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ABSTRACT

Presented is a study on the chemotaxis reaction process and its relation with

flow topology. The effect of coherent structures in turbulent flows is characterized by

studying nutrient uptake and the advantage that is received from motile bacteria over

other non-motile bacteria. Variability is found to be dependent on the initial location

of scalar impurity and can be tied to Lagrangian coherent structures through recent

advances in the identification of finite-time transport barriers. Advantage is relatively

small for initial nutrient found within high stretching regions of the flow, and nutrient

within elliptic structures provide the greatest advantage for motile species. How the

flow field and the relevant flow topology lead to such a relation is analyzed.
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Chapter 1

INTRODUCTION

Some bacteria, such as E Coli, are able to propel themselves with the use of flagella.

These motile species use chemotaxis, a chemical process in which bacteria are able to

sense higher concentrations of nutrient and swim up gradient, to gain an advantage

on foraging over non-motile species. They are able to reach higher concentrations

of food which allows for increased uptake, whereas non-motile species must rely on

mixing and diffusion in order to obtain nutrient. This difference in uptake is studied

by initializing a localized, high concentration nutrient patch in a sample flow and

extracting uptake data over time.

Chemotaxis has been of interest since the late 19th century when Pfeffer first

observed the process. Since then, much work has been focused on experiments and

modeling to better understand the bacteria behavior. A study by Munoz-Garcia

et al. (3) showed that advantage is dependent on spatial variability of the nutrient

field and diffusivity of the turbulent flow. Recently, Taylor and Stocker (6) have

developed a numerical model to simulate chemotaxis in turbulence using a range of

physical parameters including chemotactic speed and uptake rate to study advantage

of motile bacteria. However, no relevance of the surrounding turbulence was taken

into account, and each realization starts with a nutrient patch release in the center of

the domain. Turbulence causes transient structures to form and decorrelate, leading

to a dependence on the initial starting location of the nutrient patch. The final state

of nutrient will be completely homogenized, but there are many stretching and folding

patterns which will affect how the nutrient responds in short time.
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This thesis seeks to model and study chemotaxis in geostrophic turbulence to gain

an understanding of reaction processes in flows. A similar approach to (4) and (5)

is taken to explore the transient problem. In those studies, the reaction process is

shown to be tied to the Lagrangian topology of the flow as outlined by the finite-time

Lyapunov exponents (FTLEs). Haller first proposed the use of FTLE on identification

of stretching and attracting structures where he showed that boundaries of coherent

structures can be seen as the ridges of the FTLE field (1). Tang and Luna (4) showed

reaction rate is intimately connected to Lagrangian stretching history as highlighted

by FTLE. Further, a bistable reaction was studied by Tang and Dhumuntarao (5)

where convergence to stable states was also linked to FTLE. The previous studies

were on advection-reaction-diffusion dynamics where the reaction kinetics exhibit a

single or two stable stable equilibria. Here, the variability of reaction due to turbulent

mixing is explored further looking at the more complicated dynamics associated with

chemotaxis. The flow topology is also related to the more complicated system by

means of LCS.
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Chapter 2

METHOD

2.1 Governing Equations

Consider a turbulent flow with characteristic length scale L, velocity scale U and

viscosity ν. Two species are embedded in the background flow, with equal initial

concentration b0, diffusivity κ and consumption rate ξ. A nutrient is injected into

the flow, and one of the bacteria species utilizes chemotaxis to swim up gradient of

the nutrient concentration, with a chemotactic speed of χ. The equations for this

advection-reaction-diffusion (ARD) system are given in non-dimensional form as

ct + (u ·∇)c =
1

Pe
∇2c−Da(b+ 1)c , (2.1)

bt + (u ·∇)b =
1

Pe
∇2b− Ch∇(b∇c) , (2.2)

where c is the nutrient concentration and b is the concentration of the motile species.

The non-motile species is taken to be uniform throughout the simulation with concen-

tration b0. The background velocity field u advects the scalars. Pe = UL/κ = Re ·Sc

is the Péclet number, where Re is the Reynolds number and Sc = ν/κ is the Schmidt

number. Da = ξb0L/U is the Damköhler number for bacteria foraging on nutrient

and Ch = χ/U is the non-dimensional chemotactic speed.

The simulations performed use a length scale L of 6.66 cm and a velocity scale

U of 1.5 cm/s. The viscosity ν is set equal to 10−6 m2/sec, with Reynolds number

Re = 1000. The diffusivity κ ranges from 10−6 ∼ 10−7 m2/sec, giving a Schmidt

number between 1 and 10. A normal Schmidt number for bacteria in the environment
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is around 1000, however due to domain size and computational constraints, only the

parametric dependence for moderate Sc is explored. The initial concentration for

both species is set to 1 and the consumption rate of 0.00225/s is chosen to give a

Damköhler number of 0.01. The chemotactic speed is set to χ = 1.5 µm/s with

Ch = 0.001. The nutrient is released with an initial Gaussian profile that has peak

value 1 and full width at half maximum.

