking fault curve was found to be very similar 

for the three slip planes examined here (Figure 24). Furthermore, no intermediate minima 

were found along all the slip planes and maximum fault energy was obtained at 0.5b. 

This results in an absence of partial dislocation dissociations, which is consistent with 

previous findings on BCC materials (Christian 1983). Finally, based on the stacking fault 
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energy curve the {110} planes would be the energetically favorable for dislocation 

activity in the low temperature regime followed by the {112} and {123} planes. 

 

Figure 24: The generalized stacking fault energy curve by displacing along the <111> 

direction over {110}, {112} and {123} planes. The displacement is normalized by the 

magnitude of the Burgers vector  (
𝑎

2
[111]). 

6.3.1 Loading by Applying Pure Shear Stress along the Burgers Vector Direction 

The evolution of Peierls stress as a function of variation in orientation of the MRSSP 

was examined. τ = 0 MPa was substituted in Equation 17b. The shear stress along the 

Burgers vector direction (σ) was increased until the dislocation overcomes the internal 

resistance. According to the Schmid law, dislocation glide begins when the shear stress 

parallel to the Burgers vector on any given slip plane overcomes the Peierls stress. This 

implies that the orientation of the MRSSP and stress state play no role in the deformation 

behavior. The MRSSP was varied by changing the angle (χ) between the MRSSP and the 

(1̅01) plane (Figure 22) in Equation 17b. As the χ increased from -25 to 25 the CRSS 

value consistently increased causing an asymmetry due to the change in shear direction  

in agreement with  previous findings (Christian 1983; Duesbery, Vitek, and Bowen 1973; 
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Duesbery and Vitek 1998; Lim et al. 2015) (Figure 25). In the case of χ <  −10° the 

dislocation was found to glide along the (01̅1) plane; for the other cases the dislocation 

glide took place along the (1̅01) plane. 

6.3.2 Loading by Combined Application of Shear Stress Perpendicular and Parallel to 

the Burgers Vector Direction 

The effect of shear stress perpendicular to the Burgers vector on the Peierls stress was 

examined. The effect of these complicated stress states on the dislocation mobility cannot 

be examined experimentally, but with the help of simulations the effect of each of the 

components of the stress tensor (Equation 17b) can be quantified. In this case, τ =

114 MPa was substituted in Equation 17b and the corresponding elastic displacement 

was applied. The shear stress perpendicular to the Burger vector (τ) was held constant, 

and the shear stress along the Burgers vector was increased incrementally until the 

dislocation glide was observed. The application of positive shear stress perpendicular to 

the Burgers vector (τ > 0) reduces the Peierls stress for dislocation glide (Figure 25), 

similar to the previous results (Christian 1983; Duesbery, Vitek, and Bowen 1973; 

Duesbery and Vitek 1998; Lim et al. 2015). In the case of  χ =  −25°, the dislocation was 

found to glide along the (01̅1) plane. For the other cases the dislocation glide took place 

along the (1̅01) plane. The application of negative shear stress perpendicular to the 

Burgers vector (τ < 0) was found to increase the CRSS for dislocation glide (Figure 25). 

It was found that for χ ≤  −10°, the dislocation was found to glide along the (01̅1) 

plane. For the remaining cases dislocation glide was found along the (1̅01) plane. 



 

84 

 

Figure 25: A comparison between the Schmid behavior and the observed Peierls stress 

for 𝜏 = 0 MPa, 𝜏 = 114 MPa and 𝜏 = −114 MPa  (Equation 17b) for various MRSSP 

orientations. 

6.4 Summary 

In this work, we have developed a comprehensive atomistic approach to study the 

dislocation behavior in BCC metals and shown initial results that are in agreement with 

the recent study by Lim et al. (Lim et al. 2015) on developing a multi-scale model for 

dislocation plasticity in iron. Unfortunately, the effect of hydrogen on the non-Schmid 

behavior cannot be carried out with the interatomic potential available (A. 

Ramasubramaniam et al. 2008). The Peierls energy barrier curve (Figure 23) predicts a 

metastable configuration in the dislocation reaction pathway that has been found to be 

inaccurate for BCC metals (Ventelon et al. 2013; Proville, Rodney, and Marinica 2012; 

Christopher R. Weinberger, Tucker, and Foiles 2013; Hale, Zimmerman, and Weinberger 

2014; Itakura, Kaburaki, and Yamaguchi 2012). Nonetheless, the methodology developed 

can be employed to accurately describe the effect of hydrogen on plasticity at the 

continuum scale.   
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CHAPTER 7 

7     ENERGETICS, STABILITY AND INTERACTION OF GRAIN BOUNDARY 

TRIPLE JUNCTIONS WITH POINT DEFECTS 

7.1 Introduction 

Nanocrystalline (NC) materials (mean grain size, d < 100 nm) often have enhanced 

mechanical properties compared to coarse-grained materials (d > 1 m). Therefore NC 

alloys are very attractive for multiple engineering applications, including for load-bearing 

structures (Valiev, Xia, and Langdon 2009). The challenge with broader applicability of 

NC materials has been the stability of the non-equilibrium microstructure during 

processing and deformation. It has been long established that the structural stability, 

mechanical behavior and fracture of NC materials is often driven by GBs (GBs, planar 

defects), triple junctions (TJs, line defects) and their underlying structures (Meyers, 

Mishra, and Benson 2006; Gleiter 2000). Hence a fundamental understanding of the 

relationship between the line/planar defect structures and the associated properties is 

important to develop interface-dominant materials. This is especially true in the case of 

NC materials where TJs constitute a large volume fraction and the properties have been 

found to be very different from the neighboring grains (Gleiter 2000).  

In NC materials, the grain growth behavior is typically characterized with the help of 

classical (2D) approaches such as the original von Neumann-Mullins relation (Mullins 

1956). However, such a model provides an incomplete description of the grain growth 

kinetics in NC materials as it ignores the TJ contribution in this behavior. In fact, 

Czubayko et al. (Czubayko et al. 1998) experimentally showed that a low TJ mobility can 
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induce a significant drag effect on the grain growth and subsequently proposed a 

modified von Neumann-Mullins relationship that, to some extent, captures the interplay 

between the GB and TJ kinetics on the grain growth behavior (Czubayko et al. 1998). 

Nevertheless, such models were derived with the help of applying geometric and 

thermodynamic constraints on TJs. Therefore, these models fail to account for the 

varying TJ structures and the distinct intrinsic properties and the effect of TJs on the 

grain growth behavior of NC materials (Gottstein, King, and Shvindlerman 2000; 

Moneesh Upmanyu et al. 1999; M Upmanyu et al. 2002; Gottstein, Ma, and 

Shvindlerman 2005). The structural stability of TJs has been linked to several 

thermodynamic variables, such as the excess free energy, the resolved line tension and 

the resolved line force of TJs (Gottstein, King, and Shvindlerman 2000; Srinivasan et al. 

