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ABSTRACT  

   

The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a NiFe-type  

bidirectional hydrogenase that is capable of using reducing equivalents to reduce protons 

and generate H2. In order to achieve sustained H2 production using this cyanobacterium 

many challenges need to be overcome. Reported H2 production from Synechocystis is of 

low rate and often transient. Results described in this dissertation show that the 

hydrogenase activity in Synechocystis is quite different during periods of darkness and 

light. In darkness, the hydrogenase enzyme acts in a truly bidirectional way and a 

particular H2 concentration is reached that depends upon the amount of biomass involved 

in H2 production. On the other hand, in the presence of light the enzyme shows only 

transient H2 production followed by a rapid and constitutive H2 oxidation. H2 oxidation 

and production were measured from a variety of Synechocystis strains in which 

components of the photosynthetic or respiratory electron transport chain were either 

deleted or inhibited. It was shown that the light-induced H2 oxidation is dependent on the 

activity of cytochrome b6f and photosystem I but not on the activity of photosystem II, 

indicating a channeling of electrons through cytochrome b6f and photosystem I. Because 

of the sequence similarities between subunits of NADH dehydrogenase I in E. coli and 

subunits of hydrogenase in Synechocystis, NADH dehydrogenase I was considered as the 

most likely candidate to mediate the electron transfer from hydrogenase to the membrane 

electron carrier plastoquinone, and a three-dimensional homology model with the 

associated subunits shows that structurally it is possible for the subunits of the two 

complexes to assemble. Finally, with the aim of improving the rate of H2 production in 

Synechocystis by using a powerful hydrogenase enzyme, a mutant strain of Synechocystis 
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was created in which the native hydrogenase was replaced with the hydrogenase from 

Lyngbya aestuarii BL J, a strain with higher capacity for H2 production. H2 production 

was detected in this Synechocystis mutant strain, but only in the presence of external 

reductants. Overall, this study emphasizes the importance of redox partners in 

determining the direction of H2 flux in Synechocystis. 
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CHAPTER 1 

LITERATURE REVIEW: ENZYMES RELATED TO MICROBIAL H2 

PRODUCTION 

1.1 Role of H2 as an Energy Carrier 

Hydrogen (H2) is a versatile energy carrier and a viable alternative to the conventional 

carbon-based fossil fuels. Upon combustion, H2 (specific energy 142 MJ/kg) releases 

energy with only water as a byproduct and therefore is regarded as a clean, non-polluting 

fuel. It can also be potentially used in chemical fuel cells to generate electricity (Dincer, 

2007).  

Hydrogen is distributed abundantly in nature, especially as a component of water and 

organic compounds. However, only a small portion of it is present as molecular hydrogen 

gas, H2. Thus, H2 must be manufactured from feedstocks before it can be either stored or 

used to produce electricity in fuel cells or heat upon combustion (Ogden, 1999).  

Currently, most of the commercially produced H2 is formed by steam reforming of 

natural gas or by the gasification of coal (He and Li, 2014), represented by the equations 

below:  

CH4 + H2O (+ heat)  CO + 3H2 

3C (coal) + O2 + H2O  H2 + 3CO 

Both processes have the advantage of fast supply of large amounts of hydrogen gas to  
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refineries and chemical plants. However, they also require extremely high temperature 

and generate CO as a byproduct, making them environmentally unfriendly. Another 

currently used method that produces a relatively small portion of hydrogen is electrolysis, 

in which electricity is used to split water into H2 and O2.  

2H2O  O2 + 2H2 

In this process, the economic viability of H2 production depends on the source of the 

electricity used - its cost, efficiency and possible emissions during its generation (Onda et 

al., 2004).  

1.2 Biological H2 Production 

Biological H2 production is a relatively new and yet-to-be-fully-explored approach that 

has long-term potential for sustainable H2 production with low environmental impact. 

Biological H2 production involves certain microbes that can produce H2 as part of their 

metabolic processes by using the enzymes nitrogenase and/or hydrogenase. Nitrogenases 

are found in selected phototrophic bacteria such as in some cyanobacteria, purple non-

sulfur and green sulfur bacteria as well as in some heterotrophic bacteria including in 

some Clostridia and Rhizobia (Weber et al., 2014; Basak and Das, 2007; Tourova et al., 

2014; Kasap and Chen, 2005), where they catalyze N2 fixation and produce H2 as a 

byproduct, as per the reaction: 

N2 + 8H+ + 8e- + 16ATP  2NH3 + H2 + 16ADP + 16Pi 

This mode of H2 production requires a large amount of energy in the form of ATP (two  
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ATPs per electron) making it an energetically expensive process.  

The second H2 producing enzyme, hydrogenase, is found in a variety of bacteria, 

including cyanobacteria, archaea and algae (Tamagnini et al., 2002 and 2007; Weber et 

al., 2014). Hydrogenase can catalyze the reversible formation of H2 by obtaining 

electrons from a variety of electron donors. The net reaction catalyzed by the enzyme can 

be represented as:  

2e- + 2H+  H2 

The electrons in this reaction are provided by redox partners such as NADPH, NADH, 

ferredoxin/flavodoxin, coenzyme F420, cytochrome c3 and menaquinone (a 

comprehensive list ofaredox partners is provided by Fontecilla-Camps et al. (2007)). 

While no ATP is required for H2 production with this enzyme, the direction of the 

reaction is determined by the concentrations as well as the redox potentials of the 

reactants and products.  

Hydrogenases are classified into two major categories according the metal content of 

their active site: NiFe-type and FeFe-type (Vignais et al., 2001). Both hydrogenases 

contain several [Fe-S] clusters (Lyon et al., 2004; Nicolet et al., 1999; Peters et al., 1998). 

A third type of hydrogenase (Fe-only hydrogenase), without any Fe-S cluster, is also 

found in some methanogenic archaea (Lyon et al., 2004). These three types of 

hydrogenases form phylogenetically distinct classes of proteins based on the amino acid 

sequences of their catalytic subunits (Vignais et al., 2001, Vignais, 2008). A brief 

description of the three types of hydrogenases is given below. 
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a) NiFe-Hydrogenase  

NiFe-hydrogenases are a common class of hydrogenases, found mainly in bacteria and 

archaea. The first crystal structure of a NiFe hydrogenase (from Desulfovibrio gigas) was 

published in 1995 and was followed by several others in later years (Volbeda et al., 1995; 

Frielingsdorf et al., 2014; Fritsch et al., 2011; Ogata et al., 2002 and 2005; Rousset et al., 

1998). The core enzyme consists of a large subunit of ~60 kDa, and a small subunit of 

~30 kDa (Figure 1.1). The bimetallic NiFe active site is deeply buried in the large 

subunit, where the nickel is coordinated by four cysteine residues and the iron is 

coordinated by one CO and two CN ligands, and two of the Ni-binding cysteine residues.  

 

 

Figure 1.1 

Representation of a NiFe-hydrogenase from D. fructosovorans (PDB ID: 1YQ9). The 

NiFe active site and the [Fe-S] clusters are represented by blue and silver spheres, 

respectively.  
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The small subunit usually hosts three [Fe-S] clusters. These [Fe-S] clusters conduct 

electrons between the active site and the physiological electron donor/acceptor of 

hydrogenase. On the other hand, gas access to the active site is mediated by hydrophobic 

channels connecting the active site in the large subunit to the surface of the molecule 

(Cano et al., 2014; Wang et al., 2011; Bleijlevens et al., 2001). NiFe-hydrogenases are 

reversibly inactivated by oxygen and usually have low turnover numbers (e.g., 98 s-1 in 

D. fructosovorans) (Hallenbeck and Benemann, 2002).  

b) FeFe-Hydrogenase 

FeFe-hydrogenases are mostly found in anaerobic prokaryotes and eukaryotes, located 

exclusively in organelles such as chloroplasts or hydrogenosomes (Peters et al., 2015; 

Tamagnini et al., 2007; Vignais et al., 2001). The catalytic unit contains the active site 

domain (also called the H-cluster) where a binuclear FeFe center is coordinated by CO 

and CN ligands, and also to a [4Fe-4S] cluster by a bridging cysteine residue (Figure 1.2) 

(Vignais and Billoud, 2007). Reduced ferredoxins usually serve as electron donors for 

this class of hydrogenases (Peters et al., 2015). Among different types of hydrogenases, 

FeFe-hydrogenases usually have higher turnover numbers (e.g., 9000 s-1 for 

Desulfovibrio sp. and 6000 s-1 for Clostridium pasteurianum) compared to the NiFe-

hydrogenases (Hallenbeck and Benemann, 2002). However, in the presence of O2 they 

get rapidly and irreversibly inactivated.  
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c) Fe-Only Hydrogenase 

Fe-only hydrogenases (also called Hmd) are found in some methanogenic archaea such as 

Methanothermobacter marburgensis. Unlike the other two classes of hydrogenases, they 

do not catalyze the reversible reaction between protons and electrons to form H2. Instead, 

they catalyze the reversible reduction of methenyltetrahydromethanopterin with H2 to 

form methylenetetrahydromethanopterin (Vignais and Billoud, 2007; Peters et al., 2015) 

and function only under growth conditions of nickel limitation. Fe-only hydrogenases are 

composed of two identical subunits, with two Fe per homodimer. However, these irons 

may not be catalytically active and the enzymes do not contain any [Fe-S] cluster 

(Vignais and Billoud, 2007). 

Biological H2 production can be broadly classified into the following categories:  

Figure 1.2 

Representation of a FeFe-hydrogenase from Clostridium pasteurianum (PDB ID: 

3C8Y). The FeFe active site and the [Fe-S] clusters are represented by blue and silver 

spheres, respectively. 
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1.2.1 Direct Photolysis  

Direct photolysis is mainly observed in certain species of algae and cyanobacteria. In 

direct photolysis, photosynthesis converts solar energy into chemical energy in the form 

of H2, following the general reaction: 

2H2O (+ light energy)  2H2 + O2 

The process usually takes place in two steps: first, photosynthesis splits water at 

photosystem II (PS II) evolving O2, protons (H+) and electrons (e-). The electrons are 

subsequently transferred to photosystem I (PS I), ferredoxin and NADP+ to produce 

NADPH. In algae and cyanobacteria cytoplasmic protons are reduced by ferredoxin and 

NADPH, respectively, to form H2, a reaction mediated by hydrogenase (Das and 

Veziroglu, 2008; Benemann, 2000; Tamagnini et al., 2002; Zhang et al., 2010). The 

electron transfer pathway can be described as: 

H2O → PS II → PS I → Ferredoxin → (NADPH →) Hydrogenase → H2 

The biotechnological advantages of producing H2 in this mode are that a) it couples 

photosynthesis directly with H2 production without involving carbon fixation, and b) it 

does not involve any greenhouse gas emission. In cyanobacteria the reaction is mediated 

by a NiFe-hydrogenase. H2 production with this enzyme in the presence of light is 

transient (~30 s), and is followed by H2 uptake, resulting no net production of H2 

(Cournac et al., 2004).  

Green algae possess FeFe-hydrogenases with high turnover numbers, but these enzymes 

are irreversibly inactivated in the presence of O2 and in certain cases are also light 
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sensitive  (Chen et al., 2002; Hallenbeck and Benemann, 2002; Volgusheva et al., 2015). 

Since PS II produces O2 by water photolysis, the oxygen sensitivity of the hydrogenase 

enzyme poses a significant challenge for continuous H2 production using algal 

hydrogenases.  

Because of the O2 sensitivity of algal hydrogenases, photosynthetic O2 and H2 evolution 

must be temporarily and/or spatially separated in order to obtain sustained H2 production 

in the presence of light (Levin et al., 2004). Such sustained H2 production was 

demonstrated in Chlamydomonas reinhardtii by temporally separating photosynthetic 

O2 evolution and carbon fixation (stage 1) from concomitant H2 production using the 

cell’s stored metabolites (stage 2). During the transition from stage 1 to stage 2, the 

culture medium was deprived of various inorganic nutrients such as S, P or Mg that are 

required for the synthesis of components of the photosynthetic apparatus or 

intermediates of the reductive pentose phosphate cycle (Volgusheva et al., 2015; Antal et 

al., 2014; Williams and Bees, 2014; Batyrova et al., 2012). When cultures were 

incubated in such media, the rates of O2 evolution and CO2 fixation declined 

significantly and the media became O2-deprived within 22-35 hours due to respiration. 

Within a few hours of the onset of anaerobiosis, C. reinhardtii started producing H2 in 

the presence of light. Studies show that H2 evolution in the absence of sulfur depends 

upon electron supply from endogenous substrates (Kosourov et al., 2003; Melis et al., 

2000) as well as residual PS II activity and non-photochemical plastoquinone reduction 

(Hemschemeier et al., 2008). The H2 production could be sustained, on average, for 4-5 

days (Zhang et al., 2002). 
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1.2.2 Indirect Photolysis 

 

In indirect photolysis, O2 evolution and H2 production are temporarily separated, thus 

offering a convenient solution for the O2 sensitivity problem of hydrogenase (Manish and 

Banerjee, 2007). In the presence of light, the light and dark reactions of photosynthesis 

fix carbon into organic compounds with simultaneous O2 evolution. Later, in the absence 

of light, fermentative degradation of stored organic compounds (e.g., glycogen in certain 

cyanobacteria) results in H2 production. Both algae and cyanobacteria can produce H2 in 

this mode (Stal and Moezelaar, 1997; Melis and Melnicki, 2006). In certain 

cyanobacteria H2 production in the dark by fermentation showed considerably high rates 

such as of 5.3 + 2.7 µmol (mg chl a)-1 h-1 in Lyngbya aestuarii BL J (Kothari et al., 2014). 

The overall reactions of photosynthesis and H2 production can be described by the 

equations:  

12H 2 O + 6CO2  (+ l ight  energy)  →  C 6 H1 2 O6  + 6O2  

C 6 H1 2 O6  →→  NAD(P)H →  H2   

1.2.3 Photo-Fermentation  

Photo-fermentation is the conversion of organic compounds to H2 by a series of 

biochemical reactions observed in photosynthetic non-sulfur bacteria (Azwar et al., 

2014). Attempts were made to produce H2 in this way using certain purple non-sulfur 

bacteria such as Rhodospirillium rubrum, Rhodobacter capsulatus and 

Rhodopseudomonas palustris (Basak and Das, 2007). Nitrogenase is the main enzyme 

that participates in H2 production in these organisms. These bacteria were shown to 
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produce H2 from various organic acids and agricultural wastes in the presence of light 

(Hallenbeck and Benemann 2002; Basak et al., 2014).  

The photo-fermentation process has several drawbacks such as the high energy demand 

of the nitrogenase enzyme, requirements of strict control of environmental conditions 

(e.g., optimal pH and temperature range between 6.8 and 7.5, and 31 and 36 °C, 

respectively), low solar conversion efficiency in ideal (low) light conditions, and 

metabolic shift from H2 production to polyhydroxybutyrate synthesis (Cai and Wang, 

2014; Basak and Das, 2007; Hallenbeck and Benemann 2002; Koku et al., 2002).  

1.2.4 Dark Fermentation 

A wide variety of anaerobic heterotrophic bacteria such as Clostridium, Enterobacter and 

Bacillus produce H2 in darkness using carbohydrate-rich substrates (Kapdan and Kargi, 

2006; Levin et al., 2004). Pyruvate is often the preferred substrate for H2 production, 

which takes place in one of the two routes: a) via pyruvate formate lyase (PFL) or b) via 

pyruvate ferredoxin oxidoreductase (PFOR) (Hallenbeck, 2009). In the former route, 

pyruvate is first converted to formic acid by PFL, and then to H2 and CO2 by a second 

enzyme, formate hydrogen lyase (FHL).  

Pyruvate + CoA  Acetyl-CoA + Formate 

Formic acid  CO2 + H2 

In the second route, pyruvate is converted to acetyl-CoA by the enzyme PFOR, 

producing CO2 and reduced ferredoxin in the process. Reduced ferredoxin, in turn, 

supplies the electrons to reduce protons to produce H2 via a FeFe-hydrogenase. 
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Pyruvate + CoA + 2Fd (ox)  Acetyl-CoA + CO2 + 2Fd (red) 

2Fd (red) + 2H+  2Fd (ox) + H2 

While direct and indirect photolysis produce pure H2, dark fermentation produces a 

mixed biogas, containing mainly H2 and CO2 and occasionally small amount of methane, 

CO and H2S (Levin et al., 2004). In many organisms the actual yield of H2 is further 

reduced by H2 recycling by one or more uptake hydrogenases (Hallenbeck and 

Benemann, 2002).  

1.3 Cyanobacterial H2 Metabolism 

Cyanobacteria are a large group of photoautotrophic microorganisms found in almost all 

ecological niches including aquatic (saltwater and freshwater), terrestrial and even 

extreme environments (such as frigid lakes of the Antarctic or hot springs) (Tamagnini et 

al., 2002). They can be either unicellular or filamentous. Certain strains of cyanobacteria 

can fix atmospheric N2 as well. Cyanobacteria are sometimes referred as blue-green 

algae, mainly because they display a variety of colors due to the presence of different 

photosynthetic pigments such as chlorophylls, carotenoids and phycobiliproteins. What 

separates this group from some other groups of photosynthetic bacteria is the presence of 

chlorophyll a (chl a) and the complete machinery for oxygenic photosynthesis. They can 

use the energy from sunlight to split water during photosynthesis and trap atmospheric 

CO2 by carbon fixation. Certain cyanobacteria (e.g., Oscillatoria sp.) can also perform 

anoxygenic photosynthesis using an alternate electron donor such as H2S and As (III) 

(Kulp et al., 2008). 
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 Cyanobacteria may possess three different types of enzymes that are involved in 

hydrogen metabolism: nitrogenase, which catalyzes the production of H2 as a byproduct; 

uptake hydrogenase, which consumes H2 produced by the nitrogenase; and bidirectional 

hydrogenase, which can catalyze both H2 production and consumption. A basic 

description of the three enzymes is provided below. 

1.3.1 Nitrogenase 

As stated earlier, nitrogenases are the primary enzymes for N2 fixation, a process where 

atmospheric N2 is converted to ammonia (NH3), which can then be used in biological 

processes. H2 is produced as a byproduct of this reaction. The reaction of N2 fixation 

requires 2 molecules of ATP per electron, making the process of H2 production 

energetically expensive.  

Nitrogenases are sensitive to O2. In heterocyst-containing filamentous strains, N2 fixation 

occurs in the anaerobic environment of the heterocyst, where PS II stays inactive. The 

active site of the nitrogenase contains a molybdenum (Mo) and an iron (Fe). When Mo is 

unavailable it can be replaced by a vanadium (V). When both metals are unavailable, 

some cyanobacterial strains can synthesizes an alternate Fe-only nitrogenase (Hodkinson 

et al., 2014; Glass et al., 2010; Angermayr et al., 2009; Tamagnini et al., 2007).  

Depending on the metal content of the nitrogenase, different amounts of reducing 

equivalents are assigned for N2 fixation and H2 production (described in detail by Rees et 

al., 2005). For example, while Mo nitrogenase follows the equation: 

N2 + 8H+ + 8e- + 16ATP  2NH3 + H2 + 16ADP + 16Pi 
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With V nitrogenase, the reaction of N2 fixation follows the equation:  

N2 + 12H+ + 12e- + 24ATP  2NH3 + 3H2 + 24ADP + 24Pi 

1.3.2 Uptake Hydrogenase 

Cyanobacterial uptake hydrogenases are found exclusively in N2-fixing strains, where 

they rapidly consume the H2 produced during N2 fixation. Uptake hydrogenases are 

generally suggested to be localized on the cytoplasmic side of either the cytoplasmic or 

the thylakoid membrane (Vignais and Billoud, 2007). Immunolocalization studies have 

indicated the presence of uptake hydrogenases in both vegetative cells and in heterocysts 

in several Nostoc strains and in Lyngbya majuscula (Seabra et al., 2009; Tamagnini et al., 

2007; Houchins and Burris, 1981).  

The main physiological function of uptake hydrogenase is to regain the electrons 

produced by H2 evolution through nitrogenase. This recycling has been suggested to 

benefit the organism in several ways. For example, it protects nitrogenase by removing 

low concentrations of O2 (in a Knallgas-type reaction) and supplies reducing equivalents 

to various cellular functions (Tamagnini et al., 2007; Smith and Gianinazzi-Pearson, 

1990).  