The model is a simplification of the simulations performed in Taylor and Stocker’s

paper (6). All parameters are consistent with the previous work, with the limited

speed restriction removed. A 2D model is considered for better interpretation of

physical terms in various flow topology. This makes the analysis more tractable and

interpretations can be extrapolated to the higher dimensional case.

To extract scalar information from the simulations, the domain average is defined

as the integration over the area

〈q〉 =
1

A

∫
D

q dA .

The nutrient uptake for motile and non-motile bacteria are respectively given by

UM = 〈b · c〉 and UNM = 〈c · 1〉 .

The motility advantage is measured as the difference in uptake of the motile and

non-motile species.

2.2 Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCS) are regions of coherent motion in turbulent

flows. Finite-time Lyapunov exponents (FTLE) are used to identify locations of
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repelling and attracting material lines and surfaces which serve as the boundaries for

LCS. To compute the FTLE, let x(t;x0, t0) denote the current position of a trajectory

starting at location x0, time t0, and the deformation gradient tensor J as [∂x/∂x0].

The FTLE field given by

FTLEt
t0

(x0) =
1

|t− t0|
lnλmax(J) ,

is the scalar field which yields the largest stretching rate for any initial position x0,

where λmax(J) is the largest eigenvalue of J . In forward time, the FTLE shows regions

of repelling surfaces. In backward time, regions of repelling can be seen as attracting

surfaces in forward time.

In recent studies (2), it has been pointed out that FTLE ridges can indicate false

positives and negatives. Stretching and shear are both highlighted by FTLE, and two

closely related quantities, strainlines and shearlines, are more appropriate features

that highlight exponential separation away from material lines. FTLE alone does not

highlight transport barriers that enclose elliptic structures; additional methods would

be needed when considering these areas. However, FTLE gives a quick way to com-

pute major features of the flow topology, so is it nevertheless used for interpretation

here.

2.3 Flow Models

A two dimensional geostrophic turbulence is generated using the vorticity-stream

function formulation of an incompressible flow, using direct numerical simulation

(DNS). The formulation for the flow is

ωt + J [ψ, ω] = d+ f, (2.3)
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where ψ is the stream function of the flow calculated numerically. ω = ∇2ψ is

the vorticity. J [ψ, ω] is the Jacobian matrix. d = ∇2ω/Re + ψ is the dissipation

which includes regular dissipation at small scales and damping at large scales. This

prevents inverse energy cascade. f is forcing which ensures conservation of enstrophy

at the (2,2) mode. A random phase is added to the forcing, giving emergence and

disappearance of coherent structures.

The system is solved using spectral methods for spatial derivatives and a third

order Runge-Kutta method for the time step. Periodic boundary conditions are en-

forced for both dimensions. The flow is integrated until reaching a statistically steady

state, from which point the nutrient is introduced and the ARD equations start being

solved along with the flow. For Schmidt numbers 1 and 3, a 256 by 256 grid is used to

run simulations (realizations for the entire domain are sampled). For higher Schmidt

numbers, the resolution is increased to 512 grid points in both direction (only the ex-

treme cases have been analyzed for the higher Schmidt numbers). Note that Schmidt

numbers in the realistic environment are on the order of 1000, so more heterogeneity

is expected.
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Chapter 3

RESULTS

The methods allow for exploration of how variation in chemotactic response is de-

pendent on initial nutrient location within the domain by looking at the flow topology

and relation to FTLE.

Fig(3.1) shows the nutrient and motile bacteria concentration for the system where

the nutrient was initialized in two distinct regions of the domain. Fig(3.1a) shows a

(a) Hyperbolic

Nutrient, T = 1.4 Bacteria, T = 1.4

Nutrient, T = 40 Bacteria, T = 40

(b) Elliptic

Nutrient, T = 1.4 Bacteria, T = 1.4

Nutrient, T = 80 Bacteria, T = 80

Figure 3.1: A Contrast of Different Stretching Patterns Associated with Patch Release
Within Different Flow Coherent Structures. Fig(3.1a) Shows the Nutrient Release
and Motile Bacteria Response for a Hyperbolic Release Location. Fig(3.1b) Shows
the Scalar Responses with Nutrient Starting in an Elliptic Region, for Which the LCS
Boundary Prevents Mixing.
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region which has the largest stretching rate, leading to the largest dispersion of nutri-

ent in early time. At a later time, the scalars are shown to homogenize as the nutrient

becomes well mixed. In contrast, vortices have transport barriers which prevent large

scale mixing outside of the region. At a later time, the nutrient patch evolves out-

side of the existing elliptic structures because transient vorticies decorrelate. Fig(3.1)

emphasizes the difference in release location, showing different stretching of the nu-

trient. In fig(3.1a), the nutrient stretches out very quickly and shows homogenization

in short time. Fig(3.1b) however shows almost no stretching, and at a much later

time, the nutrient is still not dispersed. Notice that the motile bacteria have higher

concentrations near the nutrient patches. This allows for a larger amount of grazing

before the nutrient patch disperses.