1999; King 1999).  For instance, Gottstein et al. have shown that the excess Gibbs energy 

at the TJ can serve as a measure of the TJ mobility (Gottstein, King, and Shvindlerman 

2000). Nonetheless, there is a lack of systematic investigations exploring various 

thermodynamic properties of TJs formed by commonly observed GBs (Fortier et al. 

1991; Fortier, Miller, and Aust 1997; Schuh, Kumar, and King 2005; Kremer et al. 2005; 

Rohrer et al. 2010) and their links to the structural stability of NC materials, i.e., defect 

migrations.  

The presence of trace amounts of solutes at microstructural sinks (GB and TJs) can 

bring about drastic change in mechanical properties of structural materials (Ullmaier 

1984; Stoller 1990; Bloom et al. 2007). This issue becomes increasingly critical during 

the design of NC microstructures for structural applications. Thus, the interaction of 

solute atoms with defects is critical in understanding the material response under harsh 
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conditions, such as radiation and corrosion damage. During these processes, spatial 

rearrangement of point defects and solute atoms takes place. The incoming flux of defects 

towards GBs and TJs leads to the segregation of solute atoms. Atomistic simulations have 

been used to understand the underlying mechanisms with GB-solute interaction 

(Rajagopalan, Tschopp, and Solanki 2014; N. R. Rhodes, Tschopp, and Solanki 2013; M. 

Yamaguchi, Nishiyama, and Kaburaki 2007). In these works, it has been observed that 

trace amounts of solute atoms at the GB can cause a drastic decrease in interface strength 

(H, He, P and Ga). On the other hand, the presence of solute atoms, such as B, V and C 

provides increased interfacial strength and ductility.  

In this work, atomistic simulations were used to study the intrinsic properties 

associated with GB TJs in Fe. The sink efficiency of TJs for various point defects 

(vacancies and self-interstitials (SIA)) and solute atom (H) configurations was examined. 

The TJs were formed by the intersection of <110> symmetric tilt GBs in BCC Fe. The 

TJs have a distinct atomistic structure compared to those of their constituent GBs and, 

therefore, distinct properties (King 2010). Hence, the solute drag phenomena was 

examined for a range of special TJs that involve the Σ3 GB (these TJs have been shown 

to occur frequently (Fortier et al. 1991; Fortier, Miller, and Aust 1997; Rohrer et al. 

2010)) (Table 6). 
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7.2 Methodology 

Molecular statics simulations using LAMMPS (Plimpton 1995) were employed in this 

work to investigate the structural stability of TJs. The Fe-H atomic interactions in this 

work were described using the EAM potential of Ramasubramaniam et al. (Ashwin 

Ramasubramaniam, Itakura, and Carter 2009a),  which is based on the Fe EAM potential 

of Hepburn and Ackland (Hepburn and Ackland 2008). The Fe-H potential was 

parameterized using an extensive database of energies and configurations from DFT 

calculations of dissolution and diffusion of hydrogen in bulk -Fe, the binding of 

hydrogen to free surfaces, vacancies and dislocations, as well as other cross interactions 

between hydrogen and Fe. In this work TJs were constructed using <110> symmetric tilt 

GBs (see Table 6). These GBs were generated using the methodology described in 

Chapter 4. Circular wedges were then cut from the GBs along the stitch plane, i.e. 

{001}/{011} planes (see Figure 26) (Kremer et al. 2005; Wu, Zhou, and Nazarov 2007).   

 

Figure 26: Schematic showing construction of a GB TJ configuration. The GBs were 

minimized separately and a wedge was carved out along the {001}/{011} plane 

represented by dashed lines.  
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Table 6: Details of grain boundary triple junctions along with the CSL and the 

misorientation (θ) for each GB interface. 

Triple Junction GB #1 (Σ, θ) GB #2 (Σ, θ) GB #3 (Σ, θ) 

Σ3-Σ3-Σ9 Σ9 (114), 38.94° Σ3 (112), 70.53° Σ3 (112), 70.53° 

Σ3-Σ9-Σ27 Σ9 (221), 141.06° Σ9 (221), 141.06° Σ3 (112), 70.53° 

Σ3-Σ11-Σ33 Σ33 (225), 58.99° Σ11 (332), 129.52° Σ3 (112), 70.53° 

Σ3-Σ19-Σ57 Σ57 (558), 82.95° Σ19 (116), 26.52° Σ3 (112), 70.53° 

Σ3-Σ27-Σ81 Σ81(778), 102.12° Σ27 (115), 31.59° Σ3 (112), 70.53 

Σ3-Σ33-Σ99 Σ99 (7710), 89.42° Σ33 (118), 20.05° Σ3 (112), 70.53° 

 

Subsequently, GBs labelled 2 and 3 were rotated by 𝜙2 and 𝜙3 about the GB tilt axis, 

as shown in Figure 26. Lastly, the three wedges were brought together, the overlapping 

atoms were removed and the energy minimization carried out at 0 K. According to the 

Herring’s relation the TJ attempts to minimize the resolved surface tension during 

formation. The resolved line tension acting at the TJ was approximated at the atomic 

scale using the following relation: 

𝛾𝑟 = ∑𝛾𝑖

3

𝑖=1

𝑙𝑥
𝑖  (18) 

where, the periodic length of each GB interface (𝑙𝑥
𝑖 ) was used to weigh the surface 

tension contribution of each interface. The surface tension for the intersecting GBs (𝛾𝑖) 

was defined by averaging the normal and tangential components of stress acting over a 

region of ±20 Å normal to the interfaces. The resolved line force was another quantity 

used to understand the energetics of TJs. This was defined as: 

𝐹𝑖 = ∆𝐸𝑖𝑙𝑥
𝑖  (19a) 
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𝐹𝑇𝐽 = √(∑𝐹𝑖

3

𝑖=1

𝑐𝑜𝑠𝜙𝑖)

2

+ (∑𝐹𝑖

3

𝑖=1

𝑠𝑖𝑛𝜙𝑖)

2

 (19b) 

The excess energy per unit GB area (∆𝐸𝑖) subsequent to the formation of the TJ was 

defined over a region of ±20 Å normal to the GB. The line force for all the GBs was 

resolved at the TJ (𝐹𝑇𝐽) to obtain the line force at the TJ.  