      1.3.3. Bidirectional Hydrogenase 

The soluble or membrane-associated bidirectional hydrogenases are found in both N2-

fixing and non-N2-fixing cyanobacterial strains (reviewed in detail by Tamagnini et al., 

2002, 2007) and are the principal enzymes of interest for cyanobacterial biohydrogen 
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production. In cyanobacteria bidirectional hydrogenases are known to produce H2 using 

electrons from their redox partners, NADH and/or NADPH (Tamagnini et al., 2007; 

Tiwari and Pandey, 2012; Vignais and Billoud, 2007; Cassier-Chauvat et al., 2014). The 

enzyme catalyzes two reversible half-reactions: 

NAD(P)H + H+  NAD(P)+ + 2H+ + 2e- 

and                  2H+ + 2e-  H2 

Therefore, the net reaction catalyzed by the enzyme is:             

NAD(P)H + H+  H2 + NAD(P)+ 

Recently, reduced ferredoxin (Fd)/flavodoxin (Flv) were also suggested as redox partners 

of these enzymes (Gutekunst et al., 2014).  

1.3.3.1 Physiological Role of Bidirectional Hydrogenase 

The physiological role of the cyanobacterial bidirectional hydrogenase is not entirely 

clear. It has been suggested that the enzyme acts as an electron relief valve to get rid of 

excess reducing equivalents (NADH/NADPH/reduced Fd) produced by the light 

reactions of photosynthesis in Synechocystis sp. PCC 6803 (Appel et al., 2000). Although 

Flv1 and Flv3 proteins (Allahverdiyeva et al., 2011), which also accept electrons from 

photosynthetically produced NADH and NADPH to reduce O2 and produce water, are 

likely to be more suitable choices for electron acceptors. Hydrogenase is also known to 

take part in fermentation by disposing electrons and regenerating NAD(P)+ from 
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NAD(P)H, thus participating in the maintenance of redox balance of the cell during 

fermentation (Barz et al., 2010; Carrieri et al., 2011; Stal and Moezelaar, 1997).  

1.3.3.2 Localization of the Bidirectional Hydrogenase 

Like their physiological function, the subcellular localization of cyanobacterial 

bidirectional hydrogenase too is controversial. In N2-fixing strains the bidirectional 

enzymes can be found in both vegetative cells and heterocysts (Houchins and Burris, 

1981). Cyanobacterial bidirectional hydrogenases are generally classified as soluble 

enzymes (Vignais and Billoud, 2007). However, several studies have suggested an 

association of the enzymes in Synechocystis and Anabaena variabilis with their thylakoid 

membrane (Burroughs et al., 2014; Serebrikova et al., 1994; Appel et al., 2000)  

1.4 Bidirectional Hydrogenase in Synechocystis 

The cyanobacterial bidirectional hydrogenase is most studied in the freshwater 

cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis), where they show 

H2 production in darkness and under anaerobic conditions. Also, transient H2 production 

is observed during the transition from darkness to the light (Cournac et al., 2004, 2002; 

Appel et al., 2000). H2 production in the later mode quickly reverses its direction and 

changes to H2 consumption. A satisfactory explanation for such reversal of direction is 

not available so far.  

Hydrogenase in Synechocystis is a pentameric NiFe-type enzyme, consisting of five 

protein subunits: HoxE, HoxF, HoxU, HoxY and HoxH. HoxH (also called the large 

subunit) is the main catalytic subunit, and along with HoxY (also called the small 
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subunit) it forms the hydrogenase moiety of the enzyme. While the large subunit 

catalyzes the H2/H
+ oxidation/reduction reaction in its NiFe active site, a putative [Fe-S] 

cluster in the small subunit likely functions in transferring electrons from/to the large 

subunit. HoxE, HoxF and HoxU comprise the diaphorase moiety with a NAD(P)H 

binding site in HoxF. All subunits in the diaphorase moiety contain putative sites for 

binding [Fe-S] clusters (Appel and Schulz, 1996).The diaphorase moiety is unique for 

cyanobacterial bidirectional hydrogenases and is likely to participate in electron transfer 

between the redox partner of the enzyme and the hydrogenase moiety.  

1.4.1 Hydrogenase Genes in Synechocystis 

The five hydrogenase subunits are encoded by five hox (hydrogen oxidation) genes, 

hoxE, hoxF, hoxU, hoxY and hoxH. The five genes are located in one operon, with three 

open reading frames (ORFs) with unknown functions (Figure 1.3). These ORFs are 

sll1222, located in the downstream region of hoxF, and ssl2420 and sll1225, both located 

in the downstream region of hoxY.  

The five hox genes are known to be expressed as a single transcript and their transcription 

is regulated by a relatively weak promoter, located in the upstream region of hoxE 

(Dutheil et al., 2012; Gutekunst et al., 2005). The transcription start point of the operon is 

Figure 1.3 

Schematic representation of the hox operon in Synechocystis, with five hox genes and 

three ORFs. 
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located 168 nucleotides upstream of the start codon of hoxE.  The transcription of the hox 

operon is regulated by several factors such as environmental conditions (e.g., H2, light, 

nickel, nitrate and sulfur availabilities) as well as transcription regulators and repressors. 

Hox genes are expressed both in the presence and absence of O2. However, the transcript 

levels are increased (five- to six-fold) under microaerobic conditions (O2 concentration 

below 1 µM) with an additional induction of hoxE and hoxF in darkness (Kiss et al., 

2009; Summerfield et al., 2008; Oliveira and Lindblad, 2005). The expression of the hox 

operon is controlled by three transcription factors, LexA and AbrB1 acting as positive 

regulators, and AbrB2 acting as a repressor (Cassier-Chauvat et al., 2014). 

1.4.2 Hydrogenase Maturation 

The assembly of the NiFe-hydrogenase enzyme is a complex process involving at least 

seven proteins, known as maturase proteins (Peters et al., 2015; Eckert et al., 2012; 

Hoffmann et al., 2006). Six of these proteins are encoded by six hyp genes (hydrogen 

pleiotropic) and take part in various stages of the active site assembly including the 

incorporations of the metal ions and ligands in the active site and probably in the 

orientation of the [Fe-S] clusters in the small subunit as well. Homologs of the hyp genes 

are present in all organisms containing NiFe-hydrogenases. The maturation process 

involves the incorporation of CN ligands from carbamoyl phosphate aided by HypE and 

HypF, the incorporation of iron by HypC and HypD, and the incorporation of nickel by 

HypA and HypB in the large subunit of hydrogenase. The exact processes involved in the 

incorporation of the CO ligand in the large subunit and the [Fe-S] clusters in the 

diaphorase subunits are not known. The seventh protein, HoxW, is an endoprotease that 
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cleaves the C-terminus of the HoxH subunit as a final step of HoxH maturation during 

the assembly of HoxYH (Eckert et al., 2012). The knowledge on the maturation of the 

small subunit is scarce but the process is likely to occur at the same time as the large 

subunit maturation. A summary of the maturation process is depicted in Figure 1.4. 

 

 

 

1.4.3. Factors Controlling the Direction of H2 Flux in Synechocystis 

The active site of NiFe-hydrogenase catalyzes the reversible reaction between protons 

and electrons to form H2. In vitro, as one would normally expect, the enzyme showed a 

Figure 1.4 

Schematic representation of the hydrogenase protein assembly adapted from Cassier-

Chauvat et al. (2014).  
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higher rate of H+ reduction at low pH (McIntosh et al., 2011). However, in vivo an 

improvement of H2 production was observed by increasing the pH of the culture medium 

from 6.5 to 7.5 (Baebprasert et al., 2010).   

On the other hand, H2 production showed improvement by the inhibition of nitrate 

assimilation, a process which uses reduced ferredoxin for the supply of electrons, and in 

the absence of NDH-1 that resulted in a very reduced NAD(P) pool (Gutthann et al., 

2007; Cournac et al., 2004; Cooley and Vermaas, 2001). Therefore, the direction of the 

H2 flux was suggested to rely mainly on the redox status of the NAD(P) and/or the 

ferredoxin/flavodoxin pool in the cell (Gutekunst et al., 2014; Chongsukantikul et al., 

2014; Appel et al., 2000). 

1.4.4 Factors Controlling the Redox Status of NAD(P) and Fd/Flv in Synechocystis 

The ratios of NADPH and NADP+, NADH and NAD+, and reduced and oxidized form of 

Fd/Flv in Synechocystis are controlled by a great number of cellular processes. NADP 

and NAD are coenzymes, whose production and utilization differ significantly between 

periods of light and darkness. During the day, NADPH is primarily produced by the 

photosynthetic light reaction, and is utilized by the Calvin cycle (Knoop et al., 2013; 

Young et al., 2011; Yang et al., 2002). A portion of the photosynthetically generated 

NADPH is also used to reduce O2 to H2O by Flv1 and Flv3 proteins (Allahverdiyeva et 

al., 2011). At night, cells use endogenous storage compounds (mainly glycogen) to 

maintain cellular processes (Grundel et al., 2012). Glycogen breaks down to glucose, 

which is used primarily by the oxidative pentose phosphate pathway, producing NADPH, 

and to a lesser extent by glycolysis producing both NADPH and NADH (Yang et al., 
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2002). The reduced coenzymes are then reoxidized at night during respiration, where they 

are both utilized as substrates of the respiratory Complex I or NDH-1, although the NDH-

1 in Synechocystis is known to prefer NADPH over NADH (Ma et al., 2006; Shastri and 

Morgan, 2005). Other than the central carbon metabolism, several other cellular 

processes (e.g., lipid synthesis and nucleotide synthesis) participate in the redox reactions 

of NADPH and/or NADH. While some of them are mainly active during the day, others 

are active both during day and night (Knoop et al., 2013; Yang et al., 2002), thus 

maintaining the balance between oxidized and reduced forms of NADP and NADH. 

Fd and Flv are soluble proteins that are the final electron acceptors of the photosynthetic 

electron transfer chain. Synechocystis contains at least eight different ferredoxins (plant-

type as well as bacterial-type, usually found in chloroplasts and bacteria, respectively); 

five of them are plant-type and three of them are bacterial-type ferredoxin (Mustila et al., 

2014). The distinct functions of bacterial-type ferredoxins are poorly understood. The 

most abundant type, plant-type ferredoxin 1 (Fd1) is reduced by PS I, and then reoxidized 

by donating its electrons to Fd:NADP+ oxidoreductase (FNR, EC 1.18.1.2). Fd1 acts as 

the redox partner of a variety of other enzymes as well. Examples of Fd1-binding 

enzymes include Fd:thioredoxin reductase (EC 1.8.7.2), nitrate reductase (EC 1.7.7.2) 

and nitrite reductase (EC 1.7.7.1). A comprehensive list of all possible ferredoxin-binding 

proteins in Synechocystis can be found in Hanke et al. (2011). Synechocystis also contains 

a pyruvate-ferredoxin oxidoreductase (PFOR, EC 1.2.7.1) that reduces ferredoxin during 

the conversion of pyruvate to acetyl-CoA (Schmitz et al., 2001). Flv, on the other hand, 

contains FMN as a cofactor and can substitute for Fd under conditions of iron deprivation 

(Goñi et al., 2009).  
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1.5 NAD(P)H Dehydrogenase (NDH-1) 

The energy-converting NADH-ubiquinone oxidoreductase is the first enzyme of the 

respiratory electron transport chain in bacteria and mitochondria. The mitochondrial 

enzyme is referred as Complex I, whereas the bacterial enzyme is often referred as 

NADH-dehydrogenase or NDH-1. The general functions of this enzyme are to transfer 

electrons to the quinone pool of the respiratory electron transport chain (ETC) and to 

transport protons across the cytoplasmic membrane (Efremov et al., 2010). Even though 

these enzymes are found in all subdivisions of bacteria, archaea and eukarya, they differ 

significantly in their subunit compositions among various classes. The number of the 

protein subunits in Complex I generally increases with the complexity of the organism. 

For example, the bovine mitochondrial Complex I contains 46 different subunits (Hirst, 

2013; Carroll et al., 2003), whereas most bacterial species, except cyanobacteria, contain 

at least 14 subunits, all of which have homologs in the bovine enzyme (Vignais and 

Billoud, 2007). The 14 subunits found in E. coli are considered to comprise a minimal set 

of proteins capable to perform all bioenergetic functions (Brandt, 2006). 

The enzyme is L-shaped, with a hydrophobic membrane-embedded domain and a 

hydrophilic peripheral domain that extends to the cytosol (Friedrich and Scheide, 2000). 

The hydrophilic, peripheral arm consists of two distinct units. One, which is furthest from 

the membrane-embedded domain, contains three subunits with a NADH-binding and a 

FMN-binding domain and several Fe-S clusters. The other hydrophilic unit consists of 

four subunits and connects the NADH-oxidizing subunits to the membrane-embedded 

hydrophobic domain.   
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1.5.1 Cyanobacterial NDH-1 

The NDH-1 complex in cyanobacteria is a membrane-embedded complex, but its precise 

location is debated. Cyanobacteria contain extensive thylakoid membranes that host 

components of their photosynthetic as well as respiratory electron transport chain. NDH-

1 subunits were found in both cytoplasmic and thylakoid membranes in Synechocystis 

and Synechococcus elongatus (Berger et al, 1993; Pieulle et al., 2000; Ohkawa et al., 

2002; Ogawa, 1992).  

NDH-1 in all cyanobacteria has a unique subunit composition. Homologs of only 11 nuo 

genes of the minimal complex of E. coli have been found in the cyanobacterial genome 

(ndhA-K in Synechocystis) (Zhao et al., 2014a; Yagi et al., 1998; Battchikova and Aro, 

2007; Kaneko et al., 2003 and 1996). This is puzzling because the three subunits that are 

present in the E. coli minimal complex but missing from cyanobacteria, include the 

NADH- and FMN-binding domain and several Fe-S clusters necessary for the catalytic 

activity of the enzyme. Without the knowledge of these crucial sites, the identity and the 

mechanism of catalysis at the active site of the enzyme have always been unclear.  

Other than the 11 essential subunits, seven additional subunits (NdhL-NdhQ and NdhS), 

also called the oxygenic photosynthesis specific (OPS) subunits have been discovered 

recently in cyanobacteria (Zhang et al., 2014; Zhao et al., 2014b; Nowaczyk et al., 2011). 

Except for NdhQ, the six other subunits are unrelated to any eubacterial NDH-1 but have 

homologs in chloroplast NDH complex (Ma and Ogawa, 2015; Prommeenate et al., 

2004). The suggested functions of these subunits are listed in Table 1.1.  
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 Among the OPS subunits, NdhS is especially interesting because it has a SH3-like 

domain, which has the potential to bind proline-rich sequences that can mediate protein-

protein interaction. The homolog of NdhS in chloroplasts is CRR31. CRR31, along with 

two other subunits, NdhT (CRRJ) and NdhU (CRRL), in Arabidopsis thaliana was 

suggested to form a catalytic domain that connects NDH-1 with Fd (Yamamoto et al., 

2011). No homolog of NdhT or NdhU is present in the cyanobacterial genome 

(Yamamoto et al., 2011; Ma and Ogawa, 2015). The discovery of NdhS in Synechocystis 

and the co-elution of Fd and Fd-NADP+ oxidoreductase with NDH-1 from T. elongatus 

recently raised the question on whether Fd can donate electrons to the bacterial NDH-1 as 

well (Ma and Ogawa, 2015).  

OPS 

Subunit 

Localization Function 

in 

assembly 

Function 

in cyclic 

electron 

flow 

Function 

in CO2 

uptake 

Function in 

respiration 

NdhL MA - + + + 

NdhM MA n.a. n.a. n.a. n.a. 

NdhN MA n.a. n.a. n.a. n.a. 

NdhO HA + + + - 

NdhP MA + + - + 

NdhQ MA + + - + 

NdhS HA  - + - - 

Table 1.1. 

Comparison of localization and function of the OPS NDH-1 subunits in cyanobacteria. 

Table was reproduced from Ma and Ogawa (2015).  

+, affected; -, unaffected; n.a., not analyzed; MA, membrane arm; HA, hydrophilic arm. 
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The localization of NdhS is controversial. Ma and Ogawa (2015) have placed this subunit 

far from the membrane-embedded domain and close to the missing NAD(P)H-binding 

unit (Figure 1.5). On the other hand, Battchikova et al. (2011b) have localized this 

subunit near the thylakoid membrane, along with other OPS subunits.  

It should be noted, as Ma and Ogawa (2015) have pointed out, that even though the OPS 

subunits are common in the bacterial and the chloroplast NDH-1 complexes, there may 

be some functional differences between the two. For example, the absence of NdhL in 

cyanobacteria showed no effect in the stability and assembly of the complex, but in 

higher plant ndhL knockout resulted in a complete collapse of the hydrophilic arm of 

NDH-1 (Shimizu et al., 2008). Similarly, the deletion of ndhO stabilized the 

cyanobacterial complex and increased NDH-1 mediated cyclic electron transport (CET) 

around PS I, while in plants, ndhO deletion resulted in complete impairment of the NDH-

Figure 1.5 

Hypothetical model of cyanobacterial NDH-1 with suggested locations of the newly 

discovered subunits. The unknown NADH-accepting subunit is shown with a question 

mark. Figure adapted from Ma and Ogawa (2015). 
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CET function and in a collapse of the hydrophilic arm (Rumeau et al., 2005). Based on 

these differences, Ma and Ogawa (2015) suggested a “divergent enzymatic activity” of 

cyanobacterial and chloroplast NDH-1.  

1.5.2 NDH-1 Subcomplexes 

NDH-1 in Synechocystis is known to exist as several subcomplexes with varying 

functions. Proteomic studies first revealed the presence of such functionally distinct 

complexes (Herranen et al., 2004). NDH-1M, comprising hydrophilic (NdhH-K, NdhM-

O and NdhS) and hydrophobic (NdhA-C, NdhE, NdhG and NdhL) subunits, seems to be 

a common unit in all variants of cyanobacterial NDH-1 complexes (Battchikova et al., 

2011a, 2005). Specific NdhD/NdhF membrane modules combine with this unit to form 

diverse subcomplexes (Figure 1.6), such as NDH-1L with NdhD1/NdhF1, NDH-1L’ with 

NdhD2/NdhF1 and NDH-1MS with NdhD3/NdhF3. The NDH-1L (Large) subcomplex 

contains subunits NdhA–K, homologous to the subunits of the Complex I from E. coli, 

and OPS subunits NdhL–NdhO and NdhS (but not NdhP/NdhQ) (Ma and Ogawa, 2015; 

Zhao et al., 2014b; Battchikova et al., 2005 and 2011b; Zhang et al., 2005; Prommeenate 

et al., 2004; Herranen et al., 2004).  

NDH-1S is small subcomplex that comprises of only NdhD3, NdhF3, CupA and 

CupS proteins (Ogawa and Mi, 2007). CupA and CupS are both novel proteins of 

cyanobacterial NDH-1, participating in CO2 uptake (Korste et al., 2015; Folea et al., 

2008). Another variation of the complex, NDH-1MS’, comprises the NdhD4/NdhF4 and 

CupB proteins (Xu et al., 2008; Shibata et al., 2002).  

http://onlinelibrary.wiley.com.ezproxy1.lib.asu.edu/doi/10.1111/j.1399-3054.2007.00929.x/full#b27
http://www.sciencedirect.com.ezproxy1.lib.asu.edu/science/article/pii/S0005272810007255?np=y#bb0115
http://www.sciencedirect.com.ezproxy1.lib.asu.edu/science/article/pii/S0005272810007255?np=y#bb0060
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It is important to note that no protein subunit homologous to the E. coli NuoE, F and G 

subunits, essential for their NADPH/NADH dehydrogenase activity, has been found in 

any of the NDH-1 subcomplexes detected so far. 

