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ABSTRACT

The IceCube Neutrino Observatory has provided the first map of the high en-

ergy (∼ 0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their

arrival direction is an important identifier for sources of high energy particle accel-

eration. Reconstructed arrival directions are consistent with an extragalactic origin,

with possibly a galactic component, of the neutrino flux. We present a statistical

analysis of positional coincidences of the IceCube neutrinos with known astrophysi-

cal objects from several catalogs. For the brightest gamma-ray emitting blazars and

for Seyfert galaxies, the numbers of coincidences is consistent with the random, or

“null”, distribution. Instead, when considering starburst galaxies with the highest

flux in gamma-rays and infra-red radiation, up to n = 8 coincidences are found, rep-

resenting an excess over the ∼ 4 predicted for the null distribution. The probability

that this excess is realized in the null case, the p-value, is p = 0.042. This value falls

to p = 0.003 for a set of gamma-ray detected starburst galaxies and galactic super-

bubbles. Therefore, it is possible that these might account for a subset of IceCube

neutrinos. The physical plausibility of such correlation is discussed briefly.
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Chapter 1

INTRODUCTION

Extra-solar neutrino astronomy is an infant science, born in 2013, with the first de-

tection of astrophysical neutrinos of energies up to ∼PeV at the IceCube experiment

in Antarctica (IceCube Collaboration, 2013b,a, 2014a). The origin of these neutri-

nos has not been established yet and represents an important goal to learn about

the fundamental physics at play in astrophysical accelerators. The inherent proper-

ties of neutrinos — neutral, weakly interacting — offer unique probes into relatively

unknown high energy mechanisms such as stellar core collapse and jet formation,

particle acceleration in magnetic fields, shockwave propagation, etc. In particular,

the identification of high energy neutrino sources will contribute to the field of high

energy astrophysics primarily by (i) providing direct evidence of hadronic particle

acceleration, (ii) reliably determining directional information regarding the location

of high energy acceleration, and (iii) identifying high energy activity that could be

otherwise obscured.

Theoretically, there is a close relationship between neutrinos and cosmic ray pro-

tons (CRp). Comparable fluxes of neutrinos and gamma rays are expected as by-

products of CRp interactions. Neutrinos can be created in proton-proton (pp) inter-

actions and subsequent cascades of charged and neutral pions:

p+ p→ π0 + π± + anything

π0 → γ + γ

π± → µ± + νµ(ν̄µ)

µ± → e± + νe(ν̄e) + ν̄µ(νµ) (1.1)
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or in proton-photon (pγ) interactions, e.g., with cosmic microwave background (CMB)

radiation:

p+ γ →n+ π+/ p+ π0 (1.2)

with subsequent pion decays as in Eq. (1.1). Neutrinos created in the above interac-

tions have ∼ 5% of the initial CRp energy and ∼ 50− 75% of the gamma-ray energy

(IceCube Collaboration, 2014a).

The IceCube experiment, currently sensitive in the Eν ∼ 0.01 − 1 PeV energy

range, explores CR physics upwards of E & 0.2− 20 PeV. In this respect, supernova

remnants (SNR) have been predicted to accelerate CR protons up to ∼ 3 PeV (Bell,

1978; Reynolds, 2008). Recent detections of SNRs in gamma-ray emission have pro-

vided evidence for hadronic particle acceleration (see e.g. Ackermann et al. (2013)).

Although CR sources at higher energies — detected up until the Greisen-Zaptsepin-

Kuzmin cut-off energy of ∼ 3 × 1021 eV, due to the interaction of Eq. 1.2 (Greisen,

1966; Zatsepin and Kuz’min, 1966) — are less certain, the primary candidates are

neutron stars, AGN, gamma-ray bursts, hypernovae and star-forming galaxies (Hillas,

1984; Torres and Anchordoqui, 2004). The difficulty of identifying point sources of

CR acceleration arises from the strong deflection of these charged particles by mag-

netic fields at energies of E < 60 EeV. Therefore, the energy spectrum of CRs has

been precisely measured (for review, see Beatty and Westerhoff (2009)), but progress

to identify their originating sources has been slow going.

In light of the connection between neutrinos and gamma-rays, the search for

sources of the IceCube neutrinos has turned to the most powerful known gamma-

ray emitters — whose electromagnetic propagation direction will not deviate — and,

more broadly, to the objects that show high energy activity. Since the IceCube data

are consistent with a diffuse flux, several authors have compared their energy distribu-
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tion with the spectra predicted theoretically for the diffuse neutrino flux for several

classes of possible sources. It was found that the pp mechanism appears to natu-

rally fit the data (see e.g., Murase (2014)), and, among the pp-dominated objects,

starburst and star-forming galaxies have emerged as a particularly interesting possi-

bility, fitting the data well both in spectrum and normalization (Murase et al., 2013;

Liu et al., 2014; Tamborra et al., 2014; Chang et al., 2015). In these objects both

the elements required for abundant neutrino production – proton acceleration and a

dense proton background – are expected. Indeed, starburst and star-forming galaxies

are characterized by their high rate of star formation, which implies a high rate of

proton-accelerating jets in core collapse supernovae and/or supernova remnants. Be-

cause star formation typically occurs in dense hydrogen clouds, these galaxies should

also be good proton absorbers, and thus efficient neutrino sources (Loeb and Waxman,

2006a; Stecker, 2007; Thompson et al., 2006).

In parallel, searches have been conducted for positional associations of the neutrino

data to specific objects. This task is made difficult by the poor angular resolution

of IceCube (∼15◦; IceCube Collaboration (2013a)). However, positional matching is

attractive because it is practically model-independent, relying only on the fact that –

in the absence of exotic physics – neutrinos propagate undeflected from the produc-

tion point to Earth. The searches performed by the IceCube collaboration, including

point-like and extended-emission sources, all gave negative results, consistent with

background only (IceCube Collaboration, 2014a,b,c). Other authors have pointed

out non-significant associations of some of the data with galactic objects, mainly the

Galactic Center (Razzaque, 2013; Bai et al., 2014) and Fermi bubbles (Razzaque,

2013; Lunardini et al., 2014). Coincidences with up to 93% confidence level have also

been noted with the arrival directions of ultra-high energy cosmic rays (UHECR)

(Fang et al., 2014; Moharana and Razzaque, 2015). Several classes of extragalac-
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tic point-sources have been examined as well for spatial associations, in particular

blazars (Padovani and Resconi, 2014; Sahu and Miranda, 2014; Krauss et al., 2014,

2015; Petropoulou et al., 2015; ANTARES Collaboration, 2015; Brown et al., 2015;

Glüsenkamp and for the IceCube Collaboration, 2015), Seyfert galaxies (Moharana

and Razzaque, 2015) and star-forming galaxies with high luminosities in hydrogen

cyanide (HCN) emission (Anchordoqui et al., 2014). The conclusions were mixed in

these cases.

At this time, the status of searches for positional associations of the IceCube

data with astrophysical objects is still heterogeneous, and no consistent picture has

emerged. There remains a need for advancement towards a more systematic and inter-

disciplinary approach, that can fully incorporate knowledge and techniques from both

neutrino physics and astronomy. This approach could be used to test the hypothesis

that high energy neutrinos ultimately originate from star formation.

This paper is meant to be a step in this direction. We perform a statistical anal-

ysis of the IceCube neutrino data, to test for spatial coincidences with the brightest

candidate sources from several catalogs, specifically blazars, Seyfert galaxies, star-

burst galaxies and superbubbles. Compared to previous literature, our work has a

stronger focus on star formation as a possible origin of the neutrino events. It is on

this subject that our results are the most significant.

Section 2 proceeds with a description of the IceCube neutrino data set and the

catalogs that we have considered for counterparts. In Section 3, we discuss the sta-

tistical method used. The motivation, selection criteria, and results of the statistical

analysis are presented in Section 4, followed by a discussion on the possible role of

starburst galaxies and nearby star-forming regions in Section 5. Conclusions are given

in Section 6.
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Chapter 2

DATA

2.1 IceCube Neutrino Detections

We consider the 37 data events obtained by IceCube after 988 days of running

(IceCube Collaboration, 2014a). When needed, individual events will be referred to

by their number as in Table 1 of IceCube Collaboration (2014a). Each event is clas-

sified as track-like or shower-like, depending on its topology in the detector. The

track-like events occur when a neutrino interaction results in a particle shower with

a discernible muon track and therefore have smaller angular resolution on the sky

(< 1◦). The nine observed track-like events are consistent with the expected back-

ground of 8.4± 4.2 atmospheric muons. Shower-like events, on the other hand, result

in a spherical light pattern produced by particle showers with no discernible muon

and therefore have poorer angular resolution (median ∼15◦; 50% confidence level of

positional errors). The twenty-eight shower- like events are in excess of the expected

background of 6.6+5.9
−1.6 atmospheric neutrinos. Events 28 and 35 have coincident de-

tections at the Ice Top surface array. Thus, they have been identified as background

(IceCube Collaboration, 2014a) and will be excluded from our analysis.