The vacancy formation energy at an atomic site  (𝐸𝑓
𝛼) is defined as: 

𝐸𝑓
𝛼 = 𝐸𝑇𝐽

𝛼 −  𝐸𝑇𝐽 + 𝐸𝑐𝑜ℎ (20a) 

The defect formation energy at an interstitial site β (H and SIA) is defined as: 

𝐸𝑓
𝛽

= 𝐸𝑇𝐽
𝛽 

−  𝐸𝑇𝐽 − 𝐸𝑐𝑜ℎ (20b) 

where, 𝐸𝑐𝑜ℎ is the cohesive energy per atom of the defect in the pristine lattice and 𝐸𝑇𝐽
𝛼 , 

𝐸𝑓
𝛽

 and  𝐸𝑇𝐽  are the total energies of the TJ simulation cell in the presence of a vacancy, 

interstitial solute atom and the bulk respectively. It is useful to relate the defect formation 

energy in the TJ configuration (𝐸𝑓
𝛼,𝛽

) with that in the bulk (𝐸𝑓
0) to quantify the vacancy 

binding energy at an atomic site 

𝐸𝑏
𝛼,𝛽

= 𝐸𝑓
0 − 𝐸𝑓

𝛼,𝛽
 (21) 
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7.3 Results 

The atomic hydrostatic stress for various TJs has been shown in Figure 27. The 

buildup of hydrostatic stress near the Σ3-Σ3-Σ9 (Figure 27a) was far greater in contrast to 

the Σ3-Σ9-Σ27 (Figure 27b). Similarly, the buildup of hydrostatic stress for the Σ3-Σ19-

Σ57 and Σ3-Σ27-Σ81 outlines the underlying GB dislocation structure. In some cases, Σ3-

Σ3-Σ9 and Σ3-Σ11-Σ33, the stress accumulation far exceeds the stress along the 

constituent GBs. This implies that the TJ has a greater amount of elastic strain energy 

stored. In contrast to Σ3-Σ27-Σ81 and other TJs, the stress accumulated was far less when 

compared to the constituent GBs. This variation of atomic hydrostatic stress near the TJ 

was further used to characterize the resolved line tension that will be discussed later. 
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Figure 27: The minimized atomic configuration of: a) Σ3-Σ3-Σ9, b) Σ3-Σ9-Σ27, c) Σ3-

Σ11-Σ33, d) Σ3-Σ19-Σ57, e) Σ3-Σ27-Σ81 and f) Σ3-Σ33-Σ99 TJs. Atoms were colored 

according to the local variation in hydrostatic stress from -10 to 10 GPa. 
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The net change in volume due to the formation of the TJ was computed using the 

following relation to comprehend the misfit strain induced during the formation of TJ. 

∆𝑉𝑇𝐽 = 𝜋𝑟𝑇𝐽
2 −

𝑛𝜔𝑏𝑢𝑙𝑘

𝑟𝑇𝐽
− ∑𝑙𝑥

𝑖 ∆𝑉𝐺𝐵
𝑖

3

𝑖=1

 (22a) 

𝑟𝑇𝐽 = 𝑚𝑎𝑥 (𝑙𝑥
𝑖 ) (22b) 

Here 𝑟𝑇𝐽 is the radius for the TJ for calculating net change in volume, 𝜔𝑏𝑢𝑙𝑘 is the atomic 

volume in a pristine BCC lattice at 0 K, and ∆𝑉𝐺𝐵
𝑖  is the volume expansion along the GB 

plane per unit of the GB area for the ith interface. 

The net change in normalized volume follows a clear trend that TJs with high Σ GBs 

undergo greater volumetric expansion in contrast to other TJs (see Figure 28a). This 

suggests that the high Σ GBs would form a more diffused TJ which was found to be in 

agreement with previous findings (Costantini et al. 2000). As discussed previously, the 

line tension can significantly affect the mobility of the TJ; hence, we computed the line 

tension for various TJs. According to Herring’s relation the TJ attempts to minimize the 

resolved surface tension during formation. The resolved line tension acting at the TJ was 

approximated at the atomic scale using the following relation: 

𝛾𝑟 = ∑𝛾𝑖

3

𝑖=1

𝑙𝑥
𝑖  (23) 

The surface tension for the intersecting GBs (𝛾𝑖) was defined by averaging normal and 

tangential stresses acting over a region of ±20 Å normal to the interfaces. The excess 

energy due to the formation of TJs can also be described as the elastic strain energy 

stored due to the formation of TJs and is defined as: 
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∆𝐸𝑇𝐽 = (𝐸𝑇𝐽 − 𝑛𝐸𝑐𝑜ℎ − ∑𝐸𝐺𝐵
𝑖 𝑙𝑥

𝑖 𝑙𝑧

3

𝑖=1

)/𝑙𝑧 (24) 

where 𝐸𝑇𝐽 is the energy of the defected structure with TJ and GB interfaces, 𝐸𝑐𝑜ℎ is the 

cohesive energy of each atom at 0 K in a pristine BCC lattice, 𝐸𝐺𝐵
𝑖  is the GB formation 

energy per unit area for the ith interface and 𝑙𝑥
𝑖  is the length of the unit vector tangential to 

the GB plane. The net excess energy was normalized by the line length (𝑙𝑧) of the TJ. 

These results were found by summation of atomic energies within a distance of 19 nm 

from the TJ. The resolved line tension followed a trend similar (Figure 28b) to the net 

change in volume at the TJ with a local maxima for the Σ3-Σ9-Σ27. In the case of the 

resolved line tension, the Σ3-Σ33-Σ99 had a high line tension compared to other TJs. 

The trend for excess energy at the TJ (Figure 28c) was maximum for Σ3-Σ9-Σ27 the 

rest of the TJs have similar energies except Σ3-Σ3-Σ9 that had the lowest excess energy 

of 3x10-8 J/m. The values for excess energy due to the formation of the TJ were found to 

be in close agreement with previous findings (Shekhar and King 2008; Costantini et al. 

2000; Fortier et al. 1991).  
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Figure 28: (a) The net change in volume at the TJ. In general, a clear trend can be 

observed that high CSL GB TJs underwent large volume change during formation of the 

TJ. (b) The resolved line tension acting along the TJ. c) The excess energy due to 

formation of the TJ. 