 

 

 

 

Figure 1.6 

1. Variations of cyanobacterial NDH-1 complexes. The hypothetical domain responsible for 

the dehydrogenase activity is indicated by a question mark.  Figure from Battchikova and 

Aro (2007). 
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1.5.3 Function of NDH-1 in Cyanobacteria 

NDH-1 in cyanobacteria is known to be involved in a wide variety of cellular functions 

such as respiration, CO2 uptake and cyclic electron transport around PS I. 

a) Respiration: 

The role of NDH-1 in cyanobacterial respiration is debated. The ndhB-insertion mutant 

strain of Synechocystis (M55) as well as ndhD1/ndhD2 mutants showed lower rates of 

respiration and inability to grow under photoheterotrophic conditions (Ohkawa et al., 

2000). On the other hand, ndhD3/ndhD4 and ndhD5/ndhD6 mutants showed respiration 

rates similar to the wild-type strain. However, according to Cooley and Vermaas (2001), 

in Synechocystis another enzyme, succinate dehydrogenase, and not NDH-1 plays a 

major role in electron donation to the plastoquinone (PQ) pool during respiration in 

darkness. They argued that the decreased respiratory electron flow in the ndhB mutant 

(and possibly in the other ndh mutants as well), may be a consequence of low succinate 

levels in this strain rather than the primary lack of NDH-1 activity. 

b) Cyclic Electron Flow:  

Aside from the linear flow of electrons from PS II to cytochrome b6f, PS I and ferredoxin, 

in cyanobacteria and plant photosynthetic systems cyclic electron flow around PS I is 

observed that helps to increase the ATP/NADPH ratio without any net NADPH 

production. The NdhB-deficient mutant M55 was shown to be severely impaired in cyclic 

electron flow around PS I. Similar to respiration, NdhD1 or NdhD2, but not NdhD3 or 

NdhD4 seem to be involved in the cyclic electron flow (Ohkawa et al., 2000).  
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c) CO2 uptake:  

Cyanobacteria have a well-established system of concentrating inorganic carbon (Ci) in 

order to cope with the low affinity of their central enzyme ribulose 1,5-bisphosphate 

carboxylase/oxygenase or Rubisco (reviewed in detail by Price et al., 2008). Similar to 

the previous functions, some, but not all, NDH-1 subunits participate in CO2 uptake most 

likely by creating an alkaline pocket where CO2 can be converted by carbonic anhydrase  

to HOC3
- (Kaplan and Reinhold, 1999). Reverse genetics studies showed that the operons 

containing ndhF3-ndhD3-cupA1-chpY, and ndhF4-ndhD4-cupB1-chpX are required for 

CO2 uptake (Ohkawa et al., 2000; Shibata et al., 2001). On the other hand, ndhD1/ndhD2 

mutants showed normal growth under photoautotrophic conditions indicating that the 

products of these two genes did not participate in CO2 uptake (Ohkawa et al., 2000).  

d) Function in Driving the H2 flux:  

Sustained photo-H2 production for at least 10 min was observed in the ndhB mutant of 

Synechocystis (M55) upon illumination (Cournac et al., 2004). As mentioned earlier, H2 

production in cyanobacteria upon illumination is transient, lasting only for ~30 s, and is 

immediately followed by H2 oxidation. In M55 the light-induced H2 uptake was 

negligible (Cournac et al., 2004). Also, the NAD(P)H pool in M55 was almost entirely in 

reduced state (Cooley and Vermaas, 2001), allowing several minutes of sustained H2 

photoevolution. The role of NDH-1 in cyanobacterial H2 metabolism is discussed in more 

detail in the next few chapters.  
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1.5.4 NDH-1 and Hydrogenase 

Sequence homologies between subunits of hydrogenase and NDH-1 have been observed 

for a long time (Böhm et al., 1990; Sauter et al., 1992; Friedrich, 1998; Appel and Schulz, 

1996). NuoB and NuoD subunits of E. coli NDH-1 show similarities with the small and 

large subunits, respectively, of NiFe-hydrogenases. The similarities between NuoD and 

the large subunit are mostly centered near the NiFe active site region. However, the 

counterparts of the cysteine ligands of the nickel in the large subunit are missing in NuoD 

(Vignais et al., 2001). The NiFe binding site in the large subunit has been hypothesized to 

have converted to the quinone binding site in NuoD (Dupuis et al., 2001). 

Striking similarities have been observed between HoxE, HoxF and HoxU subunits of 

cyanobacterial NiFe-hydrogenases and NuoE, NuoF and the N-terminal region of NuoG 

subunits, respectively, of E. coli NDH-1. This is particularly interesting because 

homologs of these E. coli subunits are otherwise missing in cyanobacteria. Based on the 

sequence similarities, a common use of the diaphorase subunits between NDH-1 and 

hydrogenase was suggested in cyanobacteria (Appel and Schulz, 1996; Schmitz and 

Bothe, 1996). Later it was argued that several cyanobacterial strains lack a bidirectional 

hydrogenase (Tamagnini et al., 2002). Even in the strains with a bidirectional 

hydrogenase, the deletion of the hox genes did not show any noticeable difference in their 

growth rates (Appel et al., 2000), and the rates of O2 uptake due to respiration in 

Synechocystis strains with and without the diaphorase subunits were found to be nearly 

identical (Howitt and Vermaas, 1999).  
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However, it should be noted that the cyanobacterial NDH-1 complex is quite unique in 

subunit composition as well as function. Succinate dehydrogenase, and not NDH-1, is 

now known as the main electron supplier to the PQ pool for the reduction of O2 in 

Synechocystis during respiration (Cooley and Vermaas, 2001). Therefore, a significant 

change in the respiratory O2 uptake rate could not be expected in the diaphorase-deletion 

strain anyway. As for the lack of hydrogenase in various cyanobacterial strains, NDH-1 

in cyanobacteria is known to exist as several subcomplexes in the cell with different 

subunit compositions and functions and not all of these subcomplexes participate in 

respiratory electron flow. In fact one of such subcomplexes has been suggested to accept 

electrons from Fd with the mysterious NdhS subunit (Ma and Ogawa, 2015). The 

possibility of another of these subcomplexes accepting electrons from the diaphorase 

subunits under optimal conditions can not be ruled out either.  
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CHAPTER 2 

H2 OXIDATION AND PRODUCTION PROFILE IN SYNECHOCYSTIS SP. PCC 

6803 AND HETEROLOGOUS EXPRESSION OF THE HYDROGENASE FROM 

LYNGBYA AESTUARII BL J IN THE SYNECHOCYSTIS ΔHOX STRAIN 

Summary 

The unicellular model cyanobacterium Synechocystis contains a NiFe-bidirectional 

hydrogenase capable of producing or oxidizing H2 in anaerobic conditions both in 

darkness and in the presence of light. In darkness, the direction of H2 flux depends upon 

the initial concentration of H2 in the culture medium and continues to either produce or 

oxidize H2 until a particular concentration of H2 is reached. This particular H2 

concentration depends upon the amount of biomass used during measurements. In the 

presence of light, the enzyme shows only transient H2 production and rapid H2 oxidation 

at a rate that is an order of magnitude higher than the rate of H2 oxidation observed in 

darkness and that continues until H2 is exhausted. Aside from Synechocystis, Lyngbya 

aestuarii BL J, a marine microbial strain showing high H2-producing capacity in 

darkness, also shows similar light-induced rapid H2 uptake. The hydrogenase from 

Lyngbya BL J, when expressed heterologously in Synechocystis Δhox strain, shows H2 

evolution, but only in the presence of reduced methyl viologen.  
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2.1 Introduction 

The cyanobacterial bidirectional hydrogenase has been most studied in the unicellular 

fresh-water strain Synechocystis sp. PCC 6803. The absence of a nitrogenase or an uptake 

hydrogenase makes the bidirectional enzyme the only one in the cell that can catalyze H2 

production or oxidation (Appel et al., 2000; Kaneko et al., 1996). H2 production in 

Synechocystis is controlled by two main factors: the absence of O2 and the availability of 

electron donors such as NADH, NADPH or, as recently suggested, reduced Fd/ Flv 

(Cournac et al., 2004; Gutekunst et al., 2014).  

The maximal H2 production rates in Synechocystis and in many other strains that can be 

easily grown in bioreactors are quite low, typically ranging between 0.02 µmoles H2 (mg 

chl a)-1 h-1 (Baebprasert et al., 2010) and 0.3 µmoles H2 (mg chl a)-1 h-1 (Kothari et al., 

2014), and the production period is often transient and dominated by H2 uptake, although 

few data are available on H2 uptake (Carrieri et al., 2008; Antal and Lindblad, 2005). 

Some improvements in H2 production were achieved by optimizing the growth conditions 

(e.g., saturating nickel concentration (Carrieri et al., 2008), sulfur deprivation (Burrows et 

al., 2008), optimum pH maintenance (Burrows et al., 2009), and inhibition of respiration 

and nitrate assimilation in the cells (Gutthann et al., 2007)). However, a comprehensive 

understanding of all the important factors controlling the H2 flux is still lacking.  

H2 photoevolution, which is in theory a preferred method of H2 production since it does 

not use a carbohydrate intermediate, does not last for more than 30 s in Synechocystis. 

Reports of H2 photoevolution from Synechocystis wild-type strain show a transient H2 

production upon illumination, which quickly reverts its direction to H2 uptake until the 
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hydrogenase enzyme is inactivated by photosynthetically produced O2 (Cournac et al., 

2002 and 2004; Gutthann et al., 2007). While no satisfactory explanation is available for 

this change of direction of the H2 flux, the uptake activity in the light has not been 

researched in detail either. Recently a marine cyanobacterial strain, Lyngbya aestuarii BL 

J (hereafter, Lyngbya BL J), was shown to produce H2 for a prolonged period of time 

(more than 24 h) in darkness, either naturally or in the presence of external reductants 

(Kothari et al., 2012 and 2014). This filamentous, non-heterocystous strain showed a 20-

fold faster H2 production rate and a 45-fold higher maximum concentration of produced 

H2 by fermentation, compared to Synechocystis. Thus, the hydrogenase enzyme in this 

strain offers a great potential for fermentative H2 production. The presence or absence of 

H2 production in the light was not reported in those studies, but the maximal H2-

producing capacity of the NiFe hydrogenase (measured in terms of H2 production with 

excess reductants) in Lyngbya BL J was 16-fold higher compared to the maximum H2 

producing capacity observed in Synechocystis under identical conditions. 

With the aim of gaining a better understanding of the hydrogenase activity in 

Synechocystis under physiological conditions, this chapter presents a complete 

hydrogenase-activity profile for in the light and in darkness. Also, Lyngbya BL J was 

assayed for H2 production and uptake activity in the presence of light. Finally, a 

Synechocystis hox-deletion mutant strain was created and the NiFe hydrogenase from 

Lyngbya BL J was heterologously expressed in this strain.   
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2.2 Materials and Methods 

2.2.1 Cyanobacterial Growth Conditions  

Synechocystis cultures were grown in standard BG-11 media (Rippka et al., 1979) at 30 

°C, in 200-ml culture flasks, illuminated at a light intensity between 50 and 55 µmol 

photons m-2 s-1 and bubbled with air. For the Lyngbya BL J strain, IMR medium, set at 

3% (w/v) salinity (named as such by Eppley et al. (1968)) was used. Lyngbya cultures 

were grown in 200-ml culture flasks, at 30 to 35 µmol photons m-2 s-1 light intensity, 

without additional bubbling.   

2.2.2 Assay for H2 Production and Uptake 

a) Electrode Setup:  

A modified Clark-type electrode (H2 microsensor, Unisense, Aarhus, Denmark) was used 

to monitor the partial pressures of H2 in sealed culture media. The electrode setup 

included a microrespiration chamber (Unisense) of 4.5 ml inner volume. During 

measurements, the chamber was completely filled with cultures and tightly sealed with a 

lid, which allowed the insertion of the electrode through a thin capillary. The 

concentration of H2 in the culture medium was recorded with the electrode, which was 

connected to a picoammeter (PA2000, Unisense) that polarized the electrode at a voltage 

of +1000 mV (the Clark-type electrode traditionally measures O2 at a polarizing voltage 

of -800 to -1000 mV) and measured the current signal in pA. The picoammeter was 

connected to an A/D converter, which converted the output analog signal to a digital one, 

which could be read on a computer with the Sensor Trace Basic software (Unisense). 
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Calibration of the electrode was done as recommended by the company, using a two-

point calibration in water bubbled with either air (considered to be 0% of H2) or with 5% 

H2 in N2.  

b) Culture Setup: 

For measurements of H2 production or uptake, Synechocystis cultures were grown to mid- 

to late-exponential phase (OD730 between 0.8 and 1, determined by a Shimadzu UV-1800 

UV-VIS dual beam spectrophotometer). Cells were harvested by centrifugation and then 

resuspended in fresh BG-11 medium to a final cell density of 11 µg chl a ml-1. Lyngbya 

BL J, on the other hand, grew as clumps. These clumps of biomass were collected after 3-

4 days of growth and resuspended in IMR medium (3% (w/v) salinity) for hydrogenase 

activity assays. The total chl a content of the cell suspensions (usually between 2 and 3 

µg chl a ml)-1) was measured after the completion of the measurement assays. To 

measure the chlorophyll content, the absorbance of methanol extract of a culture was 

measured at 665 nm with a spectrophotometer and the chlorophyll concentration was 

calculated using an extinction coefficient at that wavelength of 82.0 L g-1 cm-1 (Porra et 

al., 1989). 

The resuspended cultures were loaded into the microrespiration chamber, as described 

above. Before sealing the chamber, a mixture of glucose (10 mM), glucose oxidase (40 U 

ml-1) and catalase (50 U ml-1) was added to make the culture completely anaerobic 

(Appel et al., 2000). When monitoring H2 uptake, 2 ml of BG-11 medium saturated with 

5% H2 was added to the mixture. During measurements, cultures were either kept in 
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darkness, or were illuminated at an intensity between 800 and 1000 µmol photons m-2 s-1 

using a Fiber Optic Illuminator (Fiber-Lite, model 190). 

While measuring H2 production with excess external reductants, measurements were 

carried out in darkness and after the addition of 5 mM methyl viologen and 10 mM 

sodium dithionite to the cell suspension (Appel et al., 2000). Sodium dithionite removes 

O2 from the medium and reduces methyl viologen, which in turn supplies electrons to the 

bidirectional hydrogenase for H2 production. 

2.2.3 Construction of the hox-Deletion Mutant  

Primers used for the construction of the hox-deletion mutant (Δhox) are listed in Table 

2.1.  PCR was used to amplify portions of the Synechocystis genome containing the 

flanking regions of the hox operon on both ends (1679265-1678582 and 1672239-

1671416, Figure 2.1) and also a 1024 bp DNA fragment containing the chloramphenicol 

resistance cassette, from an existing plasmid vector, Vector-V (constructed in our 

laboratory by Dr. Hongliang Wang). The sequence locations in the Synechocystis genome 

are stated according to CyanoBase. 

To delete the hox operon, a pUC19-based plasmid (pΔhox) was constructed with the 684-

bp upstream and 824-bp downstream flanking regions of the Synechocystis hox operon, 

with the chloramphenicol-resistance cassette in between (Figure 2.1), fused together by 

the extension PCR method (Pogulis et al., 1996). A wild-type Synechocystis culture was 

transformed with this pΔhox following the procedure as described by Vermaas et al. 

(1987). 
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Primer Sequence Description 

Δhox1-F aattGAGCTCATCACTTCCAAACAACACCCAGAA

C 

Region  

upstream of 

hoxE 

Δhox-1-R AGGAGCAATACAGCAGATAAAAG 

Δhox-3-F agacgaaagggcctcgtgatacCATTCGCAATCATGATGTG

CAAG 

Region 

downstream 

of hoxH 

Δhox-3-R aattGCATGCCACTCCATCGTAGTACTCCTGC 

Δhox-2-F cttttatctgctgtattgctcctTATTTAACGACCCTGCCCTGA

AC 

Chloram-

phenicol 

resistance 

cassette 

Δhox-2-R GTATCACGAGGCCCTTTCGTCTTC 

Δhox-Seg-F GCTACCGTTTGGCTCGCTGGTTG DNA 

segment 

inside the hox 

operon 

Δhox-Seg-R GCGATTGGTTTCAATTTTCCCCA 

Table 2.1.  

Primers used in the construction of the Δhox mutant strain. In the primer sequences, 

letters in bold indicate restriction sites used for digestion and the lower case letters 

indicate 5’ nucleotides that were added. 
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Transformants were subcultured in the presence of increasing concentrations of 

chloramphenicol to aid in segregation of the wild-type and mutant genome copies. 

Segregation analysis was performed by PCR using primers Δhox-Seg-F and Δhox-Seg-R, 

which amplifies a DNA fragment inside the hox operon. The resultant fully segregated 

mutant colonies were obtained on BG-11 plates with 100 µg ml-1 chloramphenicol.  

 

2.2.4 Construction of the Synechocystis Δhox6803/hoxBL J Mutant Strain 

Primers used for the construction of the Δhox6803/hoxBL J strain are listed in Table 2.2. The 

hox operon (including the five hox genes, hcp (located in between hoxF and hoxU), two 

ORFs downstream of hoxH, and hoxW) was amplified from the Lyngbya BL J strain by 

PCR, using the LongAmp Taq DNA polymerase (purchased from NEB) with primers BL 

J-hox-F and BL J-hox-R (Table 2.2), with unique restriction sites (BamHI and NotI) 

 

Figure 2.1  

Schematic representation of the hox-deletion construct and the positions of the primers 

used.  
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engineered into them. The nucleotide sequence of the hox operon of Lyngbya BL J was 

obtained from NCBI (Ref Seq number NZ_AUZM00000000.1). The PCR amplicon was  

 subsequently cloned into a cloning vector, Vector-1 (constructed by Dr. Hongliang 

Wang). This vector had a pUC19 backbone, into which a Ni-inducible promoter  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2676566 and 2676567 (numbered according to CyanoBase) to direct homologous 

recombination. The amplified hox operon was cloned into Vector-I, in between a BamHI 

site at the 3’ end of the promoter sequence and a NotI site at the 5’ of the terminator 

sequence (Figure 2.2). The Synechocystis Δhox mutant strain was transformed with the 

resulting plasmid phoxBL J, following the procedure as previously reported (Vermaas et 

al., 1987). Transformants were grown on BG-11 plates with kanamycin and the  

Primer Sequence 

BL J-hox-F aattGGATCCATGCAATCTTCGACAAAAAAAC 

BL J-hox-R aattGCGGCCGCGCCGTTCGAGAGTTTAGACTGTG 

BL J-seg-F CGCTTGGCATTCAAACAAAGATAAG 

BL J-seg-R CATTAGTTAACCCATGGCCATTATC 

BL J-ins-F GGATCGCAGTGTGCTTGAAAGTG 

BL J-ins-R CGACAAGGAATACATTTTCCAC 

Table 2.2. 

Primers used for the construction of the Δhox6803/hoxBL J strain. In the primer 

sequences, letters in bold indicate the restriction sites used for digestion and the 

lower case letters indicate 5’ nucleotides that were added. 
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concentration of kanamycin was increased gradually with each subculture, starting from 

10 µg ml-1. Segregation and the presence of the BL J hox-insert were checked 

periodically by PCR using primers BL J-seg-F (location in CyanoBase: 2676211-

2676235) and BL J-seg-R (location in CyanoBase: 2676799-2676755), and BL J-ins-F 

and BL J-ins-R, respectively, with genomic DNA isolated from the wild-type and the 

transformed strains.  

 

 

 

Figure 2.2 

Plasmid phoxBL J containing the hox operon from Lyngbya BL J under the expression 

of the Ni-inducible promoter (PnrsBACD). The triangles labelled BL J-seg-F and BL J-

seg-R represent the positions of the primers used to check the segregation, and the 

triangles labelled BL J-ins-F and BL J-ins-R represent the positions of the primers 

used to check the presence of the insert in Synechocystis transformants. 
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2.2.5 RT-PCR  

RNA was extracted from cultures of Synechocystis Δhox and Δhox/hoxBL J mutant strains 

using Trizol reagent (Life Technologies) following the manufacturer’s protocol. DNAse 

treatment was done by Turbo DNA-freeTM DNAse (Life Technologies), followed by 

cDNA synthesis using the iScript Select cDNA Synthesis Kit (Bio-Rad), following the 

manufacturer’s protocols in both cases. For RT-PCR, iTaq SYBR Green Supermix with 

ROX (Bio-Rad) was used with primers listed in Table 2.3 and reactions were performed 

using the manufacturer’s protocol. An ABI Prism 7900HT Sequence Detector System 

was used for measuring fluorescence of SYBR green/double-stranded DNA and analysis 

was done using the 2-ΔCt method (Schmittgen and Livak, 2008). 
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Table 2.3.  

Primer sequences used for RT-PCR of cDNA from the Synechocystis Δhox and 

Δhox/hoxBL J mutant strains.  