The 35 events we use are shown in e.g. Figure 4.1, in equatorial J2000 coordinates,

with their median angular errors. Because IceCube is located near the South Pole, its

horizon coincides with the celestial Equator. Due to absorption of neutrinos in the

Earth, the detector is considerably less sensitive to up-going neutrinos (i.e. below the

horizon, as coming from the northern sky) compared with down-going neutrinos (i.e.
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above the horizon, from the southern sky). The difference in performance increases

with increasing neutrino energy — at E ∼ PeV, the Earth is essentially opaque. This

feature explains the noticeable asymmetry in the event distribution between the two

hemispheres as seen in e.g. Figure 4.1.

2.2 Catalogs of Possible Counterparts

When searching astronomical catalogs for possible counterparts of the IceCube

neutrinos, it is logical to consider gamma-ray emitters detected in the same energy

range (E & 100 TeV) as the IceCube events. However, gamma-rays with Eγ & 100

GeV can suffer from absorption due to photon interactions with extragalactic back-

ground light and at Eγ & PeV, interactions with the cosmic microwave background

(Hauser and Dwek, 2001). Furthermore, current TeV observations lack uniform and

complete all-sky coverage, which is one of the conditions of validity of our analysis

(see Section 3). Therefore, we resort to primarily using observations from the Fermi

Large Area Telescope (hereafter, Fermi-LAT; Atwood et al. (2009)) with sensitivity

up to ∼ 300 GeV, and specifically the Fermi-LAT 3FGL catalog (Fermi-LAT Col-

laboration, 2014). We then supplement the analysis with TeVCat detections and a

catalog of starburst galaxies based on their infra-red (IR) flux (Becker et al., 2009;

Sanders et al., 2003).

Considering that many modern, all-sky catalogs include thousands of objects, it

was necessary to apply selection criteria to each catalog. Two main principles are

used to choose the selection criteria. The first is uniformity: each set of candidates is

made of sources of the same type/morphology (e.g., blazars, Seyfert galaxies, etc.).

The second principle is the assumption that, in a given class of viable candidates,
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those that appear the brightest in photon flux should also be the brightest in neu-

trino flux, and therefore most likely to be responsible for the neutrino events. Hence,

lower limits of photon flux at appropriate wavelengths will be imposed.

Finally, we emphasize that our selection procedure is completely blind with re-

spect to the position of a neutrino source candidate in the sky.

We investigated the following catalogs.

TeVCat. TeVCat 1 is a compilation of currently and previously known TeV gamma-

ray sources. TeV gamma-ray instruments, sensitive to energies between 100 GeV –

100 TeV, can image gamma-ray emission via atmospheric Cherenkov telescope ar-

rays. The procedure of reconstructing particle showers, created from the interaction

of gamma-rays with the Earth’s atmosphere, allows an angular resolution of photon

arrival typically of < 0.1◦ at 1 TeV (Hinton and Hofmann, 2009; Holder, 2012).

3FGL. Fermi -LAT is a pair-production gamma-ray instrument operating in the 20

MeV – 300 GeV range, and the current, main workhorse of space based gamma-ray

observations. Its angular resolution varies from ∼5◦ at 100 MeV to 0.8◦ at 1 GeV.

The LAT 4-year Point Source Catalog (3FGL) covers the entire sky for at least 15 Ms

of observing time, reaching a detection threshold of ' 3× 10−12 erg cm−2 s−1 in the

100 MeV – 100 GeV energy range (Fermi-LAT Collaboration, 2014). It is known that

at low galactic latitudes (|b| < 10◦) diffuse emission from pion decay, bremsstrahlung,

and inverse Compton scattering reduces the sensitivity, although it is hard to quantify

by exactly how much (Fermi-LAT Collaboration, 2014).

1http://tevcat.uchicago.edu/
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IRAS. We use flux measurements in the mid to far IR as an indicator of star-forming

activity in starburst galaxies (Becker et al., 2009). In particular, we chose objects

with the highest fluxes at 100 µm, which is close to the spectral luminosity peak of

heated dust in starburst galaxies. The 100 µm measurements were all gathered with

the Infrared Astronomical Satellite (IRAS) Revised Bright Galaxy Sample (Sanders

et al., 2003), a sample of galaxies chosen to have 60 µm flux density greater than 5.24

Jy, 2 which covers 93% of the sky excluding only a strip within 5◦ of the galactic

plane (|b| < 5◦).

21 Jy (Jansky)= 10−23 erg s−1 cm−2 Hz −1.
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Chapter 3

STATISTICAL METHOD

We adopt a version of the likelihood ratio statistical method which is commonly

used in astronomy (see, e.g. de Ruiter et al. (1977); Windhorst et al. (1984); Suther-

land and Saunders (1992)) and has been used in high energy astrophysics (Virmani

et al., 2002; Moharana and Razzaque, 2015) to test the spatial correlation between a

set of data points (the neutrino IceCube data) and a population of candidate sources.

The statistical variable of interest is the angular distance between each neutrino

event and the candidate source closest to it. If the data and the potential sources

are causally related, we expect an abundance in low distances. This forms the basic

premise of our analysis.

First, we define a dimensionless distance which is weighted by statistical spatial er-

rors. Consider two objects in the sky with equatorial coordinates (αi, δi) and (αj, δj),

with the first coordinate being the Right Ascension (RA) and the second the decli-

nation (dec), and angular positional errors σi and σj.
1 Their angular separation is

then:

Sij = cos−1 (sin (δi) sin (δj) + cos (δi) cos (δj) cos (∆αij)) , (3.1)

where ∆αij is the difference in right ascension coordinates, and their weighted, di-

mensionless angular distance can be defined as:

Rij =
Sij

σi + σj
. (3.2)

The next step is to consider the set of i = 1, 2, ....., N (N = 35) neutrino data and

j = 1, 2, ....,M candidates of a certain class, and, for each datum i, find the distance

1We assume that positional errors are symmetric in all directions, resulting in a spherical cone
around each measured position. This is the case for the neutrino events considered here.
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to the closest candidate 2 :

ri = Min{j}Rij . (3.3)

We then have N values of r – the index i will be dropped from here on out for

simplicity of notation. In all cases considered in this work, the angular errors of

the IceCube data dominate over the positional uncertainty of the sources, which

therefore are neglected i.e., σj = 0. If a neutrino event has r < 1, its positional error

encompasses the nearest candidate’s on-sky location. In what follows, this condition

will be used as an indicator of a plausible positional correlation between the datum

and the candidate. Of particular interest will be the number of data for which the

weighted distance is r ≤ 1.

The final steps consist of generating the distribution of the variable r and com-

paring it with a null distribution. The latter is obtained through the hypothesis of a

uniform distribution of sources in the sky. It represents the outcome expected if the

data and the candidate sources are not causally related, and spatial coincidences are

simply the result of random accident. The null distribution can be calculated, using

a constant probability density for the sources. After some algebra (see Appendix A),

one gets:

dP(r)

dr
=

N∑
i=1

σi
M

2M
sin(rσi) [1 + cos(rσi)]

M−1 . (3.4)

Another approach – which can be generalized to non-uniform populations of sources

– includes Monte Carlo simulations, in which we randomize the coordinates of the

candidate sources in both RA and dec. Here the Monte Carlo method is used with

105 iterations, averaging the distribution of r over the number of iterations, so the

2Here we are using the “nearest neighbor” version of the method, which leads to identifying
the nearest candidate as the most likely true source of a given neutrino. This may lead to false
attributions if more than one candidate overlaps with the neutrino data point within the error.
Considering the sparseness of the data and of the candidate sets we use, we estimate that the chance
of false attribution be low. However, for future studies with larger samples, one may generalize the
current method to include the distance to the second closest candidate as an additional statistical
variable.
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resulting histogram is practically free from statistical errors associated with the finite

number of candidate sources, M .

When comparing the r-distribution of the data with the null one, the question to

be answered is how compatible they are, i.e., how likely it is that the former might

be a particular realization of the latter. To answer this question quantitatively, we

use the p-value, defined as the probability that the null case produces a number of

coincidences (r ≤ 1) equal or larger than the one observed in the actual data. Clearly,

the larger the excess of the data over the null distribution at r ≤ 1, the lower the

p-value. Here the p-value is obtained by examining the 105 Monte-Carlo-generated

candidate source sets, and finding the percentage of these that have a number of

coincidences equal to or exceeding the observed one.

Finally, let us comment on the validity of this method and its underlying assump-

tions:

(i) no assumptions are made, nor needed, on the spatial distribution of the neutrino

data set, and on if/how the data correlate spatially with one another. Indeed (see

appendix A), the main ingredient here is the probability to find a candidate source

within the angular error of a given neutrino datum. We have verified that our ap-

proach is valid for both uniform and non-uniform spatial distributions of the data in

the sky.