(a) Hyperbolic (b) Elliptic

Figure 3.2: Plots of Uptake for Motile and Non-motile Bacteria Based on Hyperbolic
and Elliptic Release Locations for Schmidt Number 10. A Solid Line Indicated Motile
Species Uptake, with a Dashed Line Representing Non-motile Uptake.

Fig(3.2) shows the uptake for both motile and non-motile species with the nutrient

being injected into two regions. When a patch is released in a hyperbolic region
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(fig(3.2a)), uptake for motile species peaks and then decays rapidly as mixing causes

the nutrient to homogenize. The total uptake advantage for the motile species in this

case is 0.015. When the nutrient is initialized in an elliptic region (fig(3.2b)), it takes

almost four times as long for the nutrient to become well mixed. The motile species

has a greater peak advantage in a hyperbolic release than in an elliptic one, but due

to the lack of stretching convergence occurs over a longer time period. It is not until

the eddy finally vanishes that the uptake curves converge and the nutrient becomes

well mixed. The total uptake advantage when the nutrient is released in an eddy is

0.094, almost an order of magnitude higher than the hyperbolic release. The main

advantage for both cases occurs in early time and advantage disappears as nutrient

homogenizes. There are clearly distinct behaviors for the different release locations

in fig(3.2), showing advantage does indeed depend on starting location, and in fact

this dependence can cause significant differences.

(a) Sc = 1 (b) Sc = 3 (c) FTLEW

Figure 3.3: Fig(3.3a) and Fig(3.3b) Show Uptake Advantage Based on Release Loca-
tion for Schmidt Numbers 1 and 3. The Weighted Finite-time Lyapunov Exponent
Field Is Shown in Fig(3.3c). The Largest FTLE Values Highlight the Release Loca-
tions with Least Advantage.

To explore how the chemotaxis reaction is dependent upon flow topology, simu-

lations were run for Schmidt numbers 1 and 3 based on nutrient release location for
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every four points in the domain. The simulations ran for a total of 50 time units,

allowing for homogenization of nutrient. The total advantage over the entire do-

main was extracted for each realization, and then plotted at the corresponding initial

release location.

The elliptic regions in fig(3.3a) and fig(3.3b) have the largest total advantage of

nutrient over any other starting location due to the lack of transport of nutrient in

the domain. On the other hand, the smallest advantage occurs in the regions of

greatest stretching. The highest stretching regions of the domain are highlighted as

the locations with the largest FTLE values (fig(3.3c)), showing a strong similarity to

the release locations which lead to lowest motility advantage. Unfortunately, FTLE

does not give a good indication of elliptic regions, so a different detector is needed to

locate these structures.

Since each plot requires about 4000 realizations, Schmidt numbers of 1 and 3 were

used to save on computation time. A grid resolution four times as dense would be

required for higher Schmidt numbers up to 10. Thus, due to time and computational

constraints, advantage is not computed for the entire domain for higher Schmidt

numbers. Notice from the previous computations in fig(3.2) that greatest and least

advantage will occur in elliptic and hyperbolic regions respectively inside the flow

domain. It suffices then to run simulations only for these cases at higher Schmidt

numbers and look at the variability in advantage.

The range of uptake advantage based on release locations for the entire domain

increases with the Schmidt number, as shown in fig(3.4). An increase in gap size

as the separation in diffusion and dissipation length scales increases indicates that

motility becomes more advantageous with smaller mass diffusivity (fig(3.4a)). The

relative advantage (fig(3.4b)) of motile over non-motile species grows with Sc for both

elliptic and hyperbolic releases, with elliptic regions increasing at a faster rate than

10



(a) Difference in Advantage (b) Relative Advantage

Figure 3.4: Fig(3.4a) Shows the Largest Difference in Advantage for Schmidt Numbers
Between 1 and 10. The Relative Advantage Is Shown in Fig(3.4b). The Solid Line
Represents Hyperbolic Initialization. Eddy Release Is Shown with the Dashed Line.

hyperbolic regions. For low Schmidt numbers it is clear that the advantage is linearly

related to turbulence intensity. Unfortunately, physical turbulence (Sc on the order

of 1000) cannot be simulated due to computational constraints.

It is seen in fig(3.3) that the advantage and LCS are tied together with the plot of

FTLE. To explore this relationship, a budget is used to determine the variability of

the two scalars. The difference between motile and non-motile species concentration

is defined to be w = b− 1 where b is the concentration of motile bacteria and 1 is its

average. Thus w is the fluctuation in motile bacteria concentration over the domain.