 

Primer Sequence Amplicon Size in bp 

BL J-hoxE-F CATGAAACGCAGCCAATATC 105 

BL J-hoxE-R CGGGCGATGTACATTAACAC 

BL J-hoxF-F CAAGAACGTCAATCCCTCAA 128 

BL J-hoxF-R TTATCTTGGAGTCCGGCTTT 

BL J-hoxU-F CTCGCTGTGTTCGAGTCTGT 105 

BL J-hoxU-R CAAGGTTGATTTAACCCGGTA 

BL J-hoxY-F ATTTGGTTAGCGGGTTGTTC 102 

BL J-hoxY-R CACCGGACTGAAGACAACAT 

BL J-hoxH-F GTTAGGATATCCGCAGGGAA 111 

BL J-hoxH-R CGATCGCGAAATTCTTGTAA 

atpA-F TCCCCGGCCCCTGGAATTATT 100 

atpA-R GCTGACCCCGACCAATGGGA 



43                                                                                                            

2.3 Results 

2.3.1 Hydrogenase Activity in Synechocystis sp. PCC 6803 

a) H2 Production in Darkness 

When Synechocystis cultures (11 µg chl a ml-1) were incubated under anaerobic 

conditions in darkness without added H2, H2 production (also known as fermentative H2 

production) started within ~two minutes of incubation (Figure 2.3 (A)) and a maximum 

net production rate of 2.31 + 0.50 µmoles (mg chl a)-1 h-1 (average of three independent 

measurements) was observed between 3 and 6 minutes of incubation. The maximum rate 

of H2 evolution observed in this study was similar to the rates previously reported in the 

literature, typically ranging between 0.3 and 2.7 µmoles of H2 (mg chl a)-1 h-1 (Kothari et 

al., 2014; Cournac et al., 2004; Gutthann et al., 2007; Schütz et al., 2004). The production 

continued for 5-10 minutes, after which the rate began to decrease, eventually reaching a 

 

Figure 2.3 

H2 production in Synechocystis cultures incubated in darkness and under anaerobic 

conditions. Anaerobiosis was induced by the addition of glucose, glucose oxidase and 

catalase at time 0. Cell suspensions of 11 µg chl a ml-1 (A) and 22 µg chl a ml-1 (B) were 

used. 
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final concentration of 4 + 1 µM. After this point, no further net increase in the 

concentration of H2 was observed. 

To check whether this final concentration depends on the amount of biomass used, the 

same measurements were taken using cell suspension 22 µg chl a ml-1 (Figure 2.3 (B)). 

The final H2 concentration increased to a value of 11 + 2.9 µM (average from three 

independent measurements).  

b) H2 Uptake in Darkness 

To monitor H2 uptake in darkness and under anaerobic conditions, cultures were 

incubated in the presence of 18-20 µM H2. H2 uptake began within approximately 10 

minutes of incubation and continued until the concentration of H2 in the chamber 

decreased to 4.1 + 0.8 µM (average of three independent measurements) (Figure 2.4). 

Figure 2.4 

H2 uptake in Synechocystis culture incubated in darkness and in anaerobic conditions. 

The initial steep rise of the curve represents the addition of H2-saturated BG-11. A cell 

suspension of 11 µg chl a ml-1 was used. 
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The uptake continued for 60-90 min (depending upon the initial concentration of H2), 

with a maximum rate of 2.25 + 0.84 µmol H2 (mg chl a)-1 h-1.  

c)  H2 Production in Light: 

Light-induced H2 production was measured during a dark-to-light transition with a cell 

suspension of Synechocystis adapted to anaerobic conditions. After the addition of 

glucose, glucose oxidase and catalase, the cell suspension was left in darkness in the 

microrespiration chamber for the fermentative H2 production to stabilize. When the H2 

concentration stabilized, cells were illuminated with light at an intensity of 800-1000 

µmol photons m-2 s-1. An initial burst of H2 production was observed that lasted for 20-30 

s (Figure 2.5). This burst was followed by H2 uptake of approximately the same initial 

rate that consumed all the H2 produced earlier. Similar results were obtained when light 

was switched on at any point during the fermentative H2 production. The rate of H2 

photoevolution found in this study was 4.14 + 0.15 µmol (mg chl a)-1 h-1, which was 

slightly higher than the rate reported previously by Cournac et al. (2004).   

d) H2 Uptake In Light 

To examine the light-induced H2 uptake in more detail, cell suspension was initially 

incubated in the measurement chamber with 18 µM H2 along with glucose, glucose 

oxidase and catalase. The chamber was left in darkness for a few minutes for the glucose 

and glucose oxidase to consume all the O2 present in the medium, before switching on the 

light. After an initial H2 photoevolution, H2 uptake started at a rapid rate and continued 

until all the H2 in the medium was consumed (Figure 2.6). The maximum uptake rate in  
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Figure 2.5  

H2 photoevolution and subsequent consumption in Synechocystis. A cell suspension of 

11 µg chl a ml-1 was initially incubated in darkness and under anaerobic conditions at 

time 0. After the completion of the fermentative H2 production, light (at an intensity of 

800-1000 µmol photons m-2 s-1) was switched on (as indicated by an arrow) and H2 

photoevolution (circled) was observed transiently.  

 

 

Figure 2.6  

Measurement of the light-induced H2 uptake in Synechocystis culture (11 µg chl a 

ml-1) with 18 µM H2 present initially. The initial steep rise of the curve represents 

the addition of H2-saturated BG-11. After a few minutes of incubation in darkness, 

the culture was illuminated with light at an intensity of 800-1000 µmol photons m-2 

s-1 (indicated by an arrow). 
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light (20.14 + 2.53 µmoles of (mg chl a)-1 h-1, average of three independent 

measurements), achieved within 30 to 60 s of the beginning of H2 consumption, was an 

order of magnitude higher than the maximum rate observed in darkness.  The maximum 

rates of H2 uptake and production observed in the presence or absence of light are listed 

in Table 2.4. 

 

 

 

2.3.2 Construction and Characterization of Hydrogenase-Deletion Mutant Strain  

A hydrogenase-deletion mutant strain of Synechocystis (Δhox) was created by deleting 

the hox operon from the Synechocystis genome and replacing it with a chloramphenicol 

resistance cassette. Growth of the wild-type and the Δhox mutant strains, maintained 

photoautotrophically under 50-55 µmol photons m-2 s-1 light, was monitored (Figure 2.7). 

No significant difference was found in the growth characteristics of the two cultures. 

Hydrogenase activity Maximum rate in µmoles of H2 (mg chl a)-1 h-1 

H2 production in dark 2.31 + 0.50 

H2 production in light 4.14 + 0.15 

H2 uptake in dark 2.25 + 0.84 

H2 uptake in light 20.14 + 2.53 

Table 2.4.  

Maximum H2 production and uptake rates (average of three independent 

experiments) from wild-type Synechocystis cultures. Measurements were taken 

using 4.6 ml cell suspension containing 50 µg of chl a.  

 

 

Table 2.4.  

Maximum H2 production and uptake rates (average of three independent 

experiments) from wild-type Synechocystis cultures. Measurements were taken 

using 4.6 ml cell suspension containing 50 µg of chl a.  
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The hox-encoded bidirectional hydrogenase is the only known enzyme in Synechocystis 

that is capable of H2 production or oxidation. To confirm this, cell suspension of the Δhox 

strain was incubated in darkness with glucose, glucose oxidase and catalase. When no 

fermentative H2 production was observed even after 10 minutes of incubation, the cell 

suspension was illuminated with light (at an intensity of 800-1000 µmol photons m-2 s-1) 

(Figure 2.8 (A)). No H2 photoevolution was observed either. To measure H2 uptake the 

same experiment was repeated, with added H2 (18-20 µM) at the beginning. The culture 

was kept in darkness for 15 minutes before switching on the light. No uptake of H2 was 

observed in either case (Figure 2.8 (B)). 

Figure 2.7  

Growth curves of wild type (blue) and Δhox (orange) cultures. Experiments were 

carried out in triplicate. Cultures were grown photoautotrophically (bubbled with air), 

at a light intensity of 50-55 µmol photons m-2 s-1. 
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2.3.3 Light Dependent Hydrogenase Activity in Lyngbya aestuarii BL J  

Fermentative H2 production in the Lyngbya BL J strain was reported recently by Kothari 

et al. (2014). While the rate of H2 production observed in the strain in darkness was 

considerably high, H2 photoevolution was not reported. Therefore, in the current study 

the light-induced hydrogenase activity of Lyngbya BL J was measured. Cell suspensions 

of Lyngbya BL J were incubated in darkness and under anaerobic conditions 

(anaerobiosis was induced by the addition of glucose, glucose oxidase and catalase) and 

fermentative H2 production was recorded (Figure 2.9). The overall rate of fermentative 

H2 production found in this study (5.5 + 2.9 µmol (mg chl a)-1 h-1) was two-fold higher 

than the rate reported previously (2.8 + 1.7 µmol (mg chl a)-1 h-1) by Kothari et al. 

Figure 2.8 

H2 production (A) and uptake (B) in the Δhox mutant strain. Cell suspensions of 

11 µg chl a ml-1 were incubated in darkness in presence of glucose, glucose 

oxidase and catalase without or with H2. The initial steep rise of the curve in graph 

B represents the addition of H2-saturated BG-11. Positions where the light was 

switched on are indicated by arrows.  
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(2014), even though the differences are not necessarily significant because of the 

uncertainty in the measurements. To observe H2 photoevolution during the transition 

from darkness to the light, cultures were illuminated with light (800-1000 µmol photons 

m-2 s-1) at various points during fermentative H2 production.  

Graphs A, B and C in Figure 2.9 show three representative recordings where the light 

was switched on after approximately 12 minutes, 40 minutes and 6 hours, respectively, of 

the beginning of fermentative H2 production. In cases of the measurements shown in 

graphs A and B, the cultures were illuminated before the fermentative H2 production 

plateaued at a particular H2 concentration. After illumination H2 production continued for 

1 minute and 30 seconds, respectively, before the production stopped and reverted to H2 

consumption, which continued until the H2 concentration in the medium became zero. In 

case of the measurement shown in graph C, the culture was left in darkness and in 

anaerobic conditions for ~6 h and was illuminated when no further fermentative H2 

production was observed. The culture did not show any H2 photoevolution and H2 

consumption started in approximately 1 min.  

The overall rate of light-induced H2 consumption was 17.01 + 4.74 µmol (mg chl a)-1 h-1 

(average rate from four different sets of measurements), which was comparable to the 

rate observed in Synechocystis.  
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Figure 2.9 

Light-induced H2 production and uptake measurements in Lyngbya BL J. Cell 

suspensions were first incubated in darkness and under anaerobic conditions (time 0) 

and fermentative H2 production was recorded. Cultures were illuminated with light at 

an intensity of 800-1000 µmol photons m-2 s-1 (indicated by arrows) after ~12 min 

(A), ~40 min (B) and ~6 h (C) of incubations. Cell suspensions of 0.5, 1.7 and 2 µg 

chl a ml-1 were used for measurements shown in graphs A, B and C, respectively. 
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2.3.4 Heterologous Expression of the Hydrogenase from Lyngbya BL J in   

Synechocystis 

Heterologous expression of the hydrogenase from Lyngbya BL J in Synechocystis was 

achieved by first cloning the hox operon of Lyngbya BL J into an E. coli plasmid vector 

under the expression of promoter PnrsBACD, a Ni-inducible promoter in Synechocystis 

(López-Maury et al., 2002), and subsequently transforming the Synechocystis Δhox strain 

with the resulting plasmid (phoxBL J). Attempts to express those genes under the 

expression of the constitutive psbA2 promoter were also made but remained unsuccessful.  

Because of the large size of the insert, the correctness of the resulting plasmid construct 

was checked by sequencing. A missense mutation was found in the hoxF coding 

sequence (C>T (CTT>TTT) 628 bases from the 5’ end of hoxF). The hoxF sequences 

from several cyanobacteria were compared and the nucleotide was found not to be strictly 

conserved; indeed, in at least one strain a TTT is present at that position (Table 2.5). A 

silent mutation (A>G (GTA>GTG)) was also found at position 1398. Both of these  

mutations were considered to be minor and insertion of the hox operon from Lyngbya BL 

J using this plasmid was continued.    

The Synechocystis Δhox mutant strain was transformed with the plasmid phoxBL J, 

following the procedure as described by Vermaas et al. (1987). Until now, the 

transformed colonies are not fully segregated (Figure 2.10). Therefore, partially 

segregated strains (Δhox6803/hoxBL J) were used for all subsequent analysis. 
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Table 2.5. 

Nucleotide sequence corresponding to the codon CTT (Leu210) in Lyngbya BL J in other 

cyanobacterial strains  

Strain Sequence 

Lyngbya majuscula CCAP 1446 CTT (Leu) 

Arthrospira platensis FACHB 341 TTA (Leu) 

Arthrospira sp. PCC 8005 TTA (Leu) 

Halothece sp. PCC 7418 TTT (Phe) 

Synechocystis sp. PCC 6803 CTT (Leu) 

Cyanothece sp. PCC 7822 CCA (Pro) 
 

  

2.3.5 RT-PCR Analysis  

Ni-induced expression of the hox genes in the Δhox6803/hoxBL J strain grown in the 

presence of 0.5 and 6.0 µM NiSO4 was compared with the expression of these genes in 

the Δhox mutant strains. Transcripts of all five hox genes were detected in the 

Δhox6803/hoxBL J strain when grown in the presence of 6 µM NiSO4, but transcript levels 

were very low when cultures were grown in the presence of 0.5 µM NiSO4 (hoxH 

expression was undetectable) (Figure 2.11). As expected, no transcript of any of the five 

hox genes was detected in the Δhox mutant strain. 
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Figure 2.11 

Histogram representation of the relative transcript abundances (measured by RT-PCR) 

of the hox genes in the Δhox6803/hoxBL J strain grown in the presence of 0.5 µM NiSO4 

(light-green) and 6 µM NiSO4 (dark green) and the Δhox6803 strain (white). Relative 

transcript abundances of the hox genes were compared to that of atpA (set to 100) by 

using the 2Δct method.  

Figure 2.10 

DNA gel electrophoresis with genomic DNA from Synechocystis wild-type and 

Δhox6803/hoxBL J strain showing incomplete segregation of the hoxBL J in the mutant.  

Lane L, DNA ladder; Lane A and C, Product of PCR with primer BL J-ins-F+ BL J-

ins-R; Lane B and D, Product of PCR with primer BL J-seg-F+ BL J-seg-R. 

 

Figure 2.10 

DNA gel electrophoresis with genomic DNA from Synechocystis wild-type and 

Δhox6803/hoxBL J strain showing incomplete segregation of the hoxBL J in the mutant.  

Lane L, DNA ladder; Lane A and C, Product of PCR with primer BL J-ins-F+ BL J-

ins-R; Lane B and D, Product of PCR with primer BL J-seg-F+ BL J-seg-R 
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2.3.6 Hydrogenase Activity in Synechocystis Δhox6803/hoxBL J Strain 

No H2 production or uptake could be detected using the Synechocystis Δhox6803/hoxBL J 

strain when the cell suspension was incubated in darkness and under anaerobic conditions 

in the presence of glucose, glucose oxidase and catalase.  

To check whether the hydrogenase enzyme in the mutant strain is catalytically active, a 

second measurement assay was used, where H2 evolution was measured in the presence 

of methyl viologen, reduced by sodium dithionite.  H2 concentration was recorded over 

time using the wild-type, Δhox and Δhox6803/hoxBL J strains. No H2 evolution was detected 

in the Δhox mutant. The maximum rate of H2 production found in the Δhox6803/hoxBL J 

strain (19.6 + 9.0 µmol (mg chl a)-1 h-1, average rate of three independent measurements) 

was 2-fold lower than the maximum rate found in the wild-type Synechocystis (36.0 + 1.2 

µmol (mg chl a)-1 h-1, average rate of three independent measurements), but was ~4-fold 

lower than the maximum rate observed in the wild type Lyngbya BL J strain (156 + 77 

µmol (mg chl a)-1 h-1 (Kothari et al., 2012). The maximum concentration of H2 produced 

by the Δhox6803/hoxBL J strain (31 + 10 µM) was lower than the concentration observed 

both in the wild-type Synechocystis strain (79 + 16.4 µM) and in wild-type Lyngbya BL J 

strain (487 + 12 µM). A representative graph of the H2 evolution from Synechocystis 

wild-type, Δhox and Δhox6803/hoxBL J strain is shown in Figure 2.12. 
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2.4 Discussion 

In the present chapter it is shown that in Synechocystis the hydrogenase activity under 

physiological conditions differs significantly between periods of light and darkness. The 

lack of any H2 uptake and production in the Δhox mutant strain confirmed that the 

activities observed in the wild-type strain were indeed mediated by the bidirectional 

hydrogenase enzyme. In darkness, the duration of net fermentative H2 production in 

Synechocystis was short (~15 min). As a result, the net yield of H2 from Synechocystis 

was significantly lower compared to Lyngbya BL J (13-fold when grown in continuous 

light and 45-fold when grown in a 12-h light/12-h darkness cycle), where the H2 

concentration in the cell suspension increased steadily for about 6 hours before the 

production rate began to decrease. It was found that doubling the concentration of 

Synechocystis used during the measurements resulted in a 3 + 1 fold increase in net H2 

Figure 2.12 

Representative recordings of H2 production in Synechocystis wild-type (blue), 

Δhox6803/hoxBL J (green) and Δhox (gray) strains in the presence of reduced methyl 

viologen. Cell suspensions (11 µg chl a ml-1) were incubated with methyl viologen 

and sodium dithionite in darkness.  
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production, but even then the production phase lasted only for 10-15 minutes. One 

possible reason for why H2 production plateaued after this time is an inhibition of H+ 

reduction by the produced H2 itself. H2 inhibition of H+ reduction was reported 

previously by McIntosh et al. (2011) in the purified enzyme from Synechocystis. 

However, it would not explain why increasing the Synechocystis cell concentration 

during the measurement would result in an increase in net H2 production. Also, the 

possibility of a loss of enzyme activity after ~15 min was ruled out, since the enzyme 

continued to function for at least 30 minutes in the uptake direction. It was also 

considered that a system loss of H2 due to a leakage or the reaction at the hydrogen 

electrode could result in zero net H2 production. However, upon incubation of the Δhox 

strain with 15 µM H2 (Figure 2.8 (B)) or upon using BG-11 medium with H2 but without 

any cells present, no significant decrease in the concentration of H2 was observed over a 

period of 15 min. This indicates that neither a leakage nor the reaction at the electrode 

could result in the plateau. A fourth possible explanation is that H2 production and uptake 

use different pathways or redox partners for electron transfer to/from the enzyme and at 

the plateau concentration the two reactions are continuing at the same rate. Finally, 

measurements in Figure 2.3 showed that the net reaction during H2 uptake stopped at 

approximately the same final H2 concentration (~4 µM) as H2 production when cell 

suspensions of the same cell concentration were used. Therefore, a fifth possible scenario 

is that at this concentration a steady state involving the reactants and the products was 

achieved, where neither net H2 formation, nor net NAD(P) (or Fd/Flv) reduction took 

place.  When the concentration of Synechocystis cells was increased, the collective H2 

production by the cell suspension was increased too as H2 is permeable. 
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The light-induced hydrogenase activity was analyzed in Synechocystis as well as in 

Lyngbya BL J. In Synechocystis, illuminating the culture with saturating light intensity 

resulted in a transient H2 production that was absent in Lyngbya BL J. Both strains 

showed a rapid H2 uptake within 30 seconds to 1 minute of illumination, indicating that 

hydrogenases in both strains favor H2 uptake over production under physiological 

conditions in the light. Also, H2 uptake in the light continued until all the remaining H2 in 

the medium was consumed, as opposed to H2 uptake in darkness, where the uptake 

stopped when a steady-state H2 concentration was achieved before all of the H2 in the 

medium was consumed. The maximum rate of light-induced H2 uptake observed in 

Synechocystis was about 10-fold higher than the rate observed in darkness. 

Previously, Cournac et al. (2004) reported a rapid drop in the CO2 concentration in 

Synechocystis culture medium upon illumination (without any lag period between the 

onset of light and the rapid drop in CO2 concentration) that was explained by the light-

induced CO2-concentrating mechanisms followed by CO2 fixation by the Calvin cycle. In 

a proton-deuterium exchange reaction, in the presence of DCMU, net H2 uptake was 

comparable to the net dissolved carbon that was fixed (Cournac et al., 2004). Therefore, it 

was suggested that H2 was the main source of electrons for CO2 fixation in such 

conditions. However, under regular conditions the observed rate of photosynthetic CO2 

assimilation in Synechocystis is 126 + 10 µmol CO2 (mg chl a) -1 h-1 (Tamoi et al., 1998), 

which should correspond to a NADPH consumption rate of 252 µmol (mg chl a) -1 h-1 by 

CO2 assimilation. On the other hand, upon illumination with saturating light intensity, the 

photosynthetic electron transport chain can produce NADPH at a rate between 664 and 

700 µmol (mg chl a) -1 h-1, corresponding to the reported maximum rate of photosynthetic 
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O2 evolution between 332 and 350 µmol of O2 (mg chl a) -1 h-1 (Keilty et al., 2001; Tichy 

and Vermaas, 1999). Thus, the production of NADPH by photosynthesis should suffice 

(in fact exceed) the requirement of NADPH for the Calvin cycle. This is also reflected in 

the observed intracellular NADPH:NADP+ ratio of 3:1 in Synechocystis measured in the 

presence of light (Cooley and Vermaas, 2001). Therefore, an increased NADPH demand 

for light-induced CO2 fixation cannot account for the rapid consumption of H2 in light.  