(ii) We stress that visually comparing the r-distribution with the randomized one (as

shown in Figures 4.1, 4.2, 4.3, 4.4) only has indicative value. This is because the

histogram of the data is affected by large statistical errors associated with the small

number of events in each bin and the small number of candidates in each set. There-

fore, we recommend relying mostly on the p-value as an indicator of compatibility.
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3.1 Combining Neutrino Events

The larger the angular uncertainty of an IceCube neutrino event, the more difficult

it becomes to disentangle its counterpart and provide a useful statistical evaluation of

a population of candidates. We note that there are several instances of two or more

neutrino shower events that are compatible, within the errors, with a common origin

in space. It might be of interest, then, to explore a common origin hypothesis, and

treat the positionally overlapping events as different measurements of the position of

the assumed same source. In this framework, the position of the source can be known

more precisely by combining the multiple measurements into a single one, using the

standard theory of measurement and errors.

We caution the reader that this hypothesis may imply unphysically large neutrino

fluxes for individual sources and therefore may be implausible. For this reason, the

exercise of combining events should be regarded as a useful check, that does not carry

the same significance as an analysis involving all IceCube-reported neutrino events.

We only present the results of the “combining” method to supplement some of the

more promising findings.

To combine the neutrino shower events, an iterative procedure is used. At each

iteration, all of theN ! possible pairs of data points are considered, with their weighted-

distance, Rij (eq. 3.2). If the lowest value of Rij is R12 < 1( i.e., the two data points

have overlapping errors), the corresponding potential pair is combined into a single

measurement of the position, with its resulting error, as follows:

αc =

∑2
i=1 αi · σ

−2
i∑2

i=1 σ
−2
i

δc =

∑2
i=1 δi · σ

−2
i∑2

i=1 σ
−2
i

σ−2c =
2∑
i=1

σ−2i . (3.5)

The new neutrino position, (αc, δc), and error, σc – which is smaller than either of the

two initial errors, σ1 and σ2 – are recorded and replace the original pair of events.

The process is then repeated, until all overlapping neutrino events have been
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combined. For an example of the “combined” neutrino positions, see the all-sky plots

in Figures 4.3 & 4.4.
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Chapter 4

ANALYSIS OF COUNTERPARTS

In this section, the motivation for selected groups of sources and the results ob-

tained are presented. Specifically, we give the distribution of the weighted distance,

r, (see Section 3), the p-value, and the excess of events in the first bin (r ≤ 1), ∆N ,

relative to the null distribution. We test groups of blazars, Seyfert galaxies, starburst

galaxies, and star-forming regions. A summary of the results is given in Table 4.1.

Figure 4.1: Results for Brightest Gamma-ray Emitting Blazars

Results for the eleven blazars from the Fermi-LAT 3FGL catalog, for which the 10–
100 GeV gamma-ray flux density is Lγ ≥ 1 × 10−9 photons cm−2 s−1. Left: The
equatorial (J2000) coordinate sky map of these candidate sources; we distinguish
between BL Lac objects (light purple diamonds), and flat spectrum radio quasars
(FSRQ; green stars). The map also shows the 35 IceCube neutrino events as black
dots, with their median angular error (pink ellipses). The dot size indicates the
energy of the neutrino event (see legend). The solid grey line represents the galactic
plane. Right: The distribution of the weighted-distance to the nearest candidate
source of the 35 neutrino events (solid, blue). The null distribution, determined via
105 iterations, is also shown (pink with hash marks); purple indicates the overlap of
the two histograms. The legend gives the excess of the true distribution relative to
the null in the the first bin (r ≥ 1), and the p-value.
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4.1 Blazars (AGN)

Blazars are types of actively accreting AGN whose variable emission largely dom-

inates their hosting galaxy, and for which highly relativistic beams are oriented along

the line-of-sight Blandford and Konigl (1979); Urry and Padovani (1995). They are

divided into two major classes. Those displaying strong and broad optical emission

lines are usually called flat-spectrum radio quasars (FSRQs), while objects with no

broad emission lines are called BL Lacertae (BL Lac) objects Giommi et al. (2012).

Blazars are considered to be natural mechanisms for high-energy particle accelera-

tion. In particular, the acceleration of protons may explain: (i) the energy transfer

from the central engine over distances as large as 1 pc, (ii) the heating of a dusty

disc in the nucleus over distances of several 100 pc, and (iii) a near-infrared cut-off

of the synchrotron emission in the jet Halzen and Vazquez (1993). However, recent

literature (Hinton and Hofmann, 2009; Holder, 2012) suggests that the currently fa-

vored mechanism for driving the high energy emission from blazars is a population of

electrons accelerated to TeV energies, typically through Fermi acceleration by shocks

in the AGN jet. TeV gamma-ray emission results from inverse Compton scattering

off relativistic electrons, and the electrons cool by radiating X-ray synchrotron emis-

sion. The strong correlation often observed between X-ray and TeV gamma-rays from

blazars indicates a possibly common origin.

The possibility that some of the IceCube neutrino events may originate in blazars

has been discussed in the literature. A number of authors (Padovani and Resconi,

2014; Krauss et al., 2014; Sahu and Miranda, 2014; ANTARES Collaboration, 2015;

Krauss et al., 2015; Petropoulou et al., 2015) have identified blazars that lie within

the error of IceCube neutrino event locations, and have examined their energy spectra

to assess the plausibility of a causal correlation. Other papers Dermer et al. (2014);
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Tavecchio and Ghisellini (2014) have focused on the ability of blazars to produce a

neutrino flux of the intensity favored by IceCube. The similarity between the neutrino

flux favored by IceCube and the extragalactic gamma-ray background, expected to

be produced by blazars and other AGN, has also been noted Dado and Dar (2014,

2015).

In addition to these overall encouraging results, other papers have appeared that

reach negative conclusions. Studies that systematically choose groups of blazars to

search for spatial associations have reported on the lack of a correlation Glüsenkamp

and for the IceCube Collaboration (2015); Brown et al. (2015), or found that at most

one IceCube neutrino could be produced by a blazar ANTARES Collaboration (2015).

It was also determined that IceCube high energy neutrinos could not be produced

in the lobes of Centaurus A Fraija (2014), the closest, most powerful AGN. Similar

results were also found when examining the inner jets of AGN in connection with

the IceCube data Murase et al. (2014) and when looking at the integrated flux from

blazars locally and considering their evolution in redshift Ahlers and Halzen (2014);

Wang et al. (2014). Finally, blazars were disfavored as a possible origin in a study

that examined the positional association of the Telescope Array hot spot of ultra-high

energy cosmic rays (UHECRs) and two neutrino events Fang et al. (2014).

In our analysis, we searched for the brightest AGN-classified objects in the 3FGL

catalog. This included sources such as blazars (both BL Lac & FSRQ), AGN, radio

galaxies, unidentified blazar candidates, and quasars — or those classified as BLL,

bll, FSRQ, fsrq, agn, RDG, rdg, BCU, bcu, ssrq in 3FGL. A lower bound on the

photon flux was imposed: Lγ > 10−9 photons cm−2 s−1 in the 10–100 GeV band.

Out of the 11 objects passing this criterium, 10 are BL Lac blazars and 1 is of FSRQ

type. Indeed, a higher flux in gamma-ray emission is expected when the orientation of

the AGN jet is pointed in the direction of our viewing angle (blazars) compared with
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larger jet orientation angles (radio galaxies, AGN classified, quasars, etc.) Hinton and

Hofmann (2009). Figure 4.1 shows, on the left, the location of these eleven brightest

sources on the sky and on the right, the resulting r distribution of the neutrino

events. Overall, this distribution is consistent with the null case. Five neutrino data

points include a blazar within their median error, while six are expected in the null

distribution. The value p '0.76 is found for the p-value (see also see Table 4.1),

leading to the conclusion that there is no indication of a causal correlation between

the IceCube neutrino events and the brightest blazars. This confirms the conclusions

found with previous, positionally-blind selections of AGN Glüsenkamp and for the

IceCube Collaboration (2015); Brown et al. (2015).

4.2 Seyfert Galaxies

Seyfert classified galaxies are characterized by a bright nucleus, with an AGN

strength in emission that is below that of a quasar or blazar L < 1011 L�
1 Seyfert

(1943); Schmidt and Green (1983). Seyfert galaxies typically have spiral morpholo-

gies and active areas of star formation surrounding the nucleus. Their emission has

contributions from both the central AGN and star-forming activity in the galaxy disk.

In the picture of AGN unification (Urry and Padovani, 1995), Seyferts are identified

as Type II when viewed edge on and Type I when the jet is oriented along the line-

of-sight. Moreover, these AGN are relatively abundant at low z, as they are thought

to be the evolutionary by-products of quieting quasars and blazars at higher redshifts

Weedman (1977).

Detailed studies have supported evidence for AGN jets impacting dense, star-

forming media in the central regions of Seyfert galaxies Mundell et al. (2003); Mid-

delberg et al. (2007), in a way that could generate cosmic rays via hadronic collisions.