The new governing equations become

ct + (u ·∇)c =
1

Pe
∇2c−Da(w + 2)c, (3.1)

wt + (u ·∇)w = Pe−1∇2w − Ch∇[(w + 1)∇c]. (3.2)
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The change in variance of c and w over time are found by taking 〈c · (3.1)〉 and

〈w · (3.2)〉.

1

2

〈
c2
〉
t

= −Pe−1
〈
|∇c|2

〉
−Da

〈
(w + 2)c2

〉
(3.3)

1

2

〈
w2
〉
t

= −Pe−1
〈
|∇w|2

〉
− Ch 〈(w + 1)∇w∇c〉 (3.4)

The nutrient variance is dependent on dissipation and consumption, while the bacteria

variance depends on dissipation and reaction. The change in covariance of the scalars

is found by taking 〈w · (3.1)〉+ 〈c · (3.2)〉.

〈cw〉t = −2Pe−1 〈∇w∇c〉 −Da 〈(w + 2)cw〉+ Ch
〈
(w + 1)|∇c|2

〉
(3.5)

(a)
〈
c2
〉

Parameters (b)
〈
w2
〉

Parameters (c) 〈cw〉 Parameters

Figure 3.5: Fig(3.5a) Is a Plot of the Variance of Nutrient along with the Two Param-
eters on the Right Side of Eq. (3.3). Fig(3.5b) Shows the Motile Bacteria Variance
and the Parameters given in Eq. (3.4). The Last Plot, Fig(3.5c) Is the Covariance
Between the Two Scalars. Also Plotted Are the Terms on the Right Side of Eq. (3.5)
Which Contribute to the Change in Variance over Time. 〈c〉.

As average nutrient concentration decreases, the change in the variance and co-

variance given by each independent term in Eq. (3.3) and Eq. (3.4) is plotted with

the total variance and covariance in fig(3.5). All three figures are plotted against
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average concentration. The solid lines indicate hyperbolic initialization, and dashed

lines show the case of elliptic region nutrient release (for Sc 10).

Fig(3.5a) plots the variance of nutrient (in black) along with both of the terms on

the right hand side of Eq. (3.3). When nutrient is released in an eddy, the variance

decreases almost linearly with the average concentration. However, when nutrient

is released in a hyperbolic region, the variance exhibits three different phases as

average concentration changes. At the highest concentration, the variance decreases

at a similar rate to the elliptic release, but quickly begins to decay. As the average

concentration decreases, the variance then finally levels off as nutrient is consumed.

The blue curve shows the contribution from dissipation, the first term in Eq. (3.3),

and the green denotes the second term in Eq. (3.3), the bacterial uptake term. The

elliptic realization shows a slow decay which is almost linear for both uptake and

dissipation. The hyperbolic uptake term has the same shape as the variance, whereas

the dissipation term has three distinct behaviors. There is an increase in early time

due to the injection of nutrient. The nutrient then starts to stretch and dissipate

giving a steep decay, which finally levels off as the nutrient homogenizes.

The variance of w seen in fig(3.5b) exhibits different behavior. All terms increase

in both elliptic and hyperbolic realizations just after the nutrient is released. A

hyperbolic release peaks quickly, while an elliptic release slowly plateaus. Notice that

the motility term contributes the greatest amount during the initial increase but is

quickly superseded by dissipation for both release regions. After the initial increase,

the hyperbolic release terms decrease and level off as nutrient homogenizes. The

elliptic terms begin to slowly decrease after levelling off.

The covariance terms in fig(3.5c) show similar behaviors. Again, the hyperbolic

case has three distinct phases: an increase, decrease, and leveling off, and the eddy

release shows a slow increase to a plateau, which slowly decays. The contribution

13



from the uptake term dominates both other terms over the life of the nutrient patch.

Notice that changes in each of the behaviors mentioned above all occur around the

same average concentration for each release location.
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Chapter 4

CONCLUSION

The dependence on initial conditions was found to have an impact on the uptake

advantage for motile bacteria, showing an increase in uptake over non-motile species.

Nutrient initialization inside of a high stretching region was shown to provide the least

advantage, while elliptic flow structures provide the greatest advantage for motile

bacteria with a range of different behaviors between the two extreme cases. There is

a large similarity of the advantage gained by release location and LCS, as viewed by

the FTLE. The lowest advantages are found in regions of greatest stretching which

correspond to the largest values of the FTLE field. A general linear pattern between

variability and Schmidt number was also shown, which may allow for scalability to

realistic parameters. The plots of variance and covariance showed multiple phases

with transitions occurring at the same average concentration. Each phase is tied to

distinct dynamical behaviors.
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