Therefore, currently available interpretations do not adequately explain the data. Instead, 

as will be argued in Chapter 3 an alternate interpretation is that during H2 oxidation 

electrons are feeding a different substrate than where electrons originated from upon H2 

production. In this interpretation, electrons from H2 are donated to the mobile electron 

carrier PQ in the thylakoid membrane that transfers electrons between PS II, cytochrome 

b6f and ultimately to PS I (via the lumen electron carrier, plastocyanin) in the presence of 

light (Figure 2.13). Examples of electron transfer from hydrogenase to the quinone pool 

of the respiratory electron transport chain are found in many uptake hydrogenases 

(Vignais et al., 2001; Vignais and Billoud, 2007). The redox potential of PQ is 

sufficiently high (midpoint potential +80 mV, at pH 7) for a continuous acceptance of 

electrons from H2 (midpoint potential -0.414, at pH 7) as long as electrons can be 

released at the acceptor side of PS I. Evidence supporting this speculation will be 

provided in Chapter 3.  

The hydrogenase enzyme from Lyngbya BL J was expressed in a Synechocystis Δhox 

strain in an attempt to improve the fermentative H2 production rate in Synechocystis. 

Results from the RT-PCR showed that the hox genes from Lyngbya BL J are being 
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expressed in the Synechocystis Δhox6803/hoxBL J strain. The mutant strain also showed H2 

evolution in the presence of reduced methyl viologen, indicating that the heterologously 

expressed enzyme is catalytically active.  

However, the lack of hydrogenase activity under physiological conditions suggested that 

the enzyme may not be fully assembled in Synechocystis. This may have been caused by 

the absence of the maturase proteins from Lyngbya BL J. Synechocystis contains at least 

seven different maturase proteins for the assembly of the NiFe active site and the [Fe-S] 

clusters in its native hydrogenase, but the Lyngbya-hydrogenase may require additional 

maturation proteins that are not present in Synechocystis. Also, the Lyngbya-hydrogenase 

may use a different protein or cofactor as the electron donor that is absent in 

Synechocystis. Either way, further study is required to optimize the non-native enzyme in 

Synechocystis for H2 production without the supply of external electron donors.  

Figure 2.13 

Proposed electron transfer from hydrogenase to the PQ pool in the thylakoid 

membrane (dotted arrow). The regular photosynthetic electron transfer 

pathway is shown too (solid arrow). Hox, hydrogenase; Q, plastoquinone; PC, 

plastocyanin; FNR, ferredoxin:NADPH reductase.  

 



61                                                                                                            

CHAPTER 3 

 THE ELECTRON TRANSFER PATHWAY FROM/TO THE NIFE-

HYDROGENASE IN SYNECHOCYSTIS SP. PCC 6803 

Summary 

When a Synechocystis culture is illuminated with a saturating intensity of light, a rapid H2 

uptake is observed that lasts as long as there is any H2 present in the culture medium. 

This light-induced rapid H2 uptake was not observed in a photosystem I deletion mutant 

strain ΔpsaAB or in wild-type Synechocystis that has been treated with the cytochrome b6f 

inhibitor DBMIB. On the other hand, a photosystem II deletion mutant strain ΔpsbB or a 

terminal oxidase deletion mutant strain Δox shows the same light-induced H2 uptake 

profile as the wild-type strain. This indicates a direct electron channeling from H2 to 

cytochrome b6f and PS I in the thylakoid membrane in the presence of light. Also, a cell-

free extract prepared from wild-type Synechocystis showed spontaneous H2 oxidation 

without the addition of any external oxidant, while H2 production from the same extract 

required an external supply of NADH or NADPH.  

3.1 Introduction 

Hydrogenase catalyzes the reduction of protons to form H2, as well as the oxidation of H2 

to form protons. During H2 formation protons are delivered directly from the cytoplasm 

of the cell to the active site of the enzyme (Fontecilla-Camps et al., 2007). On the other 

hand, the delivery of electrons to the active site occurs from one or more redox partner(s) 

of the enzyme, via several [Fe-S] clusters located within its various subunits. The 

cyanobacterial bidirectional hydrogenases have long been recognized as NAD(P)-
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reducing hydrogenases, based on their sequence homologies to other NAD(P)-binding 

proteins found in various organisms (Vignais et al., 2001). When the derived amino acid 

sequences of hydrogenase in Synechocystis were analyzed (Appel and Schulz, 1996), a 

Gly-rich NAD(P)+ binding site was identified between amino acid residues 167 and 206 

in the HoxF subunit. Indeed, NADH and NADPH were found to act as electron donors 

inducing H2 production in cell-free extracts of Synechocystis (Cournac et al., 2004; 

Gutekunst et al., 2014; Aubert-Jousset et al., 2011) and S. elongatus (Schmitz et al., 

1995) and in purified proteins from Synechocystis (Schmitz et al., 2002) and Gloeocapsa 

alpicola CALU 743 (Serebryakova and Sheremetieva, 2006).  

Recently, electron transfer from reduced Fd and Flv to hydrogenase was suggested in 

Synechocystis based on the facts that a) H2 production could be observed when reduced 

Fd or Flv was added to cell-free extracts, b) a merodiploid (partially segregated) 

ferredoxin-NADP reductase (FNR) mutant with reduced expression of FNR produced 

more photohydrogen (photo H2) than the wild type, and c) a reduced rate of fermentative 

H2 production was observed in a pyruvate:flavodoxin/ferredoxin oxidoreductase mutant 

(Gutekunst et al., 2014). Ferredoxin-dependent hydrogenase activity is observed with the 

H2-producing cytoplasmic FeFe-hydrogenases in algae and certain clostridial species, and 

with the membrane-bound, energy converting NiFe-hydrogenases in some archaea and 

extremophiles (Peters et al., 2015; Meyer, 2007; Hedderich, 2004). In the latter type of 

hydrogenase, ferredoxin acts as both electron donor and acceptor of the enzyme. 

Thermodynamically it is more favorable to transfer electrons from reduced Fd/Flv 

(midpoint potential -440 mV at pH 7) to protons (midpoint potential -414 mV at pH 7) 

than to transfer them from NAD(P)H (midpoint potential -320 mV at pH 7) to protons. 
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On the other hand, during H2 oxidation, electron transfer from H2 to NAD(P)+ is more 

favorable than from H2 to Fd/Flv. In Synechocystis or any other cyanobacteria, no 

evidence of electron transfer to Fd during H2 oxidation is available so far.  

In Synechocystis, hydrogenase catalyzes net H2 oxidation in the presence of light 

(Chapter 2, Section 2.3.1). After a period of darkness, when a cell suspension of 

Synechocystis is illuminated with a saturating intensity of light, a rapid H2 uptake 

completely masks the photo H2 production. The same phenomenon is observed in 

Lyngbya BL J (Chapter 2, Section 2.3.2) as well as in Oscillatoria chalybea (Abdel-

Basset and Bader, 1998). The identity of the electron sink during this light-induced H2 

oxidation has not been confirmed yet. CO2 assimilation, which stays inactive during 

periods of darkness or even during the early phases (few seconds) of illumination after a 

period of prolonged darkness but eventually becomes active upon illumination, has been 

tentatively suggested to use H2 as the source of electrons (Cournac et al., 2004; 

Greenbaum et al., 1995). However, the uptake of H2 was independent of CO2 

assimilation: the light-induced H2 uptake profile was found to be unchanged upon 

flushing the thylakoids with pure N2 (i.e. no CO2 present, therefore no CO2 assimilation 

possible) vs. 99% N2-1% CO2 (CO2 assimilation possible) during the measurements 

(Abdel-Basset and Bader, 1998).  

Aside from CO2 assimilation, the major process that is activated upon illumination is the 

photosynthetic electron transport chain (p-ETC). Several members of the p-ETC are 

located in the thylakoid membrane, which also hosts several components of the 

respiratory electron transport chain (r-ETC) in Synechocystis (Vermaas, 2001). Members 
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of the p-ETC, located in the membrane include PS II, the cytochrome b6f complex and PS 

I (Mullineaux, 2014). Upon illumination, PS II absorbs photons and generates electrons 

from water. The mobile electron carrier plastoquinone (PQ) in the membrane carries 

these electrons to the cytochrome b6f complex and subsequently to either of the two 

soluble electron carriers, plastocyanin or cytochrome c6, both located on the luminal side 

of the thylakoid membrane (Tikhonov, 2014). These soluble electron carriers then 

transfer their electrons to PS I, which upon illumination reduces ferredoxin and 

eventually reduces NADP+ to NADPH. NADPH is used as a substrate in various cellular 

processes, including CO2 assimilation (thermodynamically favorable reaction) and the 

reductive assimilation of nitrate via FNR and ferredoxin (thermodynamically unfavorable 

reaction) (Yang et al., 2002). The mobile electron carrier PQ also participates in the r-

ETC, whose other components include succinate dehydrogenase (SDH), NDH-1, 

cytochrome b6f, plastocyanin/cytochrome c6 and terminal oxidases (Lea-Smith et al., 

2013).  

In this chapter, the effects of various members of the photosynthetic and the respiratory 

electron transport chains in the thylakoid membrane on H2 uptake and production 

activities in Synechocystis were examined. Our results show that the light-induced rapid 

H2 uptake is caused by specific components of the p-ETC acting as electron sinks. On the 

other hand, during H2 production in the presence of light, electrons do not follow the 

same pathway in reverse direction and rather depend on the traditional redox partners of 

the hydrogenase, NADPH or NADH.  
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3.2 Materials and Methods 

3.2.1 Chemicals 

NAD, NADP, NADH, NADPH, DBMIB (2,5-dibromo-3-methyl-6-

isopropylbenzoquinone) and ferredoxin from spinach were purchased from Sigma-

Aldrich.  

3.2.2 Culture Growth Conditions  

Cultures of the Synechocystis wild-type and Δhox mutant strains were grown in standard 

BG-11 medium (supplemented with 5 mM glucose when indicated), as described in 

Section 2.2.1. Cultures were either bubbled with air or shaken on a New Brunswick 

Scientific Innova 2300 Platform Shaker (New Brunswick Scientific Co., NJ), when 

glucose was added to the cultures. A psaAB-deletion mutant strain (ΔpsaAB strain, Shen 

and Vermaas, 1994), a psbB-deletion mutant strain (ΔpsbB strain, Eaton-Rye and 

Vermaas, 1991) and a terminal oxidases-deletion mutant strain (ctaDIEI-/ctaDIIEII-

/cydAB-, or Δox strain, Howitt and Vermaas, 1998) were obtained from our laboratory 

and grown in BG-11 supplemented with 5 mM glucose. The ΔpsaAB strain was grown 

under dim light (light intensity between 3 and 5 µmol photons m-2 s-1). For all other 

cultures, light intensities between 40 and 55 µmol photons m-2 s-1 were used.  
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3.2.3 O2 Evolution Measurements 

A traditional Clark-type electrode (Hansatech, Cambridge, UK) was used to determine 

the O2 concentrations in Synechocystis cell suspensions, maintained at 30 °C. Cultures 

were grown to a final OD730 between 0.8 and 1.0, harvested and resuspended in fresh BG-

11 medium (final concentration 11 µg chl a ml-1) supplemented with 10 mM sodium 

bicarbonate (NaHCO3). When indicated, DBMIB (between 0 and 5 µM) was added to the 

cell suspension 10 minutes before the experiment. To observe photosynthetic O2 

evolution, cell suspensions were illuminated with white light at an intensity between 800 

and 1000 µmol photons m-2 s-1.  

3.2.4 Measurements of Hydrogenase Activity 

The wild-type and mutant Synechocystis cultures were harvested in their mid- to late-

exponential growth phase by centrifugation and were resuspended in fresh BG-11 

medium supplemented with 5 mM glucose. When indicated, DBMIB (between 0 and 5 

µM) was added to the cell suspension about 10 minutes before the experiments. H2 

concentrations were measured using a modified Clark-type electrode, following the same 

procedure, as described in Section 2.2.2. 

3.2.5 Preparation of Cell-Free Extract 

The wild-type and Δhox mutant strains were harvested in their mid-exponential growth 

phase by centrifugation and resuspended in 50 mM morpholinoethanesulfonic acid 

(MES)-KOH buffer (pH 6) supplemented with 2% bovine serum albumin (Cournac et al., 

2004). Cells were broken with glass beads (diameter 0.1 mm) in a mini Bead Beater 
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(BioSpec Products, Bartlesville, OK) by shaking 10 times for 30 seconds each, with two 

minutes of intermittent cooling on ice. The bead-beating tubes were filled with the cell 

suspension/beads to prevent foaming during bead-beating. Cell debris was removed by 

centrifugation at 1300 x g for 10 min, at 4°C.  

3.3 Results 

3.3.1 O2 Evolution and H2 Uptake in the Presence of DBMIB 

The cytochrome b6f complex is a key component of the ETC in the thylakoid membrane 

of Synechocystis, participating in both photosynthetic and respiratory electron transport 

activities. DBMIB, a quinone analog, can bind to the cytochrome b6f complex in plants 

and in cyanobacteria and prevent electron transport through this complex (Yamashita et 

al., 2007). To find the optimum concentration of DBMIB that is sufficient to block the 

electron transport via cytochrome b6f, O2 evolution rates were measured in Synechocystis 

cell suspensions (11 µg chl a ml-1) treated with 0, 1, 2.5 or 5 µM DBMIB, and 

illuminated with light at an intensity between 800 and 1000 µmol photons m-2 s-1. The 

rate of O2 evolution decreased with increasing DBMIB concentrations (Figure 3.1 (A)), 

and O2 evolution was essentially absent when the DBMIB concentration was 5 µM. 

Therefore, it was concluded that 5 µM was a saturating concentration of DBMIB, 

sufficient to block electron transfer through the cytochrome b6f complex.  

Next, to test the role of the cytochrome b6f complex in H2 uptake activity, H2 uptake was 

measured in Synechocystis cultures treated with partially and completely saturating 

concentrations of DBMIB. Cell suspensions (11 µg chl a ml-1) were treated with 0, 1, 2.5 
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or 5 µM DBMIB, and incubated with H2, glucose, glucose oxidase and catalase. 

The cultures were first kept in darkness for approximately 10 minutes, during which time 

H2 uptake continued at a rate of 2.5 + 1.0 µmol (mg chl a)-1 h-1
 (average of total 10 

measurements, in two independent sets). The average uptake rate in darkness did not 

depend on cytochrome b6f-mediated electron transfer. 

Figure 3.1 

O2 evolution (A) and H2 uptake (B) rates in Synechocystis cell suspensions (11 µg chl 

a ml-1) in the presence of DBMIB. The numbers after the hyphens represent DBMIB 

concentrations in µM. DBMIB was added 10 minutes prior to a measurement. The 

average rates of O2 evolution and H2 uptake were calculated from three and two 

independent sets of measurements, respectively. Representative trace curves of H2 

uptake in cell suspensions treated with 0 µM DBMIB (C) and 5 µM DBMIB (D) are 

also shown. The arrows indicate the positions where the light (800-1000 µmol 

photons m-2 s-1) was switched on.  
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Upon illumination, a higher rate of H2 consumption (18 + 1.39 µmol (mg chl a)-1 h-1) was 

observed in cultures incubated without DBMIB, indicating a light-induced H2 uptake 

(Figure 3.1 (c)). The uptake rate in light decreased with increasing DBMIB 

concentrations. At 5 µM DBMIB, the difference in the rates of H2 uptake before and after 

the cultures were illuminated (1.44 + 0.08 µmol (mg chl a)-1 h-1 and 2.08 + 0.11 µmol 

(mg chl a)-1 h-1, respectively) was small (Figure 3.1 (D)), indicating that the light-induced 

H2 uptake depended heavily on the electron transfer through the cytochrome b6f complex. 

The rates of H2 uptake in light with increasing DBMIB concentrations are shown in 

Figure 3.1 (B). 

3.3.2 H2 Uptake in the ΔpsbB and the ΔpsaAB Mutant Strains  

 

Since light-induced H2 uptake was inhibited with the inhibition of electron transfer 

through the cytochrome b6f complex, the uptake activity was further investigated in the 

Synechocystis ΔpsbB and ΔpsaAB mutant strains. While consumption of H2 in darkness 

was found in both mutant strains, the increased rate of H2 consumption upon illumination 

that was observed earlier in wild-type Synechocystis was found to be present in the 

ΔpsbB mutant strain (Figure 3.2 (A)) but not in the ΔpsaAB mutant strain (Figure 3.2 

(B)). The average rates of H2 uptake in the ΔpsbB mutant strain in darkness (2.2 + 0.9 

µmol (mg chl a)-1 h-1) and in the light (19.4 + 4.5 µmol (mg chl a)-1 h-1) were comparable 

to the corresponding average rates observed earlier in the wild-type strain (Chapter 2, 

Table 2.4). This indicates that H2 uptake, either in the light or in darkness, was 

independent of the activity of PS II. However, the average rate of H2 uptake in darkness 

in the ΔpsaAB mutant strain was 6.7 + 2.1 µmol (mg chl a)-1 h-1 and remained the same 
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when the light was switched on. The higher rate of H2 uptake in darkness on a per-

chlorophyll basis observed in the ΔpsaAB mutant compared to the wild-type or the ΔpsbB 

strain can be attributed to the fact that the ΔpsaAB mutant lost over 80% of its 

chlorophyll on a per-cell basis as compared to the wild-type strain while the chlorophyll 

content in the ΔpsbB strain was comparable to that of the wild-type (Shen et al., 1993; 

Shen and Vermaas, 1994; Vavilin et al., 2007). Based on the absence of any light-

dependent increase in the H2 uptake rate in the ΔpsaAB mutant strain, it was concluded 

that like the cytochrome b6f complex, the activity of PS I was also required for the light-

induced H2 uptake.   

 

Figure 3.2 

 

H2 uptake profiles in the ΔpsbB (A) and the ΔpsaAB (B) mutant strains. Cell suspensions 

of 11 µg chl a ml-1 and 4 µg chl a ml-1 were used for the ΔpsbB and the ΔpsaAB mutant 

strains, respectively. Cultures were first incubated in darkness with H2, glucose, glucose 

oxidase and catalase. The arrows indicate the positions where light (800-1000 µmol 

photons m-2 s-1) was switched on. 
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3.3.3 Effects of the Terminal Oxidases on Light-Independent H2 Uptake 

A small amount of light-independent H2 uptake was always present in Synechocystis 

cultures. Since the r-ETC in the thylakoid membrane shares some of its components with 

the p-ETC, it is plausible that in the absence of light H2 oxidation uses the terminal 

oxidases as electron sinks via the r-ETC. To test this hypothesis, H2 uptake activity was 

measured in the Synechocystis Δox mutant strain lacking the three terminal oxidases and 

therefore lacking any respiratory electron transport activity in darkness.  

Because O2 acts as the terminal electron acceptor of respiratory electron flow in 

Synechocystis, the true effect of respiratory electron transport on H2 oxidation can only be 

seen if there is a small amount of O2 present in the medium. The concentration of O2 

should be small enough to maintain the respiratory activity, but not high enough to 

inactivate the hydrogenase enzyme. Therefore, H2 uptake from the Δox mutant was 

measured both in the presence and in the absence of glucose, glucose oxidase and 

catalase; glucose and glucose oxidase act as an O2-scavenger, thus removing O2 

completely from the culture medium. In the latter case, the cell suspension (11 µg chl a 

ml-1) was first bubbled with N2 in darkness for 15 minutes for a complete removal of O2 

from the medium, followed by the addition of 2 ml of BG-11, saturated with 5% H2/95% 

N2. Finally, 50 µl of air-bubbled BG-11 was added to the cell suspension before sealing 

the measurement chamber (total capacity 4.5 ml) to keep the net theoretical O2 

concentration at approximately 2.5 µM. No significant difference in the H2 uptake rates 

was found between the wild-type and the Δox mutant strain (with or without the addition 

of glucose, glucose oxidase and catalase). The average H2 uptake rate in darkness 
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observed in the Δox strain (2.3 + 0.2 µmol H2 (mg chl a)-1 h-1, average of total five 

measurements, three with and two without the addition of glucose, glucose oxidase and 

catalase) was comparable to the average uptake rate observed before in the wild-type 

strain. Therefore, it was concluded that the terminal oxidases did not act as the sole 

electron acceptors during the light-independent H2 uptake. A representative graph of H2 

uptake in darkness in the Δox strain (without glucose, glucose oxidase and catalase) is 

shown in Figure 3.3.  