1Here L� is the luminosity of the sun, L� = 3.846× 1033 erg s−1.
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Recently, it was noted (Moharana and Razzaque, 2015) that Seyfert galaxies were the

most likely objects of the Swift-BAT 70 Catalog Baumgartner et al. (2013) to coin-

cide with overlapping neutrino and UHECR events. Although these objects haven’t

been widely discussed in the literature as possible high-energy neutrino generators,

either the AGN or star-forming activity near the nucleus are plausible environments

of neutrino generation.

However, the argument can be made that Seyfert galaxies should be at most

subdominant neutrino emitters. Indeed, if the AGN activity of Seyferts is responsible

for some neutrino events, an even stronger neutrino signal should be expected from

quasars or blazars, which have stronger AGN activity and much higher space density

at cosmological distances. Likewise, if the argument for star-forming activity is made,

then a stronger neutrino flux is predicted for starburst galaxies, which have higher

star formation rates and at higher redshifts.

For our analysis, we chose all six Seyfert classified objects in the Fermi-LAT

3FGL catalog. Of these, five are Seyfert I’s (designated NLSY1 or nlsy1 in the 3FGL

catalog) and one is Seyfert II (classified as sey in the 3FGL catalog). Results from

this analysis are shown in Figure 4.2. Three neutrinos events overlap with a candidate

within the error. The excess in the first bin of the r-distribution is ∆N ' 2.2, and

a p-value of 0.165 is found. Hence, Seyferts do not constitute a significant signal;

however, our results suggest that Seyfert galaxies may warrant further investigation.

4.3 Star-forming Activity

Galaxies undergoing star formation at high rates, RSF ' 10−1 − 102 M� yr−1

Kennicutt, Jr. (1998), usually caused by the disruption or a merger of galaxies, are

known as star-forming galaxies. Galaxies with star formation rates up to RSF ' 20

M� yr−1, or with typical supernova rates RSN ' 0.3 yr−1, and more commonly
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Figure 4.2: Results for Gamma-ray Detected Seyfert Galaxies

The same graphics as Figure 4.1, now for the six Seyfert classified objects detected in
the 3FGL catalog, divided in Seyfert I objects (magenta left-pointing triangles) and
Seyfert II objects (blue right-pointing triangles).

observed close-by hosting spiral disks, are referred to as starbursts. The emission

observed over the entire electromagnetic spectrum of star-forming galaxies is domi-

nated by the evolutionary processes and environments of stars. A defining feature

is their luminous infrared emission, peaking just short-ward of 100 µm, which is a

product of dust absorbing UV radiation from massive stars and re-emitting it in the

IR. Star-forming galaxies host large populations of objects associated with hadronic

gamma-ray emission — including supernova remnants (SNR) Villante and Vissani

(2008), pulsar wind nebulae (PWN) Bednarek (2003), various types of explosions as-

sociated with supernova (SN) Senno et al. (2015); Asano and Mészáros (2014), and

superbubbles — making them prime candidates for CR acceleration and high-energy

neutrino emission (Loeb and Waxman, 2006b). Most of this activity is connected to

the interplay between massive stars and their surrounding media.

Massive stars (M & 8 M�) form in dense molecular clouds and live relatively

short lives (∼ 106 yrs) before exploding as supernovae. They are typically observed

in unbound, groups of O(10 − 100) O and B stars, or “OB associations” Blaauw

(1964). The superimposed effects of their stellar winds and SN explosions create
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giant (> 150 pc) cavities of hot, tenuous plasma, known as superbubbles (McCray

and Snow, 1979). Indeed, about 85% of core-collapse SN occur in superbubbles, and

starburst galaxies each contain hundreds of these regions (Higdon and Lingenfelter,

2005).

Superbubbles are believed to be the origin of “galactic fountains” Shapiro and

Field (1976); Norman and Ikeuchi (1989). In this scenario, a star-forming region

clears out surrounding gas and dust via stellar winds and SN explosions. As this region

grows, it will preferentially expand into lower density environments and, therefore, in

a direction perpendicular to the galactic plane. Eventually, the star-forming region

bursts through the galaxy’s disk, exposing the gas and CRs to the halo. The strong

magnetic fields contribute to this “fountain” effect and direct the collimation of CRs

outward. This naturally leads to an amplification in CR acceleration Bykov and

Toptygin (2001); Parizot et al. (2004). Within the superbubble, particle acceleration

may be affected by several different processes: shock acceleration in the winds, shock

acceleration during SN explosions, and second order Fermi processes in the turbulent

magnetic field deriving from merging stellar winds and SN ejecta Blasi (2013).

Since the detection of high-energy neutrinos, starburst galaxies have been studied

as promising possible counterparts of IceCube sources (Fang et al., 2014; Anchordoqui

et al., 2014; Ahlers and Halzen, 2014; Wang et al., 2014; Senno et al., 2015; Chang

et al., 2015; Liu et al., 2014; He et al., 2013; Tamborra et al., 2014; Murase et al.,

2013). These discussions largely rely on the rapid redshift evolution of star-forming

galaxies (peaking during z ∼ 1− 3 (Madau et al., 1996)), implying that the majority

of a diffuse high-energy neutrino flux should originate at redshift z & 1. Sources

at such large distances are difficult to resolve individually as neutrino point-sources,

however, due to their low flux and high space density. A positional association with

two IceCube events has been suggested in a study that identified starburst galaxies
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as the primary candidates to produce the Telescope Array’s UHECR (E > 60 TeV)

excess (Fang et al., 2014). Another interesting connection was the similarity between

the gamma-ray flux measured by Fermi-LAT within 20◦ of the Galactic center and

the IceCube neutrino flux (Razzaque, 2013). The proposed scenario suggested in-

creased star-forming activity coupled with CR confinement by strong magnetic fields

as the most likely origin of the gamma-ray and neutrino fluxes.

In the following subsections, we present analyses for groups of (i) starburst galaxies

and (ii) starburst galaxies plus local star-forming regions and superbubbles. More

details on the individual candidates are given in Section 5.

4.3.1 Starburst Galaxies

As a selection criterion for starburst galaxies, we made use of their emission at

100 µm, which is an indicator of star formation (see Section 2.2). Specifically, a

flux density cut S(100 µm) ≥ 250 Jy Becker et al. (2009); Sanders et al. (2003) was

imposed, selecting seven starburst galaxies. Two of these, M 82 VERITAS Collabo-

ration (2009) and NGC 253 Acero (2009), also have been detected in TeV gamma-ray

energies and appear in the Fermi-LAT 3FGL catalog (classified as sbg there) as well.

Two more of the seven objects appear in the Fermi-LAT 3FGL catalog, but have

not been seen at TeV energies.

Figure 4.3 shows the seven starburst galaxies on the sky map. All of them lie

within a neutrino event error as reported by IceCube. The r-distribution of the data

has two peaks, one at 0 ≤ r ≤ 1 and another at 5 ≤ r ≤ 6. This second peak is not

expected in the null distribution, and might be the result of a statistical fluctuation.

The first peak has eight neutrino events, an excess ∆N = 3.8 above the background

or null distribution. This corresponds to a p-value of 0.042, indicating that there is
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Figure 4.3: Result for Starburst Galaxies

Top: The same as Figure 4.1, for all the starburst galaxies that pass the cut on the
flux at 100 µm, S(100 µm) ≥ 250 Jy (Becker et al., 2009). We distinguish those
that have been observed by Fermi-LAT (blue squares), and those that have been
detected by both Fermi-LAT and in TeV gamma-rays (green triangles). The latter,
M 82 and NGC 253, are also the only starburst galaxies detected at TeV energies.
The remaining starburst galaxies are shown as magenta pentagons. See Table 5.1 for
the names and coordinates of each starburst. Bottom: Same as the top figures, but
for the 25 “combined” neutrino events dataset (see Section 3.1). The points that are
the result of combining two or more events are shown as crosses.

only a 4% probability that the outcome we find is obtained with uniformly distributed

sources. This is only moderately significant, but sufficiently interesting to motivate

further investigation.

In this spirit, in Figure 4.3 we also show the distribution of our “combined” data

set (see Section 3.1). Five of these data overlap with a starburst galaxy within the

positional error, constituting an excess of ∆N = 3.5 relative to null, with a p-value

of 0.003. Intuitively, the higher significance relative to the uncombined data set can
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be understood considering that the combined positional errors cover a significantly

smaller fraction of the sky, so that accidental (i.e., non-causal) coincidence is less

likely. The high significance should be contrasted, however, with potentially unphys-

ical aspects of the combining exercise. Therefore, the most meaningful conclusions

here are that, after combining overlapping neutrino data, an excess in the r ≤ 1

persists, while the second peak at r ∼ 5 does not, and therefore the former may be

regarded as more robust.