Furthermore, equipped with the understanding of key intrinsic properties of various 

TJs the energetic interactions of various TJs with solute atoms/point defects were 

examined. The segregation/binding potency for solute atoms/point defects was computed 

at various atomic sites in the vicinity of the TJ (≤ 2 nm) as shown in Figure 29. The 

binding energy (Eb) is essentially the extra energy required to form a defect at a specific 

site near the defect region in comparison to the bulk formation energy of the defect 

(𝐸𝑏
𝑇𝐽 = 𝐸𝑓

𝑇𝐽 − 𝐸𝑓
𝑏𝑢𝑙𝑘, where 𝐸𝑓

𝑏𝑢𝑙𝑘
 for H vacancy and SIA was 0.28, 1.75, 3.5 eV, 

respectively, refer to (Solanki et al. 2012; Bhatia and Solanki 2013; Rajagopalan, 

Tschopp, and Solanki 2014)). Similarly, the segregation energy is opposite of the binding 

energy (𝐸𝑠𝑒𝑔
𝑇𝐽 = −𝐸𝑏

𝑇𝐽) .  
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7.3.1 Vacancy 

The vacancies play a key role during mass-transport towards/away from the TJs. Thus, 

in this section we explore the effect of atomic structure surrounding the TJs on the 

vacancy binding behavior. The atomic sites with higher binding energy were found to be 

clustered near regions of high hydrostatic stress within the atomic structure (Figure 27). 

The effect of TJ on the binding tendency for atomic sites within the grains was found to 

be negligible, i.e., the atoms far away from the TJs are white (0 eV vacancy binding 

energy) indicating that there is no energy difference over the bulk lattice (see Figure 29). 

There is a clear difference between the number of minimum energy sites in the vicinity of 

the TJ between the Σ3-Σ3-Σ9 and Σ3-Σ33-Σ99 TJs (Figure 29a and 29b). The Σ3-Σ3-Σ9 

TJ has minimum energy sites concentrated in a very small region around the TJ (3 Å 

radially) indicating the extent of the TJ elastic strain field (Figure 29a). On the other 

hand, the Σ3-Σ33-Σ99 TJ has more stable vacancy sites away from the TJ along the 

constituent GBs (Figure 29b). This clearly indicates that vacancies have a strong bias 

towards the defected structures with the greatest compressive strain field. 

Furthermore, the role of constituent GBs and the TJ on vacancy binding was examined by 

plotting the mean binding energy as a function of radial distance from the TJ (Figure 

29c). The vacancy binding energy for a majority of TJs converged to the bulk vacancy 

formation energy at a length of approximately 1.5 nm from the TJ. The Σ3-Σ3-Σ9 TJ had 

the maximum binding energy near the TJ (< 5 Å) of all the TJs followed by the Σ3-Σ33-

Σ99 TJ. At first glance these TJs seem to be at odds with the measured intrinsic properties 

of the various TJs as both of these TJs represent opposite ends of the excess stored 

energy.  
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However, when investigated from the perspective of the underlying interplay between 

GB and TJ dominated binding behavior for point defects, the above mentioned behavior 

seems clear. 

 

 

Figure 29: The atomic variation in vacancy binding energy near a) Σ3-Σ3-Σ9 and b) Σ3-

Σ33-Σ99 TJs. The atoms were colored based on the vacancy binding energy at each site. 

c) The mean vacancy binding energy as a function of radial distance from the TJ. A total 

of 10 concentric bins were defined (𝑟𝑖−1 ≤ 𝑟 ≤ 𝑟𝑖 ) up to 2 nm from the TJ. White atoms 

correspond to the bulk binding energy (~ 0 eV) and black atoms represent the minimum 

vacancy binding energy of 2.5 eV. 
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7.3.2 Self-Interstitial Atom (SIA) 

Radiation damage creates lattice point defects (vacancies and interstitials) which can 

alter the physical and mechanical properties of the material through the nucleation of 

defects such as defect clusters, defect-impurity complexes, voids and defect-solute 

clusters. The stability of a nuclear material depends on its effectiveness in absorbing 

point defects through various microstructural sinks (GBs and TJs). Thus, in this section 

we explore the effect of the SIA on various TJs. 

The variation in binding strength of SIA in the vicinity of the TJ was found by 

plotting the mean binding energy as a function of radial distance from the TJ core for 

various TJ (Figure 30). This clearly gives a measure of the interplay between GB and TJ 

strain fields. The Σ3-Σ3-Σ9 and Σ3-Σ11-Σ33 TJs have high binding strength for SIA in 

comparison to the other TJs (Figure 30). The TJ influence on the SIA binding was around 

12-15 Å as the binding energy converges towards bulk beyond that distance. There seems 

to be a higher preference for absorbing SIA in contrast to vacancy around the TJs. These 

findings are consistent with results for GB sink efficiency for point defects (Tschopp et 

al. 2012a). 
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Figure 30: The mean binding energy for a self-interstitial atom as a function of radial 

distance from the TJ. A total of 10 concentric bins were defined (𝑟𝑖−1 ≤ 𝑟 ≤ 𝑟𝑖 ) up to 2 

nm from the TJ. 

7.3.3 Hydrogen 

The influence of the atomic structure surrounding the TJ was analyzed by visualizing 

the site to site variation in H binding energy variation (Figure 31a-b). The atomic sites 

with higher binding energy were found to be clustered near regions of high hydrostatic 

stress within the atomic structures of the Σ3-Σ3-Σ9 and Σ3-Σ11-Σ33 TJs. The influence of 

GB on the binding strength in the Σ3-Σ11-Σ33 TJ can be interpreted by looking at the far-

field binding energies along the GB. The mean binding energy versus the radial distance 

from the TJ gives a measure of the TJs that have a larger selection of stable sites near the 

core for the Σ3-Σ3-Σ9, Σ3-Σ11-Σ33 and Σ3-Σ27-Σ81 TJs (Figure 31c). 
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Figure 31: The atomic variation in vacancy binding energy near a) Σ3-Σ3-Σ9 and b) Σ3-

Σ11-Σ33 TJs. The atoms were colored based on the vacancy binding energy at each site. 

c) The mean vacancy binding energy as a function of radial distance from the TJ. A total 

of 10 concentric bins were defined (𝑟𝑖−1 ≤ 𝑟 ≤ 𝑟𝑖 ) up to 2 nm from the TJ. White atoms 

correspond to the bulk binding energy (~ 0 eV) and black atoms represent the minimum 

vacancy binding energy of 0.75 eV. 
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The physical ramifications of the distinctive properties of TJs compared to the  

constituent GBs was highlighted in terms of hydrogen concentration using the Langmuir-

McLean (McLean 1957) relation (Figure 32). The concentration of solute (hydrogen) at 

the TJ (𝑋𝑇𝐽) was expressed in terms of the nominal bulk concentration (𝑋𝑏 = 0.28%), 

the binding energy for the solute atoms (𝐸𝑏) in the vicinity of the defect and the 

temperature (𝑇) in the following manner: 