3.3.4 Hydrogenase Activity in Cell-Free Extracts 

Apart from the in vivo measurements, in vitro hydrogenase activities were measured in 

cell-free extracts from the wild-type and Δhox strains of Synechocystis. Cell-free extracts 

were prepared as described by Cournac et al. (2004), except that instead of using a 

French Press, cells were broken by bead beating.  

Figure 3.3 

H2 uptake activity in the Δox mutant strain recorded in darkness. Prior to the 

measurement, the cell suspension (11 µg of chl a ml-1) was gassed with N2 for 20 min, 

and then sealed in the measurement chamber with glucose, glucose oxidase and catalase, 

2 ml of BG-11 saturated with 5% H2/95% N2 and 50 µl of air-saturated BG-11. The 

chamber was then sealed quickly to prevent diffusion of O2 from air and H2 uptake was 

recorded in darkness. 
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a) H2 Uptake Activity:  

H2 uptake was observed in cell-free extracts from wild-type cultures when incubated in 

darkness with H2, even before the addition of the oxidized NAD (1.5 mM), NADP (1.5 

mM) or Fd (1.5 µM), with an initial uptake rate of 0.41 + 0.12 µmol (mg chl a)-1 h-1 

(average of two independent measurements, with two repetitions each).  Figure 3.4 (A) 

shows a trace curve of a H2 uptake measurement using extract from the wild-type 

Figure 3.4 

H2 uptake in cell-free extracts (90 µg chl a ml-1) from the Synechocystis wild-type (A-

D) and Δhox mutant strain (E). Addition of NAD (1.5 mM), NADP (1.5 mM) and Fd 

(1.5 µM) to the extracts are indicated. All extracts were gassed with N2 for 15 min 

prior to measurements and then sealed in the measurement chamber with glucose, 

glucose oxidase and catalase, and BG-11 bubbled with 5% H2/95% N2. The 

discontinuities in the trace curves were caused by the removal of the electrode from 

the measurement chamber in order to add oxidants into the medium.  
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strain (90 µg chl a ml-1), where uptake activity was measured for approximately 10 min. 

Interestingly, no significant change in the uptake rates was observed with the addition of 

any of the three oxidizing compounds (Figure 3.4 (B-D)). No H2 uptake was observed 

using extracts from the Δhox mutant strain, with or without the addition of the oxidizing 

agents (Figure 3.4 (E)).  

b) H2 Production Activity: 

To induce H2 production, cell-free extracts were incubated in darkness with glucose, 

glucose oxidase and catalase. No H2 production was observed unless NADH, NADPH or 

reduced Fd was added to the extract. Addition of 1.5 mM NADH or NADPH induced H2 

evolution (Figure 3.5), although NADH-induced H2 evolution appeared to be more 

reproducible. The average H2 evolution rate was 0.08 + 0.02 µmol (mg chl a)-1 h-1 

(average was calculated from three separate measurements) when NADH was added as 

the reducing agent. On the other hand, when NADPH was used as the reducing agent, H2 

evolution could be detected in only two out of four measurements, with an average rate of 

0.23 + 0.10 µmol (mg chl a)-1 h-1 (average was calculated from the two successful runs). 

No H2 evolution was observed in cell-free extracts from the Δhox mutant strain upon the 

addition of NADH or NADPH. 
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Figure 3.5 

Trace curves of H2 production in cell-free extracts from Synechocystis wild type upon 

the addition of NADH (A) and NADPH (C), 1.5 mM each, and extracts from Δhox 

mutant strain upon the addition of the same concentrations of NADH (B) and NADPH 

(D). The addition of NADH and NADPH are indicated by the arrows. The 

discontinuities in the trace curves were caused by the removal of the electrode from 

the measurement chamber, in order to add NAD/NADPH into the medium. 75 µg chl 

a ml-1 was used for each of the measurements.  

 

 

 

 

Figure 3.5 

Trace curves of H2 production in cell-free extracts from Synechocystis wild-type upon 

the addition of NADH (A) and NADPH (C), 1.5 mM each, and extracts from Δhox 

mutant strain upon the addition of the same concentrations of NADH (B) and NADPH 

(D). The addition of NADH and NADPH are indicated by the arrows. The 

discontinuities in the trace curves were caused by the removal of the electrode from 

the measurement chamber, in order to add NAD/NADPH into the medium. 75 µg chl 

a ml-1 was used for each of the measurements.  
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An assay for H2 production using reduced Fd as the electron donor was performed as 

described by Gutekunst et al. (2014). Fd from spinach was reduced by 2 mM sodium 

dithionite prior to the experiment. Extracts were first incubated with sodium dithionite (2 

mM) alone that showed H2 production at a slow but steady rate of 0.25 + 0.20 µmol (mg 

chl a)-1 h-1 (average calculated from four independent measurements). Dithionite-reduced 

Fd was then added to the reaction mix. No significant increase in the H2 production rate 

was observed when 1.5 µM Fd was used (Figure 3.6 (A)). However, increasing the Fd 

concentration to 3 µM showed a clear difference in the production rate before and after 

the addition of Fd (Figure 3.6 (B)). Two independent sets of measurements were taken, 

Figure 3.6 

Trace curves of H2 evolution in cell-free extracts from the Synechocystis wild-type 

strain upon the addition of Fd, reduced by 2 mM sodium dithionite. The homogenate 

was used at a final concentration of 100 µg chl a ml-1. H2 production was first 

measured with 2 mM dithionite alone, before adding reduced Fd at concentrations of 

1.5 µM (A) and 3 µM (B). The discontinuities in the trace curves were caused by the 

removal of the electrode from the measurement chamber, in order to add dithionite or 

reduced Fd into the medium.  
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with two repetitions each time. The average rate of H2 production after the addition of 3 

µM Fd was 0.6 + 0.2 µmol (mg chl a)-1 h-1. 

Next, the same experimental procedure was repeated with extract (70 µg chl a ml-1) 

prepared from the Δhox mutant strain. Surprisingly, upon the addition of dithionite or 

dithionite-reduced Fd, H2 production was observed at a comparable rate relative to the 

wild type (Figure 3.7 (A)). This phenomenon was observed in four out of six 

measurements (three independent measurements were taken, with two repetitions each 

time). The average rates of H2 production before and after the addition of reduced Fd (3 

µM) in the Δhox-extract were 0.35 + 0.20 µmol (mg chl a)-1 h-1 and 0.49 + 0.13 µmol 

(mg chl a)-1 h-1, respectively. It should be noted that such production of H2 with dithionite 

or dithionite-reduced Fd in the Δhox mutant was observed only when cell-free extracts 

were used. When intact cells of the same strain were assayed for H2 production with 2 

Figure 3.7 

Hydrogenase activity in cell-free extracts and intact cells of the Δhox mutant strain. 

(A) H2 production in cell free extracts (70 µg chl a ml-1) upon the addition of Fd, 

reduced by 2 mM sodium dithionite. (B) Hydrogenase activity in intact cells (11 µg 

chl a ml-1) of the Δhox mutant strain when incubated with 2 mM sodium dithionite. 
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mM sodium dithionite, no H2 production was observed (Figure 3.7 (B)). Based on these 

results, the previous claim of dithionite-reduced ferredoxin acting as an electron donor to 

the hydrogenase enzyme in vitro could not be confirmed.  

3.4 Discussion 

H2 metabolism in Synechocystis is dominated by H2 oxidation in the presence of light. In 

the past, the physiological function of the cyanobacterial bidirectional enzyme was 

suggested to be the removal of excess reducing power (NAD(P)H or reduced ferredoxin) 

in the form of H2 (Appel et al., 2000; Carrieri et al., 2011). However, in reality when a 

dark-adapted culture is illuminated with a saturating intensity of light, H2 production is 

observed only for 30-45 seconds before the enzyme reverses its direction to H2 uptake, 

and consumes all the H2 present in the medium. No suitable explanation of this light-

induced, rapid H2 uptake was available so far. As indicated in Figure 3.8, in this study a 

novel electron transfer pathway in Synechocystis during H2 oxidation is proposed, based 

on the occurrence of this rapid H2 uptake in the presence or absence of the activities of 

various components of the electron transport chain located in its thylakoid membrane. It 

was shown that the light-induced H2 uptake is dependent on the electron transport 

activities through the cytochrome b6f complex and PS I, but is independent of the activity 

of PS II. In a previous study by Cournac et al. (2004) the absence of the light-induced H2 

uptake was observed in the NDH-1 mutant M55 as well. The redox status of the quinone 

pool under saturating light intensity in these mutant strains vary from being mostly  
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Figure 3.8 

Electron transfer pathway through different components of the electron transport chain in the 

thylakoid membrane of Synechocystis and H2 uptake in the presence and absence of light in the 

absence of one of the electron transport components. (A) Photosynthetic electron transport from 

PS II to cytochrome b6f and PS I via plastoquinone (Q) and plastocyanin (PC). The proposed 

electron transfer pathway from hydrogenase to cytochrome b6f and PS I is shown with red 

arrows. A tentative electron transfer from hydrogenase to the plastoquinone pool via NDH-1 is 

indicated by a dotted arrow. (B) Comparison of the average H2 uptake rates in the presence and 

absence of light in the wild type and the mutants used in this study.  
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oxidized in the wild-type, PS II-deficient (ΔpsbB) and NDH-1-deficient (M55) strains to 

50% oxidized in the PS I-deficient (ΔpsaAB) strain (Cooley and Vermaas, 2001). 

Therefore, the redox status of the quinone pool is in the thylakoid membrane is not the 

driving force behind the light-induced H2 uptake. The fact that the uptake is observed in 

the absence of photosystem II indicates that it is not dependent on the net result of 

photosynthesis either, but rather on the channeling of electrons from H2 through the 

cytochrome b6f complex and PS I.  

Since the hydrogenase enzyme in Synechocystis does not contain a transmembrane 

protein subunit, the transfer of electrons from H2 to the cytochrome b6f complex is likely 

to be mediated by another protein complex. Electron transfer from H2 to the electron 

transport chain in the membrane is observed in the membrane-bound respiratory uptake 

hydrogenases in proteobacteria, some hyperthermophilic bacteria such as Aquifex 

aeolicus and in hydrogenase 2 in E. coli (Vignais et al., 2001; Peters et al., 2015; 

Fontecilla-Camps et al., 2007), where H2 oxidation is coupled with the reduction of the 

quinone pool. The reduction of the quinone pool through these enzymes is often mediated 

via a transmembrane b-type cytochrome, which acts not only as a redox carrier from H2 

to the quinone pool, but also as an anchor, connecting the hydrogenase enzyme to the 

membrane. The gene encoding this b-type cytochrome is usually located in the structural 

hydrogenase operon. The genome of Synechocystis does not contain any homolog of this 

b-type cytochrome, but the genes encoding HoxE, HoxF and HoxU subunits of 

hydrogenase have significant sequence similarities with the genes encoding NuoE, NuoF 

and NuoG subunits in E. coli NDH-1, part of which is embedded in its cytoplasmic 

membrane. The physiological function of NDH-1 in many bacteria and mitochondria 
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(Battchikova et al., 2011a) is to transfer electrons to the quinone pool during respiration 

and to pump protons across the membrane. Synechocystis also contains NDH-1, which is 

known to be partially embedded in its thylakoid membrane and possibly in the 

cytoplasmic membrane as well (Pieulle et al., 2000; Howitt et al., 1993; Zhang et al., 

2004; Ogawa, 1992) and does not contain any homolog of the three subunits, NuoE, 

NuoF and NuoG that otherwise form the NAD(P)H-binding module in other bacteria. 

Therefore, NDH-1 is a likely candidate in Synechocystis to mediate the electron transfer 

from H2 to the PQ pool in its thylakoid membrane.  

In all of our measurements a light-independent H2 uptake was also observed in 

Synechocystis and its occurrence and rate were independent of the activity of any of the 

components of the p-ETC. Due to the fact that the photosynthetic and respiratory electron 

transport chain in Synechocystis co-exist in its thylakoid membrane, with several 

members (such as the cytochrome b6f complex and PQ) participating in both of these 

electron transport chains, the possibility that O2, the final electron acceptor of the r-ETC, 

may act as the electron sink was considered. However, it was later noted that the light-

independent H2 uptake could be observed a) even when O2 was completely removed from 

the medium by the addition of glucose, glucose oxidase and catalase, b) in the Δox 

mutant strain, where the terminal oxidases were deleted, and c) when the electron 

transport through the cytochrome b6f complex was blocked. Therefore, it is concluded 

that the light-independent H2 uptake is not dependent on the terminal electron acceptor of 

the respiratory electron transport chain.  
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Even though the light-induced H2 uptake depended upon the activities of specific 

components of the photosynthetic electron transport chain, H2 photoevolution did not 

show the same effect. The short burst of H2 photoevolution was absent in both the ΔpsbB 

and ΔpsaAB mutant strains (Figure 3.2) as well as in the wild-type strain, treated with a 

saturating concentration of DBMIB (Figure 3.1(D)). This indicated that H2 photo-

production was dependent on the product(s) of the photosynthetic electron transport 

chain, NADPH and/or reduced ferredoxin. From a thermodynamic standpoint this makes 

sense considering the reduction potential of the PQ pool (+80 mV, at pH 7) compared to 

the same of protons (-414 mV, at pH 7). Therefore, even though the cyanobacterial 

hydrogenase is a reversible enzyme, during H2 photoevolution electrons do not travel 

from the PQ pool to the hydrogenase enzyme. 

The results from the in vitro measurements showed that a) H2 production in vitro required 

the supply of NADH or NADPH (Figure 3.5), and b) H2 uptake could continue without 

the addition of any oxidizing agent (Figure 3.4). During H2 production, the average 

production rate was higher with the addition of NADPH as compared to NADH. This 

was not in agreement with the previous result found by Gutekunst et al. (2014), where H2 

production observed with NADPH was negligible, and also with the result found by 

Cournac et al. (2004), where a similar rate of H2 production was found by the addition of 

either NADH or NADPH.  

The previous claim of in vitro H2 production mediated by reduced Fd (Gutekunst et al., 

2014) could not be confirmed in this study. Sodium dithionite, required for the reduction 

of Fd, was shown to induce H2 evolution in vitro with cell-free extracts from the wild-
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type as well as Δhox mutant strains, when treated with dithionite or dithionite-reduced 

Fd. Since the Δhox strain did not contain a hydrogenase, this raised doubt on whether H2 

production observed in cell-free extracts from the wild-type Synechocystis (treated with 

dithionite) was indeed mediated by hydrogenase. Sodium dithionite is known to be a 

strong reducing agent (Mayhew, 1978). However, dithionite by itself does not induce H2 

production in intact cells. A commonly used method for the measurement of in vivo 

hydrogenase activity involves the incubation of a cell suspension with sodium dithionite 

and methyl viologen (Appel et al., 2000; Kim et al., 2006; Kothari et al., 2012), where 

electrons from dithionite are used to reduce methyl viologen. The reduced methyl 

viologen then supplies electrons to the bidirectional hydrogenase. Currently a good 

explanation of how dithionite can induce H2 production in a cell-free extract without the 

presence of hydrogenase is lacking. One possibility is that [Fe-S] clusters in the broken 

cells may catalyze the reduction of protons using electrons from sodium dithionite or 

dithionite-reduced Fd. Another possibility is that the signal recorded by the hydrogen 

electrode, which is known to be affected by the presence of sulfide gas, was in fact due to 

the production of hydrogen sulfide (H2S) that was induced by the added sodium 

dithionite to the cell-free extracts.  
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CHAPTER 4 

CONSTRUCTION OF A HOMOLOGY MODEL OF THE HYDROPHILIC 

SUBUNITS OF NDH-1 AND THE DIAPHORASE SUBUNITS OF 

HYDROGENASE IN SYNECHOCYSTIS SP. PCC 6803 

Summary 

The three diaphorase subunits of hydrogenase (HoxE, HoxF and HoxU) are structurally 

modeled and assembled with the cytosolic subunits of NDH-1 (NdhI, NdhJ, NdhK and 

NdhH) to form a Ndh-diaphorase complex in Synechocystis, based on the crystal 

structure of Complex I from the thermophilic, chemolithotrophic, H2-oxidizing bacterium 

Thermus thermophilus. In the homology model three subunits of NDH-1 (NdhI, NdhJ and 

NdhK) interact with HoxU of the diaphorase moiety. Potential locations of the [Fe-S] 

clusters in the Ndh-diaphorase complex are very similar to their locations in Complex I. 

A [4Fe-4S] cluster in HoxU, located too far from the rest of the [Fe-S] clusters to 

participate in the electron transfer chain from the NAD(P)H-binding domain to the PQ-

binding site may be involved in transferring electrons from H2 to NDH-1.  

4.1 Introduction 

In the previous chapter evidence was provided for electron channeling from H2 to the 

cytochrome b6f complex located in the thylakoid membrane of Synechocystis, thus 

providing an explanation for H2 oxidation in the light (Figure 3.8). Since there is no 

evidence of a direct association of NiFe-hydrogenase with the cytochrome b6f complex, 

electrons need to first enter the thylakoid membrane either directly from hydrogenase or 
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via another protein complex, from where they can be transported to the cytochrome b6f 

complex by PQ, the electron transporter in the thylakoid membrane. Cyanobacterial 

NiFe-hydrogenases do not have a membrane-binding subunit. Therefore, a direct transfer 

of electrons from hydrogenase to the membrane is unlikely. On the other hand, among the 

other proteins located in the thylakoid membrane, the hydrophilic domain of the NDH-1 

protein complex offers a potential anchoring site for three of the hydrogenase subunits. 

As mentioned in Chapter 1, NDH-1 is involved in the respiratory electron transport chain 

in bacteria, chloroplasts and mitochondria and contains a cytosolic (hydrophilic) module 

and a membrane-embedded (hydrophobic) module (Zickermann et al., 2009). The 

universal function of this enzyme is to accept electrons, derived from the cell’s stored 

metabolites via NADH or NADPH, and to transfer them to the quinone pool in the 

membrane, while at the same time transporting protons across the membrane, creating a 

proton-motive force required for ATP synthesis (Sato et al., 2014; Efremov et al., 2010; 

Friedrich et al., 1995; Yagi et al, 1998). While subunit compositions of NDH-1 vary 

significantly among different species, fourteen subunits homologous to the ones found in 

E. coli comprise a minimal set of proteins that carry all the redox centers required to 

perform all bioenergitic functions (Brandt, 2006). However, only 11 of these 14 subunits 

are found in cyanobacteria (Zhao et al., 2014a; Battchikova and Aro, 2007; Kaneko et al., 

2003). In Synechocystis these 11 subunits are NdhH through NdhK, comprising the 

hydrophilic module, and NdhA through NdhG, comprising the membrane-embedded 

module of the complex (Figure 4.1). The three subunits in E. coli (NuoE, NuoF and 

NuoG) whose homologs are missing in cyanobacteria assemble into a single complex 

with four other complementary subunits, whose homologs are present in Synechocystis. 
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Hydrogenase in Synechocystis, apart from its large and small subunits, contains three 

protein subunits HoxE, HoxF and HoxU that constitute a diaphorase moiety. These three 

subunits have significant sequence similarities with NuoE, NuoF and NuoG proteins, 

respectively, in E. coli. Since no other homologs of these three Nuo subunits are present 

in Synechocystis, the diaphorase module offers the potential to be able to bind with the 

available Ndh subunits in Synechocystis.  

Other than the overall sequence similarities, the total number of redox-active centers 

([Fe-S] clusters) in the two proteins are the same as well. The hydrophilic domain of 

NDH-1 usually contains a NADH-binding site, a FMN-binding site and nine [Fe-S] 

clusters. These clusters form a pathway for electron transport from the NADH-binding 

site, located furthest from the membrane to the quinone binding site, located at the 

Figure 4.1 

Hypothetical model of cyanobacterial NDH-1 with the minimal subunits of the 

hydrophobic (yellow) and hydrophilic (green) domains, modified from Battchikova et 

al. (2011b). The potential [Fe-S] clusters are shown in red-yellow spheres, and the 

electron transfer pathway from an unknown donor (dotted line with question mark) to 

the PQ-binding site (green dashed circle), located at the interface of NdhH, NdhK, 

NdhA, NdhC, NdhE and NdhG, is shown by red arrows.  
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interface with the membrane domain (Efremov et al., 2010). In Synechocystis, NdhI and 

NdhK contain consensus sequences for two and one [Fe-S] clusters, respectively (Figure 

4.1). Together, these three clusters could potentially carry electrons from another [Fe-S] 

cluster to the PQ-binding site. On the other hand, HoxE and HoxF contain consensus 

sequences for coordinating a single [Fe-S] cluster each, while the HoxU subunit contains 

four potential [Fe-S] clusters (Appel and Schulz, 1996). These clusters are suggested to 

be involved in electron transfer from the HoxY subunit to the redox partner of 

hydrogenase (Appel and Schulz, 1996; Vignais and Billoud, 2007; Eckert et al., 2012).  