In addition to the results shown in Figure 4.3, in Table 4.1 we report further tests

on the star formation hypothesis. In one test, our method was applied to a reduced set

of candidates, including only the four 3FGL starburst galaxies. All of these lie within

a neutrino event error, and the significance of the correlation is in-line with the result

for the seven starbursts (∆N = 3.3 and p = 0.046 for the full data set, and p = 0.001

for the combined one). A second test was performed to include a deviation from

the hypothesis of uniform candidate distribution. Indeed, both gamma-ray and IR

observations suffer from source confusion and a decreased sensitivity in the direction

of the galactic plane Sanders et al. (2003); Fermi-LAT Collaboration (2014). This

is accounted for by excluding all the points that fall within |b| ≤ 10◦ of the galactic

plane from the Monte Carlo-generated null distribution. The results of this test show

a stronger correlation compared to Figure 4.3 for the IceCube neutrino events (p-

value of 0.034), as well as for the “combined” events (p-value of 0.002). In other

words, allowing for the extragalactic Monte Carlo sources to avoid the galactic plane

– as the Fermi and IRAS detections do – strengthens the conclusion of Figure 4.3:

extragalactic star-forming galaxies are a possible neutrino source.
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Figure 4.4: Results for Gamma-ray Detected Starburst Galaxies and (Super)bubbles

The same as Figure 4.3, for gamma-ray detected star-forming regions — superbub-
bles and starburst galaxies. In addition to TeV and Fermi-LAT detected starburst
galaxies (shown in Figure 4.3), this analysis includes the superbubbles detected in
TeV emission (down-pointing triangles). One of these objects, the Cygnus X Cocoon,
was also reported in the 3FGL catalog.

4.3.2 Starburst Galaxies and Local Star-forming Regions

Motivated by the interesting result for starburst galaxies of Figure 4.3, let us now

focus our attention more closely on local star-forming activity. We generated another

set of candidate sources, with the criterion of supplementing the four gamma-ray

detected starburst galaxies with superbubbles and star-forming regions that have

been detected in TeV gamma rays. This addition amounts to two superbubbles and

one star-forming region. 2 One of the superbubbles, the Cygnus Cocoon, is also the

2Note that two of the three added candidates are in our own Galaxy (see Section 5). Therefore,
strictly speaking, the set of candidates sources in this subsection can not be a realization of the
uniform distribution, which is a condition for the validity of the method used here. In this respect,
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only designated star-forming region in the 3FGL catalog.

It was found (Figure 4.4), that ten neutrino events overlap with a candidate within

their error (r ≤ 1), amounting to an excess of ∆N = 5.8 and a p-value = 0.003. This

suggests a low degree of compatibility with the null case. These numbers improve

further when considering the “combined” neutrino events, where we find 6 positional

associations with only ∼ 1.5 predicted, and the p-value falls below 0.1% (see Table 4.1

for a summary).

In summary, in Section 4 candidate sources were examined related to AGN and/or

star formation. While the former present a good compatibility with the null case, an

interesting indication of deviation from it has emerged for star formation. While a

robust claim is premature, this result is sufficiently interesting to prompt a number

of tests to assess the plausibility of nearby star-forming sites as being the origin of a

subset (∼ 3− 6 data points) of the IceCube signal. This is theme of the next section

of this paper.

the result obtained with only the four starburst galaxies (Table 4.1) can be considered more robust.
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Chapter 5

DISCUSSION: STAR FORMATION AS A POSSIBLE ORIGIN OF HIGH

ENERGY NEUTRINOS

Let us take a closer look at the seven gamma-ray detected objects rich in star-

forming activity that have emerged in Section 4, and apply naturalness considerations

to estimate if they are plausible contributors to the IceCube neutrino data.

Table 5.1 summarizes the main facts of these candidates — and of those that have

not been detected in gamma rays, which will not be discussed here — and shows the

ID number of the neutrino data that overlap with these to within the error. Their

gamma ray spectra are shown in Figure 5.1. Note that all of the four starburst

galaxies lie within ∼15 Mpc from the Sun, with the majority of them closer than 5

Mpc. Instead, the two superbubbles and the star-forming region are either in our

galaxy or within 50 kpc in our galactic neighborhood. Below we describe each object

individually.

M 82 The nearly edge-on, starburst galaxy M 82 (NGC 3034), located ∼3.6 Mpc

away, was the first starburst detected in TeV emission, and perhaps the first direct

detection of an extragalactic source of hadronic gamma-ray emission VERITAS Col-

laboration (2009); Abdo (2010). It is the prototypical small starburst galaxy with

an estimated supernova rate RSN ∼0.1–0.3 yr−1 Kronberg et al. (1985); Fenech et al.

(2008), a gamma-ray luminosity L(> GeV) ∼ 2× 1040 erg s−1 Lacki et al. (2011) and

a photon number power-law index of Γ = 2.21±0.06 over the 100 MeV – 100 GeV en-

ergy bands Fermi-LAT Collaboration (2014). Interactions with neighboring galaxies,

prominently the larger spiral M 81, have spurred star-forming activity, particularly

in the central regions Yun et al. (1994).
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Table 5.1: Candidate Star-forming Sources

Name RA dec Class DL ν ID
(J2000) (J2000) [Mpc]

NGC 253 00 27 34 −25 17 22 starburst 3.1 7, 10, 21
NGC 1068 02 42 43 −00 01 33 starburst 13.7 1
[IC 342] 03 46 49 +68 05 46 starburst 4.6 31
30 Dor C 05 35 55 −69 11 10 superbubble 0.05 19
M 82 09 55 53 +69 40 46 starburst 3.6 31
NGC 4945 13 05 29 −49 26 03 starburst 3.9 35
[M 83] 13 37 01 −29 51 57 starburst 3.6 16
W 49 A 19 10 27 +09 11 25 star-form region 0.011 25, 33, 34
Cygnus Cocoon 20 28 41 +41 10 12 superbubble 0.002 29, 34
[NGC 6946] 20 34 52 +60 09 13 starburst 5.3 34

The candidate star-forming sources considered in Figures 4.3 and 4.4, with their equa-
torial coordinates (columns 2 and 3). The names in brackets are those objects that
have not been detected in gamma-rays, but appear among the brightest starbursts
in the IRAS 100 µm catalog (see Section 2.2). Column 5 gives the distances from
Earth of each object, taken from Becker et al. (2009) (for starbursts), Pietrzynski
et al. (2013) (for 30 Dor C), Gwinn et al. (1992) (for W 49 A) and Hanson (2003) (for
the Cygnus Cocoon). Also shown are the ID numbers (from IceCube Collaboration
(2014a)) of the neutrino events that have weighted distance r ≤ 1 (Eq. (3.3)) for
each candidate.

NGC 253 Thought of as a “twin” of M 82, NGC 253 is similarly located at a

distance of ∼3.1 Mpc with comparable infrared luminosity and spectral distribution

and is also seen approximately edge-on. The nucleus of NGC 253 contains a very

active star-forming region 150 pc across Engelbracht et al. (1998) in which SN occur

at a rate RSN ∼ 0.1 yr−1 Antonucci and Ulvestad (1988); Lenc and Tingay (2006).

GeV and TeV gamma-ray emission has been detected, implying a luminosity of L(>

GeV) ∼ 5.6 × 1039 erg s−1 Lacki et al. (2011), and a power-law fit with a photon

index of Γ = 2.34 ± 0.003 is consistent with no spectral break in the gamma-ray

emission Abramowski et al. (2012). X-ray Fabbiano and Trinchieri (1984); Dahlem

et al. (1998); Bauer et al. (2008) and radio Carilli et al. (1992); Heesen et al. (2009)

observations have revealed the presence of a hot diffuse halo resulting from a “disk
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wind” extending ∼9 kpc from the galactic plane.

NGC 1068 The most distant gamma-ray detected starburst galaxy, at ∼ 13.7 Mpc,

NGC 1068 has the lowest detected 100 µm flux, yet its luminosity is more than four

times greater (L100µm ∼ 8.6×1024 W Hz−1) than the other starburst galaxies selected

in our sample Ackermann et al. (2012). Indeed, it is the steep far-IR spectrum and

its 100 µm luminosity that classifies this object as a starburst Sanders et al. (2003);

Fermi-LAT Collaboration (2014). However, its weak active nucleus, surrounded by a

region of intense star formation extending ∼1 kpc Thronson et al. (1989), has been

widely discussed in the literature as the prototypical Seyfert. A study comparing the

gamma-ray emission of NGC 1068 detected by Fermi-LAT with those of M 82, NGC

253, and NGC 4945 cited that its gamma-ray luminosity was too high to be explained

only by starburst activity Lenain et al. (2010). The best-fit photon number power-law

index for 100 MeV – 100 GeV energies is Γ = 2.32 ± 0.10 Fermi-LAT Collaboration

(2014).

NGC 4945 Also classified as both a Seyfert II and a starburst galaxy, NGC 4945

is a nearly edge-on barred spiral ∼3.9 Mpc distant. Unlike NGC 1068, the high

energy emission detected using Fermi-LAT could be explained only in terms of its

starburst activity Lenain et al. (2010). NGC 4945 is one of the brightest 100 µm

sources with a flux of 1330 Jy Sanders et al. (2003), only slightly fainter than M 82.