𝑋𝑇𝐽 = (1 + (
1 − 𝑋𝑏

𝑋𝑏
) exp (−𝐸𝑏/𝑘𝐵𝑇)

−1

 (25) 

The Σ3-Σ3-Σ9 TJ was selected for the comparison between the TJ and GB hydrogen 

concentration profile (Figure 32). It has the least measured intrinsic properties but on the 

other hand shows the highest sink efficiency for point defects and solute atoms in this 

work (Figure 31). The Σ3-Σ3-Σ9 TJ was found to have a 100% sink efficiency for the 

nominal hydrogen concentration up to a temperature of 500 K, and beyond this 

temperature the sink efficiency of the TJ falls to 40% at 1000 K. On the other hand, the 

Σ3 and Σ9 GBs saw sharp drop in the hydrogen concentrations with increasing 

temperature. These findings clearly show that despite the limited segregation potency of 

the Σ3 GBs, these interfaces can create TJs in NC material that have a much higher 

tendency for solute segregation. This leads to increased susceptibility of decohesion at 

the TJ due to extremely rich environments of hydrogen. 
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Figure 32: The unique behavior of the Σ3-Σ3-Σ9 TJ in comparison to the constituent GBs, 

in terms of variations in hydrogen concentration for a range of temperatures (Equation 

25, 𝑋𝑏
𝐻 = 0.28 %). 

7.4 Conclusions 

In summary, the various intrinsic quantities pertinent to the structural stability of TJs 

and GB network in Fe were systematically quantified. This work provides insights 

regarding the structural stability of NC materials. The hydrostatic stress field and the net 

volume change can be used to measure the degree of variability in the TJ local structural 

arrangement, which influences the mechanical behavior of NC materials. For instance, 

the TJ misfit strain is a function of the net volume change during the formation of the TJ 

(Figure 28). The variation in atomic scale hydrostatic stress build up at the TJ allows 

visualization of the fact that TJ strain energy is not directly correlated to the constituent 

GBs but depends on other factors such as the location of the TJ with regard to the 

constituent GB structures. There is a strong energetic preference for SIA around the TJ 

over a vacancy defect (Figure 29 and 30). This is similar to the results observed for GBs 

in Fe (Tschopp et al. 2011). The hydrogen concentration across a wide range of 
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temperature for the Σ3-Σ3-Σ9 TJ was found to be distinctly higher in comparison to the 

constituent GBs (Figure 32); similar conclusions were drawn by King (King 2010). 

Overall, in this work a methodology to investigate the role of TJs with regard to the 

structural stability of NC material was developed and preliminary results on this have 

been presented. 
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A.1 Introduction 

Over the past few decades, the progress in computational resources and the resolution 

of experimental observations has motivated theoretical studies to understand the 

influence of the atomic arrangement of complex materials. The two primary approaches 

for the theoretical study at the atomic scale are (i) first-principle methods, based on 

finding the quantum mechanical solution for the atomic structures and (ii) atomistic 

methods comprised of molecular dynamics (MD), molecular statics (MS) and Monte 

Carlo (MC). The first-principle calculations can accurately predict the interatomic 

interactions of pure elements and complex alloy systems. However, the first-principle 

methods are computationally demanding thereby limiting the size of the atomic domain 

that can be examined to only a few hundred atoms. In order to examine mechanics of 

material deformation at the atomic scale the limitation of DFT methods hinders the 

ability to effectively study the critical crack, dislocation and grain boundary interactions. 

Therefore, in this section we will focus on employing atomistic simulation techniques 

with a particular interest in studying the application to mechanics. 

A.2 Molecular statics 

The molecular statics (MS) approach considers athermal interactions (0 K); whereby, 

the minimum energy position of atoms is calculated solely based on the potential energy 

contribution. The conjugate gradient method is used to determine the positional 

rearrangement of the atoms. This works by following the direction of the steepest descent 

in the total potential energy of the atomic configuration that is conjugate to the previous 

atomic configuration. This method attempts to find the minimum energy configuration 

based on a pre-defined convergence criteria. 
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A.3 Molecular dynamics 

The molecular dynamics approach consists of solving Newton’s equations of motion 

for an N particle system evolving with time. 

𝑚
𝑑2𝑟𝑖
𝑑𝑡2

= −
𝜕𝑈(𝑟𝑖)

𝜕𝑟𝑖
 (A1) 

Here, 𝑟𝑖 represents the position vectors of the N atom system, 𝑈(𝑟𝑖) is the potential 

energy expressed in terms of the spatial arrangement of atoms, m is the atomic mass and t 

is the time. In this equation, 𝐹 = −
𝜕𝑈(𝑟𝑖)

𝜕𝑟𝑖
  is the interatomic force on atom i and 

𝑑2𝑟𝑖

𝑑𝑡2  is 

the acceleration.  

A.4 Monte Carlo methods 

The Monte Carlo approach relies on the statistical mechanics approach to estimate 

macroscopic quantities at thermal equilibrium using the Boltzmann’s approach. For a 

microscopic quantity 𝐴({𝒓𝑖, 𝒑𝑖}) that depends on the atomic positions (𝒓𝑖) and 

momentum (𝒑𝑖), the ensemble average can be expressed as: 

〈𝐴〉 =
1

𝑍
∫∏𝐴({𝒓𝑖, 𝒑𝑖})𝑒𝑥𝑝(−𝛽𝐻({𝒓𝑖, 𝒑𝑖}))𝑑𝒓𝑖𝑑𝒑𝑖

𝑁

𝑖=1

  

𝑍 = ∫∏𝑒𝑥𝑝(−𝛽𝐻({𝒓𝑖, 𝒑𝑖}))𝑑𝒓𝑖𝑑𝒑𝑖

𝑁

𝑖=1

 (A2) 

𝐻({𝒓𝑖, 𝒑𝑖}) = ∑
|𝒑𝑖|

2

2𝑚
+ 𝑉({𝒓𝑖})

𝑁

𝑖=1
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where 𝛽 = 1/(𝑘𝐵𝑇), 𝑘𝐵 is the Boltzmann’s constant and T is the temperature, Z is the 

partition function which ensures the normalization of the probability distribution, 𝐻 is the 

Hamiltonian operator and 𝑉({𝒓𝑖}) describes the interatomic potential energy. The direct 

integration of Equation A2 to obtain ensemble averages is not possible numerically. 

However, Monte Carlo methods make it possible to quantify the microscopic function 

that is only dependent on the atomic configuration R, 𝐴 = 𝐴(𝑹). 