Even though bioinformatic evidence points towards an association of hydrogenase with 

the NDH-1 complex, it is to be noted that experimental evidence is still lacking for such 

an association. In fact, Burroughs et al. (2014) showed that in the Synechocystis NDH-1 

mutant M55 hydrogenase was still attached to the thylakoid membrane, like in wild type. 

However, the mutant also showed a ~50% decrease in hydrogenase abundance 

(Burroughs et al., 2014; Gutthann et al., 2007). Therefore, there may be more than one 

way of associating hydrogenase with the membrane: one depending on NDH-1 and 

another depending on other protein complex(es).  

In this chapter a homology model of a proposed Ndh-diaphorase complex in 

Synechocystis is presented that contains four hydrophilic subunits out of the total 11 

minimal subunits of NDH-1, and three hydrogenase subunits that have sequence 

homologies with the remaining three NDH-1 subunits in E. coli. The homology model is  

based on the template structure of the hydrophilic domain of NDH-1 in a thermophilic, 

chemolithotrophic, H2-oxidizing bacterium, Thermus thermophilus.  
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4.2 Materials and Methods 

4.2.1 Selection of Template 

The amino acid sequences of HoxE, HoxF and HoxU subunits of Synechocystis were 

obtained from the NCBI database. NCBI BLAST searches were performed with these 

sequences against the protein databank (PDB) database to identify similar sequences 

whose crystal structures are already available. The hydrophilic arm of NDH-1 in T. 

thermophilus (PDB ID: 2FUG) was identified as the only complex, whose three subunits 

(Nqo1, Nqo2 and Nqo3) showed significant sequence identities with HoxF, HoxE and 

HoxU, respectively. The amino acid sequences of the three Nqo-subunits were obtained 

from the NCBI database. 

4.2.2 Sequence Alignments 

The amino acid sequences of NdhH, NdhI, NdhJ and NdhK of Synechocystis and Nqo4, 

Nqo5, Nqo6 and Nqo9 of T. thermophilus were obtained from the NCBI database. The 

sequences of the Synechocystis proteins were aligned individually with their 

corresponding homologs in T. thermophilus (HoxF-Nqo1, HoxE-Nqo2, HoxU-Nqo3, 

NdhH-Nqo4, NdhJ-Nqo5, NdhK-Nqo6 and NdhI-Nqo9) using CLUSTALW.  

The three-dimensional structure file of the hydrophilic arm of NDH-1 from T. 

thermophilus was obtained from the PDB database (PDB ID: 2FUG) and was used as the 

template structure for modeling. A structure-based alignment was then created by 

appending the individual alignments together to create a template sequence to be used for 

alignment with hydrogenase targets.  
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4.2.3 Protein Modeling  

The PDB structure file of NDH-1 (2FUG) was truncated to remove subunit Nqo15 to 

create a template structure file. The alignment file containing the template sequence and 

the structure file containing the template structure were used as inputs for protein 

homology modelling software MODELLER (Webb and Sali, 2014). 100 independent 

output models of the Synechocystis Ndh-diaphorase complex were built that varied 

mainly in the structural arrangements of the loop regions of the polypeptide chains. From 

those 100 models the best-fit model was chosen based on its lowest combined energy 

determined by their DOPE (Discrete Optimized Protein Energy) scores. The distribution 

of the DOPE scores of the 100 output models is shown Figure 4.2.  

The native structure of a protein generally has the lowest free energy under native 

conditions (Shen and Sali, 2006; Anfinsen, 1972). Therefore a free energy function can 

be used to predict and assess protein structures. DOPE is an atomic distance-dependent 

Figure 4.2 

Distribution of DOPE scores of 100 output models of the Synechocystis Ndh-

diaphorase complex that varies mainly in the structural arrangements of the loop 

regions of the polypeptide chians. The models were sorted from the lowest-score 

model (best-fit) to the highest-score model and numbered accordingly.  
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statistical potential that represents a scoring function whose global minimum corresponds 

to the native structure from a sample of native structures of different sequences deposited 

in the protein data bank (PDB) (Shen and Sali, 2006) and therefore is widely used for 

identification of the best-fit (minimum energy) model in MODELLER (Eramian et al., 

2008; Kothari et al., 2013).  

All the input and output three-dimensional structures were viewed using the PyMOL 

software (Liang et al., 2003).  

4.3 Results and Analysis 

4.3.1 Homology Modeling  

A homology model of the Ndh-diaphorase complex in Synechocystis was built based on 

the PDB structure of the hydrophilic arm of NDH-1 in T. thermophilus (PDB ID: 2FUG) 

(Sazanov and Hinchliffe, 2006). NDH-1 from T. thermophilus was used as the template 

structure because it was the only protein that contained homologs (with available crystal 

structure) of all of the three diaphorase subunits of hydrogenase with significant sequence 

dentities. The sequence identities and coverages between the homologous subunits of the 

two organisms are given in Table 4.1. 

4.3.2 Analysis of the Overall Structure 

The best-fit three-dimensional homology model of the Ndh-diaphorase complex in 

Synechocystis is shown in Figure 4.3. The overall folds and lengths of HoxF, HoxE, 

NdhH, NdhJ, NdhK and NdhI subunits were very similar to Nqo1, Nqo2, Nqo4, Nqo5, 
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Nqo6 and Nqo9, respectively. HoxU, which contained 238 amino acid residues, was a 

much smaller protein compared to Nqo3 (767 residues) and aligned only with its initial 

307 residues, covering the N-terminal domain and initial portion of the C-terminal 

domain of Nqo3. No homolog of the remaining C-terminal region of Nqo3 was found in 

Synechocystis. HoxF contains a potential FMN-binding and a NAD(P)H-binding domain. 

Aside from the missing segment of Nqo3 in HoxU, the rest of the two units, the Ndh-

diaphorase complex in Synechocystis and Nqo (1-6, 9) in T. thermophilus could be 

structurally superimposed.  

Protein subunit Identity with the 

target sequence 

in the covered 

sequence region 

Target 

sequence 

coverage 

Template 

sequence 

coverage Synechocystis 

(target 

sequence) 

T. 

thermophilus 

(template 

sequence) 

HoxF Nqo1 46% 74% 91% 

HoxE Nqo2 31% 63% 60% 

HoxU Nqo3 30% 86% 40% 

NdhH Nqo4 46% 95% 99% 

NdhJ Nqo5 56% 29% 39% 

NdhI Nqo9 33% 71% 60% 

NdhK Nqo6 50% 83% 60% 

Table 4.1. 

Amino acid sequence comparison between the subunits of NDH-1 in T. thermophilus 

and their homologs in Synechocystis 
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4.3.3 Comparison of NdhJ and Nqo5 Structures 

Because of the low template and target sequence coverages of the NdhJ-Nqo5 alignment 

(Table 4.1), the structures of the two subunits were examined carefully. The three-

dimensional structures of the two subunits showed the same overall folds and lengths of 

their α-helices and β-sheets but the low sequence coverages were caused by two uneven 

loop regions (Figure 4.4). Nqo5 has a short (4 residues) loop region close to its N-

terminus while the homolog in NdhJ is longer (23 residues). On the other hand, a second 

loop near the C-terminal end of Nqo5 is 72 residues long while in NdhJ the C-terminal 

loop spans 36 residues. While it is difficult to be certain of the precise effects of these 

length variations based on the homology model, both of these two loop regions in the two 

proteins are located near the surface of the proteins and therefore are not likely to affect 

the core structures of the two complexes.  

4.3.4 Tentative Positions of the [Fe-S] Clusters 

The amino acid residues coordinating the [Fe-S] clusters were compared between the two 

protein complexes. Consensus sequences coordinating the [Fe-S] clusters in various Hox 

subunits in Synechocystis were observed before (Appel and Schulz, 1996). The amino 

acid residues coordinating the [Fe-S] clusters in T. thermophilus were obtained from the 

PDB structure of the protein (PDB ID: 2FUG). Nqo1 and Nqo2 contain one [4Fe-4S] 

cluster each, both coordinated by four cysteine residues, and their positions are conserved 

in HoxF and HoxE, respectively (Figure 4.3). 
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Figure 4.3 

Three-dimensional homology model of the Ndh-diaphorase complex from 

Synechocystis (A) based on the PDB structure of the hydrophilic subunits of NDH-1 

from T. thermophilus (PDB ID: 2FUG) (B). The actual positions of the [Fe-S] clusters 

in T. thermophilus and their tentative positions in the Synechocystis homology model 

are shown in red spheres. The tentative FMN-binding site (blue line) and NAD(P)H-

binding site (green arrow) in HoxF are also indicated.  

 

Figure 4.4 

Comparison of the structures of NdhJ in Synechocystis (A) and Nqo5 (B) in T. 

thermophilus (PDB ID: 2FUG). The longer loop regions of NdhJ and Nqo5 are 

indicated by arrows.  
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The Nqo3 subunit coordinates a total of four [Fe-S] clusters: a [2Fe-2S] type binuclear 

cluster N1B and three [4Fe-4S] clusters N4, N5 and N7 (Figure 4.5). Clusters N1b, N4 

and N5 are located in the N-terminal domain region of Nqo3 while N7 is located in its C-

terminal domain. Cysteine residues coordinating cluster N1b are conserved in 

cyanobacterial HoxU. The N5 cluster is coordinated by residues in the motif 

HX3CX2CX5C in Nqo3 (Sazanov and Hinchliffe, 2006), while in HoxU the consensus 

that is present in the corresponding position is HXCX2CX5C (Appel and Schulz, 1996) 

and is well conserved among cyanobacteria. This consensus was suggested to coordinate 

either a [4Fe-4S] cluster or a [3Fe-4S] cluster because of the position of the histidine 

residue. Cluster N4 is coordinated by four cysteine residues in Nqo3. The positions of 

three of those are conserved HoxU, and the fourth one is located at a different position. 

Finally, the fourth cluster N7 is located at the C-terminal domain of Nqo3, coordinated by 

four cysteine residues, the positions of which are not conserved in HoxU. However, 

Figure 4.5 

Tentative locations of the [Fe-S] clusters (red spheres) in HoxU (A) and their actual 

positions in Nqo3 (PDB ID:2FUG) (B). Since the position of the fourth [Fe-S] cluster 

in HoxU is not conserved in Nqo3, four cysteine residues that can potentially 

coordinate a cluster are shown in green.  
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HoxU also contains a fourth consensus sequence (CX2CX2CX3C) near its C-terminal end 

for potentially coordinating a [4Fe-4S] cluster (Appel and Schulz, 1996), which in the 

homology model points to a similar position as N7 (Figure 4.5). Because the N7 cluster is 

located too far away from the main redox chain from the NADH-binding site to the 

quinone-binding site, it was suggested that this [Fe-S] cluster does not participate in the 

main electron transfer chain in NDH-1 (Sazanov and Hinchliffe, 2006; Hinchliffe and 

Sazanov, 2005).  

Cluster N6a and N6b in Nqo9 and cluster N2 in Nqo6 are coordinated by four cysteine 

residues each, the positions of which are conserved in NdhI and NdhK, respectively. 

4.4 Conclusion 

A homology model of the potential Ndh-diaphorase complex in Synechocystis is 

presented. The successful computational assembly of this model shows that amino acid 

residues of the subunits of the two proteins (hydrogenase and NDH-1) can structurally 

interact with each other to form a single complex. Therefore, it supports the hypothesis 

that subunits of hydrogenase and NDH-1 can potentially assemble into a single complex 

in the cell as well. Based on this model, HoxU is the only subunit of the hydrogenase 

enzyme that interacts with subunits of NDH-1, namely NdhI, NdhJ and NdhH, but not 

NdhK. Nine [Fe-S] clusters are positioned tentatively according to the positions of the 

conserved amino acid residues coordinating the clusters. Their positions in the Ndh-

diaphorase complex are very similar to those in NDH-1. Like in NDH-1, eight out of the 

nine [Fe-S] clusters in the Synechocystis complex can potentially form a redox chain 

from the NAD(P)H-binding site in HoxF to the tentative PQ-binding site close to the 
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membrane-embedded domain, while the remaining [Fe-S] cluster (4th cluster in HoxU) is 

not likely to be a part of this redox chain.  

The position of the HoxYH module relative to this complex could not be predicted with 

certainty because of the lack of a template structure with both the diaphorase and the 

hydrogenase module. However, because of the absence of the C-terminal region of Nqo3 

in HoxU, and the odd position of its fourth [Fe-S] cluster, HoxU may be involved in 

connecting the Ndh-diaphorase complex to the HoxYH module. In that case, the 

participating subunits may interact in such a way that the fourth [Fe-S] cluster of HoxU 

can participate in transferring electrons between the [Fe-S] cluster in HoxY and the main 

redox chain in the Ndh-diaphorase complex (Figure 4.6).  

Figure 4.6 

Three-dimensional homology model of the Ndh-diaphorase complex in Synechocystis 

and predicted structure of the large (HoxH) and small (HoxY) subunits from Kothari 

et al., 2013. A tentative route of electron transfer between the [Fe-S] cluster in the 

small subunit of hydrogenase and the fourth [Fe-S] cluster of HoxU is indicated by a 

dashed arrow in red. The [Fe-S] clusters are shown in red spheres. Electron transfer 

between NAD(P)H and NADP+, PQ and PQH2, and H2 and H+ are indicated by green 

arrows. 

 



97                                                                                                            

CHAPTER 5 

SIGNIFICANCE OF THE DIAPHORASE MOIETY IN SYNECHOCYSTIS SP. 

PCC 6803: AN ATTEMPT TO OVEREXPRESS HYDROGENASE WITHOUT 

DIAPHORASE 

Summary 

In the previous chapter, a homology model of a potential Ndh-diaphorase complex in 

Synechocystis containing three of the diaphorase subunits of hydrogenase (HoxEFU) and 

four of the peripheral subunits of NDH-1 (NdhH-K) was presented. In this chapter an 

existing HoxEF deletion mutant strain was assayed for potential light-induced H2 uptake 

activity driven solely by the HoxUYH module and NDH-1. To improve the abundance of 

HoxUYH in the strain lacking HoxE and HoxF, the genes encoding these three subunits 

were overexpressed under two strong promoters. H2 production was assayed to test 

whether in the absence of HoxEF module the partially expressed enzyme is capable of 

finding an alternate redox donor. The overexpression strain did not show any H2 uptake 

or production under physiological conditions, although it displayed H2 evolution with 

reduced methyl viologen. Altogether, these data could not provide evidence for an 

electron transfer pathway that is independent of the HoxE and HoxF subunits in the 

partially expressed hydrogenase in Synechocystis.  

5.1 Introduction 

Cyanobacterial NiFe-hydrogenases are multisubunit enzymes containing five protein 

subunits namely, HoxE, HoxF, HoxU, HoxY and HoxH. While HoxH contains the active 
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site of the enzyme, all of the other Hox subunits contain potential [Fe-S] cluster-binding 

sites. HoxH and HoxY subunits in Synechocystis are homologous to the large and small 

subunits of prototypical NiFe-hydrogenase, respectively, and form the hydrogenase 

moiety of the enzyme (Vignais and Billoud, 2007; Eckert et al., 2012). In the large 

subunit, the NiFe-containing active site catalyzes the reduction of protons or oxidation of 

H2, while the [Fe-S] clusters in the small subunit function in electron transfer to and from 

the large subunit (Vignais and Billoud, 2007). On the other hand, HoxE, HoxF and HoxU 

subunits constitute the diaphorase moiety (Massanz et al., 1998; Boison et al., 1998) of 

the enzyme that catalyzes the oxidation/reduction of NAD(P)H/NAD(P)+, coupling it 

with the reduction/oxidation reaction at the active site of the hydrogenase moiety (Long 

et al., 2007; Antal et al., 2006). HoxF contains NAD(P)H-binding and FMN-binding 

domains, making it essential for the diaphorase activity of the enzyme (Appel and 

Schmitz, 1996). HoxE, HoxF and HoxU contain potential [Fe-S] cluster binding sites, but 

their exact roles in the electron transfer to and from the active site are not known.  

Due to the presence of the NAD(P)H-binding domain in HoxF, the cyanobacterial 

hydrogenase was classified as a NAD(P)+-reducing hydrogenase, with its diaphorase 

moiety being essential for the NAD(P)+-reducing activity. However, H2 evolution 

depending on the electron supply from reduced methyl viologen has also been detected in 

Synechocystis hoxE, hoxF and hoxU mutants recently (Eckert et al., 2012) suggesting that 

the enzyme is catalytically active without these subunits. Therefore, the enzyme might be 

able to accept electrons from an alternate electron donor in the cell in the absence of its 

NAD(P)+-binding diaphorase moiety.  
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Apart from that, in the previous chapter the homology model of a potential Ndh-

diaphorase complex was presented, in which HoxU was found to be the only subunit of 

the hydrogenase enzyme with direct interaction with subunits of NDH-1. While it could 

not be predicted how the HoxY-HoxH module can potentially interact with this complex, 

a possible electron transfer pathway from the active site of hydrogenase to NDH-1 via the 

[Fe-S] clusters located in HoxY and HoxU, but not HoxE and HoxF seemed plausible 

(Figure 5.1).  

Therefore,  an existing hoxEF- strain (Howitt and Vermaas, 1999) was assayed for (a) 

potential H2 production activity from an alternate electron donor, and (b) potential H2 

uptake activity using HoxH, HoxY, HoxU and the Ndh subunits. In the hoxEF- strain a 

portion of hoxE and hoxF was deleted and replaced with a chloramphenicol resistance 

cassette (CmR). The hox operon in Synechocystis spans over a ~6.5 kb DNA segment 

with a total of eight genes (five hox genes and three ORFs with unknown functions) 

Figure 5.1 

Hypothetical model of an electron transfer pathway from the active site located in 

HoxH to the PQ pool via the [Fe-S] clusters in HoxY and HoxU.  
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(Figure 1.3). Even though the known promoter of the hox operon is located in a ~700 

nucleotide region upstream of hoxE, a deleterious effect of the CmR cassette could not be 

ruled out. Therefore,  a hoxUYH overexpression strain was constructed in the background 

of the previously constructed hoxEF- strain and assayed it for potential H2 

uptake/production activity. 

5.2 Materials and Methods 

5.2.1 Construction of the hoxUYH Overexpression Strain 

A schematic diagram of the construction of the plasmid vector used to overexpress the 

genes is presented in Figure 5.2. 

Step 1: The following DNA fragments were amplified from Synechocystis genome: a 620 

bp fragment containing the region upstream of slr0551 (bases 3250365-3250984) as the 

potential promoter of slr0551 (Pro0551), a ~2.2 kb fragment containing hoxU, hoxY and 

two ORFs downstream of hoxY (bases 1673446-1675637), a fragment containing the 490 

bp region upstream of slr0749 (bases 3415499-3415988) as the potential promoter region 

of slr0749 (Pro0749) and a ~1.4 kb fragment containing hoxH (bases 1673495-1672071). 

A SacI restriction site was engineered at the 5’ end of the Pro0551 fragment. The locations 

of the sequences in the Synechocystis genome are stated according to CyanoBase. After 

obtaining the individual PCR products, the amplicons were successively combined two 

fragments at a time, into a single DNA fragment totaling ~4.6 kb by using the overlap 

PCR method as described by Pogulis et al. (1996). Primers used for the amplifications are 

listed in Table 5.1.  
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 Step 2: Another DNA fragment (~2.4 kb) containing the T1/T2 terminator and 

spectinomycin-resistance cassette (SpR) was amplified from an existing plasmid vector 

(constructed by Dr. Hongliang Wang) and was fused to the previously obtained ~4.6 kb 

fragment, again by using overlap PCR method. The resultant ~7.2 kb DNA fragment 

Figure 5.2 

Construction of the plasmid phoxUYH+ that uses promoters from slr0551 and slr0749 genes 

to overexpress hoxU, hoxY and hoxH in Synechocystis. See text for a detailed explanation. 
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contained Pro0551/hoxU-hoxY/Pro0749/hoxH /(T1/T1)/SpR. A PstI restriction site was 

engineered at the 3’ end of T1/T2-SpR fragment. 