The best-fit photon number power-law index in the 100 MeV – 100 GeV energy bands

is Γ = 2.43± 0.07 Fermi-LAT Collaboration (2014). A cone-shaped plume extending

∼500 pc from the nuclear region perpendicular to the disk has been detected in X-ray

Schurch et al. (2002) and Hα Rossa and Dettmar (2003) and is believed to be driven

by supernovae.
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Cygnus Cocoon The Cygnus Cocoon is a 50 pc wide star-forming region located

in the Galaxy 1.5 kpc away Hanson (2003) with a combined mass of ∼ 8 × 106

M� (Ackermann et al., 2011). It hosts a collection of 1500-2000 massive OB stars (Le

Duigou and Kndlseder, 2002) (e.g Cyg OB2), massive star clusters (e.g. NGC 6910),

pulsars, SNRs (e.g. γ Cygni), etc., whose combined effects from stellar winds and

SN explosions have created a superbubble. Fifteen sources have been detected within

the diffuse Cygnus Cocoon field in the 3FGL catalog, although the classification of

most sources is currently unidentified and some may be potentially confused with

Galactic diffuse emission (Fermi-LAT Collaboration, 2014). The detection of the

Cygnus Cocoon, using the Fermi-LAT (1–100 GeV) with a flux Lγ ∼ 6× 10−8 cm−2

s−1 and the Milagro Gamma-ray Observatory with a flux Lγ ∼ 3.5× 10−11 cm−2 s−1

centered at ∼12 TeV (Abdo et al., 2007a,b), revealed a hard spectrum, most likely

of diffuse, interstellar origin (Ackermann et al., 2011). The similarity between the

emission morphology and IR & optical observed interstellar structure favors a CR

origin, concluding that the Cygnus Cocoon is most likely a CR superbubble capable

of accelerating CRs up to an estimated 150 TeV (Ackermann et al., 2011). Additional

detections at TeV energies have been confirmed by the ARGO-YBJ detector (Bartoli

et al., 2014).

W 49 A Also within the Galaxy, at a distance of 11.4 kpc Gwinn et al. (1992), is

the W 49 complex, hosting one of the most active and luminous (LIR > 107 L�) star-

forming regions in the Galaxy, W 49 A Sievers et al. (1991). W 49 A contains ∼30

ultracompact HII regions Dreher et al. (1984); De Pree et al. (1997) for a total mass of

∼ 106 M� Sievers et al. (1991). Evidence for multiple expanding shells provided from

the radiation pressure and/or strong stellar winds of massive stars has been observed

(∼15 pc scale), as well as the remnants of gas ejections on larger scales (∼ 35×15 pc2)

30



Peng et al. (2010). W 49 A was detected in TeV gamma-rays at a 4.4σ significance

level, using H.E.S.S and re-analyzed Fermi-LAT GeV data Brun et al. (2011).

30 Doradus C 30 Dor C is a 100 pc wide superbubble in the Large Megallanic

Cloud, roughly 50 kpc away Pietrzynski et al. (2013); Abramowski et al. (2015). It

is luminous in radio, optical Mathewson et al. (1985), X-ray (synchrotron-emitting)

Bamba et al. (2004); Smith and Wang (2004) and TeV gamma-rays Abramowski

et al. (2015) with a central temperature of 7.4 × 106 K. Although neither leptonic

or hadronic originating TeV gamma-ray emission can be ruled out, conditions in the

superbubble provide evidence for magnetic-field amplification combined with turbu-

lence in the hadronic scenario, possibly providing conditions for CRp acceleration

exceeding energies of 3 PeV Abramowski et al. (2015).

Next we will discuss if the physics of these star-forming objects supports strong

neutrino emission. An immediate test of the promise of an object as a IceCube

source is to check if it is sufficiently powerful to produce at least one neutrino in

IceCube. This can be done using the observed gamma-ray spectra (Figure 5.1) under

the assumption that neutrino and gamma-ray emission escaping the source are similar.

This is expected to be true (i) when pair production can be neglected, (ii) in most

applications of the hadronic model where the interstellar medium of the source is

transparent to gamma-rays (for NH . 1026 cm−2 Lacki (2012) at GeV energies), and

(iii) the neutrino flux and spectrum trace the gamma-ray spectrum to within a factor

∼ 2− 3.

For a neutrino spectrum of the form E−2 the neutrino flux required to produce

one event in IceCube, φ(1), is such that E2φ(1) ∼ 10−11 ergs cm−2s−1 Padovani and

Resconi (2014), nearly independently of the energy of the specific neutrino event
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Figure 5.1: Gamma-ray Spectra of Star-forming Sources

Gamma-ray spectra of the candidate star-forming sources (Figures 4.3 and 4.4, Table
5.1) that have been detected in gamma-rays. The solid red line is an estimate of
the minimum neutrino flux needed to produce one event at IceCube with significant
likelihood (see text for details); the width of the line represents the energy window
probed by IceCube. Top: Fermi-LAT spectra of the four starburst classified galaxies
in the 3FGL catalog Fermi-LAT Collaboration (2014), shown as filled symbols. The
open symbols represent the VERITAS TeV data of M 82 VERITAS Collaboration
(2009) and the H.E.S.S. TeV data of NGC 253 Acero (2009). Bottom: Same as
top, for the nearby superbubbles and star-forming region. The Cygnus Cocoon TeV
spectrum is from the ARGO-YBJ detector (Bartoli et al., 2014), while for W 49 A,
the H.E.S.S and re-analyzed Fermi-LAT GeV data are shown Brun et al. (2011). For
30 Dor C, the only data available are H.E.S.S TeV observations Abramowski et al.
(2015).
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considered, and with a Poissonian error of a factor of a few. As a conservative test

of the plausibility of a neutrino source candidate, we require that its gamma-ray

spectrum, power-law-extrapolated to the IceCube energy window (E & 30 TeV), be

within an order of magnitude of φ(1), i.e. E2φγ > E2φmin ∼ 10−12 ergs cm−2s−1. This

criterion is similar to that in Padovani and Resconi (2014).

It appears that M82 and NGC253 (top two panels of Figure 5.1) do not pass

this test, since their spectra decline rapidly with energy and their extrapolations fall

below φmin by at least one order of magnitude. A similar situation is realized for

the remaining two starburst galaxies, NGC1068 and NGC4945. However, here the

possibility of a hardening of the spectrum above a TeV remains open, due to the

absence of observations in this regime. Slightly more promising are the spectra for

the superbubbles/star-forming regions (bottom of Figure 5.1): while 30 Dor C and

W 49 A also appear to fail the test, the Cygnus Cocoon passes. These results agree

overall with past studies of starburst galaxies as high energy neutrino sources Romero

and Torres (2003); Lacki and Thompson (2013); Lacki et al. (2011); Yoast-Hull et al.

(2014), where, although with a strong dependence on the parameters, relatively soft

neutrino spectra were found, reaching up to 150 TeV Lacki and Thompson (2013).

Among the galactic objects, the Cygnus Cocoon has been predicted to be a detectable

neutrino emitter Beacom and Kistler (2007); Gonzalez-Garcia et al. (2009); Fox et al.

(2013).

We found that the basic energetics test disfavors the simplest scenario of starburst

galaxies with similar neutrino and gamma-ray spectra. However, it leaves open the

possibility that the gamma-ray flux from starbursts is suppressed compared to the

neutrino flux, due to unaccounted for absorption affecting the gamma-rays or their

parent particles. The most likely possibility is the case of pair production, where

the interaction between gamma-rays and a radiation field of lower energy photons
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produces electron-positron pairs. This mechanism is responsible for gamma-ray at-

tenuation in connection with the extragalactic background light, and it effectively

steepens gamma-ray spectra through absorption and also by redistributing gamma-

ray photons to lower energies. The cross section for this interaction is maximized

when the product of the photon energies is ∼ 0.1 MeV2. For example, for gamma-

rays of 100 GeV the interaction is maximized with λ ' 0.1 µm UV photons and at

10 TeV energies this interaction is maximized for ∼ 10 µm mid-IR photons, both of

which are abundant in these galaxies. Recent simulations have shown that gamma-

rays above E ∼ 2−5 TeV have opacities above τ > 1 in the star-forming galaxy ARP

220, M 82, and a similar but smaller effect in NGC 253 Torres (2004); Lacki and

Thompson (2013); Yoast-Hull et al. (2015). The amount of absorption will depend

strongly on the ratio of the energy densities of the photon fields.

Without relying on gamma ray spectra, it is possible to test for compatibility

between the subset of n ∼ 3 − 4 events that might be due to the objects listed

in Table 5.1 — which are all local, (d < 15 Mpc) — and the whole set of N =

35 neutrino data at IceCube of which B ∼ 13 should be due to background (see

Section 2). The argument is that the local contribution to the neutrino flux should

have a diffuse counterpart, due to similar objects at larger distances that can’t be

resolved individually. The ratio of local and diffuse fluxes can be calculated under

the assumption that the local sources are representative of most objects in their class,

and using basic information on the cosmological evolution of the source population.