〈𝐴〉 = ∫𝑑𝑹𝐴(𝑹)𝜌(𝑹)  

𝜌(𝑹) =
1

𝑍𝑹
𝑒𝑥𝑝(−𝛽𝑉(𝑹)) (A3) 

𝑍(𝑹) = ∫𝑑𝑹𝑒𝑥𝑝(−𝛽𝑉(𝑹))  

Where, 𝜌(𝑹) is the Boltzmann’s distribution function in the configurational sub-space, 

and 𝑍(𝑹) is the configurational part of the partition function. After enough 

configurational states have been examined, the ensemble average can be estimated by 

Equation A3. 

The chief difference between MD and MC methods is in the sampling approach 

utilized in the statistical mechanics framework (Equation A2) for the estimation of the 

macroscopic properties of interest. The MC method is based on the idea of sampling 

sufficient configurational states based on Boltzmann’s distribution (Equation A3). In the 

case of MD, the new configuration is generated by advancing in time and finding the 

atom positions and velocities based on Newton’s equation of motion (Equation A1). 

A.5 Ensembles in MD Simulation 



 

138 

In MD simulations, the physical quantities measured are statistical averages for a 

chosen ensemble (microcanonical, canonical and isothermal-isobaric), as the total energy 

(E) is a constant of motion. The study of nano-mechanics of material behavior at the 

atomic length scale requires conditions that closely reflect the experimental setup. Thus, 

canonical and isothermal-isobaric ensembles offer a choice between two realistic 

conditions: a) thermal equilibrium at fixed temperature (canonical/NVT) ensemble; b) 

controlled pressure and temperature conditions (isothermal-isobaric/NPT) ensemble. 

There are two approaches to solve these ensembles: a) performing certain Monte Carlo 

moves during the Newtonian MD; b) employing reformulated Lagrangian equations of 

motion. Next, we present a brief overview of the most widely employed algorithms for 

performing the canonical and isothermal-isobaric ensembles in a MD framework.  

A.5.1 Nosé-Hoover Thermostat 

The Nosé approach is based on performing deterministic MD at constant temperature 

employing the extended Lagrangian. The extended Lagrangian contains the standard 

Lagrangian formulation of Newton’s equation of motion and additionally artificial 

coordinates and velocities (Shuichi Nosé and Klein 1983; Shuichi Nosé 1984). This 

scheme was applied to the constant volume equation of motion proposed by Hoover 

(Hoover 1986). In the implementation of the constant volume ensemble, an artificial 

thermodynamic coefficient of friction (𝜉) was introduced (Shūichi Nosé 1986). The 

equations of motion can be rewritten as following: 

𝑟�̇� =
𝒑𝑖

𝑚𝑖
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𝒑𝑖̇ = −
𝜕𝑈(𝒓𝑖)

𝜕𝒓𝑖
− 𝜉𝒑𝑖  (A4) 

�̇� = 𝑣𝑇
2 (

𝑇

𝑇0
− 1)  

where, 𝒑𝑖 is the atomic momentum, 𝑇0 is the temperature of the thermal reservoir and 𝑣𝑇 

is the thermostating frequency. The thermodynamic friction coefficient dynamically 

rescales the velocities of the atoms to achieve the desired temperature (𝑇0). 

A.5.2 Isothermal-Isobaric Ensemble 

A number of models have been proposed to perform MD simulations in the NPT 

ensemble (Andersen 1980; Parrinello and Rahman 1982; Shuichi Nosé 1984; Hoover 

1986). Each of these implementations are driven by the mismatch created between the 

desired and internal pressures to change the simulation box size. The NPT 

implementation has a close analogy to the NVT algorithm, as it also employs an isobaric 

friction coefficient (𝜼) similar to the thermodynamic friction coefficient. The following 

equations are a few modifications proposed by Melchionna et al. (Melchionna, Ciccotti, 

and Holian 1993) to Hoover’s equations of motion for constant pressure (Hoover 1986) 

to accurately implement the NPT ensemble:  

𝒓�̇� =
𝒑𝑖

𝑚𝑖
+ 𝜼(𝒓𝑖 − 𝑅0)  

𝒑𝑖̇ = −
𝜕𝑈(𝒓𝑖)

𝜕𝒓𝑖
− (𝜼 + 𝜉𝑰)𝒑𝑖  (A5) 

�̇� =
𝑣𝑃

2

𝑁𝑘𝐵𝑇0
𝑉(𝝈 − 𝑷𝟎)  
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�̇� = 𝜼𝒉  

where, 𝑷𝟎 is the desired pressure and 𝑣𝑃 is the pressure dampening coefficient. The 

simulation cell boundaries are defined by 𝒉. The internal stress state of the system (𝝈) is 

calculated using the virial definition discussed later. 

A.6 Interatomic potentials 

The interactions between the particles are based on the potential energy of the atomic 

arrangement, and the interatomic potential can be expressed in an analytical form. The 

approximate analytical form of the interatomic potential aims to reproduce essential 

macroscopic properties. Over the last century, several different formulations aimed at 

modelling a particular bonding environment and varying levels of accuracy have been 

developed. The earliest and most noteworthy potential developed was the Lennard-Jones 

(Jones 1924a; Jones 1924b) pair potential for ideal gases.  The Lennard-Jones pair 

potential is the simplest model for describing interatomic behavior, where the potential 

energy is only a function of the interatomic distance.  

𝐸 =
1
2

∑𝜑𝑖𝑗
𝑗≠𝑖

(𝑟𝑖𝑗) (A6) 

Where, 𝑟𝑖𝑗 is the interatomic distance between atoms i and j and 𝜑𝑖𝑗 is the pair-wise 

interaction energy. In many pair potentials, the pair-wise interaction energy is 

decomposed into attractive and repulsive components (Jones 1924a; Buckingham 1938) 

to capture both the long and short range interactions and best describe noble gas 

behavior. However, due to the simple description this fails to capture the change in bond 

strength with varying atomic environment. This behavior is critical in metals as the 

quantum effect changes the bond properties in the vicinity of a surface.  
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This has led to the development of the many body potentials that incorporate the 

effect of the local environment on the bond strength. In the case of metals, the embedded 

atom method (EAM) (M. S. Daw and Baskes 1984; M. S. Daw et al. 1985) that is based 

on the density functional theory incorporating the approximated many-body interactions.  