Step 3: Next, a pUC19-based plasmid vector, which already included a neutral genomic 

DNA region (729195-730287) from the Synechocystis genome in two fragments, bases 

729195-729805 on one side (NS-1) and bases 729820-730287 on the other (NS-2), was 

used as a template for another PCR. This PCR was performed to linearize this vector 

from NS-2 to NS-1, with the pUC19 backbone in between, and to introduce SacI and PstI 

restriction sites at the 3’-end of NS-1 and 5’-end of NS-2 (Figure 5.2).  

Step 4: The previously obtained ~7.2 kb DNA fragment was then inserted in between 

NS-1 and NS-2 of the linearized vector with the SacI and PstI restriction sites to obtain 

plasmid phoxUYH+. The correctness of the cloned plasmid was confirmed by sequencing.  

The Synechocystis hoxEF- strain (Howitt and Vermaas, 1999) was obtained from our 

laboratory and the phoxUYH+ plasmid was used to transform this strain following the 

procedure as described by Vermaas et al. (1987). Segregation analysis was performed as 

described in Section 2.2.3 (Chapter 2) and fully segregated transformants (hoxEF-/UYH+) 

were selected on BG-11 plates with 60 µg ml-1 spectinomycin. 

5.2.2 RT-PCR  

RNA was extracted from cultures of Synechocystis hoxEF- and hoxEF-/UYH+ strains 

using Trizol reagent (Life Technologies) following the manufacturer’s protocol. DNase 

treatment was done by Turbo DNA-freeTM DNase (Life Technologies), followed by 

cDNA synthesis using the iScript Select cDNA Synthesis Kit (Bio-Rad), following the 
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Primer Sequence Description 

NS-1-pUC19-R aattGAGCTCGTTACGGGCAAAAT

TGCAGACCC 

Linearizes a circular 

pUC19-baes vector and 

introduces SacI and 

PstI restriction sites at 

the 3’-end of NS-1 and 

5’-end of NS-2 

NS-2-pUC19-F aattCTGCAGTCAAGATGAAGCGG

CGATCGGTAA 

Pro0551-F aattGAGCTCGGCGATACCAGTCA

AAGAATGG 

Amplifies the region 

containing the promoter 

of slr0551 

Pro0551-R AGTGTAAATAAAAAAACGTTGTA 

hoxYH-F tacaacgtttttttatttacactATGTCTGTTGT

TACTTTAACCATTG 

Amplifies hoxU, hoxY 

and 2 ORF, located 

downstream of hoxY 

hoxYH-R TGGTTGACGGGGGATTGATTATT

G 

Pro0749-F caataatcaatcccccgtcaaccaACTCCCTCT

TCCCGCCGCCTTCG 

Amplifies the region 

containing the promoter 

of slr0749 

Pro0749-R TATTAACGAGGTTTGGGGTCTTG

G 

hoxH-F ccaagaccccaaacctcgttaataATGTCTAA

AACCATTGTTATCG 

Amplifies hoxH 

hoxH-R TTAATCCCGCTGGATGGACTTAA

T 

T1/T2-Sp-F attaagtccatccagcgggattaaGTCGACTG

AGAGAAGATTTTCAG 

Amplifies T1/T2 

terminator and 

spectinomycin 

resistance cassette T1/T2-Sp-R CTGCAGGGGCCCTCTAGGGTCCC

CAATTA 

Table 5.1. 

Primer sequences used for the construction of hoxEF-/UYH+ strain. In the primer 

sequences, letters in bold indicate restriction sites for digestion and the lower case 

letters indicate 5’ nucleotide that were added. 
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manufacturer’s protocols in both cases. For RT-PCR, iTaq SYBR Green Supermix with 

ROX (Bio-Rad) was used with primers listed in Table 4.2 and reactions were performed 

using the manufacturer’s protocol. An ABI Prism 7900HT Sequence Detector System 

was used for measuring fluorescence of SYBR green/double-stranded DNA and analysis 

was done using the 2-ΔCt method (Schmittgen and Livak, 2008). Primers used for the RT-

PCR are listed in Table 5.2. 

5.2.3 Western Blot Analysis 

Polyclonal rabbit antibodies against HoxH were kindly donated by Dr. Laurent Cournac. 

Western blot analysis was performed as described by Gonzalez-Esquer and Vermaas 

(2013). Cultures of Synechocystis wild type and hoxEF-/UYH+ (200 ml) were harvested 

by centrifugation while in their exponential growth phase (OD730 0.5-0.8) and 

resuspended in resuspension buffer containing 50 mM MES-NaOH (pH 6.5), 10 mM 

MgCl2, 5 mM CaCl2, 25% glycerol, and “protease inhibitor cocktail” (1 mM each of 

phenylmethylsulfonyl fluoride (PMSF), benzamidine, and amino caproic acid). Cells 

were broken by 10 x 30 s of bead beating (with 0.1 mm glass beads) in a Mini Bead 

Beater (BioSpec Products, Bartlesville, OK) with two minutes of intermittent cooling 

on ice. Cell debris was removed by centrifugation at 1600 x g for 5 min and the 

supernatants containing proteins were collected. The supernatants were further 

centrifuged at 37000 x g for 15 min to separate membrane (total membrane) fractions 

from soluble fractions. Both the membrane and soluble fractions were used for 

polyacrylamide gel electrophoresis (PAGE). Protein concentrations in the soluble 

fractions were determined by Bradford assay (Bradford, 1976). Proteins were separated  
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Primer Sequence Location in 

Synechocystis genome 

RT-hoxE-F AACCCAGTGGGAAACATACC 1678309-1678290 

RT-hoxE-R GGTTTCAGATGGACTTCCTGAT 1678204-1678225 

RT-hoxF-F ACCGCAGTGTGTTGGAAA 1677339-1677322 

RT-hoxF-R ATTCCGCCCGCACATAAA 1677235-1677252 

RT-hoxU-F CCCAAGCGAGAAGTGGATTTA 1675273-1675253 

RT-hoxU-R CTCCCTCAATTTCATCGCAAAC 1675171-1675192 

RT-hoxY-F AGCTTTGGAGTTGAGACAGAAA 1674689-1674668 

RT-hoxY-R GGATCGCTACCTTTGAGCATATTA 1674585-1674608 

RT-hoxH-F GGGTTATCCCGATGGCATTTA 1672650-1672630 

RT-hoxH-R CCCGTTGCCGATATTCTTCT 1672541-1672560 

Table 5.2. 

Primer sequences used for RT-PCR of cDNA from the wild-type, hoxEF- and hoxEF-

/UYH+ strain. The locations of the sequences in the Synechocystis genome are stated 

according to Cyanobase. 
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by 12% SDS-PAGE and then transferred onto a polyvinylidene difluoride (PVDF) 

membrane (Immobilon-P) at 40 V and 4 °C for 4 h.  

Western blotting was performed according to Millipore’s “Rapid immunodetection 

without blocking” protocol with Phosphate-Buffered Saline (PBS; 0.1 M sodium 

phosphate, 0.15 M NaCl, pH 7.0) buffer and fat-free milk as blocking agent. The 

primary antibody was used in a 1:1000 dilution and the alkaline phosphatase (AP)- 

conjugated secondary antibody in a 1:3000 dilution. The immunoblot was visualized 

using an AP substrate kit (BioRad).          

5.2.4 Assay for H2 Production 

H2 production and uptake from the wild-type, hoxEF- and hoxEF-/UYH+ strains were 

measured using a modified Clark-type electrode, as described in Section 2.2.2 (Chapter 

2). Cultures were grown photoautotropically to a final OD730 between 0.8 and 1.0 before 

resuspending the pellets in fresh BG-11 medium to achieve final cell concentrations 11 

µg chl a ml-1.  Hydrogenase activity was measured in darkness and under anaerobic 

conditions with the addition of glucose (10 mM), glucose oxidase (40 U ml-1) and 

catalase (50 U ml-1) as O2 scavenger. To measure the potential (maximum) activity of the 

enzyme, methyl viologen (5 mM) and sodium dithionite (10 mM) were added to the cell 

suspension, and H2 production was recorded in darkness. 
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5.3 Results 

5.3.1 Overexpression of the Hydrogenase Moiety in the Absence of Diaphorase 

In order to investigate the role of HoxE and HoxF, a mutant strain of Synechocystis was 

generated with overexpressed hoxU, hoxY and hoxH, in the absence of hoxE and hoxF. 

For this purpose hoxU, hoxY and hoxH genes were cloned into a pUC19-based plasmid 

under the control of two strong promoters from slr0551, encoding a hypothetical protein 

and slr0449 (chlL), and the hoxEF- background strain was transformed with this plasmid 

(Figure 5.3). Slr0551 and slr0449 were selected from a microarray database because of 

their high and consistent level of expressions in both aerobic and anaerobic conditions 

(Summerfield et al., 2008).  

RT-PCR was performed to check the expression levels of all five hox genes in 

Synechocystis wild-type, hoxEF- and hoxEF-/UYH+ strains. The relative expression levels 

of the hox genes in the mutant strains compared to the wild-type strain are shown in 

Figure 5.4. As expected, no transcript of hoxE or hoxF was detected in either of the 

mutant strains. In the hoxEF- strain a decrease in the expression of hoxU, hoxY and hoxH 

Figure 5.3 

Hox genes in Synechocystis wild-type, hoxEF- and hoxEF-/UYH+ strains.  
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compared to the wild type was detected. This phenomenon could be due to fact that in 

hoxEF- the substitution of the initial two genes of hox operon with a CmR cassette caused 

a deleterious effect on the expression of the downstream genes. As expected, in the 

hoxEF-/UYH+ strain the transcript level of all three hydrogenase genes (hoxU, hoxY and 

hoxH) were increased.  

In a previous study the HoxH protein abundance was found to be severely affected (10% 

of the wild type) by the deletion of hoxE and hoxF (Aubert-Jousset et al., 2011). 

Therefore, in order to check the level of HoxH abundance in the hoxEF-/UYH+ strain, 

Western blot analysis was performed with anti-HoxH antibodies using both membrane 

fractions and the soluble fractions from the wild-type strain and the hoxEF-/UYH+ strain. 

Figure 5.4 

Histogram representation of the ratios of the transcript abundances (measured by RT 

PCR) of the five hox genes in hoxEF- and hoxEF-/UYH+ mutants relative to the wild 

type. Relative abundances of transcripts were normalized to atpA by using the 2ΔCt 

method and then compared to the wild type. 
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The membrane fraction of either of the two strains did not generate any cross-reactive 

band but the soluble fractions from both strains generated cross-reactive bands at ~50 

kDa and at ~30 kDa (Figure 5.5). These additional ~30 kDa bands were observed in 

previous studies with HoxH antibodies and were assigned to be either non-specific bands 

or degradation products of HoxH (Appel et al., 2000; Aubert-Jousset et al., 2011). For the 

~50 kDa HoxH-specific band no increase in the band intensities in the overexpression 

mutant relative to the wild type was estimated. Therefore, even though HoxH abundance 

in the hoxEF-/UYH+ mutant was higher than the previously reported 10% expression in 

the background strain hoxEF- (Aubert-Jousset et al., 2011), the protein abundance in the 

hoxEF-/UYH+ strain did not exceed the amount in the wild-type strain. 

 

Figure 5.5 

Immunoblot analysis using HoxH antibodies following SDS-PAGE (12% SDS) with 

isolated membrane fractions and soluble fractions from the wild-type and hoxEF-

/UYH+ strains. W-m and M-m correspond to the wild type and hoxEF-/UYH+ 

membrane fractions, respectively (0.3 µg chl a each), and W-s and M-s correspond to 

wild type and hoxEF-/UYH+ soluble fraction, respectively. Minimal loading (1x) of 

the soluble fraction corresponds to 0.2 µg protein.  
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5.3.2 Hydrogenase Activity in the Mutant Strains 

No H2 production or uptake could be detected with the hoxEF- or hoxEF-/UYH+ strains 

when cultures were incubated in darkness and under anaerobic conditions indicating that 

in the absence of HoxE and HoxF subunits the partially expressed enzyme could not find 

an alternate redox partner in the cell. Trace curves of H2 uptake and production 

measurements with the hoxEF-/UYH+ strain are shown in Figure 5.6 (A-B). To test if the 

partially overexpressed enzyme was catalytically active, a H2 production assay was 

performed using reduced methyl viologen as the electron donor. In this assay H2 

production was detected from the wild-type as well as mutant strains (Figure 5.6 (C-D)). 

The rate of H2 production in the hoxEF-/UYH+ strain was ~25% of the wild type (Table 

5.3).  

5.4 Discussion  

Cyanobacterial bidirectional hydrogenases are known to couple H2 production/oxidation 

with NAD(P)H/NAD(P)+ oxidation/reduction, mainly due to the presence of a NAD(P)+ 

binding site in the HoxF subunit of the enzyme. On the other hand, H2 uptake in the 

presence of light follows a different electron transport pathway than H2 production. 

According to the previously predicted model of the Ndh-diaphorase complex, electron 

transfer during light-induced H2 uptake may not be mediated though HoxE and HoxF at 

all. Therefore, a partially expressed hydrogenase (without HoxE and HoxF) could 

potentially oxidize H2 using this electron transfer pathway. However, in this chapter it 

was shown that in the absence of the diaphorase moiety (HoxE and HoxF), the partially  
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Figure 5.6 

H2 uptake (A) and production (B) measurements in Synechocystis hoxEF-/UYH+ 

strain. Cell suspensions of 11 µg chl a ml-1 were initially incubated in darkness and 

after ~10 min light was switched on (indicated by the arrows). The initial steep rise of 

the trace curve in graph A indicates the addition of H2-saturated BG-11. H2 production 

measurements with excess reductant in wild-type (C), hoxEF-/UYH+ (D) are also 

shown. Prior to these two measurements methyl viologen (5 mM), reduced with 

sodium dithionite (10 mM) was added to the cell suspensions.  
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expressed hydrogenase did not show any hydrogenase activity (uptake or production) 

under physiological conditions (with no external redox donor).  

Even though no hydrogenase activity could be detected in the hoxEF-/UYH+ strain under 

physiological conditions, H2 production was found when reduced methyl viologen was 

used as the electron donor. This result supported previous reports of methyl viologen 

dependent H2 production in the HoxYH module, which was suggested to be the minimal 

catalytic unit of hydrogenase (Eckert et al., 2012; Aubert-Jousset et al., 2011). 

Eckert et al. (2012) showed that in the absence of HoxF or HoxU the rest of the Hox 

subunits in Synechocystis do not form a subcomplex of hydrogenase indicating that HoxF 

and HoxU subunits are essential for the assembly of a functional Hox subcomplex. In 

contrast, Hox subcomplexes can be formed in the absence of HoxY, HoxH or HoxE. A 

summary of the detected subcomplexes in various hox mutants and a representative  

Strain MV-dependent H2 production, 

µmol (mg chl a)-1 h-1 

Wild-type 36.0 + 1.2 

hoxEF- 7.4 + 0.7 

hoxEF-/UYH+ 8.7 + 0.5 

Table 5.3. 

H2 production rates with reduced methyl viologen (MV) in Synechocystis wild-type 

and mutant strains. Average rates were calculated from three independent 

measurements.  
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diagram of the Hox subunits are given in Table 5.4 and Figure 5.7, respectively. 

Therefore, the absence of hydrogenase activity without an external donor in our hoxEF-

/UYH+ strain does not necessarily indicate that the HoxE and HoxF subunits are required 

for the electron transfer between hydrogenase and the PQ pool. Since the hoxEF-/UYH+ 

strain does not have HoxF, according to the results reported by Eckert et al. (2012), it is 

likely that the remaining subunits do not form a functional subcomplex. On the other 

hand, the strain displayed methyl viologen dependent H2 evolution, a phenomenon for 

which minimally HoxY and HoxH subunits are required (Eckert et al., 2012). Therefore, 

in the hoxEF-/UYH+ strain the HoxYH subcomplex is expected to be present. Either way, 

HoxU is not likely to be a part of the Hox subcomplex due to the absence of HoxF. Since 

according to the homology model HoxU plays a crucial role in the electron transfer 

process to/from the HoxYH module, its absence in the subcomplex may be a reason why 

no H2 uptake could be detected in the hoxEF-/UYH+ strain. 

Hox Mutants 
 

Subcomplex Detected 

hoxE- HoxFUYH, HoxFU 

hoxF- None 

hoxU- None 

hoxY- HoxEFU, HoxFU 

hoxH- HoxEFU, HoxFU 

Table 5.4. 

Presence of Hox subcomplexes in Synechocystis hox mutants as reported by Eckert et 

al. (2012).  
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Figure 5.7 

Representative diagram of the subunits of hydrogenase in Synechocystis. 
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CHAPTER 6 

OVERALL CONCLUSION AND FUTURE DIRECTIONS 

 

The research presented in this dissertation provides insight into the H2 metabolism in the 

model cyanobacterium Synechocystis. The principal contribution of this work is to 

identify and characterize two distinct types of H2 metabolism in Synechocystis, one in the 

presence and the other in the absence of light. In cyanobacteria NAD(P) and/or 

oxidized/reduced Fd/Flv are known as the redox partners of hydrogenase. All of these 

redox partners are reduced by the photosynthetic light reactions and can potentially be 

reoxidized by hydrogenase during H2 production. Because the cyanobacterial enzyme 

catalyzes a reversible reaction, it is generally assumed that during H2 oxidation electrons 

follow the same pathway as for H2 production, but in the reverse direction. In this work 

the existence of a novel, NAD(P)- or ferredoxin-independent electron transfer pathway 

during H2 oxidation in the presence of light is elucidated (Figure 3.8). In this pathway the 

PQ pool works as the electron acceptor of hydrogenase. From the PQ pool electrons are 

subsequently channeled through the cytochrome b6f complex and photosystem I in the 

thylakoid membrane, ultimately contributing to the production of NADPH.  

H2 photoevolution is an attractive mode of production of H2 by using the light energy 

captured by the photosystems without involving a carbohydrate intermediate. However, 

in reality H2 production in Synechocystis occurs only for few seconds. Results in this 

dissertation provide an explanation, for the first time, for the transient nature of H2 

photoevolution in Synechocystis. 
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Also, NDH-1 is identified as the most likely component of the thylakoid membrane for 

mediating this electron-transfer between hydrogenase and the PQ pool. A three-

dimensional homology model of the subunits of hydrogenase and NDH-1 participating in 

the electron-transfer process is presented. The successful assembly of this model (the 

Ndh-diaphorase complex) provides support for a potential assembly of the two 

complexes in Synechocystis. Since electrons during H2 production and oxidation do not 

follow the same pathway, the predicted model provides targets for engineering alterations 

in order to sever the connection between hydrogenase and NDH-1 so that H2 

photoevolution can continue without any light-induced H2 uptake. Sustained H2 

photoevolution by bidirectional hydrogenase was observed before in the NDH-1 mutant 

M55 (Cournac et al., 2004), a phenomenon that can now be explained by the absence of 

H2 uptake in the mutant strain. However, since NDH-1 also participates in a variety of 

other cellular functions, the M55 strain has other significant side-effects such as impaired 

CO2 uptake and cyclic electron transport around PS I. Hydrogenase, on the other hand, is 

not known to participate in any other cellular function and therefore provides a more 

suitable platform for genetic alterations. Since the PQ-mediated electron transfer can only 

occur during H2 oxidation but not during H2 production, the aim of the alteration should 

be to do so without disrupting H2 production. Based on the homology model, HoxU 

offers several potential target amino acid residues for such alterations.  

Finally, hydrogenase from the marine cyanobacterial strain Lyngbya aestuarii BL J was 

heterologously expressed in Synechocystis. Hydrogenase in Lyngbya BL J offers great 

potential as a powerful H2 producer (Kothari et al., 2012). However, because of its 

filamentous nature and slow growth rate, it is not a suitable strain for genetic 
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manipulation or large-scale production. Expression of the Lyngbya hydrogenase in 

Synechocystis provides a platform for further research on this enzyme. However, 

challenges must be overcome to achieve a desirable rate of fermentative H2 production 

from the heterologously expressed enzyme in Synechocystis. The current version of the 

enzyme in Synechocystis, even though catalytically active, is incapable of producing H2 

without the addition of external reductants such as reduced methyl viologen. While 

expressing the maturase proteins from Lyngbya BL J in Synechocystis can potentially be 

an easy solution, it is also possible that hydrogenase in Lyngbya BL J uses a different 

protein/cofactor as the redox partner that is not expressed in Synechocystis. In that case, 

identification of the protein/cofactor and its subsequent expression will be required.  
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