We have estimated this ratio for a non-evolving population of identical objects, as

well as one evolving like the cosmic star formation rate (see e.g., Hopkins and Beacom

(2006)), and we find that up to ∼ 2% of the total neutrino flux can be from objects

with d < 15 Mpc. In comparison, from the data we obtain a ratio f = n/(N −B) ∼

0.14− 0.18.
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The difference between the two results can be interpreted as disfavoring the hy-

pothesis of nearby starburst galaxies as IceCube sources. However, it could also

indicate a positive fluctuation of the local star formation rate with respect to the cos-

mological average, which has been suggested in connection with measurements of the

local supernova rate Ando et al. (2005); Kistler et al. (2011). Alternatively, it could

indicate perhaps a mechanism whereby neutrinos are emitted preferentially along the

plane of disk galaxies, leading to an enhanced contribution of edge-on galaxies to the

total flux. We note in this context that 3 out of the 4 gamma-ray detected star-

burst galaxies in Table 5.1 are seen as edge-on, i.e., with an isophotal axis ratio of

b/a < 0.35 1 , yet in complete samples of nearby and distant galaxies, on average only

∼15% of the total galaxies are observed with this orientation Odewahn et al. (1997).

Finally, one should consider that exotic properties of the neutrino as a particle could

increase the ratio f ; for example, such an effect is predicted in models where a new

neutrino interaction with a light mass mediator causes absorption of the cosmological

contribution to the neutrino flux Cherry et al. (2014).

1NASA/IPAC Extragalactic Database; http://ned.ipac.caltech.edu/
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Chapter 6

SUMMARY AND CONCLUSION

We addressed the question of a possible contribution to the IceCube data from

local objects with powerful high energy emissions due to AGN and star-forming ac-

tivities. Specifically, we tested for a statistical positional correlation between the

neutrino data and candidate sources from different catalogs, selecting among objects

of the same class/morphology by imposing a minimum flux in either gamma-rays or

100 µm emission. The statistical quantity of interest is the weighted distance, r,

between a neutrino data point and its nearest candidate source. We tested the dis-

tribution of r against the “null” hypothesis of random, non-causal, positional overlap

with uniformly selected.

For the eleven brightest blazars in 10–100 GeV from the Fermi-LAT 3FGL cata-

log, results are consistent with the null hypothesis, thus confirming the validity of the

method. For the six Seyfert-classified galaxies in the 3FGL catalog, a non-significant

excess at r < 1 was found over the null distribution, suggesting that Seyfert galaxies

may warrant further attention when higher statistics neutrino data become available.

More interesting results are found for objects with high star formation rates,

such as starburst galaxies, superbubbles and massive star-forming regions. The most

significant excess at r < 1 is found for the set of seven gamma ray-detected (from

TeVCat and 3FGL catalogs) star-forming objects, including four starburst galaxies,

two superbubbles (one galactic, the Cygnus Cocoon) and one galactic star-forming

region. Ten neutrino events overlap with a candidate within the error. The probability

of this occurring in the null hypothesis (p-value) is 0.3%. Similar excesses, although

less significant, are seen for different selection criteria, which correspond to sets of
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candidate sources that partially overlap with one another. In particular, the p-value

is at the level of a few percent for the seven starburst galaxies that are brightest in

far-IR 100 µm emission. This set includes the same four starburst galaxies as in the

previous case. If only the latter are considered, the p-value remains consistent with

p ' 0.05.

At this point, considerations on the significance of the excess of positional associ-

ations are necessarily mixed. On one hand, the excess is robust, since it appears for

different candidate selection criteria and different models of the null case (uniform

distribution or uniform with subtracted Galactic plane, see Table 4.1). In contrast,

however, this result is not fully supported by a basic energetic test of neutrino emission

tracing gamma-ray emission and the assumed redshift evolution of the star-forming

population.

For the seven gamma-ray detected candidates, the gamma-ray spectra were ex-

amined. Under the assumption that neutrino spectra trace the gamma-ray ones, only

one object, the Cygnus Cocoon in our galaxy, was found to be sufficiently powerful to

produce one event in IceCube with substantial likelihood. The remaining candidates

can be reconciled with the observed excess in the hypothesis that their gamma ray

flux might be substantially dimmer than the neutrino flux, due to high absorption. It

is also worth noting that the excess corresponds to a local contribution (from sources

within ∼15 Mpc distance) to the total neutrino flux of about 10–20%. This is higher

than the expected few percent when compared to the cosmological evolution of star

formation, and could be explained by a local fluctuation in star-formation rate relative

to the cosmic average or possibly, a preferential orientation for neutrino production

in disk galaxies.

Looking ahead, we expect that the situation will become clearer with better statis-

tics at IceCube. An update with 54 data points is upcoming (see Botner (2015) for
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preliminary presentations at conferences), and subsequent updates are expected at a

rate of roughly 12 new events per year. Therefore it is likely that, within a year or

two, the excess we observe might either become disfavored, or confirmed with higher

significance. A positive result would have the character of discovery, and would be

very fertile of theoretical developments on the physics of starburst galaxies and other

star-forming regions. Questions to be investigated will be how opaque these star-

forming regions could be to gamma-rays, and if the observational viewing angle of

star-forming galaxies can affect the measurable neutrino flux.
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zano, S. Razzaque, A. Reimer, O. Reimer, S. Ritz, C. Romoli, M. Sánchez-Conde,
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Kistler, M. D., H. Yüksel, S. Ando, J. F. Beacom and Y. Suzuki, “Core-collapse
astrophysics with a five-megaton neutrino detector”, Phys. Rev. D 83, 12, 123008,
URL http://adsabs.harvard.edu/abs/2011PhRvD..83l3008K (2011).

Krauss, F., M. Kadler, K. Mannheim, R. Schulz, J. Trstedt et al., “TANAMI Blazars
in the IceCube PeV Neutrino Fields”, Astron.Astrophys. 566, L7 (2014).

Krauss, F. et al., “TANAMI counterparts to IceCube high-energy neutrino events”,
(2015).

Kronberg, P. P., P. Biermann and F. R. Schwab, “The nucleus of M82 at radio and
X-ray bands - Discovery of a new radio population of supernova candidates”, Astro-
phys. J. 291, 693, URL http://adsabs.harvard.edu/abs/1985ApJ...291..693K
(1985).

Lacki, B. C., “Gamma-Ray Dominated Regions: Extending the Reach of Cos-
mic Ray Ionization in Starburst Environments”, eprint arXiv:1204.2580 URL
http://adsabs.harvard.edu/abs/2012arXiv1204.2580L (2012).

Lacki, B. C. and T. A. Thompson, “Diffuse Hard X-ray Emission in Starburst Galaxies
as Synchrotron from Very High Energy Electrons”, Astrophys.J. 762, 29 (2013).

Lacki, B. C., T. A. Thompson, E. Quataert, A. Loeb and E. Waxman, “On the GeV
and TeV detections of the starburst galaxies M82 and NGC 253”, Astrophys. J. 734,
2, 107, URL http://adsabs.harvard.edu/abs/2010arXiv1003.3257L (2011).

Le Duigou, J.-M. and J. Kndlseder, “Characteristics of new star cluster can-
didates in the Cygnus area”, Astron. Astrophys. 392, 3, 869–884, URL
http://adsabs.harvard.edu/abs/2002A%26A...392..869L (2002).

Lenain, J.-P., C. Ricci, M. Türler, D. Dorner and R. Walter, “Seyfert 2 galax-
ies in the GeV band: jets and starburst”, Astron. Astrophys. 524, A72, URL
http://adsabs.harvard.edu/abs/2010A%26A...524A..72L (2010).

Lenc, E. and S. J. Tingay, “The Subparsec-Scale Radio Properties of Southern
Starburst Galaxies. I. Supernova Remnants, the Supernova Rate, and the Ion-
ized Medium in the NGC 253 Starburst”, Astron. J. 132, 3, 1333–1345, URL
http://adsabs.harvard.edu/abs/2006AJ....132.1333L (2006).

Liu, R.-Y., X.-Y. Wang, S. Inoue, R. Crocker and F. Aharonian, “Dif-
fuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hyper-
nova remnants in star-forming galaxies”, Phys. Rev. D 89, 8, 083004, URL
http://adsabs.harvard.edu/abs/2014PhRvD..89h3004L (2014).

Loeb, A. and E. Waxman, “The Cumulative background of high energy neutrinos
from starburst galaxies”, JCAP 0605, 003 (2006a).

Loeb, A. and E. Waxman, “The cumulative background of high energy neutrinos
from starburst galaxies”, J. Cosmol. Astropart. Phys. 2006, 05, 003–003, URL
http://adsabs.harvard.edu/abs/2006JCAP...05..003L (2006b).

45



Lunardini, C., S. Razzaque, K. T. Theodoseau and L. Yang, “Neutrino events
at IceCube and the Fermi bubbles”, Phys. Rev. D 90, 2, 023016, URL
http://adsabs.harvard.edu/abs/2014PhRvD..90b3016L (2014).