𝐸 = ∑𝐹𝑖(𝜌𝑖)

𝑖

+
1

2
∑𝜑𝑖𝑗

𝑗≠𝑖

(𝑟𝑖𝑗) (A7) 

Here, the summation of the electron density (𝜑𝑖𝑗) at the atomic site i from all the atoms j 

gives the local electron density at atomic site i. The embedding energy 𝐹𝑖 is defined as the 

interaction energy between an atom and the surrounding electron cloud created by the 

neighboring atoms. The EAM potentials allow an accurate reproduction of the elastic 

properties. For instance, the pair-wise description of a solid would yield, 𝐶12 = 𝐶44 also 

known as the Cauchy relationship. However, only noble gases are known to obey this 

relation while metals violate this relationship (Murray S. Daw, Foiles, and Baskes 1993). 

The use of the many-body EAM formulation accurately captures this phenomenon. 

Similarly, the defect formation energies in metallic systems are accurately captured with 

the many-body formulation. The modified EAM (Baskes 1992) and the angular 

dependent potential (ADP) (Mishin, Mehl, and Papaconstantopoulos 2005) were 

developed  to include an angular description of bonding that had been lacking in the 

EAM. The angular description is essential for modeling of body-centered cubic transition 

metals and hexagonal close packed metals as they capture in a semi-empirical manner the 

covalent nature of the bonding. Further, these angular descriptions are critical to 

development of alloy interatomic potentials (Mishin, Mehl, and Papaconstantopoulos 

2005; B.-J. Lee et al. 2010; Apostol and Mishin 2011).  
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The bond order potentials (BOPs) (Tersoff 1986; Tersoff 1988a; Tersoff 1988b) 

represent an intriguing class of the many-body potentials with a wide range of analytic 

formulations. The BOPs expression for energy of a system is a sum of the repulsive 

(𝑉𝑅(𝑟𝑖𝑗)) and attractive (𝑉𝐴(𝑟𝑖𝑗)) interactions for the valence electrons. 

𝐸 =
1

2
∑∑[𝑉𝑅(𝑟𝑖𝑗) − 𝑏𝑖𝑗𝑉

𝐴(𝑟𝑖𝑗)]

𝑗≠𝑖𝑖

 (A8) 

where 𝑏𝑖𝑗 is a function of the local environment of atoms i and j called “bond order”. This 

helps in capturing the effect of the environment surrounding an atom and was introduced 

by Coulson (Coulson 1939). Tersoff (Tersoff 1986) was first to employ the BOP 

formulation successfully to silicon. Abell (Abell 1985) developed the tight binding (TB), 

where the bond order term was solved with the help a TB Hamiltonian operator (�̂�).  

𝑏𝑖𝑗 = −
2

𝜋
𝐼𝑚∫ 𝐺𝑖𝑗(𝜀)𝑑𝜀

𝜀𝐹

0

 (A9) 

𝐺𝑖𝑗(𝜀) = 〈𝑖 |(𝜀 − �̂�)
−1

| 𝑗〉  

Where, 𝐺𝑖𝑗 is the Green’s function matrix, 𝜀 is the occupied orbital energy assumed to 

contain a small imaginary part and 𝜀𝐹 is the Fermi energy. To derive analytical 

expressions for the bond order the concepts of moment and path-counting (Cyrot-

Lackmann 1967) and Lanczos recursion chain (Lanczos 1950) were used. Since then, a 

great deal of research has been conducted on the development of BOP for various 

materials (Pettifor 1989; D. W. Brenner 1990; Girshick et al. 1998; D. W. Brenner et al. 

2002; Pettifor and Oleinik 2002; Mrovec et al. 2004; Mrovec, Elsässer, and Gumbsch 
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2009). For details on the application of BOP on transition metals (Drautz and Pettifor 

2006; Pettifor et al. 2002) and hydrocarbons (D. W. Brenner 1990; D. w. Brenner 2000). 

The empirical description has been found to lack the ability to accurately capture 

complex bonding environments, such as interfaces between dissimilar materials and the 

transitions during a chemical reaction. The reactive empirical bond order (REBO) (D. W. 

Brenner 1990; D. W. Brenner et al. 2002), adaptive intermolecular reactive empirical 

bond order (AIREBO) (Stuart, Tutein, and Harrison 2000), reactive force field (ReaxFF) 

(van Duin et al. 2001) and charge optimized many body (COMB) (Shan et al. 2010; 

Noordhoek et al. 2013) are a few of the different formulations that can address this 

limitation. Here we review the COMB formulation that shares the fundamental concepts 

with ReaxFF. The formulation has concepts that aid in the transition in bonding character 

of the molecule, and can take into account the long range interactions (Coulomb and van 

der Waals). The total energy of a system in the COMB formulation is expressed in terms 

of the sum of several chemical interactions. 

𝐸 = ∑[𝐸𝑖
𝑠𝑒𝑙𝑓(𝑞𝑖) + ∑[𝐸𝑖𝑗

𝑠ℎ𝑜𝑟𝑡(𝑟𝑖𝑗, 𝑞𝑖, 𝑞𝑗) + 𝐸𝑖𝑗
𝐶𝑜𝑢𝑙(𝑟𝑖𝑗, 𝑞𝑖, 𝑞𝑗)]

𝑗>𝑖𝑖

+ 𝐸𝑣𝑑𝑊(𝑟𝑖𝑗) + 𝐸𝑝𝑜𝑙𝑎𝑟(𝑟𝑖𝑗, 𝑞𝑖) + 𝐸𝑏𝑎𝑟𝑟(𝑞𝑖) + 𝐸𝑐𝑜𝑟𝑟(𝑟𝑖𝑗, 𝜃𝑖𝑗𝑘)] 

(A10) 

Here 𝑞𝑖 , 𝑞𝑗 represents the partial charge around atoms and 𝐸𝑖
𝑠𝑒𝑙𝑓

 is the energy to form a 

charge on atom i, 𝐸𝑖𝑗
𝑠ℎ𝑜𝑟𝑡 is the bond-order potential between atoms i and j. The Coulomb 

interactions are given by 𝐸𝑖𝑗
𝐶𝑜𝑢𝑙, 𝐸𝑝𝑜𝑙𝑎𝑟 is the polarization energy term, 𝐸𝑣𝑑𝑊 are the van-

der Waals interactions, 𝐸𝑏𝑎𝑟𝑟 is the charge barrier, 𝜃𝑖𝑗𝑘 is the angle between the three 

atoms i, j and k and 𝐸𝑐𝑜𝑟𝑟 is the angular correction term. In this method, a self-consistent 
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approach has been employed for dynamic determination of charge according to the 

varying local environment. The thermodynamic requirement that electronegativity be 

equal at all atomic sites in chemical equilibrium is the basic principle behind the 

approach (Parr et al. 1978; Sanderson 1983). These reactive potentials have been applied 

with a great deal of success in the study of a) dissimilar material heterogeneous 

interfaces; b) surface chemistry; c) metals (with limited success) (D. w. Brenner 2000; T. 