Madau, P., H. C. Ferguson, M. E. Dickinson, M. Giavalisco, C. C. Steidel et al., “High
redshift galaxies in the hubble deep field. color selection and star formation history
to z=4”, (1996).

Mathewson, D. S., V. L. Ford, I. R. Tuohy, B. Y. Mills, A. J. Turtle and D. J. Helfand,
“Supernova remnants in the Magellanic Clouds. III”, Astrophys. J. Suppl. Ser. 58,
197, URL http://adsabs.harvard.edu/abs/1985ApJS...58..197M (1985).

McCray, R. and T. P. Snow, “The Violent Interstellar Medium”,
Annu. Rev. Astron. Astrophys. 17, 1, 213–240, URL
http://adsabs.harvard.edu/abs/1979ARA%26A..17..213M (1979).

Middelberg, E., I. Agudo, A. L. Roy and T. P. Krichbaum, “Jet-cloud collisions in the
jet of the Seyfert galaxy NGC3079”, Mon. Not. R. Astron. Soc. 377, 2, 731–740,
URL http://adsabs.harvard.edu/abs/2007MNRAS.377..731M (2007).

Moharana, R. and S. Razzaque, “Angular correlation of cosmic neutrinos
with ultrahigh-energy cosmic rays and implications for their sources”, eprint
arXiv:1501.05158 URL http://adsabs.harvard.edu/abs/2015arXiv150105158M
(2015).

Mundell, C. G., J. M. Wrobel, A. Pedlar and J. F. Gallimore, “The Nu-
clear Regions of the Seyfert Galaxy NGC 4151: ParsecScale H i Absorp-
tion and a Remarkable Radio Jet”, Astrophys. J. 583, 1, 192–204, URL
http://adsabs.harvard.edu/abs/2003ApJ...583..192M (2003).

Murase, K., “On the Origin of High-Energy Cosmic Neutrinos”, (2014).

Murase, K., M. Ahlers and B. C. Lacki, “Testing the hadronuclear origin of
PeV neutrinos observed with IceCube”, Phys. Rev. D 88, 12, 121301, URL
http://adsabs.harvard.edu/abs/2013PhRvD..88l1301M (2013).

Murase, K., Y. Inoue and C. D. Dermer, “Diffuse neutrino intensity
from the inner jets of active galactic nuclei: Impacts of external pho-
ton fields and the blazar sequence”, Phys. Rev. D 90, 2, 023007, URL
http://adsabs.harvard.edu/abs/2014PhRvD..90b3007M (2014).

Norman, C. A. and S. Ikeuchi, “The disk-halo interaction - Superbubbles and
the structure of the interstellar medium”, Astrophys. J. 345, 372, URL
http://adsabs.harvard.edu/abs/1989ApJ...345..372N (1989).

Odewahn, S. C., D. Burstein and R. A. Windhorst, “The Axis Ratio Distribution of
Local and Distant Galaxies”, Astro.J. 114, 2219 (1997).

46



Padovani, P. and E. Resconi, “Are both BL Lacs and pulsar wind nebulae the as-
trophysical counterparts of IceCube neutrino events?”, Mon. Not. R. Astron. Soc.
443, 1, 474–484, URL http://adsabs.harvard.edu/abs/2014MNRAS.443..474P
(2014).

Parizot, E., A. Marcowith, E. van der Swaluw, A. M. Bykov and V. Tatischeff, “Super-
bubbles and energetic particles in the Galaxy”, Astron. Astrophys. 424, 3, 747–760,
URL http://adsabs.harvard.edu/abs/2004A%26A...424..747P (2004).

Peng, T.-C., F. Wyrowski, F. F. S. van der Tak, K. M. Menten and C. M. Walmsley,
“W49A: a starburst triggered by expanding shells”, Astron. Astrophys. 520, A84,
URL http://adsabs.harvard.edu/abs/2010A%26A...520A..84P (2010).

Petropoulou, M., S. Dimitrakoudis, P. Padovani, A. Mastichiadis and E. Resconi,
“Photohadronic origin of Formula-ray BL Lac emission: implications for
IceCube neutrinos”, Mon. Not. R. Astron. Soc. 448, 3, 2412–2429, URL
http://adsabs.harvard.edu/abs/2015MNRAS.448.2412P (2015).

Pietrzynski, G., D. Graczyk, W. Gieren, I. Thompson, B. Pilecki et al., “An eclipsing
binary distance to the Large Magellanic Cloud accurate to 2 per cent”, Nature 495,
76–79 (2013).

Razzaque, S., “Galactic Center origin of a subset of Ice-
Cube neutrino events”, Phys. Rev. D 88, 8, 081302, URL
http://adsabs.harvard.edu/abs/2013PhRvD..88h1302R (2013).

Reynolds, S. P., “Supernova Remnants at High Energy”,
Annu. Rev. Astron. Astrophys. 46, 1, 89–126, URL
http://adsabs.harvard.edu/abs/2008ARA%26A..46...89R (2008).

Romero, G. E. and D. F. Torres, “Signatures of hadronic cosmic rays in starbursts?
High-energy photons and neutrinos from NGC 253”, Astrophys.J. 586, L33–L36
(2003).

Rossa, J. and R.-J. Dettmar, “An H?survey aiming at the detection of extraplanar dif-
fuse ionized gas in halos of edge?on spiral galaxies”, Astron. Astrophys. 406, 2, 505–
525, URL http://adsabs.harvard.edu/abs/2003A%26A...406..505R (2003).

Sahu, S. and L. S. Miranda, “Some possible sources of IceCube TeV-PeV neutrino
events”, p. 11, URL http://arxiv.org/abs/1408.3664 (2014).

Sanders, D. B., J. M. Mazzarella, D.-C. Kim, J. A. Surace and B. T. Soifer,
“The IRAS Revised Bright Galaxy Sample”, Astron. J. 126, 4, 1607–1664, URL
http://adsabs.harvard.edu/abs/2003AJ....126.1607S (2003).

Schmidt, M. and R. F. Green, “Quasar evolution derived from the Palomar bright
quasar survey and other complete quasar surveys”, Astrophys. J. 269, 352, URL
http://adsabs.harvard.edu/abs/1983ApJ...269..352S (1983).

47



Schurch, N. J., T. P. Roberts and R. S. Warwick, “High-resolution X-
ray imaging and spectroscopy of the core of NGC 4945 with XMM-
Newton and Chandra”, Mon. Not. R. Astron. Soc. 335, 2, 241–246, URL
http://adsabs.harvard.edu/abs/2002MNRAS.335..241S (2002).
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FORMALISM: THE NULL HYPOTHESIS
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Here we derive the distribution of the weighted distance, r, for the null hypothesis,
Eq. (3.4). Let us consider a population of M candidate sources, uniformly distributed
in the sky, so that the probability to find a candidate in a unit of solid angle is
dp/dΩ = 1/(4π). Consider now a generic point in the sky, with θ the angular distance
from it. The probability to find a candidate at angular distance between θ and θ+dθ
is, then:

dp(θ) =
1

2
sin θdθ . (A.1)

By integration, one gets the probability to find a candidate at distance larger than θ:

q(θ) =
1

2
(1 + cos θ) . (A.2)

From these, we can obtain the probability that the nearest source is at angular dis-
tance between θ and θ+dθ. This is given by the probability that one source is between
θ and θ + dθ, and all the other M − 1 candidates are at a larger distance Sutherland
and Saunders (1992):

dP (θ) =
M

2M
sin θ(1 + cos θ)M−1dθ , (A.3)

where the factor M in the numerator is found by the assumption of identical sources.
Some observations on the distribution dP/dθ in eq. (A.3):

• dP/dθ = 0 at θ = 0 and at θ = π, as expected. It has a maximum at θ = θmax,
with

cos θmax = 1− 1

M
, (A.4)

which agrees with the intuition that, for larger M, the most likely distance to
the nearest source is smaller. In the approximation θ � 1, Eq. (A.4) gives

θmax '
√

2/M . The dependence on M−1/2 is expected, considering that for M
objects populating a two-dimensional space the area occupied by each object
scales like 1/M .

• The average of the distribution dP/dθ is found to be, in the limit M � 1:

〈θ〉 '
√

π

M
. (A.5)

It is useful to express the distribution in Eq. (A.3) in terms of a weighted distance,
r = θ/σ, with σ a constant (in our specific application, σ is the angular error on the
measured neutrino position, see Section 3):

dP (r, σ)

dr
= σ

M

2M
sin(rσ) [1 + cos(rσ)]M−1 . (A.6)

For a set of N neutrino data, each with error σi (i = 1, 2, ....., N), the distribution of
r is the sum:

dP(r)

dr
=

N∑
i=1

dP (r, σi)

dr
. (A.7)
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The combination of Eqs. (A.7) and (A.6) gives the expression in Eq. (3.4). We have
checked that this result coincides with the Monte Carlo-simulated one for a uniformly
distributed population of candidates.

52