Liang et al. 2013).  

Despite these efforts, there is still a lack of a consistent approach capable of handling 

various bonding environments. The interatomic potentials at present are designed for use 

in specific applications and the functional form is mostly selected by the intuition of the 

designer. This has led to lack of reliability of atomistic findings (M. S. Daw et al. 1985; 

Murray S. Daw, Foiles, and Baskes 1993; Jonathan A. Zimmerman, Gao, and Abraham 

2000; Gröger, Bailey, and Vitek 2008; Mrovec, Elsässer, and Gumbsch 2009; Foiles and 

Baskes 2012; Christopher R. Weinberger, Tucker, and Foiles 2013; Ventelon et al. 2013; 

Hale, Zimmerman, and Weinberger 2014). For instance, Zimmerman et al. (Jonathan A. 

Zimmerman, Gao, and Abraham 2000) found large variations in stacking fault energy 

curves for face-centered-cubic (FCC) metals because of the interatomic description. In 

the case of body-centered-cubic (BCC) metals, the presence of an unphysical metastable 

configuration during the screw dislocation glide was found due to the choice of 

interatomic description (Clouet, Ventelon, and Willaime 2009; Itakura, Kaburaki, and 

Yamaguchi 2012; Ventelon et al. 2013; Hale, Zimmerman, and Weinberger 2014; 

Christopher R. Weinberger, Tucker, and Foiles 2013). In order to serve as a robust and 

accurate interatomic potential, Brenner (D. w. Brenner 2000) discussed the importance 
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of: a) a potential function robust enough to accommodate a wide range of fitting data; b) 

a high level of fidelity in the reproduction of the parameter fitting database; c) the ability 

of the potential to predict accurate properties outside the fitting database; d) and lastly, 

the computational cost and scale-ability. These interdependent criterions create a tough 

balancing situation for the developers.  

 

The design of atomistic studies necessitates great regards to the small length and time 

scales accessible. The time scale limitation seriously hinders the ability to observe 

phenomenon in laboratory experiments on much different time scales. The lack of 

quantum mechanics in the MD approach limits the reproducibility of several physical 

properties. This requires development of a new class of interatomic potentials that can 

describe the complex quantum effects. The electron force field (eFF) (Su and Goddard 

2007; Kim, Su, and Goddard 2011) model attempts to address this issue by solving a 

simplified Schroedinger equation for practical non adiabatic electron dynamics 

simulations of materials. Despite these limitations, MD simulations have provided 

valuable insights into the mechanical behavior of metals at the nano-scale  (Farkas, Van 

Swygenhoven, and Derlet 2002; Van Swygenhoven, Derlet, and FrA 2004; Warner, 

Curtin, and Qu 2007; Spearot et al. 2007; Tschopp et al. 2011; Tschopp et al. 2012b; 

Jonathan A. Zimmerman, Gao, and Abraham 2000; Lim et al. 2015; Christopher R. 

Weinberger, Tucker, and Foiles 2013; Olmsted, Foiles, and Holm 2009; Holm et al. 

2011). In particular MD simulations have contributed greatly in the study of crystalline 

defects (vacancies, self-interstitials, dislocations, grain boundaries and cracks) (Smith, 

Vitek, and Pond 1977; Spearot et al. 2007; Jonathan A. Zimmerman, Gao, and Abraham 
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2000; Tschopp et al. 2011; Lim et al. 2015; Gröger, Bailey, and Vitek 2008; Olmsted, 

Foiles, and Holm 2009) as understanding defect behavior is critical for optimizing 

mechanical properties of crystalline materials. 

 

 

 

A.7 Estimating stress in atomistic simulation 

A critical issue in using MD simulations for mechanics is the accurate estimation of 

stress at the atomic scale. The virial theorem used to define the ensemble stress by 

Clausius (Clausius 1870) was initially developed to estimate the stress field applied to a 

surface of a fixed volume of particles.  

𝜎𝑖 =
1

Ω𝑖
[
1

2
∑ ∑

𝑈′

𝑟𝑖𝑗
𝑟𝑖𝑗

𝛼𝑟𝑖𝑗
𝛽

− ∑𝑚𝒗𝑖𝒗𝑖

𝑖𝑖≠𝑗
𝑖

] (A11) 

where, 𝑈 is the potential energy, 𝑈′ is the spatial derivate of the potential energy, 𝑟𝑖𝑗 is 

the vector between atom i and j, the superscript 𝛼 and 𝛽 denote the direction components 

of the vector and Ω𝑖 represents the approximate atomic volume. 

The virial stress has been erroneously applied to estimate the local stress state as it 

offers an attractive diagnostic tool during material deformation. Irving and Kirkwood 

(Irving and Kirkwood 1950) attempted to address this by defining instantaneous mass, 

momentum and energy densities at a spatial point based on the statistical distribution of 

neighboring particles. The formulation was a noteworthy contribution, but it was found to 

be difficult to implement within a MD framework. Since then, several attempts have been 

made to address the shortcomings of the Irving and Kirkwood formulation (Tsai 1979; 
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Lutsko 1988; Cormier, Rickman, and Delph 2001). Zhou et al. (Zhou and McDowell 

2002) developed a virial-like expression for stress defined over an arbitrary volume 

containing a single atom. Zimmerman et al. (J. A. Zimmerman et al. 2004) explored 

various scenarios of non-finite deformation and finite temperatures. It was found that the 

virial definition of stress had large fluctuations at finite temperature even for unstrained 

states of the crystal. However, time and spatial averaging was found to reduce the 

fluctuations. Further, Zimmerman et al. (J. A. Zimmerman et al. 2004) examined the 

applicability of the Hardy formulation for atomic stress and it was found to perform much 

better than the virial stress. Finally, Zimmerman et al. observed a lower limit to spatial 

and temporal resolution to make a connection between atomistic and continuum 

definitions of stress. These studies clearly show that the quantification of stress at the 

atomic scale while maintaining continuum equivalence is still an unresolved issue. 

Nonetheless, meaningful estimates of stress at atomic scale can be extracted by 

evaluating the virial part of Equation A11 (Zhou and McDowell 2002). 

𝜎𝑖 =
1

Ω𝑖
[
1

2
∑ ∑

𝑈′

𝑟𝑖𝑗
𝑟𝑖𝑗

𝛼𝑟𝑖𝑗
𝛽

𝑖≠𝑗
𝑖

] (A12) 

 


